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We introduce a new approach of computing the automorphism group and the
field of moduli of points p = [C] in the moduli space of hyperelliptic curves Hg.
Further, we show that for every moduli point p 2 Hg(L) such that the reduced
automorphism group of p has at least two involutions, there exists a representative
C of the isomorphism class p which is defined over L.

1. Introduction

The purpose of this note is to introduce some new techniques of computing
the automorphism group and the field of moduli of genus g hyperellip-
tic curves. Former results by many authors have focused on hyperelliptic
curves of small genus, see [8], [3], [7], [10], [12], et. al. We aim to find a
method which would work for any genus.

Let C denote a genus g hyperelliptic curve defined over an algebraically
closed field k of characteristic zero and G := Aut(C) its automorphism
group. We denote by Hg the moduli space of genus g hyperelliptic curves
and by Lg the locus in Hg of hyperelliptic curves with extra involu-
tions. Lg is a g-dimensional rational variety, see [6]. Equation (2.2)
gives a normal form for curves in Lg. This normal form depends on
parameters a1, . . . , ag 2 k, such that the discriminant of the right side
¢(a1, . . . , ag) 6= 0. Dihedral invariants (u1, . . . , ug) were introduced by
Gutierrez and this author in [6]. The tuples u = (u1, . . . , ug) (such that
¢u 6= 0) are in one-to-one correspondence with isomorphism classes of
genus g hyperelliptic curves with automorphism group the Klein 4-group.
Thus, dihedral invariants u1, . . . , ug yield a birational parameterization of
the locus Lg. Computationally these invariants give an e±cient way of
determining a generic point of the moduli space Lg. Normally, this is ac-
complished by invariants of GL2(k) acting on the space of binary forms of
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degree 2g + 2. These GL2(k)-invariants are not known for g ∏ 3. However,
dihedral invariants are explicitly defined for all genera.

The full automorphism groups of hyperelliptic curves are determined in
[2] and [1]. Most of these groups have non-hyperelliptic involutions (i.e.,
the corresponding curve is in Lg). For each group G that occurs as full
automorphism group of genus g curves one determines the G-locus in Lg

in terms of the dihedral invariants. Given a genus g curve C we first deter-
mine if C 2 Lg. Then we compute its dihedral invariants and determine the
locus LG that they satisfy. This determines Aut(C). Present algorithms
of computing the automorphism group of a hyperelliptic curve Y

2 = F (X)
are based on computing the roots of F (X) and then finding fractional linear
transformations that permute these roots. The algorithm we propose re-
quires only determining the normal form of C (i.e., Eq. (2.2)). This requires
solving a system of g-equations and four unknowns. For curves which have
at least two involutions in their reduced automorphism group we find a nice
condition on the dihedral invariants.

For C 62 Lg similar methods can be used. If |Aut(C)| > 2 and C 62 Lg,
then C has an automorphism of order N , where N is as in Lemma 3.5. For
small genus these curves can be classified by ad-hoc methods. In general
one needs to find invariants of such spaces for all N > 2 and implement
similar methods as above. We intend this as the object of further research.

In section 4, we introduce how to compute the field of moduli of genus g

hyperelliptic curves with automorphism group of order > 4. Let Mg (resp.,
Hg) be the moduli space of algebraic curves (resp., hyperelliptic curves) of
genus g defined over k and L a subfield of k. It is well known thatMg (resp.,
Hg) is a 3g ° 3 (resp., 2g ° 1) dimensional variety. If C is a genus g curve
defined over L, then clearly [C] 2 Mg(L). However, the converse is not
true. In other words, the moduli space Mg of algebraic curves of genus g is
a coarse moduli space. The answer is not obvious if we restrict ourselves to
the singular points of Mg. Singular points of Mg (resp., Hg) correspond to
isomorphism classes of curves with nontrivial automorphism groups (resp.,
automorphism groups of order > 2 ). In general, we conjecture that for
a singular point p 2 Mg(L) (resp., p 2 Hg(L)) there is always a curve C

defined over L which correspond to p. We focus on Hg. A point p = [C] 2
Hg is given by the g-tuple of dihedral invariants. We denote by Aut(p)
the automorphism group of any representative C of p. More precisely, for
hyperelliptic curves we conjecture the following:
Conjecture 1: Let p 2 Hg(L) such that |Aut(p)| > 2. There exists a
representative C of the isomorphism class p which is defined over L.
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In this paper we show how dihedral invariants can be used to prove some
special cases of this conjecture. A detailed discussion on this problem is
intended in [11]. The condition |Aut(p)| > 2 of the above conjecture can
not be dropped. Determining exactly the points p 2 Hg \ Lg where such
rational model C does not exist is still an open problem. For g = 2 Mestre
(1991) found an algorithm which determines such points. It is based on
classical invariants of binary sextics.

