A universal pair of genus-two curves.

T. Shaska

January 6, 2017

Problem:

Let \mathfrak{p} be any point in the moduli space of genus-two curves \mathcal{M}_{2} and K its field of moduli.

Lemma

There is a genus 2 curve \mathcal{C} corresponding to \mathfrak{p} and defined over a quadratic extension of K.

Problem

Determine a universal equation for \mathcal{C} (i.e. an equation that will work for any $\mathfrak{p} \in \mathcal{M}_{2}$).
More precisely,

Problem

Given the generic moduli point $\mathfrak{p}=\left[j_{1}, j_{2}, j_{3}, 1\right] \in \mathcal{M}_{2}$, find a universal equation for \mathcal{C} in terms of j_{1}, j_{2}, j_{3}.

Preliminaries

For \mathcal{C}, over a field k, char $k=0$, we can assume that its equation is given by

$$
y^{2} z^{4}=f(x, z)
$$

where $f(x, z)$ is a binary sextic defined over k given by

$$
f(x, z)=a_{0} x^{6}+a_{1} x^{5} z+\cdots+a_{6} z^{6}=\left(z_{1} x-x_{1} z\right)\left(z_{2} x-x_{2} z\right) \cdots\left(z_{6} x-x_{6} z\right)
$$

A covariant / of $f(x, z)$ is a homogenous polynomial in x, z with coefficients in $k\left[a_{0}, \ldots, a_{6}\right]$. The order of l is the degree of l as a polynomial in x, z and the degree of l is the degree of l as a polynomial in $k\left[a_{0}, \ldots, a_{6}\right]$.

An invariant is a covariant of order zero. The binary form $f(x, z)$ is a covariant of order $2 g+2$ and degree 1 .
For any two forms f and g the r-transvection is given by an operation called 'Überschiebung'

$$
(f, g)_{r}=
$$

Invariants and covariants via transvections

Consider the following covariants

$$
\Delta=\left((f, f)_{4},(f, f)_{4}\right)_{2}, \mathrm{y}_{1}=\left(f,(f, f)_{4}\right)_{4}, \mathrm{y}_{2}=\left((f, f)_{4}, \mathrm{y}_{1}\right)_{2}, \mathrm{y}_{3}=\left((f, f)_{4}, \mathrm{y}_{2}\right)_{2}
$$

The Clebsch invariants A, B, C, D are defined as follows

$$
\begin{equation*}
A=(f, f)_{6}, B=\left((f, f)_{4},(f, f)_{4}\right)_{4}, C=\left((f, f)_{4}, \Delta\right)_{4}, D=\left(y_{3}, y_{1}\right)_{2} \tag{1}
\end{equation*}
$$

see Clebsch [2] or Bolza [1, Eq. (7), (8), pg. 51] for details. Some other invariants are

$$
A_{i j}=\left(y_{i}, y_{j}\right)_{2}, \quad(1 \leq i, j \leq 3)
$$

Clebsch [2] showed that $A_{i j}$ and $a_{i j k}$ can be expressed as

$$
\begin{align*}
& A_{11}=2 C+\frac{1}{3} A B, \\
& A_{22}=A_{13}=D, \\
& A_{33}=\frac{1}{2} B D+\frac{2}{9} C\left(B^{2}+A C\right), \tag{2}\\
& A_{23}=\frac{1}{3} B\left(B^{2}+A C\right)+\frac{1}{3} C\left(2 C+\frac{1}{3} A B\right), \\
& A_{12}=\frac{2}{3}\left(B^{2}+A C\right) .
\end{align*}
$$

Igusa-Clebsch invariants are

$$
\begin{aligned}
I_{2} & =-120 A \\
I_{4} & =-720 A^{2}+6750 B \\
I_{6} & =8640 A^{3}-108000 A B+202500 C \\
I_{10} & =-62208 A^{5}+972000 A^{3} B+1620000 A^{2} C-3037500 A B^{2}-6075000 B C-4556250 D
\end{aligned}
$$

The Igusa functions (i.e., GL(2, © -invariants) are defined as

$$
j_{1}=\frac{I_{2}^{5}}{I_{10}}, \quad j_{2}=\frac{I_{4} I_{2}^{3}}{I_{10}}, \quad j_{3}=\frac{I_{6} l_{2}^{2}}{I_{10}}
$$

A moduli point is a projective point given by $\mathfrak{p}=\left[\dot{j}_{1}, j_{2}, j_{3}, 1\right]$

Lemma

Two genus two curves are isomorphic over \mathbb{C} if and only if they correspond to the same moduli point.

Conic

For $\mathbf{X}=\left[X_{1}: X_{2}: X_{3}\right]$ and some symmetric M the conic $\mathcal{C} / \operatorname{Aut}(\mathfrak{p})$ is

$$
\mathcal{Q}: \quad \mathbf{x}^{t} \cdot M \cdot \mathbf{X}=\sum_{i, j=1}^{3} a_{i j} X_{i} X_{j}=0
$$

We want to determine M. Notice that under the operation

$$
f(x) \mapsto \tilde{f}(x)=f(-x)
$$

the quadrics $\mathrm{y}_{i}(x), i=1,2,3$ change according to

$$
y_{i}(x) \mapsto \tilde{y}_{i}(x)=y_{i}(-x) .
$$

Hence, they are not invariants of the sextic f.
The coefficients $a_{i j}=A_{i j}$ and are invariant under the operation $f(x) \mapsto \tilde{f}(x)=f(-x)$, and the locus $D=0$ is equivalent to

$$
\begin{equation*}
D=0 \quad \Leftrightarrow \quad\left(y_{1} y_{3}\right)_{2}=\left(y_{2} y_{2}\right)_{2}=0 . \tag{3}
\end{equation*}
$$

We define R to be $1 / 2$ times the determinant of the three binary quadrics y_{i} for $i=1,2,3$ with respect to the basis $x^{2}, x, 1$. If one extends the operation of Überschiebung by product rule [3, p.317], then R can be re-written as

$$
\begin{equation*}
R=-\left(\mathrm{y}_{1} \mathrm{y}_{2}\right)_{1}\left(\mathrm{y}_{2} \mathrm{y}_{3}\right)_{1}\left(\mathrm{y}_{3} \mathrm{y}_{1}\right)_{1}, \tag{4}
\end{equation*}
$$

It is then obvious that under the operation $f(x) \mapsto \tilde{f}(x)=f(-x)$ the determinant R changes its sign, i.e., $R(f) \mapsto R(\tilde{f})=-R(f)$. A straightforward calculation shows that

$$
R^{2}=\frac{1}{2}\left|\begin{array}{lll}
A_{11} & A_{12} & A_{13} \tag{5}\\
A_{12} & A_{22} & A_{23} \\
A_{13} & A_{23} & A_{33}
\end{array}\right|,
$$

Like the coefficients $A_{i j}, R^{2}$ is invariant under the operation $f(x) \mapsto \tilde{f}(x)$ and must be a polynomial in ($I_{2}, l_{4}, l_{6}, l_{10}$).

Lemma

We have the following statements:

1. R^{2} is a order 30 invariant of binary sextics expressed as a polynomial in $\left(I_{2}, I_{4}, I_{6}, I_{10}\right)$ as in [4, Eq. (17)].
2. The locus of curves $\mathfrak{p} \in \mathcal{M}_{2}$ such that $V_{4} \hookrightarrow \operatorname{Aut}(\mathfrak{p})$ is a two-dimensional irreducible rational subvariety of \mathcal{M}_{2} given by the equation $R^{2}=0$ and a birational parametrization given by the u, v-invariants as in [4, Thm. 1].

From now on we will denote $I_{30}:=R^{2}$.

