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Abstract. Let C be a genus 2 curve defined over k, char(k) = 0. If C
has a (3, 3)-split Jacobian then we show that the automorphism group
Aut(C) is isomorphic to one of the following: Z2, V4, D8, or D12. There
are exactly six C-isomorphism classes of genus two curves C with Aut(C)
isomorphic to D8 (resp., D12) and with (3, 3)-split Jacobian. We show
that exactly four (resp., three) of these classes with group D8 (resp., D12)
have representatives defined over Q. We discuss some of these curves in
detail and find their rational points.

1 Introduction

Let C be a genus 2 curve defined over an algebraically closed field k, of character-
istic zero. We denote by K := k(C) its function field and by Aut(C) := Aut(K/k)
the automorphism group of C. Let  : C ! E be a degree n maximal covering
(i.e. does not factor through an isogeny) to an elliptic curve E defined over k.
We say that C has a degree n elliptic subcover. Degree n elliptic subcovers occur
in pairs. Let (E , E 0) be such a pair. It is well known that there is an isogeny of
degree n2 between the Jacobian JC of C and the product E ⇥ E 0. We say that C
has (n,n)-split Jacobian. The locus of such C (denoted by Ln) is an algebraic
subvariety of the moduli space M2 of genus two curves. For the equation of L2

in terms of Igusa invariants, see [18]. Computation of the equation of L3 was the
main focus of [17]. For n > 3, equations of Ln have not yet been computed.

Equivalence classes of degree 2 coverings  : C ! E are in 1-1 correspondence
with conjugacy classes of non-hyperelliptic involutions in Aut(C). In any char-
acteristic di↵erent from 2, the automorphism group Aut(C) is isomorphic to one
of the following: Z2, Z10, V4, D8, D12, Z3oD8, GL2(3), or 2+S5; see [18]. Here
V4 is the Klein 4-group, D8 (resp., D12) denotes the dihedral group of order 8
(resp., 12), and Z2,Z10 are cyclic groups of order 2 and 10. For a description of
other groups, see [18]. If Aut(C)⇠=Z10 then C is isomorphic to Y 2 = X6 � X.
Thus, if C has extra automorphisms and it is not isomorphic to Y 2 = X6 �X
then C 2 L2. We say that a genus 2 curve C has large automorphism group
if the order of Aut(C) is bigger then 4.

In section 2, we describe the loci for genus 2 curves with Aut(C) isomorphic
to D8 or D12 in terms of Igusa invariants. From these invariants we are able to
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determine the field of definition of a curve C with Aut(C)⇠=D8 or D12. Further,
we find the equation for this C and j-invariants of degree 2 elliptic subcovers
in terms of i1, i2, i3 (cf. section 2). This determines the fields of definition for
these elliptic subcovers.

Let C be a genus 2 curve with (3, 3)-split Jacobian. In section 3 we give a short
description of the space L3. Results described in section 3 follow from [17], even
though sometimes nontrivially. We find equations of degree 3 elliptic subcovers
in terms of the coe�cients of C. In section 4, we show that Aut(C) is one of
the following: Z2, V4, D8, or D12. Moreover, we show that there are exactly six
C-isomorphism classes of genus two curves C 2 L3 with automorphism group D8

(resp., D12). We explicitly find the absolute invariants i1, i2, i3 which determine
these classes. For each such class we give the equation of a representative genus
2 curve C. We notice that there are four cases (resp., three) such that the triple
of invariants (i1, i2, i3) 2 Q3 when Aut(C)⇠=D8 (resp., Aut(C)⇠=D12 ). Using
results from section 2, we determine that there are exactly four (resp., three)
genus 2 curves C 2 L3 (up to Q̄-isomorphism) with group D8 (resp., D12) defined
over Q and list their equations in Table 1. We discuss these curves and their
degree 2 and 3 elliptic subcovers in more detail in section 5. Our focus is on the
cases which have elliptic subcovers defined over Q. In some of these cases we
are able to use these elliptic subcovers to find the rational points of the genus 2
curve. This technique has been used before by Flynn and Wetherell [5] for the
degree 2 elliptic subcovers.

