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Lot £ bethe locus of genus 2 curves that have a degree nmaximal covering to
arellipric enrve. There are several general results on the spaces £, in the literature.
In particular Frey and Kaui have identified £, with a “modular diagonal quotient
surface.” These general results rely on the Jacobian variety of a genus 2 curve and
are theretore not constructive,

[ this dissertation. explicit equations for £.. n = 2.3 and for some interest-
ing subvarieties of £5 and L-. are found by using computer algebra syvstems. This
vields more information than the abstract approach. The case n = 2 has already
been studied by Jacobi and Legendre. and recently by Gaudry. Schost. Gever and
others. Among other things. we find the following new result for n = 2: An explicit
I-dimensional family of genus 2 curves each having exactly 2 isomorphic elliptic sub-
covers of degree 2. This family is parammeterized birationally by the j-invariants of

these elliptic subcovers.

VIl
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For n = 3 we show that the number of elliptic subfields is generically 2. There
are sporadic cases with 4 or 8 elliptic subfields. For a curve C € £y its automorphism
aroup Aut(C) is one of the following. Z,.Vy. D,. Dy;. Moreover. there are exactly 6

curves in £y with automorphism group Dy or Dy,

vili
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CHAPTER 1
INTRODUCTION

et C be a genus 2 curve defined over an algebraically closed field k& of
charcio =20 Let K be its function field. We study genus | subfields of A (which
we call elliptie subfields). More precisely. we are interested in the following invariant
o 1C) = e, N'): The number of orbits of Auti A') on the set of elliptic subtelds of A
of degree n. We denote by L. the locus of genus 2 tields with e 0 AY) > 1. We use the
classical tnvartants Jo,. 0 = 1.2.3.5 to describe £, as a surface in the 3-dimensional
modnli space M, of genus 2 curves.

I chapter two we determine the automorphism group Aut{C) = Awt(A'i. This
unifies and extends many partial treatments in the literature. The group lutt ') has
exactly one involution whose fixed field has genus 0. The other involutions have fixed
held of genus 1. we call them elliptic involutions.  Thus. €,( A"} is the number of
conjigacy classes of elliptic involutions. It is shown that e3(A") = | if and only if C
I~ somorphic to Y2 = X7 = XL otherwise €,( A)) = 0 or 2.

[n chapters 3-6 we assume that churth) = 0. [n chapter three. we parameterize
L, and compute an equation in terms of the classical invariants. The latter was done
by Gaudry and Schost by another method. We determine the j-invariants of elliptic
<ubfields in terms of the classical invariants. [n special cases these elliptic subfields
are sogenous of degree 2 or 3. These cases are noted in the remarks. We tind a -
dimensional family of genus 2 curves having exactly two isomorphic elliptic subfields
of degree 2: this family is parameterized by the j-invariant of these subfields. This
leads to a remarkable embedding of the moduli space .\, of genus one curves into

M.
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lu chapter four we collect somie results on ¢, (A} for arbitrary . These results
are mostly due 1o Frev and Kani. This leads us to the detinition of the Frev-Kani
coverings and their ramifications. Let vy : ¢ — E| be a covering of degree n
from a curve C of genus 2 to the elliptic curve £,. Denote by m¢ : ¢ — P! (resp.
71 Ey — PY the hvperelliptic projection of C (resp. E;). There is a degree n

covering ;- PU—— Plsyeh that o) 2 70 = 7 2 . ief. chapter 41, This covering

-~
- e -

— Zhis called the corresponding Frey-Kani covermg of ¢y : ¢ — F. We
deternine all possible ramifications of the Freyv-KNani coverings of degree n. If the
cover vy 0 ¢ — F is maximal there is a unique elliptic subcover £, of C such that
the corresponding cover v : € — FE, is maximal and of degree n. The Jacobian of
C s sogenous to £y o< B

[n the remaining chapters we study caxes n = 3.5 or 7. We parameterize and
determine the equation for the locus £4. We show that in £3 we have generically ¢y =
20 there are sporadic cases when ey = 4.¥ and a [-dimensional family with ey = 1. The
antomorphism group of a curve C in L3 is one of the following Z,. V. D;. Dy. In L
there are exactly 6 curves C with amomorphism group Dy and 6 with automorphism
sroup D,. Thetr absolute invariants are computed explicitly and displayed in chapter
o0 We detertuine the j-invariants of elliptic subtields.  When one of the elliptic
subtields is totally ramitied we determine the relation between the j-invariants of the
elliptic subfields. Cases when n = 5 or 7 are discussed briefly in chapter 6. Since
the computations are much harder and results verv large for display we treat only
cases when the Frev-Kani covering has a branch point of ramification index 1. The
J-invariants of the elliptic subtield are computed in both cases.

Curves of genus 2 with elliptic subcovers go back to Legendre and Jacobi.
Legendre, in his Theorie des forictions elliptiques. gave the first example of a genus 2

curve with degree 2 elliptic subcovers. In a review of Legendre’s work. Jacobi { 1332)

gives a complete description for n = 2. The case n = 3 was studied during the 19th
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century trom Hermite, Goursat. Burkhardt. Brioschi. and Bolza. For a history and
background of the 19th century work see Krazer [11] (pg. 17Y). Also Kuhn (1983)
gives a brief description of the case n = 3. Cases when n > 3 are more difficult to
handle. Frey and Kani note the difficulty to get explicit examples. see Frey [3] and

Frev. Kani [6].

1.1 Classical [uvartants

Recall that every homogeneous polynomial of two variables fi X, Z) over an
alecbraically closed tield & decomposes as
fiX.Zy=[[(Ne. = 73
Vhe projective points (. a,) in P! depend only on [ and are called roots of f. Let
SN =an N = N - (N = N7 =g N~ N = a2
be o nonzero sextic. Classical invariants of f(.\. Z) are the following homogeneous
polynomials in A{ag. . ... e of degree 2i. for i = 1.2.3.5.
J:i= = 20402 + 404 2 = 16224 + 6a’
Jy = iS‘:.;'x;' + lers/z.; - -h:: xf + lti'.’Ua.‘;r:.‘; +A56111'1‘;vu‘ - l."l.l»x;'xi - l."x:;vxv,-x.—, + 3()0(1{)'1.‘-“,
- 300yt + '1.’—Ivm'x.;'x‘: = 5041420 = 18Cagag2rty = 18022132 = A2y ig1e

- J .
= U0t oty - “lUvLY';:‘

o=~y R M()()::p ton o+ 160021 - l.‘t')‘:fxf‘ Lt - .‘(Jﬁti—h.‘;:“z:; 1y — 198'1.)'14'1:'15

. ; o Loe =y : T O IO
= 0oy eTes = 18600y 172l = Thayroapey = 198a s 10y + 28y aSal + 33007150514
- Byt 280 2t ae = 6400315 2 0as + 2Bt 1Tarae + 616a1 1 202 — 18600221
LR R I -2 S e T R R A > IR DL S i D I R A Q1lgdnte Qnldegrig i
-G N 2 2 : 22,2 2,2 TR k - .
= SUMUS 1 1 - »530'10'1511;'1_: + 8aja5ay = Majaiag +60a,150¢ = .’»Iayx}"xf + A’.!al'x'?'xr, (.1
. v 2 .0 2 R 2.2 39e 2 2 2 9=
- Byt = I*J.’»xyzgfzé - .3.’.0(:}44«&; + l»()af'xsfx; + .’.’aOuffuvx,; - ‘)Oﬂazaf'xﬁ + 22»0:154.}41
. g d g2 . 222 4 e 4 I e 42 o 24 = Y as 11
= Y0azasay — WWOajugas + i62a9a817 = 24134y = 36a3a: = 36ajny + T6a;1 — 119880ag1,
. Ty . 2 C e . 2 . 2
= B20uy 1. + ASda + 492a9a25aa01: + .300)0'1,2)414vx.;'xwx5 — 4681quy15121 = 136U 1g1915 2
~ MT 2 rpaa g n = STHaGa 20 rs = 920 rn ) gt = 238 st = 3B 1y 2l s,
Y 0 . . 2 y - N .
<~ IRISa; 2t 1gtgae = E86UL Tt ay1gas = ST60 2026 112y = Bas

Jo, = s g

T‘;\Tc
Thus. Jy, is the resultant with respect to X of f and 7'% which is usually called the
discriminant of f. It vanishes if and only if the binary sextic has a multiple root. .J,,.

1 = 1.2.3.5. are invariant under the natural action of SL,(k) on sextics. Dividing
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stich an invariant by another of the same degree gives a rational function. invariant

under (¢ L,(k) action.

Each genus 2 curve C is isomorphic to
Z%W*'1 = fIX.Z)

where So XL Z0 s a binary sextic with Jyy = 0. [Its function tield is of the form A(X. Y
where

Y= fiX. 1)
If 7 is an 7Lk invariant as detined above. then [ takes the same values on all
oy N L aeneine O oso [ s wetl detined s Wee also denote it i))‘ [viva If
J 2 kg o, Iy @ homwgeneous S Lok invariant the the condition JIA) = 0 is
well defined.

Particular G L,(k) invariants are

Ja

o= L

el
~
[
Il
|
—
-1
I~
S
~
[
-~
-
o

[t is a classical result of Clebsch and Bolza extended by lgusa to positive
characteristic that two sexties f and f' are conjugate under (vL,(k) if and only if

there 1s 1= 0 <uch that

Tl fy =i for = 1.2.3.5

[t/ = 0. then this holds if and onlv if

,_.

e

.
..

LSy = for u=
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CHAPTER 2
FHE AUTOMORPHISM GROUP OF A GENUS TWO FIELD
[ this chapter, we determine the automorphism group of a genus 2 curve., see
theoretn £330 This was also treated by Gever JISEowith proofs only sketehed) and
Brandt and Stichtenoth (2] (in characteristic 0 only). and Braudt in a more general

set-up. (see Brandt [3]. unpublished thesis).

2.1 Automorphisin Groups of Genus 2 Fields

Let A be an algebraically closed field of characteristic not equal to 2. Let A{.\')
be thie nebd of rational tunctions i N We identify the places of At X'y with the points
ol =4 _{x} in the natural way (the place X' = a gets identified with the point
a = Fho Let A a quadratic extension field of At.X') ramified exactly at six places
Nyl o of AN The corresponding places of A are called the Weierstrass points

N, Let Po=Aag... .. agt. Then K= AN Y ) where

Y= Hx.\'—m (2.1)

aEm

AE
Let (7 = Auwt(R/7k)y. Tt is well known that £(.\) is the only genus 0 subfield of

degree 2 of A% thus 7 fixes AN Thus, Gy i= Gal(K/M X)) = {20 with 25 = 1L iz
central in (/0 We call the reduced automorphism group of K the group ¢ := 7/ (.

Fheno 0 s natnrally isomorphic ro the subgroup of Awt(hAt X)), &) induced by (7. We

have

= PGLyk) = Aut(k( X)/k) (2.2)
a b * . (l-\"‘f')
((- d) _’ <'\"b.\’—.1,

3
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The action of T on the places of A(.X') corresponds under the above identifi-
cation to the usual action on P! by fractional linear transformations: ¢ — % If!

. . . & 0

Is prime to char(h) then each element of order [ of [ is conjugate to (B‘ l)' where

£ 1% a primitive (-th root of unity. Each such element has 2 fixed points on P! and

other orbits are of length L. If { = chartky then. [ has exactly one class of elements
: 11 : .

of order [, represented by 01 Each such element has exactly one fixed point on

o}

Further, €7 permutes oo, ... ay. Lhis vields an embedding (7 — S,.

Lemima 2.1. [+t~ = (0 and q ids image in (4.
ar Suppose g s an necolution. Then =~ has order 2 1f and only if ot fires no

Woererstrass pomnts.

hodf g has order §. then =~ has order N,

[’roof. ar Suppose g is an involution. By the above we may assume gt \'1 = =\ We
may turther assume that 12 P by replacing X by ¢\ for a suitable ¢ < &%,
Now assume ¢ fixes no points in ‘P. Thus. P = {l.=1.b. —=b.«. —a}. where

. h = Pl {l).x.:l}. Hence

»

Y= N = N =y N = b

So we have, ~0Y 5 = Y < Hence ~1Y 1 = =Y. and - has order 2.
.‘an»n’ Y fixes 2 [)\)i[ll.\ of P. lThen, P = {U. x. 1.—[.(1.—11}. where a =
'y x. =1}, Hence

= NN - X =t

So =Y ¢ = =Y and ~1Y = =1 Y. Hence. ~ has order 1.
by Fach element of PGLy (k) of order 4 acts on P! with two fixed points and
all other orbits of length 4. So if ¢ has order . then it fixes 2 points in P. Thus ¢*

has order . from lemma 2.1 a). Then. ~ has order 8.
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a
Because A is the unique degree 2 extension of A(.\') ramified exactly at a;. ... .
;. cach automorphism of A(.\') permuting these 6 places extends to an automorphism
of K. Thus. G is the stabilizer in Aut(k(r)/k) of the set P. Hence under the
icomorphism 1221, (7 corresponds to the stabilizer [p in [ of the 6-set P. In the
following list {or cach I'p we display some information on the corresponding genus 2
held. e particalar its automorphism group (4.
First. we tix some notation. By Dy we will denote the dihedral group of order
2.\, Vs the Klein 4-group and Qg is the quaternion group of order 8. Let 7 : (¢ — (&
be the canonical map.
Remark 2.2 1f a tinite subgroup H of [ with (/H]. char(k)) = L. fixes a point of P!

then 11 0s t}t'iil.

