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Weighted greatest common divisors

We will follow the definitions from [1]. Let q0, . . . , qn be positive integers. A set of
weights is called the ordered tuple

w = (q0, . . . , qn).

Denote by r = gcd(q0, . . . , qn) the greatest common divisor of q0, . . . , qn. A weighted
integer tuple is a tuple x = (x0, . . . xn) ∈ Zn+1 such that to each coordinate xi is
assigned the weight qi . We multiply weighted tuples by scalars λ ∈ Q via

λ ? (x0, . . . , xn) =
(
λq0 x0, . . . , λ

qn xn
)

For an ordered tuple of integers x = (x0, . . . , xn) ∈ Zn+1, whose coordinates are not all
zero. The weighted greatest common divisor with respect to the set of weights w,
denoted by by wgcd(x0, . . . xn) , is the largest integer d such that

dqi | xi , for all i = 0, . . . n.

A tuple x = (x0, . . . , xn) with wgcd(x) = 1 is called normalized.
The absolute weighted greatest common divisor of a tuple x = (x0, . . . , xn) with
respect to the set of weights w = (q0, . . . , qn) is the largest real number d such that

dqi | xi , for all i = 0, . . . n.

We will denote the weighted greatest common divisor by wgcd(x0, . . . xn). A tuple x
with wgcd(x) = 1 is called absolutely normalized.
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Example
Consider the set of weights w = (2, 4, 6, 10) and a tuple

x =
(

3 · 52, 32 · 54, 33 · 56, 35 · 510
)
∈ Z4.

Then, wgcd(x) = 5 and wgcd(x) = 5 ·
√

3. Notice that

1
5
? x = (3, 32, 33, 35),

1
5
√

3
? x = (1, 1, 1, 1),

We summarize in the following lemma.

Lemma
For any weighted integral tuple x = (x0, . . . , xn) ∈ Zn+1, the tuple

y =
1

wgcd(x)
? x,

is integral and normalized. Moreover, the tuple

ȳ =
1

wgcd(x)
? x,

is also integral and absolutely normalized. If gcd(q0, . . . , qn) = 1, then
wgcd(x) = wgcd(x).
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Let K be a field of characteristic zero and (q0, . . . , qn) ∈ Zn+1 a fixed tuple of positive
integers called weights. Consider the action of K? = K \ {0} on An+1(K ) as follows

λ ? (x0, . . . , xn) =
(
λq0 x0, . . . , λ

qn xn
)

for λ ∈ K∗. The quotient of this action is called a weighted projective space and
denoted by WPn

(q0,...,qn)(K ). It is the projective variety Proj (K [x0, ..., xn]) associated to
the graded ring K [x0, . . . , xn] where the variable xi has degree qi for i = 0, . . . , n.
We denote greatest common divisor of q0, . . . , qn by gcd(q0, . . . , qn). The space WPn

w
is called well-formed if

gcd(q0, . . . , q̂i , . . . , qn) = 1, for each i = 0, . . . , n.

While most of the papers on weighted projective spaces are on well-formed spaces, we
do not assume that here. We will denote a point p ∈WPn

w (K ) by p = [x0 : x1 : · · · : xn].
Let K be a number field and OK its ring of integers. The group action K? on An+1(K )
induces a group action of OK on An+1(K ). By Orb(p) we denote the OK -orbit in
An+1(OK ) which contains p. For any point p = [x0 : · · · : xn] ∈WPn

w (K ) we can
assume, without loss of generality, that p = [x0 : · · · : xn] ∈WPn

w (OK ). The height for
weighted projective spaces will be defined in the next section.



For the rest of this section we assume K = Q. For the tuple x = (x0, . . . , xn) ∈ Zn+1

we define the weighted greatest common divisor with respect to the absolute value
| · |v , denoted by wgcdv (x),

wgcdv (x) :=
∏

dqi |xi
d∈Z

|d |v

as the product of all divisors d ∈ Z such that for all i = 0, . . . , n, we have d i | xi . We
will call a point p ∈WPn

w(Q) normalized if wgcd(p) = 1.

