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Weighted greatest common divisors I
Let x = (x0, . . . xn) ∈ Zn+1 be a tuple of integers, not all equal to zero. Their greatest common divisor, denoted
by gcd(x0, . . . , xn), is defined as the largest integer d such that d|xi, for all i = 0, . . . , n.

The concept of the weighted greatest common divisor of a tuple for the ring of integers Z was defined in [13].
Let q0, . . . , qn be positive integers. A set of weights is called the ordered tuple

w = (q0, . . . , qn).

Denote by r = gcd(q0, . . . , qn) the greatest common divisor of q0, . . . , qn. A weighted integer tuple is a tuple
x = (x0, . . . , xn) ∈ Zn+1 such that to each coordinate xi is assigned the weight qi. We multiply weighted tuples
by scalars λ ∈ Q via

λ ? (x0, . . . , xn) = (λq0x0, . . . , λ
qnxn)

For an ordered tuple of integers x = (x0, . . . , xn) ∈ Zn+1, whose coordinates are not all zero, the weighted
greatest common divisor with respect to the set of weights w is the largest integer d such that

dqi | xi, for all i = 0, . . . , n.

The first natural question arising from this definition is to know if such integer d does exist for any tuple
x = (x0, . . . , xn) ∈ Zn+1. Clearly, it does exist because xi ≤ dqi for all i = 0, . . . , n and the largest integer is
unique.

We will denote by wgcd(x0, . . . , xn) = wgcd(x).



Weighted greatest common divisors II
Given integer a and non-zero integer b, the integer part of the real number a

b
is denote by

⌊
a
b

⌋
, that is, it is the

unique integer satisfying:
a =

⌊a
b

⌋
b+ r, 0 ≤ r < b.

The next result provides an algorithm to compute the weighted greatest common divisor.

Proposition
For a weighted integer tuple x = (x0, . . . , xn) with weights w = (q0, . . . , qn) let the factorization of the integers
xi, (i = 0, . . . , n) into primes:

xi =
t∏

j=1

p
αj,i
j , αj,i ≥ 0, j = 1, . . . , t

Then, the weighted greatest common divisor d = wgcd(x) is given by

d =
t∏

j=1

p
αj
j (1)

where,

αj = min

{⌊
αj,i

qi

⌋
, i = 0, . . . , n

}
and j = 1, . . . , t. (2)

Next we illustrate the method by a toy example:



Weighted greatest common divisors III
Example
Consider the set of weights w = (3, 2) and the tuple

x = (1440, 700) =
(
25 · 32 · 5 · 70, 22 · 30 · 52 · 7

)
∈ Z2.

Then, wgcd(x) = d = 2α1 · 3α2 · 5α3 · 7α4 , where

α1 = min

{⌊
5

3

⌋
,

⌊
2

2

⌋}
= 1, α2 = min

{⌊
2

3

⌋
,

⌊
0

2

⌋}
= 0,

α3 = min

{⌊
1

3

⌋
,

⌊
0

2

⌋}
= 0, α4 = min

{⌊
0

3

⌋
,

⌊
1

2

⌋}
= 0.

Then d = 2.

An integer tuple x = (x0, . . . , xn) ∈ Zn+1 such that its weighted gcd is wgcd(x) = 1 is called normalized.



Absolute weighted greatest common divisor I
The absolute weighted greatest common divisor of x = (x0, . . . , xn) with respect to w is the largest real
number d such that

dqi ∈ Z and dqi | xi, for all i = 0, . . . n.

Again, the natural question is to know if such real number d does exist for any tuple x.

Proposition
For a given x = (x0, . . . , xn) with w = (q0, . . . , qn) let the factorization of xi be

xi =
t∏

j=1

p
αj,i
j , αj,i ≥ 0, j = 1, . . . , t

Then,

wgcd(x) =

 t∏
j=1

p
αj
j

 1
q

where, q = gcd(q0, . . . , qn), qi = q · q̄i and

αj = min

{⌊
αj,i

q̄i

⌋
, i = 0, . . . , n

}
and j = 1, . . . , t.



Absolute weighted greatest common divisor II
Example
Consider the set of weights w = (6, 8) and the tuple

x =
(
215 · 512, 226 · 513

)
∈ Z2.

Then q = gcd(6, 8) = 2, p1 = 2, p2 = 5, t = 2 and q̄1 = 3, q̄2 = 4. Then, wgcd(x) = d = (2α1 · 5α2 )
1
2 , where

α1 = min

{⌊
15

3

⌋
,

⌊
26

4

⌋}
= 5, α2 = min

{⌊
12

3

⌋
,

⌊
13

4

⌋}
= 3.

Hence d = 2
5
2 · 5

3
2 =
√

25 · 53. On the other hand, wgcd(x) = 22 · 5. As expected, wgcd(x) ≤ wgcd(x).

