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Preliminaries Algebraic curves

Algebraic curves:

An irreducible projective curve defined over a field k = k̄ is called the set of zeroes of the
following irreducible homogenous polynomial F (x , y , z) ∈ k [x , y , z].
We normally say: Given the curve C

C : F (x , y , z) = 0

The coordinate ring of C is k [C] := k [x , y , z]/(F ). The function field of C is defined as

k(C) :=
{ g

h

∣∣∣ g, h ∈ k [C] are forms of the same degree and h 6= 0
}

A rational map between two curves

φ : C1 : F1(x , y , z) = 0 → C2 : F2(x , y , z) = 0

is a map given by

(x , y , z)→ (f1(x , y , z), f2(x , y , z), f3(x , y , z))

where f1, f2, f3 are homogenous polynomials such that:
1 f1, f2, f3 and all have the same degree.
2 There is a P ∈ C1 such that not all fi (P) = 0.
3 F2

(
f1(x , y , z), f2(x , y , z), f3(x , y , z)

)
= 0
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Preliminaries Algebraic curves

The map
φ : C1 → C2

is regular at P ∈ C1 if fi (P) 6= 0 for at least one i . Moreover, it is called a morphism if it is regular
in all points P ∈ C1 and an isomorphism if φ has an inverse

φ−1 : C2 → C1,

which is also a morphism.
Without any loss of generality we may assume that our curves are non-singular. Then,

1 Any rational map φ : C1 → C2 is a morphism
2 if φ is non-constant then φ is surjective.

C1

φ

��

k(C1)

−−−−−−−

C2 k(C2)

Moreover,
C1 ∼= C2 ⇐⇒ k(C1) ∼= k(C2).

Similarly, we can define these concepts for affine curves.
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Preliminaries Riemann surfaces

Riemann surfaces

Riemann surfaces can be thought of as ”deformed copies” of the complex plane: locally near every
point they look like patches of the complex plane.

Every algebraic curve with coefficients in C is a compact Riemann surface.

Every compact Riemann surface is a sphere with some handles attached. The number of handles
is an important topological invariant called the topological genus of the surface.

genus of an algebraic curve = # of handles on the surface.

The most famous Riemann surface of all is the so called Riemann
sphere, denoted by P1.

Every algebraic curve X is given as a covering X 7→ P1.

When such covering X 7→ P1 has degree 2, then the Riemann sur-
face is called hyperelliptic.

Every hyperelliptic curve has equation y2 = f (x), for some polynomial f (x).
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Preliminaries Riemann surfaces

Some examples of curves

We give some examples of some very recognizable families of curves defined over algebraically
closed fields of characteristic 6= 2 (precise definitions will come later).

An elliptic curve is a curve with affine equation

y2 = f (x)

where f (x) is a degree 3 or 4 polynomial with nonzero discriminant.

An hyperelliptic curve is a curve with affine equation

y2 = f (x)

where deg f ≥ 5 and discriminant ∆f 6= 0.

A superelliptic curve is a curve with affine equation

yn = f (x)

where n ≥ 2, deg f ≥ 3 and discriminant ∆f 6= 0.

My research program is to, whenever possible, extend the theory of elliptic/hyperelliptic curves to
superelliptic curves (i.e. automorphisms, field of moduli versus field of definition, rational points,
minimal integral models, etc).

For more details visit algcurves.org where one can find some Sage packages, a database of
genus two curves, and profiles of some of my collaborators.
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Preliminaries Automorphism groups

Automorphisms of curves

All examples above have something in common; they all have automorphisms.

Let Xg denote an algebraic curve of genus g ≥ 2, defined over k̄ = k , and K = k(Xg).

The automorphism group Aut(Xg) of Xg is the group of automorphisms of K defined over k .
Aut(Xg) acts on the finite set of Weierstras points of Xg .

This action is faithful unless Xg is hyperelliptic, in which case its kernel is the group of order 2
containing the hyperelliptic involution of Xg .

Thus in any case, Aut(Xg) is a finite group. This was first proved by Schwartz.