Notation: Throughout this paper k denotes an algebraically closed field
of characteristic zero, g an integer ∏ 2, and C a hyperelliptic curve of genus
g. Mg (resp., Hg) is the moduli space of curves (resp., hyperelliptic curves)
defined over k. Further, V4 denotes the Klein 4-group and D2n (resp., Zn)
the dihedral group of order 2n (resp., cyclic group of order n).

2. Dihedral invariants of hyperelliptic curves

Let k be an algebraically closed field of characteristic zero and C be a genus
g hyperelliptic curve given by the equation Y

2 = F (X), where deg(F ) =
2g + 2. Denote the function field of C by K := k(X,Y ). Then, k(X) is
the unique degree 2 genus zero subfield of K. We identify the places of
k(X) with the points of P1 = k[ {1} in the natural way (the place X = Æ

gets identified with the point Æ 2 P1). Then, K is a quadratic extension
field of k(X) ramified exactly at n = 2g + 2 places Æ1, . . . , Æn of k(X).
The corresponding places of K are called the Weierstrass points of K. Let
P := {Æ1, . . . ,Æn}. Thus, K = k(X,Y ), where

Y
2 =

Y

Æ2P, Æ 6=1
(X ° Æ). (2.1)

Let G = Aut(K/k). Since k(X) is the only genus 0 subfield of de-
gree 2 of K, then G fixes k(X). Thus, G0 := Gal(K/k(X)) = hz0i, with
z
2
0 = 1, is central in G. We call the reduced automorphism group

of K the group G := G/G0. Then, G is naturally isomorphic to the sub-
group of Aut(k(X)/k) induced by G. We have a natural isomorphism
° := PGL2(k) ! Aut(k(X)/k). The action of ° on the places of k(X) cor-
responds under the above identification to the usual action on P1 by frac-
tional linear transformations t 7!

at+b

ct+d
. Further, G permutes Æ1, . . . , Æn.

This yields an embedding G ,! Sn.
Because K is the unique degree 2 extension of k(X) ramified exactly at

Æ1, . . . , Æn, each automorphism of k(X) permuting these n places extends
to an automorphism of K. Thus, G is the stabilizer in Aut(k(X)/k) of the
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set P. Hence under the isomorphism ° 7! Aut(k(X)/k), G corresponds to
the stabilizer °P in ° of the n-set P.

An extra involution of K is an involution in G which is diÆerent from
z0 (the hyperelliptic involution). If z1 is an extra involution and z0 the
hyperelliptic one, then z2 := z0 z1 is another extra involution. So the extra
involutions come naturally in pairs. Suppose z1 is an extra involution of K.
Let z2 := z1 z0, where z0 is the hyperelliptic involution. Then K = k(X,Y )
with equation

Y
2 = X

2g+2 + agX
2g + . . . + a1X

2 + 1 (2.2)

see [6]. The dihedral group H := D2g+2 = hø1, ø2i acts on k(a1, . . . , ag) as
follows:

ø1 : ai ! "
2i

ai, for i = 1, . . . , g

ø2 : ai ! ag+1°i, for i = 1, . . . , [
g + 1

2
]

The fixed field k(a1, . . . , ag)H is the same as the function field of the variety
Lg. The invariants of such action are

ui := a
g°i+1
1 ai + a

g°i+1
g

ag°i+1, for 1 ∑ i ∑ g (2.3)

and are called dihedral invariants for the genus g and the tuple

u := (u1, . . . , ug)

is called the tuple of dihedral invariants, see [6] for details.
It is easily seen that u = 0 if and only if a1 = ag = 0. In this case

replacing a1, ag by a2, ag°1 in the formula above would give new invariants.
In [6] it is shown that k(Lg) = k(u1, . . . , ug). The (2g + 2)-degree field
extension k(a1, . . . , ag)/k(u1, . . . , ug) has equation