The next example comes from the theory of invariants of binary sextics.

Example
Consider the set of weights w = (2, 4, 6, 10) and a tuple

x =
(
3 · 52, 32 · 54, 33 · 56, 35 · 510

)
∈ Z4.

Then, wgcd(x) = 5 and wgcd(x) = 5 ·
√

3.

An integer tuple x with wgcd(x) = 1 is called absolutely normalized. We summarize in the following lemma.



Absolute weighted greatest common divisor III
Lemma
For any weighted integral tuple x = (x0, . . . , xn) ∈ Zn+1 such that w(xi) = qi, i = 0, . . . , n, the tuple
y = 1

wgcd(x)
? x, is integral and normalized. Moreover, the tuple ȳ = 1

wgcd(x)
? x, is also integral and absolutely

normalized.

Normalized tuples are unique up to a multiplication of q-root of unity, where q = gcd(q0, . . . , qn).

It is worth noting that a normalized tuple is a tuple with ”smallest” integer coordinates (up to multiplication by a
unit). We will explore this idea of the ”smallest coordinates” in the coming sections.

There are a few natural questions that arise with the weighted greatest common divisor of a tuple of integers. We
briefly mention the two main ones:

Problem 1: The greatest common divisor can be computed in polynomial time using the Euclidean algorithm.
Determine the fastest way to compute the weighted greatest common divisor and the absolute weighted greatest
common divisor.

Problem 2: The greatest common divisor is uniquely determined for unique factorization domains. Define the
concept of the weighted greatest common divisor in terms of ring theory and determine the largest class of rings
where it is uniquely defined (up to multiplication by a unit).



Complexity of computing the weighted greatest common divisor

Prop. 1 and Prop. 2 provide a method to compute wgcd(x) and wgcd(x). In both, integer factorization is involved.

There are several indications that we can not avoid factoring. For instance, we have that wgcd(0, . . . , 0, xn) is
wgcd(xn), then we are looking for the largest factor d of xn such that dqn divides xn.

Alternatively, we can factor only an integer, instead of n+ 1, and then recombining factors in an appropriate and
clever way gives us the following.

Lemma
Let g = gcd(x0, . . . , xn) and g =

∏r
i=1 p

si
i its prime factorization.

1. For i = 1, . . . , r, let

βi = min

{⌊
si

qj

⌋
: j = 0, . . . , n

}
.

Then, wgcd(x) =
∏r
i=1 p

αi
i , where αi are the largest integers such that dqi divides xi and αi ≤ βi.

2. Let q = gcd(q0, . . . , qn), qj = q · q̄j , j = 0, . . . , n and for i = 1, . . . , r let

βi = min

{⌊
si

q̄j

⌋
, j = 0, . . . , n

}

Then, wgcd(x) =
(∏r

i=1 p
αi
i

) 1
q , where αi are the largest integers such that dqi divides xi and αi ≤ βi.



Weighted greatest common divisor over general rings

Let R be a commutative ring with identity. Consider a tuple x = (x0, . . . , xn) ∈ Rn+1. The weighted greatest
common divisor ideal is defined as

J(x) =
⋂

(pqi )⊃(xi)

p

over all primes p in R. If R is a PID then the wgcd(x) is the generator of the principal ideal J(x).

In general, for R a unique factorization domain, for any point x ∈ Rn we let r = gcd(x0, . . . , xn). Factor r as a
product of primes, say r = u ·

∏s
i=1 pi, where u is a unit and p1, . . . ps are primes. Then the weighted gcd

wgcd(x) is defined as

wgcd(x) =
s∏
i=1
pqi |xi

p

Thus, wgcd(x) is defined up to multiplication by a unit. The absolute weighted greatest common divisor ideal
is defined as

J̄(x) =
⋂

(
p
qi
r

)
⊃(xi)

p

over all primes p in R. The above definitions can be generalized to GCD domains. An integral domain R is called
a GCD domain if any two elements of R have a greatest common divisor; see [10] for more details.



Weighted projective spaces I
Abelian Orbifolds

An orbifold of dimension n is a complex analytic space which admits an open covering {Ui}, such that Ui is
analytically isomorphic to Bi/Gi, where Bi ⊂ Ci is an open ball and Gi a finite subgroup of GLn(C).
We will be interested in Abelian orbifolds where the quotient spaces Bi/Gi are given by finite Abelian groups.
Let d1, . . . , dr ∈ Z and

d := (d1, . . . , dr).

