Heights on weighted projective spaces

T. Shaska

Oakland University

October 18, 2018

Outline

Weighted greatest common divisors

Weight projective spaces
Absolutely normalized points
Heights on the weighted projective spaces
Absolute heights

Weighted greatest common divisors

We will follow the definitions from [1]. Let q_{0}, \ldots, q_{n} be positive integers. A set of weights is called the ordered tuple

$$
\mathfrak{w}=\left(q_{0}, \ldots, q_{n}\right)
$$

Denote by $r=\operatorname{gcd}\left(q_{0}, \ldots, q_{n}\right)$ the greatest common divisor of q_{0}, \ldots, q_{n}. A weighted integer tuple is a tuple $\mathbf{x}=\left(x_{0}, \ldots x_{n}\right) \in \mathbb{Z}^{n+1}$ such that to each coordinate x_{i} is assigned the weight q_{i}. We multiply weighted tuples by scalars $\lambda \in \mathbb{Q}$ via

$$
\lambda \star\left(x_{0}, \ldots, x_{n}\right)=\left(\lambda^{q_{0}} x_{0}, \ldots, \lambda^{q_{n}} x_{n}\right)
$$

\square

Weighted greatest common divisors

We will follow the definitions from [1]. Let q_{0}, \ldots, q_{n} be positive integers. A set of weights is called the ordered tuple

$$
\mathfrak{w}=\left(q_{0}, \ldots, q_{n}\right)
$$

Denote by $r=\operatorname{gcd}\left(q_{0}, \ldots, q_{n}\right)$ the greatest common divisor of q_{0}, \ldots, q_{n}. A weighted integer tuple is a tuple $\mathbf{x}=\left(x_{0}, \ldots x_{n}\right) \in \mathbb{Z}^{n+1}$ such that to each coordinate x_{i} is assigned the weight q_{i}. We multiply weighted tuples by scalars $\lambda \in \mathbb{Q}$ via

$$
\lambda \star\left(x_{0}, \ldots, x_{n}\right)=\left(\lambda^{q_{0}} x_{0}, \ldots, \lambda^{q_{n}} x_{n}\right)
$$

For an ordered tuple of integers $\mathbf{x}=\left(x_{0}, \ldots, x_{n}\right) \in \mathbb{Z}^{n+1}$, whose coordinates are not all zero. The weighted greatest common divisor with respect to the set of weights \mathfrak{w}, denoted by by $\operatorname{wgcd}\left(x_{0}, \ldots x_{n}\right)$, is the largest integer d such that

$$
d^{q_{i}} \mid x_{i}, \text { for all } i=0, \ldots n .
$$

A tuple $\mathbf{x}=\left(x_{0}, \ldots, x_{n}\right)$ with $\operatorname{wgcd}(\mathbf{x})=1$ is called normalized.

Weighted greatest common divisors

We will follow the definitions from [1]. Let q_{0}, \ldots, q_{n} be positive integers. A set of weights is called the ordered tuple

$$
\mathfrak{w}=\left(q_{0}, \ldots, q_{n}\right)
$$

Denote by $r=\operatorname{gcd}\left(q_{0}, \ldots, q_{n}\right)$ the greatest common divisor of q_{0}, \ldots, q_{n}. A weighted integer tuple is a tuple $\mathbf{x}=\left(x_{0}, \ldots x_{n}\right) \in \mathbb{Z}^{n+1}$ such that to each coordinate x_{i} is assigned the weight q_{i}. We multiply weighted tuples by scalars $\lambda \in \mathbb{Q}$ via

$$
\lambda \star\left(x_{0}, \ldots, x_{n}\right)=\left(\lambda^{q_{0}} x_{0}, \ldots, \lambda^{q_{n}} x_{n}\right)
$$

For an ordered tuple of integers $\mathbf{x}=\left(x_{0}, \ldots, x_{n}\right) \in \mathbb{Z}^{n+1}$, whose coordinates are not all zero. The weighted greatest common divisor with respect to the set of weights \mathfrak{w}, denoted by by $\operatorname{wgcd}\left(x_{0}, \ldots x_{n}\right)$, is the largest integer d such that

$$
d^{q_{i}} \mid x_{i}, \text { for all } i=0, \ldots n .
$$

A tuple $\mathbf{x}=\left(x_{0}, \ldots, x_{n}\right)$ with $\operatorname{wgcd}(\mathbf{x})=1$ is called normalized.
The absolute weighted greatest common divisor of a tuple $\mathbf{x}=\left(x_{0}, \ldots, x_{n}\right)$ with respect to the set of weights $\mathfrak{w}=\left(q_{0}, \ldots, q_{n}\right)$ is the largest real number d such that

$$
d^{q_{i}} \mid x_{i}, \text { for all } i=0, \ldots n .
$$

We will denote the weighted greatest common divisor by $\overline{\operatorname{wgcd}}\left(x_{0}, \ldots x_{n}\right)$. A tuple \mathbf{x} with $\overline{\operatorname{wgcd}}(\mathbf{x})=1$ is called absolutely normalized.