Curves of genus 2 with degree 2 elliptic subcovers (or with elliptic involu-
tions) were first studied by Legendre and Jacobi. The genus 2 curve with the
largest known number of rational points has automorphism group isomorphic to
D12; thus it has degree 2 elliptic subcovers. It was found by Keller and Kulesz
and it is known to have at least 588 rational points; see [10]. Using degree 2 el-
liptic subcovers Howe, Leprevost, and Poonen [8] were able to construct a family
of genus 2 curves whose Jacobians each have large rational torsion subgroups.
Similar techniques probably could be applied using degree 3 elliptic subcovers.
Curves of genus 2 with degree 3 elliptic subcovers have already occurred in the
work of Clebsch, Hermite, Goursat, Burkhardt, Brioschi, and Bolza in the con-
text of elliptic integrals. For a history of this topic see Krazer [11] (p. 479). For
more recent work see Kuhn [12] and [17]. More generally, degree n elliptic sub-
fields of genus 2 fields have been studied by Frey [6], Frey and Kani [7], Kuhn
[12], and this author [16].

Acknowledgements: The author wants to thank Professor Fried for his
continuous support.

2 Genus two curves with extra automorphisms and the
moduli space M2.

Let k be an algebraically closed field of characteristic zero and C a genus 2 curve
defined over k. Then C can be described as a double cover of P1(k) ramified
in 6 places w1, . . . , w6. This sets up a bijection between isomorphism classes
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of genus 2 curves and unordered distinct 6-tuples w1, . . . , w6 2 P1(k) modulo
automorphisms of P1(k). An unordered 6-tuple {wi}6i=1 can be described by a
binary sextic (i.e. a homogenous equation f(X,Z) of degree 6). Let M2 denote
the moduli space of genus 2 curves; see [15]. To describe M2 we need to find
polynomial functions of the coe�cients of a binary sextic f(X,Z) invariant under
linear substitutions in X,Z of determinant one. These invariants were worked
out by Clebsch and Bolza in the case of zero characteristic and generalized by
Igusa for any characteristic di↵erent from 2; see [1], [9].

Consider a binary sextic, i.e. a homogeneous polynomial f(X,Z) in k[X,Z]
of degree 6:

f(X,Z) = a6X
6 + a5X

5Z + · · ·+ a0Z
6.

Igusa J-invariants {J2i} of f(X,Z) are homogeneous polynomials of degree 2i
in k[a0, . . . , a6], for i = 1, 2, 3, 5; see [9], [18] for their definitions. Here J10 is
simply the discriminant of f(X,Z). It vanishes if and only if the binary sextic
has a multiple linear factor. These J2i are invariant under the natural action of
SL2(k) on sextics. Dividing such an invariant by another one of the same degree
gives an invariant under GL2(k) action.

Remark 1. There many sets of SL2(k) invariants of binary sextics. The J2i in-
variants that we use were first defined by Igusa [9] and work in all characteristics.
One can download a Maple package that computes J2i from author’s web site.
For more information on other sets of invariants the reader can see the Igusa
Invariants package in Magma written by E. Howe.

Two genus 2 fields K (resp., curves) in the standard form Y 2 = f(X, 1)
are isomorphic if and only if the corresponding sextics are GL2(k) conjugate.
Thus if I is a GL2(k) invariant (resp., homogeneous SL2(k) invariant), then the
expression I(K) (resp., the condition I(K) = 0) is well defined. Thus the GL2(k)
invariants are functions on the moduli space M2 of genus 2 curves. This M2 is
an a�ne variety with coordinate ring k[M2] = k[a0, . . . , a6, J

�1
10 ]GL2(k) which is

the subring of degree 0 elements in k[J2, . . . , J10, J
�1
10 ]; see Igusa [9]. The absolute

invariants

i1 := 144
J4
J2
2

, i2 := �1728
J2J4 � 3J6

J3
2

, i3 := 486
J10
J5
2

(1)

are even GL2(k)-invariants. Two genus 2 curves with J2 6= 0 are isomorphic if
and only if they have the same absolute invariants. If J2 = 0 then we can define
new invariants as in [17]. For the rest of this paper if we say “there is a genus 2
curve C defined over k” we will mean the k-isomorphism class of C.

One can define GL2(k) invariants with J10 in the denominator which will be
defined everywhere. However, this is not e�cient in doing computations since
the degrees of these rational functions in terms of the coe�cients of C will be
multiples of 10 and therefore higher then degrees of i1, i2, i3. For the purposes
of this paper defining i1, i2, i3 as above is not a restriction as it will be seen in
the proof of Theorem 1. For the proofs of the following two lemmas, see [18].
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Lemma 1. The automorphism group G of a genus 2 curve C in characteristic
6= 2 is isomorphic to Z2, Z10, V4, D8, D12, Z3oD8, GL2(3), or 2+S5. The case
when G⇠=2+S5 occurs only in characteristic 5. If G⇠=Z3oD8 (resp., GL2(3))
then C has equation Y 2 = X6 � 1 (resp., Y 2 = X(X4 � 1)). If G⇠=Z10 then C
has equation Y 2 = X6 �X.