Denote by µd = µd1 × · · ·µdr the finite Abelian group written as a product of finite cyclic groups, where each
µdi is the cyclic group of di-th roots of unity in C.
Let ξdi a primitive di-th root of unity and ξd := (ξd1 , . . . , ξdr ) and A := (ai,j)i,j ∈Matr×n(Z). We have a
group action

µd × Cn → Cn(
(ξd1 , . . . , ξdr ), (x1, . . . , xn)

)
→
(
ξa11d1

· · · ξar1dr
x1, . . . , ξ

a1n
d1
· · · ξarndr

xn
)

The set of all orbits of this action is called the quotient space of type (d, A) and denoted by X(d, A).

Lemma
For any finite Abelian subgroup G < GLn(C), the space Cn/G is isomorphic to some quotient space of type
X(d, A). Moreover, the space X(d, A) can always be represented by some upper triangular matrix
A ∈Mat(n−1)×n(Z).

We will be interested in some very special orbifolds, namely weighted projective spaces.



Weight projective spaces I
Let k be a field of characteristic zero and w = (q0, . . . , qn) ∈ Zn+1 a fixed tuple of positive integers called
weights. Consider the action of k? = k \ {0} on An+1(k) as follows

λ ? (x0, . . . , xn) = (λq0x0, . . . , λ
qnxn)

for λ ∈ k∗.

The quotient of this action is called a weighted projective space and denoted by WPn(q0,...,qn)(K). It is the
projective variety Proj (k[x0, ..., xn]) associated to the graded ring k[x0, . . . , xn] where the variable xi has
degree qi for i = 0, . . . , n.
We denote greatest common divisor of q0, . . . , qn by gcd(q0, . . . , qn). The space WPnw is called well-formed if

gcd(q0, . . . , q̂i, . . . , qn) = 1, for each i = 0, . . . , n.

We will denote a point p ∈WPnw(K) by p = [x0 : x1 : · · · : xn]. A common reference for weighted projective
spaces is [5].



Weighted heights



Heights on weighted projective varieties I
First let’s review heights on projective spaces; see [3], [9]

Let k be an algebraic number field, [k : Q] = n, Ok the ring of integers of k, Mk the complete set of absolute
values of k, M0

k the set of all non-archimedian places in Mk, and M∞k the set of all archimedian places.

For v ∈Mk, the local degree at v is nv := [kv : Qv ], where kv ,Qv are the completions with respect to v. Let
L/k be an extension of number fields, and let v ∈Mk be an absolute value on k. Then∑

w∈ML
w|v

[Lw : kv ] = [L : k] and
∏
v∈Mk

|x|nvv = 1

are known as the degree formula and the product formula (for x ∈ k?).
For a place ν ∈Mk, the corresponding absolute value is denoted by | · |ν , normalized with respect to k such that
the product formula holds. The Weil height is

H(x) =
∏
ν

max{1, |x|ν}.

For a point x ∈ kn+1 and a place ν ∈Mk we define |x|ν = max{|xi|ν}ni=0. For x = [x0 : · · · : xn] ∈ Pn(k) we
define the height of x defined as

H(x) =
∏
ν

max {|x0|ν , . . . , |xn|ν} =
∏
ν

|x|ν

The height of x is well defined.



Heights on weighted projective varieties I
Local heights on projective varieties

Let k be a field and | · | a fixed absolute value on k. Let X be a projective variety over k, which we assume that is
irreducible.
Let D be a Cartier divisor on X with associated bundle O(D) and meromorphic section sD . Then there are line
bundles on X such that

O(D) ∼= L⊗M−1.

Choose global sections s0, . . . , sn of L and t0, . . . , tm of M . The data

D := (sD;L, s;M, t),

where (s) := (s0, . . . , sn) and t := (t0, . . . , tm) is called a presentation of the Cartier divisor D.
For P ∈ X \ supp(D), we define

λD(P ) := max
k

min
l

log
∣∣(sk ⊗ (tl ⊗ sD)−1

)
(P )
∣∣

Notice that
(
sk ⊗ (tl ⊗ sD)−1

)
is a rational function on X . We call λD(P ) the local height of P relative to the

presentation D of D and by abusing notation sometimes simply relative to D.



Heights on weighted projective varieties I
Global heights

Consider now the case when k is a number field. As above X is an irreducible projective variety defined over k
and D a Cartier divisor on X with presentation as above. Let F be a number field with k ⊂ F ⊂ k̄ and
P ∈ X (F ) \ supp(D). For ν ∈MF we define the local height as

λD(P, ν) := max
k

min
l

log
∣∣(sk ⊗ (tl ⊗ sD)−1

)
(P )
∣∣
ν

For P ∈ X there exists sj and tl such that sj(P ) 6= 0 and tl(P ) 6= 0. So we can find a meromorphic function of
O(D) such that P is not contained in the support of the Cartier divisor D(s). Then D(s) = (s;L, s;M, t) is a
presentation of D(s) and

λD(s) = λD + λf ,

where f is the rational function s⊗ sD .
If F is a finite extension of k such that P ∈ X (F ), the local height λD(s)(P, ν) is finite for any ν ∈ML, because
P /∈ supp(D(s)). Hence, we define th global height of P relative to λD as

h(P ) :=
∑
ν∈MF

λD(s)(P, ν).