Cubic

Similarly, there is also a cubic curve given by the equation

$$
\mathcal{T}: \quad \sum_{1 \leq i, j, k \leq 3} a_{j j k} X_{i} X_{j} X_{k}=0,
$$

where $a_{i j k}$ are of order zero, invariant under $f(x) \mapsto \tilde{f}(x)$, and given by

$$
\begin{equation*}
a_{i j k}=\left(f, \mathrm{y}_{i}\right)_{2}\left(f, \mathrm{y}_{j}\right)_{2}\left(f, \mathrm{y}_{\mathrm{k}}\right)_{2} . \tag{6}
\end{equation*}
$$

The coefficients $a_{i j k}$ are given explicitly as follows:

$$
\begin{align*}
& 36 a_{111}=8\left(A^{2} C-6 B C+9 D\right), \\
& 36 a_{112}=4\left(2 B^{3}+4 A B C+12 C^{2}+3 A D\right), \\
& 36 a_{113}=36 a_{122}=4\left(A B^{3}+4 / 3 A^{2} B C+4 B^{2} C+6 A C^{2}+3 B D\right), \\
& 36 a_{123}=2\left(2 B^{4}+4 A B^{2} C+4 / 3 A^{2} C^{2}+4 B C^{2}+3 A B D+12 C D\right), \\
& 36 a_{133}=2\left(A B^{4}+4 / 3 A^{2} B^{2} C+16 / 3 B^{3} C+26 / 3 A B C^{2}+8 C^{3}+3 B^{2} D+2 A C D\right), \\
& 36 a_{222}=4\left(3 B^{4}+6 A B^{2} C+8 / 3 A^{2} C^{2}+2 B C^{2}-3 C D\right), \\
& 36 a_{223}=2\left(-2 / 3 B^{3} C-4 / 3 A B C^{2}-4 C^{3}+9 B^{2} D+8 A C D\right), \\
& 36 a_{233}=2\left(B^{5}+2 A B^{3} C+8 / 9 A^{2} B C^{2}+2 / 3 B^{2} C^{2}-B C D+9 D^{2}\right), \\
& 36 a_{333}=-2 B^{4} C-4 A B^{2} C^{2}-16 / 9 A^{2} C^{3}-4 / 3 B C^{3}+9 B^{3} D+12 A B C D+20 C^{2} D . \tag{7}
\end{align*}
$$

Mestre's method

The intersection of the conic \mathcal{Q} with the cubic \mathcal{T} consists of six points which are the zeroes of a polynomial $f(t)$. Hence, the affine equation of the curve corresponding to \mathfrak{p} is given by $y^{2}=f(t)$.

Lemma
There exists a model of \mathcal{C} defined over k if $\mathcal{Q}(k) \neq \emptyset$.
If \mathcal{Q} has a rational point over k, then this leads to a parametrization

$$
\left(h_{1}(t), h_{2}(t), h_{3}(t)\right)
$$

Substitute X_{1}, X_{2}, X_{3} by $h_{1}(t), h_{2}(t), h_{3}(t)$ in the cubic \mathcal{T} and we get the degree 6 polynomial $f(t)$. However, if the conic has no rational point or

$$
R^{2}=\operatorname{det} M=I_{30}=0
$$

the method obviously fails. This locus is parametrized by dihedral invariants u and v. In this case the equation of the curve is given in [5, Lemma 4] and [6, Thm. 3]

A universal curve

We start with $\mathfrak{p}=\left[j_{1}, j_{2}, j_{3}, 1\right]$. The plane conic \mathcal{Q} is

$$
\begin{equation*}
A_{11} X_{1}^{2}+A_{22} X_{2}^{2}+A_{33} X_{3}^{2}+2 A_{12} X_{1} X_{2}+2 A_{13} X_{1} X_{3}+2 A_{23} X_{2} X_{3}=0 \tag{8}
\end{equation*}
$$

Over the field extension $\mathbb{Q}[d]$, where d is given by

$$
\begin{equation*}
d^{2}=-2 A_{22} R^{2}=-A_{22} \operatorname{det} M, \tag{9}
\end{equation*}
$$

we can re-express A_{11} in terms of d and the other coefficients as

$$
\begin{equation*}
A_{11}=-\frac{d^{2}}{\left(A_{22} A_{33}-A_{23}^{2}\right) A_{22}}+\frac{A_{12}^{2} A_{33}-2 A_{12} A_{13} A_{23}+A_{13}^{2} A_{22}}{A_{22} A_{33}-A_{23}^{2}} . \tag{10}
\end{equation*}
$$

A rational point $\left[X_{1}^{(0)}: X_{2}^{(0)}: X_{3}^{(0)}\right]$ of the conic \mathcal{Q} over $\mathbb{Q}[d, A, B, C, D]$.

$$
\begin{align*}
& X_{1}^{(0)}=A_{22}\left(A_{22} A_{33}-A_{23}^{2}\right) \\
& X_{2}^{(0)}=\mp A_{23} d-A_{22}\left(A_{12} A_{33}-A_{13} A_{23}\right), \tag{11}\\
& X_{3}^{(0)}=A_{22}\left(\pm d+A_{12} A_{23}-A_{13} A_{22}\right)
\end{align*}
$$

We substitute

$$
\begin{equation*}
X_{3}^{(0)} X_{2}=X_{2}^{(0)} X_{3}+t\left(X_{3}^{(0)} X_{1}-X_{1}^{(0)} X_{3}\right) \tag{12}
\end{equation*}
$$

into Equation (8). One of the roots of this quadratic, since it must be satisfied if $\left[X_{1}: X_{2}: X_{3}\right]=\left[X_{1}^{(0)}: X_{2}^{(0)}: X_{3}^{(0)}\right]$. The second root is given by

$$
X_{1}=A_{22}^{3}\left(A_{22} A_{33}-A_{23}^{2}\right)^{2} t^{2}+2 A_{12} A_{22}^{2}\left(A_{22} A_{33}-A_{23}^{2}\right) t+A_{22}\left(A_{22} A_{33}-A_{23}^{2}\right)
$$

$$
\left(A_{12}^{2} A_{22} A_{33}-2 A_{12} A_{13} A_{22} A_{23}+A_{13}^{2} A_{22}^{2} \pm 2\left(A_{12} A_{23}-A_{13} A_{22}\right) d+d^{2}\right),
$$

$$
X_{2}=A_{22}^{2}\left(A_{23}^{2}-A_{22} A_{33}\right)\left(A_{12} A_{22} A_{33}-A_{13} A_{22} A_{23} \pm A_{23} d\right) t^{2}+2 A_{22}\left(A_{22} A_{33}-A_{23}^{2}\right)
$$

$$
\left(-A_{12}^{2} A_{22} A_{33}+A_{12} A_{13} A_{22} A_{23} \mp A_{13} A_{22} d+d^{2}\right) t
$$

$$
+\left(A_{12} A_{22} A_{33}-A_{13} A_{22} A_{23} \pm A_{23} d\right)\left(-A_{12}^{2} A_{22} A_{33}+2 A_{12} A_{13} A_{22} A_{23}-A_{13}^{2} A_{22}^{2}+d^{2}\right)
$$

$$
X_{3}=A_{22}^{3}\left(A_{22} A_{33}-A_{23}^{2}\right)\left(A_{12} A_{23}-A_{13} A_{22} \pm d\right) t^{2}+2 A_{12} A_{22}^{2}\left(A_{22} A_{33}-A_{23}^{2}\right)\left(A_{12} A_{23}-A_{13} A_{22}\right.
$$

$$
-A_{22}\left(A_{12} A_{23}-A_{13} A_{22} \pm d\right)\left(-A_{12}^{2} A_{22} A_{33}+2 A_{12} A_{13} A_{22} A_{23}-A_{13}^{2} A_{22}^{2}+d^{2}\right)
$$

Using $A_{13}=A_{22}$ and $d^{2}=-2 A_{22} R^{2}$ the point $\left[X_{1}: X_{2}: X_{3}\right]$ is easily shown to be equivalent to

$$
\begin{align*}
& X_{1}=A_{22}^{2}\left(A_{22} A_{33}-A_{23}^{2}\right)^{2} t^{2}+2 A_{12} A_{22}\left(A_{22} A_{33}-A_{23}^{2}\right) t \\
& -A_{11} A_{22}^{2} A_{33}+A_{11} A_{22} A_{23}^{2}+2 A_{12}^{2} A_{22} A_{33}-4 A_{12} A_{22}^{2} A_{23} \\
& \pm 2\left(A_{12} A_{23}-A_{22}\right) d \\
& X_{2}=-A_{22}\left(A_{12} A_{22} A_{33}-A_{22}^{2} A_{23} \pm A_{23} d\right) t^{2} \\
& -2 A_{22}\left(A_{11} A_{22} A_{33}-A_{11} A_{23}^{2}+A_{12} A_{22} A_{23}-A_{22}^{3} \pm A_{22} d\right) t \tag{13}\\
& -A_{11}\left(A_{12} A_{22} A_{33}-A_{22}^{2} A_{23} \pm A_{23} d\right) \\
& X_{3}=A_{22}^{2}\left(A_{12} A_{23}-A_{22}^{2} \pm d\right) t^{2}+2 A_{12} A_{22}\left(A_{12} A_{23}-A_{22}^{2} \pm d\right) t \\
& +A_{11} A_{22}\left(A_{12} A_{23}-A_{22} \pm d\right)
\end{align*}
$$

Equations (13) give for any $t \in \mathbb{Q}$ a rational parametrization of the conic \mathcal{Q} over $\mathbb{Q}[d, A, B, C, D]$.

