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Abstract. In the process of computing the Galois group of a prime degree
polynomial f(x) over Q we suggest a preliminary checking for the existence
of non-real roots. If f(x) has non-real roots, then combining a 1871 result of
Jordan and the classification of transitive groups of prime degree which follows
from CFSG we get that the Galois group of f(x) contains Ap or is one of a
short list. Let f(x) 2 Q[x] be an irreducible polynomial of prime degree p � 5
and r = 2s be the number of non-real roots of f(x). We show that if s satisfies
s (s log s+ 2 log s+ 3)  p then Gal(f) = Ap, Sp.

1. Introduction

Solving algebraic equations is one of the oldest and most fundamental problems
in mathematics. The problem was put on a firm basis with the contribution of E.
Galois and was the main motivation for the development of modern algebra. It is
now considered basic knowledge that a polynomial equation with rational coe�-
cients can be solved by radicals if and only if its Galois groups is solvable. Hence,
the problem of determining Galois groups is important and has been considered in
many areas of mathematics as number theory, group theory, algebraic geometry,
and di↵erential equations.

However, computing Galois groups is still a di�cult task. Even with the de-
velopment of new computer algebra systems this remains a challenge and can be
accomplished only for small degree polynomials. For example, Maple 9 can only
handle polynomials of degree  9 and Kant up to degree 15. Other computer
algebra packages can handle polynomials whose degree is in the same range.

Let f(x) = a0 + a1x + · · · + anxn = 0 be an algebraic equation. Suppose that
ai = ±1; then Littlewood and O↵ord proved that almost all these equations have
less than 25(log n2) real roots; see [3]. If the ai have normal distribution with

density e�u2

/⇡
1
2 ; then Kac (1944) showed that the mean value of the number of

real roots of f(x) equals

(4/⇡)

Z 1

0

[1� n2[x2(1� x2)/(1� x2n)]2]
1
2

1� x2
dx ⇠ (2/⇡) log n,

see [7]. If the coe�cients are random variables with distribution function �(u) then
in a second paper Kac (1949) gives an expansion for the average number of roots of
the above equation in the interval (a, b). He then considers the special case when
�(u) = 1

2u, and deduces from the general formula that in this case the average
number of real roots is asymptotic to (2⇡)�1 log n. Consequently, polynomials in
general have plenty of non-real roots.
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The existence of non-real roots of a polynomial makes the computation of its
Galois group much easier. Computing the Galois group in this case for polynomials
of prime degree p will be the focus of this short note. Checking whether a polynomial
has non-real roots is very e�cient since numerical methods can be used. Once the
existence of non-real roots is established then from a theorem of Jordan (1871) it
follows that if their number is ”small” enough with respect to the degree p of the
polynomial, then the Galois group is Ap or Sp. Furthermore, using the classification
of finite simple groups we know nowadays the complete classification of transitive
groups of prime degree. This enables us to provide a complete list of possible Galois
groups for every polynomial of prime degree p which has non-real roots.

In section 2 we briefly describe the existing techniques used to compute the Galois
group of a polynomial f(x) 2 Q[x] of degree n. These techniques are mainly based
on the Dedekind’s theorem and knowledge of the list of all transitive subgroups of
Sn and the cycle structure of their elements. First, a factorization mod p (i.e.,
good prime p) of f(x) is required to obtain information on the cycle structure of the
group elements. Such information enables us to eliminate groups from the list of
transitive subgroups of Sn. For as long as the group is not uniquely determined we
repeat the procedure with a di↵erent prime p. This is a rather expensive technique
since algorithms of factorizing polynomials are not very e�cient. Furthermore,
many primes p might be needed in the process.

In section 3 we study polynomials of prime degree p with non-real roots. We
describe the transitive groups of Sp and compute all such groups for n  30. Using
a theorem of Jordan on permutation groups we show that for a fixed number of
non-real roots r = 2s and

p � N(r) := [s (s log s+ 2 log s+ 3)]

the Galois group is Ap or Sp. Furthermore, we classify all groups that occur for
p < N(r) and provide an algorithm that computes the Galois group of a polynomial
with non-real roots of degree prime p. We conclude with some final remarks in
section 4.