Proposition
The global height h is independent of the choices of F and of the section s.

See [3, Prop. 2.3.4].



Heights on weighted projective varieties I
Weil heights

Let X be a projective variety over k̄ and
ϕ : X → Pn(k̄),

a morphism over k̄. The Weil height of P ∈ X (k̄), relative to ϕ is defined as the

hϕ(P ) := H(ϕ(P )),

where H is the usual height on Pn(k̄). Every Weil height may be viewed as a global height. Conversely, we can
write any global height as a difference of two Weil height.



Weighted Heights I
Let w = (q0, . . . , qn) be a set of heights and WPnw(k) the weighted projective space over a number field k. Let
p ∈WPn(k̄) a point such that p = [x0, . . . , xn]. We follow the definitions of [2] to define the weighted height in
WPnw(k̄).
The weighted multiplicative height of p is defined as

h(p) :=
∏
v∈Mk

max

{
|x0|

nv
q0
v , . . . , |xn|

nv
qn
v

}
(3)

and the logarithmic weighted height as

log h(p) := log hk(p) =
∑
v∈Mk

max
0≤j≤n

{
nv

qj
· log |xj |v

}
. (4)

Then we have the following.

Proposition
The following are true:
i) hk(p) does not depend on the choice of coordinates of p.
ii) hk(p) ≥ 1.

Next we will interpret the weighted height on weighted varieties in an analogue way to Weil height on projective
varieties.



Weighted Heights I
Local heights on weighted projective varieties

Let k be a field and | · | a fixed absolute value on k̄. Let X be a weighted projective variety over k, which we
assume that is irreducible.
Let D be a Cartier divisor on X with associated bundle O(D) and meromorphic section sD . Then there are line
bundles on X such that

O(D) ∼= L⊗M−1.

Choose global sections s0, . . . , sn of L and t0, . . . , tm of M . The data

D := (sD;L, s;M, t),

where (s) := (s0, . . . , sn) and t := (t0, . . . , tm) is called a presentation of the Cartier divisor D.
For P ∈ X \ supp(D), we define

λD(P ) := max
r

min
s

log
∣∣(sr ⊗ (ts ⊗ sD)−1

)
(P )
∣∣

Notice that
(
sk ⊗ (tl ⊗ sD)−1

)
is a rational function on X . We call λD(P ) the local height of P relative to the

presentation D of D and by abusing notation sometimes simply relative to D.
Let F be a number field such that k ⊂ F ⊂ k̄ and let p ∈ X (F ) \ supp(D). For ν ∈MF we define the local
height

λD(p, ν) := max
r

min
s

log
∣∣(sr ⊗ (ts ⊗ sD)−1

)
(P )
∣∣
ν



Weighted Heights II
Local heights on weighted projective varieties

Let p ∈ Q be the prime such that the restriction of ν| to Q is equal to | |p. Let | |µ be an absolute value on k̄, such
that its restriction to k is equivalent to | |ν . Then,

λD(p, ν) =
[Fν : Qp]

[F : Q]
λD(p, µ),

where λD(p, µ) is the local height relative to the absolute value | |µ. So the theory of local heights over k̄ can be
applied to any norm on k.

The hyperplane {xi = 0} in WPnw(k) has the presentation

D =
(
xi : OWPnw (1), x0, . . . , xn;OWPnw , 1

)
For a point p ∈WPnw(F ) with xi(p) 6= 0 and ν ∈MF the corresponding local weighted height is

λD(p, ν) := max

{
log |x0|

nv
q0
v , . . . , log |xn|

nv
qn
v

}
(5)

and the product formula becomes
h(p) =

∑
ν∈MF

λD(p, ν).

Proposition
The height defined in Eq. (5) is a local height.



Weighted Heights I
Global heights on weighted projective varieties

Let k be a number field, X is an irreducible projective variety defined over k, and D a Cartier divisor on X with
presentation as above. Let F be a number field with k ⊂ F ⊂ k̄ and P ∈ X (F ) \ supp(D). For ν ∈MF we
define the local height as

λD(P, ν) := max
k

min
l

log
∣∣(sk ⊗ (tl ⊗ sD)−1

)
(P )
∣∣
ν

For P ∈ X there exists sj and tl such that sj(P ) 6= 0 and tl(P ) 6= 0. So we can find a meromorphic function of
O(D) such that P is not contained in the support of the Cartier divisor D(s). Then D(s) = (s;L, s;M, t) is a
presentation of D(s) and

λD(s) = λD + λf ,

where f is the rational function s⊗ sD .