2g+1
a
2g+2
g

° 2g+1
u1 a

g+1
g

+ u
g+1
g

= 0 (2.4)

and the map

© : k \ {¢ 6= 0}! Lg

(a1, . . . , ag) ! (u1, . . . , ug)

has Jacobian zero exactly on points which correspond to curves C 2 Lg

such that V4 ,! G.
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3. Automorphism groups

In this section we suggest an algorithm for computing the full automorphism
group of hyperelliptic curves. Let C be a genus g hyperelliptic curve with
equation Y

2 = F (X) where deg(F ) = 2g + 2. Existing algorithms are
based on finding all automorphisms of C. Instead, we search for only one
automorphism (non-hyperelliptic) of C of order N . Most of the time N = 2
is enough since the majority of groups of order > 2 that occur as full
automorphism groups have non-hyperelliptic involutions. It is well known
that the order of a non-trivial automorphism of a hyperelliptic curve is
2 ∑ N ∑ 2(2g + 1), where 2(2g + 1) is known as the Wiman’s bound.

If an automorphism of order N = 2 exists then C 2 Lg and we use
dihedral invariants to determine the automorphism group. We illustrate
with curves of small genus.

The case g = 2 has been studied in [12]. Every point in M2 is a triple
(i1, i2, i3) of absolute invariants. We state the results of [12] without proofs.

Lemma 3.1. Let C be a genus 2 curve such that G := Aut(C) has an
extra involution and u = (u1, u2) its dihedral invariants. Then,

a) Gª= Z3oD8 if and only if (u1, u2) = (0, 0) or (u1, u2) = (6750, 450).
b) Gª= GL2(3) if and only if (u1, u2) = (°250, 50).
c) Gª=D12 if and only if u

2
2 ° 220u2 ° 16u1 + 4500 = 0, for u2 6=

18, 140 + 60
p

5, 50.
d) Gª=D8 if and only if 2u

2
1 ° u

3
2 = 0, for u2 6= 2, 18, 0, 50, 450. Cases

u2 = 0, 450 and u = 50 are reduced to cases a) and b) respectively.

The mapping © : (u1, u2) ! (i1, i2, i3), gives a birational parameterization
of L2. The fibers of © of cardinality > 1 correspond to those curves C with
|Aut(C)| > 4. Dihedral invariants u1, u2 are given explicitly as rational
functions of i1, i2, i3. The curve Y

2 = X
6
° X is the only genus 2 curve

(up to isomorphism) which has extra automorphisms and is not in L2.
The automorphism group in this case is Z10, see [12]. Thus, if C 2 L2

we determine Aut(C) via Lemma 3.1., otherwise C is isomorphic to Y
2 =

X
6
°X or Aut(C)ª= Z2.
The case g = 3 is given as an application in [6]. Let C 2 L3 with

equation as in Eq. (2.2). Dihedral invariants are u1 = a
4
1 + a

4
3, u2 = (a2

1 +
a
2
3)a2, u3 = 2a1a3. The analogue of Lemma 3.1 is proved in [6] for g = 3.

This technique can be used successfully for all g. We have implemented
programs that determine Aut(C) for C 2 Lg and for g = 2, 3, 4, 5, 6. In
order to compute the automorphism group of a curve C 2 Lg we transform
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this curve to its normal form (i.e., Eq. (2.2)) and then compute its dihedral
invariants. If these invariants satisfy any locus LG then the automorphism
group is G, otherwise the automorphism group is V4. The following lemma
determines a nice condition for G to have at least two involutions.

Lemma 3.2. For a curve C 2 Lg the reduced automorphism group has at
least two involutions if and only if

(2g°1
u

2
1 + u

g+1
g

) (2g°1
u

2
1 ° u

g+1
g

) = 0 (3.3)

Proof. Let C 2 Lg. Then, there is an involution z1 2 Ḡ which fixes
no Weierstrass points of C, see the proof of lemma 1 in [6]. Thus,
z1(X) = °X. Let z2 6= z1 be another involution in Ḡ. Since, z2 6= z1

then z2(X) = m

X
, where m

2 = 1. Then, V4 = hz1, z2i ,! Ḡ and z2

or z1 z2 is the transformation X !
1
X

, say z2(X) = 1
X

. If g is odd we
have P = {±Æ1,±

1
Æ1

, . . . ,±Æn,±
1

Æn
}, where n = [ g+1

2 ], otherwise P con-
tains also two points ±P . Thus, ±P can be either fixed or permuted by
z2(X) = 1

X
. Hence, they are ±1 or ±I, where I

2 = 1. The equation of C

is given by

Y
2 =

nY

i=1

(X4
° ∏iX

2 + 1), if g is odd

Y
2 = (X2

± 1)
nY

i=1

(X4
° ∏iX

2 + 1), if g is even.