Notation: Throughout this paper the ground field k = Q. All polynomials are
assumed to be irreducible over Q. The group Dn denotes the dihedral group of n
elements, M11 and M23 are respectively Mathew groups of degree 11 and 23. For
all other groups we use the GAP notation.

2. The Galois group of a polynomial

Let f(x) 2 k[x] be a degree n polynomial. A splitting field of f is a field extension
of k of the form k(↵1, . . . ,↵n) where f(x) = (x�↵1) · · · (x�↵n). Any two splitting
fields of f are isomorphic under an isomorphism trivial on k. Thus we normally
speak of the splitting field of f .

If the discriminant�f of f(x) is nonzero then f(x) has n-distinct roots ↵1, . . . ,↵n

in the splitting field Ef of f . Ef/k is a Galois extension. The Galois group of f
over k, denoted by Gk(f), is the group G(Ef/k), viewed as a permutation group of
the roots ↵1, . . . ,↵n. Thus Gk(f) is a subgroup of Sn, determined up to conjugacy
by f . The following is elementary and we avoid the proof.

Proposition 1. Let f(x) 2 k[x] be a degree n polynomial and G = Gk(f).
(i) Let H = G \An. Then H = G(Ef/k(

p
�f )). In particular, G is contained in

the alternating group An if and only if the discriminant �f is a square in k.
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(ii) The irreducible factors of f in k[x] correspond to the orbits of G. In particular,

G is a transitive subgroup of Sn if and only if f is irreducible.

Remark 1. Recall that for a degree n irreducible polynomial f(x) over k with

splitting field Ef we have n | [Ef : k].

Hence, for a given polynomial f(x) of degree n its Galois group must satisfy:
i) G is isomorphic to a transitive subgroup of Sn.
ii) n divides |G|,
iii) G is a subgroup of An if and only if �f is a square in Q.

These conditions narrow down the possible choices of groups that can be Galois
groups of f(x). In order to determine precisely the group G we need to determine
the type of cycles in G.

2.1. Reduction mod p. The reduction method uses the fact that every polyno-
mial with rational coe�cients can be transformed into a monic polynomial with
integer coe�cients without changing the splitting field.

Let f(x) 2 Q[x] be given by

f(x) = xn + an�1x
n�1 + · · ·+ a1x+ a0

Let d be the common denominator of all coe�cients a0, · · · , an�1. Then g(x) :=
d ·f(xd ) is a monic polynomial with integer coe�cients. Clearly the splitting field of
f(x) is the same as the splitting field of g(x). Thus, without loss of generality we
can assume that f(x) is a monic polynomial with integer coe�cients. The following
theorem gives information on the cycle shape of permutations of Gal (f).

Theorem 1. (Dedekind) Let f(x) 2 Z[x] be a monic polynomial such that deg f =
n, Gal Q(f) = G, and p a prime such that p - �f . If fp := f(x) mod p factors in

Zp[x] as a product of irreducible factors of degree

n1, n2, n3, · · · , nk,

then G contains a permutation of type

(n1) (n2) · · · (nk)

From the Chebotarev density theorem we know that if p ! 1 then the dis-
tribution of factor degrees approaches the distribution of the cycle shapes in the
group. Assuming that we can compute all transitive subgroups of Sn and their
cycle shapes then the above two theorems give a basis of an algorithm to determine
Gal(f). The transitive subgroups of Sn can be computed in GAP for all n  30.

Remark 2. The above technique doesn’t determine the Galois group uniquely in

all cases. For example there are two non-isomorphic degree 8 groups with the same

cycle structure. In such cases other methods such as invariants of groups are used

to determine the group uniquely.

2.2. Transitive subgroups of Sn. By degree of a permutation group G we mean
the number of points moved by G. The degree of a permutation ↵ 2 Sn is the
number of points moved by h↵i. The minimal degree of G, denoted by m(G), is
the smallest of degrees of elements ↵ 6= 1 in G.