If F is a finite extension of k such that P ∈ X (F ), the local height λD(s)(P, ν) is finite for any ν ∈ML, because
P /∈ supp(D(s)). Hence, we define the global height of P relative to λD as

h(P ) :=
∑
ν∈MF

λD(s)(P, ν).

Proposition
The global height h is independent of the choices of F and of the section s.



Weighted Heights II
Global heights on weighted projective varieties

Definition
The weighted multiplicative height of p as

hk(p) :=
∏
v∈Mk

max

{
|x0|

nv
q0
v , . . . , |xn|

nv
qn
v

}
(6)

The logarithmic height of the point p is defined as follows

h′k(p) := log hk(p) =
∑
v∈Mk

max
0≤j≤n

{
nv

qj
· log |xj |v

}
. (7)

Proposition
The height defined in Eq. (6) is a global height.

Let X be a weighted projective variety over k̄ and ϕ : X →WPn(k̄) a morphism. The weighted Weil height of
p ∈ X (k̄), relative to ϕ, is defined as

whϕ(p) := h(ϕ(p)).

Proposition
Every weighted Weil height can be is a global height. Moreover, every global height can be written as a
difference of two weighted Weil heights.



Applications to superelliptic curves



Binary forms I
Let Xg be a superelliptic curve of genus g ≥ 2 with affine equation

zmyd−m = f(x, y) = adx
d + ad−1x

d−1y + · · ·+ a1xy
d−1 + a0y

d (8)

defined over and algebraic number field k; see [8].
Isomorphism classes of such curves are classified by the invariants of binary forms, since they are invariants
under any coordinate change.
Let k[x, y] be the polynomial ring in two variables and Vd the (d+ 1)-dimensional subspace of k[x, y] consisting
of homogeneous polynomials f(x, y) of degree d. Elements in Vd are called binary forms of degree d.
GL2(k) acts as a group of automorphisms on k[x, y] as follows:

M =

(
a b
c d

)
∈ GL2(k), then M

(
x
y

)
=

(
ax+ by
cx+ dy

)
(9)

Denote by fM the binary form fM (x, y) := f(ax+ by, cx+ dy). It is well known that SL2(k) leaves a bilinear
form (unique up to scalar multiples) on Vd invariant.
Consider a0, a1, ... , ad as parameters (coordinate functions on Vd). Then the coordinate ring of Vd can be
identified with k[a0, ..., ad]. For I ∈ k[a0, ..., ad] and M ∈ GL2(k), define IM ∈ k[a0, . . . , ad] as follows

IM (f) := I(fM ) (10)

for all f ∈ Vd. Then IMN = (IM )N and Eq. (10) defines an action of GL2(k) on k[a0, . . . , ad]. A homogeneous
polynomial I ∈ k[a0, . . . , ad, x, y] is called a covariant of index s if IM (f) = δsI(f), where δ = det(M). The



Binary forms II
homogeneous degree in a0, . . . , ad is called the degree of I, and the homogeneous degree in X,Z is called the
order of I. A covariant of order zero is called invariant. An invariant is a SL2(k)-invariant on Vd.
One of the most important results of the classical invariants theory is Hilbert’s theorem that says that the ring of
invariants of binary forms is finitely generated. We denote by Rd the ring of invariants of the binary forms of
degree d.

Proposition
i) Rd is finitely generated
ii) Rd is a graded ring

Let us see what happens to the invariants when we change the coordinates, in other words when we act on the
binary form g(x, y) via M ∈ GL2(k). Let I0, . . . , In be the generators ofRd with degrees q0, . . . , qn respectively.
We denote the tuple of invariants by I := (I0, . . . , In). The following result is fundamental to our approach.

Proposition
For any two binary formal f and g, f = gM , M ∈ GL2(k), if and only if

(I0(f), . . . Ii(f), . . . , In(f)) = (λq0 I0(g), . . . , λqi Ii(g), . . . , λ
qn In(g), ) ,

where λ = (detM)
d
2 .

Next we give a brief description for cases of binary sextics and binary octavics, no only because of their
significance in cryptography, but also to show that such approach is concrete and constructive.



Binary sextics I
If deg f = 6 binary forms are called binary sextics and their invariants are J2, J4, J6, J10, which are called
arithmetic invariants.

Lemma
J2i are homogeneous polynomials in k[a0, . . . , a6] of degree 2i, for i = 1, 2, 3, 5. Moreover, they generate R6.

For a genus two curve C with projective equation z2y4 = f(x, y) we denote by J2i(C) := J2i(f), for
i = 1, 2, 3, 5.

