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Definitions and basic properties
Let Ih (resp. I) be a homogeneous ideal in k [Y0, · · · ,Yn] different from 〈Y0, . . .Yn〉
(resp. an ideal in k [X1, . . . ,Xn]). Let Rh := k [Y0, . . . ,Yn]/Ih (resp.
R := k [X1, . . . ,Xn]/I) be the quotients. Rh is a graded ring, and so localizations Rh,A
with respect to hom. ideals A are graded, too. Let Rh,A,0 be the ring of elements of
grade 0.
The projective scheme Sh (resp. affine scheme S) defined by Ih (resp. I) consists of

I the topological space Vh := Proj(Rh) (V := Spec(R)) of homogeneous prime
ideals in Rh with preimage in k [Y0, . . . ,Yn] different from 〈Y0, . . .Yn〉 (prime ideals
in R) endowed with the Zariski topology and

I the sheaf of rings of holomorphic functions given on Zariski-open sets U ⊂ Vh
(resp. U ⊂ V ) as elements of grade 0 in localization of Rh,0 (resp. R) with respect
to elements that become invertible when restricted to U.

Examples:
I The projective space Pn over k of dimension n is given by the ideal
〈0〉 ⊂ k [Y0, . . . ,Yn]. The ring of holomorphic functions on Pn (take U = Pn) is k .
Take U = ∅ to get the ring of meromorphic functions on Pn: consists of quotients

f/g with f , g homogeneous of degree d with g 6= 0.

I The affine space An of dimension n over k is the topological space

Spec(k [X1, . . .Xn]).

The ring of holomorphic functions on An is k [X1, . . . ,Xn], where polynomials are
interpreted as polynomial functions. The ring of meromorphic functions on An

(take U = ∅) is the field of rational functions k(X1, . . . ,Xn).
I The easiest but important example for an affine scheme: Take n = 1, I = 〈X1〉,

V = Spec(k) = {(0)} and O(0) = k∗.



Morphisms
Morphisms of affine or projective schemes are continuous maps between the
underlying topological spaces induced (locally) by (in the projective case, quotients of
the same degree) of polynomial maps of the sheaves.

Rational maps f between affine or projective schemes S and T are equivalence
classes of morphisms defined on open subschemes Ui of S with image in T and
compatible with restrictions to Ui ∩ Uj . If f is invertible (as rational maps from T to S),
then f is birational, and S and T are birationally equivalent.
The k -rational points S(k) of a scheme S is the set of morphisms from Spec(k) to S.
For projective schemes defined by the ideal Ih the set S(k) is identified with points
(y0 : y1 · · · : yn) with k -rational homogeneous coordinates in Pn which are common
zeros of the polynomials in Ih (similarly for affine schemes).

Constant field extensions: Let k
ι
↪→ L be an embedding of k into a field L. Let S be a

projective (affine) scheme defined over k with ring R. ι induces a morphism fι from R
in R ⊗k L =: Rι given by the interpretation via ι of polynomials with coefficients in k as
polynomials with coefficients in L. The prime ideal IS extends to a prime ideal in Rι and
hence we get in a natural way a projective variety Sι with a morphism

Sι → S

as Spec(k) schemes. Sι is a scheme now defined over L, denoted Sι by SL.

A scheme S is irreducible if the ideal Ih (respectively I) is a prime ideal. S is
absolutely irreducible if Sk̄ is irreducible. This is the case if and only if k is algebraically
closed in R. Classically, irreducible schemes are called irreducible varieties.



Group schemes:
A projective (affine) group scheme G defined over k is a projective (affine) scheme
over k endowed with

i) addition, i.e., a morphism
m : G × G→ G

ii) inverse, i.e., a morphism
i : G→ G

iii) the identity, i. e., a k -rational point 0 ∈ G(k),

such that it satisfies group laws. The group law is uniquely determined by the choice of
the identity element.
A morphism of group schemes that preserves addition is a homomorphism.
Let L/k be a field extension. G(L) is the set of L-rational points of G and it is also a
group. A homomorphism between groups schemes induces a homomorphism between
the group of rational points. If G is a projective variety, then the group law m is
commutative.

An Abelian variety defined over k is an absolutely irreducible projective variety (over
k ) which is a group scheme.

The addition m(P,Q) will be denoted by P ⊕ Q or simply P + Q and the inversion i(P)
by 	P or simply by −P.

Fact: A morphism from the Abelian varieties, say A1 → A2 is a homomorphism if and
only if it maps the identity element of A1 to the identity element of A2.

An abelian variety over k is called simple if it has no proper non-zero Abelian
subvariety over k , it is called absolutely simple (or geometrically simple) if it is
simple over the algebraic closure of k .



Complex tori and abelian varieties

Abelian varieties are connected, projective algebraic group schemes. Their analytic
counterparts are the connected compact Lie groups.
Let d ∈ Z>0 and Cd the complex Lie group (i.e., with vector addition as group
composition). Cd is not compact, but we can find quotients which are compact.
Choose a lattice Λ ⊂ Cd which is a Z-submodule of rank 2d . The quotient Cd/Λ is a
complex, connected Lie group which is called a complex d-dimensional torus.

Every connected, compact Lie group of dimension d is isomorphic to a torus Cd/Λ.

A hermitian form H on Cd × Cd is a form that can be decomposed as

H(x , y) = E(ix , y) + i E(x , y),

where E is a skew symmetric real form on Cd satisfying E(ix , iy) = E(x , y). E is called
the imaginary part Img(H) of H. The torus Cd/Λ can be embedded into a projective
space if and only if there exists a positive Hermitian form H on Cd with E = Img(H)
such that restricted to Λ× Λ has values in Z.

Let Hg be the Siegel upper half plane

Hd = {τ ∈ Matd (C) | τT = τ, Img(τ) > 0}.

Lemma
Let Cd/Λ be a complex torus attached to an abelian variety A. Then Λ is isomorphic to
Zd ⊕ Ω · Zd , where Ω ∈ Hd .



The matrix Ω is called the period matrix of A. The lattice Â given by

Â := {x ∈ Cd |E(x , y) ∈ Z, for all y ∈ λ}

is called the dual lattice of Λ. If Â = A then A is called a principally polarized
abelian variety.
For a principally polarized abelian variety A there exists a basis {µ1, . . . , µ2d} of Λ
such that

J :=
[
E(µi , µj )

]
1≤i,j≤2d =

[
0 Id
−Id 0

]
.

The symplectic group

Sp(2d ,Z) = {M ∈ GL(2d ,Z) | MJMT = J}

acts on Hd , via

Sp(2d ,Z)×Hd →Hd[
a b
c d

]
× τ → (aτ + b)(cτ + d)−1

where a, b, c, d , τ are d × d matrices. The moduli space of d-dimensional abelian
varieties is

Ag := Hd/Sp(2d ,Z).

The Jacobian of a projective irreducible nonsingular curve is a principally polarized
abelian variety.



Endomorphisms and isogenies
Let A, B be abelian varieties over a field k . We denote the Z-module of
homomorphisms A 7→ B by Hom(A,B) and the ring of endomorphisms A 7→ A by
EndA. In the context of Linear Algebra it can be more convenient to work with the
vector spaces Hom0(A,B) := Hom(A,B)⊗Z Q, and End0 A := End A⊗Z Q.
Determining EndA or End0 A is an interesting problem on its own; see (Oort, 1988).
For any abelian variety A defined over a a number field K , computing EndK (A) is a
harder problem than computation of EndK̄ (A); see (Lombardo, 2016, lemma 5.1) for
details.

Lemma
If there exists an algorithm to compute EndK (A) for any abelian variety of dimension
g ≥ 1 defined over a number field K , then there is an algorithm to compute EndK̄ (A).

A homomorphism f : A → B is called an isogeny if Img f = B and ker f is a finite
group scheme. If an isogeny A → B exists we say that A and B are isogenous. We
remark that this relation is symmetric, see Lemma 6.
The degree of an isogeny f : A → B is the degree of the function field extension

deg f := [K (A) : f?K (B)].