Similarly, associated to the coefficients ($a_{i j k}$) in Equation (7) is a plane cubic curve \mathcal{T} in the variables $\left[X_{1}: X_{2}: X_{3}\right] \in \mathbb{P}^{3}$ given by

$$
\begin{align*}
& a_{111} X_{1}^{3}+a_{222} X_{2}^{3}+a_{333} X_{3}^{3}+6 a_{123} X_{1} X_{2} X_{3} \\
+ & 3 a_{112} X_{1}^{2} X_{2}+3 a_{113} X_{1}^{2} X_{3}+3 a_{122} X_{1} X_{2}^{2}+3 a_{223} X_{2}^{2} X_{3} \tag{14}\\
+ & 3 a_{133} X_{1} X_{3}^{2}+3 a_{233} X_{2} X_{3}^{2}=0
\end{align*}
$$

Substituting the rational parametrization of the conic \mathcal{Q} from Equations (13) into the cubic \mathcal{T} in Equation (14), one obtains the ramificattion locus of sextic curve. The ramification locus is equivalent to

$$
\begin{equation*}
0=\sum_{i=0}^{6} \underbrace{18^{-\left\lfloor\frac{i+1}{2}\right\rfloor} \kappa_{i}\left(\delta_{i}(54 D)^{\left\lfloor\frac{i+1}{2}\right\rfloor} \pm 54 \cdot 3^{\left\lfloor\frac{(i-3)^{2}}{2}\right\rfloor-3\left\lfloor\frac{(i-3)^{2}}{5}\right\rfloor} \epsilon_{i}(54 D)^{\left\lfloor\frac{i}{2}\right\rfloor} d\right)}_{=: a_{6-i}^{ \pm}} t^{i} \tag{15}
\end{equation*}
$$

where δ_{i}, ϵ_{i} are irreducible polynomials in $\mathbb{Z}[A, B, C, D]$ and $\kappa_{i}=1,12,15 B$, $360,15,12,1$ for $i=0, \ldots, 6$ such that $a_{6-i}^{ \pm} \in \mathbb{Q}[d, A, B, C, D]$.
(A, B, C, D) are given as polynomial in terms of the invariants $\left(I_{2}, l_{4}, l_{6}, l_{10}\right)$. Thus, we can express all coefficients of the sextic as polynomials in $\mathbb{Q}\left[d, I_{2}, l_{4}, l_{6}, l_{10}\right]$, and we have
$d^{2}=\frac{l_{30}^{2}}{2^{11} 3^{27} 5^{30}}\left(9 I_{2}^{5}+700 I_{2}^{3} I_{4}-3600 I_{2}^{2} I_{6}-12400 I_{2} I_{4}^{2}+48000 I_{4} I_{6}+10800000 I_{10}\right)$.
Notice that d^{2} has two significant factors: one is l_{30}^{2} which correspond exactly to the locus of the curves with extra involutions, and the other one is the Clebsch invariant D. Next we have our main result:

Theorem

For every point $\mathfrak{p} \in \mathcal{M}_{2}$ such that $\mathfrak{p} \in \mathcal{M}_{2}(k)$, for some number field K, there is a pair of genus-two curves $\mathcal{C}^{ \pm}$given by

$$
\mathcal{C}^{ \pm}: \quad y^{2}=\sum_{i=0}^{6} a_{6-i}^{ \pm} x^{i},
$$

corresponding to \mathfrak{p}, such that $a_{i}^{ \pm} \in K(d), i=0, \ldots, 6$ as given explicitly in Equation (45).

Corollary

Let j_{1}, j_{2}, j_{3} be transcendentals. There exists a pair of genus-two curves $\mathcal{C}^{ \pm}$ defined over $\mathbb{Q}\left(j_{1}, j_{2}, j_{3}\right)[d]$ such that

$$
j_{1}\left(\mathcal{C}^{ \pm}\right)=j_{1}, \quad j_{2}\left(\mathcal{C}^{ \pm}\right)=j_{2}, \quad j_{3}\left(\mathcal{C}^{ \pm}\right)=j_{3}
$$

where d^{2} is given in terms of $\left(j_{1}, j_{2}, j_{3}\right)$ in Equation (44).
Computing expressions for $a_{i}^{ \pm} \in K[d]=\mathbb{Q}\left(j_{1}, j_{2}, j_{3}\right)[d]$ is straightforward.
Corollary
The following are true:

1. If $|\operatorname{Aut}(\mathfrak{p})|>2$, then the curve of defined over the field of moduli.
2. If the Clebsch discriminant $D=0$, then the curve of defined over the field of moduli.

The universal equation

5. Appendix

In Equations (45) we will display the polynomials δ_{i}, ϵ_{i} for $i=0, \ldots, 6$ that determine the pair of genus-two curves $\mathcal{C}^{ \pm} g$

$$
\begin{equation*}
y^{2}=\sum_{i=0}^{6} a_{6-i}^{ \pm} x^{i}=\sum_{i=0}^{6} 18^{-\left\lfloor\frac{i+1}{2}\right\rfloor} \kappa_{i}\left(\delta_{i}(54 D)^{\left\lfloor\frac{i+1}{2}\right\rfloor} \pm 54 \cdot 3^{\left\lfloor\frac{(i-3)^{2}}{2}\right\rfloor-3\left\lfloor\frac{\left.(i-3)^{2}\right\rfloor}{5}\right\rfloor} \epsilon_{i}(54 D)^{\left\lfloor\frac{1}{2}\right\rfloor} d\right) x^{i} \tag{43}
\end{equation*}
$$

where (A, B, C, D) are the Clebsch invariants and $\kappa_{i}=1,12,15 B, 360,15,12,1$ for $i=0, \ldots, 6$. The Clebsch invariants ar polynomial in terms of ($I_{2}, I_{4}, I_{6}, I_{10}$) in Equations (17). The square d^{2} is given in terms of $\left(j_{1}, j_{2}, j_{3}\right)$ by

$$
\begin{align*}
d^{2}= & \frac{I_{2}^{20}}{2^{22} 3^{30} 5^{30} j_{1}^{9}}\left(j_{2}^{4} j_{1}^{3}-12 j_{2}^{3} j_{3} j_{1}^{3}+54 j_{2}^{2} j_{3}^{2} j_{1}^{3}-108 j_{2} j_{3}^{3} j_{1}^{3}+81 j_{3}^{4} j_{1}^{3}+78 j_{2}^{5} j_{1}^{2}-1332 j_{2}^{4} j_{3} j_{1}^{2}+8910 j_{2}^{3} j_{3}^{2} j_{1}^{2}-29376 j_{2}^{2} j_{3}^{3} j_{1}^{2}+47952 j_{2} j_{3}^{4} j_{1}^{2}-31\right. \\
& -159 j_{2}^{6} j_{1}+1728 j_{2}^{5} j_{3} j_{1}-6048 j_{j}^{4} j_{3}^{2} j_{1}+6912 j_{j}^{3} j_{3}^{3} j_{1}+80 j_{2}^{7}-384 j_{2}^{6} j_{3}-972 j_{2}^{2} j^{4}+5832 j_{2} j_{3} j_{1}^{4}-8748 j_{j}^{2} j_{1}^{4}-77436 j_{2}^{3} j_{1}^{3}+870912 j_{2}^{2} j j_{1}^{3} \tag{44}\\
& -3090960 j_{2} j_{j}^{2} j_{1}^{3}+3499200 j_{3}^{3} j_{1}^{3}+592272 j_{2}^{4} j_{1}^{2}-4743360 j_{2}^{3} j_{3} j_{1}^{2}+9331200 j_{2}^{2} j_{3}^{2} j_{1}^{2}-41472 j_{2}^{5} j_{1}+236196 j_{1}^{5}+19245600 j_{2} j_{1}^{4}-104976000 j_{3} j_{1}^{4} \\
& \left.-507384000 j_{2}^{2} j_{1}^{3}+209952000 j_{2} j_{3} j_{1}^{3}+125971200000 j_{1}^{4}\right)\left(9 j_{1}^{2}+700 j_{2} j_{1}-3600 j_{3} j_{1}-12400 j_{2}^{2}+48000 j_{2} j_{3}+1080000 j_{1}\right) .
\end{align*}
$$

