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Conics as groups

Lemma
A conic C has a k-rational point if and only if its discriminant is a square in k.

Lemma
Assume that exists O ∈ C(Q). Then,

I Fix O in C. This will be the group identity.
I For every two points P and Q in C, from O draw the parallel line with PQ. This line

intersects the conic C in another point R ∈ C(Q).
I Define P ⊕ Q := R.

Then, (C(Q),⊕) is an Abelian group.



Corollary
Given the conic C with equation

ax2 + bxy + cy2 + dx + ey = 0,

and the point O(0, 0) on it. For every two points P(α1, β1) and Q(α2, β2) the formula
to compute the coordinates of P ⊕ Q is given by

P ⊕ Q =

(
−

eλ + d
cλ2 + bλ + a

, λ

(
−

eλ + d
cλ2 + bλ + a

))
,

where

λ =


β2 − β1

α2 − α1
, kur P 6= Q

−
2 aβ1 + bβ1 + d
bα1 + 2 cβ1 + c

, if P = Q



Elliptic curves

A genus 1 curve defined over a field k has equation

C : y2 = f (x),

where deg f = 3, 4. (char k 6= 2). We take O =∞. Hence, deg f = 3. Then we can
define a group structure as follows:

I For any two points P,Q, construct the line l going through P and Q.
I From Bezout’s theorem, l will intersect C in a third point R. Take as P ⊕ Q the

symmetrical of R with respect to the x-axis.

A genus 1 curve with a group structure is called an elliptic curve.



Genus 2

Let C be a genus 2 curve defined over a field k . If char k 6= 2, 3 the C is isomorphic to a
curve with equation

y2 = a5x5 + a4x4 + a3x3 + a2x2 + a1x + a0. (1)

Thus, infinity is a Weierstrass point of C.
C can NOT be made into a group. However, it can be embedded into a group, called
the Jacobian of C,

C ↪→ Jac C ↪→ C × C

So elements of Jac C are ordered pairs (P1,P2) ∈ C × C (up to some equivalence).
More later ...
So let D1,D2 ∈ Jac C such that

D1 = (P1,P2), D2 = (P3,P4),

where P1,P2,P3,P4 ∈ C and Pi (xi , yi , for i = 1, .., 4.

How can we define D1 ⊕ D2?

We determine a curve C′
y = x3 + b1x2 + b2x + b3, (2)

going through the points P1,P2(x2, y2),Q1,Q2 ∈ C. This cubic will intersect the curve
C at exactly 6 points (Bezout’s theorem).



Well ....., no Bezout’s theorem is needed here, substitute y from Eq. (2) into Eq. (1).
Hence, we have two new points P5,P6 ∈ C ∩ C′.

x2 + s1x + (b2
3 − a5)

1
s4

= 0.

where s1 = x1 + x2 + x3 + x4 and s4 = x1x2x3x4.

D1 ⊕ D2 is not (P5,P6), but it is (P′5,P
′
6), where P′5,P

′
6 are the symmetric points of

P5,P6 with respect to the y -axis.

Does this work for higher genii?



Hyperelliptic Jacobians

Consider a genus g > 2 hyperelliptic curve with equation

y2 = f (x),

where deg f = 2g + 1. Let D1,D2 ∈ Cg , say

D1 = (P1, . . . ,Pg), D2 = (Pg+1, . . . ,P2g) (3)

for Pi (x1, y1) ∈ C, i = 1, . . . , 2g.
We follow a similar approach and define a curve C′ such that it goes through
P1, . . . ,P2g and C ∩ C′ intersect in exactly g new points.
Let C′ be the unique curve going through the points Pi

b(x)− yc(x) = 0. (4)

In (Cantor, 1987) are determined the degrees of b(x) and c(x) such that C′ intersects
C in 3g points. Let P2g+1, . . . ,P3g be the new points of intersection and P3g+1, . . . ,P4g
their symmetrical points with respect to the x-axis. Then,

D1 ⊕ D2 = (P3g+1, . . . ,P4g),

see (Frey and Shaska, 2019) for details.



Extending to a general curve

Can we extend the above geometrical method to define the group law in Jac C for a
general curve?