N, . . . . AN
Proot. [T tixes @ point then /1 1s conjugate to A 1= {(0 [) :b e k*a €k}
> h
Loa\*
- a .
[hus we may assume that H < 4. Let B := {(0 1) ca € k}. Then HN B = 1.
[ herefore H embeds into Ay B =k Hence H is cyclic. =
Bewark 200 The degree 2 central extensions ob 5.
Since [0S, = | see Stichtenoth [2]) there are exactly 4 non-equivalent

central extensions of degree 2 of 5;. We construct them as follows. Let 1™ be the

group of -t x 4 matrices over 3 generated by

. (50 , (T 0
‘5‘(0 1)' T‘(o (')

where ST 2 GLy3v and (L3 = 'S T such that 87 = .72 = 1.{* = L.

Fhen, 1 isa central extension of Ny with kernel a Klein -group Vi = {1. 1. ra. 3}

Uy = [ 0 . ty, = -0 . Uy = U1Us.
0 -1 0 I

where
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o

Let 1= Woort for 0 = 1,230 Then WL H M and the split extension
comprize all the degree 2 central extensions of 5y = PG/L,(3). W, has no elements of
order ¥ and 11y has only one involution which is the central involution.

. U'p acts transitively on P

Lay ['p = 5y in its regular representation on 6 points. Let r be an element of
order 3 in (7. Let 12 (7 be the inverse image of order 6 of . Each involution j of &
fixes o points of P hence lifts to an involution j of (7. Thus. G=/ryx () = Dy,

We may assume that the tixed points of 7 are 0 and x. Then #(X) = ¢X
for ¢ = A&7 We may further assume that 1 = P by replacing \" by ¢\ for a suitable

»

o= bt Thens Po= {106 S N AT where £, s a primitive third root of unity
NN N N .

1
13 3

and A2 PUO{00 1 x 85087} Thus

SRR VI BTHA R S

For A = =1 this equation becomes ¥Y° = X" = | and ['p = D). see below L.c).

Lhy Fp =N,

[ charck) = 2.3 then the stabilizer in 5y of each point of P! is cyclic (see
remark 2.2). henee has order 4. 3. or 2. Then the orbit length is 6. 3. or 12. Thus.
Ny has exactly one orbit of length 6 because if an element of [ of order 4 acts on 6
puints. then it fixes 2. Hence Sy < Ny acts transitively on this orbit because point
stabilizer Zy has Z407 5y = {1}

Let gy = 5 be an element of order 4. Then. g has order 3. So (7 is not
isomorphic to Z, < Sy or I, (see remark 2.3). Since Sy < Sy is transitive. it follows
from L.a) rhat (7 has an involution not equal to zy. Thus. it is not isomorphic to H%.
Then (/=117

An element g = [p of order 4 fixes two points in P. So we may assume the

two fixed points are 0 and x. We may further assume that 1 € P by replacing X by
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Yy

.\ for a suitable ¢ £ &". Then. P = {0. x. 1. —1./.—¢} and

[i churtk) = 3 then the stabilizer in S; of each point of P! is either cyclic. or
is the normalizer of a 3-cvele. The rest 1s as above.

L) Up =Dy, Then. (¢ = (£)a(J}. where r is of order 6 and j of order 2. We
know that » hax one or two fixed points and all other orbits on P! have length 6.
Hence, 1 acts as @ v-cvele vn Pand = = ' is an involution which fixes no points in
P. Further. ; tixes 2 or no points in P. More precisely. j fixes 2 points if and only if
- tixes uo points on P Take J to fix 2 points on P .

From lemma 2.1, =74(2)) = {l.20. 5. 22} =: V. a normal 1-Klein subgroup
in (/. We denote the lift of order 3 of 72 by r. Since =) = z,. then =7 = =z, Then.
o=l

Since g fixes 2 points in P, both lifts of j in (¢ have order -1 let j be one of
them. Then zpom ™oy = {1} because Zy = /2. has only one element of order 2
aud no clement of order L.

If =7 = =1, then (jz1)? = 2. But jz, maps to 3 in (7 which fixes no points in
P.comradictory to letnma 2.1 a). Thus. ={ = z,. Then. (V. )) = D,. Finally. (r) <G
and =T 04D, where Dy Voacts on Zy by inversion.

Stiee roacts as a -cvele on P othen 7 V) = §.X where & 1s a primitive 6-th
root of unity. We may further assume that 1 € P by replacing X by ¢.X for a suitable

S -

ez k. Then P={l.&.....&} and
Y?2=1\"-1

L.d) Up = S5. In this case char{k) = 3 and S5 = PG L,(5) is given in its natural
embedding in PG LK) So P~ PYFs ).
Since every element of order 4 in [p lifts to elements of order 3 (see lemma

2.1) then (7 is not the split extension. In the transitive permutation representation of
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N5 on 6 points the transpositions fix none of the 6 points. So they lift to involutions in
(/. lemma 2010 Thus, (7= 2755 (the unique non-split extension where transpositions
G0t tnvoluntions oo Lhos we mnay assume that P= {0,123 L xc ). Then,

Yo=\N"=- X

20 U p wets itransitively on P

>

20w e 22,0 Let g be the involution in (7. If ¢ fixes no points in P. then -
has order 2 csee lemma 2.1 Thas, (7= V0 We may assume that [ = P by replacing

A oov e N or a suitable ¢ 2 A7 Then, P = {loa b =1 —a. b} and
Y= N LN = N = b

Suppose that g fixes 2 points in P As in the proof of lemma 2.1. we may
assime that P= A0, x L =loao—a} and ~t X = =\ Then exists r = Up.riy =
== such that #o= g which s contradictory 1o (=72, Thus, (/=1

oo =2Z40 Then 0 =Z0 In this case charhy = 50 The element ¢ = Up
of order 5 tixes one point in P oand gtV = &Y. We may assume that the fixed
point in P s 0 and further 1= P by replacing X' by ¢\ for a suitable ¢ < &, Then.

P={0.1.5.&

LS e and

N
b=\ - X

c) p =V [f g 2 (7 fixes no points of P. then = is an involution and = Dy,
[f g fixes 2 points in P. then as in 2. a)l. P ={0.x<.l.=l.a.—a} and ~(\) = =X
Then. there is 7 2 GLorey) = =20 such that £ is an involution in (¢ which fixes no
puii~ in P Then again (/= Dy,

Let = = ['p be an involution which tixes no points in P. Take rhe fixed points
of this involution to be 0 and x. Then i\ = ¢X for ¢ = k*. As above. we

may assume | < P. Then P = {l. —i.«.b. —u. =b}. There is exactly one element

7= ['e =1 which fixes two points in P. namely #f( X)) = -{- Then. b = [7 and
-2 ”2 Coard P ) 1
Yo= (XN = IUNT = AXNT = 1), where N=a + —
a?
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Remark 2.4. The two orbits of 55 length 3 give a 6-set P C P! fixed by S3. The full

stabilizer of this P is Dg. So S5 does not occur in the intransitive case.

Combining all cases together we have the following theorem.

Theorem 2.5. Let (i be the automorphism group of a genus 2 function field over k.
where b= koand charcky =20 Then, (0 s wsomorphic to one of the following: Z..
Zwo Vo Dy Dy Zys Dy WL or the group 27 S5 of order 200, The center of G is

of order 2. generated by the hyperelliptic incolution. unless GG is isomorphic to \}y or

—~

1)
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CHAPTER 3 _
GENUS 2 FIELDS WITH DEGREE 2 ELLIPTIC SUBFIELDS

3.1 Introduction

[ this chapter we study genus 2 function fields with eiliptic subtields of degree
2. Thelocus £, of these fields is a 2-dimensional subvariety of the moduli space .M,
of genus 2 Helds. We use a birational parameterization of £, by affine 2-space to study
the relation bhetween the j-invariants of the degree 2 elliptic subfields. This extends
work of Gever. Gaudry. Schost. Stichtenoth and others. We find a l-dimensional

tamnilv of wenns 2 curves having exactly two isomorphic elliptic subtields of degree

20 this family s parameterized by the j-invariant of these subfields. This leads to a
remarkable embedding of the moduli space .M, of genus one curves into M.

Let C be a genus 2 curve defined over k. k = k. char(k) = 0 and A" its
function ficld. Jacobi {14] gives a general form of genus 2 curves with degree 2 elliptic

subcovers:

}i" - .\'" — .N‘,\" - -\_\.\’-‘ - l

and a description of £, in terms of the cross ratios of the roots aj..... as of the

sextic:
Qi3 — Q) Qg — Oy Qs — Q) Qf — Q4

Q3 — Q@ a3~ Q) Q5 — Q) Qg — Q)

Thus. £ is parameterized by the pair 151,50 2 A% We note that this param-

eterization of £, tactors through a ramified Galois covering
2
kt— k2

(s1.32) = {u.v)
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where = ~psp and ¢ = &) + 51

This induces a birational parameterization of £,
by the pairs {w.e). All our computations use these coordinates (u.v). We use this
to compute an equation for £, in terms of the classical invariants. [n section 4 and
5 we give a general relation between the j-invariants of degree 2 elliptic subfields of
K. This improves 177, where each isomorphism type of (7 is treated separately. We

determine conditions when degree 2 elliptic subfields of A are 2 or 3-isogenous.

3.2 Genus 2 Curves with Elliptic Involutions

Fhe notation is as in previous chapter.

Definition 3.1. An elliptic involution of A" is an involution in (7 which is different
trome =, the hvperelliptie involution. Thus the elliptic involutions of (7 are in -1
correspondence with the elliptic subliclds of A of degree 2 (by the Riemann-Hurwitz

formuian.

[f 2y 1= an elliptic involution and =z the hyperelliptic one. then z, 1= 2y 2 is
another elliptic involution. So the elliptic involutions come naturally in pairs. This
pairs also the elliptic subtields of A" of degree 2. Two such subtields £y and £, are
patved i and ouly if £y S AN = E, AN E, and £, are G-conjugate unless

(r= D, or (=1, (This can be checked from Theorem 2.3).

Theorem 3.2. Let N be a genus 2 ficld and e ,( Ny the number of Aut{ N)-classes of
cliptic subficlds of N of degree 20 Suppose € (K > L. Then the classical invariants

of N satisfy the equation,

=2 = STAST SIS S0TIRA000 g Iy = 1924560005 5d4 J5 - 3922720 0Ji 3 + TTa36d,0 3 I - T8UL U
=SLT 00 LS S ATEE60 s S = STO91 20103 ) Js & 0909600 g5 JE 2 = 38321005 Jy de;
~ 13320 Y d = 1239712000004 + 384J7 Jy + 414T2J0d5 = 1590507 = 23619603005 = 8045 Jy = 5405 J{J¢
—ATYS 2T S ) LUMTEOUOS g F dy = 1TI8U{J5 dy + B8 IS, J8 = 93312004 03 03 + 10803 U4 J;
=122y 293T6J5TF 0 = 89100507 JF = 2089520000055 Js + LLIOATE = 59120 J 4 + 97200 d5JF =u
(3.1}

Further., e3(R) = 2 unless K = k{.XN.Y) with

K= X7 - X
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in which case €;,(R) = 1.

Sinee 0N is the number of conjugacy classes of elliptic involutions in (7 the

claim about ¢, A"} follows from theorem 2.5.

Lemma 3.3. Suppose =y is an elliptic involution of K. Let =y = 212y, where =y ts the

(£

hupe relliptie meolution. Let £, be the fired field of =, for i = 1.2, Then K = k(XY

II‘}H e
I R T A G | (3.2)

and 27T = INsysy = sist+ds! + 153 = 0. Further Ey and Ey are the subfields k{X2.Y")

and ke N2 Y N,

Proof. Recall that zot. X'} = N.z(Y) = =Y. We choose the coordinate .\ such
that spe V' = =\ By lemma 2.1 the involution z; fixes no points of P. hence

P ={=zo.=4. =~} where a. 3.5 = & {0}, Let

Then from 2.1 we have A = (XY with
Yo= i N —an N =i N =)
We may turthier replace X by AN for a suitable A. to get ube = 1. Then

)

. - o -2
P =N -5 N+ NP

where sy = a + b+ cand s, = ab + ac + be. Since the roots ay..... ag are distinct
then 27 — I8s15) = 5153 + 4s] + 153 £ 0. The elements \? and XY are fixed by z,.

This implies the elaim.
g

We need to determine to what extent the normalization in the above proof

determines the coordinate . The condition z,(.X') = —.\ determines the coordinate
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N up to a coordinate change by some 5 £ [ centralizing z,. Such ~ satisfies +(.X)

N or o N = 2o 2 b {0} The additional condition abe = | forces | =
1 ) N [ : M .

= ccotacy hience " = 10oSo N is determined up to a coordinate change by

the subgroup [ = Dy of U generated by 7 : ¥ = N m 0 XV — —{- where & is a

primitive ti-th root of unity. Let & := &;. The coordinate change by 7 replaces s
by sy and sy by &1s,.0 The coordinate change by 7, switches s; and ~. Invariants

ol this H-action are:

Classteal invariants of the field A given by lemma 3.3 are:

Jo=2H - 16u

e N R L ) R [
3.3
=2066 b = 960 = 120t = 20t = 160we = L1980

~
|

Jiy = 6427 = [Su = u® + de)?
For ./, = 0 the absolute invariants are

3 ut = 126u + 120 + 405
215 + )t
3wt = T29u = H3Le = 36ue = 104e — 3645) .
o= T (3.4)
Py =yl
Plut = 18w — e = 27)°

D5 = u)d

Il

We can eliminate « and + and get the following equation of £,.