The irreducible polynomials δ_{i}, ϵ_{i} in $\mathbb{Z}[A, B, C, D]$ for $i=0, \ldots, 6$ are given by

$$
\begin{align*}
\delta_{0}= & -2048 A^{5} B^{3} C^{5}-9216 A^{4} B^{5} C^{4}-16128 A^{3} B^{7} C^{3}-13824 A^{2} B^{9} C^{2}-5832 A B^{11} C-972 B^{13}-9216 A^{4} B^{2} C^{6}-36096 A^{3} B^{4} C^{5} \\
& -50112 A^{2} B^{6} C^{4}-29808 A B^{8} C^{3}-6480 B^{10} C^{2}-6912 A^{4} B C^{5} D-35712 A^{3} B^{3} C^{4} D-13824 C^{7} A^{3} B-55728 A^{2} B^{5} C^{3} D-48384 C^{6} A^{2} B^{3} \\
& -34992 A B^{7} C^{2} D-49248 C^{5} A B^{5}-7776 B^{0} C D-15552 C^{4} B^{7}+25920 A^{3} B^{2} C^{3} D^{2}-1036 A^{3} C^{6} D+5443 A^{2} B^{4} C^{2} D^{2}-9072 A^{2} B^{2} C^{5} D \\
& -6912 C^{8} A^{2}+37908 A B^{6} C D^{2}-114048 A B^{4} C^{4} D-25920 C^{7} A B^{2}+8748 B^{5} D^{2}-38880 B^{6} C^{3} D-15552 C^{6} B^{4}+136080 A^{2} B C^{4} D^{2} \\
& +208008 A B^{3} C^{3} D^{2}-108864 A B C^{6} D+79704 B^{5} C^{2} D^{2}-77760 B^{3} C^{5} D-5184 C^{5} B+777 A^{2} C^{3} D^{3}+46656 A B^{2} C^{2} D^{3}+13998 C^{5} D^{2} \\
& +34992 B^{4} C D^{3}+116640 B^{2} C^{4} D^{2}-62208 C^{7} D-52488 A B C D^{4}-19683 B^{3} D^{4}+23328 B C^{3} D^{3}-139968 C^{2} D^{4}, \tag{45}\\
\epsilon_{0} & =-128 A^{3} B^{2} C^{3}-288 A^{2} B^{4} C^{2}-216 A B^{6} C-54 B^{8}-384 C^{4} A^{2} B-576 C^{3} A B^{3}-216 B^{5} C^{2}-48 A^{2} C^{3} D+108 A B^{2} C^{2} D \\
& -288 C^{5} A+108 B^{4} C D-216 B^{2} C^{4}+324 A B C D^{2}+243 B^{3} D^{2}+288 B C^{3} D+864 C^{2} D^{2}, \\
\delta_{5} & =1024 A^{5} B^{4} C^{4}+3072 A^{4} B^{6} C^{3}+3456 A^{3} B^{8} C^{2}+1728 A^{2} B^{10} C+324 A B^{12}+8064 A^{4} B^{3} C^{5}+20352 A^{3} B^{5} C^{4}+18648 A^{2} B^{7} C^{3} \\
& +7232 A B^{9} C^{2}+972 C B^{11}-6912 A^{4} B^{2} C^{4} D-25056 A^{3} B^{4} C^{3} D+20736 C^{6} A^{3} B^{2}-32832 A^{2} B^{6} C^{2} D+38880 C^{5} A^{2} B^{4}-18630 A B^{8} C D \\
& +23544 C^{4} A B^{6}-388 B^{10} D+4536 C^{3} B^{8}-5184 A^{3} B^{3} C^{2} D^{2}-17712 A^{3} B C^{5} D-7776 A^{2} B^{5} C D^{2}-56376 A^{2} B^{3} C^{4} D+21600 C^{7} A^{2} B
\end{align*}
$$