Remark 2. For the analogue of the above lemma for g > 2 in characteristic zero
see [13] where sophisticated methods of computational group theory are used.

For the rest of this paper we assume that char(k) = 0.

Lemma 2. i) The locus L2 of genus 2 curves C which have a degree 2 elliptic
subcover is a closed subvariety of M2. The equation of L2 is given by equation
(17) in [18].

ii) The locus of genus 2 curves C with Aut(C)⇠=D8 is given by the equation
of L2 and

1706J2
4J

2
2 + 2560J3

4 + 27J4J
4
2 � 81J3

2J6 � 14880J2J4J6 + 28800J2
6 = 0 (2)

iii) The locus of genus 2 curves C with Aut(C)⇠=D12 is

�J4J
4
2 + 12J3

2J6 � 52J2
4J

2
2 + 80J3

4 + 960J2J4J6 � 3600J2
6 = 0

864J10J
5
2 + 3456000J10J

2
4J2 � 43200J10J4J

3
2 � 2332800000J2

10 � J2
4J

6
2

�768J4
4J

2
2 + 48J3

4J
4
2 + 4096J5

4 = 0

(3)

We will refer to the locus of genus 2 curves C with Aut(C)⇠=D12 (resp.,
Aut(C)⇠=D8 ) as the D8-locus (resp., D12-locus).

Each genus 2 curve C 2 L2 has a non-hyperelliptic involution v0 2 Aut(C).
There is another non-hyperelliptic involution v00 := v0 w, where w is the hyper-
elliptic involution. Thus, degree 2 elliptic subcovers come in pairs. We denote
the pair of degree 2 elliptic subcovers by (E0, E0

0). If Aut(C)⇠=D8 then E0
⇠=E0

0

or E0 and E0
0 are 2-isogenous. If Aut(C)⇠=D12, then E0 and E0

0 are isogenous
of degree 3. See [18] for details. The parameterizations of the following lemma
were pointed out by G. Cardona.

Lemma 3. Let C be a genus 2 curve defined over k. Then,
i) Aut(C)⇠=D8 if and only if C is isomorphic to

Y 2 = X5 +X3 + tX (4)

for some t 2 k \ {0, 1
4 ,

9
100}.

ii) Aut(C)⇠=D12 if and only if C is isomorphic to

Y 2 = X6 +X3 + t (5)

for some t 2 k \ {0, 1
4 ,�

1
50}.
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Proof. i) Aut(C)⇠=D8: Then C is isomorphic to

Y 2 = (X2 � 1)(X4 � �X2 + 1)

for � 6= ±2; see [18]. Denote ⌧ :=
q
�2�+6

��2 . The transformation

� : (X,Y ) ! (
⌧x� 1

⌧x+ 1
,

4⌧

(⌧x+ 1)3
· (�+ 6)2

�� 2
)

gives
Y 2 = X5 +X3 + tX

where t = 1
4 (

��2
�+6 )

2 and t 6= 0, 1
4 . If t =

9
100 then Aut(C) has order 24.

Conversely, the absolute invariants i1, i2, i3 of a genus 2 curve C isomorphic
to

Y 2 = X5 +X3 + tX

satisfy the locus as described in Lemma 2, part ii). Thus, Aut(C)⇠=D8.
ii) Aut(C)⇠=D12: In [18] it is shown that C is isomorphic to

Y 2 = (X3 � 1)(X3 � �)

for � 6= 0, 1 and �2 � 38�+ 1 6= 0. Then,

� : (X,Y ) ! ((�+ 1)
1
3 X, (�+ 1)Y )

transforms C to the curve with equation

Y 2 = X6 +X3 + t

where t = �
(�+1)2 and t 6= 0, 1

4 . If t = � 1
50 then Aut(C) has order 48.

The absolute invariants i1, i2, i3 of a genus 2 curve C isomorphic to

Y 2 = X6 +X3 + t

satisfy the locus as described in Lemma 2, part iii). Thus, Aut(C)⇠=D12. This
completes the proof.

ut
The following lemma determines a genus 2 curve for each point in the D8 or

D12 locus.