2T L 96 + 16124:;1351'.,,*}- 124416000503 + 243 + 1074954240031, + 544713
3225472004103 ~ ‘0\0111‘1\ — N29.14004 4i7i3 = 9439597312000457 - 184)43
=2H0TBATI2E0291 205 = FLLE3123560320005 = 20639 121405000431, — 3524070444}
+2i7iy = ke if'—:i:HTTb‘i»gz’? — 271} = 2866544640000:34 iy + 161243136i3:3 + 9413
—26-1130754022400000:3 = 0
(3.5)
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This equation was found by Gaudry and Schost in [17]. where they don’t cancel
the common divisor 3486784401. To get rid of the condition .J, # 0 we multiply by
J3 1o get the “projective” equation (3.1) of £,. This holds indeed for all A" € £,. as
can be checked by substituting from (3.3). This completes the proof of theorem 3.2.

Fhe following proposition determines the group ¢ in terms of v and v.

Proposition 3.4. Let C be a genus 2 curee such that (¢ := AutiC) has an elliptic
imeolution and J» £ 0. Then.

) (C=Zya Dy tf and only if (o) =(0.0) or {u. vy = (225.6750).

ho (=W of and only of w =25 and ¢ = =250.

e 0= Dy of and only of o= 0wt = 10w = 1125 = 0. for u = 9.70 =30y 5. 25
Morcover, the clussical invariants satisfy the cquations,

—J = 120305 = 320103 + 50T + 9600, 0 - 36005 =0

SGLS 1ol + 3436000190302 = 43200190403 = 23323000002 — S8 (3.6)
~TORJ LT3 + AR + 409677 = 0

dr =Dy df and only if ©2 = u? = 0. for uw # 1.9.0.25.225. Cases u =

0.225 and w =25 are reduced to cases aj.and b) respeetively. Moreover, the classical
mcariants satisfy 3.0 and the following equation.

ETO6S .05 = 236007 < 2000 = S, = LSS0 0 Jy + 28%00.5 = 0 (3.7)

Proof. av If (;=Zy4D; then C is isomorphic to Y* = \ — | (see theorem 1.3).
Thus.

3wt - 1260+ 120 +105) Sl

n = - ) =0
29005 = uj- 20
C3la = T290 = 43 Le = 36ue — LH04e = 3645) 729 .
e 2HLS = u)? = 7200 R
3wt - [N =4 =277 729
ty = = -
215 + u)? 25600000

The only solutions of the system are (u.v) = {0.0) and (u.v) = (225.6750). They
correspond to the same genus 2 curve. namely Y* = \'® — [.

by If (7 = 117 then C is isomorphic to

Y4=\1" - X
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isee theorem 130, Then. C is isomorphic to

Y2= X" 45\ -5\ — |

by the linear fractional transformation ' — tj“—\ Then. 5y = ~, = =5 and
w =25 ¢ = =230, [hese are the unique values for ¢ and ¢ since the system
3wt = 1260 - 120 ~ 105 36

e 251D - uje =73

o Pt + 7290t + 413 Le ~ 36ue — 104 — 3645) _ b (3.9

) P15+ u)3 25

Bt Bu - de =27 243

B (15 + u)> ~ 300000

N~ o nnique solution (w. ey = (25, =250).

Conversely. every genus 2 curve with (u.v) = (25, =250) is isomorphic to
.} ) - ,. - )
Yr= X"+ 50 5N\ — |
o =1 |-
e G =D, then € s isomorphic to

»

Y= XN =N =

tor A = U1, and A =35\ = 1 = 0 {see theorem -+.3). Then the system.

)

"-".-.__ '_)(' - 2‘*. 5 /\/."‘;‘l-r'%‘
o Tz 2T B ) pygg A AT )
2-015 + u)- (A2 = 38N+ 1)°
30t = 7290t + 4131w - 36ur — 1404v — 3645) L1661 AN = 2207 - 66A° = 220 + 1)
1y = - = - :
: P15+ ) ’ (AT =383+ 1))
Plut + 1Ru =4 =27) 729 AN -=1)®
e = - = = T TNy o =
’ 23015 + u)? 16 (A2 =380+ 1)
{3.10)
has solutions.
A =9+ 1 AT = 3640 272607 + 3640 + |
=214 —_—. = -')‘1
(,\—l}' (/\—1)‘
Eliminating A from the above expressions we have
L1235 = 10w = ” —de =0 (3.11)
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From the above equation the values « = 9.70 + 30y'5 make .Jiy = 0. so we exclude

then. Note that. for (u.v) = (23, =250) this is case b). so u = 235 is also excluded.
Lhen ¢ = {(u? = 110u + 1125) and iy.4,. 14 are
(u—9)(u-103)
{13+ u)?
-l =9Vt = 1620 = 5535)

(o= =20 — - 13012
i1 - uy?

i =9

=
ING

1

i clossical mvartant s satisfy
=St} = 1203 = 320703 + R0JY + 96020 S = 36003 =0
S6 LS 0d ) = 315600000070y = 432000 0 J5 = 23328000007, — 708 (3.13)

=TONJLTE = g =096 =0

ao e = /.’;. then O s i\ulllul‘p'll.i( to

SR LA IV WL W N iy
fur A = =2 r=ee theorem 1350 Then the system
O = 1260 = 120 +105) 9 (A #3920 + T6j(A = 2)°
T 2215 = n)l - (A2 =2\ = 16)¢
3 = 2907 = 43 e = 36ue — LI04e = 3645) 20 PA = 38N = 104N =2
N (,\" ~ 2\~ l(i)‘i

9
1

W5+ gt
Bt = INu = e =20 A = )M = )¢

S — ) TORLIY2 (M 2\~ 16)°

{3.14)

has the following <olutions,

‘/\ - l'l,: l/\ s l‘l)‘
"H=———7m——m--. 1':—'.3———
PN = 2)° PN - 2)3

Eliminating A from the above equations we get

=) =0

[f v = 0.25.225 this case reduces to one of the previous cases. For u = 1.9 we have
Jiw = 0 so we have to exclude these values also. The classical invariants must also
satisfv the equation

[T06.JJ3 + 256007 = 2TJ0J3 = SUJ3Js = LSS0y Jy — 28%00.7 = 0 13,15
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Proposition 3.5. The mapping
A {u.e) — (1. 0.01m)

grees a horational parameterization of C,. The fibers of A of cardinality > | corre-

spond to those curves C with [Aut(Ci > 1.

Proof. We denote Mu.vy = Cuyy = (i ioy) and Al o'y = Crpy = (100500).

Fhe solntion set of the system

s

iy =i, (3.16)
-t

ly = Ij’

B tweey = e or (et = duhide = 0 = 0w = 1129 =0, Thus. il ey =000
thew vof = tu*itbe = u? = 1100 = 11251 = 0. So Aut(C) is isomorphic to one of 1.
T oDy Dy or D Therefore, ' AetiCios LI re? = by be = u? = 110w = 1125) #£0

then cacer = vl et and A is injective.

3.3 j-invariants of Elliptic Subcovers

Let o and o denote the i-invariants of the elliptic curves E| and £, from

lemma 3.3, Then. yy and ) are.

. . (57 = 3s2)°

= —256 —
It (153 + 27 — 185157 — 5253 + 153 B
Ja = =256 (53 = 3s1) o

, - — ) )
(-l\l} - .)l - 18.5[.\»_; — .NI.\Z - lwg'

Lemima 3.6. The invariants j; and j» and are roots of the quadratic

.. 20 =34t = Yue — et £ 2700 . (at 4+ 9u — 3o
)7 =258 - - —- J +63336- - ) — =0 (3.18)
cut = INu = e =27 it + S8u — 4 —27)2
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Proof. From equations (3.17) and ¢ = s} + 53, u = 515 we eliminate s; and s, and

del

= 25620 = St = Que = of = 2Tev (et = 1S = e = 27,

—63336(u* + Yu — 3¢)) =0

J3 = 236020 = Sdut = Gue — o =270 (0t = 1e — e = 27V,

+63536(u’ + 9u — 3c)) =0
(3.19)

Fhis gy and gy are roots of the same quadratic equation. Since (u* + ISu—-4v—27) =

Jy, =0 we can divide by it and write the equation as

=1

;= 63336 - -

- - ) S T ) .
( ‘ - 2t = Stet = Yuer = 00 =270 i =Y — 3
1 1)
tut = N = b = 27 tus = Isu — e =270

(3.20)
[f v =0 then sy =0 or ~y =0 and ¢ = 5} or v =50 The j-invariants of £)

and £y are

R ) b = 27

et they sabisivoeqnation S I g = 0 then we divide by v and ger equation

()

3.3.1  Isomorphic Elliptic Subtields

The elliptic curves £} and E, are isomorphic when equation (3.1%) has a

donble roor. The diseriminant of rhe gquadratic is zero for
et = dutwe =9u =271 =0

Remark 3.7 From lemmma 3.3, @ = 4o’ if and only if AutiCy= Dy. So for € such
that \utiC)= Dy, Ey is isomorphic to Es. [t is easily checked that =y and 7, = 203
are conjugate when (¢ = D,. So thev fix isomorphic subfields.
If + =Yu =3 then the locus of these curves is given by,
Yoy = 90} = T3T28i i — 15099494443 = 0

(3.21)
S ol ey o2 -y - .
'_)b.‘)zlS — 297 + 5440, — 15’ =0
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For tu. vy = (—: —?) the curve has Aut(C)= D, and for (u.v) = (137.1206) it has
AuttCr= Dy, All other curves with ¢ = Y(u — 3) belong to the general case. so
Auwt(CY =1V, The j-invariants of elliptic curves are j; = j, = 236(9 — u). Thus. these
senus 2 curves are paramieterized by the J-invariant of the elliptic subcover.

Remark 5.8 This embeds the moduli space M| into .M, in a functorial way.

3.4 Isoeenous Degree 2 Elliptic Subtields

[n this section we study pairs of degree 2 elliptic subtields of A which are 2
or 3-isogenous. We denote by @, ie0y) the n-th modular polynomial (see Blake et

ab. i otor the formal detinitions. Two elliptic curves with j-invariants j; and jy are

n-tsogenous i and only if &0, 50) = 0.

3.1 3-Isogenv.

The modular 3-polynomial is given below
by =t =ty -yt 22320y + y) = 10699560 y(c £ y) + 36364000(2° + ) +

DINTOINONG 5t = N0002229760000 g0 + y1 + 15298:1832000000( 0% + 4?1 —

TTONEN66336000000.0y — 185542537 1872000000000( . + y)
(3.22)
Suppose £y oand £, are 3-isogenous. Then from equation (3.13) and b1, 2) =0

we eliminate j; and 5. Then.

e =t = TWu = 125 g ey go(ua ey =0 (3.23)
where g and ¢, are
g1 = =27008u" = 256u" — 24320 + ¢ + 7296w’} e? - 66920 u — 1755067500u
+ 24193030 — 345534390 + 1277530920 u? + 1627484 beu? — 17207300 0?
— 19411200’ + 3816315000 + 1018668150u? — 116158360u” + 526219741+
< ARTT12ut e — 1R839636600u — 331166760 + 922640625

(3.24)
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gy = 2013504480° — v u? — 998848uB e — 343607 v + 4749810 v + 1703200

oed = N0368u® + 2360 + 634822407 — 1053504003 u® — 33872030} + 2647Re M

= TTOONTBGW e = 95166990t — 30723498 0 be? = HLYINST e e — 2048673600
— 273029032961 ~ INRONTTI63200? — 2342995545601 + 34553340160 ? 2]
— HLITN2ARN LG = N25064836320° — LONTHTI933-01e* — 1212309504007

~ 27824285160 u + 350355436001 + 53010199040’ — 24546124800 e
I'hus. there is a isogeny of degree 3 between E; and FE, if and only if v and ¢
satisfy equation (3.23). The vanishing of the first factor is equivalent to (7= Dy. So.
it Yat 0y =Dy then By and E are isogenous of degree 3. This was also noted by
Ciatdry and Schost 7174

342 '_’-[Su‘_"(‘ll\'

Below we give the modular 2-polynomial.
b= ot =yt =yt = LSSyl + y) = H0TT33T 50y — 1620000 0% -yt +
(3.26)
NTINOO0000L: + y) = 157 16-1000000000

Scpmese fand BT Gre Bsogenons of dearee 20 Substitating g and gy in @, we get

frtwoey - foiwe ey =0 (3.27)
where [ and f, are

fi = = 1607 = S12160% = R92296¢ — 2460375 + 3312uc? + T0T6160u + 3R053%0u -~
IX3600u” = 12961620® — 1740’ e = 1400760 + 2010’ + 2564° 2
fr = 140961 + 2360164 — 453240 + 47360164 — 2126736cu’ + 23153143’
— 250317120 e = 1197455400 + 3291 13602 u? — 48166488¢cu® — 2390500350
— 1TOT 1200 " + 3383 IN0Nue? + LL132704800u + 93002175000 ~ 403660802
ITOL1530000 ~ 303765625 — 10240 + 16384007 c? = 1222503%40° + 256 ¢

(3.29)

3.4.3  Other Isogenies between Elliptic Subfields

If (/= D,. then z; and =, are in the same conjugacy class. There are again two
conjugacy classes of elliptic involutions in ;. Thus. there are two degree 2 elliptic

subtields vup to somorphisimy of A'. One of them is determined by double root j of
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the equation 1313, for ©® = 4u? = 0. Next. we determine the j-invariant j' of the
other degree 2 elliptic subfield and see how it is related to .