Lemma
Two genus 2 curves C and C′ are isomorphic over k̄ if and only if there exists an λ 6= 0 such that

J2i(C) = λ2i · J2i(C′), for i = 1, 2, 3, 5.

Moreover, if the transformation between binary sextics is given through a matrix M , then λ = (detM)3.

Hence, to study isomorphism classes of genus 2 curves it is equivalent as considering tuples of invariants
(J2, J4, J6, J10).



Binary octavics I
If deg f = 8, then f(x, y) is called a binary octavic. Invariants of V8 are denoted by J2, J3, . . . , J8. They are
primitive homogeneous polynomials Ji ∈ k[a0, . . . , a8] of degree i, for i = 2, . . . , 10. For any M =∈ GL2(k), we
have

Ji(f
M ) = (detM)4i Ji(f),

for i = 2, . . . , 10. R8 is finitely generated as a module over k[J2, . . . , J7, J8]. Moreover, invariants J2, . . . , J8
satisfy the following equation

J5
8 +

I8

34 · 53
J4
8 + 2 ·

I16

38 · 56
J3
8 +

I24

2 · 312 · 56
J2
8 +

I32

316 · 510
J8 +

I40

22 · 320 · 512
= 0, (11)

where I8j are invariants of degree 8j for j = 1, . . . , 5.
Hence, the isomorphism class of a binary octavic corresponds to a tuple of invariants (J2, . . . , J7, J8) which
satisfy the equation above. In terms of genus 3 hyperelliptic curves we have the following.

Lemma
Two genus 3 hyperelliptic curves C and C′ given by equations C : z2 = f(x, y) and C′ : z2 = g(x, y) are
isomorphic over k̄ if and only if there exists some λ ∈ k \ {0} such that

Ji(C) = λi · Ji(C′), for i = 2, . . . , 8.



Proj Rd as a weighted projective space I
Since I0, . . . , Ii, . . . , In are homogenous polynomials, then Rd is a graded ring. Hence, Proj Rd is a weighted
projective space WPnw(k) for

w = (deg I0, deg I1, . . . , deg Ii, . . . ,deg In) .

Lemma
Let I0, I1, . . . , In be the generators of the ring of invariants Rd of degree d binary forms. A k-isomorphism class
of a binary form f is determined by the point

I(f) := [I0(f), I1(f), . . . , In(f)] ∈WPnw(k).

Moreover f = gM for some M ∈ GL2(K) if and only if I(f) = λ ? I(g), for λ = (detA)
d
2 .

Corollary
Let X be a superelliptic curve with equation as in Eq. (8). The k̄-isomorphism class of X is determined by the
weighted moduli point p := [I(f)] ∈WPnw(k).

Hence we have the following problem.

Problem
Let X be a given superelliptic curve with equation zm = f(x), deg f = d, defined over Ok, and with
corresponding moduli point p := [I(f)] ∈WPnw(k). Find a representation of p ∈WPnw(k) with smallest
coordinates.



Integral binary forms with smallest moduli height I

Problem
Determine an equation of the curve X , say zmyd−m = g(x, y), defined over Ok, such that g(x, y) has minimal
invariants.

We say that a binary form f(x, y) has a minimal model over k if it is integral (i.e. f ∈ Ok[x, y]) and s(I(f)) is
minimal. Let f ∈ Ok and x := I(f) ∈WPnw(Ok) its corresponding weighted moduli point. We define the
weighted valuation of the tuple x = (x0, . . . xn) at the prime p ∈ Ok as

valp(x) := max
{
j | pj divides xqii for all i = 0, . . . n

}
,

Then we have the following.

Proposition
A binary form f ∈ Vd is a minimal model over Ok if for every prime p ∈ Ok such that p | wgcd(I(f)) the following
holds

valp(I(f)) <
d

2
qi

for all i = 0, . . . , n. Moreover, for every integral binary form f its minimal model exist.

Notice that it is possible to find a twist of f with ”smaller” invariants. In this case the new binary form is not in the
same SL2(Ok)-orbit as f . For example, the transformation

(x, y)→
(

1

λ
2
d

x,
1

λ
2
d

y,

)
. (12)



Integral binary forms with smallest moduli height II
will give us the form with smallest invariants, but not necessarily k-isomorphic to f .
It is worth noting that for a binary form f given in its minimal model, the point I(f) is not necessarily normalized
as in the sense of [2].

Corollary
If f(x, y) ∈ Ok[x, y] is a binary form such that I(f) ∈WPnw(k) is normalized over k, then f is a minimal model
over Ok.