It is equal to the order of the group scheme ker(f ).
The group of k̄ -rational points has order #(ker f )(k̄) = [K (A) : f?K (B)]sep , where
[K (A) : f?K (B)]sep is the degree of the maximally separable extension in
K (A)/f?K (B).
f is a separable isogeny iff

# ker f (k̄) = deg f .

Equivalently: The group scheme ker f is étale.



Lemma
For any Abelian variety A/k there is a one to one correspondence between the finite
subgroup schemes K ≤ A and isogenies f : A → B, where B is determined up to
isomorphism. Moreover, K = ker f and B = A/K.
f is separable if and only if K is étale, and then deg f = #K(k̄).

Lemma
If A and B are isogenous then End0(A)∼= End0(B).

Theorem (Poincare-Weil)
Let A be an Abelian variety. Then A is isogenous to

An1
2 ×A

n2
2 × · · · × A

nr
r ,

where (up to permutation of the factors) Ai , for i = 1, . . . , r are simple, non-isogenous,
Abelian varieties. Moreover, up to permutations, the factors Ani

i are uniquely
determined up to isogenies.

Lemma
If A is a absolutely simple Abelian variety then every endomorphism not equal 0 is an
isogeny.
Computing isogenies between Abelian varieties
Fix a field k and let A be an Abelian variety over k . Let H denote a finite subgroup of
A. From the computational point of view we have the following problems:

I Compute all Abelian varieties B over k such that there exists an isogeny A → B
whose kernel is isomorphic to H.

I Given A and H, determine the quotient B := A/H and the isogeny A → B.
I Given two Abelian varieties A and B, determine if they are isogenous and

compute a rational expression for an isogeny A → B.



Torsion points and Tate modules
The most classical example of a separable isogeny is the scalar multiplication by n:

[n] : A → A

The kernel of [n] is a group scheme of order n2 dimA. Let A[n] be the group ker[n](k̄)
(called n-torsion group).

Lemma
Let f : A → B be a degree n isogeny. Then there exists an isogeny f̂ : B → A such
that

f ◦ f̂ = f̂ ◦ f = [n].

Theorem
Let A/k be an Abelian variety, p = char k, and dimA = g.
i) If p - n, then [n] is separable, #A[n] = n2g and A[n]∼= (Z/nZ)2g .
ii) If p | n, then [n] is inseparable. Moreover, there is an integer 0 ≤ i ≤ g such that

A[pm]∼= (Z/pmZ)i , for all m ≥ 1.

If i = g then A is called ordinary. If A[ps](K̄ ) = Z/ptsZ then the abelian variety has
p-rank t . If dimA = 1 (elliptic curve) then it is called supersingular if it has p-rank 0.
An abelian variety A is called supersingular if it is isogenous to a product of
supersingular elliptic curves.

Remark
If dimA ≤ 2 and A has p-rank 0 then A is supersingular. This is not true for dimA ≥ 3.



Let l be a prime different from p = char K and k ∈ N. Then,

[l]A
[
lk+1

]
= A[lk ].

Hence, the collection of groups

. . .A[lk+1], . . . ,A[lk ], . . .

forms a projective system. The l-adic Tate module of A is

Tl (A) := lim←− A[lk ].

Lemma
The Tate module Tl (A) is a Zl -module isomorphic to Z2 dimA

l .

Torsion points on abelian varieties are used to construct very important representations
of the Galois group of k . Let n be relatively prime to p. Then Gk acts on A[n] which
gives rise to a representation

ρA,n : Gk → Aut
(

(Z/nZ)2g
)

and after a choice of basis in A[n] yields a representation

ρA,n : Gk → GL2g(Z/nZ)

This action extends in a natural way to Tl (A)⊗ Q` and therefore to a `-adic
representation ρ̃A,l which is called the l-adic Galois representation attached to A.



Representations of endomorphisms

Let φ be an endomorphism of the g-dimensional Abelian variety A. By restriction φ
induces a Z-linear map φn on A[n]. Since the collection (φ`k ) is compatible with the
system defining T`(A) it yields a Z`-linear map p̃hi` on T`(A) .
Applying this construction to all elements in End(A) we get an injection (since A[λ∞])
is Zariski-dense in A) from End(A) into Gl(2g,Z`). By tensorizing with Q` we get the
`-adic representation

η̃` : End(A)⊗ Q` → Gl2g(Q`).

Theorem
η̃` is injective.

This result has important consequences for the structure of End0(A), more precisely
End0(A) is a Q-algebra of dimension ≤ 4 dim(A)2.
End0(A) is a semi-simple algebra, and by duality (keyword Rosati-involution) one can
apply a complete classification due to Albert of possible algebra structures on
End0(A).

Question
Which algebras occur as endomorphism algebras?

The situation is well understood if k has characteristic 0 (due to Albert) but wide open
in characteristic p > 0.



Characteristic Polynomial:
For φ ∈ End0(A) let φ̃` its `-adic representation. Denote its characteristic polynomial
by χ`,φ(T ) ∈ Z`[T ].

Theorem (Weil)
χ`,φ(T ) is a monic polynomial χφ(T ) ∈ Z[T ] which is independent of `. We have

χφ(φ) ≡ 0 on A,

and so it is justified to call χφ(T ) the characteristic polynomial of φ.
The degree of χφ(T ) is 2 dim(A), the second-highest coefficient is the negative of the
trace of φ, and the constant coefficient is equal to the determinant of φ.
Frobenius representations Let A be a g-dimensional Abelian variety defined over Fq ,
where q = pd for a prime p and F̄q the algebraic closure of Fq . Let π ∈ Gal(F̄q/Fq) be
the Frobenius automorphism of Fq , given by

π : x → xp.

Since Gal(F̄q/Fq) is topologically generated by π and because of continuity of ρA,n it
is determined by ρA,n(π).

χA,q(T ) := χ(T )
(
ρ̃A,l (π)

)
∈ Z`[T ] (1)

is the characteristic polynomial of the image of π under ρ̃A,l .

Lemma (Weil)
χA,q(T ) is a monic polynomial of degree 2g in Z[T ], independent of `, and for all
n ∈ N we get

χA,q(T ) ≡ χ(ρA,n(π) mod n.



Lemma (Tate)
We continue to take k = Fq . The `-adic representation ρ̃A,l is semi-simple and so is
determined by their characteristic polynomials of the Frobenius, χ(T )

(
ρ̃A,l (π)

)
.1

Theorem (Tate)
Let A and B be Abelian varieties over a finite field Fq and χA and χB the characteristic
polynomials of their Frobenius endomorphism and l 6= p a prime. The following are
equivalent.

I A and B are isogenous.
I χA,q(T ) ≡ χB,q(T )

I The zeta-functions for A and B are the same. Moreover, #A(Fqn ) = #B(Fqn) for
any positive integer n.

I Tl (A)⊗ Q∼= Tl (B)⊗ Q

1An analogous result for k = K a number field is the main result of Faltings on his way to prove Mordell’s
conjecture.



Geometric Interpretation
We continue to assume that A is an Abelian variety defined over Fq Hence π acts on
the algebraic points of A by exponentiation on coordinates with q. This action induces
an action on the function field Fq(A) given again by exponentiation by q.
This action is polynomial, and so it induces a morphism on A. Without loss of
generality we can assume that this morphism fixes 0A and so is an endomorphism φq
called the Frobenius endomorphism.
So for given A, the Frobenius automorphism plays a double role as Galois element and
as endomorphism, and this is of great importance for the arithmetic of Abelian varieties
over finite fields.
The explicit knowledge of φq yields immediately that it is purely inseparable and

degφq = [K (A) : π?K (A)] = qg .

As endomorphism φq has an `-adic representation. By construction its characteristic
polynomial is equal to χA,q(T ). It follows that χA,q(φq) ≡ 0 as endomorphism. This
motivates the following definition.