[fr'—4u* =0then G=Viand P = {£l. £/a. £vb}. Then. sy =a+i+1=
~» Involutions of Carerp : NV = =\ V = —{- A —-% Since 7, and
=y Hix no points of P the they lift to involutions in (7. They each determine a pair
of ororphic elliptic subtields. The j-invariant of elliptic subtield fixed by 7 is the

dotthle root of equation 3.18). namely

To tind the j-invariant of the elliptic subtields tixed by 7y we look at the degree

2eoverine o P = Floach that or=1r = 0. ota) = ol —-l;i =1l.o0—tj = of l‘l = —1.
a0 = oixey = xo This covering is. ot X'y = ;'_—l'\—\“—'— ['he branch points of
care oy = = === From lemma 3.3 the elliptic subfields E{ and £’ have 2-torsion

points {0. 1. =1.q,}. The j-invariants of £} and £} are

y {e—=15)
J = -1b——
(-1
Phen oy = U s0 By and B are isogenous of degree 2. Thus. 7 and 7y

determine degree 2 elliptic subtields which are 2-isogenous (see also Gever [13]).
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CHAPTER
CURVES OF GENUS TWO WITH SPLIT JACOBIANS

Let ¢ hea cnrve of genus 2 and o 0 (7 — Fy a map of degree n. from ¢
to e cipric cnrve B hotle eneves detined over a tield A of characteristic 0. This
nap induces w degree 0 map o @ PU— P! which we call a Frev-Kani covering. We
determine all possible ramifications for o). If vy : (" — £, is maximal then there
exists a4 maximal map oy 1 (" — £, of degree n. to some elliptic curve £, such that
there is an isogeny of degree n? from the Jacobian J- to £y < E,. We sav that Jr- is
(N \~<hw'mx\p\»nhlv.

Carves of senus 2 with non-simple Jacobians are of much interest. Their
Jacobians have faree torsion subgroups. e.z. Howe. Leprévost. and Poonen have
found a tamily of genus 2 curve with 128 rational points in its Jacobian (see [9]). For
other applications of genus 2 curves with (n.n)-decomposable Jacobians (see Frey
S0 Inrhis chapter. we discuss genus 2 curves (7 whose function fields have maximal
elliptic subtields. Let o0 (7 — £ be a maximal cover tef. section 41 of odd degree
v The moduli space parameterizing these covers is a surface. more precisely the
product of modular curves X(n) x X(n)/\ (see Kani [10]). When v : ¢ — E is
degenerate (cf. section 2). this moduli space is a curve. In sections 2 and 3 we define

a Frey-Kani covering and determine all their possible ramifications.

1.1 Frev-lhani Covers

Let (7 and E be curves of genus 2 and L. respectively. Both are smooth.
projective curves defined over k. char(k) = 0. Let v : C — E be a covering

of degree n. From the Riemann-Hurwitz formula. ZPEC.(G.,(P) — 1) = 2 where
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Py is the ramttication index of poiuts £ = ¢ ander o Thus. we have two
points of ramitication index 2 or one point of ramification index 3. The two points
of ramitication index 2 can be in the same fiber or in different fibers. Therefore. we
have the following cases of the covering v

Case L. There are P,. P, € C'.such that ¢ (Py = ¢ (Py) = 2. c(Py) # Py
and 7P 2P P} e i PY =1L

Case II. There are P, P, = (. such that ¢, (P)) = ¢,.(P) = 2. v(P) =
crPocand 7P CAV{PL P e 1P =1L

Case [II. There is P = ¢ such that ¢ (P) = 3. and 7P = ' {P}.
o=

[n case rresp. LI the cover o has 2 iresp. 1) branch points in E.

Denote the hyvperelliptic involution of €' by w. We choose O in E such that w
restricted tu [ is the hvperellipric involution on £ (see 6] or [12]). We denote the
restriction of won £ by oot Py = =P, Thus, cow = o, E[2] denotes the group
of 2-torsion points of the elliptic curve E. which are the points tixed by . The proof

of the following two lemmas is straightforward and will be omitted.

Lemma 4.1. «i [fQ € E. then 7P = ~HQ). w(P) € v~ (=Q).
hi Forall P2 e (P)=c¢_(w(P)).

Proof. v Take ) 2 Eand v PY = Q. Then. vz 0iQY = mQ). Thus. (v o w)(PY =

~Q.

by Since v 2w = ¢ 2 el then €00l P) = ¢, (P) forall P € C'. Thus ¢,.(P) -
et Py = 0 PreeP)) So entwt Py =€ (P).

Let T8 be the <er of points in C fixed by . Every curve of genus 2 is given.

up tu isomorphism. by a binary sextic. so there are 6 points tixed by the hyperelliptic
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involution w. namely the Weierstrass points of (". The following lemma determines
the distribution of the Weierstrass points in tibers of 2-torsion points.

Lemma 4.2. [ o(}V) 2 E]2]
2o f s an odd number then
o) = B2
Q= ERV ihen 2o~V Wi =1 mod 121
S Af s an ceen namber then for all Q = ET2L #oe™HQ)n W) =0 mod (2)

Proof. For every P such that w(P) = P we have (Cow)(P) = v(P). So (rouv)(P) =

vt Py, therefore o( P)

M

Ef2].

To prove part 2. i) we take Q & E[2]. From previous lemma. w permutes
every two points in the fiber of Q. Becanse nis odd. it has 1o be a point tixed by w
ine"hO) So Q= el

[here are 6 Welerstrass points in . In each tiber of points in E[2] there is
at least one point tixed by w. But nis odd. so in one fiber w tixes 3 points. Thus.
=T O =1 mod 2y,

Assume now that n is even. The hyperelliptic involution « permutes every
two points in the tiber of Q. for ) € E[2]. So if w tixes any point. it has to fix a even

number of them. Thins, we have an even number of Weirstrass points in each tiber of
puints from £2.

d

Let 7¢ : ' — P'and =g : E — P! be the natural degree 2 projections. The

hyperelliptic involution permutes the points in the fibers of 7¢ and 7g. The ramified

points of 7. Tg are respectively points in IV and £[2] and their ramification index

i 2. There is @ : P! — P! such that the diagram commutes (see Frey [6] or Kuhn

12
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=1

c 5 P
v Lo
E 5 P

The covering o @ P! — P! will be called the corresponding Frey-Kani
covering of v : (" — [ [t has tirst appeared in 6] and [5]. The term. Frev-Kani

{

covering. lias tirst been used by Fried in [7].

4.2 Ramification of Frev-Kani Coverings

ln this section we will determine the ramitication of Frev-Kani coverings
oo PU— PU First we lix some notation. For a given branch point we will de-
note the ranitication of points in its fiber as follows. Any point P of ramification
index e ix denoted by ). [ there are & such points then we write (m)*. We omit
writing svmbols for unramified points. in other words (1)¥ will not be written. Ram-

meation data between two branch points will be separated by commas. We denote

by = 20 = gy qi}and o000 = L. 1wy}
121 The Case When nis Odd

The following theorem classifies the ramification types for the Frev-Kani cov-
crings o : P! — P! when the degree n is odd.
Theorem 4.3. Let v : (" —s E be a covering of odd degree n and o : P! — P!
he the Frey-RKani covering induced by 1. This induces a partitionung of the set of
6 Wewerstrass points of C into two sets W = [WINC Y and WE = WENCE).
cach of cardinality 3 such that |o(W | = 1 and jo(W | = 3. Then the ramification

structure of o s as follows.

Case [: the generie casey

Or the following degenerale cases:

Case II: the j-cycle case and the dihedral case)
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Case [II: the t-cyele case:

[roof. From lenuma L2 we can assume that otw,) = ¢, for ¢« = {1.2.3} and otwy) =
coe = oo = gy Next we constder the three cases for the ramification of o
—— Loand sec what randhcations they induce on o P — PL
Suppose that 220" H 200 Wand o oy =10 Then e (PVvoec el Py =
T A v-'.'.'l'tl)lc =2, 501 sl PH =2
Case I: There are Ppoand Py in (" such that ¢, (P)) = ¢, (FPy) = 2 and
= Pol By lemma Lot Prn =20 So wn P o= Pyoor wn Poo= P,

Suppose that 0 o= Proso P2 WD W0 Py = e, for

—_—
—
[
..

——
4
s
~

el

Tl - ycchien o o =0 Py = L which implies that e o) = 20 All
other pointsm the iher of =g cec 20 =2 ¢ have ramitication index 2 under o. So o has
even degree. which is a contradiction. If 74Py = w; for 1 € {4.5.6}. say 7¢(P)) =
1wy, then in the fiber of ¢y are: wy of ramification index 2. w5 and wy unramified. and
all other points have ramification index 2. So 2to g =2 =1 =1 =2k is even.
Lhas £ 2 W0 Then £ P £ 79 E 20 otherwise they would be in the same
fiber.

Thus Py = w(P) € C\NCTHERD and vt Py) = —u(Py). Let mpou( Py) = 7go0
CiPy) =qsand 7c(P) = 7c(P) = S. So e (P) €~ (C(P)) = €. (P)-enimel PrY).

Thus. €, (7c(P)) = €,(5) = 2. All other points in o~ (g5} are unramified.
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For P = 1 e- (P}

2. Thus e, (7¢(P}) = 1. All wy....ws are unramified

and other points in 07 E{2]) are of ramification index 2. By the Riemann - Hurwitz

formula. o is unramitied evervwhere else.

Thus. there are 2= points of ramification index 2 in the tibers o7 gy ). 07 Hga).
57Hgy ). 252 points of ramification index 2 in 0™ 'qy). and one point of index 2 in

LTI
g

Case II: In this case. there are distinet Py and P, in (7 such that ¢ (P)) =
e o Poo=2and o Py =

Py, Then Py = wiPyyor wiPy=P.forr=1.2

Let £ and Py be in the fiber which has three Welerstrass points.

i) Suppose that w permutes Ppoand Py So Py and P, are not Weierstrass
points. Then e . (P =« (P} - (0l P)) =L

Thus (-,(P[) : (._-,(TT('(P[)) = L

Since « - Py =1 then e.(7-( P = 4. So there is a point of index 1 in the fiber of
t'/;A

[he rest of the points are of ramification index 2. ax in previous case. other then

w,, which are unramified.

it} Suppose that w fixes Pp and P,. Thus P, and P, are Welerstrass points,
Fhen e 0Poe tetPhy = e (P-es(mriP)) =4 SoeqtmeP)) =2, Thus. 7 P,)
have ramitication index 2. The other points behave as in the previous case. So we

have in cach fiber of o one unramitied point and evervthing else has ramification
tdes 2.

Suppose that P; and P, are in one of the tibers which have only one Weierstrass
point.

i) Then w has to permute them. so they are not Weierstrass points. As in case
:(‘ P:‘T/"[)[I) =

t. So there is a point of index 4 in one of " "'qy). ™ Haqa).o" s
atd evervthing else is of ramitication index 2. The Welerstrass points are as in case

Lo unratitied.

Case III: Let P be the ramified point of index 3. By lemma L. €,. w(P) = 3.

Then €-,0.(P) = €. (P) -

But there is only one such point in C. so P & IV
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fotetP =60 So e Pyttt Py = 6. But €-.(P) = 2. because P € WL
Thus. e im0 Py = 3.

i1 Q is in the fiber that contains three Weierstrass points. Then we have a point
of ramification index three in ©~'{qy). two other Weierstrass points are unramified.
and all the other points are of ramification index 2.

i Q is inwne of the fibers that contains only one Weierstrass point. Then in
one ol o7 g e g T gy there is a point of index 3 and everyvthing else is of

index 2.

(]

1.2.2  The Case When 1 is Even

Lot ns assume now that degt e = nis an even number. The following theorem
classities the Frev-Kani coverings in this case.
Theorem 4.4, [f 1 5 an cven number then the generic case for o : (" — E induce

the following three cases for o PU—s PV

— o~

I. (i'.’i—-;.t'_’)_T".i'.’)%.l'_’D%.(‘lb)

Faclioof the whore cases has the following degenerations (two of the branch points

collupse to onre |
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N

.

A= R =i, 02 =
A I ST A R .l.’)-‘.l‘.’l-‘)

Proof. We know that the number of Weierstrass points in the fibers of 2-torsion points
=0 mod 200 Combining this with the Riemann - Hurwitz formula we get the three
cases of the general case.

To determine the degenerate cases we consider cases when there is one branch
point for o (" — F.

[) First. assume that the branch point has two points P and P, of index
2 Case [ Then wr P = Pofor 1 = 1.2 or wiPy) = P, The first case implies
that o Py = W Then e,(w(Py)) = e (w(Py)) = 2. So we have case [. 1. When
wiPy) = P, then e,(w(Py)) = 4. Thus. we have a point of index 4 in o~ '(q) for
q < {q..... q1}. Therefore cases 2 and 3. If there is P € (" such that e (P) = 3.
then P = 1 and e ,iwl Py = 3. So we have case 4.