In the case n is a prime n = p then a non-solvable transitive subgroup G of Sp is
doubly transitive (Burnside theorem); see [1, pg. 431] or [12, Theorem 11.7]. Using
the classification of simple groups one gets a complete list of G:
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Theorem 2. Let G be a doubly transitive subgroup of Sp, for a prime p. Then G
isomorphic to one of the following:

(i) Ap, Sp,
(ii) p = 11, G = L2(11) or M11,

(iii) p = 23, G = M23,

(iv) p = (qk�1)
(q�1) and Lk(q)  G  Aut(Lk(q)).

Proof. One can check Prop. 4.4.1 in [9] for all these statements. ⇤
Thus, the above theorem classifies all transitive non-solvable subgroups of Sp.

For the solvable cases we use GAP to compute them in each case for  29. In
the Table 1, we display the number of transitive subgroups and the number of
non-solvable transitive subgroups of Sn for all n  30.

Deg. Nr. of trans. groups Nr. of unsolvable groups

5 5 2
6 16 4
7 7 3
8 50 5
9 34 4
10 45 21
11 8 4
12 301 36
13 9 3
14 63 27
15 104 40
16 1954 49
17 10 5
18 983 91
19 8 2
20 1117 358
21 164 56
22 59 27
23 7 3
24 25000 807
25 211 79
26 96 26
27 2392 64
28 1854 617
29 8 2
30 5712 1896

Table 1. The number or transitive and unsolvable groups (up to
conjugacy) for degree  30
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3. Polynomials with non-real roots

Let f(x) 2 Q[x] be an irreducible polynomial of degree n > 5. Denote by r
the number of non-real roots of f(x). Since the complex conjugation permutes the
roots then r is even, say r = 2s. By a reordering of the roots we may assume that
if f(x) has r non-real roots then

↵ := (1, 2)(3, 4) · · · (r � 1, r) 2 Gal(f).

Since determining the number of non-real roots can be very fast, we would like to
know to what extent the number of non-real roots of f(x) determines Gal(f). The
complex conjugation assures that m(G)  r. The existence of ↵ can narrow down
the list of candidates for Gal(f). However, it is unlikely that the group can be
determined only on this information unless p is ”large” enough. In this case the
number of non-real roots of f(x) can almost determine the Galois group of f(x),
as we will see in the next section. Nevertheless, the test is worth running for all p
since it is very fast and improves the algorithm overall.

3.1. Polynomials of prime degree. An approach of computing Galois groups
of polynomials or solving for roots is to check whether or not the polynomial is
decomposable. The polynomial decomposition problem can be stated as follows:
given a degree n polynomial f 2 k[x], determine whether there exist polynomials
f1, f2 of degree greater than one such that f = f1 � f2 = f1(f2(x)), and in the
a�rmative case to compute them. From the classical Lüroth’s theorem this problem
is equivalent to deciding if there exists a proper intermediate field in the finite
algebraic extension k(f) ⇢ k(x). From the computational point of view, there are
several polynomial time algorithms for decomposing polynomials. The computation
of f1(x) and f2(x) only requires O(n2) arithmetic operations in the ground field k;
see for instance [2]. A polynomial f(x) 2 F [x] is indecomposable over the subfield
F ⇢ k if and only if f(x) is indecomposable over k. There are fast algorithms to
compute the decomposition of polynomials; see [2]. However, for indecomposable
polynomials we would like to have better methods of determining the Galois group
and possible roots of the polynomial. Hence, polynomials of prime degree are of
interest since they are, of course, indecomposable.

The next theorem determines the Galois group of a prime degree polynomial
f(x) with r non-real roots when the degree of f(x) is large enough with respect to
r.

Theorem 3. Let f(x) 2 Q[x] be an irreducible polynomial of prime degree p � 5
and r = 2s be the number of non-real roots of f(x). If s satisfies

s (s log s+ 2 log s+ 3)  p

then Gal(f) = Ap, Sp.

Proof. Since p is prime then every transitive subgroup of Sp is primitive. Let G
denote the Galois group of f(x) and m(G) its minimal degree. By reordering the
roots we can assume that

(1, 2)(3, 4) · · · (r � 1, r) 2 Gal(f).