Definition
χA,q(T ) is the characteristic polynomial of the Frobenius endomorphism φq of A.
This polynomial can be used for counting points on A(Fq): Since φq is purely
inseparable the endomorphism φq − idA is separable, and hence deg ker(φq − idA) is
equal to the number of elements in its kernel. Since π fixes exactly the elements of Fq
the endomorphism φq fixes exactly A(Fq) and so ker(φq − idA)(F̄q) = A(Fq). By
linear algebra it follows

Theorem

#(A(Fq) = χA,q(1).



Curves

By a curve Ck we mean a smooth, irreducible, projective variety of dimension 1.
Sometimes it is convenient to have that C(k) 6= ∅, and without loss of generality we
then can assume that there is a point P∞ “at infinity”, i.e. in C(k) \ U0.

Let C be a curve defined over k . Hence there is a homogeneous prime ideal
〈X0,X1, . . . , xn〉 6= IC ⊂ k [X0, . . . ,Xn] and R = k [X0, . . . ,Xn]/IC such that:

I C is the scheme consisting of the topological space Proj(R) and the sheaf of
holomorphic functions given on open subsets U of Proj(R) by the localization with
respect to the functions in R not vanishing on U.

I The dimension of C is one, i.e. for every non-empty affine open subset
U ⊂ Proj(R) the ring of holomorphic functions RU on U is a ring with Krull
dimension 1.

I C is regular, i.e. the localization of R with respect to every maximal ideal M in R is
a discrete valuation ring RM of rank 1. The equivalence class of the valuations
attached to RM is the place p of C, A place p of C is also called prime divisor of C.

I (Absolute irreducibility) IC · k̄ [X0, . . . ,Xn] is a prime ideal in k̄ [X0, . . . ,Xn]. This is
equivalent with: k is algebraically closed in Quot(R).

As important consequence we note that for all open ∅ 6= U 6= C the ring RU is a
Dedekind domain.



Prime Divisors and Points
Denote the set of all places p of C by ΣC(k).

Proposition
There is a one-to-one correspondence between ΣC(k) and the equivalence classes of
valuations of k(C), which are trivial on k.
Let p ∈ ΣC(k) be a prime divisor with maximal ideal Mp and valuation ring Rp. We have

rp : Rp → Rp/Mp =: L

where L is a finite algebraic extension of k . The degree of p is deg(p) := [L : k ].
If deg(p) = 1 then L = k and rp induces a morphism from Spec(k) into C and so
corresponds to a point P ∈ C(k), uniquely determined by p. More explicitly: The point
P has the homogeneous coordinates (y0 : y1 : . . . , : yn) with yi = rp(Yi ).

Lemma
The set Σ1

C(k) of prime divisors of C of degree 1 is in bijective correspondence with the
set of k-rational points C(k) of the curve C.
Now look at Ck̄ . Obviously, every prime divisor of Ck̄ has degree 1, and so

Lemma
The set of prime divisors of Ck̄ corresponds one-to-one to the points in Ck̄ (k̄).

Since k̄/k is separable we get that every equivalence classes p of valuations of k(C),
which are trivial on k has deg(p) = d extensions to k̄ , and these extensions are
conjugate under the operation of Gk (Hilbert theory of valuations). Denote these
extension by p̃1, . . . , p̃d and the corresponding points in Ck̄ (k̄ by (P1, . . . ,Pd ). Then
{P1, . . . ,Pd} is an orbit under the action of Gk and

Corollary
ΣC(k) corresponds one-to-one to the Gk -orbits of Ck̄ (k̄).



Divisors and Picard groups
Let C be curve over k . A group of k -rational divisors DivC(k) of C is defined by

Definition
DivC(k) =

⊕
p∈ΣC(k) Z · p, i.e. DivC(k) is the free abelian group with base ΣC(k).

Hence a divisor D of C is a formal sum

D =
∑

p∈ΣC(k)

zp P

where zp ∈ Z and zp = 0 for all but finitely many prime divisors p. So it makes sense to
define

deg(D) =
∑

p∈ΣC(k)

zp.

From Corollary 1 we can interpret divisors as formal sum of Gk -orbits in Ck̄ ((̄k). But we
remark that taking points in C(k) is in general not enough to get all k -rational divisors
of C.
The map

D 7→ deg(D)

is a homomorphism from DivC(k) to Z. Its kernel is the subgroup DivC(k)0 of divisors
of degree 0.

Example
Let f ∈ k(C)∗ be a meromorphic function on C. For p ∈ ΣC(k) we have defined the
normalized valuation wp. The divisor of f is defined as

(f ) =
∑

ΣC(k)

wp · p.

It is not difficult to verify that (f ) is a divisor, and that its degree is 0, see (Stichtenoth,
2009). Moreover (f · g) = (f ) + (g) for functions f , g, and (f−1) = −(f ). The
completeness of C implies that (f ) = 0 if and only if f ∈ k∗, and so (f ) determines f up
to scalars 6= 0.
So the set of principal divisors PDivC(k) consisting of all divisors (f ) with f ∈ k(C) is a
subgroup of Div0

C(k).

Definition
The group of divisor classes of C is defined by

PicC(k) := DivC(k)/PDivC(k)

and is called the divisor class group of C.
The group of divisor classes of degree 0 of C is defined by

Pic0
C(k) := Div0

C(k)/PDivC(k)

and is called the Picard group (of degree 0) of C.



The Picard Functor:
Let L/k be a finite extension and CL the curve obtained from C. Then places of k(C)
can be extended to places of L(CL) and by the conorm map we get an injection of
DivC(k) to DivCL (L). Then, conormL/k (Div0

C(k)) ⊂ Div0
CL

(L) and that principal divisors
are mapped to principal divisors. Hence we get a homomorphism

conormL/k : Pic0
C(k)→ Pic0

CL
(L)

and so we get a functor
Pic0 : L 7→ Pic0

CL
(L)

from the category of algebraic extension fields of k to the category of abelian
groups. Coming ”from above” we have a Galois theoretical description of this functor:

DivCL (L) = DivC{ k̄ (k̄)GL

and the same is true for functions. The analogue is true for PDivCL (L) and for Pic0
CL

(L):

Theorem
Under the assumption made for curves C we have that for finite extension fields L with
k ⊂ L ⊂ k̄ the functor L 7→ Pic0

CL
(L) is the same as the functor

L 7→ Pic0
Ck̄

(k̄)GL .

In particular, we have
Pic0
Ck̄

(k̄) =
⋃

k⊂L⊂k̄

Pic0
CL

(L)

where inclusions are obtained via conorm maps.



Remark
For L/k finite algebraic we have also the norm map of places of CL to places of Ck ,
which induces a homomorphism from Pic0

CL
(L) to Pic0

C(k). In general, this map will be
neither injective nor surjective.

It is one of the most important facts for the theory of curves that the functor Pic0 can be
represented: There is a variety JC defined over k such that for all extension fields L of
K we have a functorial equality

JC(L) = Pic0
CL

(L).

JC is the Jacobian variety of C. This variety will be discussed soon.



Riemann-Roch Spaces
We define a partial ordering of elements in DivC(k) as follows; D =

∑
p∈ΣC(k) zp is

effective (D ≥ 0) if zp ≥ 0 for every p, and D1 ≥ D2 if D1 − D2 ≥ 0.
Let D =

∑
p∈ΣC(k) zp ∈ DivC(k). The Riemann-Roch space associated to D is

L(D) = {f ∈ k(C)∗ with (f ) ≥ −D} ∪ {0}.

So x ∈ L(D) are defined by the property that wp(x) ≥ −zp for all p ∈ ΣC(k).
Then L(D) is a vector space over k . L(D) has positive dimension if and only if there is
a function f ∈ k(C)∗ with D + (f ) ≥ 0, or equivalently, D ∼ D1 with D1 ≥ 0. Moreover;
L(0) = k and if deg(D) < 0 we get L(D) = {0}. If deg(D) = 0 then either D is a
principal divisor or L(D) = {0}.