Example

Consider the set of weights $\mathfrak{w}=(2,4,6,10)$ and a tuple

$$
\mathbf{x}=\left(3 \cdot 5^{2}, 3^{2} \cdot 5^{4}, 3^{3} \cdot 5^{6}, 3^{5} \cdot 5^{10}\right) \in \mathbb{Z}^{4}
$$

Then, $\operatorname{wgcd}(\mathbf{x})=5$ and $\overline{\operatorname{wgcd}}(\mathbf{x})=5 \cdot \sqrt{3}$. Notice that

$$
\frac{1}{5} \star \mathbf{x}=\left(3,3^{2}, 3^{3}, 3^{5}\right), \quad \frac{1}{5 \sqrt{3}} \star \mathbf{x}=(1,1,1,1)
$$

We summarize in the following lemma.

Lemma

For any weighted integral tuple $\mathbf{x}=\left(x_{0}, \ldots, x_{n}\right) \in \mathbb{Z}^{n+1}$, the tuple

$$
\mathbf{y}=\frac{1}{\operatorname{wgcd}(\mathbf{x})} \star \mathbf{x}
$$

is integral and normalized. Moreover, the tuple

$$
\overline{\mathbf{y}}=\frac{1}{\overline{\operatorname{wgcd}(\mathbf{x})}} \star \mathbf{x}
$$

is also integral and absolutely normalized. If $\operatorname{gcd}\left(q_{0}, \ldots, q_{n}\right)=1$, then $\operatorname{wgcd}(\mathbf{x})=\overline{\operatorname{wgcd}}(\mathbf{x})$.

Outline

Weighted greatest common divisors

Weight projective spaces

Absolutely normalized points

Heights on the weighted projective spaces Absolute heights

Let K be a field of characteristic zero and $\left(q_{0}, \ldots, q_{n}\right) \in \mathbb{Z}^{n+1}$ a fixed tuple of positive integers called weights. Consider the action of $K^{\star}=K \backslash\{0\}$ on $\mathbb{A}^{n+1}(K)$ as follows

$$
\lambda \star\left(x_{0}, \ldots, x_{n}\right)=\left(\lambda^{q_{0}} x_{0}, \ldots, \lambda^{q_{n}} x_{n}\right)
$$

for $\lambda \in K^{*}$. The quotient of this action is called a weighted projective space and denoted by $\mathbb{W P}_{\left(q_{0}, \ldots, q_{n}\right)}^{n}(K)$. It is the projective variety $\operatorname{Proj}\left(K\left[x_{0}, \ldots, x_{n}\right]\right)$ associated to the graded ring $K\left[x_{0}, \ldots, x_{n}\right]$ where the variable x_{i} has degree q_{i} for $i=0, \ldots, n$. We denote greatest common divisor of q_{0}, \ldots, q_{n} by $\operatorname{gcd}\left(q_{0}, \ldots, q_{n}\right)$. The space $\mathbb{W P}_{w}^{n}$ is called well-formed if

$$
\operatorname{gcd}\left(q_{0}, \ldots, \hat{q}_{i}, \ldots, q_{n}\right)=1, \quad \text { for each } i=0, \ldots, n
$$

While most of the papers on weighted projective spaces are on well-formed spaces, we do not assume that here. We will denote a point $\mathfrak{p} \in \mathbb{W P}_{w}^{n}(K)$ by $\mathfrak{p}=\left[x_{0}: x_{1}: \cdots: x_{n}\right]$. Let K be a number field and \mathcal{O}_{K} its ring of integers. The group action K^{\star} on $\mathbb{A}^{n+1}(K)$ induces a group action of \mathcal{O}_{K} on $\mathbb{A}^{n+1}(K)$. By $\operatorname{Orb}(\mathfrak{p})$ we denote the \mathcal{O}_{K}-orbit in $\mathbb{A}^{n+1}\left(\mathcal{O}_{K}\right)$ which contains \mathfrak{p}. For any point $\mathfrak{p}=\left[x_{0}: \cdots: x_{n}\right] \in \mathbb{W P}_{w}^{n}(K)$ we can assume, without loss of generality, that $\mathfrak{p}=\left[x_{0}: \cdots: x_{n}\right] \in \mathbb{W P}_{w}^{n}\left(\mathcal{O}_{K}\right)$. The height for weighted projective spaces will be defined in the next section.

For the rest of this section we assume $K=\mathbb{Q}$. For the tuple $\mathbf{x}=\left(x_{0}, \ldots, x_{n}\right) \in \mathbb{Z}^{n+1}$ we define the weighted greatest common divisor with respect to the absolute value $|\cdot|_{v}$, denoted by $\operatorname{wgcd}_{v}(\mathbf{x})$,

$$
\operatorname{wgcd}_{v}(\mathbf{x}):=\prod_{\substack{\left.d^{q_{i}}\right|_{\mid x_{j}} \\ d \in \mathbb{Z}}}|d|_{v}
$$

as the product of all divisors $d \in \mathbb{Z}$ such that for all $i=0, \ldots, n$, we have $d^{i} \mid x_{i}$. We will call a point $\mathfrak{p} \in \mathbb{W P}_{\mathfrak{w}}^{n}(\mathbb{Q})$ normalized if $\operatorname{wgcd}(\mathfrak{p})=1$.

