GENUS TWO CURVES COVERING ELLIPTIC CURVES: A
COMPUTATIONAL APPROACH

T. SHASKA

ABSTRACT. A genus 2 curve C has an elliptic subcover if there exists a degree
n maximal covering @ : C — FE to an elliptic curve E. Degree n elliptic
subcovers occur in pairs (E, E'). The Jacobian J¢ of C' is isogenous of degree
n? to the product E x E’. We say that Jo is (n,n)-split. The locus of C,
denoted by L, is an algebraic subvariety of the moduli space Mz. The space
Lo was studied in Shaska/Volklein [15] and Gaudry/Schost [7]. The space L3
was studied in [16] were an algebraic description was given as sublocus of Ma.

In this survey we give a brief description of the spaces L, for a general
n and then focus on small n. We describe some of the computational details
which were skipped in [15] and [16]. Further we explicitly describe the relation
between the elliptic subcovers E and E’. We have implemented most of these
relations in computer programs which check easily whether a genus 2 curve
has (2,2) or (3,3) split Jacobian. In each case the elliptic subcovers can be
explicitly computed.

1. INTRODUCTION

Let C be a genus 2 curve defined over an algebraically closed field k, of charac-
teristic zero. Let ¢ : C' — E be a degree n maximal covering (i.e. does not factor
through an isogeny) to an elliptic curve E defined over k. We say that C has a
degree n elliptic subcover. Degree n elliptic subcovers occur in pairs. Let (E, E')
be such a pair. It is well known that there is an isogeny of degree n? between the
Jacobian Jo of C and the product F x E’. We say that C has (n,n)-split Jaco-
bian. The locus of such C, denoted by L, is a 2-dimensional algebraic subvariety
of the moduli space My of genus two curves.

In this survey we study the genus 2 curves with (n,n)-split Jacobian for small
n. While such curves have been studied by many authors, our approach is simply
computational. Some of the results have appeared in previous articles of the author.

Curves of genus 2 with elliptic subcovers go back to Legendre and Jacobi. Le-
gendre, in his Théorie des fonctions elliptiques, gave the first example of a genus
2 curve with degree 2 elliptic subcovers. In a review of Legendre’s work, Jacobi
(1832) gives a complete description for n = 2. The case n = 3 was studied during
the 19th century from Hermite, Goursat, Burkhardt, Brioschi, and Bolza. For a
history and background of the 19th century work see Krazer [7Kr, pg. 479]. Cases
when n > 3 are more difficult to handle. Frey and Kani note the difficulty to get
explicit examples, see Frey [5] and Frey/Kani [6].

In §2 we give a brief description of genus 2 curves and their isomorphism classes
which are classified by the absolute invariants of binary sextics. Further, we display
the list of groups that occur as full automorphism groups of genus 2 curves defined
over a field of characteristic # 2.
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In §3 we study degree n covers C — E from a genus 2 curve to an elliptic curve.
Such covers induce a degree n covering ¢ : P! — P!, A careful study of such covers
leads to determining an equation for the curves C. The covering ¢ : P — P! could
have different ramification structure. All such structures are described in section 3.

The moduli space of coverings ¢ : P! — P! with fixed ramification structure is a
Hurwitz space. The irreducibility of such space, dimension, and the genus (in the
case 1-dimensional spaces) can be computed via the braid action. For n an odd
integer we display such results in section 4. There is a natural morphism between
the Hurwitz space and the locus £,, (cf. §4). In the second part of section 4 we
describe the correspondence between the points of £, and the Humbert space of
discriminant n? which we denote by H,,2.