$-2916 A B^{7} D^{2}-53784 A B^{5} C^{3} D+24624 C^{6} A B^{3}-16092 B^{7} C^{2} D+6480 C^{5} B^{5}-3888 A^{3} C^{4} D^{2}-46656 A^{2} B^{2} C^{3} D^{2}-11664 A^{2} C^{6} D$
$-51030 A B^{4} C^{2} D^{2}-40824 A B^{2} C^{5} D+7776 C^{8} A-13608 B^{6} C D^{2}-23328 B^{4} C^{4} D+2592 C^{7} B^{2}+48600 A^{2} B C^{2} D^{3}+83835 A B^{3} C D^{3}$
$-78732 A B C^{4} D^{2}+34992 B^{5} D^{3}-49572 B^{3} C^{3} D^{2}-11664 B C^{6} D+6561 A B^{2} D^{4}+96228 A C^{3} D^{3}+97686 B^{2} C^{2} D^{3}-52488 C^{5} D^{2}$
$+41553 B C D^{4}-78732 D^{5}$,
$\epsilon_{5}=128 A^{3} B^{4} C^{3}+288 A^{2} B^{6} C^{2}+216 A B^{8} C+54 B^{10}+576 A^{2} B^{3} C^{4}+864 A B^{5} C^{3}+324 B^{7} C^{2}+1296 A^{2} B^{2} C^{3} D+2052 A B^{4} C^{2} D$
$+864 C^{5} A B^{2}+810 B^{6} C D+648 C^{4} B^{4}-3456 A^{2} B C^{2} D^{2}-5508 A B^{3} C D^{2}+3240 A B C^{4} D-2187 B^{5} D^{2}+2592 B^{3} C^{3} D+432 C^{6} B$
$-4860 A C^{3} D^{2}-4050 B^{2} C^{2} D^{2}+1944 C^{5} D-243 B C D^{3}+8748 D^{4}$,
$\delta_{4}=2048 A^{6} B^{4} C^{5}+7168 A^{5} B^{6} C^{4}+9984 A^{4} B^{8} C^{3}+6912 A^{3} B^{10} C^{2}+2376 A^{2} B^{12} C+324 A B^{14}+15360 A^{5} B^{3} C^{6}+40704 A^{4} B^{5} C^{5}$
$+38208 A^{3} B^{7} C^{4}+13392 A^{2} B^{9} C^{3}-648 B^{13} C-20736 A^{5} B^{2} C^{5} D-93312 A^{4} B^{4} C^{4} D+41472 A^{4} C^{7} B^{2}-167184 A^{3} B^{6} C^{3} D$
$+66816 A^{3} C^{6} B^{4}-149040 A^{2} B^{8} C^{2} D+16416 A^{2} C^{5} B^{6}-66096 A B^{10} C D-18144 A B^{8} C^{4}-11664 B^{12} D-7776 B^{10} C^{3}-5184 A^{4} B^{3} C^{3} D^{2}$
$-51840 A^{4} B C^{6} D-12960 A^{3} B^{5} C^{2} D^{2}-194400 A^{3} B^{3} C^{5} D+48384 A^{3} B C^{5}-10692 A^{2} B^{7} C D^{2}-272160 A^{2} B^{5} C^{4} D+8640 A^{2} B^{3} C^{7}$
$-2916 A B^{9} D^{2}-168480 A B^{7} C^{3} D-62208 A B^{5} C^{6}-38880 B^{9} C^{2} D-31104 B^{7} C^{5}-10368 A^{4} C^{5} D^{2}-81648 A^{3} B^{2} C^{4} D^{2}-31104 A^{3} C^{7} D$ $-141912 A^{2} B^{4} C^{3} D^{2}-93312 A^{2} B^{2} C^{6} D+20736 C^{9} A^{2}-88128 A B^{6} C^{2} D^{2}-93312 A B^{4} C^{5} D-57024 C^{8} A B^{2}-17496 B^{8} C D^{2}-31104 B^{6} C^{4} D$
$-51840 C^{7} B^{4}+132192 A^{3} B C^{3} D^{3}+369360 A^{2} B^{3} C^{2} D^{3}-139968 A^{2} B C^{5} D^{2}+344088 A B^{5} C D^{3}-221616 A B^{3} C^{4} D^{2}+104976 B^{7} D^{3}$ $-81648 B^{5} C^{3} D^{2}-31104 C^{9} B+256608 A^{2} C^{4} D^{3}+6561 A B^{4} D^{4}+501552 A B^{2} C^{3} D^{3}-139968 A C^{6} D^{2}+268272 B^{4} C^{2} D^{3}-139968 B^{2} C^{5} D^{2}$ $+52488 A B C^{2} D^{4}+91854 B^{3} C D^{4}-69984 B C^{4} D^{3}-209952 A C D^{5}-236196 B^{2} D^{5}$,
$\epsilon_{4}=-128 A^{4} B^{3} C^{3}-288 A^{3} B^{5} C^{2}-216 A^{2} B^{7} C-54 A B^{9}+576 A^{2} B^{4} C^{3}+864 A B^{6} C^{2}+324 B^{8} C-1584 A^{3} B C^{3} D-3924 A^{2} B^{3} C^{2} D$
$+864 A^{2} B C^{5}-3348 A B^{5} C D+2376 A B^{3} C^{4}-972 B^{7} D+1296 B^{5} C^{3}+324 A^{2} B^{2} C D^{2}-2160 A^{2} C^{4} D+243 A B^{4} D^{2}-2808 A B^{2} C^{3} D$
$+864 C^{6} A-1080 B^{4} C^{2} D+1296 C^{5} B^{2}+972 A B C^{2} D^{2}+486 B^{3} C D^{2}+1296 B C^{4} D+3888 A C D^{3}+4374 B^{2} D^{3}$,
$\delta_{3}=-512 A^{6} B^{2} C^{6}-3456 A^{5} B^{4} C^{5}-8864 A^{4} B^{6} C^{4}-11464 A^{3} B^{8} C^{3}-8028 A^{2} B^{10} C^{2}-2916 A B^{12} C-432 B^{14}+384 A^{5} B^{3} C^{4} D$
$-1536 A^{5} B C^{7}+864 A^{4} B^{5} C^{3} D-11904 A^{4} B^{3} C^{6}+648 A^{3} B^{7} C^{2} D-28320 A^{3} B^{5} C^{5}+162 A^{2} B^{9} C D-29976 A^{2} B^{7} C^{4}-14832 A B^{9} C^{3}$
$-2808 B^{11} C^{2}-192 A^{5} C^{6} D+3024 A^{4} B^{2} C^{5} D-1152 A^{4} C^{8}+6120 A^{3} B^{4} C^{4} D-16416 A^{3} B^{2} C^{7}+3768 A^{2} B^{6} C^{3} D-35856 A^{2} B^{4} C^{6}$
$+720 A B^{8} C^{2} D-27936 A B^{6} C^{5}-7344 B^{8} C^{4}+2592 A^{4} B C^{4} D^{2}+15120 A^{3} B^{3} C^{3} D^{2}+10224 A^{3} B C^{6} D+25434 A^{2} B^{5} C^{2} D^{2}+12312 A^{2} B^{3} C^{5} D$
$-12960 A^{2} B C^{8}+16848 A B^{7} C D^{2}+3024 A B^{5} C^{4} D-22464 A B^{3} C^{7}+3888 B^{9} D^{2}-360 B^{7} C^{3} D-9504 B^{5} C^{6}-972 A^{3} B^{2} C^{2} D^{3}$