IT) As in case [ if P, and P, are Weierstrass points then they can be in the
fiber of the puint which has 4 or 2 Welerstrass points. So we get two cases. namely
I and 2. Suppose now that £, and P, are not Weierstrass points. thus w(P;) = P,

and ¢ 1w Py = 4. This point of index 4 can be in the same fiber with 1. 2 or none
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Weierstrass points. So we get cases 3. 4. and 3 respectively. A point of index 3 is a
Weierstrass point which can be in the fiber which has 1 or 2 Weierstrass points. So
cases b oand 7.

III) If P, and P, are Weierstrass points then thev can be only in rhe fiher
with 6 Welerstrass point so case L. [f they are not rhen we have a point of index |
which can be in the fiber with all Weierstrass points or with none. Therefore. cases
2 and 3. The point of index 3 is a Weierstrass point so it can be in the fiber where

all the Weierstrass points are. so case 1. This completes the proof.

1.3 Maximal Coverings o : (' — [

Lev oy 007 — £y be a covering of degree n from a curve of genus 2 to an
elliptic curve. The covering v : (" — E| is called a maximal covering if it does
not tactor nontrivialy, A map of algebraic curves f: X' — Y induces maps between
thewr Jacobians 720y — Uy and fo @ Jy — Jy. When f is maximal then f° is
injective and Aercforis connected. see 1197 ope 133 for details.

Let oy 0 (7 — [ be a covering as above which is maximal. Then ¢* : £} —
Je- s injective and the kernel of vy, : Je — E| is an elliptic curve which we denote

by £ (see [6] or [12]). For a fixed Weierstrass point P < (. we can enibed (" to its
Jacobian via
1p:C — Je
L= ()~ (P)]
Let g o £, — J¢ be the natural embedding of E, in Je. then there exists
g.:Joo — E,. Define vy = g.oip: C = E,. So we have the following exact sequence
0—E, 2 J Z=FE —0

The dual sequence is also exact (see 6y

0—>Elu—';>.lci>E-2—>0
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[t deg(ery) is an odd number then the maximal covering v : (" — E is unique
(up to isomorphism of elliptic curves). see Kuhn [12]. If the cover vy : ' — E| is
given. and therefore o). we want to determine vy : (' — £, and ©y. The study of
the relation between the ramification structures of o) and ©, provides information in
this direction. The following lemma (see [6]. p. 160) answers this question for the set
of Welerstrass points W= {P... .. Ps} of €' when the degree of the cover is odd.

Let o o7 — E 0 = 1.2, be maximal of odd degree n. Let O, 2 E,[2] be the
points which has three Welerstrass points in its fiber. Then we have the following:
Lemma 4.5 (Frey-Kani). The map «,: O — Ey is a marinal covering of degree
i The seis 7O T W and eTHON0 T W form a disjoint union of W

When nis even the ramification of . is more precise.
Lemma 4.6. Let v 0 ' — E s macinal of ecen degree w, and Q = E2,0 Then

Q) has etther none or two Weierstrass points.

Proof. [f there are no Welerstrass points in ©~'(()) there is nothing to prove. Suppose
there is one. from lemma 3.2 we know there are at least 2. say P P,. We embed

(" — ] oviar — e =iPpband B o— Jp viaco — (01 = 1Q)].

, '
( —  Jr
vl A
E =2 e
[hew oa v =0 P = i) - 1.
Asoo e = "ol is the multiplication by noin £, Since 20 then ET27 s
F [ . t [

a subgroup of En]. So ¢*(E[2]) = kertu.iypy). we call this group H. Suppose
Py 2 ©7YQ). Then w.(ip,(P3)) = Og. so (P,.P;) € H. where the unordered pair
(P,.. P,) denotes the point [( £;)— (P, )] of order 2 in .Jc. By addition of points of order

2inJo PPy € Ho So H = {0,.(P;. Py).(Py. P3).( Py. P3)} can’t have any other
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points. therefure 7N Q1 has three Weierstrass points. which contradicts theorem 4.4.
Thus. there are only two Welerstrass points in ©71(Q).
d

Fhe above lemma says that if o is maximal of even degree then the corre-

~potiedineg Frev it coverine can hive ouly tvpe I ramification. see theorem 1.3,
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CHAPTER 5
GENUS 2 FIELDS WITH DEGREE 3 ELLIPTIC SUBFIELDS

3.1 Introduction

Ly this chapter we study genus two curves defined over a tield k. & = k. of

Chataciorisiic Uoowhose tunction tields hiave a degree 3 elliptic subtield. Such curves
were studied during the [9th century from Hermite. Goursat. Burkhardt. Brioschi.
aned Bolza. see Nrazer 10] (p. 179,

Weo show that every ~uch curve is 1 the fourm

Yo= e N a N =N = L N = PN = 20N~ 1) = FONGN

lor a. b = k.

Let £y denote the locus of genus 2 fields with e3( A7) > 1. So £ is parameter-
zed by the pairs ia b 2 k% We define invariants of two cubics F and (7 as

A EF G UG

N ST L A A S LA
= e M = e D)

where RoF 00 i< the resultant of the two cubies. D(F) and D(() are the respective
diseriminants. and H(£.(7) the binary invariant of two cubics. The invariants ry.r,
give a birational parameterization of £y, This parameterization of £y factors through

ramificd Galois coverings of degree 3 fresp. 2)
JECIP CL N B

ta. by — iu.v) = (reory)

where b = u and 5* = . The equation of L5 is computed in terms of the absolute

invariants and is displaved in the appendix.

35
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[n ~ection fonr we <how rthat if ¢ = £y then Aut(C) is 1somorphic to Z,. V5.

[7y ov ). Moreover. there are exactly six genus 2 curves with automorphism group

[ ~ection 3 we determine the j-invariants of the elliptic subtields in terms of
“he paramerers woand oo The involution v = Galtk(uo ey ki ry)) permutes these
ctliptie subtields. If one of the elliptic subtields. say £ ix of degenerate type. then
ko= g2

u[" =
S SN

5.2 Genus Pwo Fields With Dearee 3 Flliptic Subtields

Let A be a genus 2 function tield and S0 0 5.y tts classical invariants

variant= as in chapter 30 We nse another invariant /s as in appendix i A3, Then

cecave the tollowing theorem which will be proved in section 5.

Theovemy 5.1, Lot W obe a genus 2 field ard o o Ko the number of Autv Ki-classes of
W e o Nt fegeee L Suppose o oo L0 Then the classieal imeariants

TN ~UlosTy e equedtion

CSD = = L = O = Ol = Oy = Oy = Clyg = Gy =00 5.

where (g0 O aie displayed o tiie wppendier N additionally Jy = O and

Jis = U then e 0V = 2

Bemark 520 The cases e o o= Los geenr for o Hnite non-zeros nuinber of cases and

et = 1 occurs tor a L-dimensional tamily of genus 2 curves, see section 9.

Lemma 5.3. Let KN be a genus 2 field and E an elliptic subfield of degree 4.

i) Then K = kXY such that
SRR N ARy S (S )T (S BT QSR \E gy ' Gty I 5.2
Jora.b =k such that

(da? +27 = [3ab — a*h* = b1k =27V =0 £5.3)
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Ihe roots of the first ivesp. second) cubic correspond to WK CEY, rresp. WEHREY)
i the coordinates N.Y | isee theorem §.3).

ty Fo= A0V where

and

) , b* — Gu= +9b 120 — b . 1
R A B [ [
‘ R R R

where B= ta? +27 — [Sab = @b + 46* = 0.
vier Define

wi=uab., v:=bh

Let K" be a genus 2 field and E' C K' a degree 3 elliptic subficld.  Let o' b be

the associated parameters as above and o' := &'V, v = (V)" Then, there is a k-

tsomaorphisme N — K mapping E — E' if and only if crists a third root of unity

Schowth o = Sa and b = b, [f b =0 then such £ erists if and only if ¢ =" and
,

o= 1t.

w) The classical incariants of K satisfy equation (5.1).

Proof. Let ktX') be the degree 2 subfield of genus 0 of K. Let X' = wy..... wy be
the Weierstrass points of A and W = {w; wy wy}. Let A(U) = k(X)) N E. where
[" = o\ = AN, The Weierstrass points lie over 4 places {7 = ¢,. ¢ = 1.... 4
~cer 130 We can choose the labeling so that w. lies over ¢,. for 1 = 1.2.3. Then
. ws. wy lie over ¢y The extension A(.X)/A(L7) is ramified over 4 places. three of
which are ¢,. ¢ = 1.2.3. We choose the coordinate [ such that the fourth place is
[" =0 and q; = x. We fix the coordinate X. up to multiplication by a third root of
unity. by the conditions that 0 iresp. 2 is the point of ramification index 2 (resp.
unramified) over 0 and wywsws = —1. In the following figure bullets (resp. circles)

represent points of ramification index 1 (resp. 2).
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Figure 5.1: Ramification of o,

Letw = —wy —ws — ey, and b= wywes = wyey, = sy, Thus. D= ot X =

/ﬁ\.—\j where [ is @ nonzero constant. We can make [ = 1 by replacing [ by

I~ Now the coordinate (7 is uniquely determined. Then,

A
["=0o(\N)= — rx - {3.5)
G B X
The derivative of ot X)) is
) NP =bYN =2¢)
(.')l( \ ) = — - Py » )
(N3 +aXN?2+-bY + )2
laking rhe resultant of the numerator of o'(.X') and 3—(—\\’:—;’{—] we get
W2+ 022 207 =1 = (Z =y Z = wal\Z — wy) (5.6)
Thus. A" has equation
Y o= N = a NN+ DN =N 220N+ 1) (5.7)
Because wy. .. .. wy are all distinct. the discriminant of the sextic is not 0. So
(da® + 27 — [Sab — a*b* + 46*)* (166> — 432) £ 0 i5.3)

i) Let R = da* +27 — 18ab — a’b? + 4b%. then from part i) R # 0. We have

-y—" ')4-(. > PR 2
'1._’11"(-‘(12'(('—(]3):(".;.'_ZLLb ba” + 9 v_;_gl..(l b

-
R "R R
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which we compute by taking the resultant with respect to Z of i5.6) and
((Z°+aZP +bZ + 1) =272 =0

By theorem 130 £ = AU V0 where

2(![)" — b - 9h [ 120 — b* [ |

= - —
\ I it R

13.9)

iit) The =if™ part is clear. For the ~only if” part we may assume A" = A" and
k- = L’ Then the claim follows from the uniqueness of the coordinates (" and X. up
to multiplication by a third root of unity.

vy We denote by Jy. . S and Jyy the classical invariants of the sextic in 3.2
defining AL Then we have:
Jo= =237 = bt = 1200 = 2520 = She — 105)
l e . { -\ YT ) ). ao b - 2 Vot
= =btic e = 2la = NS00 = 3607 = Yutes + 1ISSu = 910" = S24ue
-

J,

) ] ya= 2
P3Nwes = wte 2970 )

t

= =i = 133399607 7 = H6dut e — INTS6ut e = 366986 e — 40320
-

~ 3152020 0 = T30200 0t = Ll = 400 e = 62232300 — 282123007 + 313607

. H L. 4 e 3 s 5.2 5 3.0 - Y . 3.3 - 3
Qb et = 2t et 5600 e + IR0 0 = Sl e? = T2 = 12800 e? + 4950t

— 1038 w? + 106w e? + 160704u v — 104004u> e + 4766 + 2u"v? = 334800 u)

(2703 + 1 = P et = 1e3?

Jip = =161 = 27)

(5.10)
One checks that Js.Jy. Js. and Jyg satisfy equation (5.1). We will explain in the next

section how we obtained the equation (5.1).

FIX):= XP X2 2hY + 1

GiXNT =47 2 0PN 226N + |
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Denote by B = da + 27 — I8ab — a*bh? + 163 the resultant of F and (7. Then we have

the following:

Lemma 5.4. Let a.b € k satisfy equation (3.3). Then equation (5.2) defines a genus
2field K= E(N.Y). [t has elliptic subfields of degree 3. E, = (U, V).« = 1.2,
where U and Vo are as follows:

_ N NP —hN =2
(W = — |\ =Y —
TR ‘ FIN)?

(N =5 (N =86 | o
EY tf bbb’ =dba+Y) =0
(3N —a)
" = —_— JF h=0 Sl
: v 7
TR ,
—_— gy = ~ ) =
\ TR J ) tha =9 =0
’I'/Nl'r
o 3 _ Ja — b?
Ty T B —dab+9
V2T =0y ; s X . ) o \
—(,—\,—,-—(Hub—b—b' )N? = (" = dab)N" = bXN = 1) of b(b" = tba+N =0
[ O
. sV =t N =
\" = Y Ch =)
o
N = :
—Vl BXN? + 9N £ 67N +b) 3 4ba +9) =
bV)f,'(,\')( \ )\ b-X +b) (f (b tha +9) =0

Proof. If u.b satisfy equation (3.3) then the sextic
AT GRS % U BT B A e AR
bras diseriminaent
D = (4a® + 27 — 18ab — a’b% + 46°)*(6* — 27) # 0

So there exists a genus 2 function field A" given by equation (5.2).
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let 17y = r\\—l and {; =Y % Then {7} and 1} satisfv the equation

V= RUY = 2(ab? — 6a® + 960 [ + 120 = b2 0 =
I'he discriminant with respect to {7y of the right hand side cubic is 6% — 27 = 0. see

Vb Thus, Aol 0V is an elliptic subtield of A

Let hih? = tha =91 = 0. Then 7, and 1) satisfy the equation

’ -1 - -
Vo=l ) -yl N -l =y

where o are as follows:

bt = tha - ')i“

1

coo= 0 =27h = abt = Sta bt = tba + 9)?
in.13)

c=htht = tha = 9whT = INab® = 1890 + 5142 = 972ub? + T29b + T29a7)

f - 1
A L VYR

edbaerinnnant of the cuabie s
by =27 —dab = R £ 0

see 1530, Thus, A7, 45) is an elliptic subtield of A
et =00 then the disertninant of the <extice which defines A is 2Tl -

27 =00 then O and bV, satisfy the equation

V=270 + 18aly + 3l = |

The discriminant is 4a® + 27 # 0. So. k({5 13) is an elliptic subfield of A"

Let b2 — tab+9 =0 and Then. (). 15 satisfy the equation

V7= b'('_f ~hhht = 15;('_," ~iSL=9b51s - b

Lhe dizcriminant of the right hand side cubic is b’ = 27) = 0. So. k(5. 13) is an

elliptic subfield of A". This completes the proof.