Definition

We will call a point $\mathfrak{p} \in \mathbb{W P}_{\mathfrak{w}}^{n}(\mathbb{Q})$ a normalized point if the weighted greatest common divisor of its coordinates is 1 .

Lemma
Let $\mathfrak{w}=\left(q_{0}, \ldots, q_{n}\right)$ be a set of weights and $d=\operatorname{gcd}\left(q_{0}, \ldots, q_{n}\right)$. For any point $\mathfrak{p} \in \mathbb{W P}_{\mathfrak{w}}^{n}(\mathbb{Q})$, the point

$$
\mathfrak{q}=\frac{1}{\operatorname{wgcd}(\mathfrak{p})} \star \mathfrak{p}
$$

is normalized. Moreover, this normalization is unique up to a multiplication by a d-root of unity.

Proof: Let $\mathfrak{p}=\left[x_{0}: \ldots, x_{n}\right] \in \mathbb{W P}_{w}^{n}(\mathbb{Q})$ and $\mathfrak{p}_{1}=\left[\alpha_{0}: \cdots: \alpha_{n}\right]$ and $\mathfrak{p}_{2}=\left[\beta_{0}: \cdots: \beta_{n}\right]$ two different normalizations of \mathfrak{p}. Then exists non-zero $\lambda_{1}, \lambda_{2} \in \mathbb{Q}$ such that

$$
\mathfrak{p}=\lambda_{1} \star \mathfrak{p}_{1}=\lambda_{2} \star \mathfrak{p}_{2}
$$

or in other words

$$
\left(x_{0}, \ldots, x_{n}\right)=\left(\lambda_{1}^{q_{0}} \alpha_{0}, \ldots, \lambda_{1}^{q_{i}} \alpha_{i}, \ldots\right)=\left(\lambda_{2}^{q_{0}} \beta_{0}, \ldots, \lambda_{2}^{q_{i}} \beta_{i}, \ldots\right) .
$$

Thus,

$$
\left(\alpha_{0}, \ldots, \alpha_{i}, \ldots, \alpha_{n}\right)=\left(r^{q_{0}} \beta_{0}, \ldots, r^{q_{i}} \beta_{i}, \ldots, r^{q_{n}} \beta_{n}\right)
$$

for $r=\frac{\lambda_{2}}{\lambda_{1}} \in K$. Thus, $r^{q_{i}}=1$ for all $i=0, \ldots, n$. Therefore, $r^{d}=1$. This completes the proof.

Thus we have the following:

Corollary

For any point $\mathfrak{p}=\left[x_{0}: \cdots: \mathbf{x}_{n}\right] \in \mathbb{W} \mathbb{P}_{\mathfrak{w}}^{n}(\mathbb{Q})$, if the greatest common divisors of non-zero coordinates is 1 , then the normalization of \mathfrak{p} is unique.

Here is an example which illustrates the Lemma.

Example

Let $\mathfrak{p}=\left[x_{0}, x_{1}, x_{2}, x_{3}\right] \in \mathbb{W P}_{(2,4,6,10)}^{3}(\mathbb{Q})$ be a normalized point. Hence,

$$
\operatorname{wgcd}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=1
$$

Since $d=\operatorname{gcd}(2,4,6,10)=2$, then we can take r such that $r^{2}=1$. Hence, $r= \pm 1$. Therefore, the point

$$
(-1) \star \mathfrak{p}=\left[-x_{0}: x_{1}:-x_{2}:-x_{3}\right]
$$

is also be normalized.
However, if $\mathfrak{p}=\left[x_{0}, x_{1}, x_{2}, x_{3}\right] \in \mathbb{W}_{(1,2,3,5)}^{3}(\mathbb{Q})$ is normalized then it is unique, unless some of the coordinates are zero. For example the points $[0,1,0,0]$ and $[0,-1,0,0]$ are equivalent and both normalized.
Next we give two examples, which were the main motivation behind this note.

Example (Weighted projective space of binary sextics)

The ring of invariants of binary sextics is generated by the basic arithmetic invariants, or as they sometimes called, Igusa invariants $\left(J_{2}, J_{4}, J_{6}, J_{10}\right)$ as defined in [2]. Two genus 2 curves \mathcal{X} and \mathcal{X}^{\prime} are isomorphic if and only if there exists $\lambda \in K^{*}$ such that

$$
J_{2 i}(\mathcal{X})=\lambda^{2 i} J_{2 i}\left(\mathcal{X}^{\prime}\right), \quad \text { for } \quad i=1,2,3,5 .
$$

We take the set of weights $\mathfrak{w}=(2,4,6,10)$ and considered the weighted projective space $\mathbb{W P}_{(2,4,6,10)}(\mathbb{Q})$. Thus, the invariants of a sextic define a point in a weighted projective space $\left[J_{2}: J_{4}: J_{6}: J_{10}\right] \in \mathbb{W P}_{\mathfrak{w}}(\mathbb{Q})$ and every genus 2 curve correspond to a point in $\mathbb{W P}_{\mathfrak{w}}^{3}(\mathbb{Q}) \backslash\left\{J_{10} \neq 0\right\}$. There is a bijection between

$$
\phi: \mathbb{W P}_{(2,4,6,10)}^{3} \backslash\left\{J_{10} \neq 0\right\} \rightarrow \mathcal{M}_{2}
$$

with ϕ provided explicitly in [3, Theorem 1].