Lemma 4. Let p := (J2, J4, J6, J10) be a point in L2 such that J2 6= 0 and
(i1, i2, i3) the corresponding absolute invariants.

i) If p is in the D8-locus, then the genus two curve C corresponding to p is
given by:

Y 2 = X5 +X3 � 3

4
· 345i21 + 50i1i2 � 90i2 � 1296i1
2925i21 + 250i1i2 � 9450i2 � 54000i1 + 139968

X.

ii) If p is in the D12-locus, then the genus two curve C corresponding to p is
given by:

Y 2 = X6 +X3 +
1

4
· 540i21 + 100i1i2 � 1728i1 + 45i2
2700i21 + 1000i1i2 + 204525i1 + 40950i2 � 708588

.
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Proof. i) By the previous lemma every genus 2 curve C with automorphism group
D8 is isomorphic to Y 2 = X5 + X3 + tX. Since J2 6= 0 then t 6= � 3

20 and the
absolute invariants are:

i1 = �144 t
(20t� 9)
(20t+ 3)2

, i2 = 3456 t2
(140t� 27)
(20t+ 3)3

, i3 = 243 t3
(4t� 1)2

(20t+ 3)5
(6)

From the above system we have

t = �3

4

345i21 + 50i1i2 � 90i2 � 1296i1
2925i21 + 250i1i2 � 9450i2 � 54000i1 + 139968

.

ii) By the previous lemma every genus 2 curve C with automorphism group
D12 is isomorphic to Y 2 = X6 +X3 + t. The absolute invariants are:

i1 = 1296
t(5t+ 1)
(40t� 1)2

, i2 = �11664
t(20t2 + 26t� 1)

(40t� 1)3
, i3 =

729
16

t2(4t� 1)3

(40t� 1)5
. (7)

From the above system we have

t =
1

4

540i21 + 100i1i2 � 1728i1 + 45i2
2700i21 + 1000i1i2 + 204525i1 + 40950i2 � 708588

.

This completes the proof.
ut

Note: If J2 = 0 then there is exactly one isomorphism class of genus 2 curves
with automorphism group D8 (resp., D12) given by Y 2 = X5+X3� 3

20X (resp.,
Y 2 = X6 +X3 � 1

40 ).

Remark 3. If the invariants i1, i2, i3 2 Q then from the lemma above there is
a C corresponding to these invariants defined over Q. If a genus 2 curve does
not have extra automorphisms (i.e. Aut(C)⇠=Z2), then an algorithm of Mestre
determines if the curve is defined over Q.

If the order of the automorphism group Aut(C) is divisible by 4, then C has
degree 2 elliptic subcovers. These elliptic subcovers are determined explicitly
in [18]. Do these elliptic subcovers of C have the same field of definition as C?
In general the answer is negative. The following lemma determines the field of
definition of these elliptic subcovers when Aut(C) is isomorphic to D8 or D12.

Lemma 5. Let C be a genus 2 curve defined over k, char(k) = 0.
i) If C has equation

Y 2 = X5 +X3 + tX,

where t 2 k \ { 1
4 ,

9
100}, then its degree 2 elliptic subfields have j-invariants given

by

j2 � 128
2000t2 + 1440t+ 27

(4t� 1)2
j + 4096

(100t� 9)3

(4t� 1)3
= 0.

ii) If C has equation
Y 2 = X6 +X3 + t,
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where t 2 k \{ 1
4 ,�

1
50}, then its degree 2 elliptic subfields have j-invariants given

by

j2 � 13824 t
500t2 + 965t+ 27

(4t� 1)3
j + 47775744 t

(25t� 4)3

(4t� 1)4
= 0.

Proof. The proof is elementary and follows from [18]. ut

3 Curves of genus 2 with degree 3 elliptic subcovers

In this section we will give a brief description of the spaces L2 and L3. In the
case J2 6= 0 we take these spaces as equations in terms of i1, i2, i3, otherwise
as homogeneous equations in terms of J2, J4, J6, J10. By a point p 2 L3 we will
mean a tuple (J2, J4, J6, J10) which satisfies the equation of L3. When it is clear
that J2 6= 0 then p 2 L3 would mean a triple (i1, i2, i3) 2 L3. As before k is an
algebraically closed field of characteristic zero.

Definition 1. A non-degenerate pair (resp., degenerate pair) is a pair
(C, E) such that C is a genus 2 curve with a degree 3 elliptic subcover E where
 : C ! E is ramified in two (resp., one) places. Two such pairs (C, E) and (C0, E 0)
are called isomorphic if there is a k-isomorphism C ! C0 mapping E ! E 0.