Let s := ∏1 + . . . + ∏n. If g is odd then a1 = ag = °s. Then, u1 = 2s
g+1

and ug = 2s
2 and they satisfy Eq. (3.3). If z2(X) = 1

X
fixes two points of

P then one of the factors of the equation is X
4
° 1. Then, a1 = (°1)

1
g+1 s

and ag = (°1)
1

g+1 s. Hence, a
g+1
g

= a
g+1
g

= °s
g+1 and u1 = °2s

g+1,
ug = °2s

2. Then, 2g°1
u

2
1 + u

g+1
g

= 0.
If g is even and {±1} Ω P then a1 = ag = s + 1. If {±I} Ω P then

a1 = ag = 1 ° s. In both cases 2g°1
u

2
1 ° u

g+1
g

= 0. The converse goes
similarly.

Remark 3.4. If 2g°1
u

2
1 +u

g+1
g

= 0, then one of the involutions z2, z1z2 of
Ḡ lifts to an element of order 4 in G. If 2g°1

u
2
1 ° u

g+1
g

= 0 both of them
lift to involutions in G.

For C 62 Lg we check if C has automorphisms of order 3 ∑ N ∑ 2(2g + 1),
see Wiman [15]. The following lemma is a consequence of [2] and gives
possible values for N . We only sketch the proof.
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Lemma 3.5. Let C be a genus g hyperelliptic curve with an automorphism
of order N > 2. Then either N = 3, 4 or one of the following holds;

i) N |(2g + 1) or N |2g and N < g (then Aut(C)ª= Z2N )
ii) N |2g and N is an even number such that 6 ∑ N ∑ 2g ° 2.
iii) N = 4N

0 such that N
0
|g and N

0
< g.

Proof. Let C be a genus g hyperelliptic curve with extra automorphisms
such that C 62 Lg. Then, the automorphism group of C is isomorphic to
one of the following: SL2(3), SL2(5), W3, HN/2, UN/2, GN/2, Z2N where
N | 2g + 1 or N | 2g and N < g; see [2] for definitions of these groups. All
other groups listed in Table 2 in [2] contain at least two involutions, hence
they correspond to curves in Lg. The only groups in the above list that
might not contain an element of order 2, 3, or 4 are UN/2, GN/2. The group
GN/2 (resp., UN/2) has an element of order N where N is as above.

To have a complete algorithm that works for any g ∏ 2, one needs to classify
(up to isomorphism) curves of genus g which are not in the locus Lg. In
order to do this, we need invariants which classify isomorphism classes of
curves with an automorphism of order N > 2. However, for small genus
ad-hoc methods can be used to identify such groups.

4. Field of moduli

In this section we introduce a method to compute the field of moduli of
hyperelliptic curves with extra automorphisms. Until recently this was an
open problem even for g = 2. Further, we state some open questions for
higher genus and prove Conjecture 1 for p 2 Hg such that the reduced
automorphism group of p has at least two involutions.

Let C be a genus g hyperelliptic curve defined over k. We can write the
equation of C as follows

Y
2 = X(X ° 1)(X2g°1 + c2g°2X

2g°2 + . . . + c1X + c0)

where the discriminant ¢ of the right side is nonzero. Then, there is a map

©1 : k
2g°1

\ {¢ 6= 0}! Hg

(c0, . . . , c2g°2) ! p = [C]

of degree d = 4g(g + 1)(2g + 1). We denote by J© the Jacobian matrix of
a map ©. Then Conjecture 1 can be stated as follows:



April 22, 2004 21:46 WSPC/Trim Size: 9in x 6in for Proceedings shaska˙ascm03

8

Conjecture 2: For each p in the locus det(J©1) = 0 such that p 2 Hg(L)
there exists a representative C of the isomorphism class p which is defined
over L.

For g = 2 this conjecture is a theorem as shown in [3]. The main result
in [3] is to prove the case when automorphism group is V4. A method of
Mestre is generalized which uses covariants of order 2 of binary sextics and
a result of Clebsch. Such a method probably could be generalized to higher
genus as claimed by Mestre [8] and Weber [14].