Here is what we have:
I A divisor in Jac C still can be presented by a tuple of points (P1, . . .Pg) ∈ Cg .
I How to define the curve C′ that intersects C in precisely 3g points.
I What taking symmetric points with respect to the x-axis would actually mean

now? After all a general curve is not symmetric to the x-axis, since its equation is
not y2 = f (x).

We will give a general approach in the remaining of this talk.

There are two main concepts that we will use repeatedly:
I intersection of curves
I Weierstrass points

both of which closely related to Max Noether (1844-1921). (also known for
Brill-Noether theory, blowups, rationality of algebraic surfaces,etc)



Max Noether’s Fundamental Theorem

Theorem (Noether Fundamental Theorem)
Let C1, C2, C3 be three projective plane curves with equations

C1 : f (x , y , z) = 0, C2 : g(x , y , z) = 0, C3 : h(x , y , z) = 0,

such that C1 and C2 have no common components. There exists A(x , y , z) and
B(x , y , z) such that

h(x , y , z) = A(x , y , z)f (x , y , z) + B(x , y , z)g(x , y , z),

with deg A = deg g − deg f and deg B = deg h − deg g if and only if one of the
following is satisfied at every P ∈ C1 ∩ C2.

i) C1 and C2 meet transversally at P and P ∈ C3.

ii) P is simple on C1 and (C1 ∩ C3)P ≥ (C1 ∩ C2)P

iii) C1 and C2 have distinct tangents at P, and

multP(C3) ≥ multP(C1) + multP(C2)− 1.

See (Fulton, 1989, pg. 61) for details. Conditions i), ii), iii) are called Noether
conditions. There are many applications of Noether’s fundamental theorem, but we are
especially interested in the following.



Addition on a cubic

Let C be a smooth cubic defined over a field k . Fix O ∈ C(k). For P,Q ∈ C(k) there is
a unique line C1 such that C • C1 = P + Q + R, for some R ∈ C. Define the function
ϕ : C × C → C, such that (P,Q)→ R.
Define the addition as

P ⊕ Q = ϕ(O, ϕ(P,Q)).

Use the figure to show associative property

Figure: Associative property: (P ⊕ Q)⊕ R = P ⊕ (Q ⊕ R).

We would like to generalize this construction to higher genii.



Noether Gap theorem

Let P1,P2, . . . , be a sequence of (not necessarily distinct) points on C. Let

D0 = 0 and Dk = P1 + · · ·+ Pk .

One can ask the following question: For each nonnegative k , does there exist e
meromorphic function f on C whose polar divisor (f )∞ satisfies (f )∞ ≤ Dk and
(f )∞ 6≤ Dk−1?

If the answer for a given k is ”No” then we say that k is a Noether gap for the
sequence P1,P2, . . . , otherwise is a non-gap.

Theorem (Noether Gap Theorem)
For any sequence P1,P2, . . . , there are exactly g Noether gap numbers ni with

1 = n1 < n2 < · · · < ng ≤ 2g − 1.

The Weierstrass Gap Theorem is a special case of the Noether Gap theorem, taking
Pi = P for all i . It is a direct application of the Riemann-Roch theorem.



Meromorphic function at a point P ∈ C.

Fix a point P ∈ C such that P is a Weierstrass point. We have the following theorem.

Theorem
Any generic collection of points

P1, . . . ,Pg+s ∈ C,

where s ≥ 0, can be realized uniquely as zeros of a meromorphic function Φ(x , y) or
order at most 2g + s and this function is unique up to multiplication by a constant.

Proof.
A meromorphic function Φ(x , y) belongs to the function field k(C).

We can consider a basis of k(C) at a Weierstrass point P ∈ C.

By the Weierstrass gap theorem for a function of order 2g + s we will have at most
g + s orders at P (as there are no functions at the gaps) and hence this function will be
determined uniquely by the g + s points P1, . . . ,Pg+s .



A basis of k(C) adopted to P ∈ C.

Fix P ∈ C and let (xP , yP) be a local coordinate around P. By a basis adapted to P,
we mean a basis

B := {1, ϕ1, ϕ2, · · · , ϕm, . . .},

of the of the function field k(C)/k ordered according to their order at P,

ordP(ϕ1) < . . . < ordP(ϕi ) < . . . < ordP(ϕm).

