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Abstract. We study genus 2 function fields with elliptic subfields of degree 2. The
locus L2 of these fields is a 2-dimensional subvariety of the moduli space M2 of
genus 2 fields. An equation for L2 is already in the work of Clebsch and Bolza.
We use a birational parametrization of L2 by a�ne 2-space to study the relation
between the j-invariants of the degree 2 elliptic subfields. This extends work of
Geyer, Gaudry, Stichtenoth and others. We find a 1-dimensional family of genus 2
curves having exactly two isomorphic elliptic subfields of degree 2; this family is
parameterized by the j-invariant of these subfields.
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1 Introduction

Sections 2 and 4 of this note are concerned with degree 2 elliptic subfields
E of a genus 2 function field K (All function fields are over an algebraically
closed field k of char. 6= 2). Jacobi [17] already noted that in this case K has
generators X and Y with

Y
2 = X

6 � s1X
4 + s2X

2 � s3 (1)

This generalized an example of Legendre. In the newer literature, Cassels [4]
chapter 14 deals with arithmetic aspects of this. Gaudry/Schost [7] show that
a genus 2 field K in char > 5 has at most two elliptic subfields of degree 2,
up to isomorphism, and compute the j-invariants of these elliptic subfields in
terms of Igusa invariants of K.

On the other hand, there is a group theoretic aspect. Degree 2 elliptic
subfields ofK correspond to elliptic involutions in the automorphism group
of K i.e. involutions di↵erent from the hyperelliptic involution e0. Thus our
topic is intimately related with the structure of G := Aut(K/k), and its
quotient Ḡ by < e0 >. Geyer [8] classifies the possibilities for Ḡ, gives a
brief discussion of G and also notes some consequences for isogenies between
elliptic subfields. His exposition is very brief because the main focus of his
paper is on a di↵erent theme. We study the structure of G in section 3. We
give a simple classification, based on group-theoretic properties of central
extensions of Ḡ, and relate it to our (u, v)-parametrization of L2 (see below).
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It follows that the number of G-classes of degree 2 elliptic subfields of K is 0,
1 or 2; and this number is 1 if and only if K has equation Y

2 = X(X4 � 1).
Brandt/Stichtenoth [3] more generally discuss automorphisms of hyperel-

liptic curves (in characteristic 0), whereas Brandt [2] (unpublished thesis) has
a very comprehensive classification of automorphism groups of hyperelliptic
curves in any characteristic and more generally, cyclic extensions of genus 0
fields.

The purpose of this note is to combine these two aspects, the geometric
and the group theoretic one. E.g., Gaudry/Schost use only the reduced au-
tomorphism group, using G itself would simplify their paper. They exclude
characteristics 3 and 5 where other types of automorphism groups appear.

In section 2 and 4 we study the locus L2 of genus 2 fields with elliptic sub-
fields of degree 2. Geyer [8] states that L2 is a rational surface whose singular
locus is the curve corresponding to reduced automorphism group V4 (see our
section 3, case III). We give an explicit birational parametrization of L2 by
parameters u, v; they are obtained by setting s3 = 1 in (1) and symmetriz-
ing s1, s2 by an action of S3. More precisely, those u, v parametrize genus 2
fields together with an elliptic involution of the reduced automorphism group
(Thm 1). We express the j-invariants of degree 2 elliptic subfields in terms
of u, v. The particular case that these j-invariants are all equal (for a fixed
genus 2 field) yields a birational embedding of the moduli space M1 of genus
1 curves into M2.

In section 4 we use the coordinates on M2 and L2 provided by invariant
theory. Expressing these coordinates in terms of our (u, v)-parameters makes
the parametrization of L2 explicit. From this we confirm the explicit equation
found by Gaudry/Schost [7] that is satisfied by all points of L2; and we see
directly that L2 is the full zero set of this equation.

More generally, there is literature on degree n elliptic subfields, e.g., Frey
[9], and Frey and Kani [10], and Lange [25]. The first author’s PhD thesis
[26] deals with the case n = 3. We further intend to study the cases n = 5
and 7.

In the last section, we study the action of Aut(K) on elliptic subfields F
of odd degree n � 7. The hyperelliptic involution fixes these subfields, hence
they are permuted by Ḡ. It is easy to see that stabilizer ḠF in Ḡ of F has order
 3. We study those cases where ḠF 6= 1, assuming char(k) = 0. This allows
us to use Riemann’s Existence Theorem to parametrize the extensionsK/F of
degree n with non-trivial automorphisms by certain triples of permutations
in Sn. To count the number of these triples of permutations is a di�cult
problem for general n. We use a computer search to construct all such triples
for n  21.

Notation: All function fields in this paper are over k, where k is an al-
gebraically closed field of characteristic 6= 2. Further, V4 denotes the Klein
4-group and D2n (resp., Zn) the dihedral group of order 2n (resp., cyclic
group of order n).
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2 Genus 2 Curves with Elliptic Involutions

Let K be a genus 2 field. Then K has exactly one genus 0 subfield of de-
gree 2, call it k(X). It is the fixed field of the hyperelliptic involution
e0 in Aut(K). Thus e0 is central in Aut(K). Here and in the following,
Aut(K) denotes the group Aut(K/k), more precisely. It induces a subgroup
of Aut(k(X)) which is naturally isomorphic to Aut(K) := Aut(K)/ < e0 >.
The latter is called the reduced automorphism group of K.

Definition 1. An elliptic involution of G = Aut(K) is an involution dif-
ferent from e0. Thus the elliptic involutions of G are in 1-1 correspondence
with the elliptic subfields of K of degree 2. An involution of Ḡ = Aut(K) is
called elliptic if it is the image of an elliptic involution of G.

If e1 is an elliptic involution in G then e2 := e0 e1 is another one. So
the elliptic involutions come naturally in (unordered) pairs e1, e2. These
pairs correspond bijectively to the elliptic involutions of Ḡ. The latter also
correspond to pairs E1, E2 of elliptic subfields of K of degree 2 with E1 \
k(X) = E2 \ k(X).

Definition 2. We will consider pairs (K, ✏) with K a genus 2 field and ✏ an
elliptic involution in Ḡ. Two such pairs (K, ✏) and (K 0

, ✏
0) are called isomor-

phic if there is a k-isomorphism ↵ : K ! K
0 with ✏

0 = ↵✏↵
�1.