Proposition
Let D = D1 − D2 with Di ≥ 0. Then

dim(L(D)) ≤ deg(D1) + 1.

If D ∼ D′ we have `(D) ∼ `(D′). In particular L(D) is a finite-dimensional k -vector
space. Define `(D) := dimk (L(D)).
To compute `(D) is a fundamental problem in the theory of curves. It is solved by the
Theorem of Riemann-Roch. A first estimate is a generalization of the proposition
above: For all divisors D we have the inequality

`(D) ≤ deg(D) + 1.

For a proof one can assume that `(D) > 0 and so D ∼ D′ > 0. The important fact is
that one can estimate the interval given by the inequality.



Theorem (Riemann)
For given curve C there is a minimal number gC ∈ N ∪ {0} such that for all D ∈ DivC
we have

`(D) ≥ deg(D) + 1− gC .

For a proof see (Stichtenoth, 2009, Proposition 1.4.14). So

gC = max{deg D − `(D) + 1; D ∈ DivC(k)}

exists and is a non-negative integer independent of D. gC is the genus of C.
The genus does not change under constant field extensions because we have
assumed that k is perfect. This can be wrong in general if the constant field of C has
inseparable algebraic extensions.

Corollary
There is a number nC such that for deg(D) > nC we get equality

`(D) = deg(D) + 1− gC .

Theorem 11 together with its corollary is the ”Riemann part” of the Theorem of
Riemann-Roch for curves. To determine nC and to get more information about the
inequality for small degrees one needs canonical divisors.



Canonical Divisors

Let k(C) be the function field of a curve C defined over k . To every f ∈ k(C) we attach
a symbol df , the differential of f lying in a k(C)-vector space Ω(k(C)) generated by the
symbols df modulo the following relations: For f , g ∈ k(C) and λ ∈ k we have
i)d(λf + g) = λdf + dg
ii)d(f · g) = fdg + gdf .
The relation between derivations and differentials is given by the

Definition (Chain rule)
Let x be as above and f ∈ k(C). Then df = (∂f/∂x)dx .

As in calculus one shows that the k(C)-vector space of differentials Ω(k(C)) has
dimension 1 and it is generated by dx for any x ∈ k(C) for which k(C)/k(x) is finite
separable.
We use a well known fact from the theory of function fields F in one variable i.e finitely
generated fields of transcendence degree 1 over a perfect field k :
Let p be a place of F , i.e. an equivalence class of discrete rank one valuations of F
trivial on k ). Then there exist a function tp ∈ F with wp(tP) = 1 and [F : k(tp)
separable. We apply this to F = k(C). For all p ∈ ΣC(k) we choose a function tp as
above. For a differential 0 6= ω ∈ Ω(k(C) we get ω = fp · dtp.



Definition
The divisor (ω) is given by

(ω) :=
∑
p∈Σp

wp(fp) · p.

ω is a called a canonical divisor of C.

The chain rule implies that this definition is independent of the choices, and the relation
to differentials yields that (ω) is a divisor.
Since Ω(k(C) is one-dimensional over k(C) it follows that the set of canonical divisors
of C form a divisor class KC ∈ PicC(k) called the canonical class of C.
We are now ready to formulate the Theorem of Riemann-Roch

Theorem
Let (W ) be a canonical divisor of C. For all D ∈ DivC(k) we have

`(D) = deg(D) + 1− gC + `(W − D).

For a proof see Section 1.5 in the book (Stichtenoth, 2009).
A differential ω is holomorphic if (ω) is an effective divisor. The set of holomorphic
differentials is a k -vector space denoted by Ω0

C which is equal to L(W ).



Take D = 0 respectively D = W in the theorem of Riemann-Roch to get

Lemma
Ω0
C is a gC- dimensional k- vector space and deg(W ) = 2gC − 2.

For the applications we have in mind there are two further consequences of the
Riemann-Roch theorem important.

Lemma
The following are true:

1. If deg(D) > 2gC − 2 then `(D) = deg(D) + 1− gC .

2. In every divisor class of degree g there is a positive divisor.

Take D with deg(D) ≥ 2gC − 1. So deg(W − D) ≤ −1 and so `(W − D) = 0. Take D
with deg(D) = gC . Then `(D) = 1 + `(W − D) ≥ 1 and so there is a positive divisor in
the class of D.



Cantor’s Algorithm

Inspired by the group law on elliptic curves and its geometric interpretation we give an
explicit algorithm for the group operations on Jacobian varieties of hyperelliptic curves.

Take a genus g ≥ 2 hyperelliptic curve C with a least one rational Weierstrass point
given by the affine Weierstrass equation

WC : y2 + h(x) y = x2g+1 + a2gx2g + · · ·+ a1x + a0, (2)

over k . We denote the prime divisor corresponding to P∞ = (0 : 1 : 0) by p∞.
We note that the affine coordinate ring of WC is

O = k [X ,Y ]/〈(Y 2 + h(X) Y − (X 2g+1 + a2gX 2g + · · ·+ a1X + a0)〉

So degree d prime divisors p of C correspond to prime ideals P 6= 0, [O/P : k ] = d .

Let ω be the hyperelliptic involution of C. It operates on O and on Spec(O) and fixes
exactly the prime ideals which “belong” to Weierstrass points, i.e. split up in such points
over k̄ .



Following (Mumford, 2008) we introduce polynomial coordinates for points in JC(k).
The first step is to normalize representations of divisor classes. In each divisor class
c ∈ Pic0(k) we find a unique reduced divisor

D = n1p1 + · · ·+ nrpr − dp∞

with
∑r

i=1 ni deg(pi ) = d ≤ g, pi 6= ω(pj for i 6= j and pi 6= pi nfty . (We use
Riemann-Roch and the fact that ω induces −idJC .)

Using the relation between divisors and ideal in coordinate rings we get that
n1p1 + · · ·+ nrpr corresponds to an ideal I ⊂ O of degree d and the property that if the
prime ideal Pi is such that both P and ω(P) divide I then it belongs to a Weierstrass
point.
By algebra we get that the ideal I is a free O-module of rank 2 and so

I = k [X ]u(X) + k [x ](v(X)− Y ).

Fact: u(X), v(X) ∈ k [X ], u monic of degree d , deg(v) < d and u divides
v2 + h(X)v − f (X).

Moreover, c is uniquely determined by I, I is uniquely determined by (u, v) and so we
can take (u, v) as coordinates for c.



Theorem (Mumford representation)
Let C be a hyperelliptic curve of genus g ≥ 2 with affine equation

y2 + h(x) y = f (x),

where h, f ∈ K [x ], deg f = 2g + 1, deg h ≤ g. Every non-trivial group element
c ∈ Pic0

C(k) can be represented in a unique way by a pair of polynomials u, v ∈ K [x ],
such that

i) u is a monic

ii) deg v < deg u ≤ g

iii) u | v2 + vh − f

How to find the polynomials u, v?
We can assume without loss of generality that k = k̄ and identify prime divisors pi with
points Pi = (xi , yi ) ∈ k × k . Take the reduced divisor D = n1p1 + · · ·+ nrpr − dp∞
now with r = d ≤ g. Then

u(X) =
r∏

i=1

(X − xi )
ni .

Since (X − xi ) occurs with multiplicity ni in u(X) we must have for v(X):(
d
dx

)j [
v(x)2 + v(x) h(x)− f (x)

]
x=xi

= 0,

and one determines v(X) by solving this system of equations.



Isogenies of Jacobians via Correspondences
Let K be a perfect field and L/K a finite extension. Let D1 be a regular projective curve
over L and D2 a regular projective curve defined over K . Let H be a curve over L and

ϕ1 : H → D1, respectively ϕ2 : H → D2 ×Spec(K ) Spec(L) =: D2,L,

be L-rational morphisms. The morphism ϕ1 induces the L-rational conorm morphism

ϕ∗1 : JD1 → JH

and the morphism ϕ2 induces the norm morphism

ϕ2,∗ : JH → JD2,L .