Xg

f
��
Xh

The next milestone was Hurwitz’s seminal paper [Hur93], where he
discovered what is now called the Riemann-Hurwitz formula

2(g − 1) = 2 deg(f ) (h − 1) +
∑

P∈Xg

(eP − 1)

From this he derived what is now known as the Hurwitz bound.

|Aut(Xg)| ≤ 84 (g − 1)

Fix a group G = Aut(Xg). The coverings Xg 7→ Xg/G for all g ≥ 2 are studied in [MSSV02]. The
space of such covers with fixed signature is a sublocus ofMg . Studying such loci helps us
determine a lattice of loci inMg (cf. g = 3, 4).
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Superelliptic curves over C Automorphisms of superelliptic curves

Hyperelliptic and superelliptic curves

Let Xg be a genus g hyperelliptic curve with equation

y2 = f (x),

where deg f = 2g + 2. Let G = Aut(Xg) and w : (x , y) → (−x , y) be the
hyperelliptic involution. Then, w is central in G.

The group Ḡ := G/〈w〉 is called the reduced automorphism group of Xg .
Hence, Ḡ ↪→ Aut(k(x)/k)∼= PGL(2, k) and Ḡ is finite.

K
〈w〉

G

&&

k(x)
Ḡ=G/〈w〉

k

Hence, Ḡ it is isomorphic to one of the following: Cn,Dn,A4,S4,A5. Therefore, G is a degree 2
central extensions of Ḡ.

Next, we try to generalize the above to non-hyperelliptic curves.
Let Xg be a curve and H be a normal cyclic subgroup of order n of G =
Aut(Xg) which fixes a genus 0 space Xg/H.

The group Ḡ = G/H is called the reduced automorphism group of Xg .
We call such curves superelliptic curves. They have affine equation

yn = f (x)

for some polynomial f (x). Then τ : (x , y) → (x , ζy), where ζn = 1, is an
automorphism of Xg .

K
H

G

&&

k(x)
Ḡ=G/H

k
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Superelliptic curves over C Automorphisms of superelliptic curves

Automorphism groups and equations for hyperelliptic curves

From [Sha03] we have the following:
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Superelliptic curves over C Automorphisms of superelliptic curves

Automorphism groups and equations for superelliptic curves

Theorem (Sanjeewa-Sh)

For any superelliptic curve Xg of genus g ≥ 2 defined over a field k, char k = p 6= 2, the
automorphism group Aut(Xg) and the equation of Xg are given below:
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Superelliptic curves over C Automorphisms of superelliptic curves

Equations for superelliptic curves
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Superelliptic curves over C Automorphisms of superelliptic curves

Inclusion among the loci

Inclusion of the loci inMg for genus 3 and 4:
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Superelliptic curves over C Automorphisms of superelliptic curves

The majority of curves are superelliptic

In [BSZ15] we focus on g = 4. Red and yellow entries denote the superelliptic curves (hyperelliptic
and non-hyperelliptic respectively). From 41 total cases, only 13 are non-superelliptic.

T. Shaska ( Oakland University Rochester, MI, 48309 ) From hyperelliptic to superelliptic curves September 16, 2017 13 / 27



Superelliptic curves over C Recovering a curve from a moduli point

The easiest case, as always, g = 2. Let p ∈M2. Find an equation for the curve.

Mestre (83) provided an algorithm, which worked for Aut(X2)∼= C2. In [Sha02] equations for cases
|Aut(X2)| > 2 were determined.

Theorem (Malmendier-Sh, 2016)

For every point p ∈M2 such that p ∈M2(K ), for some number field K , there is a pair of
genus-two curves C± given by

C± : y2 =
6∑

i=0

a±6−i x i ,

corresponding to p, such that a±i ∈ K (d), i = 0, . . . , 6 as given explicitly in Equation (45) of
[MS16]. Moreover, K (d) is the minimal field of definition of p.

Here d is given in terms of p. In particular, if |Aut(p)| > 2, then d ∈ K .

Question: Can the above approach be generalized to all superelliptic curves?

There is no theoretical reason why it shouldn’t, at least for hyperelliptic curves. However,
difficulties arise with invariants of binary forms of higher degree.
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Superelliptic curves over C Recovering a curve from a moduli point

Superelliptic curves with extra automorphisms

From the previous tables, when the curve has an extra automorphism, then it has equation

yn = xδ(s+1) + asxδs + as−1xδ(s−1) + · · ·+ a2xδ·2 + a1xδ + 1

Dihedral invariants, as defined in [GS05] are

ui = as+1−i
1 ai + as+1−i

s as+1−i , i = 0, . . . , s

Theorem ([BT14])

Let Xg and u1, . . . , ug be as above. Then,
i) K = Q(u1, . . . , us) is a quadratic extension of the field of moduli F of Xg such that
K = F (

√
∆u), where ∆u = 2s+1u2

1 − 2s+3us+1
s .

iii) The equation of X over K is

yn = A xδ(s+1) + A xδs +

s−1∑
i=1

A
2s+1Aus+1−i − 2s+1−ius

iui

2s+1A2 − us+1
s

· xδ·i + 1 (1)

where 2s+1A2 − 2s+1u1A + us+1
s = 0.