Let ✏ be an elliptic involution in Ḡ. We can choose the generator X of
Fix(e0) such that ✏(X) = �X. Then K = k(X,Y ) where X,Y satisfy (1)
with s1, s2, s3 2 k, s3 6= 0 (follows from (10) and Remark 3 in section 3).
Further E1 = k(X2

, Y ) and E2 = k(X2
, Y X) are the two elliptic subfields

corresponding to ✏. Let j1 and j2 be their j-invariants.
Preserving the condition ✏(X) = �X we can further modify X such that

s3 = 1. Then
Y

2 = X
6 � s1X

4 + s2X
2 � 1 (2)

where the polynomial on the right has non-zero discriminant.
These conditions determine X up to coordinate change by the group

h⌧1, ⌧2i where ⌧1 : X ! ⇣6X, ⌧2 : X ! 1
X , and ⇣6 is a primitive 6-th

root of unity in k. (Thus ⇣6 = �1 if char(k) = 3). Here ⌧1 maps (s1, s2) to
(⇣46s1, ⇣

2
6s2), and ⌧2 switches s1, s2. Invariants of this action are:

u : = s1s2

v : = s
3
1 + s

3
2

(3)

In these parameters, the discriminant of the sextic polynomial on the right
hand side of (2) equals 64�2, where

� = �(u, v) = u
2 � 4v + 18u� 27 6= 0
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Further, the j-invariants j1 and j2 are given by:

j1 + j2 = 256
(v2 � 2u3 + 54u2 � 9uv � 27v)

�
(4)

j1 j2 = 65536
(u2 + 9u� 3v)

�2

The map (s1, s2) 7! (u, v) is a branched Galois covering with group S3

of the set {(u, v) 2 k
2 : �(u, v) 6= 0} by the corresponding open subset of

s1, s2-space if char(k) 6= 3. In any case, it is true that if s1, s2 and s
0
1, s

0
2 have

the same u, v-invariants then they are conjugate under h⌧1, ⌧2i.

Lemma 1. For (s1, s2) 2 k
2 with � 6= 0, equation (2) defines a genus 2 field

Ks1,s2 = k(X,Y ). Its reduced automorphism group contains the elliptic in-
volution ✏s1,s2 : X 7! �X. Two such pairs (Ks1,s2 , ✏s1,s2) and (Ks01,s

0
2
, ✏s01,s

0
2
)

are isomorphic if and only if u = u
0 and v = v

0 (where u, v and u
0
, v

0 are
associated with s1, s2 and s

0
1, s

0
2, respectively, by (3)).

Proof. An isomorphism ↵ between these two pairs yields K = k(X,Y ) =
k(X 0

, Y
0) with k(X) = k(X 0) such that X,Y satisfy (2) and X

0
, Y

0 satisfy the
corresponding equation with s1, s2 replaced by s

0
1, s

0
2. Further, ✏s1,s2(X

0) =
�X

0. Thus X
0 is conjugate to X under h⌧1, ⌧2i by the above remarks. This

proves the condition is necessary. It is clearly su�cient.

Theorem 1. i) The (u, v) 2 k
2 with � 6= 0 bijectively parameterize the

isomorphism classes of pairs (K, ✏) where K is a genus 2 field and ✏ an
elliptic involution of Aut(K). This parametrization is defined in Lemma 1.
The j-invariants of the two elliptic subfields of K associated with ✏ are given
by (4).

ii) The (u, v) satisfying additionally

(v2 � 4u3)(4v � u
2 + 110u� 1125) 6= 0 (5)

bijectively parameterize the isomorphism classes of genus 2 fields with
Aut(K)⇠=V4; equivalently, genus 2 fields having exactly 2 elliptic subfields of
degree 2. Their j-invariants j1, j2 are given in terms of u and v by (4).

Proof. i) follows from the Lemma.
iii) Condition (5) is equivalent to Aut(K) being a Klein 4-group, and to the
other stated condition, by 2.3, Case IV. The theorem follows.

Remark 1. (Isomorphic elliptic subfields) For each j 2 k, j 6= 0, 1728,�32678
there is a unique genus 2 field K with Aut(K) ⇠= V4 such that the two elliptic
subfields of K of degree 2 have the same given j-invariant. This generalizes as
follows: For each j 2 k, j 6= 0, there is a pair (K, ✏) as in the Theorem, unique
up to isomorphism, such that the two associated elliptic subfields of K have
the same given j-invariant and the corresponding u, v satisfy v = 9(u � 3).
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Mapping j 2 k \ {0} to the associated K gives an isomorphic embedding of
M1 \ {j = 0} into M2. Here Mg denotes the moduli space of genus g curves
(over k).

Proof. From (4) we get that the discriminant of (x� j1)(x� j2) is

216 (4u3 � v
2)(v � 9u+ 27)2�2

Thus the condition j1 = j2 is equivalent to either v = 9(u � 3) or v2 = 4u3.
The latter condition is equivalent to Aut(K) � D8 by Lemma 3(b) below.
Under the condition v = 9(u� 3) we get

u = 9� j

256
, v = 9(6� j

256
)

where j := j1 = j2. There is only one point on the curve v = 9(u � 3) with
�(u, v) = 0, namely u = 9, v = 54; it corresponds to j = 0. Further, for
j = 1728 (resp., j = �32678) we have Aut(K)⇠=D8, (resp., D12). For all the
other values of j, we have Aut(K)⇠=V4. This proves the first claim by part
i). The rest is proved in section 3 using Igusa coordinates on M2.

Remark 2. (2- and 3-isogenous elliptic subfields) The modular 3-polynomial

�3 = x4 � x3y3 + y4 + 2232xy(x+ y)� 1069956xy(x+ y) + 36864000(x3 + y3)

+ 2587918086x2y2 + 8900222976000xy(x+ y) + 452984832000000(x2 + y2)

� 770845966336000000xy + 1855425871872000000000(x+ y)

(6)

is symmetric in j1 and j2 hence becomes a polynomial in u and v via (4).
This polynomial factors as follows;