$$
\begin{aligned}
& +6048 A^{3} C^{5} D^{2}-729 A^{2} B^{4} C D^{3}+44388 A^{2} B^{2} C^{4} D^{2}+7776 A^{2} C^{7} D+58968 A B^{4} C^{3} D^{2}-2592 A B^{2} C^{6} D-5184 A C^{9}+21600 B^{6} C^{2} D^{2} \\
& -5184 B^{4} C^{5} D-5184 B^{2} C^{8}-14580 A^{2} B C^{3} D^{3}-15552 A B^{3} C^{2} D^{3}+34992 A B C^{5} D^{2}-3888 B^{5} C D^{3}+29160 B^{3} C^{4} D^{2}-7776 B C^{7} D \\
& -3888 A^{2} C^{2} D^{4}-16767 A B^{2} C D^{4}-29160 A C^{4} D^{3}-8748 B^{4} D^{4}-20412 B^{2} C^{3} D^{3}+11664 C^{6} D^{2}-24786 B C^{2} D^{4}+17496 C D^{5} \text {, } \\
& \epsilon_{3}=-512 A^{5} B^{3} C^{4}-1536 A^{4} B^{5} C^{3}-1728 A^{3} B^{7} C^{2}-864 A^{2} B^{9} C-162 A B^{11}-2304 A^{4} C^{5} B^{2}-4416 A^{3} C^{4} B^{4}-2160 A^{2} C^{3} B^{6}+324 A C^{2} B^{8} \\
& +324 C B^{10}-1728 A^{4} B C^{4} D-8064 A^{3} B^{3} C^{3} D-3456 A^{3} B C^{6}-12636 A^{2} B^{5} C^{2} D-1728 A^{2} B^{3} C^{5}-8262 A B^{7} C D+3240 A B^{5} C^{4}-1944 B^{9} D \\
& +1944 B^{7} C^{3}+1296 A^{3} B^{2} C^{2} D^{2}-2592 A^{3} C^{5} D+1944 A^{2} B^{4} C D^{2}-14904 A^{2} B^{2} C^{4} D-1728 C^{7} A^{2}+729 A B^{6} D^{2}-18792 A B^{4} C^{3} D \\
& +3888 C^{6} A B^{2}-6804 B^{6} C^{2} D+3888 C^{5} B^{4}+12636 A^{2} B C^{3} D^{2}+17982 A B^{3} C^{2} D^{2}-9720 A B C^{5} D+6318 B^{5} C D^{2}-7776 B^{3} C^{4} D+2592 B C^{7} \\
& +3888 A^{2} C^{2} D^{3}+15309 A B^{2} C D^{3}+17496 A C^{4} D^{2}+8748 B^{4} D^{3}+14580 B^{2} C^{3} D^{2}-3888 C^{6} D+16038 B C^{2} D^{3}-17496 C D^{4} \text {, } \\
& \delta_{2}=6144 A^{7} B^{4} C^{5}+23552 A^{6} B^{6} C^{4}+36096 A^{5} B^{8} C^{3}+27648 A^{4} B^{10} C^{2}+10584 A^{3} B^{12} C+1620 A^{2} B^{14}+39936 A^{6} C^{6} B^{3}+80640 A^{5} B^{5} C^{5} \\
& -17856 A^{4} B^{7} C^{4}-168432 A^{3} B^{9} C^{3}-168048 A^{2} B^{12} C^{2}-68688 A B^{13} C-10368 B^{15}-34560 A^{6} B^{2} C^{5} D-114048 A^{5} B^{4} C^{4} D+96768 A^{5} C^{7} B^{2} \\
& -140400 A^{4} B^{6} C^{3} D-76032 A^{4} B^{4} C^{6}-76464 A^{3} B^{8} C^{2} D-733536 A^{3} B^{6} C^{5}-15552 A^{2} B^{10} C D-981504 A^{2} B^{8} C^{4}-515808 A B^{10} C^{3} \\
& -97200 B^{12} C^{2}-36288 A^{5} B^{3} C^{3} D^{2}-93312 A^{5} B C^{6} D-80352 A^{4} B^{5} C^{2} D^{2}+75168 A^{4} B^{3} C^{5} D+103680 A^{4} C^{8} B-59292 A^{3} B^{7} C D^{2} \\
& +803520 A^{3} B^{5} C^{4} D-675648 A^{3} B^{3} C^{7}-14580 A^{2} B^{9} D^{2}+1143072 A^{2} B^{7} C^{3} D-1829952 A^{2} B^{5} C^{6}+632448 A B^{9} C^{2} D-1425600 A B^{7} C^{5} \\
& +124416 B^{11} C D-357696 B^{9} C^{4}-20736 A^{5} C^{5} D^{2}-423792 A^{4} B^{2} C^{4} D^{2}-62208 A^{4} C^{7} D-740664 A^{3} B^{4} C^{3} D^{2}+1041984 A^{3} B^{2} C^{6} D \\
& +41472 A^{3} C^{9}-434808 A^{2} B^{6} C^{2} D^{2}+2799360 A^{2} B^{4} C^{5} D-1104192 A^{2} B^{2} C^{8}-81648 A B^{8} C D^{2}+2317248 A B^{6} C^{4} D-1710720 A B^{4} C^{7} \\
& +622080 B^{8} C^{3} D-642816 B^{6} C^{6}+256608 A^{4} B C^{3} D^{3}+412128 A^{3} B^{3} C^{2} D^{3}-855360 A^{3} B C^{5} D^{2}+163296 A^{2} B^{5} C D^{3}-746496 A^{2} B^{3} C^{4} D^{2} \\
& +1399680 A^{2} B C^{7} D+128304 A B^{5} C^{3} D^{2}+2426112 A B^{3} C^{6} D-746496 A B C^{9}+159408 B^{7} C^{2} D^{2}+1026432 B^{5} C^{5} D-559872 B^{3} C^{8} \\
& +52488 A^{3} B^{2} C D^{4}+419904 A^{3} C^{4} D^{3}+32805 A^{2} B^{4} D^{4}-1539648 A^{2} B^{2} C^{3} D^{3}-699840 A^{2} C^{6} D^{2}-2939328 A B^{4} C^{2} D^{3}+489888 A B^{2} C^{5} D^{2} \\
& +559872 A C^{8} D-1119744 B^{6} C D^{3}+629856 B^{4} C^{4} D^{2}+559872 B^{2} C^{7} D-186624 C^{10}+1364688 A^{2} B C^{2} D^{4}+1758348 A B^{3} C D^{4} \\
& -4199040 A B C^{4} D^{3}+629856 B^{5} D^{4}-3359232 B^{3} C^{3} D^{3}+839808 B C^{6} D^{2}-419904 A^{2} C D^{5}+2519424 A C^{3} D^{4}+1810836 B^{2} C^{2} D^{4} \\
& -1679616 C^{5} D^{3}+2519424 B C D^{5}-1889568 D^{6} \text {, } \\
& \epsilon_{2}=128 A^{5} B^{3} C^{3}+288 A^{4} B^{5} C^{2}+216 A^{3} B^{7} C+54 A^{2} B^{9}+1152 A^{4} C^{4} B^{2}+2112 A^{3} C^{3} B^{4}+1224 A^{2} C^{2} B^{6}+216 A C B^{8}-3024 A^{4} B C^{3} D \\
& -5868 A^{3} B^{3} C^{2} D+2592 A^{3} C^{5} B-3564 A^{2} B^{5} C D+1944 A^{2} C^{4} B^{3}-648 A B^{7} D-864 A C^{3} B^{5}-648 B^{7} C^{2}-324 A^{3} B^{2} C D^{2}-4320 A^{3} C^{4} D \\
& -243 A^{2} B^{4} D^{2}+11664 A^{2} B^{2} C^{3} D+1728 A^{2} C^{6}+24624 A B^{4} C^{2} D-2592 A C^{5} B^{2}+9936 B^{6} C D-2592 B^{4} C^{4}-13608 A^{2} B C^{2} D^{2}
\end{aligned}
$$

$$
\begin{aligned}
& -20412 A B^{3} C D^{2}+34992 A B C^{4} D-7776 B^{5} D^{2}+27216 B^{3} C^{3} D-2592 B C^{6}+7776 A^{2} C D^{3}+2916 A B^{2} D^{3}-23328 A C^{3} D^{2}-20412 B^{2} C^{2} D^{2} \\
& +15552 C^{5} D-29160 B C D^{3}+34992 D^{4} \text {, } \\
& \delta_{1}=-1024 A^{7} B^{6} C^{4}-3072 A^{6} B^{8} C^{3}-3456 A^{5} B^{10} C^{2}-1728 A^{4} B^{12} C-324 A^{3} B^{14}+3072 A^{7} C^{6} B^{3}+31104 A^{6} B^{5} C^{5}+120384 A^{5} B^{7} C^{4} \\
& +209496 A^{4} B^{9} C^{3}+181764 A^{3} B^{11} C^{2}+77436 A^{2} B^{13} C+12960 B^{15} A+41472 A^{6} B^{4} C^{4} D+82944 A^{6} C^{7} B^{2}+130464 A^{5} B^{6} C^{3} D \\
& +705024 A^{5} C^{6} B^{4}+153360 A^{4} B^{8} C^{2} D+2112480 A^{4} C^{5} B^{6}+79866 A^{3} B^{10} C D+2975832 A^{3} B^{8} C^{4}+15552 A^{2} B^{12} D+2151144 A^{2} B^{10} C^{3} \\
& +772416 A B^{12} C^{2}+108864 B^{14} C+38016 A^{6} B C^{6} D+5184 A^{5} B^{5} C^{2} D^{2}+352080 A^{5} B^{3} C^{5} D+228096 A^{5} C^{8} B+7776 A^{4} B^{7} C D^{2} \\
& +456840 A^{4} B^{5} C^{4} D+2178144 A^{4} C^{7} B^{3}+2916 A^{3} B^{9} D^{2}-246456 A^{3} B^{7} C^{3} D+5903280 A^{3} B^{5} C^{6}-771876 A^{2} B^{9} C^{2} D+6724944 A^{2} B^{7} C^{5} \\
& -474336 A B^{11} C D+3446064 A B^{9} C^{4}-93312 B^{13} D+657072 B^{11} C^{3}-260496 A^{5} B^{2} C^{4} D^{2}+82944 A^{5} C^{7} D-972000 A^{4} B^{4} C^{3} D^{2} \\
& +382320 A^{4} B^{2} C^{6} D+165888 A^{4} C^{9}-1404054 A^{3} B^{6} C^{2} D^{2}-1235736 A^{3} B^{4} C^{5} D+2744928 A^{3} C^{8} B^{2}-896184 A^{2} B^{8} C D^{2}-3742848 A^{2} B^{6} C^{4} D \\
& +6757344 A^{2} B^{4} C^{7}-209952 A B^{10} D^{2}-2978856 A B^{8} C^{3} D+5632416 A B^{6} C^{6}-751680 B^{10} C^{2} D+1531872 B^{8} C^{5}-229392 A^{4} B^{3} C^{2} D^{3} \\
& -1492992 A^{4} B C^{5} D^{2}-359397 A^{3} B^{5} C D^{3}-5794092 A^{3} B^{3} C^{4} D^{2}-497664 A^{3} B C^{7} D-139968 A^{2} B^{7} D^{3}-7986924 A^{2} B^{5} C^{3} D^{2} \\
& -4210704 A^{2} B^{3} C^{6} D+1866240 A^{2} B C^{9}-4537296 A B^{7} C^{2} D^{2}-5668704 A B^{5} C^{5} D+3779136 A B^{3} C^{8}-886464 B^{9} C D^{2}-2072304 B^{7} C^{4} D \\
& +1726272 B^{5} C^{7}-139968 A^{4} C^{4} D^{3}-6561 A^{3} B^{4} D^{4}-708588 A^{3} B^{2} C^{3} D^{3}-1819584 A^{3} C^{6} D^{2}+1010394 A^{2} B^{4} C^{2} D^{3}-8275608 A^{2} B^{2} C^{5} D^{2} \\
& -419904 A^{2} C^{8} D+2239488 A B^{6} C D^{3}-9710280 A B^{4} C^{4} D^{2}-2729376 A B^{2} C^{7} D+653184 C^{10} A+839808 B^{8} D^{3}-3289248 B^{6} C^{3} D^{2} \\
& -1959552 B^{4} C^{6} D+839808 C^{9} B^{2}+1399680 A^{3} B C^{2} D^{4}+2464749 A^{2} B^{3} C D^{4}+1994544 A^{2} B C^{4} D^{3}+1102248 A B^{5} D^{4}+7269588 A B^{3} C^{3} D^{3} \\
& -4304016 A B C^{6} D^{2}+4199040 B^{5} C^{2} D^{3}-3464208 B^{3} C^{5} D^{2}-419904 B C^{8} D+314928 A^{2} B^{2} D^{5}+3569184 A^{2} C^{3} D^{4}+5616216 A B^{2} C^{2} D^{4} \\
& +3044304 A C^{5} D^{3}+1784592 B^{4} C D^{4}+5196312 B^{2} C^{4} D^{3}-1889568 C^{7} D^{2}-472392 A B C D^{5}-1889568 B^{3} D^{5}+1495908 B C^{3} D^{4} \\
& -1889568 A D^{6}-2834352 C^{2} D^{5} \text {, } \\
& \epsilon_{1}=-1024 A^{6} B^{4} C^{4}-3200 A^{5} B^{6} C^{3}-3744 A^{4} B^{8} C^{2}-1944 A^{3} B^{10} C-378 A^{2} B^{12}+1536 A^{5} C^{5} B^{3}+22848 A^{4} C^{4} B^{5}+58944 A^{3} B^{7} C^{3} \\
& +61668 B^{9} C^{2} A^{2}+29160 A B^{11} C+5184 B^{13}+10368 A^{5} B^{2} C^{4} D+40176 A^{4} B^{4} C^{3} D+20736 A^{4} C^{6} B^{2}+56484 A^{3} B^{6} C^{2} D+124704 A^{3} C^{5} B^{4}
\end{aligned}
$$