Hence, a minimal field of definition is at most a degree 2 extension of the field of moduli.
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Superelliptic curves over Q On the field of moduli of superelliptic curves

Field of moduli versus field of definition

Theorem (Hidalgo-Sh)

Let X be a superelliptic curve of genus g ≥ 2 with superelliptic group H ∼= Cn. If the reduced
group of automorphisms Aut(X ) = Aut(X )/H is different from trivial or cyclic, then X is definable
over its field of moduli.

Next we display all genus g ≤ 10 superelliptic curves which are defined over its field of moduli.
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Superelliptic curves over Q On the field of moduli of superelliptic curves
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Superelliptic curves over Q On the field of moduli of superelliptic curves
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Superelliptic curves over Q Minimal equations and reduction theory

It’s all about the best curves

All equations of curves over Q have very large coefficients. This leads to the natural question:

Can we find a twist of the curve with smallest coefficients?

This is done via reduction theory of binary forms.

Example

Let X be a genus 2 curve with equation

y2 = 7 t6 −
(

78 + 16
√

5
)

t5 +
(

72
√

5 + 617
)

t4 −
(

320
√

5 + 2148
)

t3

+
(

4961 + 456
√

5
)

t2 −
(

5214 + 672
√

5
)

t + 3167

Then, the algorithm in [MS16] gives

y2 = 359785557t6 + 4935433518t5 + 29692428795t4 + 98737979076t3 + 193917220155t2 + 210507034158t + 100220296853

Can we get a ”better” equation? Can we get ”the best” equation?

With a reduction algorithm which will explain later we get

y2 = t6 + 2t4 + t2 + 3
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Superelliptic curves over Q Minimal equations and reduction theory

Binary forms

There is one important correspondence in all of this:

superelliptic curves ynzd−n = f (x , z) ——– degree d binary forms f (x , z).

Let k = k̄ be a characteristic 0 field, k [x , z] be the polynomial ring in two variables, and let Vd
denote the (d + 1)-dimensional subspace of k [x , z] consisting of homogeneous polynomials.

f (x , z) = a0xd + a1xd−1z + · · ·+ ad zd (2)

of degree d . Elements in Vd are called binary forms of degree d .

Let GL2(k) act as a group of automorphisms on k [x , z] as follows:

M =

(
a b
c d

)
∈ GL2(k), then M

(
x
z

)
=

(
ax + bz
cx + dz

)
. (3)

This action of GL2(k) leaves Vd invariant and acts irreducibly on Vd .

Given f (x , z) a binary form we denote with Orb(f ) its GL2(K )-orbit in Vd .
• Two binary forms f and f ′ of the same degree d are called equivalent or GL2(k)-conjugate if
there is an M ∈ GL2(k) such that f ′ = f M .
Problem: Given a binary form f (x , y) over OK we determine its integral model with minimal height
H(f ).
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Superelliptic curves over Q Minimal equations and reduction theory

Minimal height of forms

Let K be a number field and OK its ring of integers.

Let f (x , z) be a binary form and Orb(f ) its GL2(K )-orbit in Vd .

Remark

There are only finitely many f ′ ∈ Orb(f ) such that H(f ′) ≤ H(f ).

Define the minimal height of the binary form f (x , z) as follows

H̃(f ) := min
{

H(f ′)|f ′ ∈ Orb(f ), H(f ′) ≤ H(f )
}

From Northcot’s theorem there are only finitely many orbitz for a given binary form with height c0.
Define the minimal absolute height of the binary form to be the minimal height throughout all
the orbitz.

Problem: Given a binary form f (x , y) over OK we determine its integral model with minimal height
H(f ).
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Superelliptic curves over Q Minimal equations and reduction theory

Julia quadratic and Julia invariant

Let f (x , z) ∈ R[x , z] be a degree n binary form given as follows

f (x , z) = a0xn + a1xn−1z + · · ·+ anzn

and suppose that a0 6= 0. Let the real roots of f (x , z) be αi , for 1 ≤ i ≤ r and the pair of complex
roots βj , β̄j for 1 ≤ j ≤ s, where r + 2s = n. We associate to f the two quadratic forms Tr (x , z)
and Ss(x , z) respectively given by the formulas

Tr (x , z) =
r∑

i=1

t2
i (x − αi z)2, and Ss(x , z) =

s∑
j=1

2u2
j (x − βj z)(x − β̄j z), (4)

where ti , uj are to be determined.