In section 5 we study genus 2 curves with degree 2 elliptic subcovers. Jacobi [12]
gives a general form of such curves: Y2 = X% — 51 X%+ 5,X? —1, and a description
of L5 in terms of the cross ratios of the roots aq, ..., ag of the sextic:

az3—0Q1 a4—0Qp Q5 — 01 Qg —

063—052.044—02 (15—052.046—042

Thus, £, is parameterized by the pair (s1, s2) € k%. We note that this parametriza-
tion of Lo factors through a ramified Galois covering: k? — k2, (s1,s2) — (u,v),
where u = 5189 and v = 53+ s3. This induces a birational parametrization of Ly by
the pairs (u,v). All our computations use these coordinates (u,v). We use this to
compute an equation for £y in terms of the classical invariants. We give a general
relation between the j-invariants of degree 2 elliptic subfields of K. This improves
[7], where each isomorphism type of G is treated separately. We determine condi-
tions when degree 2 elliptic subfields of K are 2 or 3-isogenous. For a generalization
of such invariants u, and v see Remark 1 or Gutierrez/Shaska [7].

In section 6, we study the case n = 3. We show that every genus 2 curve with a
degree 3 elliptic subcover can be written in the form

Y2 =(X?+aX?+bX +1)4X? + 02 X2 + 20X +1)

for a,b € k. So L3 is parameterized by the pairs (a,b) € k?. The invariants of the
two cubics 71,72 give a birational parametrization of L£3. This parametrization of
L3 factors through ramified Galois coverings of degree 3 (resp. 2)

W K=k — K
(a,b) = (u,v) = (r1,72)

where ab = u and b = v. The equation of L3 is computed in terms of the ab-
solute invariants and is displayed in [16, Appendix A]. If C € L3 then Aut(C) is
isomorphic to Zo,Vy, D4 or Dg. Moreover, there are exactly six genus 2 curves
with automorphism group D4 or Dg. The rational models of these 12 curves and
rational points on them were studied in [17]. We determine the j-invariants of the
elliptic subcovers and show that they satisfy the Fricke polynomial of level 2.

In the last section we give information on computer programs that we have made
available for such computations.
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2. PRELIMINARIES

Let k be an algebraically closed field of characteristic zero and C' a genus 2 curve
defined over k. Then C can be described as a double cover of P!(k) ramified in 6
places wq, ..., ws. This sets up a bijection between isomorphism classes of genus 2
curves and unordered distinct 6-tuples w1, ..., ws € P*(k) modulo automorphisms
of P*(k). An unordered 6-tuple {w;}¢_; can be described by a binary sextic (i.e.
a homogenous equation f(X,Z) of degree 6). Let Mo denote the moduli space
of genus 2 curves. To describe My we need to find polynomial functions of the
coefficients of a binary sextic f(X, Z) invariant under linear substitutions in X, Z
of determinant one. These invariants were worked out by Clebsch and Bolza in the
case of zero characteristic and generalized by Igusa for any characteristic different
from 2; see [3], [L1], or [15] for a more modern treatment.

Consider a binary sextic, i.e. a homogeneous polynomial f(X,Z) in k[X, Z] of
degree 6:

f(X,2) =a¢X® +asX°Z +--- 4 apZ".
Igusa J-invariants {Jo;} of f(X,Z) are homogeneous polynomials of degree 2i
in klag,...,aq), for i = 1,2,3,5; see [11], [15] for their definitions. Here Jio is
simply the discriminant of f(X,Z). It vanishes if and only if the binary sextic has
a multiple linear factor. These Jo; are invariant under the natural action of SLs (k)
on sextics. Dividing such an invariant by another one of the same degree gives an
invariant under GLs(k) action.

Two genus 2 fields K (resp., curves) in the standard form Y2 = f(X,1) are
isomorphic if and only if the corresponding sextics are GL2(k) conjugate. Thus if
I is a GLy(k) invariant (resp., homogeneous SLy(k) invariant), then the expression
I(K) (resp., the condition I(K) = 0) is well defined. Thus the GLy(k) invariants
are functions on the moduli space My of genus 2 curves. This Ms is an affine
variety with coordinate ring

k‘[Mg] = k’[CLQ, ...,06, Jl_ol]GLz(k)

which is the subring of degree 0 elements in k[Ja, .. .,Jlo,JfOl]. The absolute

moariants J Tl 3 ;

Jj;, iy = 172824 20 4J§ 0 iy = 486%250,
are even G Lo (k)-invariants. Two genus 2 curves with Jp # 0 are isomorphic if and
only if they have the same absolute invariants. If Jo, = 0 then we can define new
invariants as in [14]. For the rest of this paper if we say “there is a genus 2 curve C
defined over k” we will mean the k-isomorphism class of C. We have the following;

see [15, Theorem 2].