$-81648 A B^{5} D^{3}-612360 A B^{3} C^{3} D^{2}+139968 A B C^{6} D-312012 B^{5} C^{2} D^{2}+93312 B^{3} C^{5} D+15552 C^{8} B-17496 A^{2} B^{2} D^{4}-256608 A^{2} C^{3} D^{3}$
$-352836 A B^{2} C^{2} D^{3}-221616 A C^{5} D^{2}-93312 B^{4} C D^{3}-332424 B^{2} C^{4} D^{2}+69984 C^{7} D+157464 A B C D^{4}$
$+209952 B^{3} D^{4}-8748 B C^{3} D^{3}+209952 A D^{5}+314928 C^{2} D^{4}$,
$\delta_{0}=10240 A^{8} B^{6} C^{5}+39936 A^{7} B^{8} C^{4}+62208 A^{6} B^{10} C^{3}+48384 A^{5} B^{12} C^{2}+18792 A^{4} B^{14} C+2916 A^{3} B^{16}+98304 A^{8} B^{3} C^{7}+580608 A^{7} B^{5} C^{6}$
$+1208064 A^{6} B^{7} C^{5}+1082688 A^{5} B^{9} C^{4}+267984 A^{4} B^{11} C^{3}-220320 A^{3} B^{13} C^{2}-162648 A^{2} B^{15} C-31104 A B^{17}+172800 A^{7} B^{4} C^{5} D$
$+442368 A^{7} C^{8} B^{2}+620928 A^{6} B^{6} C^{4} D+1110528 A^{6} C^{7} B^{4}+895536 A^{5} B^{8} C^{3} D-2439936 A^{5} C^{6} B^{6}+649296 A^{4} B^{10} C^{2} D-11284704 A^{4} C^{5} B^{8}$
$+237168 A^{3} B^{12} C D-15591456 A^{3} C^{4} B^{10}+34992 A^{2} B^{14} D-10362816 A^{2} C^{3} B^{12}-3386448 A B^{14} C^{2}-435456 B^{16} C+331776 A^{7} B C^{7} D$
$-67392 A^{6} B^{5} C^{3} D^{2}+4648320 A^{6} B^{3} C^{6} D+663552 A^{6} C^{9} B-147744 A^{5} B^{7} C^{2} D^{2}+14486688 A^{5} B^{5} C^{5} D-3103488 A^{5} C^{8} B^{3}$
$-107892 A^{4} B^{9} C D^{2}+21505824 A^{4} B^{7} C^{4} D-25468992 A^{4} C^{7} B^{5}-26244 A^{3} B^{11} D^{2}+18424800 A^{3} B^{9} C^{3} D-52265088 A^{3} C^{6} B^{7}$
$+9572256 A^{2} B^{11} C^{2} D-47708352 A^{2} C^{5} B^{9}+2846016 A B^{13} C D-20497536 A C^{4} B^{11}+373248 B^{15} D-3382560 B^{13} C^{3}-2519424 A^{6} B^{2} C^{5} D^{2}$
$+497664 A^{6} C^{8} D-7235568 A^{5} B^{4} C^{4} D^{2}+12845952 A^{5} B^{2} C^{7} D+331776 A^{5} C^{10}-5445144 A^{4} B^{6} C^{3} D^{2}+31290624 A^{4} B^{4} C^{6} D$
$-10886400 A^{4} C^{9} B^{2}+1279152 A^{3} B^{8} C^{2} D^{2}+31648320 A^{3} B^{6} C^{5} D-50258880 A^{3} C^{8} B^{4}+2886840 A^{2} B^{10} C D^{2}+17184960 A^{2} B^{8} C^{4} D$
$-74442240 A^{2} C^{7} B^{6}+839808 A B^{12} D^{2}+5520960 A B^{10} C^{3} D-45567360 A C^{6} B^{8}+886464 B^{12} C^{2} D-9984384 B^{10} C^{5}-925344 A^{5} B^{3} C^{3} D^{3}$
$-6718464 A^{5} B C^{6} D^{2}-1924560 A^{4} B^{5} C^{2} D^{3}+23001408 A^{4} B^{3} C^{5} D^{2}+15676416 A^{4} B C^{8} D-1347192 A^{3} B^{7} C D^{3}+116301744 A^{3} B^{5} C^{4} D^{2}$
$+9859968 A^{3} B^{3} C^{7} D-10948608 A^{3} C^{10} B-314928 A^{2} B^{9} D^{3}+148785984 A^{2} B^{7} C^{3} D^{2}-20435328 A^{2} B^{5} C^{6} D-40217472 A^{2} C^{9} B^{3}$
$+76667472 A B^{9} C^{2} D^{2}-20808576 A B^{7} C^{5} D-42177024 A C^{8} B^{5}+13996800 B^{11} C D^{2}-4945536 B^{9} C^{4} D-13561344 B^{7} C^{7}-1119744 A^{5} C^{5} D^{3}$
$+104976 A^{4} B^{4} C D^{4}-36181728 A^{4} B^{2} C^{4} D^{3}-3359232 A^{4} C^{7} D^{2}+59049 A^{3} B^{6} D^{4}-96799536 A^{3} B^{4} C^{3} D^{3}+145006848 A^{3} B^{2} C^{6} D^{2}$
$+8584704 A^{3} C^{9} D-104941008 A^{2} B^{6} C^{2} D^{3}+380642976 A^{2} B^{4} C^{5} D^{2}-40310784 A^{2} B^{2} C^{8} D-3732480 C^{11} A^{2}-52488000 A B^{8} C D^{3}$
$+311148864 A B^{6} C^{4} D^{2}-67184640 A B^{4} C^{7} D-12877056 C^{10} A B^{2}-10077696 B^{10} D^{3}+81671328 B^{8} C^{3} D^{2}-23887872 B^{6} C^{6} D$
$-7838208 B^{4} C^{9}+11757312 A^{4} B C^{3} D^{4}+11354904 A^{3} B^{3} C^{2} D^{4}-115893504 A^{3} B C^{5} D^{3}-6337926 A^{2} B^{5} C D^{4}-257191200 A^{2} B^{3} C^{4} D^{3}$
$+193155840 A^{2} B C^{7} D^{2}-5668704 A B^{7} D^{4}-203443488 A B^{5} C^{3} D^{3}+353139264 A B^{3} C^{6} D^{2}-47029248 A B C^{9} D-55007424 B^{7} C^{2} D^{3}$
$+151585344 B^{5} C^{5} D^{2}-33592320 B^{3} C^{8} D-1119744 C^{11} B+1259712 A^{3} B^{2} C D^{5}+15116544 A^{3} C^{4} D^{4}+708588 A^{2} B^{4} D^{5}$
$-151795296 A^{2} B^{2} C^{3} D^{4}-116733312 A^{2} C^{6} D^{3}-251233812 A B^{4} C^{2} D^{4}-159983424 A B^{2} C^{5} D^{3}+85660416 A C^{8} D^{2}-89439552 B^{6} C D^{4}$
$-71803584 B^{4} C^{4} D^{3}+95738112 B^{2} C^{7} D^{2}-13436928 C^{10} D+117153216 A^{2} B C^{2} D^{5}+178564176 A B^{3} C D^{5}-319336992 A B C^{4} D^{4}$

```
    +68024448 B D D 
    +229582512 B '2}\mp@subsup{C}{}{2}\mp@subsup{D}{}{5}-120932352\mp@subsup{C}{}{5}\mp@subsup{D}{}{4}+158723712BC\mp@subsup{D}{}{6}-136048896\mp@subsup{D}{}{7}\mathrm{ ,
\epsilon}=128\mp@subsup{A}{}{6}\mp@subsup{B}{}{5}\mp@subsup{C}{}{3}+288\mp@subsup{A}{}{5}\mp@subsup{B}{}{7}\mp@subsup{C}{}{2}+216\mp@subsup{A}{}{4}\mp@subsup{B}{}{9}C+54\mp@subsup{A}{}{3}\mp@subsup{B}{}{11}+6144\mp@subsup{A}{}{6}\mp@subsup{B}{}{2}\mp@subsup{C}{}{5}+22272\mp@subsup{A}{}{5}\mp@subsup{B}{}{4}\mp@subsup{C}{}{4}+28992A\mp@subsup{A}{}{4}\mp@subsup{B}{}{6}\mp@subsup{C}{}{3}+16272\mp@subsup{A}{}{3}\mp@subsup{B}{}{8}\mp@subsup{C}{}{2}+3348\mp@subsup{A}{}{2}\mp@subsup{B}{}{10}
    +48 A 5}\mp@subsup{B}{}{3}\mp@subsup{C}{}{3}D+18432\mp@subsup{A}{}{5}\mp@subsup{C}{}{6}B+468\mp@subsup{A}{}{4}\mp@subsup{B}{}{5}\mp@subsup{C}{}{2}D+6048\mp@subsup{A}{}{4}\mp@subsup{C}{}{5}\mp@subsup{B}{}{3}+756\mp@subsup{A}{}{3}\mp@subsup{B}{}{7}CD-108936\mp@subsup{A}{}{3}\mp@subsup{C}{}{4}\mp@subsup{B}{}{5}+324\mp@subsup{A}{}{2}\mp@subsup{B}{}{9}D-178992\mp@subsup{A}{}{2}\mp@subsup{C}{}{3}\mp@subsup{B}{}{7
```



```
    -88020 A 3 B 3}\mp@subsup{C}{}{2}\mp@subsup{D}{}{2}+235008\mp@subsup{A}{}{3}B\mp@subsup{C}{}{5}D-36450\mp@subsup{A}{}{2}\mp@subsup{B}{}{5}C\mp@subsup{D}{}{2}+648000\mp@subsup{A}{}{2}\mp@subsup{B}{}{3}\mp@subsup{C}{}{4}D-228096\mp@subsup{A}{}{2}\mp@subsup{C}{}{7}B+589680A\mp@subsup{B}{}{5}\mp@subsup{C}{}{3}D-432864A\mp@subsup{C}{}{6}\mp@subsup{B}{}{3
```



```
    -326592 B 品焐+659016 B}\mp@subsup{B}{}{3}\mp@subsup{C}{}{3}\mp@subsup{D}{}{2}-15552B\mp@subsup{C}{}{6}D+93312A\mp@subsup{A}{}{2}C\mp@subsup{D}{}{4}-979776A\mp@subsup{C}{}{3}\mp@subsup{D}{}{3}-1032264\mp@subsup{B}{}{2}\mp@subsup{C}{}{2}\mp@subsup{D}{}{3}+373248\mp@subsup{C}{}{5}\mp@subsup{D}{}{2}-559872BCD\mp@subsup{D}{}{4
    +839808 D 5.
```