By composition we get a homomorphism (defined over L)

ηL : JD1 → JD2,L

LetWL/K be the Weil restriction of the Jacobian of D1 to K . It is an abelian variety over
K withWL/K (K ) = Pic0

D1
. Applying the norm map from L to K we get a

homomorphism
η :WL/K → JD2 .

In general, neither the kernel nor the cokernel of η will be finite. But under mild
conditions one can assure that that η has a finite kernel, and so it induces an isogeny
ofWL/K to an abelian subvariety of JD2 .
So we get a transfer of the DLP from Pic0

D1
(defined over L) to the DLP in a subvariety

of JD2 (defined over K ). The efficiency of this depends on the complexity of the
algorithms computing the norm- and conorm maps (ϕi and [L : K ] must have small
degrees), and it makes sense only if the DLP after the transfer is easier than before.



Weil Descent

Take K = Fq and L = Fqd with d > 1 and H = D2,L, i.e. a given curve X (over Fqd ) is
covered by a curve DFqd , which is the scalar extension of a curve D defined over K .

This yields a K -rational homomorphism from the Weil restrictionWL/K of JX to JD . D
will (in all non-trivial cases) be a curve of a genus larger than the genus of X but since
it is defined over the smaller field Fq one can hope that one can apply fast algorithms to
compute the discrete logarithm in JD(Fq), e.g. by methods of index-calculus.

Indeed, if X is not defined of a proper subfield of Fqd this is the principle of the
so-called GHS-attack in (see (Gaudry et al., 2002) which is successful in remarkably
many cases.

If X is already defined over Fq one is lead to the so-called trace-zero varieties in
JX (Fqd ) and again correspondences induced by covers of curves can be used for
attacks on crypto systems based on DL on these varieties by work of Diem.

These results already indicate that the use of Picard groups of curves (e.g. elliptic
curves) over non-prime fields Fq d with d ≥ 4 is not advisable for cryptographic use.
By more recent work of C. Diem this ”feeling” is reinforced for instance for families of
elliptic curves in towers of finite fields.



Correspondences via Monodromy Groups
We assume that we have a degree n cover morphism defined over K

f : X → P1

and fixed monodromy group Gf := Mon (f ). We have morphisms

f̃ : H̃ h→ X f→ P1

with f̃ a Galois cover of f with Galois group Gf . For simplicity, we assume that the field
of constants of H̃ is K . Choose subgroups H1 ⊂ Gf fixing X and H2 containing H1. Let
H be the curve fixed by H1 and D the fixed curve under H2. So H covers both X and
D. Let

h : H → X and g : H → D
with morphisms induced by the Galois action. Hence, deg(h) =

|Gf |
|H1|·n

and

deg(g) = |H2|
|H1|

. We get a correspondence

η : JX → JD
by applying g∗ ◦ h∗ to the Picard groups. In general, η will be neither injective nor
surjective.

Assume that JD is simple with dimJD = g(X ) and there is a prime divisor p∞ of X
totally ramified under h (there is exactly one prime divisor P∞ of H with norm p, and
that there is no non-constant morphism of degree ≤ deg(h) from D to P1).

Lemma
Then η is an isogeny.
It is an open and challenging problem to find other interesting correspondences of low
degree between Jacobian varieties induced by correspondences between curves and
(possibly) attached to Hurwitz spaces.



Elliptic curve cryptography

The definitions from the Abelian varieties apply here. In the case of elliptic curves we
have the following:

Definition
If char (K ) = 0, then we say that an elliptic curve E/K has complex multiplication or
(historically) that E is singular, if End(E) 6= Z. If char (K ) > 0, we say that E/K is
supersingular if End(E) is an order in a rational quaternion algebra, otherwise we say
that E is ordinary.

Let E be an elliptic curve over Fq , where q = pn for some prime p and an integer n. Its
characteristic polynomial of the Frobenius π is

χE,q(T ) = T 2 − tr(π) T + q = (T − λ1)(T − λ1).

where the eigenvalues λ1, λ2 are in some quadratic extension of Q. Let KE = Q(λ1)
and OKE

its ring of integers. An elliptic curve E defined over Fq is called ordinary if the
separable degree of [p] is p.
The following results are mostly due to M. Deuring and mainly contained in the
beautiful paper (Deuring, 1941).



Deuring’s theorem

Theorem
Let E be an elliptic curve defined over a field K . The following hold:
i) If char(K) = 0, then E is ordinary and

I EndK (E) = Z (generic case) or EndK (E) is an order OE ⊂ Q(
√
−dE), dE > 0

(CM-case).
I Take E with CM with order OE . Let SE be the set of C-isomorphy classes of elliptic

curves with endomorphism ring OE . Then Pic(OE) acts in a natural and simply
transitive way on SE , hence SE is a principally homogeneous space with
translation group Pic(OE): For c ∈ Pic(OE), A ∈ c and C/OE = E0 we get c · [E0]
is the class of C/A.

ii) (Deuring’s Lifting Theorem) Let E be an elliptic curve over Fq which is ordinary
over Fq . Then there is, up to C-isomorphisms, exactly one elliptic curve E with CM over
a number field K such that

I there is a prime p of K with Ep ∼= E , and
I End(E) = End(E)p = OE , with OE an order in an imaginary quadratic field.

iii) If E is supersingular, then
I Up to twists, all supersingular elliptic curves in characteristic p are defined over

Fp2 , i.e. their j-invariant lies in Fp2 .

I |E(Fp2 | = (p ± 1)2, and the sign depends on the twist class of E .

I EndFp
(E) is a maximal order in the quaternion algebra Qp , which is unramified

outside of∞ and p.



Hasse’s Bound
Endomorphism rings of elliptic curves over finite fields Fq are never equal to Z since
there is the Frobenius endomorphism φFq ,E induced by the Frobenius automorphism of
Fq which has degree q. We give a first application of the lifting theorem.

Corollary (Hasse)
Let E be an ordinary elliptic curve over Fq . Then the Frobenius endomorphism φFq ,E is
an integer in an imaginary quadratic fields with norm q, and hence has a minimal
polynomial

χE,q(T ) = T 2 − tr(φFq ,E) · T + q

with
|(tr(φFq ,E)2 − 4q| < 0.

Recall that the number of Fq-rational points of E is

|E(Fq)| =: nFq ,E = χE,q(1).

Corollary
|nFq ,E − q − 1| < 2

√
q.

Using the result iii) in Theorem 17 and the observation that the eigenvalues of φFqd ,E
are the d-th power of the eigenvalues of φFq ,E we get that

|nFq ,E − q − 1| ≤ 2
√

q

for all elliptic curves of Fq . This is the Hasse bound for elliptic curves, a special case of
the Weil bound for points on curves over finite fields.



Point Counting
Corollary 4 is the key fact for a polynomial time algorithm for computing the order of
E(Fq), which is called Schoof’s Algorithm.
The idea is to compute χE,q(T ) mod n for small numbers n by computing the action of
φFq ,E on E[n] (take for instance n = ` as small prime number or n = 2k with k small)
and then to use CRT and the Hasse bound for trace of φFq ,E to determine χE,q(T ). To
do this use the classical n-division polynomials Ψn and then use CRT . The
disadvantage is that deg(Ψn) ∼ n2/2 and therefore the Schoof algorithm is too slow.

The way out of this problem is to use étale isogenies with cyclic kernel of order n and
the fact that we can interpret these isogenies with the help of points on an explicitly
known curve, namely the modular curve X0(n). It allows an effective computation of
isogenies at least if n is of moderate size).

Theorem (Vélu, Couveignes, Lercier, Elkies, Kohel, and many other contributors:)
The cost for the computation of an isogeny of degree ` of an elliptic curve E over Fq is

O(`2 + ` log(`) log(q)).

Idea of Atkin-Elkies: Use isogenies of small degree of E instead of points and φn.
The resulting Schoof-Atkin-Elkies algorithm is very fast, in particular if one assumes as
”standard conjecture” the Generalized Riemann Hypothesis (GRH).