Using the notion of a normalized point as above we have the following:

Corollary

Normalized points in $\mathbb{W P}_{(2,4,6,10)}^{3}(\mathbb{Q})$ occur in pairs. In other words, for every normalized point $\mathfrak{p}=\left[J_{2}, J_{4}, J_{6}, J_{10}\right]$, there is another normalized point $\mathfrak{p}^{\prime}=\left[-J_{2}, J_{4},-J_{6},-J_{10}\right]$ equivalent to \mathfrak{p}. Moreover, \mathfrak{p} and \mathfrak{p}^{\prime} are isomorphic over the Gaussian integers.
Proof: Let \mathcal{X} be a genus 2 curve with equation $y^{2}=f(x)$ and $\left[J_{2}, J_{4}, J_{6}, J_{10}\right]$ its corresponding invariants. The transformation $x \mapsto \sqrt{-1} \cdot x$ with give a curve \mathcal{X}^{\prime} with invariants $\left[-J_{2}: J_{4}:-J_{6}:-J_{10}\right]$ and the same weighted moduli height. If two weighted moduli points have the same minimal absolute height, then they differ up to a multiplication by a unit. Hence,

$$
\left[J_{2}^{\prime}: J_{4}^{\prime}: J_{6}^{\prime}: J_{10}^{\prime}\right]=\left[d^{2} \cdot J_{2}: d^{4} \cdot J_{4}: d^{6} \cdot J_{6}: d^{10} \cdot J_{10}\right]
$$

such that d^{2} is a unit. Then, $d^{2}= \pm 1$. Hence, $d=\sqrt{-1}$.
So unfortunately for any genus 2 curve we have two corresponding normalized points $\left[\pm J_{2}, J_{4}, \pm J_{6}, \pm J_{10}\right]$. In [4] this problem is solved by taking always the point
$\left[\left|J_{2}\right|, J_{4}, \pm J_{6}, \pm J_{10}\right]$ or by considering the space $\mathbb{W P}_{(1,2,3,5)}^{3}(\mathbb{Q})$ instead.

Example (Weighted projective space of binary octavics)

Every irreducible, smooth, hyperelliptic genus 3 curve has equation $y^{2} z^{6}=f(x, z)$, where $f(x, z)$ is a binary octavic with non-zero discriminant. The ring of invariants of binary octavics is generated by invariants J_{2}, \ldots, J_{8}, which satisfy an algebraic equation as in [5, Thm. 6]. Two genus 3 hyperelliptic curves \mathcal{X} and \mathcal{X}^{\prime} are isomorphic over a field K if and only if there exists some $\lambda \in k \backslash\{0\}$ such that

$$
J_{i}(\mathcal{X})=\lambda^{i} J_{i}\left(\mathcal{X}^{\prime}\right), \text { for } i=2, \ldots, 7
$$

There is another invariant J_{14} given in terms of $J_{2}, \ldots J_{7}$ which is the discriminant of the binary octavic.
Hence, there is a bijection between the hyperelliptic locus in the moduli space of genus 3 curves and the weighted projective space $\mathbb{W P}_{(2,3,4,5,6,7)}^{5}(K) \backslash\left\{J_{14} \neq 0\right\}$. Since $d=\operatorname{gcd}(2,3,4,5,6,7)=1$ then we have:

Corollary

For every genus 3 hyperelliptic curve \mathcal{X}, defined over a field K, the corresponding normalized point

$$
\mathfrak{p}=\left[J_{2}: J_{3}: J_{4}: J_{5}: J_{6}: J_{7}\right] \in \mathbb{W P}_{(2,3,4,5,6,7)}^{5}(K)
$$

is unique.

Example

Consider the curve $y^{2}=x^{8}-1$. The moduli point in $\mathbb{W}_{\mathbb{P}_{\mathfrak{w}}^{5}}^{5}(\mathbb{Q})$ is

$$
\mathfrak{p}=\left[-2^{3} \cdot 5 \cdot 7,0,2^{10} \cdot 7^{4}, 0,2^{15} \cdot 7^{6}, 0,-2^{19} \cdot 5 \cdot 7^{8}\right]
$$

For any point $\mathfrak{p}=\left[x_{0}: \cdots: x_{n}\right] \in \mathbb{W}_{\mathfrak{w}}^{n}(\mathbb{Q})$ we may assume that $x_{i} \in \mathbb{Z}$ for $i=0, \ldots, n$ and define

$$
\overline{\operatorname{wgcd}}(\mathfrak{p})=\prod_{\lambda \in \overline{\mathbb{Q}}, \lambda^{q_{i}} \mid x_{i}}|\lambda|
$$

as the product of all $\lambda \in \overline{\mathbb{Q}}$, such that for all $i=0, \ldots, n, \lambda^{i} \in \mathbb{Z}$ and $\lambda^{i} \mid x_{i}$. A point $\mathfrak{p}=\left[x_{0}: \cdots: x_{n}\right] \in \mathbb{W} \mathbb{P}_{\mathfrak{w}}^{n}(\mathbb{Q})$ is called absolutely normalized or normalized over $\overline{\mathbb{Q}}$ if $\overline{\operatorname{wgcd}}(\mathfrak{p})=1$.