Such basis B adapted to P is not unique. To make it unique consider the Taylor series
expansion of ϕi at P, say

ϕi (t) =
∞∑
j=0

ai,j (t − P)j

and require that ai,j = 1 for i = j and ai,j = 0 otherwise. The weight of P with
respect to B is defined as

τ(P) =
m∑

i=1

(ordP(ϕi )− i + 1)

If P is the place at infinity, then we can assume that B is a monomial basis. In this case
B is unique.

From now on P =∞ and B is an adopted monomial basis at P.



Main theorem

Theorem (Kopeliovich-Sh)
Let C : F1(x , y , z) = 0 be a smooth, projective, genus g ≥ 1 curve defined over k,
P ∈ C(k), and B = {1, ϕ1, ϕ2, · · · , ϕm, . . .} a basis adapted to P. For any generic set
of points P1, . . . ,Pm ∈ C(k), for m ≤ 2g, there exist unique curves C′ and C” such that:

i) C′ : F2(x , y , z) = 0 is a degree d1 = deg (ϕm+g) curve which meets C
transversally at (m + g) points, say C • C′ =

∑m+g
i=1 Pi . Then deg C • C′ ≤ m + g.

ii) C” : F3(x , y , z) = 0 is a degree d2 = deg ϕg curve which meets C transversally at
m + 2g points and

C • C” =

 m+g∑
i=m+1

Pi

+

g∑
i=1

Qi ,

for some Q1, . . . ,Qg ∈ C.

iii) There exists polynomials A,B ∈ k [x , y , z] such that

F3(x , y , z) = F1(x , y , z) A(x , y , z) + F2(x , y , z) B(x , y , z), (5)

with deg A = deg F2 − deg F1 and deg B = deg F3 − deg F2 .

iv) If m = 2g then the sum of the zero-cycles D1 =
∑g

i=1 Pi and D2 =
∑2g

j=g+1 Pj is

given by the formula D1 + D2 =
∑g

i=1 Qi .



Sketch of the proof

For a point P ∈ C, let B be a basis B adapted to P. Given points P1,P2, . . . ,Pm ∈ C,
we take the first (m + 1) functions ϕ1, . . . , ϕm+1 of B (i.e., the ones with smallest order
at P). Define the interpolating matrix A as

AP(P1, . . .Pm) :=


ϕ1(x , y) ϕ2(x , y) . . . ϕm+1(x , y)
ϕ1(x1, y1) ϕ2(x1, y1) . . . ϕm+1(x1, y1)

...
... . . .

...
ϕ1(xm, ym) ϕ2(xm, ym) . . . ϕm+1(xm, ym)

 (6)

which depends only on the base point P ∈ C and the zero-cycle D =
∑m

i=1 Pi .
Let C′ be the curve defined by

C′ : det AP(P1, . . .Pm) = 0. (7)

To show that Pi ∈ C′ for i = 1, . . . ,m it is enough to show that when we substitute
(x , y) by (xi , yi ) in Eq. (6), then det AP(P1, . . .Pm) = 0. But this is obvious since in this
case the matrix AP has two identical rows.



Consider det A. The coefficient of ϕi is (−1)1+j B1j , where B1j is the minor. Recall that
the poles of ϕ1, . . . , ϕm have at most order g. Thus we can view the det A as a
polynomial in x and y of degree m + g, since by clearing out denominators we can only
have degree g monomials.

The intersection cycle C • C′ is principal and generated by the monomials of
ϕ1, . . . , ϕm. Since all the monomials have degree ≤ m + g, this divisor will have
degree ≤ m + g. This completes the proof of i).



To prove part ii) we start with the points Pm+1, . . . ,Pm+g ∈ C and apply part i) to these
points. Hence we have a new curve C” such that it intersects C in exactly m + 2g
points, from which Pm+1, . . . ,Pm+g are already points of intersection. Denote the new
points of intersection by Q1, . . . ,Qg . Then C • C” as claimed.