Corollary
|E(Fq)| can be computed (probabilistically, with GRH) with complexity O((log q)4).
Therefore we can construct, for primes p sufficiently large, (many) elliptic curves with
|E(F)| = k · ` with k small (e.g. k = 1 if we want) and ` a prime so large that (using
classical computers and according to our best knowledge) the security level of the
discrete logarithm in E(Fp) is matching AES 128 (or larger).



Looking for Post-Quantum Security
From above we can construct elliptic curves over prime fields such that the resulting
DL-systems are secure under the known attacks. But the situation changes totally if we
allow algorithms based on quantum computers.

The System of Couveignes-Stolbunov: For an ordinary elliptic curve E0 over Fq with
End(E0) = O, which is an order in a quadratic imaginary field we let SE0 be the set of
isomorphism classes of elliptic curves over Fq with ring of endomorphisms O. Then
SE0 is a Pic(O)-set and we can use it for Key Exchange protocols:

The partner P choses c ∈ Pic(O) and publishes the j-invariant of c · E0.

The exchange is not as fast as DL-systems since we cannot use a double-and add
algorithm but it is feasible. The security depends on the hardness of the following:

Problem
Find an isogeny between two given isogenous elliptic curves.

Proposition (Kohel, Galbraith, Hess, Smart et al.)
The expected number of bit-operations for the computation of an isogeny between
ordinary elliptic curves over Fq with endomorphism ring OKE

is

O(q1/4+o(1) log2(q) log log(q)).

Recall: We have an abelian group is acting on a set, and so there is a subexponential
algorithm to solve the hidden-shift problem. This means that we can only expect
subexponential security for the key exchange scheme; see (Childs et al., 2014).
Comparing this with the situation we have nowadays with respect to the widely
tolerated RSA-system this may be not so disastrous.



The Key Exchange System of De Feo

The suggestion is now to use supersingular elliptic curves over Fp2 and their properties
also stated in Theorem 17. Take

p = ra · sb · f − 1

with p ≡ 1 mod 4. Then
E0 : Y Z = X 3 + XZ 2

is a supersingular elliptic curve over Fp2 . We describe the key exchange scheme
invented and implemented by De Feo, Jao and Plût (De Feo et al., 2014).
As categories Ci ; (i = 1, 2) are given by the objects are isomorphism classes of
supersingular curves E over Fp2 isogenous to E0 and hence with

|E(Fp2 )| = (ra · sb · f )2.

Recall that:
i) The morphisms in C1 are isogenies ϕ with | ker(ϕ)| dividing ra.
ii) The morphisms in C2 are isogenies ψ with | ker(ψ)| dividing sb .
For these categories pushouts exist. For additional information choose P1,P2 of order
ra and Q1,Q2 of order sb in E0(Fp2 ).



Key Exchange:

I The Partner P1 chooses n1, n2 ∈ Z/ra and the isogeny

η : E0 → E0/〈n1P1 + n2P2〉 =: E1.

I P2 chooses m1,m2 ∈ Z/sb and computes the isogeny

ψ : E0/〈m1Q1 + m2Q2〉 =: E2.

I P2 sends (E2, ψ(P1), ψ(P2)).
I P1 can compute the common secret, the pushout of η and ψ as

E3 := E2/〈n1ψ(P1) + n2ψ(P2)〉.

Again security depends on the hardness to compute an isogeny of two elliptic curves,
but now the two elliptic curves are supersingular.
State of the art: The best known algorithms have exponential complexity p1/4

(bit-computer) resp. p1/6 (quantum computer), and so one can hope that a prime p
with 768 bit yields AES128 security level. So we have, compared with other
post-quantum suggestions for key exchange schemes, a very small key size.
In contrast to the ordinary case the groups around like the class groups of left ideals in
maximal orders are not abelian, and so the hidden shift problem is not solved till now
in subexponential time.



Genus 2 curves and cryptography
Let X be a genus 2 curve defined over a field k (char k 6= 2) with Weierstrass equation

y2 = f (x) = a6x6 + . . . a1x + a0, (3)

The moduli spaceM2, via the Torelli morphism, can be identified with the moduli
space of the principally polarized abelian surfaces A2 which are not products of elliptic
curves. Its compactification A?2 is the weighted projective space P3

(2,4,6,10)
(Q̄) via the

Igusa invariants J2, J4, J6, J10. Hence, A2∼=P3
(2,4,6,10)

(Q̄) \ {J10 = 0}.
Jacobians with nontrivial endomorphisms are parametrized by proper subvarieties of
A?2 as follows:

I Points on the Humbert space Hn2 , where H1 denotes the locus of abelian
surfaces which are the product of two elliptic curves.

I For each quaternion ring R there are SR,1, . . . ,SR,k Shimura curves contained in
A?2 that parametrize genus 2 curves whose Jacobians admit an optimal action of
R.

I Curves whose jacobians admit complex multiplication correspond to isolated
points in the moduli space.

Proposition
Jac(X ) is a geometrically simple Abelian variety if and only if it is not (n, n)
decomposable for some n.

Proposition
The endomorphism ring End0

Q (JacX ) of an abelian surface is either Q, a real
quadratic field, a CM field of degree 4, a non-split quaternion algebra over Q, F1 ⊕ F2
where each Fi is either Q or an imaginary quadratic field, the Mumford-Tate group
where F is either Q or an imaginary quadratic field.



A word on the characteristic Frobenius polynomial

Let us recall a few facts on characteristic polynomials of Frobenius for abelian surfaces.
The Weil q-polynomial arising in genus 2 have the form

f (T ) = T 4 − aT 3 + (b + 2q)T 2 − aqT + q2, (4)

for a, b ∈ Z satisfying the inequalities

2|a|
√

q − 4q ≤ b ≤
1
4

a2 ≤ 4q.

Let X be a curve of genus 2 over Fq and J = JacX . Let f be the Weil polynomial of J
as in 4. We have that #X (Fq) = q + 1− a, #J(Fq) = f (1) and it lies in the genus-2
Hasse interval

H(2)
q =

[
(
√

q − 1)4, (
√

q + 1)4
]

One can construct decomposable (3, 3)-jacobians with a given number of rational
points by glueing two elliptic curves together.

Let K be a number field and MK the set of norms of K . Let A be an abelian surface
defined over K and fv the characteristic Frobenius for every norm v ∈ MK .



Lemma
Let v be a place of characteristic p such that A has good reduction. Then Av is
ordinary if and only if the characteristic polynomial of the Frobenius

fv (x) = x4 + ax3 + bx2 + apx + p2,

satisfies b 6≡ 0 mod p.

Lemma ((Lombardo, 2016))
Let A be an absolutely simple abelian surface. The endomorphism algebra End0

K̄ (A) is
non-commutative (thus a division quaternion algebra) if and only if for every v ∈ MK ,
the polynomial fv (x12) is a square in Z[x ].

The following gives a condition for geometrically reducible abelian surfaces.

Proposition
If A/K is geometrically reducible then for all v ∈ Mk for which A has good reduction
the polynomial fv (x12) is reducible in Z[x ].

Proposition
If X is a smooth, irreducible genus 2 curve with affine equation y2 = f (x) such that
f (x) ∈ K [x ] is an irreducible polynomial of degree 5 then JacX is absolutely
irreducible.

In (Lombardo, 2016) is given a detailed account of all the cases and an algorithm how
to compute EndK A.



Isogenies

Let X be a curves of genus 2 defined over a perfect field k such that char k 6= 2 and
J = Jac(X ) its Jacobian. Fix a prime ` ≥ 3 and let S be a maximal `-Weil isotropic
subgroup of J [n]. From Theorem 17 we have S∼= (Z/`Z)2. Let J ′ := J /S be the
quotient variety and Y a genus 2 curve such that Jac(Y) = J ′. Hence, the classical
isogeny problem becomes to compute Y when given X and S.

If ` = 2 this problem is done with the Richelot construction. Over finite fields this is
done in (Lubicz and Robert, 2012) using theta-functions.