1 =144

Lemma 1. The automorphism group G of a genus 2 curve C in characteristic # 2
is isomorphic to Zs, Z1o, Va, Dg, D12, ZzxDg, GL3(3), or 2¥Ss. The case when
G =271 S5 occurs only in characteristic 5. If G=Z3xDs (resp., GL3(3)) then C has
equation Y2 = X6 — 1 (resp., Y? = X(X* —1)). If G=Zyo then C has equation
Y?2=X6_-X.

3. CURVES OF GENUS 2 WITH SPLIT JACOBIANS

Let C' and E be curves of genus 2 and 1, respectively. Both are smooth, projec-
tive curves defined over k, char(k) = 0. Let ¢ : C — E be a covering of degree
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n. From the Riemann-Hurwitz formula, }p o (ey (P) — 1) = 2 where ey (P) is
the ramification index of points P € C, under ¢. Thus, we have two points of
ramification index 2 or one point of ramification index 3. The two points of rami-
fication index 2 can be in the same fiber or in different fibers. Therefore, we have
the following cases of the covering v:

Case I: There are Py, P, € C, such that ey, (P1) = ey (P2) = 2, ¥(P1) # ¢¥(Pa),
and VP € C\ {P1, P2}, ey(P) = 1.

Case II: There are Py, P, € C, such that ey (P1) = ey (P2) = 2, ¥(P1) = ¢Y(P),
and VP € C\{Pl,PQ}, 6¢,(P) =1.

Case III: There is P, € C such that ey (Py) = 3, and VP € C\{P1}, ey(P) = 1.

In case I (resp. II, III) the cover ¢ has 2 (resp. 1) branch points in E.

Denote the hyperelliptic involution of C' by w. We choose O in E such that w
restricted to E is the hyperelliptic involution on . We denote the restriction of w
on E by v, v(P) = —P. Thus, ¢ ow = v o ¢. E[2] denotes the group of 2-torsion
points of the elliptic curve E, which are the points fixed by v. The proof of the
following two lemmas is straightforward and will be omitted.

Lemma 2. a) If Q € E, then VP € v~ 1(Q), w(P) € v~ 1(-Q).
b) For all P € C, ey(P) = ey (w(P)).

Let W be the set of points in C fixed by w. Every curve of genus 2 is given, up
to isomorphism, by a binary sextic, so there are 6 points fixed by the hyperelliptic
involution w, namely the Weierstrass points of C'. The following lemma determines
the distribution of the Weierstrass points in fibers of 2-torsion points.

Lemma 3. The following hold:
(1) 6(W) C Bl
(2) Ifn is an odd number then i) (W) = E[2] ii) If Q € E[2] then #(¢~1(Q)N
W)=1 mod (2)
(3) Ifn is an even number then for all Q € E[2], #(¢~1(Q)NW) =0 mod (2)

Let mc : C — P! and 7g : E — P! be the natural degree 2 projections. The
hyperelliptic involution permutes the points in the fibers of 7¢ and 7. The ramified
points of m¢, T are respectively points in W and E[2] and their ramification index
is 2. There is ¢ : P! — P! such that the diagram commutes.

c & op!
(2) Yl L ¢
E 5 pl

Next, we will determine the ramification of induced coverings ¢ : P! —s P!, First
we fix some notation. For a given branch point we will denote the ramification
of points in its fiber as follows. Any point P of ramification index m is denoted
by (m). If there are k such points then we write (m)*. We omit writing symbols
for unramified points, in other words (1)¥ will not be written. Ramification data
between two branch points will be separated by commas. We denote by mg(E[2]) =
{@1,.-.,qa} and m¢(W) = {wy,...,ws}.