Part iii) follows from the Thm. 1. Take curves C1, C2, C3 as C, C′, and C” respectively.
Since C and C′ meet transversally at all P ∈ C ∩ C′ then conditions of the Noether’s
theorem are satisfied. Hence, exist A,B ∈ k [x , y , z] such that Eq. (5) is satisfied.
Let D1 and D2 as in the hypothesis of part iv). From Bezout’s theorem, C1 ∩ C2 is a
principal divisor. Hence, D1 + D2 = −

∑3g
i=2g+1 Pi . By the same argument, since

C′ ∩ C” is a principal divisor then −
∑3g

i=2g+1 Pi =
∑g

i=1 Qi .

Further details can be found in (Kopeliovich and Shaska, 2019).



Superelliptic curves

Let C be a genus g ≥ 2 defined over k such that there exists an order n > 1
automorphism σ ∈ Aut(C) with the following properties:

I σ is central in Aut(C),
I C/〈σ〉 has genus zero.

Such curves are called superelliptic curves and their Jacobians superelliptic
Jacobians. They have affine equation

C : yn = f (x) =
d∏

i=1

(x − αi ) (8)

Proposition (Towse)
Let C be a superelliptic curve with equation Eq. (8), s.t. ∆(f ) 6= 0, deg f = d > n, and
let d = sn− e, for 0 < e < n. Then a basis for the space of holomorphic differentials is{

x i dx
y j
| 1 ≤ j ≤ n, 1 ≤ i ≤ bj

}
,

where bj = sj − 1−
⌊ e

n j
⌋
.



Proposition (Kopeliovich-Sh)
For every order j at∞ such that 2g ≤ j ≤ 3g we have a monomial xmymj such that the
order of this monomial at∞ is exactly j.

Let L(k∞) denote the space of meromorphic functions on C which are holomorphic on
C \ {∞} and have poles of order at most k at∞. From the Riemann-Roch we have

dim(L(N + g − 1)∞) = N, for N ≥ g.

Consider the space
L(?∞) := ∪∞k=1L(k∞),

of meromorphic functions on C which are holomorphic on C \ {∞}. This is the space of
polynomials on x and y . Then we have the following.

Lemma
A basis of L(k∞) over k is given by

B :=
{

x i y j , 0 ≤ i ≤ d , 0 ≤ j ≤ n − 1,
}

which is the adopted monomial basis of P =∞.



We can put these monomials in a matrix B = [bi,j ] such that bi,j = x i y j . So the matrix
will have n rows and at most d + 1 columns and in the j-th row it will have monomials
y j−1x i , for i = 0, 1, . . . d . For a meromorphic function f = x i y j , the ord∞f is

ord∞x i y j = ni + dj.

In particular,
ord∞x i = n · i and ord∞y j = d · j.

We order the basis of L(?∞) according to the order at∞. Let {ϕi} be the monomial
basis of L(?∞) ordered as

0 = ord∞ϕ1 < ord∞ϕ2 < ord∞ϕ3 < . . . .

Notice that ord∞1 = 0, ord∞x = n, ord∞y = d . The first monomials will be

1, x , . . . , x r , y , . . .

for r =
⌊

d
n

⌋
. Hence, if we fill the matrix B only with the first 2g + 1 monomials and

assign zeroes to all the other entries then we call it the corresponding matrix to the
curve C and denote it by BC or in case of superelliptic curves Bn,d . For a given curve C
we want to determine it corresponding matrix BC .



Example
Consider n = 4 and d = 13. Then we have a curve C of genus g = 18. The possible
orders of monomials x i y j at∞ are

0, 4, 8, 12, 13, 16, 17, 20, 21, 24, 25, 26, 28, 29, 30, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42,

43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54;

55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 70, 71, 74, 75, 78, 79, 83, 87, 91.

The first 2g + 1 monomials are:

1, x , x2, x3, y , x4, xy , x5, x2y , x6, x3y , y2, x7, x4y , xy2, x8, x5y , x2y2, x9, x6y , x3y2,

y3, x10, x7y , x4y2, xy3, x11, x8y , x5y2, x2y3, x12, x9y , x6y2, x3y3, x12, x9y , x6y2,

x2y3, x13, x10y , x7y2.