If (C, E) is a non-degenerate pair, then C can be parameterized as follows

Y 2 = (v2X3 + uvX2 + vX + 1) (4v2X3 + v2X2 + 2vX + 1), (8)

where u, v 2 k and the discriminant

� = �16 v17 (v� 27) (27v+ 4v2 � u2v+ 4u3 � 18uv)3

of the sextic is nonzero. We let R := (27v + 4v2 � u2v + 4u3 � 18uv) 6= 0. For
4u � v � 9 6= 0 the degree 3 coverings are given by �1(X,Y ) ! (U1, V1) and
�2(X,Y ) ! (U2, V2) where

U1 =
vX2

v2X3 + uvX2 + vX + 1
, U2 =

(vX + 3)2 (v(4u� v� 9)X + 3u� v)
v (4u� v� 9)(4v2X3 + v2X2 + 2vX + 1)

,

V1 = Y
v2X3 � vX � 2

v2X3 + uvX2 + vX + 1
,

V2 = (27� v)
3
2 Y

v2(v� 4u+ 8)X3 + v(v� 4u)X2 � vX + 1
(4v2X3 + v2X2 + 2vX + 1)2

(9)

and the elliptic curves have equations:

E : V 2
1 = RU3

1 � (12u2 � 2uv� 18v)U2
1 + (12u� v)U1 � 4

E 0 : V 2
2 = c3U

3
2 + c2U

2
2 + c1U2 + c0

(10)

where

c0 = �(9u� 2v� 27)3

c1 = (4u� v� 9) (729u2 + 54u2v� 972uv� 18uv2 + 189v2 + 729v+ v3)

c2 = �v (4u� v� 9)2 (54u+ uv� 27v)

c3 = v2 (4u� v� 9)3

(11)
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The above facts can be deduced from Lemma 1 of [17]. The case 4u� v� 9 = 0
is treated separately in [17]. There is an automorphism � 2 Galk(u,v)/k(i1,i2,i3)
given by

�(u) =
(v� 3u)(324u2 + 15u2v� 378uv� 4uv2 + 243v+ 72v2)

(v� 27)(4u3 + 27v� 18uv� u2v+ 4v2)

�(v) = � 4(v� 3u)3

4u3 + 27v� 18uv� u2v+ 4v2

(12)

which permutes the j-invariants of E and E 0. The map

✓ : (u, v) ! (i1, i2, i3)

defined when J2 6= 0 and � 6= 0 has degree 2. Denote by J✓ the Jacobian matrix
of ✓. Then det(J✓) = 0 consist of the (non-singular) curve X given by

X : 8v3 + 27v2 � 54uv2 � u2v2 + 108u2v+ 4u3v� 108u3 = 0 (13)

and 6 isolated (u, v) solutions. These solutions correspond to the following values
for (i1, i2, i3):

(�
8019

20
,�

1240029

200
,�

531441

100000
), (

729

2116
,
1240029

97336
,

531441

13181630464
), (81,�

5103

25
,�

729

12500
) (14)

We denote the image of X in the L3 locus by Y. The map ✓ restricted to X is
unirational. The curve Y can be computed as an a�ne curve in terms of i1, i2.
For each point p 2 Y the degree 3 elliptic subcovers are isomorphic. If p is an
ordinary point in Y and p 6= p6 (cf. Table 1) then the corresponding curve Cp
has automorphism group V4.

If (C, E) is a degenerate pair then C can be parameterized as follows

Y 2 = (3X2 + 4)(X3 +X + c)

for some c such that c2 6= � 4
27 ; see [17]. We define w := c2. The map

w ! (i1, i2, i3)

is injective as was shown in [17].

Definition 2. Let p be a point in L3. We say p is a generic point in L3 if the
corresponding (Cp, E) is a non-degenerate pair. We define

e3(p) :=

(
|✓�1(p)|, if p is a generic point

1 otherwise

In [17] it is shown that the pairs (u, v) with �(u, v) 6= 0 bijectively parameterize
the isomorphism classes of non-degenerate pairs (C, E). Those w with w 6= � 4

27
bijectively parameterize the isomorphism classes of degenerate pairs (C, E). Thus,
the number e3(p) is the number of isomorphism classes of such pairs (C, E). In
[17] it is shown that e3(p) = 0, 1, 2, or 4. The following lemma describes the
locus L3. For details see [17].