Definition

A point $\mathfrak{p}=\left[x_{0}: \cdots: x_{n}\right] \in \mathbb{W} \mathbb{P}_{\mathfrak{w}}^{n}(\mathbb{Q})$ is called absolutely normalized or normalized over the algebraic closure if $\frac{\mathfrak{w g c d}}{\operatorname{wg})=1}$.

Lemma

For any point $\mathfrak{p}=\left[x_{0}: \cdots: x_{n}\right] \in \mathbb{W P}_{\mathfrak{w}}^{n}(\mathbb{Q})$ its normalization over the algebraic closure

$$
\overline{\mathfrak{p}}=\frac{1}{\overline{w g c d}(\mathfrak{p})} \star \mathfrak{p}
$$

is unique up to a multiplication by a d-th root of unity.
Proof: Let $\mathfrak{p}=\left[x_{0}: \ldots, x_{n}\right] \in \mathbb{W} \mathbb{P}_{w}^{n}(\mathbb{Q})$ and $\mathfrak{p}_{1}=\left[\alpha_{0}: \cdots: \alpha_{n}\right]$ and $\mathfrak{p}_{2}=\left[\beta_{0}: \cdots: \beta_{n}\right]$ two different normalizations of \mathfrak{p} over $\overline{\mathbb{Q}}$. Then exists non-zero $\lambda_{1}, \lambda_{2} \in \overline{\mathbb{Q}}$ such that

$$
\mathfrak{p}=\lambda_{1} \star \mathfrak{p}_{1}=\lambda_{2} \star \mathfrak{p}_{2}
$$

or in other words

$$
\left(x_{0}, \ldots, x_{n}\right)=\left(\lambda_{1}^{q_{0}} \alpha_{0}, \ldots, \lambda_{1}^{q_{i}} \alpha_{i}, \ldots\right)=\left(\lambda_{2}^{q_{0}} \beta_{0}, \ldots, \lambda_{2}^{q_{i}} \beta_{i}, \ldots\right) .
$$

Thus,

$$
\left(\alpha_{0}, \ldots, \alpha_{i}, \ldots, \alpha_{n}\right)=\left(r^{q_{0}} \beta_{0}, \ldots, r^{q_{i}} \beta_{i}, \ldots, r^{q_{n}} \beta_{n}\right) .
$$

Two points \mathfrak{p} and \mathfrak{q} in $\mathbb{W P}_{\mathfrak{w}}^{n}(\mathbb{Q})$ are called twists of each other if they are equivalent in $\mathbb{W}_{\mathbb{P}_{\mathfrak{w}}^{n}}^{n}(\overline{\mathbb{Q}})$ but $\operatorname{Orb}_{\mathbb{Q}}(\mathfrak{p})$ is not the same as $\operatorname{Orb}_{\mathbb{Q}}(\mathfrak{q})$. Hence, we have the following.

Lemma

Let \mathfrak{p} and \mathfrak{p}^{\prime} be normalized points in $\mathbb{W} \mathbb{P}_{\mathfrak{w}}^{n}(\mathbb{Q})$. Then \mathfrak{p} and \mathfrak{p}^{\prime} are twists of each other if and only if there exists $\lambda \in \overline{\mathbb{Q}}^{\star}$ such that $\lambda \star \mathfrak{p}=\mathfrak{p}^{\prime}$.
Next we see another example from genus 2 curves.

Example

Let \mathcal{X} be the genus two curve with equation $y^{2}=x^{6}-1$ and J_{2}, J_{4}, J_{6}, and J_{10} its Igusa invariants. Then the isomorphism class of \mathcal{X} is determined by the point $\mathfrak{p}=[240,1620,119880,46656] \in \mathbb{W P}_{(2,4,6,10)}^{3}(\mathbb{Q})$. Thus,

$$
\mathfrak{p}=[240,1620,119880,46656]=\left[2^{4} \cdot 3 \cdot 5 ; 2^{2} \cdot 3^{4} \cdot 5 ; 2^{3} \cdot 3^{4} \cdot 5 \cdot 37 ; 2^{6} \cdot 3^{6}\right]
$$

Therefore,

$$
\begin{aligned}
& \operatorname{wgcd}(240,1620,119880,46656)=1 \\
& \operatorname{wgcd}(240,1620,119880,46656)=\sqrt{6}
\end{aligned}
$$