However, if we rearrange the monomials to their monomial ordering we have

1, x , x2, . . . , x13, y , yx , yx2, . . . , yx10, y2, y2x , . . . , y2x7, y3, y3x , y3x2, y3x3.

The matrix B in this case is

B4,13 =


1 x x2 x3 . . . x7 . . . x10 . . . x11 . . . x13

y xy x2y x3y . . . x7y . . . x10y 0 0 0 0
y2 xy2 x2y2 x3y2 . . . x7y2 0 0 0 0 0 0
y3 xy3 x2y3 x3y3 0 0 . . . . . . . . . . . . . . . 0





We try to generalize for the case Bn,d . Assuming deg x = n and deg y = d we
explicitly give the first 2g + 1 monomials.

Theorem (Kopeliovich-Sh)
Let C be a superelliptic curve with affine equation yn = f (x), where deg f = d and
(n, d) = 1. Then Bn,d is an n × (d + 1) matrix and the non-zero entries in the j-th row,

for j = 0, . . . , n − 1, are given by monomials are given by x i y j for 0 ≤ i ≤
⌊

3g−jd
n

⌋
.

Corollary
The degree of the curve Y is given by

deg Y = max
{

3g − j(d − n)

n
: 0 ≤ j ≤ n − 1, 0 ≤ i ≤

⌊
3g − jd

n

⌋}

Corollary
Y has genus zero if and only if C is hyperelliptic. In this case y is given as a rational
function in x.



As an application to our method, let us now consider the simplest case of superelliptic
curves, namely n = 2. From above we have that the list the non-gaps for hyperelliptic
curves are:

0, 2, 4, 6, . . . , 2g, 2g + 2, . . .

The function field k(C) is generated by

B = {1, x , x2, x3, . . . , xg , y , yx , yx2, yx3, . . . , yxg}.

We take these monomials according to increasing order at∞, which is given by

ord∞x i y j = 2i + (2g + 1)j.

Then, we can reorder B ordering according to ord∞ and have the following:

Lemma
Let C be a genus g ≥ 2 hyperelliptic curve and s :=

⌊
g−1

2

⌋
. The first 2g + 1

monomials of the basis B, ordered according to their order at∞ are

1, x , x2, x3, . . . , xg , y , xg+1, yx , xg+2, yx2, xg+3, yx3, . . . , xg+s, yxs,

if g is odd and

1, x , x2, x3, . . . , xg , y , xg+1, yx , xg+2, yx2, xg+3, yx3, . . . , xg+s, yxs, xg+s+1

if g is even.



Let Pi := (xi , yi ), i = 1, . . . , 2g and consider the matrix A as defined in Eq. (6). As
before Y : det A(P1, . . . ,P2g) = 0. Notice that the equation of Y is linear in y . Hence,
y can be expressed as a rational function

y =
h(x)

g(x)
,

where deg h = g + s when g is odd and deg h = g + s + 1 when g is even. The
degree of the denominator is deg g = s.

The addition of divisors in hyperelliptic Jacobians is done via Cantor’s algorithm. A
geometric interpretation of that addition is given by Leitenberger (Leitenberger, 2005).

The results here match exactly those in (Cantor, 1987) and (Leitenberger, 2005),
where the interpolating curve becomes and interpolating rational function.



Examples

Example (Genus 2)
Consider the case of genus 2. Hence, n = 2 and d = 5. The possible orders at∞ are

0, 2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15

and the corresponding monomials

B = {1, x , x2, y , x3, xy , x4, x2y , x5, x3y , x4y , x5y .}

The matrix B2,5 is

B2,5 =

∣∣∣∣1 x x2 x3

y 0 0 0

∣∣∣∣
Taking the first 2g + 1 = 5 monomials we have the basis

B = {1, x , x2, y , x3}

and the curve Y is
c0 + c1x + c2x2 + c3y + c4x3 = 0.

Hence, as previously known, y is a cubic polynomial in x.



