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Problem:

Let p be any point in the moduli space of genus-two curvesM2 and K its
field of moduli.

Lemma
There is a genus 2 curve C corresponding to p and defined over a quadratic
extension of K .

Problem
Determine a universal equation for C (i.e. an equation that will work for any
p ∈M2).

More precisely,

Problem
Given the generic moduli point p = [j1, j2, j3, 1] ∈M2, find a universal
equation for C in terms of j1, j2, j3.



Preliminaries

For C, over a field k , char k = 0, we can assume that its equation is given by

y2z4 = f (x , z)

where f (x , z) is a binary sextic defined over k given by

f (x , z) = a0x6 + a1x5z + · · ·+ a6z6 = (z1x − x1z)(z2x − x2z) . . . (z6x − x6z)

A covariant I of f (x , z) is a homogenous polynomial in x , z with coefficients
in k [a0, . . . , a6]. The order of I is the degree of I as a polynomial in x , z and
the degree of I is the degree of I as a polynomial in k [a0, . . . , a6].

An invariant is a covariant of order zero. The binary form f (x , z) is a
covariant of order 2g + 2 and degree 1.
For any two forms f and g the r -transvection is given by an operation called
‘Überschiebung’

(f , g)r =



Invariants and covariants via transvections
Consider the following covariants

∆ = ((f , f )4, (f , f )4)2 , y1 = (f , (f , f )4)4 , y2 = ((f , f )4, y1)2 , y3 = ((f , f )4, y2)2

The Clebsch invariants A,B,C,D are defined as follows

A = (f , f )6, B = ((f , f )4, (f , f )4)4 , C = ((f , f )4,∆)4 , D = (y3, y1)2 (1)

see Clebsch [2] or Bolza [1, Eq. (7), (8), pg. 51] for details.
Some other invariants are

Aij = (yi , yj )2, (1 ≤ i , j ≤ 3)

Clebsch [2] showed that Aij and aijk can be expressed as

A11 = 2 C +
1
3

A B ,

A22 = A13 = D ,

A33 =
1
2

B D +
2
9

C (B2 + A C) ,

A23 =
1
3

B (B2 + A C) +
1
3

C (2 C +
1
3

A B) ,

A12 =
2
3

(B2 + A C) .

(2)



Igusa-Clebsch invariants are

I2 =− 120 A ,

I4 =− 720 A2 + 6750 B ,

I6 = 8640 A3 − 108000 A B + 202500 C

I10 =− 62208A5 + 972000A3B + 1620000A2C − 3037500AB2 − 6075000BC − 4556250D

The Igusa functions (i.e., GL(2,C)-invariants) are defined as

j1 =
I5
2

I10
, j2 =

I4I3
2

I10
, j3 =

I6I2
2

I10

A moduli point is a projective point given by p = [j1, j2, j3, 1]

Lemma
Two genus two curves are isomorphic over C if and only if they correspond to
the same moduli point.



Conic
For X = [X1 : X2 : X3] and some symmetric M the conic C/Aut(p) is

Q : Xt ·M · X =
3∑

i,j=1

aij Xi Xj = 0

We want to determine M. Notice that under the operation

f (x) 7→ f̃ (x) = f (−x)

the quadrics yi (x), i = 1, 2, 3 change according to

yi (x) 7→ ỹi (x) = yi (−x).

Hence, they are not invariants of the sextic f .
The coefficients aij = Aij and are invariant under the operation
f (x) 7→ f̃ (x) = f (−x), and the locus D = 0 is equivalent to

D = 0 ⇔ (y1y3)2 = (y2y2)2 = 0 . (3)

We define R to be 1/2 times the determinant of the three binary quadrics yi

for i = 1, 2, 3 with respect to the basis x2, x , 1. If one extends the operation of
Überschiebung by product rule [3, p.317], then R can be re-written as

R = −(y1y2)1 (y2y3)1 (y3y1)1, (4)



It is then obvious that under the operation f (x) 7→ f̃ (x) = f (−x) the
determinant R changes its sign, i.e., R(f ) 7→ R(f̃ ) = −R(f ).
A straightforward calculation shows that

R2 =
1
2

∣∣∣∣∣∣
A11 A12 A13

A12 A22 A23

A13 A23 A33

∣∣∣∣∣∣ , (5)

Like the coefficients Aij , R2 is invariant under the operation f (x) 7→ f̃ (x) and
must be a polynomial in (I2, I4, I6, I10).

Lemma
We have the following statements:

1. R2 is a order 30 invariant of binary sextics expressed as a polynomial in
(I2, I4, I6, I10) as in [4, Eq. (17)].

2. The locus of curves p ∈M2 such that V4 ↪→ Aut(p) is a two-dimensional
irreducible rational subvariety ofM2 given by the equation R2 = 0 and a
birational parametrization given by the u, v-invariants as in [4, Thm.1].