Hence, \mathfrak{p} is normalized but not absolutely normalized. The point \mathfrak{p} has twists,

$$
\begin{aligned}
& \mathfrak{p}_{1}=\frac{1}{\sqrt{2}} \star \mathfrak{p}_{1}=[120,405,14985,1458]=\left[2^{3} \cdot 3 \cdot 5: 3^{4} \cdot 5: 3^{4} \cdot 5 \cdot 37: 2 \cdot 3^{6}\right] \\
& \mathfrak{p}_{2}=\frac{1}{\sqrt{3}} \star \mathfrak{p}_{1}=[80,180,4440,192]=\left[2^{4} \cdot 5: 2^{2} \cdot 3^{2} \cdot 5: 2^{3} \cdot 3 \cdot 5 \cdot 37: 2^{6} \cdot 3\right]
\end{aligned}
$$

and the absolutely normalized point of \mathfrak{p} which is

We can do better even with the genus 3 curve from Example 5.

Example

The normalized moduli point in $\mathbb{W} \mathbb{P}_{\mathfrak{w}}^{5}(\mathbb{Q})$ the curve $y^{2}=x^{8}-1$ is

$$
\frac{1}{2} \star \mathfrak{p}=\left[-2 \cdot 5 \cdot 7,0,2^{6} \cdot 7^{4}, 0,2^{9} \cdot 7^{6}, 0,-2^{11} \cdot 5 \cdot 7^{8}\right]
$$

Then, $\overline{\operatorname{wgcd}}(\mathfrak{p})=\frac{\mathfrak{i}}{\sqrt{14}}$, for $\mathfrak{i}^{2}=-1$. Then its absolutely normalized form is

$$
\overline{\mathfrak{p}}=\left[5,0,2^{4} \cdot 7^{2}, 0,2^{6} \cdot 7^{3}, 0,-2^{7} \cdot 5 \cdot 7^{4}\right]
$$

In the next section we will introduce some measure of the magnitude of points in weighted moduli spaces $\mathbb{W}_{\mathfrak{w}}^{n}(K)$ and show that the process of normalization and absolute normalization lead us to the representation of points in $\mathbb{W P}_{\mathfrak{w}}^{n}(K)$ with smallest possible coordinates.

Outline

Weighted greatest common divisors

Weight projective spaces

Absolutely normalized points

Heights on the weighted projective spaces
Absolute heights

Let K be an algebraic number field and $[K: \mathbb{Q}]=n$ and its ring of integers \mathcal{O}_{K}. With M_{K} we denote the set of all absolute values in K. For $v \in M_{K}$, the local degree at v, denoted n_{v} is $n_{v}=\left[K_{v}: \mathbb{Q}_{v}\right]$, where K_{v}, \mathbb{Q}_{v} are the completions with respect to v. As above $\mathbb{W}_{\mathbb{P}^{n}}(K)$ is the projective space with weights $w=\left(q_{0}, \ldots, q_{n}\right)$, and $\mathfrak{p} \in \mathbb{W P}^{n}(K)$ a point with coordinates $\mathfrak{p}=\left[x_{0}, \ldots, x_{n}\right]$, for $x_{i} \in K$. The multiplicative height of \mathfrak{p} is defined as follows

$$
\mathfrak{h}_{K}(\mathfrak{p}):=\prod_{v \in M_{K}} \max \left\{\left|x_{0}\right|_{v}^{n_{v} / q_{0}}, \ldots,\left|x_{n}\right|_{v}^{n_{v} / q_{n}}\right\}
$$

Let $\mathfrak{p}=\left[x_{0}, \ldots, x_{n}\right] \in \mathbb{W}^{n}(\mathbb{Q})$ with weights $w=\left(q_{0}, \ldots, q_{n}\right)$. It is clear that \mathfrak{p} will have a representative $\left[y_{0}, \ldots, y_{n}\right]$ such that $y_{i} \in \mathbb{Z}$ for all i and $\operatorname{wgcd}\left(y_{0}, \ldots, y_{n}\right)=1$. With such representative for the coordinates of \mathfrak{p}, the non-Archimedean absolute values give no contribution to the height, and we obtain

$$
\mathfrak{h}_{\mathbb{Q}}(\mathfrak{p})=\max _{0 \leq j \leq n}\left\{\left|x_{j}\right|_{\infty}^{1 / q_{j}}\right\}
$$

So for a tuple $\mathbf{x}=\left(x_{0}: \cdots: x_{n}\right)$ the height of the corresponding point $\mathfrak{p}=[\mathbf{x}]$ is

$$
\mathfrak{h}(\mathfrak{p})=\frac{1}{\operatorname{wgcd}(\mathbf{x})} \max \left\{\left|x_{0}\right|^{1 / q_{0}}, \ldots,\left|x_{n}\right|^{1 / q_{n}}\right\}
$$

We combine some of the properties of $\mathfrak{h}(\mathfrak{p})$ in the following:

Proposition

Then the following are true:
i) The function $\mathfrak{h}: \mathbb{W}_{\mathbb{P}_{\mathfrak{w}}}^{n}(\mathbb{Q}) \rightarrow \mathbb{R}$ is well-defined.
ii) A normalized point $\mathfrak{p}=\left[x_{0}: \cdots: x_{n}\right] \in \mathbb{W P}_{\mathfrak{w}}^{n}(\mathbb{Q})$ is the point with smallest coordinates in its orbit $\operatorname{Orb}(\mathfrak{p})$.
iii) For any constant $c>0$ there are only finitely many points $\mathfrak{p} \in \mathbb{W P}_{w}^{n}(\mathbb{Q})$ such that $\mathfrak{h}(\mathfrak{p}) \leq c$.
Proof: i) It is enough to show that two normalizations of the same point $\mathfrak{p} \in \mathbb{W}_{\mathbb{P}_{\mathfrak{w}}^{n}}^{n}(\mathbb{Q})$ have the same height. Let \mathfrak{p} and \mathfrak{q} be such normalizations. Then from Lemma 2 we have $\mathfrak{p}=r \star \mathfrak{q}$, where $r^{d}=1$. Thus,

$$
\mathfrak{h}(\mathfrak{p})=\mathfrak{h}(r \star \mathfrak{q})=|r| \cdot \mathfrak{h}(\mathfrak{q})=\mathfrak{h}(\mathfrak{q}) .
$$

ii) This is obvious from the definition.
iii) Let $\mathfrak{p} \in \mathbb{W P}_{\mathfrak{w}}^{n}(\mathbb{Q})$. It is enough to count only normalized points $\mathfrak{p}=\left[x_{0}: \cdots: x_{n}\right] \in \mathbb{W}_{P_{w}^{n}}^{n}(\mathbb{Z})$ such that $\mathfrak{h}(\mathfrak{p}) \leq c$. For every coordinate x_{i} there are only finitely values in \mathbb{Z} such that $\left|x_{i}\right|_{v}^{1 / q_{i}} \mid \leq c$. Hence, the result holds.

Part iii) of the above is the analogue of the Northcott's theorem in projective spaces.

Remark

If the set of weights $\mathfrak{w}=(1, \ldots 1)$ then $\mathbb{W}_{\mathbb{P}_{\mathfrak{w}}^{n}}^{n}(\mathbb{Q})$ is simply the projective space $\mathbb{P}^{n}(\mathbb{Q})$ and the height $\mathfrak{h}(\mathfrak{p})$ correspond to the height of a projective point as defined in [7].
Let's see an example how to compute the height of a point.

Example

Let $\mathfrak{p}=\left(2^{2}, 2 \cdot 3^{4}, 2^{6} \cdot 3,2^{10} \cdot 5^{10}\right) \in \mathbb{W P}_{(2,4,6,10)}^{3}(\mathbb{Q})$. Notice that \mathfrak{p} is normalized, which implies that

$$
\mathfrak{h}(\mathfrak{p})=\max \left\{2,2^{1 / 4} \cdot 3,3^{1 / 6}, 2 \cdot 5\right\}=10
$$

However, the point $\mathfrak{q}=\left(2^{2}, 2^{4} \cdot 3^{4}, 2^{6} \cdot 3,2^{10} \cdot 5^{10}\right) \in \mathbb{W P}_{(2,4,6,10)}^{3}(\mathbb{Q})$ can be normalized to $\left(1,3^{4}, 3,5^{10}\right)$ which has height

$$
\mathfrak{h}(\mathfrak{q})=\max \left\{1,3,3^{1 / 6}, 5\right\}=5
$$

A proof for the following will be provided in [8].
Lemma
Let $\mathfrak{p} \in \mathbb{W P}^{n}(K)$ with weights $w=\left(q_{0}, \ldots, q_{n}\right)$ and L / K be a finite extension. Then,

$$
\mathfrak{h}_{L}(P)=\mathfrak{h}_{K}(P)^{[L: K]}
$$

We can define the height on $\mathbb{W P}^{n}(\overline{\mathbb{Q}})$. The height of a point on $\mathbb{W P}^{n}(\overline{\mathbb{Q}})$ is called the weighted absolute (multiplicative) height and is the function

$$
\begin{aligned}
\tilde{\mathfrak{h}}: \mathbb{W}^{(}(\overline{\mathbb{Q}}) & \rightarrow[1, \infty) \\
\tilde{\mathfrak{h}}(\mathfrak{p}) & =\mathfrak{h}_{K}(P)^{1 /[K: \mathbb{Q}]},
\end{aligned}
$$

where $\mathfrak{p} \in \mathbb{W}_{\mathbb{P}^{P}}(K)$, for any K. Then, the absolute weight height is given by

$$
\begin{equation*}
\tilde{\mathfrak{h}}_{\mathbb{Q}}(\mathfrak{p})=\frac{1}{\overline{\operatorname{wgcd}(\mathfrak{p})}} \max \left\{\left|x_{0}\right|^{1 / q_{0}}, \ldots,\left|x_{n}\right|^{1 / q_{n}}\right\} \tag{1}
\end{equation*}
$$

Let's see an example which compares the height of a point with the absolute height.