(4v � u
2 + 110u� 1125) · g1(u, v) · g2(u, v) = 0 (7)

where g1 and g2 are

g1 = �27008u6 + 256u7 � 2432u5v + v4 + 7296u3v2 � 6692v3u� 1755067500u

+ 2419308v3 � 34553439u4 + 127753092vu2 + 16274844vu3 � 1720730u2v2

� 1941120u5 + 381631500v + 1018668150u2 � 116158860u3 + 52621974v2

+ 387712u4v � 483963660vu� 33416676v2u+ 922640625

(8)

g2 = 291350448u6 � v4u2 � 998848u6v � 3456u7v + 4749840u4v2 + 17032u5v2

+ 4v5 + 80368u8 + 256u9 + 6848224u7 � 10535040v3u2 � 35872v3u3 + 26478v4u

� 77908736u5v + 9516699v4 + 307234984u3v2 � 419583744v3u� 826436736v3

+ 27502903296u4 + 28808773632vu2 � 23429955456vu3 + 5455334016u2v2

� 41278242816v + 82556485632u2 � 108737593344u3 � 12123095040v2

+ 41278242816vu+ 3503554560v2u+ 5341019904u5 � 2454612480u4v

(9)
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Vanishing of the first factor is equivalent to D12  G, see part II of the
next section. (Here again G = Aut(K)). If G = D12 then K has two classes
of elliptic involutions e, where e and e0e are non-conjugate; thus K has two
G-classes of elliptic subfields of degree 2, and subfields from di↵erent classes
are 3-isogenous. This was noted in [7] (for p 6= 5). There are exactly two fields
K such that D12 is properly contained in G, see part I of the next section.
In these cases, e and e0e are conjugate (and the corresponding elliptic curves
are 3-isogenous to themselves). In the case III of the next section, G has two
classes of elliptic involutions e; now e and e0e are conjugate, hence j1 = j2

in formula (4). Degree 2 elliptic subfields from di↵erent G-classes are now
2-isogenous, see [8].

3 Automorphism Groups of Genus 2 Fields

3.1 Preliminaries

LetK be a genus 2 field,G its automorphism group and e0 2 G the hyperellip-
tic involution. Then < e0 >= Gal(K/k(X)), where k(X) is the unique genus
0 subfield of degree 2 of K. The reduced automorphism group Ḡ = G/ < e0 >

embeds into Aut(k(X)/k) ⇠= PGL2(k).
The extension K/k(X) is ramified at exactly six places X = p1, . . . , p6

of k(X), where p1, . . . , p6 are six distinct points in P1 := P1
k. Let P :=

{p1, . . . , p6}. The corresponding places of K are called the Weierstrass
points of K. The group G permutes the 6 Weierstrass points, and Ḡ per-
mutes accordingly p1, . . . , p6 in its action on P1 as subgroup of PGL2(k). This
yields an embedding Ḡ ,! S6. We have K = k(X,Y ), where

Y
2 =

Y

p2P
p 6=1

(X � p) (10)

Because K is the unique degree 2 extension of k(X) ramified exactly at p1,
. . . , p6, each automorphism of k(X) permuting these 6 places extends to an
automorphism of K. Thus, Ḡ is the stabilizer in Aut(k(X)/k) ⇠= PGL2(k) of
the 6-set P .

Let � := PGL2(k). If l is prime to char(k) then each element of order l of

� is conjugate to

✓
✏l 0
0 1

◆
, where ✏l is a primitive l-th root of unity. Each such

element has 2 fixed points on P1 and other orbits of length l. If l = char(k)

then � has exactly one class of elements of order l, represented by

✓
1 1
0 1

◆
.

Each such element has exactly one fixed point on P1.

Lemma 2. Let g 2 G and ḡ its image in Ḡ.
a) Suppose ḡ is an involution. Then g has order 2 if and only if it fixes

no Weierstrass points.
b) If ḡ has order 4, then g has order 8.
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Proof. a) Suppose ḡ is an involution. We may assume ḡ(X) = �X.
Assume first that ḡ fixes no points in P . Then P = {a,�a, b,�b, c,�c}

for certain a, b, c 2 k. Thus

Y
2 = (X2 � a

2)(X2 � b
2)(X2 � c

2)

and so g(Y )2 = Y
2. Hence g(Y ) = ±Y , and g has order 2.

Now suppose ḡ fixes 2 points of P . Then P = {0,1, a,�a, b,�b}, hence

Y
2 = X(X2 � a

2)(X2 � b
2)

So g(Y )2 = �Y
2 and g(Y ) =

p
�1 Y . Hence g has order 4.

b) Each element of � of order 4 acts on P1 with two fixed points and all
other orbits of length 4. So if ḡ has order 4, then it fixes 2 points in P . Thus
g
2 has order 4, by a). Hence g has order 8.

Remark 3. The Lemma implies that an involution of Ḡ is elliptic if and only
if it fixes no point in its action on the 6-set P ; equivalently, if and only if it
induces an odd permutation of P .

Remark 4. (i) If a finite subgroup H of � with (|H|, char(k)) = 1 fixes a point

of P1 then H is cyclic: Indeed, we may assume H  {
✓
1 a

0 b

◆•
: b 2 k

⇤
, a 2

k}. The normal subgroup defined by b = 1 intersects H trivially, hence H

embeds into its quotient which is isomorphic k
⇤. Hence H is cyclic.

(ii) The degree 2 central extensions of S4:
Their number is |H2(S4, C2)| = 4 (see [3]). We construct them as follows.

Let W be the subgroup of GL4(3) generated by

S
0 =

✓
S 0
0 I

◆
, T

0 =

✓
T 0
0 U

◆

where S, T, U 2 GL2(3) = hS, T i and S
3 = 1 = T

2, whereas U has order 4.
Then W is a central extension of PGL2(3)⇠=S4 with kernel {1, w1, w2, w3},
where

w1 =

✓
I 0
0 �I

◆
, w2 =

✓
�I 0
0 �I

◆
, w3 = w1w2.

The Wi = W/hwii, i = 1, 2, 3 and the split extension comprise all degree
2 central extensions of S4. They are inequivalent since W3 has no elements of
order 8 (as opposed to W1 and W2), whereas transpositions of S4 lift to invo-
lutions (resp., elements of order 4) inW1 (resp.,W2). Note thatW1

⇠=GL2(3).

Remark 5. Suppose f1, f2, f3 are quadratic polynomials in k[z] such that their
product has non-zero discriminant. Then there is an involution in � switching
the two roots of each fi if and only if f1, f2, f3 are linearly dependent in k[z]
(over k). See Cassels [4], Thm. 14.1.1, or Jacobi [17].
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Lemma 3. Suppose e is an elliptic involution of G and ✏ its image in Ḡ. Let
u, v be the parameters associated with the pair (K, ✏) by Theorem 1.
(a) There exists an involution d in G such that the group H =< d, e > acts
transitively on the 6-set P if and only if

4v � u
2 + 110u� 1125 = 0 (11)

In this case, < H, e0 > ⇠=D12 acts as S3 (regularly) on P .
(b) There exists an involution d in G such that H =< d, e > has an orbit Q
of length 4 on P if and only if

v
2 � 4u3 = 0 (12)

In this case, H ⇠=D8 acts as V4 on Q.
(c) If neither (a) nor (b) holds then G⇠=V4.