For X given as in Eq. (3), we have the divisor at infinity

D∞ := (1 :
√

f (x) : 0) + (1 : −
√

f (x) : 0)

The Weierstrass points of X are the projective roots of f (x), namely wi := (xi , zi ), for
i = 1, . . . , 6 and the Weierstrass divisor WX is

WX :=
6∑

i=1

(xi , 0, zi ).

A canonical divisor on X is
KX = WX − 2D∞.

Let D ∈ JacX , be a divisor expressed as D = P + Q − D∞. The effective divisor
P + Q is determined by an ideal of the form (a(x), b(x) such that a(x) = y − b(x)),
where b(x) is a cubic and a(x) a monic polynomial of degree d ≤ 2.



We can define the `-tuple embedding ρ2` : P2 → P2` by

(x , y , z)→ (z2`, . . . , x i z2`−i , x2`)

and denote the image of this map by R2`. It is a rational normal curve of degree 2` in
P2`. Hence, any 2`+ 1 distinct points on R2` are linearly independent. Therefore, the
images under ρ2` of the Weierstrass points of X are linearly independent for ` ≥ 3.
Thus, the subspace

W := 〈ρ2`(WX )〉 ⊂ P2`

is 5-dimensional. For any pair of points P,Q in X , the secant line LP,Q is defined to be
the line in P2` intersecting R2` in ρ2`(P) + ρ2`(Q). In other words,

LP,Q =

{
〈ρ2`(P), ρ2`(Q)〉 if P 6∈ {Q, τ(Q)}
Tρ2`(P)(R2`) otherwise .

Theorem ((Dolgachev and Lehavi, 2008))
There exists a hyperplane H ⊂ P2` such that:

I H contains W and
I the intersection of H with the secants Le for each nonzero e ∈ S are contained in

a subspace N of codimension 3 in H.

The image of the Weierstrass divisor under the map P2` → P3 with centre N lies on a
conic C, and the double cover of C ramified over this divisor is a stable curve Y of
genus 2 such that JacY ∼= JacX/S.

This was used by Smith (Smith, 2012) to devise an algorithm for determining Y and φ.
The algorithm works well for ` = 3.



Genus 3 curves and cryptography
For g = 3 a generic cover has degree three and 9 branch points. The signature is
σ = (σ1, . . . , σ9) where σi ∈ S3 is an transposition for i = 1, . . . , 8 and σ9 is the
3-cycle.

Lemma ((Shaska and Thompson, 2005))
Let X be a generic curve of genus 3 defined over a field k, char k 6= 2, 3. Then, there
is a degree 3 covering ψ : X → P1 of full moduli dimension. Moreover, X is isomorphic
to a curve with affine equation

Y 3(X + a) + Y 2(bX + c) + Y (dX 2 + eX) + X 3 + fX 2 + X = 0

for a, b, c, d , e, f ∈ k̄ such that ∆ 6= 0, where ∆ is the discriminant of the quartic.

Such curves are non-hyperelliptic. Their isomorphism classes are determined
invariants of ternary quartics, (Dixmier, 1987). The discriminant of curve with respect
to Y is given by

∆(X) = −X(27X 7 + A6X 6 + A5X 5 + A4X 4 + A3X 3 + A2X 2 + A1X + 4c3)

where A1, . . .A6 ∈ k [a, b, c, d , e, f ]. The branch points of the cover ψ : X → P1

coalesce when ∆(X) has multiple roots. Thus, its discriminant ∆ in X is ∆ = 0. There
are four factors of the discriminant

∆ = ∆1 ·∆2 ·∆3 ·∆4 = 0,

each corresponding to one of the degenerate cases, which are obtained when the
branch points of ψ coalesce. The information for the corresponding Hurwitz spaces is
given in (Shaska and Thompson, 2005, Table 1).



Hyperelliptic Curves

Let X be a hyperelliptic curve of genus 3 over the field k , such that char(k) 6= 2. Then
there is a degree 2 cover map π : X → P1, which is uniquely determined up to
automorphisms of P1. This cover is Galois, and the non-trivial automorphism on X
fixing P1 is the the hyperbolic involution ω. Hence, we can give X by a plane projective
Weierstrass equation, which has an affine part

Xa : y2 = f (x)

invariant under ω and
P1 \ π(Xa) =: {P∞} ⊂ P1(k).

Moreover, deg(f ) = 7 if the fiber π−1(P∞) = X (k) \ Xa(k) has a unique point (i.e.
P∞ is a k - rational Weierstraß point of X ) and deg(f ) = 8 otherwise.
Since X is determined up to automorphisms of P1 we get that the hyperelliptic locus of
curves of genus 3 is a 5-dimensional subspace of the moduli spaceM3. In fact, there
is a system of invariants that describes this locus, namely the Shioda invariants
J2, . . . , J8 as described in (Shioda, 1967), (Shaska, 2014).

Remark
This explains why it is very hard to use constructions of curves of genus 3, for instance
as modular curves ((Weng, 2001)) or by CM-methods ((Weng, 2001)) to find
hyperelliptic curves. A rough and heuristic argument is that (for large q) the probability
to find a point inM3(Fq) that corresponds to a hyperelliptic curve is 1/q.



Picard Groups of Curves of Genus 3 in Cryptography

The following is the natural question when considering genus g = 3 cryptography.

Question
Can one use Picard groups of curves of genus 3 for DL-systems?

Addition As pointed out above, there are relatively fast algorithms which allow addition
in Picard groups of curves of any genus (at least if one knows a relatively simple plane
model found after a pre-computation).
We recall the general procedure: We assume that there is a point P∞ ∈ X (k) with
corresponding prime divisor p∞. In the divisor classes c1, c2 ∈ Pic0

k X we choose
convenient divisors Di , e.g.

Di = Ei − d · p∞,

with Ei an effective divisor of degree d ≤ g. Then c1 + c2 is the divisor class of

E1 + E2 − (d1 + d2)p∞,

and the ”reduction algorithm” has to compute a divisor

E3 − d3p0 ∼ E1 + E2 − (d1 + d2)p∞

with d3 ≤ g. This is an interpolation problem solved by Hess by the computation of
Riemann-Roch spaces; see (Hess, 2002) for details.



Theorem (Diem, Hess)
Let X be a genus g ≥ 2 curve defined over Fq . The arithmetic in the degree 0 class
group of X can be performed in the expected time, which is polynomially bounded in g
and log q.

For curves of genus 3 it is convenient to distinguish between non-hyperelliptic and
hyperelliptic curves. In the first case one can give X easily as smooth quartic. Using its
geometry one finds, concretely given, fast addition algorithms, which can be found in
work of Oyono et al; see (Flon et al., 2008). As we shall see below the hardness of the
DL is insufficient for cryptographical applications, and so the fast addition is only
relevant for attacking systems. So it is enough for us to keep the existence of the
addition algorithm in mind.
Next assume that X is hyperelliptic. We can find rather easily a Weierstrass equation,
and the most convenient case is that one of its Weierstrass points is k -rational. We
shall restrict to this case (often called ”imaginary” because of its analogy to imaginary
quadratic fields (E. Artin)) and hence we can give X by an affine Weierstrass equation

Xa : y2 = f (x),

where f (x) ∈ k [x ] is a monic polynomial of degree 7 without multiple roots. By
homogenization we get a plane projective curve with exactly one additional point P∞,
which corresponds to a Weierstraß point of X and so exactly to one prime divisor p∞
of degree 1 of X . Hence divisors on X are of the form D = Da + z · p∞ with Da a
divisor with support on X .



Hence we can represent divisor classes in Pic0
k (X ) by divisors

D = Ea − d p∞,

with Ea an effective divisor of degree d ≤ 3 and support in Xa.

Using the special form of Xa we can give Ei in the so-called ”Mumford presentation” as
in Theorem 15 and for the reduction step of divisors we can use the very effective
Cantor algorithm.