An implementation in Sage

```
f=t^6-5*t^4+2*t^2-1; Info(f)
    Initial equation of the curve
    t^6 - 5*t^4 + 2*t^2 - 1
    Clebsch invariants [A, B, C, D] are:
    [-10/3, 1894/1125, -1534/1875, -220634944/56953125]
    Igusa-Clebsch invariants as in Magma [I2, I4, I6, I10] are:
    [6400, 861184, 493191168, 5223821082624]
    Igusa invariants [J_2, J_4, J_6, J_10] are:
    [400, 3364, 120408, 4981824]
    The moduli point for this curve p=(J2, i1, i2, i3)
    (-1, 7569/2500, -3322269/125000, 18915363/80000000000)
    The Automorphism group is isomorphic to the group with GapId
    [4, 2]
    The invariants }u\mathrm{ and v are:
    [10, 133]
```

$396628968144113651737631646937691984596072287764174691981328384 / 19842454463334970038435045580627047456800937652587890625$ t^{6} -
$30573250572833626471373749387359269206167271106404793194643456 / 264566059511132933845800607741693966090679168701171875 *$ $t^{5}+$
$983366934423174559240120128021417225682613660058706272845824 / 3527547460148439117944008103222586214542388916015625 *$ t^{4}
$84341674113646761568160038456190944145520379601772471123968 / 235169830676562607862933873548172414302825927734375 *$ $t^{3}+$
$4063108061290504034427672421740525379005211941861758861312 / 15677988711770840524195591569878160953521728515625 *$ $t^{2}-20819767415096954598228565325389778874548957158366511104 / 209039849490277873655941220931708812713623046875 *$ $t+73776744988999047290470748077270101837883013580455936 / 4645329988672841636798693798482418060302734375$

The universal curve over K is:
$396628968144113651737631646937691984596072287764174691981328384 / 1984245446333497$ The moduli point matches that of f
($-1,7569 / 2500,-3322269 / 125000,18915363 / 80000000000$)
[1] Oskar Bolza, On binary sextics with linear transformations into themse/ves, Amer. J. Math. 10 (1887), no. 1, 47-70. MR1505464
[2] A. Clebsch and P. Gordan, Theorie der Abelschen Functionen, Physica-Verlag, WÃ $\frac{1}{4}$ rzburg, 1967. Thesaurus Mathematicae, (Neudrucke wichtiger mathematischer Werke), Band 7. MR0485106
[3] Jean-François Mestre, Construction de courbes de genre 2 Ã partir de leurs modules, Effective methods in algebraic geometry (Castiglioncello, 1990), 1991, pp. 313-334. MR1106431
[4] Tanush Shaska and Helmut Voelklein, Elliptic subfields and automorphisms of genus 2 function fields, Algebra, arithmetic and geometry with applications (West Lafayette, IN, 2000), 2004, pp. 703-723. MR2037120
[5] Tony Shaska, Genus 2 curves with (3, 3)-split Jacobian and large automorphism group, Algorithmic number theory (Sydney, 2002), 2002, pp. 205-218. MR2041085
[6] ___, Genus two curves with many elliptic subcovers, Comm. Algebra 44 (2016), no. 10, 4450-4466. MR3508311