3.0.1. The Case When n is Odd. The following theorem classifies the ramification
types for the induced coverings ¢ : P! — P! when the degree n is odd.
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Theorem 1. Let ¢ : C — E be a covering of odd degree n and ¢ : P* — P! be
the induced covering induced by . This induces a partitioning of the set of 6 Weier-
strass points of C into two sets W) = W(C,E) and W3 = WR)(C, E), each
of cardinality 3 such that |p(WM)| =1 and |p(WP))| = 3. Then the ramification
structure of ¢ is as follows.

Case I: (the generic case)

(@ @7,@%,@7, 2
Or the following degenerate cases:
Case II: (the 4-cycle case and the dihedral case)

n—1 n—"7

i) ((2)”%7(2)”;1,(2)?,(4)1(2)%)
i) (@75, @)

i) (25,27, W), 2)F)
Case III: (the 3-cycle case)

i) (@@ ,2% 02
i) (27,2, (3)'2)",2)°7)

3.0.2. The Case When n is Even. Let us assume now that deg(y)) = n is an even
number. The following theorem classifies the induced coverings in this case.

Theorem 2. Ifn is an even number then the generic case for ¢ : C' — E induce
the following three cases for gb Pl — P

L (27,0707, 0%,)
I (7,27, )8, (2)7,(2))

III: ((2)7,(2)%,(2)g,(2)%7(2))

Each of the above cases has the following degenerations (two of the branch points
collapse to one)

L (1) (@%@)5%,2)%,2)%)
@) (@@, @)=, @)F)
(3) (7,27, 27, @)@) )
1) (0@=,@)=,2)=,2)%)

I (1) (27,7, ()%,2)?%)

@ (@, @%,2)%2)7%)

3) (WER)F,@), @)% 2)7%)
@ (@, @), @) 2)7%)
(5) (@7, 27, )7, (2)%)

6) (327,27, (@))%, 2)F)
(M (@7.0)@7 . 2%
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() (@ <> <>%,<4><2>%)
@ (@ 2%, (2)%)
3) (2% @% @F @)@
@ (B <>3,<2>%,<2>%)

3.1. Maximal coverings ¢ : C — E. Let 11 : C — FEj be a covering of degree
n from a curve of genus 2 to an elliptic curve. The covering 1, : C — Ej is called
a maximal covering if it does not factor through a nontrivial isogeny. A map of
algebraic curves f : X — Y induces maps between their Jacobians f* : Jy — Jx
and fi : Jx — Jy. When f is maximal then f* is injective and ker(f,) is connected,
see [18] for details.

Let ¢; : C — E4 be a covering as above which is maximal. Then ¢¥*, : E; — Jo
is injective and the kernel of v; , : Jo — FEj is an elliptic curve which we denote
by Es; see [0] or [19]. For a fixed Weierstrass point P € C, we can embed C to its
Jacobian via

(3)

n—=6

= (4)(

w3

N—

ip:C — Jo
z = [(z) — (P)]

Let g : E5 — J¢o be the natural embedding of Fs in J¢&, then there exists g, : Jo —
Fs. Define 13 = g, oip : C — FE5. So we have the following exact sequence

0= By -2 Jo U5 By S0

The dual sequence is also exact

0= By 5 Jo 25 By — 0

If deg(1)1) is an odd number then the maximal covering 1y : C' — FEs is unique (up
to isomorphism of elliptic curves), see Kuhn [19]. If the cover ¢y : C — Ej is
given, and therefore ¢1, we want to determine 15 : C' — FEs and ¢5. The study of
the relation between the ramification structures of ¢, and ¢o provides information
in this direction. The following lemma (see [, pg. 160]) answers this question for
the set of Weierstrass points W = {P,..., Ps} of C when the degree of the cover
is odd.
Lemma 4. Let ¢ : C' — E4, be mazimal of degree n. Then, the map ¥y : C — Es
18 a mazximal covering of degree n. Moreover,
i) if n is odd and O; € E;[2], i = 1,2 are the places such that #(; (O;) N
W) =3, then 7 H(O1)NW and v5* (Os) "W form a disjoint union of W.
ii) if n is even and Q € E[2], then # (7,[171(@)) =0 or 2.