Proof. We may assume that K = Ks1,s2 and ✏ = ✏s1,s2 as in Lemma 1. Then
P = {a,�a, b,�b, c,�c} for a, b, c 2 k with abc = 1, a2 + b

2 + c
2 = s1,

a
2
b
2+ a

2
c
2+ b

2
c
2 = s2. Plugging this (with c = 1

ab ) into (3) expresses u, v as
rational functions of a, b. Substituting these expressions for u, v in (11) and
(12) yields

(a4b3 � a + a3b + b + 6a2b2 + ab3 � b4a3)(a4b3 + a � a3b + b + 6a2b2 � ab3 + b4a3)

(a4b3 � a � a3b + b � 6a2b2 � ab3 � b4a3)(a4b3 + a + a3b + b � 6a2b2 + ab3 + b4a3) = 0
(13)

respectively

(b� 1)2(b+ 1)2(b2 + b+ 1)2(b2 � b+ 1)2(a� 1)2(a+ 1)2(a2 + a+ 1)2

(a2 � a+ 1)2(ab� 1)2(ab+ 1)2(a2b2 + ab+ 1)2(a2b2 � ab+ 1)2 = 0
(14)

(a) Such d exists (by Lemma 2) if and only if there is an involution � 2 �

fixing P but no point in P , and no 4-set in P fixed by e. By Remark 5,
the latter is equivalent to the vanishing of certain determinants expressed in
terms of a, b. These determinants exactly correspond to the factors in (13).
This proves the first claim in (a).

Let H̄ the permutation group on the 6-set P induced by H. We know
H̄ is dihedral and transitive, hence is (regular) S3 or D12. But D12 is not
generated by two involutions with no fixed points. This proves (a).

(b) The first claim is proved as in (a), using the factorization of v2�4u3 in
(14). Now H̄ is dihedral and transitive on the 4-set Q, hence is V4 or D8. But
D8 is not generated by two involutions with no fixed points. Thus H ⇠=V4.
Since de fixes the two points in P \Q, it has order 4. The claim follows.

(c) Suppose neither (a) nor (b) holds. Then ✏ is the only elliptic involution
in Ḡ. Hence ✏ is central in Ḡ. If � is another involution in Ḡ, it follows that
�✏ is elliptic, contradiction. Thus ✏ is the only involution in Ḡ. Hence either
Ḡ =< ✏ > or Ḡ⇠=Z6. The latter case cannot occur, see the case m = 6 in the
next section.
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3.2 The list of automorphism groups

Since Ḡ ,! S6, all elements of Ḡ have order  6. For each m = 4, 5, 6 with
(p,m) = 1 there is a unique genus 2 field K such that Ḡ contains an element
of order m. Indeed, we may assume � : x 7! cx with c 2 k

⇤ of order m. We
may further normalize the coordinate X such that 1 2 P . Then P consists
of all powers of c plus 0 (for m  5) and 1 (for m = 4). Thus P is also
invariant under x 7! 1/x for m = 4 and m = 6. For p = 5 there is also a
unique genus 2 field K such that Ḡ contains an element of order 5.

I. Sporadic cases: Ḡ has elements of order m � 4.

m = 4: Here K has equation Y
2 = X(X4 � 1), and Ḡ⇠=S4 (resp.,

Ḡ⇠=S5, acting as PGL2(5) on P ⇠= P1(F5) ) if p 6= 5 (resp., p = 5). In each
case, Ḡ is transitive on P and has exactly one class of elliptic involutions
(corresponding to the transpositions in S4 resp. S5). The associated value of
(u, v) is (52,�2 · 53). By Remark 4 and Lemma 2 we have

G ⇠= GL2(3) if p 6= 5

and
G ⇠= 2+S5 if p = 5

(the degree 2 cover of S5 where transpositions lift to involutions).

m = 6: If p = 5 then we are back to the previous case because S5 has an
element of order 6. The case p = 3 doesn’t occur here. Now assume p > 5.
Then K has equation Y

2 = X
6 � 1 and Ḡ⇠=D12. Thus Ḡ has two classes

of elliptic involutions, one of them consisting of the central involution. The
two associated values of (u, v) are (0, 0) and (32 52, 2 33 53). (The first
corresponds to the central involution x 7! �x of Ḡ).

By Lemma 3(b), the inverse image in G of a Klein 4-subgroup of Ḡ is
⇠=D8. It is a Sylow 2-subgroup of G. Thus

G ⇠= Z3oD8

where elements of order 4 in D8 act on Z3 by inversion.

m = 5: Here p 6= 5 and K has equation Y
2 = X(X5�1). Further, Ḡ⇠=Z5,

G⇠=Z10. There are no elliptic involutions in this case.

II. The 1-dimensional family with G ⇠= D12

Here we assume Ḡ has an element � of order 3, but none of higher order.
Suppose first p 6= 3. Then we may assume � : x 7! cx with c 2 k

⇤ of order
3; also 1 2 P . Then P = {1, c, c2, a, ac, ac2} for some a 2 k

⇤. The monic
polynomials (z � 1)(z � a), (z � c)(z � c

2
a), (z � c

2)(z � ca) have the same
constant coe�cient, hence are linearly dependent. Hence by Remark 3 there
is an elliptic involution ✏ in Ḡ with ✏(1) = a, ✏(c) = c

2
a, ✏(c2) = ca. The
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group < ✏, � > is ⇠= S3, acting regularly on P . Hence by Lemma 3(a) the
parameters associated with the pair (K, ✏) satisfy (11):

4v � u
2 + 110u� 1125 = 0

Intersection of this curve with � = 0 is the single point (9, 54). Also the
parameter values (52,�2 53) and (32 52, 2 33 53) from the previous case are
excluded now. (These values satisfy (11) which is confirmed by the fact that
the corresponding groups Ḡ contain a regular S3). In the present case, S3 is
all of Ḡ, and by Lemma 3(a) we have G ⇠= D12. If p = 3 then we may assume
� : x 7! x + 1, and P = {0, 1, 2, a, a + 1, a + 2}. As above we see there is an
elliptic involution ✏ in Ḡ with < ✏, � >⇠= S3. The rest is as for p 6= 3 (only
that the parameter value (0, 0) doesn’t occur because it makes � zero).