Example

Let $\mathfrak{p}=[0: 2: 0: 0] \in \mathbb{W P}_{(2,4,6,10)}^{3}(\mathbb{Q})$. Then \mathfrak{p} is normalized and therefore $\mathfrak{h}(\mathfrak{p})=2$.
However, it absolute normalization is $\mathfrak{q}=\frac{1}{2^{1 / 4}} \star \mathfrak{p}=[0: 0: 1: 0]$. Hence, $\tilde{\mathfrak{h}}(\mathfrak{p})=1$.

Remark

As a consequence of the above results it is possible to "sort" the points in $\mathbb{W P}_{\mathfrak{w}}^{n}(\bar{K})$ according to the absolute height and even determine all the twists for each point when the weighted projective space is not well-formed. This is used in [4] to create a database of genus 2 curves and similarly in [6] for genus 3 hyperelliptic curves.

The weighted absolute height of $\mathfrak{p}=[\mathbf{x}] \in \mathbb{W}_{\mathbb{w}}^{n}(K)$, where $\mathbf{x}=\left(x_{0}: \cdots: x_{n}\right)$, for any number field K, is

$$
\begin{equation*}
\tilde{\mathfrak{h}}_{K}(\mathfrak{p})=\frac{1}{\overline{\operatorname{wgcd}(\mathbf{x})}} \prod_{v \in M_{K}} \max \left\{\left|x_{0}\right|^{1 / q_{0}}, \ldots,\left|x_{n}\right|^{1 / q_{n}}\right\} \tag{2}
\end{equation*}
$$

The concept of weighted absolute height correspond to that of absolute height in [7]. In [7] a curve with minimum absolute height has an equation with the smallest possible coefficients. In this paper, the absolute height says that there is a representative tuple of $\mathfrak{p} \in \mathbb{W}_{\mathfrak{w}}^{n}(K)$ with smallest magnitude of coordinates.
Then we have the following:

Proposition

Let K be a number field and \mathcal{O}_{K} its ring of integers. Then the following are true:
i) The absolute height function $\mathfrak{h}_{K}: \mathbb{W P}_{\mathfrak{w}}^{n}(K) \rightarrow \mathbb{R}$ is well-defined.
ii) $\tilde{\mathfrak{h}}(\mathfrak{p})$ is the minimum of heights of all twists of \mathfrak{p}.
iii) For any constant $c>0$ there are only finitely many points $\mathfrak{p} \in \mathbb{W P}_{w}^{n}(K)$ such that $\tilde{\mathfrak{h}}(\mathfrak{p}) \leq c$.
Proof: Part ii) and iii) are obvious. We prove part i). We have to show that two different normalizations over the algebraic closure have the same absolute height. Let \mathfrak{p} and \mathfrak{q} be such normalizations. Then from Lemma 3 we have $\mathfrak{p}=r \star \mathfrak{q}$, where $r^{d}=1$. Thus,

$$
\tilde{\mathfrak{h}}(\mathfrak{p})=\tilde{\mathfrak{h}}(r \star \mathfrak{q})=|r| \cdot \tilde{\mathfrak{h}}(\mathfrak{q})=\mathfrak{h}(\mathfrak{q}) .
$$

This completes the proof.

For more details we direct the reader to [8]. Let's revisit again our example from genus 2 curves.

Example

Let \mathcal{X} be the genus two curve with equation $y^{2}=x^{6}-1$ and moduli point $\mathfrak{p}=[240,1620,119880,46656] \in \mathbb{W P}_{(2,4,6,10)}^{3}(\mathbb{Q})$. We showed that \mathfrak{p} is normalized and therefore has height $\mathfrak{h}(\mathfrak{p})=4 \sqrt{15}$. Its absolute normalization is

$$
\overline{\mathfrak{p}}=[40,45,555,6]=\left[2^{3} \cdot 5,3^{2} \cdot 5,3 \cdot 5 \cdot 37,2 \cdot 3\right]
$$

Hence, the absolute height is $\tilde{\mathfrak{h}}(\mathfrak{p})=2 \sqrt{10}$.

References

[1] Jorgo Mandili and Tony Shaska, Heights on weighted projective spaces, Algebraic curves and their applications, 2018.
[2] Jun-Ichi Igusa, Arithmetic variety of moduli for genus two, Ann. of Math. (2) 72 (1960), 612-649. MR0114819
[3] Andreas Malmendier and Tony Shaska, A universal genus-two curve from Siegel modular forms, SIGMA Symmetry Integrability Geom. Methods Appl. 13 (2017), 089, 17 pages. MR3731039
[4] L. Beshaj and S. Guest, Some remarks of the weighted moduli space of binary sextics, Algebraic curves and their applications, 2018.
[5] Lubjana Beshaj and Monika Polak, On the hyperelliptic curves of genus 3, Algebraic curves and their applications, 2018.
[6] L. Beshaj and M. Polak, On hyperelliptic curves of genus 3, Algebraic curves and their applications, 2018.
[7] T. Shaska and L. Beshaj, Heights on algebraic curves, Advances on superelliptic curves and their applications, 2015, pp. 137-175. MR3525576
[8] L. Beshaj and T. Shaska, Heights on weighted projective spaces, 2018. in progress.