108 T. Shaska

Lemma 6. The locus L3 of genus 2 curves with degree 3 elliptic subcovers is
the closed subvariety of M2 defined by the equation

C8J
8
10 + · · ·+ C1J10 + C0 = 0 (15)

where coe�cients C0, . . . , C8 2 k[J2, J6, J10] are displayed in [17].

As noted above, with the assumption J2 6= 0 equation (15) can be written in
terms of i1, i2, i3.

4 Automorphism groups of genus 2 curves with degree 3
elliptic subcovers

Let C 2 L3 be a genus 2 curve defined over an algebraically closed field k,
char(k) = 0. The following theorem determines the automorphism group of C.

Theorem 1. Let C be a genus two curve which has a degree 3 elliptic subcover.
Then the automorphism group of C is one of the following: Z2, V4, D8, or D12.
Moreover, there are exactly six curves C 2 L3 with automorphism group D8 and
six curves C 2 L3 with automorphism group D12.

Proof. We denote by G := Aut(C). None of the curves Y 2 = X6 � X, Y 2 =
X6 � 1, Y 2 = X5 �X have degree 3 elliptic subcovers since their J2, J4, J6, J10
invariants don’t satisfy equation (15). From Lemma 1 we have the following
cases:

i) If G⇠=D8, then C is isomorphic to

Y 2 = X5 +X3 + tX

as in Lemma 3. Igusa invariants are:

J2 = 40t+ 6, J4 = 4t(9� 20t), J6 = 8t(22t+ 9� 40t2), J10 = 16t3(4t� 1)2.

Substituting into the equation (15) we have the following equation:

(196t� 81)4(49t� 12)(5t� 1)4(700t+ 81)4(490000 t2 � 136200 t+ 2401)2 = 0 (16)

For

t =
81

196
,
12

49
,
1

5
,� 81

700

the triple (i1, i2, i3) has the following values respectively:

(
729
2116

,
1240029
97336

,
531441

13181630464
), (

4288
1849

,
243712
79507

,
64

1323075987
),

(
144
49

,
3456
8575

,
243

52521875
), (�8019

20
,�1240029

200
,�531441

10000
)

If
490000 t2 � 136200 t+ 2401 = 0
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then we have two distinct triples (i1, i2, i3) which are in Q(
p
2). Thus, there are

exactly 6 genus 2 curves C 2 L3 with automorphism group D8 and only four of
them have rational invariants.

ii) If G⇠=D12 then C is isomorphic to a genus 2 curve in the form

Y 2 = X6 +X3 + t

as in Lemma 3. Then, J2 = �6(40t� 1) and

J4 = 324t(5t+ 1), J6 = �162t(740t2 + 62t� 1), J10 = �729t2(4t� 1)

Then the equation of L3 becomes:

(25t�4) (11t+4)3 (20t�1)6 (111320000t3�60075600t2+13037748t+15625)3 = 0 (17)

For

t =
4

25
,� 4

11
,
1

20

the corresponding values for (i1, i2, i3) are respectively:

(
64
5
,
1088
25

,
1

84375
), (

576
361

,
60480
6859

,
243

2476099
), (81,�5103

25
,� 729

12500
)

If
111320000t3 � 60075600t2 + 13037748t+ 15625 = 0

then there are three distinct triples (i1, i2, i3) none of which is rational. Hence,
there are exactly 6 classes of genus 2 curves C 2 L3 with Aut(C)⇠=D12 of which
three have rational invariants.

iii) G⇠=V4. There is a 1-dimensional family of genus 2 curves with a degree
3 elliptic subcover and automorphism group V4 given by Y.

iv) Generically genus 2 curves C have Aut(C)⇠=Z2. For example, every point
p 2 L3\L2 correspond to a class of genus 2 curves with degree 3 elliptic subcovers
and automorphism group isomorphic to Z2. This completes the proof.

ut
The theorem determines that there are exactly 12 genus 2 curves C 2 L3 with

automorphism group D8 or D12. Only seven of them have rational invariants.
From Lemma 4, we have the following:

Corollary 1. There are exactly four (resp., three) genus 2 curves C defined over
Q (up to Q̄-isomorphism) with a degree 3 elliptic subcover which have automor-
phism group D8 (resp., D12). They are listed in Table 1.