Behind these results is the analogy (developed by E. Artin) between the arithmetic of
hyperelliptic function fields and imaginary quadratic fields respectively the arithmetic of
quadratic forms due to C.F. Gauß.

This algorithmic approach can be translated into formulas (involving, alas, many
special cases) that are sometimes more convenient for implementations near to
specialized hardware. The generic cases for addition and doubling are explicitly given
by Algorithms 14.52 and 14.53 in (Cohen et al., 2006). These additions are rather fast
and not too far away from the timings of additions on elliptic curves.

Hence one may well consider to use Picard groups of curves of genus 3 for DL-based
cryptographic applications. This will need fast algorithms for point counting, and before
that, a security discussion.



Isogenies via S4-Covers

As observed in (Smith, 2012) ”many” hyperelliptic curves are isogenic to
non-hyperelliptic curves via an isogeny with degree dividing 8. This is interpreted in
terms of Hurwitz spaces and connected modular spaces in (Frey and Kani, 2015).

Assume K is algebraically closed. For applications in cryptography one has to study
rationality problems; see (Smith, 2012). The construction relies on the so-called
trigonal construction in (Donagi and Livné, 1999).

Begin with a hyperelliptic curve X of genus 3 and its uniquely determined hyperelliptic
projection f1 : X → P1 with 8 ramification points P1, · · · ,P8. There is a map

f2 : P1 → P1

of degree 3 with the following properties:
I f2 is unramified in P1, · · ·P8, its ramification points are denoted by Q1, · · ·Q4 on

the base line P1. The ramification order in Qi is 2, and so each Qi has exactly one
unramified extension under f2 denoted by Q′i .

I f2({P1, · · ·P8} = {S1, · · ·S4} such that, after a suitable numeration,
f2(Pi ) = f2(P4+i ) for 1 ≤ i ≤ 4.

Now use Galois theory.



The monodromy group of f2

Obviously, the Galois closure f̃2 = f2 ◦ h2 of f2 has as Galois group the symmetric
group S3 (since f2 is not Galois because of the ramification type), and h2 is degree 2

cover E ′ h2→ X . From Galois theory we get that f̃2 = π ◦ η, where

η : E ′ → E

is a cyclic cover of degree 3 with Galois group equal to the alternating subgroup A3.
Then, E is a quadratic cover of P1 ramified exactly at the discriminant

∆1 = Q1 + · · ·+ Q4

of f2. Therefore E is an elliptic curve with cover map π to P1. From construction and
Abhyankar’s lemma it follows that η is unramified. Hence E ′ is an elliptic curve, too, and
η is an isogeny of degree 3 (after applying a suitable translation).



The monodromy group of f = f2 ◦ f1

f is a cover of degree 6 and so its Galois group can be embedded into S6.

Lemma ((Frey and Kani, 2011))
The monodromy group of f is isomorphic to S4.

Let f̃ : X̃ → P1 be the Galois cover of curves factoring over f with Galois group S4. Let
X ′ be the subcover of X̃ with function field equal to the composite of the function fields
of X and E ′, i.e. the normalization of the fiber product of X with E ′. Let

πX : X ′ → X

the projection to X , which is a cover of degree 2. The Galois group of X̃/X contains 2
transpositions. Let σ be one of them chosen such that with G2 = 〈σ〉 we get
X ′ := X̃/G2. Hence, σ is contained in precisely two of the stabilizers T1, . . . ,T4 of the
elements {1, 2, 3, 4} on which S4 acts. Let

πT : X̃ → D := X̃/T

be the quotient map. Then f̃ factors over πT as f̃ = g ◦ πT , where g : D → P1 has
deg(g) = 4. Note that g is primitive (does not factor over a quadratic subcover). We
can use the Hurwitz genus formula to compute the genus of D. For this we have to
determine the ramification of D/P1 under g.



Lemma
The genus of D is equal to 3, and so is equal to the genus of X .

We are interested in the case that J (X ) is simple. Then we get from 4 that:

Proposition
Let JX be a simple abelian variety and D be non-hyperelliptic. The pair of cover maps
(πX , πT ) from X ′ to (X ,D) induces an isogeny

η : JX → JD,

whose kernel is elementary-abelian and has degree ≤ 8.

A more detailed analysis due to E. Kani shows that the proposition is true without the
assumption that D is non-hyperelliptic. Then we have the following:

Corollary
Let K be equal to Fq and assume that D is non-hyperelliptic. Then the computation of
the Discrete Logarithm in Pic0

X has complexity O(q).

This result motivates the question whether the assumptions of the Corollary are often
satisfied. Empirically, B. Smith has given a positive answer. A rigorous answer is given
in (Frey and Kani, 2015).



We have already explained that by the construction of a (2, 3)-cover as above we have
found a generically finite and dominant morphism from a Hurwitz space H∞ to the
hyperbolic locus in the moduli spaceM3 of curves of genus 3. Hence H∞ is a
scheme of dimension 5.

Via the trigonal construction we have, to each hyperelliptic curve X , found a curve D of
genus 3 with a cover map

g : D → P1

with deg(g) = 4 and the monodromy group of g equal to S4. Moreover, a detailed study
of the construction allows to determine the ramification type of g in the generic case:

There are 8 ramification points of g, exactly 4 points P1, . . . ,P4 amongst them are of
type (2, 2) (i.e. g∗(Pi ) = 2(Qi,1 + Qi,2), and the other 4 ramification points are of type
(2, 1, 1). Hence (D, g) yields a point in a Hurwitz space H2 of dimension 5.

In (Frey and Kani, 2015) one discusses the hyperelliptic locus Hhyp in H2. The
computational part of this discussion determines conditions for the coefficients of
Weierstraß equations for curves D lying in Hhyp . This is rather complicated, but one
sees that generically these coefficients are parametrized by a 4-dimensional space.
Rather deep and involved geometric methods have to be used to transfer these
computations into scheme-theoretical results and to get



Theorem
The Hurwitz space Hhyp is a unirational, irreducible variety of dimension 4, provided
that char(K ) > 5. Moreover, the natural forget map

µ : Hhyp →M3

to the moduli spaceM3 of genus 3 curves has finite fibers and so its image is also
irreducible of dimension 4.

Corollary
We take the notation from above. We assume that K is algebraically closed. There is a
one-codimensional subscheme U ofM3,hyp such that for X /∈ U the isogeny η maps
JX to the Jacobian of a non-hyperelliptic curve D.

Replacing the algebraically closed field K by a finite field Fq one has to study rationality
conditions for η. This is done in (Smith, 2012) and (Frey and Kani, 2015). Then,

Corollary
There are O(q5) isomorphism classes of hyperelliptic curves of genus 3 defined over
Fq for which the discrete logarithm in the divisor class group of degree 0 has
complexity O(q), up to log-factors. Since |Pic0(C)| ∼ q3, the DL system of these
hyperelliptic curves of genus 3 is weak.



Resistance against the Trigonal Attack

Let X be a hyperelliptic curve with an automorphism ϕ of order 4. We apply the
trigonal construction.

First we see that ϕ induces an automorphism ϕP1 of order 2 on P1, taken as subcover
of X under f1. Since cross ratios are not changed by automorphisms we see that there
is an extension of ϕP1 to the elliptic curve E ′ having order 4 and so to an automorphism
ϕ′ of the curve X ′ of order 4.

Now we have exactly two choices for the construction of D as subcover of X ′, and this
yields that at least two of the curves D(ϕ′)j

, j = 0, 1, 2, 3, have to be equal, and so D
has an automorphism of order 2 and is, because of the simplicity of J , hyperelliptic.

Conclusion: Hyperelliptic curves with automorphisms of order 4 are resistant against
the trigonal attack.

Lemma ((Frey and Shaska, 2018))
Let X be a hyperelliptic curve with an automorphism of order 4 and with simple
Jacobian variety J and

η : J → J ′

an isogeny with J ′ principally polarized. Then J ′ is the Jacobian variety of a
hyperelliptic curve.

Hence, it follows that a ”minimal bad” isogeny has to have a two-power and rather large
degree.
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