Example (Genus 3 hyperelliptic)
Let C be the genus 3 hyperelliptic curve with equation y2 = f (x), where deg f = 7.
Then n = 2 and d = 7. The matrix B2,7 is

B2,7 =

[
1 x x2 x3 x4

y yx 0 0 0

]
(9)

So we have the first seven orders at∞ as

0, 2, 4, 6, 7, 8, 9

and the corresponding monomials {1, x , x2, x3, y , x4, yx}. hence our basis will be

B = {1, x , x2, x3, y , x4, yx}

In this case, Y will be a curve with equation of the form

c0 + c1x + c2x2 + c3x3 + c4y + c5x4 + c6yx = 0.

Hence,

y = −
c0 + c1x + c2x2 + c3x3 + c5x4

c4 + c6x

is a rational function y = h(x)
g(x)

, where deg h = 4 and deg g = 1.

Both the above cases are of special interest in hyperelliptic curve cryptography.



Trigonal curves

Lemma
For trigonal curves with equation y3 = f (x) such that deg f = d, the first 2g + 1
monomials of our basis B are

1, x , x2, . . . , xd−1, y , yx , . . . , yxs, y2, y2x , . . . , y2xq ,

where s and q are as follows:

i) if d ≡ 1 mod 3 then q = d−1
3 and s = 2 d−1

3 .

ii) if d ≡ 2 mod 3 then q = d−2
3 and s = d−5

6

Notice that in both cases s + q = d − 1 and q =
⌊ s

2

⌋
. We define Y as before. Then Y

is a hyperelliptic curve of genus d−1
2 or d−3

2 .

Next we give the first non-trivial example of non-hyperelliptic curves.



Picard curves

Example
A Picard curve has a degree three superelliptic projection π : C → P1. This covering
has five branch points, one of which we have specified at infinity. The curve has
equation

C : y3 = a4x4 + a3x3 + a2x2 + a1x + a0 (10)

The gap sequence is
0, 3, 4, 6, 7, 8, 9, 10, . . .

with matrix B3,4 being

B3,4 =

 1 x x2 x3

y yx 0 0
y2 0 0 0


and the ordered basis B is

1, x , y , x2, xy , y2, x3, (11)

For six given generic points Pi (xi , yi ) ∈ C, the equation of the curve Y is det A = 0,
where

A =



1 x x2 x3

1 x1 x2
1 x3

1
1 x2 x2

2 x3
2

1 x3 x2
3 x3

3

y xy y2

y1 x1y1 y2
1

y2 x2y2 y2
2

y3 x3y3 y2
3

1 x4 x2
4 x3

4
1 x5 x2

5 x3
5

1 x6 x2
6 x3

6

y4 x4y4 y2
4

y5 x5y5 y2
5

y6 x6y6 y2
6





Example
Let C be the Picard curve defined over R and given by the equation

C : y3 = (x + 12)(x + 11)(x + 9)(x + 5)(x − 3)(x − 6),

over R and Pi , for i = 1, . . . , 6 points on the curve with x-coordinate −12, −11, −9,
−5, 3, 6. Then the ordered basis B is as in Eq. (11).
Given two divisors

D1 = P1 + P2 + P3 − 3∞ and D2 = P4 + P5 + P6 − 3∞

Then the curve Y has equation

Y : − 1.31136 · 1011 − 5.14189109x + 3.69043 · 109x2 + 3.15371 · 108x3

+ (5.77794 · 109 + 5.01093 · 108x)y + 3.51232 · 108y2 = 0

It is an elliptic curve and it intersects the curve C in exactly 9 points as in ??. The blue
points in the picture are the new points P7,P8,P9 and

− (D1 + D2) = P7 + P8 + P9 − 3∞. (12)



Addition on a Picard curve
To find D1 + D2 we need to invert D1 + D2 given in Eq. (12). So from Eq. (11) we pick
the first 4 monomials, namely 1, x , y , x2. Then, the curve Y for this basis will be

Y : 6658.85− 110.278x − 183.934x2 − 520.488y = 0

which intersect C in precisely 6 points. The three new points colored in light blue are
denoted by Q1,Q2,Q3. Then D1 + D2 = Q1 + Q2 + Q3 − 3∞.



Further questions

I Torsion points (geometric interpretation)
I Isogenies, (modular surfaces .....)
I Characteristic p > 0.
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