Remark 4. All points p in Table 1 are in the locus det(J✓) = 0. We have already
seen cases p1, p4, and p7 as the exceptional points of det(J✓) = 0; see equation
(14). The class p3 is a singular point of order 2 of Y, p2 is the only point which
belong to the degenerate case, and p6 is the only ordinary point in Y such that
the order of Aut(p) is greater then 4.
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C p = (i1, i2, i3) e3(p) Aut(C)

p1 196X5 + 196X3 + 81X i1 = 729
2116 , i2 = 1240029

97336 , i3 = 531441
13181630464 2 D8

p2 49X5 + 49X3 + 12X i1 = 4288
1849 , i2 = 243712

79507 , i3 = 64
1323075987 1 D8

p3 5X5 + 5X3 +X i1 = 144
49 , i2 = 3456

8575 , i3 = 243
52521875 2 D8

p4 700X5 + 700X3 � 81X i1 = � 8019
20 , i2 = � 1240029

200 , i3 = � 531441
10000 2 D8

p5 25X6 + 25X3 + 4 i1 = 64
5 , i2 = � 1088

25 , i3 = � 1
84375 1 D12

p6 11X6 + 11X3 � 4 i1 = 576
361 , i2 = 60480

6859 , i3 = 243
2476099 1 D12

p7 20X6 + 20X3 + 1 i1 = 81, i2 = � 5103
25 , i3 = � 729

12500 2 D12

Table 1. Rational points p 2 L3 with |Aut(p)| > 4

5 Computing elliptic subcovers

Next we will consider all points p in Table 1 and compute j-invariants of their
degree 2 and 3 elliptic subcovers. To compute j-invariants of degree 2 elliptic
subcovers we use lemma 5 and the values of t from the proof of theorem 1. We
recall that for p1, . . . , p4 there are four degree 2 elliptic subcovers which are two
and two isomorphic. We list the j-invariant of each isomorphic class. They are
2-isogenous as mentioned before. For p5, p6, p7 there are two degree 2 elliptic
subcovers which are 3-isogenous to each other. To compute degree 3 elliptic
subcovers for each p we find the pairs (u, v) in the fiber ✓�1(p) and then use
equations (9). We focus on cases which have elliptic subcovers defined over Q.
There are techniques for computing rational points of genus two curves which
have degree 2 subcovers defined over Q as in Flynn and Wetherell [5]. Sometimes
the degree 3 elliptic subcovers are defined over Q even though the degree 2
elliptic subcovers are not; see Examples 2 and 6. These degree 3 subcovers help
determine rational points of genus 2 curves as illustrated in examples 2, 4, 5,
and 6.

Example 1. p = p1: The j-invariants of degree 3 elliptic subcovers are j = j0 =
663. A genus 2 curve C corresponding to p is

C : Y 2 = X6 + 3X4 � 6X2 � 8.

Claim: The equation above has no rational a�ne solutions.

Indeed, two of the degree 2 elliptic subcovers (isomorphic to each other) have
equations

E1 : Y 2 = x3 + 3x2 � 6x� 8

E2 : Y 2 = �8x3 � 6x2 + 3x+ 1

where x = X2 (i.e. � : C ! E1 of degree 2 such that �(X,Y ) = (X2, Y ) ). The
elliptic curve E1 has rank 0. Thus, the rational points of C are the preimages of



Genus 2 Curves with (3, 3)-split Jacobian 111

the torsion points of E1. The torsion group of E1 has order 4 and is given by

Tor(E1) = {1, (�1, 0), (2, 0), (�4, 0)}

None of the preimages is rational. Thus, C has no rational points except the
point at infinity.

Example 2. p = p2: The j-invariants of the degree 2 elliptic subcovers are

76771008± 44330496
p
3.

The point p2 belongs to the degenerate locus with w = 0. Thus, the equation of
the genus 2 curve C corresponding to p is

C : Y 2 = (3X2 + 4) (X3 +X).

Indeed, this curve has both pairs (C, E) and (C, E 0) as degenerate pairs. It is the
only such genus 2 curve defined over Q. This fact was noted in [12] and [16].
Both authors failed to identify the automorphism group. The degree 3 coverings
are

(U1, V1) = (X3 +X,Y (3X2 + 1)), (U2, V2) = (
X3

3X2 + 4
, Y X2 [

X2 + 4

(3X2 + 4)2
]2)

and the elliptic curves have equations:

E : V 2
1 = 27U3

1 + 4U1, and E 0 : V 2
2 = U3

2 + U2.

E and E 0 are isomorphic with j-invariant 1728. They have rank 0 and rational
torsion group of order 2, Tor(E) = {1, (0, 0)}. Thus, the only rational points
of C are in the fibers ��1

1 (0) and ��1
2 (1). Hence, C(Q) = {(0, 0),1}.