III. The 1-dimensional family with G ⇠= D8

In the remaining cases, Ḡ has only elements of order  2. Hence Ḡ = {1},
Z2 or V4. Here we assume Ḡ ⇠= V4. Then two of its involutions are elliptic.
By Lemma 3(b) it follows that G ⇠= D8 and the u, v parameters satisfy

v
2 = 4u3

Intersection of this curve with � = 0 consists of the two points (9, 54) and
(1,�2). The values (0, 0), (52,�2 53) and (32 52, 2 33 53) from Case I are
excluded.

IV. The 2-dimensional family with G ⇠= V4

If Ḡ ⇠= Z2 then its involution ✏ is elliptic. Indeed, we may assume ✏ : x 7!
�x and 1 2 P ; if ✏ is not elliptic then P = {0,1, 1,�1, a,�a} and so Ḡ

contains the additional involution x 7! �a/x. Thus G ⇠= V4. By I–III, this
case occurs if and only if the pair (K, ✏) has u, v parameters with

(4v � u
2 + 110u� 1125) (v2 � 4u3) 6= 0

V. The generic case G ⇠= Z2

This occurs if and only if K has no elliptic involutions and is not isomor-
phic to the field Y

2 = X(X5 � 1). The existence of elliptic involutions is
equivalent to the condition in Theorem 3 (in terms of classical invariants).

Summarizing:

Theorem 2. The automorphism group G of a genus 2 field K in character-
istic 6= 2 is isomorphic to Z2, Z10, V4, D8, D12, Z3oD8, GL2(3), or 2+S5.
In the first (resp., last) two cases, G has no (resp., exactly one) class of el-
liptic involutions; in the other cases, it has two classes. Correspondingly, K
has either 0, 1 or 2 classes (under G-action) of degree 2 elliptic subfields; the
case of one class occurs if and only if K has equation Y

2 = X(X4 � 1).

It was noted by Geyer [8] and Gaudry/Schost [7] that if G = D8 (resp.,
D12) then degree 2 elliptic subfields in di↵erent classes are 2-isogenous (resp.,
3-isogenous).
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4 The locus of genus 2 curves with elliptic involutions

4.1 Classical invariants and the moduli space M2

Consider a binary sextic i.e. homogeneous polynomial f(X,Z) in k[X,Z] of
degree 6:

f(X,Z) = a6X
6 + a5X

5
Z + · · ·+ a0Z

6

Classical invariants of f(X,Z) are the following homogeneous polyno-
mials in k[a0, . . . , a6] of degree 2i, for i = 1, 2, 3, 5.

J2 := � 240a0a6 + 40a1a5 � 16a2a4 + 6a2
3

J4 :=48a0a
3
4 + 48a3

2a6 + 4a2
2a

2
4 + 1620a2

0a
2
6 + 36a1a

2
3a5 � 12a1a3a

2
4 � 12a2

2a3a5 + 300a2
1a4a6

+ 300a0a
2
5a2 + 324a0a6a

2
3 � 504a0a4a2a6 � 180a0a4a3a5 � 180a1a3a2a6 + 4a1a4a2a5

� 540a0a5a1a6 � 80a2
1a

2
5

J6 := 176a2
1a

2
5a

2
3 + 64a2

1a
2
5a4a2 + 1600a3

1a5a4a6 + 1600a1a
3
5a0a2

� 160a0a
4
4a2 � 96a2

0a
3
4a6 + 60a0a

3
4a

2
3 + 72a1a

4
3a5 � 24a1a

3
3a

2
4

� 160a4
2a4a6 � 96a3

2a0a
2
6 + 60a3

2a
2
3a6 � 24a2

2a
3
3a5 + 8a2

2a
2
3a

2
4

� 900a2
2a

2
1a

2
6 � 24a3

2a
3
4 � 36a4

2a
2
5 � 36a2

1a
4
4 + 424a0a

2
4a

2
2a6

+ 492a0a
2
4a2a3a5 + 20664a2

0a4a
2
6a2 + 3060a2

0a4a6a3a5 � 468a0a4a
2
3a2a6

� 198a0a4a
3
3a5 � 640a0a4a

2
2a

2
5 + 3472a0a4a2a5a1a6 � 18600a0a4a

2
1a

2
6

� 876a0a
2
4a1a6a3 + 492a1a3a

2
2a4a6 � 238a1a

2
3a2a4a5 + 76a1a3a2a

3
4

+ 3060a1a3a0a
2
6a2 + 1818a1a

2
3a0a6a5 � 198a1a

3
3a2a6 + 26a1a3a

2
2a

2
5

� 1860a2
1a3a2a5a6 + 330a2

1a
2
3a6a4 + 76a3

2a4a3a5 � 876a2
2a0a6a3a5

+ 616a3
2a5a1a6 + 2250a2

0a
3
5a3 � 900a2

0a
2
5a

2
4 � 10044a2

0a
2
6a

2
3

+ 28a1a
2
4a

2
2a5 � 640a2

1a
2
4a2a6 + 26a2

1a
2
4a3a5 � 1860a1a4a0a

2
5a3

+ 616a1a
3
4a0a5 � 18600a2

0a
2
5a6a2 + 59940a2

0a5a
2
6a1 + 330a0a

2
5a

2
3a2

� 119880a3
0a

3
6 � 320a3

1a
3
5 � 2240a2

1a
2
5a0a6 + 2250a3

1a3a
2
6 + 162a0a6a

4
3

J10 :=a�1
6 ResX(f,

@f

@X
)

(15)

Here J10 is the discriminant of f . It vanishes if and only if the binary sextic
has a multiple linear factor. These J2i are invariant under the natural action
of SL2(k) on sextics. Dividing such an invariant by another one of the same
degree gives an invariant under GL2(k) action.