Hence, m := m(G)  r. From a theorem of Jordan [5] we have that if

m2

4
log

m

2
+m

✓
log

m

2
+

3

2

◆
 p
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then G = Ap or Sp. Hence, if

s (s log s+ 2 log s+ 3)  p

then Gal(f) = Ap or Sp. ⇤

Remark 3. For a modern view of Jordan’s theorem and its implications to number

theory, Galois representations, and topology see [10].

For a fixed p the above bound is not sharp as we will see below. However, the
above theorem can be used successfully if s is fixed. We denote the above bound
on p by

N(r) := [s (s log s+ 2 log s+ 3)]

for r = 2s. Hence, for a fixed number of non-real roots, for p � N(r) the Galois
group is always Ap or Sp.

Corollary 1. Let a polynomial of prime degree p have r non-real roots. If one of

the following holds:

(i) r = 4 and p > 7,
(ii) r = 6 and p > 13,
(iii) r = 8 and p > 23,
(iv) r = 10 and p > 37,

then Gal(f) = Ap or Sp.

Remark 4. The above results gives a very quick way of determining the Galois

group for polynomials with non-real roots. Whether or not the discriminant is a

complete square can be used to distinguish between Ap and Sp.

If p < N(r) then some exceptional cases occur. Next theorem determines these
exceptional cases for polynomials of degree up to 29. The computations were made
using GAP.

Theorem 4. Let f(x) 2 Q[x] be an irreducible polynomial of prime degree p > 5.
Let r be the number of complex roots of f(x). If r > 0 then Gal(f) is Ap, Sp or

one of the groups as in the following Table 2.

Proof. The proof is computational and follows from the tables of transitive sub-
groups of Sp. It is easy to decide which ones of these groups are nonsolvable and
compute their cycle types. ⇤

Remark 5. We used in Table 2 notations which we considered standard as Dn,

M11, and L(p), otherwise we used the GAP notation (p, i) which is the i-th group

in the list of transitive groups of degree p. These groups can be generated in GAP

simple by typing TransitiveGroup(n,i);. The group M23 is not realized as a

Galois groups over Q.

Notice that no two groups of Table 2 have the same cycle structure. Hence the
Galois group can be determined uniquely by reduction mod p for all polynomials
of prime degree  29 with non-real roots.

Example 1. Let f(x) be the polynomial

f(x) = x11 + 5x7 � 4x6 � 20x5 + 4x4 + 20x3 + 1
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Table 2. Galois groups (other then Ap, Sp) of polynomials with
non-real roots.

p Solv. Sign. Nonsol. Sign.

7 D7 (2)3, (7) L(7) (2)2, (4)(2), (3)2, (7)
(7, 4) (2)3, (3)2, (7)

11 D11 (2)5, (11) L(11) (2)4, (3)3, (5)2, (2)(6)(3), (11)

(11, 4) (2)5, (5)2, (10), (11) M11 (2)4, (2)(6)(3), (2)(8), (3)3,
(4)2, (5)2, (11)

13 D13 (2)6, (13) L(13) (2)4, (3)3, (3)4, (4)2(2)2,
(6)(3)(2), (8)(4), (13)

(13, 4) (2)6, (4)3, (13)
(13, 5) (2)6, (3)4, (6)2, (13)
(13, 6) (2)6, (3)4, (4)3,

(6)2, (12), (13)

17 D17 (2)8, (17) PSL2(16) (2)8, (3)5, (5)3, (15), (17)

(17, 3) (2)8, (4)4, (17) (17, 7) (2)6, (2)8, (3)5, (4)4,
(5)3, (6)2(3), (5)(10)(2),

(15), (17)

(17, 4) (2)8, (4)4, (8)2, (17) (17, 8) (2)(5)(10), (2)(4), (2)(4)3,
(2)6, (2)8, (3)(6)2, (3)5,
(3)2(12), (4)3, (5)3, (8)2,

(15), (17)
(17, 5) (2)8, (4)4, (8)2, (16), (17)

19 D19 (2)9, (19)
(19, 4) (2)9, (3)6, (6)3, (19)
(19, 6) (2)9, (3)6, (6)3, (9)2,

(18), (19)