From now on we will denote I30 := R2.



Cubic
Similarly, there is also a cubic curve given by the equation

T :
∑

1≤i,j,k≤3

aijk XiXjXk = 0 ,

where aijk are of order zero, invariant under f (x) 7→ f̃ (x), and given by

aijk = (f , yi )2 (f , yj )2 (f , yk )2 . (6)

The coefficients aijk are given explicitly as follows:

36 a111 = 8(A2C − 6BC + 9D),

36 a112 = 4(2B3 + 4ABC + 12C2 + 3AD),

36 a113 = 36 a122 = 4(AB3 + 4/3 A2BC + 4B2C + 6AC2 + 3BD),

36 a123 = 2(2B4 + 4AB2C + 4/3 A2C2 + 4BC2 + 3ABD + 12CD),

36 a133 = 2
(

AB4 + 4/3 A2B2C + 16/3 B3C + 26/3 ABC2 + 8C3 + 3B2D + 2ACD
)
,

36 a222 = 4(3B4 + 6AB2C + 8/3 A2C2 + 2BC2 − 3CD),

36 a223 = 2(−2/3 B3C − 4/3 ABC2 − 4C3 + 9B2D + 8ACD),

36 a233 = 2(B5 + 2AB3C + 8/9 A2BC2 + 2/3 B2C2 − BCD + 9D2),

36 a333 = −2B4C − 4AB2C2 − 16/9 A2C3 − 4/3 BC3 + 9B3D + 12ABCD + 20C2D.
(7)



Mestre’s method

The intersection of the conic Q with the cubic T consists of six points which
are the zeroes of a polynomial f (t). Hence, the affine equation of the curve
corresponding to p is given by y2 = f (t).

Lemma
There exists a model of C defined over k if Q(k) 6= ∅.
If Q has a rational point over k , then this leads to a parametrization

(h1(t), h2(t), h3(t))

Substitute X1,X2,X3 by h1(t), h2(t), h3(t) in the cubic T and we get the
degree 6 polynomial f (t). However, if the conic has no rational point or

R2 = det M = I30 = 0

the method obviously fails. This locus is parametrized by dihedral invariants u
and v . In this case the equation of the curve is given in [5, Lemma 4] and
[6, Thm. 3]



A universal curve

We start with p = [j1, j2, j3, 1]. The plane conic Q is

A11 X 2
1 + A22 X 2

2 + A33 X 2
3 + 2A12 X1X2 + 2A13 X1X3 + 2A23 X2X3 = 0 . (8)

Over the field extension Q[d ], where d is given by

d2 = −2 A22 R2 = −A22 detM, (9)

we can re-express A11 in terms of d and the other coefficients as

A11 = − d2

(A22A33 − A2
23) A22

+
A2

12A33 − 2A12A13A23 + A2
13A22

A22A33 − A2
23

. (10)

A rational point [X (0)
1 : X (0)

2 : X (0)
3 ] of the conic Q over Q[d ,A,B,C,D].

X (0)
1 = A22(A22A33 − A2

23) ,

X (0)
2 = ∓A23d − A22

(
A12A33 − A13A23

)
,

X (0)
3 = A22 (±d + A12A23 − A13A22) .

(11)



We substitute

X (0)
3 X2 = X (0)

2 X3 + t
(
X (0)

3 X1 − X (0)
1 X3

)
(12)

into Equation (8). One of the roots of this quadratic, since it must be satisfied
if [X1 : X2 : X3] = [X (0)

1 : X (0)
2 : X (0)

3 ]. The second root is given by

X1 =A3
22(A22A33 − A2

23)2 t2 + 2A12A2
22(A22A33 − A2

23) t + A22(A22A33 − A2
23)(

A2
12A22A33 − 2A12A13A22A23 + A2

13A2
22 ± 2(A12A23 − A13A22) d + d2

)
,

X2 =A2
22(A2

23 − A22A33)(A12A22A33 − A13A22A23 ± A23d) t2 + 2A22(A22A33 − A2
23)

(−A2
12A22A33 + A12A13A22A23 ∓ A13A22d + d2) t

+ (A12A22A33 − A13A22A23 ± A23d) (−A2
12A22A33 + 2A12A13A22A23 − A2

13A2
22 + d2),

X3 =A3
22(A22A33 − A2

23)(A12A23 − A13A22 ± d) t2 + 2A12A2
22(A22A33 − A2

23)(A12A23 − A13A22 ± d) t

− A22(A12A23 − A13A22 ± d) (−A2
12A22A33 + 2A12A13A22A23 − A2

13A2
22 + d2).