(2
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3.3  Function Field of £,

[he absolute invariants /.15, and 1, in terms of u. ¢ are

L4t .
1 = - — —(1188u? = S124ue + wte = 240t
VT =105 + 2520 + du? — 5le — 12ur + Ih'-’)~’(
+ 143300 = 66w’ e + 138ue? + 297w’ e + 9450° — 3607 + Yute?)
36 . . .
ry = — RN P TR L P R B N ITEI
i r =105 = 2520 + du? = Sde — 12ue + 3e? l"(
= 316240200 = 213840 0 = 266760 — AT312107 — 720" — 58320 u + 1485000 u?
— T2t = et = 6502630 e = 39400’ e = 334611007 + 432u® — 1350w’ ¢?
~ 1360800t e = 70200 e = 307638 0l
= -1 fe = 2T b = e = 18 < det 2Ty

e =105 + 2520 + du? = Hle = 12ue + 3ed)d
(9.1h)
Let e be independent transcendentals over & and 100,00, = Aiaor) be given by
cquations 5.0 by Further elements rpory < Ara. ey are defined below.
From the resultants of equations in 5.14 we determine that [k(¢) 2 k(1y.12)]
6. fh(ey o htiyoiq)] = 40 and [k(¢) @ k(11.14)] = 26. We also can show that 1 &
Ry ey, the expression is large and we display it on the appendix. see (A 1),

Phos. (btaee) s b)) < 20 see tigure 5.2,

ktiy. iy iy ktiy.s)

Figure 5.2

Computing the equation i3.1) directly from the 5.14 exceeds available com-

puter power. We use additional invariants ry.7; to overcome this problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



43

5.3.1  Invariants of Two Cubics

We detine the following invariauts of two cubic polvnomials. For Fi Xy =
i :,.\"' - ll_».\’: - (ll.\’ - Uy and G\ = b-;.\’v; -+ b’l'\’l + bl N+ bU define

| 1
II\ [ (J‘) = !l;;bu ;(l ’bl “+ ;(llbu - llub}

We denote by R FLG) the resultant of F and ¢ and by D( F) the discriminant of F.

.\l.\'u.
G SRR
r~[| [.‘ (:,') = ——————}1‘1.(,’ . m o [~“(l'l = ———-—-—[['[.(”
ROF. () - DoEY Didn

Frecvark 5.5 Note that DoFGho= Dol - Dy - RECE G,

FIN)= X +a\?+bN +1
GINY= AN+ RN 226N = |

from lemma 5.3 we have

. _ cle =9 = 2u)?
ro b =27

bed — IS = 2T = e + u?

3.17
el =Y - 2u)! 9.13)

roa B = —1296 — - - — - S
(e =20 e = IS8ue + 270 — w=r + Juy

Remark 5.6, Note that ri.r, are defined for any w. e by (5.3).
12 \ \
Taking rhe resultants from the above equations we get the following equations

tor w and ¢ over Mrpor,:

6533611 ut = (1246T325F) + 2123366473 + 480ryr] + 27 + 41472750
= L3NNG ] = 2949127} F i — 38220595258 + 238878720735, — 265420873 15.16)
+139345927377 + 285696737 + 240077 + 77 =0
LG3NLCTF ) = 220N 2ry = 1) = 11520030 = 442368, — 192r,0 )0
(5.17)

_“)91 19()‘17‘ I'l _ Q()_lr,rl _ l)l‘l( :: =2 _ )_-l{ —
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[n equation 15.16) express 7y and 7, in terms of  and . Roots of this equation
are i and v(u) where,

(= 3a)(324a% + 15a%¢ — 3TRac — 1ae? + 2836 + 72¢0°)

L’(li)z N e 3 -~ - ) - - S, )
(¢ =2T)dat +27T¢ = INat — u=r + 1e-)

Simmilarly for ¢ we get

e = 3ui? .
g= - Le — du! (5.19)
v <= — ;
dad + 2T = ISue - u-e - -

Detine a ring homomorphism
v:khlaoe] — hlur)
o= 1
= i)
Uhiew. we compute v* = 1. Thus. v extends to an involutory automorphism of A, ¢
which we again denote by v, Since.

bt — hva, e

t —
¢ =)

is not involutory. then [A(a. &) : k(F. 7,

)

)] = .2 a.n({ (I'(l[k(u_:)//;\.(r:.‘,;;) = (/l/).
Lemma 5.7. The fields k(1y.15.05) and ki rfop are the same. Morcover:

GUL3N24rfrs = L2365 ] = 53080160 ) + 19200 ry + F + TNOA32F P + 943TINAFY)

1 = I
YT Fil= 115272 + 9677 + r7)?
27 )_3 Y
= ———— (+79626210F 7} — 10T6REISNFIF) + 34560772
Nrpt=LI2rs = 968, + rf)" - - -
= 1223059046075 + 326 149079047 75 + 144935 1462475 + 28877y + 221 18407) 7
+ F] = 212336640707 + 132382380873 F) — 233929677
. ’:?
[y = =32IN3R526464 :

)

ri=1132r7 = V6rrg - /'fp-‘
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Proof. 1t can be checked easily that v fixes ty.12.05. S0 ty.12.14 € k(F1.F). Since
[Au. vy h(F 7)) =2 and [Aa. @) : k(l—'l.fg.;;;)] < 2. then k(iy. fa.14) = kiF. F)).

To find ¢; we eliminate & and & from the system of equations (3.14) and (5.15).
[n the same way we find 7, and 7,. One can check the correctness by substituting in
rerms of 7 and 20 This completes rhe proof
Remark 5.8 To find equation 5.1 we eliminate 7y and £, from the three equations

of the above lemma. This equation has degree 8. 13, and 20 in ry.1,. 14 respectively.

3.1 Proof of Theorem 5.1

[he tap
Ot ) — (gt 1)
L'.(‘!l(‘l'i('il“_\ fras llt‘gl't‘t' 2. b_\' prC\'iuua sectionn.  Denote the minors of the Jacobian

matrix of 4 by Mi(u.v). Ma(u. v). My(u.v). The system

Miu.erv =0
Mo =1 15,20

Miu.rv =0

has solutivns

[ )
i
[

T T S 2 12, 2 . .
Set =270 = 5duet -t = 108t + e — 108u? =0 {

and T further <olutions which we display in the foilowing table together with the

corresponding values v oo and properties of the corresponding genus 2 field A

v

Assime that equation (3.22) holds for some (u. vy = k%, Then the correspond-

ing quantities Jy,. 0 = 1.2.3.5 from (5.10) satisfv the equation

F(Jy,.Jy. Js.Jio) =0 {:

P
(M)
-
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‘ L. i Uielaaly) Aut(R) | es(R)
1
- 1
==, i.JJyu = 0. no associated
|
] : genus 2 field K !
TTS 125 3 ; !
! ! | . |
i !
(3550 | _suly 1240029 331441 1 D [ !
Ty ' 0 200 Tooowu ! i - !
i e N T | | ;
g= _ T TT oaq ot T T LMUU2Y 531441 i by
- Ty —L2 = oy -0 G e Dsisaon | Dy 2 |
=1 EVOLF F EVI). 1 i ' ;
T TS S T S 1 DS _ 3oy Tay 9
e RV N =Val | S-S - : D, 2

Table 5.1:

where FidyoJyc s Jie) s displayed in the appendix. see (A3). This is ob-
tained by taking the resultants of equations (5.14) and (5.22). We define Ji5 =
Foodoodo o dn e By previous section # s eenerically a covering of degree 20 So ex-
ist< a Zariski open subset U of A% with the following properties: Firstlyv. 6 is defined
evervwhere on {f and is a covering of degree 2 from {f to #ilf . Further, if w = U
then all W' = A% with # detined at u’ and #(u’) = Oiu) also lie in &. Suppose 1 € &*
such that 7% > 2 and det(Jae(#)) does not vanish at any point of §71z). Then
by implicit funetion theorem. there is an open ball B around each element of #7'1)
stch that cach point in 0i B lias > 2 inverse images under 0 But B has to intersect
the Zariski open set . This is a contradiction. Thus. if £ = &? and [#7'(:)] > 2. then
detiJactfii = 0 at some point of #7171V and <o Ji« vanishes.

Let ¢t A > Land J, # 0. Jis # 0. Then iy.15.13 are defined and by
previous paragraph (#7400 04)) < 20 Thus. by lemma 5.3 part iii) e3( &) < 2. This

completes the proof of theorem 3.1.
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3.0 Exceptivial Cases for J, = U

At present we do not vet have a full description of all possible values of e5( ).
This will be done later. We consider the case when ./, = 0. Thus.
2 ~ - -
Joo= EMU —bu +2uve =27 ~ 18\/6)(3v — 27T + I3V6 —bu —2uve) =0

A< for n =2 we deline the invariants
./| " ./“ -/” * 'le

wy = .oy — {2.24)

2 1
Jio Ji

tor Jy = U and J, = 0. These invariants determine genus two curves with

J: =00 up o isomorphism. see [13] or [17].
W= —l—,t 3 - \,'Gl\ —t Y by 6] then
) = et = 153 = L2y e — 960 — HOVE) (-0t 5 I8t
So—de = 20 - Ly Gyt
By Gl = 207 = N2y 6% = 3120 — 1668V 6 — 33092 — 1168%v/6) 5 35)
- - (9.25
SOV = J =30 + 26 + Ldv6)? : -
.- 2y 4 = 3= 3 v ) (o 1Y = 6 G
sl = 2T =30 = 1330 + 12v6e — 960 — 110vE6)*
= 20707 = N2y Ge? < 3120 = 1668vEr — 35992 — [468%y G)
Fhen we have the following equation for ay and o,
16656a ;) + 33827 2alay + 12597 lZv()ala, - 15552a}a3
— 122N TS jas + 1917635712y (iulu', + 1728 ay — 6562173316544%0a7 a3
+267571209034080v6aia; ~ 13441 ’70)()ala> + 743523568 VBaia,
—6Gha; — 6334974494721 lTiil')a[u', + 25N3%6G0-133265398N32v ()ulr f
+230833239838992aa, — 9423722708783-40a. xa[vﬁ = 6012444299753050307 77 a ::
«243429.-3:;92577(54:;:40572(:.;:\/7 0
{5.26)

Wo denote the stugular puints of the above curve by P Py, Py, Py. They are
displayed in table 3.2. The inverse images of P,. P,. P,. P, are given respectively by

the following equations:
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9ot + (=693 — 27V6) e + (15141 + 1T49V6)e? + (=664 14 — 33396 V) v
— 1368V 6+ 3388 = 0)
Bet =153 = 33y 61’ = 13129 — 1219V 6ie? — (=103 = 115356v6) e
—176904v 6 + 450036 = 0
~200139562 103800 + 2896020007 - 31321073470800°VE + 1077048 v6a
—SGAGTINTOLS30450% = 366434809007 + 210536251225 1640y 6 — 14967062400 v 6
— 1200758 19516576360 + 110011936200 ¢ — 310386065863 180-4ey 6 + 1IN3R311X0a v
<NINOEAINT2606 1T 1 = 9335134840 = 3396330063 48312720 6 = 389605603760y 6
3170527721280 P = 0
DOULA9IG2I0IN0C T = 2N0G0200 0 = SES2T0THTONDC v 6 = LOTTOAS Y o
CNGILTINTULI0 S = 366 15 IN090 07 = 210336231225 16 0e%y 6 = 11967062 tar?y 6

< 120075 1316376360 — 1100-11936200 ¢ = 5403860638658 18040y 6 + 1IN3S31180a ey 6

SNINDEIINT2606 LR = 933845 13484 — 3396330063-4331272v 6 — 389605603760 v 6
—31705327T212%¢e =0
13.27)

where oo = DI2I56046 19129 — 621062090592 156, 5.