23 D23 (2)11, (23) M23 (2)8, (2)2(4)4, (2)(7)(14),
(2)(4)(8)2, (2)2(3)2(6)2,

(23, 4) (2)11, (11)2, (22), (23) (3)(5)(15), (5)3, (5)4,
(7)3, (11)2, (23)

29 D29 (2)14, (29)
(29, 3) (2)14, (4)7, (29)
(29, 5) (2)14, (7)4, (14)2, (29)
(29.6) (2)14, (4)7, (7)4, (14)2,

(28), (29)

This polynomial is irreducible over Q and has exactly 10 non-real roots. The reader

can easily check these facts in Maple using the commands:

factor(f(x)); realroot(f(x));

From the above theorem, its Galois group is A11 or S11. Its discriminant is

�f = �59 · 1391212936091429123033

which is not a square in Q. Hence the Galois group of f(x) is S11. Maple can not

compute the Galois group of this polynomial since its degree is > 8.

Combining the above results we have the following algorithm for computing the
Galois group of prime degree polynomials with non-real roots. D(f) denotes the
discriminant of f(x) and A_p, S_p the alternating and symmetric group of p letters.
Note that in the case p < N(r) the we know that a permutation of the type (2)

r
2 is

in the group. Hence, the list of transitive subgroups is much shorter than in general.
This information was obtained by computing the number of real roots other then
by some factorization modulo p. Thus, even in this case the algorithm is improved.

Algorithm: Computing the Galois group of prime degree polynomials with non-
real roots.
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Input: An irreducible monic polynomial f(x) 2 Q[x] of prime degree p.
Output: Galois group Gal(f) of f(x) over Q

begin

r :=NumberOfRealRoots(f(x));

If p > N(r) then

if D(f) is a complete square then

Gal (f)=A_p; else Gal (f) = S_p;

endif;

else ReductionMethod(f(x)); endif;

end;

3.2. Polynomials of prime degree p with Galois group Ap. Let f(x) be a
polynomial in Q(t) as below

f(x) = (n� 1)xn � nxn�1 + t.

The discriminant of f(x) with respect to x is

�f = (�1)
n(n�1)

2 nn(n� 1)n�1tn�2(t� 1).

�f is a complete square in Q if (�1)
(n�1)

2 nt(t � 1) is a complete square; see [11]
(pg. 44) for more on this family of polynomials. Let n = 23. Then

�f = �222 · 1122 · 2323 · t21(t� 1).

Hence, �f is a complete square in Q if G(t) = �23t(t� 1) is a complete square. In
other words, for all those rational points on the curve

y2 = G(t).

This is a genus 0 curve and can be parametrized as follows:

(y, t) =

✓
� 23m

m2 + 23
,

23

(m2 + 23

◆

Consider f(x) for t = 23
(m2+23 . Since we prefer to work with polynomials with

integer coe�cients then take

f(x) = (22m2 + 506)x23 � (23m2 + 529)x22 + 23.

It is easily checked that f(x) is irreducible over Q and its discriminant is

�f = 222 · 1122 · 2344 ·m2 (23 +m2)22

which is a complete square in Q. Thus, Gal(f) is inside A23. It is an simple calculus
exercise to show that the number of real roots of these polynomials is  3. Hence,
the Galois group is A23.

We conclude with the following open problem:

Problem: Find a degree 23 polynomial f(x) 2 Q[x] with exactly 7 real roots such

that �f is a complete square in Q but Gal(f) is not isomorphic to A23.

The reader is probably aware that the above is an open problem of the inverse
Galois problem, see [13]. Its solution would realize M23 as a Galois group over Q.
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4. Concluding remarks

The algorithm suggested in this paper works very well with prime degree poly-
nomials which have nonreal roots. Since most polynomials have such roots this
is an e↵ective test to be implemented on all algorithms computing Galois groups.
Most computer algebra packages have already algorithms implemented to find the
number of real roots of a polynomial. For example in Maple the user can easily
check using the command realroot( f(x) );. One can also generalize this algo-
rithm to any degree n polynomial. However, in this case a more detailed analysis
is required.
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