Proposition

Qf = Tr + Ss is a positive definite quadratic form with discriminant Df

Df = ∆(Tr ) + ∆(Ss)− 8
∑

i,j

t2
i u2

j

(
(ai − aj )

2 + b2
j

)

We define the θ0 of a binary form as follows

θ0(f ) =
a2

0 · |Df |n/2∏r
i=1 t2

i
∏s

j=1 u4
j
.

We pick t1, . . . , tr , u1, . . . , us such that θ0 obtains a minimum.
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Superelliptic curves over Q Minimal equations and reduction theory

Reduction of higher degree binary forms

Proposition (Julia 1917)

θ0 : Rr+s → R obtains a minimum at a unique point.

Denote (̄t1, . . . , t̄r , ū1, . . . , ūs) this unique point.

The quadratic Jf := Qf (̄t1, . . . , t̄r , ū1, . . . , ūs)(x , z) is called the Julia’s quadratic of f and
θf := θ0 (̄t1, . . . , t̄r , ū1, . . . , ūs) is called the Julia invariant.

Theorem (Julia 1917)

i) θf is an SL2(C) invariant
ii) Jf (x , z) ∈ R[x , z] is a positive definite quadratic.

Define the zero map for a binary form as

ζ : Vn,R −→ V +
2,R −→ H2

f −→ Jf −→ ξ(Jf )

A binary form f ∈ R[x , z] is said to be a reduced binary form if ζ(f ) ∈ F .
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Superelliptic curves over Q Minimal equations and reduction theory

Algorithm: Finding the minimum absolute height

The following algorithm finds the form with minimal absolute height; [SB15]

Input: A degree n binary form f (x , y) ∈ Vn,OK

Output: A binary form F ∈ Vn,OK which is GL2(K̄ )-equivalent to f and has minimal absolute
height.

STEP 1: Find the reduced form f := red (f ) and the Julia quadratic J associated to it using
reduction theory.
STEP 2: Compute the discriminant Df of the quadratic form J.

STEP 3: Let L := K (Df )

STEP 4: Determine all quadratics {J1, . . . , Jr} equivalent to J over L and
let M1, . . . ,Mr ∈ GL2(L) be the matrices such that J = JMi

i ,
for i = 1, . . . , r .

STEP 5: Compute the set of forms

f1 := f M1 , . . . , fr := f Mr .

STEP 6: For each i = 1, . . . , r , find the minimal of red (fi )

T. Shaska ( Oakland University Rochester, MI, 48309 ) From hyperelliptic to superelliptic curves September 16, 2017 24 / 27



Superelliptic curves over Q A database of algebraic curves

Computing with superelliptic curves
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Superelliptic curves over Q A database of algebraic curves

A database for superelliptic curves

The main website of the project is at algcurves.org. It contains:

A Sage package for genus 2 curves

A Sage package for genus 3 hyperelliptic curves

The genus 2 database with over 1 million curves
A python dictionary with integral binary sextics with minimum
absolute height H ≤ 10.
A python dictionary with decomposable integral binary sextics
f (x2, z2) with minimum absolute H ≤ 101
A python dictionary with integral binary sextics with moduli height
H ≤ 20

Coming conferences:

Algebraic Curves and their Applications, AMS Meeting, Orlando, September, 2017.
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Superelliptic curves over Q A database of algebraic curves

References

[Bes17] L. Beshaj, Minimal integral weierstrass equations for genus 2 curves, Contemporary Math. (2017).

[BSZ15] The case for superelliptic curves (2015)

[BT14] Lubjana Beshaj and Fred Thompson, Equations for superelliptic curves over their minimal field of definition., Albanian J.
Math. 8 (2014), no. 1, 3–8 (English).

[GS05] J. Gutierrez and T. Shaska, Hyperelliptic curves with extra involutions., LMS J. Comput. Math. 8 (2005), 102–115
(English).

[Hur93] A. Hurwitz, Ueber algebraische Gebilde mit eindeutigen Transformationen in sich., Math. Ann. 41 (1893), 403–442
(German).

[MS16] Andreas Malmendier and Tony Shaska, A universal pair of genus-two curves (2016), available at 1607.08294.

[MSSV02] K. Magaard, T. Shaska, S. Shpectorov, and H. Völklein, The locus of curves with prescribed automorphism group,
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