Definition
We will call a point p ∈WPn

w(Q) a normalized point if the weighted greatest common
divisor of its coordinates is 1.

Lemma
Let w = (q0, . . . , qn) be a set of weights and d = gcd(q0, . . . , qn). For any point
p ∈WPn

w(Q), the point

q =
1

wgcd(p)
? p

is normalized. Moreover, this normalization is unique up to a multiplication by a d-root
of unity.



Proof: Let p = [x0 : . . . , xn] ∈WPn
w (Q) and p1 = [α0 : · · · : αn] and p2 = [β0 : · · · : βn]

two different normalizations of p. Then exists non-zero λ1, λ2 ∈ Q such that

p = λ1 ? p1 = λ2 ? p2,

or in other words

(x0, . . . , xn) =
(
λ

q0
1 α0, . . . , λ

qi
1 αi , . . .

)
=
(
λ

q0
2 β0, . . . , λ

qi
2 βi , . . .

)
.

Thus,
(α0, . . . , αi , . . . , αn) =

(
rq0β0, . . . , rqiβi , . . . , rqnβn

)
.

for r = λ2
λ1
∈ K . Thus, rqi = 1 for all i = 0, . . . , n. Therefore, rd = 1. This completes

the proof.

Thus we have the following:

Corollary
For any point p = [x0 : · · · : xn] ∈WPn

w(Q), if the greatest common divisors of
non-zero coordinates is 1, then the normalization of p is unique.



Here is an example which illustrates the Lemma.

Example
Let p = [x0, x1, x2, x3] ∈WP3

(2,4,6,10)(Q) be a normalized point. Hence,

wgcd(x0, x1, x2, x3) = 1.

Since d = gcd(2, 4, 6, 10) = 2, then we can take r such that r2 = 1. Hence, r = ±1.
Therefore, the point

(−1) ? p = [−x0 : x1 : −x2 : −x3]

is also be normalized.
However, if p = [x0, x1, x2, x3] ∈WP3

(1,2,3,5)(Q) is normalized then it is unique, unless
some of the coordinates are zero. For example the points [0, 1, 0, 0] and [0,−1, 0, 0]
are equivalent and both normalized.

Next we give two examples, which were the main motivation behind this note.



Example (Weighted projective space of binary sextics)
The ring of invariants of binary sextics is generated by the basic arithmetic invariants,
or as they sometimes called, Igusa invariants (J2, J4, J6, J10) as defined in [2]. Two
genus 2 curves X and X ′ are isomorphic if and only if there exists λ ∈ K∗ such that

J2i (X ) = λ2i J2i (X ′), for i = 1, 2, 3, 5.

We take the set of weights w = (2, 4, 6, 10) and considered the weighted projective
space WP(2,4,6,10)(Q). Thus, the invariants of a sextic define a point in a weighted
projective space [J2 : J4 : J6 : J10] ∈WPw(Q) and every genus 2 curve correspond to
a point in WP3

w(Q) \ {J10 6= 0}. There is a bijection between

φ : WP3
(2,4,6,10) \ {J10 6= 0} →M2,

with φ provided explicitly in [3, Theorem 1].



Using the notion of a normalized point as above we have the following:

Corollary
Normalized points in WP3

(2,4,6,10)(Q) occur in pairs. In other words, for every
normalized point p = [J2, J4, J6, J10], there is another normalized point
p′ = [−J2, J4,−J6,−J10] equivalent to p. Moreover, p and p′ are isomorphic over the
Gaussian integers.

Proof: Let X be a genus 2 curve with equation y2 = f (x) and [J2, J4, J6, J10] its
corresponding invariants. The transformation x 7→

√
−1 · x with give a curve X ′ with

invariants [−J2 : J4 : −J6 : −J10] and the same weighted moduli height.
If two weighted moduli points have the same minimal absolute height, then they differ
up to a multiplication by a unit. Hence,

[J′2 : J′4 : J′6 : J′10] = [d2 · J2 : d4 · J4 : d6 · J6 : d10 · J10]

such that d2 is a unit. Then, d2 = ±1. Hence, d =
√
−1.