The above lemma says that if ¢ is maximal of even degree then the corresponding
induced covering can have only type I ramification, see theorem 2.

4. THE LOCUS OF GENUS TWO CURVES WITH (n,n) SPLIT JACOBIANS

In this section we will discuss the Hurwitz spaces of coverings with ramification
as in the previous section and the Humbert spaces of discriminant n?.
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4.1. Hurwitz spaces of covers ¢ : P! — PL. Two covers f : X — P! and f':
X" — P! are called weakly equivalent if there is a homeomorphism b : X — X'
and an analytic automorphism g of P! (i.e., a Moebius transformation) such that
go f = f"oh. The covers f and f’ are called equivalent if the above holds with
g=1.

Consider a cover f : X — P! of degree n, with branch points p.,...,p, € P
Pick p € P\ {p1,...,p,}, and choose loops 7; around p; such that ~i,...,7, is a
standard generating system of the fundamental group I' := 71 (P! \ {p1,...,0-}, D),
in particular, we have ~; -- -, = 1. Such a system 1, ...,7, is called a homotopy
basis of P!\ {p1,...,p-}. The group I' acts on the fiber f~1(p) by path lifting,
inducing a transitive subgroup G of the symmetric group S, (determined by f
up to conjugacy in S,). It is called the monodromy group of f. The images
of y1,...,7 in S, form a tuple of permutations ¢ = (o1, ...,0,) called a tuple of
branch cycles of f.

We say a cover f: X — P! of degree n is of type o if it has ¢ as tuple of branch
cycles relative to some homotopy basis of P! minus the branch points of f. Let H,
be the set of weak equivalence classes of covers of type 0. The Hurwitz space H,
carries a natural structure of an quasiprojective variety.

We have ‘H, = H, if and only if the tuples o, 7 are in the same braid orbit
O, = O,. In the case of the covers ¢ : P! — P! from above, the corresponding
braid orbit consists of all tuples in .S,, whose cycle type matches the ramification
structure of ¢.

This and the genus of H, in the degenerate cases (see the following table) has
been computed in GAP by the BRAID PACKAGE written by K. Magaard.

deg | Case | cycle type of o | #(O,) | G | dimH,, | genus of H,,

3 (22,2222 2,2) 40 S 2 -
1 (22,22,4,2) 8 Ss 1 0
2 (22,22)2.3,2) 6 Ss 1 0
3 (22,22 22 3) 9 As 1 1
4

5 (22,22,22 2 2) 40 Ss 2 -
1 (22,22,4,2) 8 Ss 1 0
2 (22,22)2.3,2) 6 Ss 1 0
3 (22,22 22 3) 9 As 1 1
4

7 (22,22,22 2 2) 168 | Sy 2 -

4.2. Humbert surfaces. Let A, denote the moduli space of principally polarized
abelian surfaces. It is well known that As is the quotient of the Siegel upper half
space $)o of symmetric complex 2 X 2 matrices with positive definite imaginary part
by the action of the symplectic group Sp4(Z); see [8, p. 211].

Let A be a fixed positive integer and Na be the set of matrices

21z
T<1 2>€552
Z2 Z3
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such that there exist nonzero integers a, b, ¢, d, e with the following properties:

az1 +bzo + cz3 +d(25 — 2123) +e =0

4
) A = b% — dac — 4de

The Humbert surface Ha of discriminant A is called the image of Na under
the canonical map

o = Az 1= Spa(Z) \ 92,

see [2,10,20] for details. It is known that Ha # 0 if and only if A > 0 and
A =0 or1l mod 4. Humbert (1900) studied the zero loci in Eq. (4) and discovered
certain relations between points in these spaces and certain plane configurations of
six lines; see [10] for more details.