Using A13 = A22 and d2 = −2 A22 R2 the point [X1 : X2 : X3] is easily shown to
be equivalent to

X1 = A2
22(A22A33 − A2

23)2 t2 + 2A12A22(A22A33 − A2
23) t

− A11A2
22A33 + A11A22A2

23 + 2A2
12A22A33 − 4A12A2

22A23

± 2 (A12A23 − A22) d ,

X2 = −A22(A12A22A33 − A2
22A23 ± A23d) t2

− 2A22(A11A22A33 − A11A2
23 + A12A22A23 − A3

22 ± A22d) t

− A11(A12A22A33 − A2
22A23 ± A23d),

X3 = A2
22(A12A23 − A2

22 ± d) t2 + 2A12A22(A12A23 − A2
22 ± d) t

+ A11A22(A12A23 − A22 ± d).

(13)

Equations (13) give for any t ∈ Q a rational parametrization of the conic Q
over Q[d ,A,B,C,D].



Similarly, associated to the coefficients (aijk ) in Equation (7) is a plane cubic
curve T in the variables [X1 : X2 : X3] ∈ P3 given by

a111 X 3
1 + a222 X 3

2 + a333 X 3
3 + 6 a123 X1X2X3

+ 3 a112 X 2
1 X2 + 3 a113 X 2

1 X3 + 3 a122 X1X 2
2 + 3 a223 X 2

2 X3

+ 3 a133 X1X 2
3 + 3 a233 X2X 2

3 = 0 .

(14)

Substituting the rational parametrization of the conic Q from Equations (13)
into the cubic T in Equation (14), one obtains the ramificattion locus of sextic
curve. The ramification locus is equivalent to

0 =
6∑

i=0

18−b
i+1

2 c κi

(
δi (54D)b

i+1
2 c ± 54 · 3b

(i−3)2

2 c−3b (i−3)2

5 c εi (54D)b
i
2 c d

)
︸ ︷︷ ︸

=: a±6−i

t i ,

(15)
where δi , εi are irreducible polynomials in Z[A,B,C,D] and κi = 1, 12, 15B,
360, 15, 12, 1 for i = 0, . . . , 6 such that a±6−i ∈ Q[d ,A,B,C,D].



(A,B,C,D) are given as polynomial in terms of the invariants (I2, I4, I6, I10).
Thus, we can express all coefficients of the sextic as polynomials in
Q[d , I2, I4, I6, I10], and we have

d2 =
I2
30

211327530 (9I5
2 +700I3

2 I4−3600I2
2 I6−12400I2I2

4 +48000I4I6+10800000I10).

(16)
Notice that d2 has two significant factors: one is I2

30 which correspond exactly
to the locus of the curves with extra involutions, and the other one is the
Clebsch invariant D. Next we have our main result:

Theorem
For every point p ∈M2 such that p ∈M2(k), for some number field K , there
is a pair of genus-two curves C± given by

C± : y2 =
6∑

i=0

a±6−i x i ,

corresponding to p, such that a±i ∈ K (d), i = 0, . . . , 6 as given explicitly in
Equation (45).



Corollary
Let j1, j2, j3 be transcendentals. There exists a pair of genus-two curves C±
defined over Q(j1, j2, j3)[d ] such that

j1(C±) = j1, j2(C±) = j2, j3(C±) = j3,

where d2 is given in terms of (j1, j2, j3) in Equation (44).

Computing expressions for a±i ∈ K [d ] = Q(j1, j2, j3)[d ] is straightforward.

Corollary
The following are true:

1. If |Aut(p)| > 2, then the curve of defined over the field of moduli.

2. If the Clebsch discriminant D = 0, then the curve of defined over the
field of moduli.



The universal equation













An implementation in Sage



396628968144113651737631646937691984596072287764174691981328384/19842454463334970038435045580627047456800937652587890625∗

t6 −

30573250572833626471373749387359269206167271106404793194643456/264566059511132933845800607741693966090679168701171875∗

t5 +

983366934423174559240120128021417225682613660058706272845824/3527547460148439117944008103222586214542388916015625∗

t4 −

84341674113646761568160038456190944145520379601772471123968/235169830676562607862933873548172414302825927734375∗

t3 +

4063108061290504034427672421740525379005211941861758861312/15677988711770840524195591569878160953521728515625∗

t2−20819767415096954598228565325389778874548957158366511104/209039849490277873655941220931708812713623046875∗

t + 73776744988999047290470748077270101837883013580455936/4645329988672841636798693798482418060302734375
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