Example 3. p = p3: All degree 2 and 3 elliptic subcovers are defined over Q(
p
5).

Example 4. p = p4: The degree 2 elliptic subcovers have j-invariants

1728000

2809
± 17496000

2809

p
I

where I2 = �1. Thus, we can’t recover any information from the degree 2 sub-
covers. One corresponding value for (u, v) is ( 252 , 250

9 ). Then C is

C : 38 ·Y 2 = (100X +9)(2500X2 +400X +9) (25X +9)(2500X2 +225X +9).

The degree 3 elliptic subcovers have equations

E : V 2
1 = � 1

81
(10U1 � 3)(8575U2

1 � 2940U1 + 108)

E 0 : V 2
2 = � 686

59049
(1700U2 � 441)(1445000U2

2 � 696150U2 + 83853)
(18)

where U1, V1, U2, V2 are given by formulas in (9).
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Example 5. p = p5: The degree 2 j-invariants are j1 = 0 and j2 = �1228800
and the degree 3 j-invariants as shown below are j = j0 = 0. Let C be the genus
2 curve with equation

C : Y 2 = (X3 + 1)(4X3 + 1)

corresponding to p. The case is treated separately in [17]. The degree 3 elliptic
subcovers have equations

E : V 2
1 = �27U3

1 + 4, E 0 : V 2
2 = �16(27U3

2 � 1)

where

(U1, V1) = (
X2

X3 + 1
, Y

X3 � 2

(X + 1)2
), (U2, V2) = (

X

4X3 + 1
, Y

8X3 � 1

(4X3 + 1)2
).

The rank of both E and E 0 is zero. Thus, the rational points of C are the preimages
of the rational torsion points of E and E 0. The torsion points of E are Tor(E) =
{1, (0, 2), (0,�2)}. Then ��1

1 (0) = {0,1} and ��1
1 (1) = {�1, 1

2 ±
p
�3
2 }. Thus,

C(Q) = {(0, 1), (0,�1), (�1, 0)}

Example 6. p = p6: This point is in Y and it is not a singular point of Y. It has
isomorphic degree 3 elliptic subcovers; see [17]. The corresponding (u, v) pair is
(u, v) = (20, 16) and e3(p) = 1. Then the genus 2 curve has equation:

C : Y 2 = (256X3 + 320X2 + 16X + 1) (1024X3 + 256X2 + 32X + 1)

The degree 3 elliptic subcovers have j-invariants j = j0 = �32768 and equations

E : V 2
1 = 4(�5324U3

1 + 968U2
1 � 56U2

1 + 1)

E 0 : V 2
2 = 113(�32000U3

2 + 35200U2
2 � 12320U2 + 113)

(19)

where U1, V1, U2, V2 are given by formulas in (9).
Both elliptic curves have trivial torsion but rank r = 1. One can try to adapt

more sophisticated techniques in this case as Flynn and Wetherell have done for
the degree 2 subcovers. This is the only genus 2 curve (up to C-isomorphism)
with automorphism groupD12 and isomorphic degree 2 elliptic subcovers. Indeed
all the degree 2 and 3 elliptic subcovers are C-isomorphic with j-invariants j =
�32768. The degree 2 elliptic subcovers also have rank 1 which does not provide
any quick information about rational points of C.

Example 7. p = p7: All the degree 2 and 3 elliptic subcovers are defined over
Q(

p
5).

Throughout this paper we have made use of several computer algebra pack-
ages as Apecs, Maple, and GAP. The interested reader can check [18] and [17]
for more details on loci L2 and L3. The equations for these spaces, j-invariants
of elliptic subcovers of the degree 2 and 3, and other computational aspects of
genus 2 curves can be downloaded from author’s web site.
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Prog. Math. , 313-334. Birkhäuser, 1991. Proc. Congress in Livorno, Italy, April
17-21, (1990).

15. D. Mumford, The Red Book of Varieties and Schemes, Springer, 1999.
16. T. Shaska, Genus 2 curves with (n,n)-decomposable Jacobians, Jour. Symb.

Comp., Vol 31, no. 5, pg. 603-617, 2001.
17. T. Shaska, Genus 2 fields with degree 3 elliptic subfields, (submited for publica-

tion).
18. T. Shaska and H. Völklein, Elliptic Subfields and automorphisms of genus 2

function fields. Proceeding of the Conference on Algebra and Algebraic Geometry

with Applications: The celebration of the seventieth birthday of Professor S.S. Ab-

hyankar, Springer-Verlag, 2001.