Two genus 2 fields K (resp., curves) in the standard form Y
2 = f(X, 1)

are isomorphic if and only if the corresponding sextics are GL2(k) conjugate.
Thus if I is a GL2(k) invariant (resp., homogeneous SL2(k) invariant), then
the expression I(K) (resp., the condition I(K) = 0) is well defined. Thus the
GL2(k) invariants are functions on the moduli space M2 of genus 2 curves.
This M2 is an a�ne variety with coordinate ring

k[M2] = k[a0, . . . , a6, J
�1
10 ]GL2(k) = subring of degree 0 elements in

k[J2, . . . , J10, J
�1
10 ], see Igusa [16].
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4.2 Classical invariants of genus 2 fields with elliptic involutions

Under the correspondence in Theorem 4 (resp., Remark 5), the classical in-
variants of the field K are:

J2 = 240 + 16u

J4 = 48v + 4u2 + 1620� 504u

J6 = �20664u+ 96v � 424u2 + 24u3 + 160uv + 119880

J10 = 64(27� 18u� u
2 + 4v)2

(16)

respectively

J2 = 384� 1

16
j

J4 = 2�14
j
2

J6 = 2�21
j
2(�3j + 53248)

J10 = 2�26
j
4

Proof of Remark 1, concluded: The latter formulas explicitly define
(in homogeneous coordinates) the map ofM1\{j = 0} toM2 from Remark 1.
The function J4J6

J10
2 k[M2] (resp.,

J2J4
J6

) is a linear function in j if char(k) 6= 3
(resp., char(k) = 3). Thus the map is an embedding. This completes the
remaining part of the proof of Remark 1.

Theorem 3. The locus L2 of genus 2 fields with elliptic subfields of degree
2 is the closed subvariety of M2 defined by the equation

8748J10J
4
2J

2
6 � 507384000J2

10J
2
4J2 � 19245600J2

10J4J
3
2 � 592272J10J

4
4J

2
2 + 77436J10J

3
4J

4
2

�81J3
2J

4
6 � 3499200J10J2J

3
6 + 4743360J10J

3
4J2J6 � 870912J10J

2
4J

3
2J6 + 3090960J10J4J

2
2J

2
6

�78J5
2J

5
4 � 125971200000J3

10 + 384J6
4J6 + 41472J10J

5
4 + 159J6

4J
3
2 � 236196J2

10J
5
2 � 80J7

4J2

�47952J2J4J
4
6 + 104976000J2

10J
2
2J6 � 1728J5

4J
2
2J6 + 6048J4

4J2J
2
6 � 9331200J10J

2
4J

2
6

+12J6
2J

3
4J6 + 29376J2

2J
2
4J

3
6 � 8910J3

2J
3
4J

2
6 � 2099520000J2

10J4J6 + 31104J5
6 � 6912J3

4J
3
64

�J7
2J

4
4 � 5832J10J

5
2J4J6 � 54J5

2J
2
4J

2
6 + 108J4

2J4J
3
6 + 972J10J

6
2J

2
4 + 1332J4

2J
4
4J6 =0

(17)

The map k
2 \ {� = 0} ! L2 described in Theorem 1 is given (in homo-

geneous coordinates) by the formulas (16). It is birational and surjective if
char(k) 6= 3.

Proof. The map is surjective by Theorem 1 and its image is contained in the
subvariety of M2 defined by (17); the latter is checked simply by substituting
the values of J2i from (16). (We found equation (17) by eliminating u and v

from equations (16); this equation in di↵erent coordinates was also found in
[7]).
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Conversely assume K is a genus 2 field with equation Y
2 = f(X) whose

classical invariants satisfy (17). We have to show that K has an elliptic invo-
lution. We may assume

f(X) = X(X � 1)(X � a1)(X � a2)(X � a3)

by a coordinate change. Expressing the classical invariants of K in terms
of a1, a2, a3, substituting this into (17) and factoring the resulting equation
yields

(a1a2 � a2 � a3a2 + a3)
2(a1a2 � a1 + a3a1 � a3a2)

2(a1a2 � a3a1 � a3a2 + a3)
2

(a3a1 � a1 � a3a2 + a3)
2(a1a2 + a1 � a3a1 � a2)

2(a1a2 � a1 � a3a1 + a3)
2

(a3a1 + a2 � a3 � a3a2)
2(�a1 + a3a1 + a2 � a3)

2(a1a2 � a1 � a2 + a3)
2

(a1a2 � a1 + a2 � a3a2)
2(a1 � a2 + a3a2 � a3)

2(a1a2 � a3a1 � a2 + a3a2)
2

(a1a2 � a3)
2(a1 � a3a2)

2(a3a1 � a2)
2 =0

(18)

K has an elliptic involution if and only if there is an involution ✏ 2 PGL2(k)
permuting the set {0, 1,1, a1, a2, a3} fixed point freely. By Remark 5, the
latter is equivalent to the vanishing of certain determinants expressed in
terms of a1, a2, a3. These determinants exactly correspond to the factors in
(17). This proves that L2 is the closed subvariety of M2 defined by (17).

It remains to show the map in the Theorem is birational. By Theorem
1 we know it is bijective on an open subvariety of k2. This implies that the
corresponding function field extension k(u, v)/k(L2) is purely inseparable,
hence its degree d is a power of p = char(k) (or is 1 in characteristic 0). We
need to show d = 1. For this we use the functions

J4

J
2
2

,
J2J4 � 3J6

J
3
2

,
J10

J
5
2

in k(M2). The images of these functions in k(u, v) are:

i1 =
1

64

12v + u
2 + 405� 126u

(15 + u)2

i2 = � 1

512

(�1404v + 729u2 � 3645 + 4131u� 36uv + u
3)

(15 + u)3

i3 =
1

16384

(�27 + 18u+ u
2 � 4v)2

((15 + u)5

(19)

We compute that u satisfies an equation of degree  3 over the field
k(i1, i2) whose coe�cients are not all zero:

(128i2 � 48i1 + 1)u3 + (5760i2 + 117� 3312i1)u
2 + (86400i2

�66960i1 � 2349)u+ 432000i2 � 421200i1 + 10935 = 0
(20)
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Thus d = 1 (since p > 3) and this completes the proof.

Remark 6. In characteristic 3 one needs to replace v by s1 + s2 to get a
birational parametrization.

5 Action of Aut(K) on degree n elliptic subfields

In this section we assume char(k) = 0. Let k(X), K, G, Ḡ as in section 3.1
and let p1, ..., p6 the 6 places of k(X) ramified in K.

5.1 Elliptic subfields of K of odd degree

Consider an elliptic subfield F ofK of odd degree n = [K : F ] � 7. We assume
the extension K/F is primitive, i.e., has no proper intermediate fields. The
following facts are well-known (see [9], [11]): The hyperelliptic involution of
K fixes F , hence [F : k(Z)] = 2, where k(Z) = F \ k(X). Let q1, ..., qr

be the places of k(Z) ramified in k(X). Then r = 4 or r = 5, and we can
label p1, ..., p6 such that the following holds: pi lies over qi for i = 1, 2, 3, and
p4, p5, p6 lie over q4. Further one of the following holds:

(1): Here r = 5. All places of k(X) over q1, ..., q4 di↵erent from p1, ..., p6 have
ramification index 2; the pi’s have index 1. Finally, there is one place p(2)

of ramification index 2 over q5, and all other places over q5 have index 1.
(2): Here and in the following cases we have r = 4. Here there is one place

p
(4) of ramification index 4 over q4. All other places of k(X) over q1, ..., q4

di↵erent from p1, ..., p6 have ramification index 2; the pi’s have index 1.
(3): Like case (2), only that p(4) lies over q1.
(4): All places of k(X) over q1, ..., q4 di↵erent from p1, ..., p6 have ramification

index 2. The pi’s have index 1 except for p1, which has index 3.
(5): Like case (4), only now p4 has index 3.