For a genus 2 curve C defined over C, [C] belongs too L,, if and only if the
isomorphism class [Jo| € Az of its (principally polarized) Jacobian Jo belongs to
the Humbert surface H,,2, viewed as a subset of the moduli space As of principally
polarized abelian surfaces; see [20, Theorem 1, p. 125] for the proof of this state-
ment. In [20] is shown that there is a one to one correspondence between the points
in £, and points in H,2. Thus, we have the map:

Ha‘ — ,Cn — an

(5) ([f], D1, o) = [X] = [Jx]

In particular, every point in H,2 can be represented by an element of §)5 of the

form
1
Z1 =
7'2(1 ”>7 21, 22 € 9.

There have been many attempts to explicitly describe these Humbert surfaces. For
some small discriminant this has been done by several authors; see [15], [16], [19].
Geometric characterizations of such spaces for A = 4,8,9, and 12 were given by
Humbert (1900) in [10] and for A = 13,16, 17, 20, 21 by Birkenhake/Wilhelm (2003)

in [2

5. GENUS 2 CURVES WITH DEGREE 2 ELLIPTIC SUBCOVERS

An elliptic involution of K is an involution in G which is different from z
(the hyperelliptic involution). Thus the elliptic involutions of G are in 1-1 corre-
spondence with the elliptic subfields of K of degree 2 (by the Riemann-Hurwitz
formula).

If z; is an elliptic involution and zy the hyperelliptic one, then zo := zg 2y is
another elliptic involution. So the elliptic involutions come naturally in pairs. This
pairs also the elliptic subfields of K of degree 2. Two such subfields F; and E> are
paired if and only if F1 Nk(X) = Ex Nk(X). E; and E> are G-conjugate unless
G = Dg or G=V, (This can be checked from Lemma 1).

Theorem 3. Let K be a genus 2 field and es(K) the number of Aut(K)-classes of
elliptic subfields of K of degree 2. Suppose ea(K) > 1. Then the classical invariants
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of K satisfy the equation,
—J3J5 4 8748J10J5 J5 50738400005 J; Jo — 192456005 JaJs — 592272J10J5 J2
—81J3 75 — 349920010 J2J& + 47433607105 JoJs — 870912102 J3 Jg
+1332J5 J4 Js — 1259712000005, + 384J5 Jg + 41472J10J5 + 1595 J3
(6) —47952J5J4 J¢ + 10497600002, J2 Js — 172875 J3 Jg + 604871 Jo Jg + 1085 JuJg
+12J5 J3 Js + 29376J2 JZ JE — 891075 T2 J2 — 20995200007 Ja Js — 236196J7,J5
+31104J5 — 6912J Jo4 + 972J10J5 J; + 77436 J10J5 Ty — 785 J5
+3090960J10J4J2 Jg — 5832J10J5 JaJs — 80J] J2 — 54J5 J2 IS — 9331200J10J2 Jg =0

Further, ea(K) = 2 unless K = k(X,Y) with
VZ=X5-X
in which case ex(K) = 1.

Proof. Since eg(K) is the number of conjugacy classes of elliptic involutions in G
the claim about ez (K) follows from theorem 5. For the proof of the following lemma
see [15].

Lemma 5. Suppose z1 is an elliptic involution of K. Let zo = z1z9, where z
is the hyperelliptic involution. Let E; be the fixed field of z; for i = 1,2. Then
K =k(X,Y) where

(7) Y2=X0 -5 X+ 5,X2 -1

and 27—18s150 — 5353 +4s3+4s3 # 0. Further Ey and Ey are the subfields k(X?,Y)
and k(X% Y X).