Example
Let be given the sextic

f(x, y) = 7776x6 + 31104x5y + 40176x4y2 + 25056x3y3 + 8382x2y4 + 1470xy5 + 107y6

Notice that the polynomial has content 1, so there is no obvious substitution here to simplify sextic. The moduli
point is p = [J2 : J4 : J6 : J10], where

J2 = 215 · 35,

J4 = −212 · 39 · 101 · 233,

J6 = 216 · 313 · 29 · 37 · 8837,

J10 = 226 · 321 · 11 · 23 · 547 · 1445831



Integral binary forms with smallest moduli height III
Recall that the transformation (x, y)→

(
1
p
x, y
)

will change the representation of the point p via

1

p3
? [J2 : J4 : J6 : J10] =

[
1

p6
J2 :

1

p12
J4 :

1

p18
J6 :

1

p30
J10

]
So we are looking for prime factors p such that p6|J2, p12|J4, p18|J6, and p30|J10. Such candidates for p have to
be divisors of wgcd(p) = 22 · 32.
Obviously neither p = 2 or p = 3 will work. Thus, f(x, y) is in its minimal model over Ok.

Corollary
The transformation of f(x, y) by the matrix

M =

εd 1

(wgcd(I(f)))
2
d

0

0 εd
1

(wgcd(I(f)))
2
d


where εd is a d-primitive root of unity, will always give a minimal set of invariants.



Weierstrass equations with minimal moduli height I
Now we will consider the minimal models of curves over Ok. Let X be as in Eq. (8) and p = [I(f)] ∈WPnw(k).
Let us assume that for a prime p ∈ Ok, we have νp (wgcd(p)) = α. If we use the transformation x→ x

pβ
x, for

β ≤ α, then from Prop. 10 the set of invariants will become

1

p
d
2
β
? I(f)

To ensure that the moduli point p is still with integer coefficients we must pick β such that p
βd
2 divides pνp(xi) for

i = 0, . . . , n. Hence, we must pick β as the maximum integer such that β ≤ 2
d
νp(xi), for all i = 0, . . . , n. This is

the same β as in Prop. 11. The transformation

(x, y)→
(
x

pβ
, y

)
,

has corresponding matrix M =

[
1
pβ

0

0 1

]
with detM = 1

pβ
. Hence, from Prop. 10 the moduli point p changes as

p→
(

1
pβ

)d/2
? p, which is still an integer tuple. We do this for all primes p dividing wgcd(p). Notice that the new

point is not necessarily normalized in WPnw(k) since β is not necessarily equal to α. This motivates the following
definition.



Weierstrass equations with minimal moduli height II
Definition
Let X be a superelliptic curve defined over an integer ring Ok and p ∈WPnw(Ok) its corresponding weighted
moduli point. We say that X has a minimal model over Ok if for every prime p ∈ Ok the valuation of the tuple
at p

valp(p) := max {νp(xi) for all i = 0, . . . n} ,

is minimal, where νp(xi) is the valuation of xi at the prime p.

Theorem
Minimal models of superelliptic curves exist. An equation X : zmyd−m = f(x, y) is a minimal model over Ok, if
for every prime p ∈ Ok which divides p | wgcd (I(f)), the valuation valp of I(f) at p satisfies

valp(I(f)) <
d

2
qi, (13)

for all i = 0, . . . , n. Moreover, then for λ = wgcd(I(f)) with respect the weights (
⌊
dq0
2

⌋
, . . . ,

⌊
dqn
2

⌋
)the

transformation
(x, y, z)→

(x
λ
, y, λ

d
m z
)

gives the minimal model of X over Ok. If m|d then this isomorphism is defined over k.

Let us see an example from curves of genus 2.



Weierstrass equations with minimal moduli height III
Example
Let X be a genus 2 curve with equation z2y4 = f(x, y) as in ?? 4. By applying the transformation

(x, y, z)→
(x

6
, y, 63 · z

)
we get the equation

z2 = x6 + 24x5 + 186x4 + 696x3 + 1397x2 + 1470x+ 642. (14)

Computing the moduli point of this curve we get

p = [211 · 3 : −24 · 3 · 101 · 233 : 24 · 3 · 29 · 37 · 8837 : 26 · 3 · 11 · 23 · 547 · 1445831],

which is obviously normalized in WP3
w(Q) since wgcd(p) = 1. Hence, the Eq. (14) is a minimal model.

Corollary
There exists a curve X ′ given in ?? isomorphic to X over the field K := k

(
wgcd(p)

d
m

)
with minimal

SL2(Ok)-invariants. Moreover, if m|d then X and X ′ are k-isomorphic.

For hyperelliptic curves: m = 2 and d = 2g + 2. Hence, X and X ′ would always be isomorphic over k.

Corollary
Given a hyperelliptic curve X defined over a ring of integers Ok. There exists a curve X ′ k-isomorphic to X with
minimal SL2(Ok)-invariants.