5.2 Elliptic subfields of K fixed by an automorphism of K

Let g 6= 1 in Ḡ = Aut(K). Suppose g fixes F . (This is a well-defined statement
because the hyperelliptic involution — generating the kernel of G ! Ḡ —
fixes F ). Then g has order 2 or 3. If g has order 2 it is not an elliptic involution,
and either we are in case (4) and n ⌘ 3 mod 4, or we are in case (5) and
n ⌘ 1 mod 4. If g has order 3 then either we are in case (1) and n 6⌘ 1 mod
3, or we are in case (2) and n 6⌘ 2 mod 3.

Proof: g acts on k(X) and k(Z), permuting the ramified places of the exten-
sion k(X)/k(Z). Thus g fixes the sets {p1, p2, p3} and {p4, p5, p6}, and the
places p

(2) resp. p(4). Thus g cannot have order > 3. Suppose g has order
2. Then it fixes two of the pi’s, hence is not an elliptic involution and there
is no p

(2) or p
(4). Thus we are in case (4) or (5). In case (4) (resp., (5)), g
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permutes the (n� 3)/2 (resp., (n� 5)/2) places over q1 (resp., q4) of index 2
fixed point freely, hence n ⌘ 3 mod 4 (resp., n ⌘ 1 mod 4).

Now suppose g has order 3. Then g permutes p1, p2, p3 (resp., p4, p5, p6)
transitively, hence we are in case (1) or (2). In case (1) (resp., (2)), g fixes
p
(2) (resp., p(4)), hence permutes the n � 2 (resp., (n � 7)/2) places over q5

(resp., q4) of index 1 (resp., 2); since it fixes at most one of those places, we
have n 6⌘ 1 mod 3 (resp., n 6⌘ 2 mod 3).

5.3 Application of Riemann’s existence theorem

Let ⇣3 be a primitive third root of 1 in k. Let g and F as above. We can choose
the coordinate Z such that g(Z) = ⇣Z, where ⇣ = ⇣3 (resp., ⇣ = �1) in cases
(1) and (2) (resp., (4) and (5)). We can further normalize Z such that in case
(1) (resp., (2) resp., (4) resp., (5)) the places q1, ..., qr have Z-coordinates
⇣
2
, 1, ⇣, 0,1 (resp., 1, 1, ⇣, ⇣2 resp., 0,1, 1,�1 resp., 0,1, 1,�1).
As used in [11], by Riemann’s existence theorem the equivalence classes

of primitive extensions k(X)/k(Z) of degree n with fixed branch points
q1, ..., qr and ramification behavior as in (1)–(5) correspond to classes of tu-
ples (�1, ...,�r) generating the symmetric group Sn or alternating group An

such that �1 · · ·�r = 1 and

(1): �i is an involution with exactly one fixed point for i = 1, 2, 3, resp.,
three fixed points for i = 4, and �5 is a transposition.

(2): �i is an involution with exactly one fixed point for i = 1, 2, 3, and �4

has three fixed points, one 4-cycle and the rest are 2-cycles.
(3): �i is an involution with exactly one fixed point for i = 2, 3, and with

three fixed points for i = 4; and �1 has one fixed point, one 4-cycle and
the rest are 2-cycles.

(4): �i is an involution with exactly one fixed point for i = 2, 3, and with
three fixed points for i = 4; and �1 has no fixed points, one 3-cycle and
the rest are 2-cycles.

(5): �i is an involution with exactly one fixed point for i = 1, 2, 3, and �4

has two fixed points, one 3-cycle and the rest are 2-cycles.

By ”classes of tuples” we mean orbits under the action of Sn by inner
automorphisms (applied component-wise to tuples). In the case k = C,
the above correspondence depends on the choice of a ”base point” q0 in
P1 \ {q1, ..., qr} and standard generators �1, ..., �r of the fundamental group
� (q0) := ⇡1(P1 \ {q1, ..., qr}, q0). In particular, �1 · · · �r = 1. As ”base point”
we can take any simply connected subset of P1 \ {q1, ..., qr}. The correspond-
ing extensions C(X)/C(Z) are defined over Q̄, and so one can immediately
pass to the case of general k (algebraically closed of char. 0). Here is our
choice of the �i in case (1); we depict them together with their images �

0
i

under the map z 7! ⇣z. We depict �1, ..., �4, then �5 is given by the basic
relation �1 · · · �5 = 1. All loops are oriented counter-clockwise.
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⇣•
�0
1 = �2

�0
2 = �3

�0
3 = �4�1�

�1
4

�0
4 = �4

�0
5 = ��1

1 �5�1

⇣q0 •

�0
2

oo

�0
1

⇢⇢
�0
4

ww
�0
3

  

0• 1•

q0•

�1

oo

�2

DD

�4

ZZ

�3

jj

Q0

⇣2•

Fig. 1. The case q1, ..., qr = ⇣2, 1, ⇣, 0,1, where ⇣ = ⇣3

Here we choose q0 as depicted. Let Q0 be the line segment joining q0 and
⇣q0. We identify � (q0) and � (⇣q0) via the canonical isomorphisms � (q0) ⇠=
� (Q0) ⇠= � (⇣q0). This yields the above formulas expressing the �

0
i in terms

of the �i.
The tuples (�1, ...,�r) corresponding to the extension C(X)/C(Z), where

Z = �(X), are now obtained as follows (see e.g., [29], Ch. 4): Let � also denote
the map P1 ! P1, x 7! �(x). Then lifting of paths gives an action of � (q0)
on �

�1(q0), hence a homomorphism of � (q0) to Sn. (This homomorphism is
determined up to composition by an inner automorphism of Sn — re-labeling
of the n elements of ��1(q0) ). Finally, take �i to be the image of �i under
this homomorphism.