So unfortunately for any genus 2 curve we have two corresponding normalized points
[±J2, J4,±J6,±J10]. In [4] this problem is solved by taking always the point
[|J2|, J4,±J6,±J10] or by considering the space WP3

(1,2,3,5)(Q) instead.



Example (Weighted projective space of binary octavics)
Every irreducible, smooth, hyperelliptic genus 3 curve has equation y2z6 = f (x , z),
where f (x , z) is a binary octavic with non-zero discriminant. The ring of invariants of
binary octavics is generated by invariants J2, . . . , J8, which satisfy an algebraic
equation as in [5, Thm. 6]. Two genus 3 hyperelliptic curves X and X ′ are isomorphic
over a field K if and only if there exists some λ ∈ k \ {0} such that

Ji (X ) = λi Ji (X ′), for i = 2, . . . , 7.

There is another invariant J14 given in terms of J2, . . . J7 which is the discriminant of
the binary octavic.
Hence, there is a bijection between the hyperelliptic locus in the moduli space of genus
3 curves and the weighted projective space WP5

(2,3,4,5,6,7)(K ) \ {J14 6= 0}. Since
d = gcd(2, 3, 4, 5, 6, 7) = 1 then we have:

Corollary
For every genus 3 hyperelliptic curve X , defined over a field K , the corresponding
normalized point

p = [J2 : J3 : J4 : J5 : J6 : J7] ∈WP5
(2,3,4,5,6,7)(K )

is unique.

Example
Consider the curve y2 = x8 − 1. The moduli point in WP5

w(Q) is

p =
[
−23 · 5 · 7, 0, 210 · 74, 0, 215 · 76, 0,−219 · 5 · 78

]
Then, wgcd(x) = 1

2 . Hence, the point p normalized becomes

1
2
? p =

[
−2 · 5 · 7, 0, 26 · 74, 0, 29 · 76, 0,−211 · 5 · 78

]
.

In [6] we use such normalized points to create a database of genus 3 hyperelliptic
curves defined over Q.



For any point p = [x0 : · · · : xn] ∈WPn
w(Q) we may assume that xi ∈ Z for i = 0, . . . , n

and define
wgcd(p) =

∏
λ∈Q̄, λqi |xi

|λ|

as the product of all λ ∈ Q̄, such that for all i = 0, . . . , n, λi ∈ Z and λi |xi . A point
p = [x0 : · · · : xn] ∈WPn

w(Q) is called absolutely normalized or normalized over Q̄ if
wgcd(p) = 1.

Definition
A point p = [x0 : · · · : xn] ∈WPn

w(Q) is called absolutely normalized or normalized
over the algebraic closure if wgcd(p) = 1.

Lemma
For any point p = [x0 : · · · : xn] ∈WPn

w(Q) its normalization over the algebraic closure

p̄ =
1

wgcd(p)
? p

is unique up to a multiplication by a d-th root of unity.
Proof: Let p = [x0 : . . . , xn] ∈WPn

w (Q) and p1 = [α0 : · · · : αn] and p2 = [β0 : · · · : βn]
two different normalizations of p over Q. Then exists non-zero λ1, λ2 ∈ Q such that

p = λ1 ? p1 = λ2 ? p2,

or in other words

(x0, . . . , xn) =
(
λ

q0
1 α0, . . . , λ

qi
1 αi , . . .

)
=
(
λ

q0
2 β0, . . . , λ

qi
2 βi , . . .

)
.

Thus,
(α0, . . . , αi , . . . , αn) =

(
rq0β0, . . . , rqiβi , . . . , rqnβn

)
.

for r = λ2
λ1
∈ Q. Thus, rqi = 1 for all i = 0, . . . , n. Therefore, rd = 1. This completes

the proof.



Two points p and q in WPn
w(Q) are called twists of each other if they are equivalent in

WPn
w(Q) but OrbQ(p) is not the same as OrbQ(q). Hence, we have the following.

Lemma
Let p and p′ be normalized points in WPn

w(Q). Then p and p′ are twists of each other if
and only if there exists λ ∈ Q? such that λ ? p = p′.
Next we see another example from genus 2 curves.