V= <0 =2 LG =270 then

271 =5 = 206

(=30% ~ 1533e + 12y 6 = 960 — 140v 6)

ap = =
S(=3r = 26+ 14y 6)?
ot e = Gy G £ 29700 = 20 6% = 3120 — 1668V e — 35992 — LGNSy 6)
NiS -~ 2\ g‘ . -
a, = — . - — — ~Jr =26~ LIV )
O = 2T =Bt = 130 = 124 G = 960 — Oy 63
e N iy G = 20T 2 N2 BT = 3120 = 166Ny Be = 33992 — 16NNy 6)
(5.28)
Then we have the tollowing equation for «; and «a..
230833239838992a,a; + 94237227087840a0a, v'6 — 12427478784a }a3
1917635712V 6aba3 + 1728}y — 13532a}a3 — 63621753 1654480ata3
— 26757 1209034080v Baia; — 46656a e — Gda; — 60124442997550303077 7] .
IRAL R

= 24542953925 776435057 203y 6 — [M44123056a5a, — T43323565 v aia.

1w

—63349TH94T2L LT3 12a a3 — 2585%60435265558%32v6a, a3 + T558272ala
-1259712v6ata

1l
o
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We denote the singular points of the above curve by Q. Q.. Q1. Q4. They are
displaved in table 5.2. The inverse images of Q. Q). Q2. Q4 are given respectively by

the following equations.

9ot = (=693 + 2TV 6iet £ (151D = LTI9VE) 2 + (=661 14 + 33396V 6 )
+1368V6 + 3388 = 0
et = (=153 = 33V 61t + (3129 + 1219V 6) 0! = (= 10854 + L1536V 6)e

—176904v 6 + 150036 = 0

—313600 7y 6 + 302804792607V 6 + v Gar® + 13500} = 20966400 V6 = 371497600
— L0335 18340 = [R10298170260°V6 — 3294002 V6 — X046 + 23846407

=31560" + RY29332530-4280 + 31547)613068192('\/6 + 16196tae + 66096V b = U

BN = B02NEITO260 v 6 = Sy Gae ! = 13300 = 20966100 ' 6 = 37197600
CINTOZONITO2605N 6 = FLI0S3 5 I3 1e? = 329 bardy 6 = SO046Gae? = 3156000\ 6

—B5607 + R929332535428¢ + 36456 1306819206 — 16196440 ~ 6609600V 6 = 0
(5.30)

where o is the conjugate of o,

It J, =.J, =0 and ./, = 0 then there are | distinet pairs {w. ) as below.

3(11e? = 6060t + 3655¢ + 42600)
3 (15c2 = 912e + 10190) (3.31)
3ot — 30607 + 943507 — T6300¢ — 30000 = 0

u =

They determine exactly one genus 2 field A . see chapter 3 or 131 In this

case g [\7' = {
W, =, =0 then tu ey are as below.
_ L (10907 — 29430% - 3078302 + 41964902 + 10575604 ¢ + 446914R0)

N = "
4 (99ct = 323703 = 9518¢2 + 4333780 + 7 12508)
eY = 3607 + 172200 + 2287130 = 206481607 — 3242824002 - 2715360000

(5.32)

~ 1000000 = 186 =0
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T T 1
X : [
} (dy.u2) €3 G
i
{ - . a0 - |
) i _ _IT1e9 30..-.9 13783592 | 5629912 /¢ ) -
P ‘ G = 3 6.a, 2349125 23149125 6) bR
y _ 650833, 268783 /—- _ 2084 144872 7 | -
P, = s T 3 V 0.uy = 20002028625 AUUOGUSARTS 0} | Ebd |
) _ITIGY L 0TSO T I3TNS5Y2 |, Guduull -
r, = s T Ty VO ETETE T G V) 1y !
T
) _ RI5L2265 S560473 T 3 |
y 4= Tom ATy i
) o Tha e it e duus2eTo luudned sy G - ‘)73")71':3515()015{ 31512265 | )
te T L 5 EsG 19707 343506 2063454 bARY1353859391 2t ! ! !
560473 1T 2328861 1601 ; Iy
e Vv uu‘”V(’ T 1530518610797 by by
Ty ,U. 54 15784592 Gnlyyll o :
{ = — i - = A = 1.
41 ‘i N B, @ = Hros T S v o R by
— __DOUNSY ').‘4“51 - JUN = 14872 SR B A S
. dy = 3 sV 6. 42 = T 020 T soonosast v 6) b
) — SLHL26S 856047 ‘- - : ;
e i Tuls T YT wnf
= LTI A1G | MUSTELGES IS TISTEISSI008 SISLAS
- Dot Esn gt SI06 206549 1891335839341 1024 ! i
< ..m ) “ 228861 16U- .
BRI NS t - 1! ) e
ST T I T T TS AT, ol
_SIGL2265 8360473 } i
oF “WE o T T e v on)
" LR3TISI5L6A0516 | 609I6THLI0I66SIS0 -;. 457158 s'uus(smu_’oss §
) - _— L
: 16305 ING19TOT ' 306206509 Y 8915353359391 (024 i
60T 32886160 - . Cyc
- VO um“)\’ 6+ T6305 15610797 ! BEAL 5
1 | !
- 015494002248 1023 35 12035200-46-16584 1 77 ‘ i
-1; =) 120 - ) \/() . 1 ‘ ‘v‘
Jeo. . ' Py
=0 15 roo large to display N

Table 5.2: Singular points for ./, =0
The discriminant of the above polynomial is

D=-2".3"5

]

i<

o
[

1 6459242937529

Flis. there are N distinet pairs vw. e which determine exactly one genus 2

field. see chapter 3 or [13]. So. e4( A7) = X,

3.6 j-invariants

We express the the j-invariants j, of the elliptic subfields £, of A". from lemma

5.4 1n rerms of w and ¢ as follows:
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(cu? +216u? = 126vu - 972u + 1202 + 405¢)°

)

no= loe —; — : -
I (v =27 des + 270 + dud = 1Scu — cu?)

(u? — 3('):"l

Cldes = 2T e = lut = N — en?)

ja= =256 (534

where o= (). 27

Remark 5.9, The antomorphism v € Galy, e -, permutes the elliptic subfields.
One can easily check that:

vin) = )

Ui =
Define 7 and N oas follows:

L
= INURNEN ey = 25804850+ 12386304050 + 001736973729792r 1Y
661317 12r r] — 16231265527 1362561 + 180r3ry + 101376r5r7 + 479047767293952r 07
= TRTTITHZe ) = TN2TITTNGGO60r ] ~ 270521092 1189376 ~ GLIGNI2501T6r 1)
2L HTOSTIGO5 150080 = 3216253105 127251210 = ) = 37572373905 10537
= LHONYGH02L 525007 ) + 133956-H1249792r3r7)
No= - — _F_. ——— i N1934656r] = TITOGANP [Py = 5308416r] — 1123681,
ONCLY 636 20

)
) 1Ll g
= I3N24rirs = 192rr)

t

LT 122R2661960r 7 + 13288238083 + 4994157772803 r]

t

t

.’ - r'j)'y5

Lemima 5.10. The j-invariants of the elliptic subfields satisfy the following quadratic

cquations over k(ry.raj:
JF-Tj+N=0 (5.36)

Proof. Substitute j; and j, as in (3.33) in equation (3.36).

]
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5.6.0  Isomorphic Elliptic Subtields

Suppose that £y = E,. Then. j; = J, implies that

Db a= 2 = 2 202 2 : (2 o=
Sed+ 270 = Sdue? = wtet + 108w e + dute = 108u? =0 {5.37)

ur
321t = 38320 + 379080t — 31492803u — S1etut + 25337902 + 306 18¢3u?
— NGt = 6377292002 + 850305607 = 3240’0 + 2125764 u e = 2137 et

— L3N0 ut et = 16u"e? = T8T32u e + XTARP e = N64uPr — 15T 164ute = 116640 = 0

{535

N

[ie tormer equation is the condition that det(Jac(f)) = 0 see (5.23). From
cauation 5,23 and equations 5,11 we can express u as a rational function in ¢y.¢,. and
o This is displayed in Appendix B. Also. [k(e) : ki) = N and (ke s ki) = 12
Fliminating ¢ we get a curve in ) and ¢, which has degree ¥ and 12 respectively.

[hus, Ao = da fletoh Hence, e 3l Ny =1 tor alid A such that e assu lated o and

Csatlsiy equation o523,

So6.2 [l Desencrate Case

We assume now that one of the extensions A’/ E, from lemma 3.4 is degenerate.
i.e. has ouly one branch point. The following lemma determines a relation between

Juand gy

Lemma 5.11. Suppose that K/ E, has only one branch pomnt. Then.
295100 — (Ja —432)° =0

Proof. The hypothesis implies that s = ¢ in lemma 3.4, So 26* — Yab - 27 = 0. i.c.

Q0 — Yy - 27 = 0. Then.

Eliminating » we have:

2951 0 = (J2a —432)> =0

{1
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Making the substitution T = =27, we get

. . (T < 16)°
n=>mntT= —'—[_

whiere /“_J 1< the Fricke g)u!}'!lumiill of fevel 2.

both A £y and K E) are degenerate then

T =i =32 =0
15349
2 —ge— 207 =0

Liere are [ solutions to The above svstent. L hree ol whien give 1sotnorptie

con e ChrLes

Leother b solntions are uiven by

T2 =g = 820 =0
(9.40)
Ji= g3 = 12960 = 21 = Jija 539872 = 0

[his corrects [10] where it is claimed there is only one solution j, = j, = 1723,

.0 Intersection of £ with L:

Theorem 5.12. [f« (v = [ then the awtomorphesn group of C s one of the follow-
mg: Za Ny, Dy.oor Dg. Moreover: there are exactly b curves C € Ly with automor-
phism group Dy and siz curves C € Ly with automorphism group Ds. They are listed

in tables 3 and | respectively.

Proof. We denote by (7 := dutiCs. If C has no elliptic involutions then (/7 =7, or
(i =Z W G=Z . then Y° = X — X, e 2.5, Thus. J, = J; = Js = 0. and

Jiv = 3125, They don't satisfy the equation (5.1). Then. the curve ¥? = \® — \ has
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no elliptie subeover of degree 3. [f C has an elliptic involution. Uhen from theorem
£.3. we have the following cases:

=7

=7 a0, C i~ isomorphic o Y2 = X" — | Then.
Jy = 2400y = 1620 Js = 119880, J;y = 46636

and they don’t satisfy equation of L.
i (=L C i isomorphic to Y4 = X7 — X The corresponding absolnre
Invariants are

J_x = - 10/; = —SU.J.; = :;'..).U..I[U = =256

and they don’t satisfy equation of L.

i I (7= Dy then € is isomorphic to

- e -, )
P =i N - X = AN =
tor V= =2 see theorem B30 [wusa invariants are:

Jy= 160N =20 = L6y

./‘ = ’H/\-) - 3._)1\ + I—(SHI\ - 2)2

Ji = N3A = TONT = 460 = 18320 + 31040 = 207 o
Jio = 64N = 2)%(\ +2)°
Substituting i the equation ot £y we have the tollowing values tor A
(AT = TT20 = [5321(4A7 = 120 — 41N + 1520 — 124)(2)\ + 3)
15.42)

P = 300N = 68N — 12001602 + 17N +226) =0

We tave the {ollowing cases:

ar Il A = —% or A = =34 then
T2y 2oy FRIEEY
hy = T = e 3= T
2116 97336 13151630164

b 1A = 772X = 1532 = 0 then

NS 243TI2 64
Ay
79507 "0 T 1323075987
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[l
1]

A =TT2A = 1532 =00r A =2 —3/2 then

11715021 7020 : 16539411219 246294594
= == + "y \/§ 1y = - <+ — 2
5396820 2798441 T 29607177800 0 148035389
443312363415249 11076247 13X 1
26512967 1767353600000 10605 1867069114400 ¥

1y =

D IEN = =226 = 160y2 or A = 1+ 32 then
CUITIS02L T020 5 WG339411219 216204504 =

P = V-, ty = ——= - -~ A W4
J9UHN20) 279N 2960717VS00 LESUSSSSY

_ 4-83312363-415249 FLA0T6247 1381 5
T 26512967 1767353600000 T 10605 1N6XT069 11 HOOV )

e WA — 65N = 121 =0 then

£ I0 16N = 17N + 226 = 0 then

S019 1210029 531
n = - Ay = iy = —
20 200 10000
(TEY (i 2. ty) i tj;([\-) ; l,.)([\.) ! .’1([[([\.’ )
_ Ty — L2002y 33l Y . )
! NOZ T Hme Y T IR0 o2 2 by
|
\ S .~ SR & 11l V. H-4 by g
h | = Ry T To50r 8 T motsues N D,
¢ o= LT | _T020 5 iy = 16339411219 | 246294394 5 }
S BTy Tosn Vol T mnonitraw T Tasussasy Vo= |
Py = LGRS _LLTEMTLSL 9 19 D,
’ 26531 24671 THTI53600000 1UBU5 136370694 14400 ¥ = - P - : :
—_ |
Jd o= LTI T020 Ty a6SAUMTI21Y | 246294504 /5 l !
USRS oSy T T IN60TITTSW C Lasosassy Y Tt
jo o= —ME3L2363415249 . LLIOTE24TI38I ys) N ] ) | D, |
. b T 2651296T1T67353600000 10605 1868706941 4400 ¥ < - - )
| '
i — Lo 3456 o 43 o I B T
C = gt T 575043 T 5501es 2 2 b
i | 2019 - __ 1240029 331441 ) y |
L f [ == 2% 00 03 10000 = ! = D, }

Table 5.3: Curves of genus 2 with automorphism group D,
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Thus. there are exactly 6 genus 2 curves C € £ with automorphism group D
which are displayed in Table 3.3,
vi I (7= Dy then C is isomorphic to a genus 2 curve in the form
- - -
Yi= NP =Nt
tor A = 1. 1. see theorem 3.
Jo= 60N =38 =