This correspondence between tuples and extensions of C(Z) depends also
on the choice of the coordinate Z (but not on the choice of X). If we replace
Z by Z

0 := ⇣Z, then the tuple (�1, ...,�r) gets replaced by (�0
1, ...,�

0
r), where

�
0
i is given in terms of �1, ...,�r by the same formula that expresses �

0
i in

terms of �1, ..., �r; see Figure 1 above in case (1). In the other cases (where
r = 4) these formulas appear already in [23] and [21].

(1)
�
0
1 = �2 (21)

�
0
2 = �3

�
0
3 = �4�1�

�1
4

�
0
4 = �4

�
0
5 = �

�1
1 �5�1
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(2)
�
0
1 = �2

�
0
2 = �3

�
0
3 = �1

�
0
4 = �

�1
1 �4�1

(4) and (5)
�
0
1 = �2�3�

�1
2

�
0
2 = �2

�
0
3 = �1

�
0
4 = �

�1
1 �4�1

Since Z
0 = g(Z) = g(�(X)) = �(g(X)), where g(X) is another generator

of C(X), we see that the tuple (�0
1, ...,�

0
r) is in the same class as (�1, ...,�r).

Conversely, the latter condition is also su�cient for the automorphism Z 7!
⇣Z to extend to an automorphism of C(X). It will permute p1, ..., p6, hence
extend to an automorphism of K fixing F .

5.4 Symmetric tuples

Primitive extensionsK/F , whereK is a genus 2 field and F an elliptic subfield
of odd degree n � 7 with fixed branch points of k(X)/k(Z) correspond to
classes of tuples (�1, ...,�r) generating Sn or An with �1 · · ·�r = 1 as in
(1)—(5). Let Tj(n) be the set of such tuple classes in case (j), j = 1, ..., 5.
The number of these tuple classes grows polynomially with n. (Kani has an
exact formula, proved through a di↵erent interpretation of this number, see
[14]). E.g., for n = 7, 9, 11, 13 we have |T1(n)| = 168, 432, 1100 and 2184,
respectively.

The condition that F is fixed by an automorphism ofK (di↵erent from the
identity and the hyperelliptic involution) means that (�1, ...,�r) is in the same
class as the tuple (�0

1, ...,�
0
r) defined in (21). Call such tuples symmetric.

Let Sj(n) be the set of symmetric tuple classes in Tj(n). The set Sj(n) can be
parameterized by certain triples, which we describe in the next section. This
allows us to compute the cardinality of Sj(n) for n  21, using a random
search to find the triples and the structure constant formula [22], Prop. 5.5.
to show that we have found all. This is based on GAP [6] and in particular
[19]. The result is stated in Table 1.

From the table it appears that the necessary conditions in section 5.2
(for the existence of extensions K/F with non-trivial automorphisms) are
su�cient in most cases (at least for those n in reach of computer calculation).
It is intriguing that the number of these extensions seems to be very small,
but mostly > 1.
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n = 7 n = 9 n = 11 n = 13 n = 15 n = 17 n = 19 n = 21

j = 1 � 3 2 � 6 3 � 2

j = 2 1 0 � 2 0 � 4 0

j = 4 2 � 3 � 4 � 5 �

j = 5 � 3 � 3 � 4 � 5

Table 1. |Sj(n)| = number of symmetric tuple classes

5.5 Parametrization of symmetric tuples

Let (�1, ...,�5) be a tuple representing an element of S1(n). Thus there is

⌧ 2 Sn with �
0
i = �

⌧
i for i = 1, ..., 5. Then �

⌧3

i = �
�4
i , hence ⌧

3 = �4. Thus
all �i can be expressed in terms of ⌧ and � := �1:

�1 = �, �2 = �
⌧
, �3 = �

⌧2

, �4 = ⌧
3
, �5 = (�⌧�1)3 (22)

Passing from (�, ⌧ ⇢) to (�1, ...,�5) is a case of ”translation”, see [13] and
[21]. Recall that the index Ind(⇡) of ⇡ 2 Sn is defined as n minus the number
of orbits of ⇡. Since � = �1 is an involution with exactly one fixed point, we
have Ind(�) = (n� 1)/2. From ⌧

3 = �4 it follows that

Ind (⇢) 

8
><

>:

5(n� 3)

6
+ 2 if n ⌘ 0 mod 3

5(n� 5)

6
+ 3 if n ⌘ 2 mod 3

(23)

where equality holds if and only if ⌧ has cycle type as in the Lemma below
(case j = 1). Further, for ⇢ := �⌧

�1 we have ⇢3 = �5 (a transposition). Hence

Ind (⇢) 

8
><

>:

2(n� 3)

3
+ 1 if n ⌘ 0 mod 3

2(n� 2)

3
+ 1 if n ⌘ 2 mod 3

(24)

where equality holds if and only if ⇢ is as in the Lemma below (case j = 1).
It follows that Ind(�)+Ind(⌧)+Ind(⇢)  2(n�1). The reverse inequality

holds by the Riemann Hurwitz formula since < �, ⌧, ⇢ >= Sn. Hence ⌧ and
⇢ are of cycle type as claimed in the following Lemma.

Lemma 4. There is a bijection between Sj(n) and the set of classes of triples
(�, ⌧, ⇢) generating Sn (resp., An) with ⇢⌧ = �, where � is an involution with
exactly one fixed point and ⌧, ⇢ are of the following cycle type:

j=1: ⇢ has one 2-cycle, at most one fixed point and the rest are 3-cycles;
⌧ has one 3-cycle, at most one 2-cycle and the rest are 6-cycles.
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j=2: ⌧ has at most one fixed point and its other cycles are all 3-cycles;
⇢ has one 4-cycle, one 3-cycle, at most one 2-cycle and the rest are 6-
cycles.

j=4: ⇢ has one fixed point, one 2-cycle and the rest are 4-cycles;
⌧ has one 3-cycle and the rest are 4-cycles.

j=5: ⇢ has one 2-cycle, one 3-cycle and the rest are 4-cycles;
⌧ has one fixed point and its other cycles are all 4-cycles.

Proof. We only discuss case (1), the other cases are similar. In this case, it
remains to show that for given �, ⌧, ⇢ as in the Lemma, formulas (22) define
a tuple (�1, ...,�5) representing an element of S1(n). First one verifies that
the tuple (�0

1, ...,�
0
5) defined as in (21) is conjugate to (�1, ...,�5) under ⌧ .

This implies that < �1, ...,�5 > is normal in < �, ⌧ >= Sn, hence equals Sn

(since it contains a transposition).
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