Example
Let X be the genus two curve with equation y2 = x6 − 1 and J2, J4, J6, and J10 its
Igusa invariants. Then the isomorphism class of X is determined by the point
p = [240, 1620, 119880, 46656] ∈WP3

(2,4,6,10)(Q). Thus,

p = [240, 1620, 119880, 46656] = [24 · 3 · 5; 22 · 34 · 5; 23 · 34 · 5 · 37; 26 · 36].

Therefore,

wgcd(240, 1620, 119880, 46656) = 1

wgcd(240, 1620, 119880, 46656) =
√

6.

Hence, p is normalized but not absolutely normalized. The point p has twists,

p1 =
1
√

2
? p1 = [120, 405, 14985, 1458] = [23 · 3 · 5 : 34 · 5 : 34 · 5 · 37 : 2 · 36],

p2 =
1
√

3
? p1 = [80, 180, 4440, 192] = [24 · 5 : 22 · 32 · 5 : 23 · 3 · 5 · 37 : 26 · 3],

and the absolutely normalized point of p which is

p̄ =
1
√

6
? p1 = [40, 45, 555, 6] = [23 · 5, 32 · 5, 3 · 5 · 37, 2 · 3]

Notice that p̄ has only one twist

p̄′ = [−23 · 5, 32 · 5, −3 · 5 · 37, −2 · 3]

which is also normalized.



We can do better even with the genus 3 curve from Example 5.

Example
The normalized moduli point in WP5

w(Q) the curve y2 = x8 − 1 is

1
2
? p =

[
−2 · 5 · 7, 0, 26 · 74, 0, 29 · 76, 0,−211 · 5 · 78

]
.

Then, wgcd(p) = i√
14

, for i2 = −1. Then its absolutely normalized form is

p̄ =
[
5, 0, 24 · 72, 0, 26 · 73, 0,−27 · 5 · 74

]
.

In the next section we will introduce some measure of the magnitude of points in
weighted moduli spaces WPn

w(K ) and show that the process of normalization and
absolute normalization lead us to the representation of points in WPn

w(K ) with smallest
possible coordinates.
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Let K be an algebraic number field and [K : Q] = n and its ring of integers OK . With
MK we denote the set of all absolute values in K . For v ∈ MK , the local degree at v ,
denoted nv is nv = [Kv : Qv ], where Kv ,Qv are the completions with respect to v . As
above WPn(K ) is the projective space with weights w = (q0, . . . , qn), and p ∈WPn(K )
a point with coordinates p = [x0, . . . , xn], for xi ∈ K . The multiplicative height of p is
defined as follows

hK (p) :=
∏

v∈MK

max
{
|x0|

nv/q0
v , . . . , |xn|nv/qn

v

}
Let p = [x0, . . . , xn] ∈WPn(Q) with weights w = (q0, . . . , qn). It is clear that p will have
a representative [y0, . . . , yn] such that yi ∈ Z for all i and wgcd(y0, . . . , yn) = 1. With
such representative for the coordinates of p, the non-Archimedean absolute values give
no contribution to the height, and we obtain

hQ(p) = max
0≤j≤n

{
|xj |

1/qj
∞
}



So for a tuple x = (x0 : · · · : xn) the height of the corresponding point p = [x] is

h(p) =
1

wgcd(x)
max

{
|x0|1/q0 , . . . , |xn|1/qn

}
.

We combine some of the properties of h(p) in the following:

Proposition
Then the following are true:
i) The function h : WPn

w(Q)→ R is well-defined.
ii) A normalized point p = [x0 : · · · : xn] ∈WPn

w(Q) is the point with smallest
coordinates in its orbit Orb(p).
iii) For any constant c > 0 there are only finitely many points p ∈WPn

w (Q) such that
h(p) ≤ c.

Proof: i) It is enough to show that two normalizations of the same point p ∈WPn
w(Q)

have the same height. Let p and q be such normalizations. Then from Lemma 2 we
have p = r ? q, where rd = 1. Thus,

h(p) = h(r ? q) = |r | · h(q) = h(q).

ii) This is obvious from the definition.
iii) Let p ∈WPn

w(Q). It is enough to count only normalized points
p = [x0 : · · · : xn] ∈WPn

w (Z) such that h(p) ≤ c. For every coordinate xi there are only
finitely values in Z such that |xi |

1/qi
v | ≤ c. Hence, the result holds.