Generalized greatest common divisors I
The following setup is taken from [14].
For any two elements α, β ∈ Ok the greatest common divisor is defined as

gcd(α, β) :=
∏
p∈Ok

pmin{νp(α), νp(β)}

The logarithmic greatest common divisor is

log gcd(α, β) :=
∑
ν∈M0

k

min {v(α), v(β)}

For a valuation ν ∈Mk, we define the extension of ν to k as

ν+ : k −→ [0,∞],

α −→ max{v(α), 0}.

The generalized logarithmic greatest common divisor of two elements α, β ∈ k is defined as

hgcd (α, β) :=
∑
ν∈Mk

min{ν+(α), ν+(β)}.



Generalized greatest common divisors II
Notice that ν+ can be viewed as a height function on P1(k) = k ∪ {∞}, where we set ν+(∞) = 0. This leads to
the generalized logarithmic greatest common divisor being viewed also as a height function:

Gν : P1(k)× P1(k)→ [0,∞]

(α, β)→ min{ν+(α), ν+(β)}

In view of the above we have
hgcd (α, β) =

∑
ν∈Mk

Gν .

In [14] it was given a theoretical interpretation of the function Gν in terms of blowups.

Theorem (Silverman 2004)
The generalized logarithmic gcd of α and β is equal to the Weil height of (α, β) on a blowup of (P1)2 with respect
to the exceptional divisor of the blowup.

So we generalize the notion of the greatest common divisor to any variety blowup along an arbitrary subvariety.

Let X/k be a smooth variety and Y/k ⊂ X/k be a subvariety of codimension r ≥ 2. Let π : X̃ → X be the
blowup of X along Y and let Ỹ = π−1(Y) be the exceptional divisor of the blowup. For any P ∈ X \ Y, denote
by P̃ = π−1(P ) ∈ X̃ . Then,

hgcd (P ;Y) = hX̃ ,Ỹ (P̃ ).



Generalized weighted greatest common divisors I
Details can be found in [11]. Let x = (x0, . . . , xn) ∈ On+1

k . Then,

wgcdw(x) =
∏
p∈Ok

p
min

{⌊
νp(x0)

q0

⌋
,...,

⌊
νp(xn)

qn

⌋}

The logarithmic weighted greatest common divisor is

logwgcdw(x) =
∑
ν∈M0

k

min

{⌊
νp(x0)

q0

⌋
, . . . ,

⌊
νp(xn)

qn

⌋}

For a valuation ν ∈Mk, we define the extension of ν to k as

ν+ : k −→ [0,∞],

α −→ max{v(α), 0}.

Consider now x = (x0, . . . , xn) ∈ kn+1. The generalized weighted greatest common divisor is defined as

hwgcd w(x) =
∏
p∈Ok

p
min

{⌊
ν+p (x0)

q0

⌋
,...,

⌊
ν+p (xn)

qn

⌋}



Generalized weighted greatest common divisors II
and the logarithmic generalized weighted greatest common divisor is

log hwgcd w(x) =
∑
ν∈M0

k

min

{⌊
ν+p (x0)

q0

⌋
, . . . ,

⌊
ν+p (xn)

qn

⌋}

Now we have

Tν : WPnw(k)→ [0,∞]

(x0, . . . , xn)→ min

{⌊
ν+p (x0)

q0

⌋
, . . . ,

⌊
ν+p (xn)

qn

⌋}

Then we have
hwgcd (x) =

∑
ν∈Mk

Tν(x)

Let π : X̃ →WPnw(k) be the blowup of WPnw(k) at the point O = (0, . . . , 0) and let E := π−1(O) be the
exceptional divisor for this blowup.



Generalized weighted greatest common divisors III
Lemma
Let X be a weighted projective variety and Y ⊂ X a closed subvariety. The blow-up π : X̃ → X of Y has the
following properties:
i) π |π−1(X\Y) : π−1(X \ Y)→ X \ Y is an isomorphism.
ii) the exceptional divisor E = π−1(Y) is an effective Cartier divisor on X̃ .

Lemma
Let ν ∈Mk. Then the local weighted height function on X̃ for the divisor E, corresponding to ν, is given by the
formula

λX̃ ,E(π−1(α0, . . . , αn), ν) = min

{⌊
ν+p (α0)

q0

⌋
, . . . ,

⌊
ν+p (αn)

qn

⌋}
for all (α0, . . . , αn) ∈ X (k) \ {(0, . . . , 0)}.
Then we have the following; see [11].

Theorem (Sh-19)
The generalized logarithmic weighted greatest common divisor is equal to the weighted height of x on a blowup
of WPnw(k) with respect to the exceptional divisor of the blowup. In other words

log hwgcd (x) =
∑
ν∈Mk

λX̃ ,E(π−1(x), ν) = λX̃ ,E
(
π−1(x), ν

)
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