Remark 4.1. There is a mistake in the proof of Theorem 2 in [3]. In
other words, the proof is incorrect when the Clebsch invariant C10 = 0.
However, it can easily be fixed. A correct version of the algorithm has been
implemented in Magma by P. van Wamelen.

For g = 3 the conjecture is proven by Gutierrez and this author for all
points p with |Aut(p)| > 4, see [6]. The proof uses dihedral invariants of
hyperelliptic curves. A generalization of the method used in [8], [14] for
p 2 H3 such that Aut(p)ª=V4 would complete the case g = 3.

Next we focus on the locus Lg. Let C 2 Lg. Then, C can be written in
the normal form as in equation (2.2). The map

© : k
g
\ {¢ 6= 0}! Lg

(a1, . . . , ag) ! (u1, . . . , ug)

has degree d = 2g + 2. We ask a similar question as in Conjecture 2. Let p

be in the locus det(J©1) = 0 such that p 2 Hg(L). Is there a representative
C of the isomorphism class p which is defined over L?

The determinant of the Jacobian matrix is

det(J©) = (2g°1
u

2
1 + u

g+1
g

) (2g°1
u

2
1 ° u

g+1
g

).

The locus det(J©) = 0 corresponds exactly to the hyperelliptic curves with
V4 ,! Ḡ as shown by Lemma 3.2.

Theorem 4.2. For each p in the locus det(J©) = 0 such that p 2 Hg(L)
there exists a representative C of the isomorphism class p which is defined
over L. Moreover, the equation of C over L is given by

C : Y
2 = u1X

2g+2 + u1X
2g + u2X

2g°2 + . . .± ugX
2 + 2, (4.3)

where the coe±cient of X
2 is ug (resp., °ug) when 2g°1

u
2
1 ° u

g+1
g

= 0
(resp., 2g°1

u
2
1 + u

g+1
g

= 0).
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Proof. Let p = (u1, . . . , ug) 2 Lg(L) such that 2g°1
u

2
1 ° u

g+1
g

= 0. All we
need to show is that the dihedral invariants of C satisfy the locus det(J©) =
0. By the appropriate transformation C can be written as

Y
2 = X

2g+2 + (
u1

2
)

1
g+1 ·X

2g +
g°1X

i=1

ug+1°i

u1
· (

u1

2
)

g+1°i
g+1 ·X

2i + 1.

Then, its dihedral invariants are

u1(C) =
u1

2
+ (

ug

u1
)g+1

· (
u1

2
)g =

2g°1
u

2
1 + u

g+1
g

2gu1
, ug(C) = ug.

Substituting u
g+1
g

= 2g°1
u

2
1 we get u1(C) = u1. Thus, C is in the isomor-

phism class determined by p and defined over L.
Let p = (u1, . . . , ug) 2 Lg(L) such that 2g°1

u
2
1 + u

g+1
g

= 0. This case
occurs only when g is odd, see the proof of Lemma 3.2. We transform C

as above and have u1(C) = u1 and ug(C) = °ug. They are the other tuple
(u1, ...,°ug) which correspond to p. This completes the proof.

The following is a consequence of Lemma 3.2. and Theorem 4.1.

Corollary 4.4. Conjecture 1 holds for all p 2 Lg such that the reduced
automorphism group of p has at least two involutions.

5. Closing remarks

Conjecture 1 was stated for the first time during a talk of the author in
ANTS V, see [9]. It can be generalized to Mg instead of Hg. However,
little is known about the loci MG (i.e., locus of curves in MG with full
automorphism group G). In [7] we introduce an algorithm that would
classify such groups G for all g and give a complete list of “large” groups for
g ∑ 10. However, finding invariants that classify curves with automorphism
group G is not an easy task, since the equations describing non-hyperelliptic
curves are more complicated then the hyperelliptic case. A more theoretical
approach on singular points of Mg probably would produce better results
on Conjecture 1. At this time we are not aware of any such results.

Our approach would work (with necessary adjustments) even in positive
characteristic. However, the goal of this note was to introduce such method
rather than explore it to the full extent.

Computationally, dihedral invariants give an e±cient way of determin-
ing a point of the moduli space Lg. Using such invariants in positive char-
acteristic could have applications in the arithmetic of hyperelliptic curves,
including cryptography.
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In T. Mora and C. Traverso, editors, EÆective methods in algebraic geome-

try, volume 94. Prog. Math., 313-334. Birkhäuser, 1991. Proc. Congress in
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