Part iii) of the above is the analogue of the Northcott’s theorem in projective spaces.

Remark
If the set of weights w = (1, . . . 1) then WPn

w(Q) is simply the projective space Pn(Q)
and the height h(p) correspond to the height of a projective point as defined in [7].

Let’s see an example how to compute the height of a point.

Example
Let p = (22, 2 · 34, 26 · 3, 210 · 510) ∈WP3

(2,4,6,10)(Q). Notice that p is normalized,
which implies that

h(p) = max
{

2, 21/4 · 3, 31/6, 2 · 5
}

= 10

However, the point q = (22, 24 · 34, 26 · 3, 210 · 510) ∈WP3
(2,4,6,10)(Q) can be

normalized to (1, 34, 3, 510) which has height

h(q) = max
{

1, 3, 31/6, 5
}

= 5.

A proof for the following will be provided in [8].

Lemma
Let p ∈WPn(K ) with weights w = (q0, . . . , qn) and L/K be a finite extension. Then,

hL(P) = hK (P)[L:K ].



We can define the height on WPn(Q). The height of a point on WPn(Q) is called the
weighted absolute (multiplicative) height and is the function

h̃ : WPn(Q̄)→ [1,∞)

h̃(p) = hK (P)1/[K :Q],

where p ∈WPn(K ), for any K . Then, the absolute weight height is given by

h̃Q(p) =
1

wgcd(p)
max

{
|x0|1/q0 , . . . , |xn|1/qn

}
(1)

Let’s see an example which compares the height of a point with the absolute height.

Example
Let p = [0 : 2 : 0 : 0] ∈WP3

(2,4,6,10)(Q). Then p is normalized and therefore h(p) = 2.

However, it absolute normalization is q = 1
21/4 ? p = [0 : 0 : 1 : 0]. Hence, h̃(p) = 1.

Remark
As a consequence of the above results it is possible to ”sort” the points in WPn

w(K̄ )
according to the absolute height and even determine all the twists for each point when
the weighted projective space is not well-formed. This is used in [4] to create a
database of genus 2 curves and similarly in [6] for genus 3 hyperelliptic curves.



The weighted absolute height of p = [x] ∈WPn
w(K ), where x = (x0 : · · · : xn), for

any number field K , is

h̃K (p) =
1

wgcd(x)

∏
v∈MK

max
{
|x0|1/q0 , . . . , |xn|1/qn

}
(2)

The concept of weighted absolute height correspond to that of absolute height in [7]. In
[7] a curve with minimum absolute height has an equation with the smallest possible
coefficients. In this paper, the absolute height says that there is a representative tuple
of p ∈WPn

w(K ) with smallest magnitude of coordinates.
Then we have the following:

Proposition
Let K be a number field and OK its ring of integers. Then the following are true:
i) The absolute height function h̃K : WPn

w(K )→ R is well-defined.
ii) h̃(p) is the minimum of heights of all twists of p.
iii) For any constant c > 0 there are only finitely many points p ∈WPn

w (K ) such that
h̃(p) ≤ c.

Proof: Part ii) and iii) are obvious. We prove part i). We have to show that two different
normalizations over the algebraic closure have the same absolute height. Let p and q
be such normalizations. Then from Lemma 3 we have p = r ? q, where rd = 1. Thus,

h̃(p) = h̃(r ? q) = |r | · h̃(q) = h(q).

This completes the proof.



For more details we direct the reader to [8]. Let’s revisit again our example from genus
2 curves.

Example
Let X be the genus two curve with equation y2 = x6 − 1 and moduli point
p = [240, 1620, 119880, 46656] ∈WP3

(2,4,6,10)(Q). We showed that p is normalized

and therefore has height h(p) = 4
√

15. Its absolute normalization is

p̄ = [40, 45, 555, 6] = [23 · 5, 32 · 5, 3 · 5 · 37, 2 · 3]

Hence, the absolute height is h̃(p) = 2
√

10.
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