.I.‘ = 32»1/\(/\.’ + T/\ + l,

. (H5.43)
Jiy = 1620 N = 3807 = 338\% = 38\ + 1)
Jiy = T9NN = 1)?
[ hen the equation ot £4 hecomes:
CEA = DN = D625 < 1313 1LI9SNT = 76902330 + 697077TSRN?
(3.44)
STEO0233A = 13I31IONA £ 15625) (1M + 19X = (M — ISV + 1) =0
We have the following cases:
AlfA=dor \= lx then
6l LONN |
e T T e
3 25 S35
by [t 4A = 19X = | = U then.
376 . 60-180 . 243
= —lly = g =
PT3600 T 6359 7 T 2476099
) If A2 = I8N+ 1 =0 then
‘ SL i 5103 129
ly = Y EE— Ay = -
! : 25 7 12500
The other values of A are the solutious of the equation:
1562357 = 1313 141980% — 7690233\" + 697077883 — 7690233 A° (5.45)
).t7)

+13L31498)N + 13625 =0
The above equation has the same coefficients for A and \*~?. Hence. if A is a root
then L is also a root. We let u:= \ + £. Then. the above equation hecomes

y_ 1BI3L9S , TTRTIOS A3EHT92

——Uu ——u =
13023 13625 13623

u
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Solving for u we have three roots

5048 L 20701097057-466 2 1767150 2 — 4377166
U =—- ——=37" = ————= —— 37 + ——= —— 3V 6 - ————
15625 3579238276191265625 357071249676241 13625
232 1 10:3305-48528733 2 N3357H 2~ H3TT166
Uy =—— 37 + —— — — -~ 33 ~ —— — 3Ive) - ———
© 15625 3579238276191265625 3570712496762-4 1 13625
2572 1 103505-18528733 2 3NIITH X —
~ V33T 4 337 — IV333v69
156253 h ANTY2IR2TH191265625 \/— 35370712496762:41
232 . 103505-185238733 2 NN3573 2 o~ 13TT166
Uy =——— 1 = == ~ —— It - —— — 3T V69 - ———
13625 5379238276191265625 35707 12496762:41 13625
252 - 10:3303-18325733 ~ NN35TS - . -
- [\ 3 - Iv33T + Iviiivey
5625 35TO2BR2TH191265625 ¥ 35707 1249676241~ VP

{5.16)

where 4 = 63T 177684836-0 + 87656250069 and [* = ~1.

. A | . A .
| (g taaty) ‘t'x(v[\l(tg([\.!.’lllf([\)*
: _ i o _Mss oy ! SO .
o= T = T IR0 T T O = 2 Dy
' - . . i |
‘ 3T _ HU4SY — 243 9 g5 A ;
h T E T NGy YT e, - - Dy
=N = __alus o = — Ty ) : ‘) i .
( [ l. 1) 5 ly 12500 - ! 4 | [).,
T
I[ (5[.(5-_).'53 ..). _) D»;
i
¢ P23 2 2 Do)’
I M2 b2 2 0 Dy

Table 5.1 Curves of genus 2 with autvmorphism group D,

To tind A we solve the equations A —u, A+ 1 = 0. for = 1.2.3. Each of these
equations gives exactly one genus 2 curve.
41 The solutions of A\* — ;A + 1 = 0 give exactly one genus two curve with
absolute invariants
=ML oy =a =4
where 0,00 = 1.2.3 are displaved in appendix (B.1).
e) The solutions of A* —uyA + 1 = 0 give exactly one genus two curve with

absolute invariants

I =P )y =pr. 3=y
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where p.o 0 = 1.2.3 are displayed in appendix {B.2).

. e . Bl . -

f) The solutions of A* —uz\ + 1 = 0 give exactly one genus two curve with
absolute invariants

Ly = 1. ty = I, i;; =1

where .7 = 1.2.3 are displayed in appendix (B.3).

All the cases are summarized in table 5.5 This completes the proof.
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CHAPTER ¢
GENES 2 FIELDS WITH DEGREE 5 OR 7 ELLIPTIC SUBFIELDS
i this chapter we discuss briefly the spaces £5 and £+, Since the computations

are quite long and the results very large for display. we treat only the cases when the

covering has a point of ramification index 1.

.0 Cirves of Genus 2 with Degree 5 Elliptic Subtields. 1-cvele (Case.

Natiee that the case T 11 dves not occur when n

= 5. So we will consider
onfy case TLoii). We will prove the following lemma:

Lemma 6.1. Let o (" — Fy be a covering of degree 5 such that the corresponding

Froy-Kang cover s of ramification type [ i itheorem (2300 Then the genus two
curee can he gqicen by

Y= e = It = diat = urt e = w
Il'}lf e
. ) ) ., . . - )
/ (Jus = 4u - de+ 1) s —bu~-1e+=5)u" - tr)
= . w = -
2u = 31 bud = Wu +5 ~ ) <20 = 3)
and w and v satisfy
- : o2 a2 L=p 2 - =
13t = 820 = Rew? + 159u? = 140u + 36cu — 1607 =320+ 50 =0

Morcover, an equation of Ey s y* = z(z = Li(z = t). where

. cut = o=t = 2t = 630 = 64et = 192ue - 196¢ = 16k — 180u - 100)
- (21— 316u” = 10u+3 = Ne)

Proof. Take the genus 2 curve to be

. N . - )
Yi=rir—Dilr—dVie? —ur = =)

Let o be the Frev-Kani covering with degto,) = 5 such that oy (w) = o1 (w3) =

Oty =t O[!U] = 0. Olll) =1

.and opid) = x. Take x to be the point of

39
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ramification index - such that o, () = x. Then o, is given by

r(r? —ar +b)?

(r —d)

:=1\.'l

Solving the corresponding svstem we get the above resulr.

.2 Curves of Genns 2 with Degree T Elliptic Subtields, $-cvele Case.

[

The case n = 7 is the first case that all degenerations occur. However. it is
very difficult to compute the space of genus 2 curves with degree 7 elliptic subeovers.

We disenss only one degenerate case. namely case [LL i) of theorem L3 We will

a~sne that the genus Two onrve s aiven by
' L )
(Y =or(or—-1Hr - :l)(.z" —ar-+bhr —c)

and the elliptic curve in Legendre form £\ : y* = z(z = 1)(z = t). Moreover. let’s
assume that the corresponding Frey-Kani covering o @ P! — PUis of rype [L 1) of
theorem B30 Take the coordinates such that, o) = 0. oily = L. wrdy = ¢ and
three distinet roots of ¢ = ar? = b = ¢ are in the tiber of illﬁlli‘}'. [Let the [milll of
ranitfication index | be infinity, which is in the same fiber as roots of &r* —ar? +br —c.

Then the cover is given by,

xr Pl"l.r)

1=k

r—are~hr—o

where e is a cubie polvnomial which represents the three points of order 2 in the
tiber of U, Solving the corresponding system we get.

a :%nd-’“ 24800 = 11072d02t + 236803 d" — 37240t — 1532d" 7 — 21568d 2 — 564t
— ATRAE + 3680 d — 4200d°% + 1R1603d" = 135663410 — 62480 d° + RO - T3681d"
= 3259.03d"? + 624td" — 2576¢d"® + 2725td"S + 736td"> - 364" — 2368¢2d7 + 124'3
= 6L12d"8 = 2957663d° — TE7 + 5259463d% — 1449643d" + 2576t 45 — 2725004
— 1332000 = 3660 d < RT25dY — 61120307 — 1T = [R160d%% — 124dV3 + 11072452
—ndY - BY6E2d"Y = 21568807 ~ 1356dM = 29576¢%d!Y)

(6.1)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



61

h :E:T‘ =L = TTd? 10047t = 34966303 + 941280431 + 168083dM - 212326344
LOOSA' £+ 35d" 7 + 316 12d M2 + 34d?0t = 616d"t + 13133 = T780d + 12183 d?
L0376 = 7208 = 001680 dT + 2000 ~ 1393412 dY + 2698%6G42d'? ~ 9016t

= 52220d" = 3496tdY — 121dY — 163082d7 = 20d" + 724" + 3332471 - 269886637
393 L1 ™ = 316120507 + 522208d° — 3500 = 533520308 = 1313¢4d? =S4 d ~ 10083
— Glurtdt = 9IN0d = 00d  + 202324387 + 2197 12d 100 — 30847820+ 3084TN MY

— 20971200 < 5080837 = 50R0dMH + 103568d" + 1487

t

t

1 i) ) - > ) ; | ) -

C= T l.:_*x,/” = TdV = 561dM = 1R00dTE + N4d 0t = 120%d - 360D = LIsetd? =
= 20d" = 120td’ = 608td® ~ 1100td® + 131 1Ed® = 124" = 110d°F = 504t + 4104712
(6.2)

V= i 00dM = 36070 = 912 = N1 = 366242 = 10 = d = 360 = 90td® = Sutd® + 9td®
<GS = 1 = LGNt = 20td = 6120 = 1063 d® = 5t7d = 90tdt — 90d7t + 20td®
—ndt et o =

(6.3)

Ao fand o <aristy the equation.

AV G = ) = 1200 = 3608dY = (10067 = 11206)d"? = (240087 = 1968¢)d"!

— BHONET = LIO0E ™ — (L0108 = 10081d = 129700°d% = 1 1006° = 1104013 d" ~ 12003 d?

— TR0 = 66O = T96SED = 200009 d” ~ i 112000 = 100t d - 56000~ =0
(6.4)

A complete treatment of spaces £5 and L- will be given later.
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APPENDIN A
EQUATION OF £y

We display coethicients Cy. ... (5 of the equation (3.1,

-z . S A EE L e R LA} SRR NI : S 22 aanane T ) ia

i e
- . STl e T T T N I S T
- R D P S T I T L ITRE PO Il S s T e esana Lt N
D T T S SoUTEN ALY L
- I LI N v LRI T G S = AT BTG T T TRA G s 4':’ B
. R . S R T SR Fa L..'.;.l.-wnu,»,.;@::._
PR D B T IC TR I L E AL ARARD RN LA SULT WD diig
-~ - - - - B L - B -4 R - -
- . i ' <1 .- T INACR AL I UT B e A AT IS AL EON AN
- . ’ - " v
e LTI D] U T TN T L e e T T2EA ),
- . I e R 40700 0 1Y r o e e MGG LTaT I~ S e e
- I R S R N R 2 ERAEE RS RS MDA S O RLLETL XL Z LS Rl KL SN
' N . . - . .
B R T L T N S VR R TT DULE LI L= NS DRSS AT DRt by ToTs Iy
.- - R A TR . se=a, M .4
ST T T T T S e DAL N 2R T R
= Gotel Ttz U . ARIASORRTLITITUY Y e Tt caceon 21 )
ST T Tt D e T e L e L [ e
- ety e g =gy Y s rd gy g N I
R P 14 Tl AR PUALY E URGUE D B I St SO A KRR B UV B2, L2 R EVRE-T R PSP S
M - - - . - T . . - - . - L. . LT
.- P PR L L L ULREL R REOE D S VAR Py
P PR AT R OR R KIS sia
TR Vg oy T . . N eyt 4 e
B I G = IANTIRIRRS 2NN Y e e L T B e ST I
N el T T s e foamio, YL
P .« . cod an LT e o N R T e
- el e calThes LS00 e S
T R P B S CEEEEDE AT LOREITIE I MR TECHINA TN 080 S UL

¢ Sh = ATTOMATA0RIISE2ITI6 ST U - 13T01522T511060 )] Sy i) = ATIOTEL 16T 6RO J]

R D) AR SR S TIR (VI

— TTAWIGLIIAR L LI800048 S U0 - 10911809855842557952 % Uy e

" . 4T g e e e T . B A
3 e B e R L L A e S L L I

} e LI2TIOB2161044480 017 1, - 10TTRQ2RGAT IO INTION T D

LR, D

PPN

P28%ARD 1 T - 1106900 T2 0] UY 4y = 2382052800 2 Y g

- DU -0 T IIT e ST ST A - s vee200 07 270
- Lol onTelACiTRARLa 0 LT Lo TR i LD 0T,
- T 2oVt e e aaRn T Tass 0 ) 200 o 901090 ansna84 11T 25 ST A — A249651TA021469 184 5 Jp 0)

s = STCIABIICER2ITIS] QY US ~ 20129342284802607% ) 02— ATea8TIa245417s ] 100}

- AT )7
+ 15677511592200340 J5 7] 23 - 127105068829245636 1,% /3 Jg + 51400858151T421568 1) 15 0F — 233T4419421260207616 73 J3 12
+ LTIRREAGARE0IOHE084 ST U2 U] — 1T05040294470622824 57 s 2 + 1409428289651 162011273 I3 ) + 10331742 Ts20078 1) )

L01153080222025024 73 J3 S + 18C02402119176232544 /3 Sy U7 — 153920019372406803 S Jg

-2
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Now

where A and B are:

we display u as a rational function in ¢;.¢y.75. and ¢.
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APPENDIN B
INTERSECTION OF £, WITH £+

Here we treat cases d).e). f) of theorem (5.12).

a1 The solution of A2 = u A + | =0 gives:
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¢) The solution of A* —uA + 1 = 0 gives:
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{1 The solution of A* —uz\ = 1 = 0 gives:
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