We need to determine to what extent the normalization in the above proof de-
termines the coordinate X. The condition z; (X) = —X determines the coordinate
X up to a coordinate change by some v € I' centralizing z;. Such ~ satisfies
Y(X) =mX or y(X) = &, m € k\ {0}. The additional condition abc = 1 forces
1= —v(a1)...7(ag), hence m® = 1. So X is determined up to a coordinate change
by the subgroup H = Dg of I' generated by 7 : X — &X, o 0 X — %7 where
€6 is a primitive 6-th root of unity. Let & := &2. The coordinate change by 7
replaces s; by £3s2 and sp by €2s5. The coordinate change by 7o switches s; and
So. Invariants of this H-action are:

(8) U= 518y, v:=55+ 55

Remark 1. Such invariants were quite important in simplifying computations for
the locus Lo. Later they have been used by Duursma and Kiyavash to show that
genus 2 curves with extra involutions are suitable for the vector decomposition prob-
lem; see [4] for details. In this volume they are used again, see the paper by Cardona

and Quer. They were later generalized to higher genus hyperelliptic curves and were
called dihedral invariants; see [9].

Classical invariants of the field K given by lemma 5 are:
Jo = 240 + 16u

Jy = 48v + 4u? + 1620 — 504u
Jo = —20664u + 96v — 424u? + 24u® + 160uv + 119880
Jio = 64(27 — 18u — u? + 4v)?

(9)
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For Jy # 0 we express the absolute invariants iy, s, i3 in terms of v and v. We can
eliminate u and v and get the following equation of L.

—27i% + 9i7 + 161243136i3i5 — 12441600435 + 2i5 + 1074954244324 + 5447 i3
—52254720i3i145 — 47278080i3i>i5 — 8294400i34° i3 — 9459597312000i27; — 1847 i3

(10) —240734712102912i2 + 1114512556032004241 + 20639121408000i2i5 — 5524070437}
+2i84y — 43335 + 3317760515 — 27i5 — 2866544640000i27 112 + 1612431363372 + 9i1is
—264180754022400000i5 = 0

To get rid of the condition J, # 0 we multiply by J5 to get the “projective”
equation (6) of L. This holds indeed for all K € L5, as can be checked by substi-
tuting from (9). This completes the proof of Theorem 3.

O
The following proposition determines the group G in terms of u and v.

Proposition 1. Let C be a genus 2 curve such that G := Aut(C) has an elliptic
inwvolution and Jo # 0. Then,
a) G=Z3xDy if and only if (u,v) = (0,0) or (u,v) = (225,6750).
b) G=W; if and only if u = 25 and v = —250.
¢) G= Dy if and only if 4v — u? + 110u — 1125 = 0, for u # 9,70 + 30v/5, 25.
Moreover, the classical invariants satisfy the equations,

—JuJS + 120506 — 52J7JZ 4 80J5 4 960J2J4Js — 3600JF = 0
(11) 864.J10J5 + 345600010 J5 Jo — 43200J10J4J5 — 2332800000J7, — JZJS
—T68.J} J5 + 48J35 J5 + 4096J5 = 0
d) G= Dy if and only if v?> — 4u® = 0, for u # 1,9,0,25,225. Cases u = 0,225
and u = 25 are reduced to cases a),and b) respectively. Moreover, the classical
invariants satisfy (6) and the following equation,

(12) 17063 J3 + 256005 4 27.J4J5 — 81.J5.Js — 14880.J2.J4.J6 + 28800.J¢ = 0

Proposition 2. The mapping
A (u,v) — (i1, 12,13)

gies a birational parametrization of Lo. The fibers of A of cardinality > 1 corre-
spond to those curves C with |Aut(C)| > 4.

Proof. See [15] for the details. O

5.1. Elliptic subcovers. Let j; and jo denote the j-invariants of the elliptic curves
Fy and Es from lemma 5. The invariants j; and jo and are roots of the quadratic
(2u3 — 54u? + Yuv — v? + 27v) (u? + 9u — 3v) B

(u2 + 18u — 4v — 27) (u? + 18u — 4v — 27)2
5.1.1. Isomorphic elliptic subcovers. The elliptic curves F; and E5 are isomorphic

when equation (13) has a double root. The discriminant of the quadratic is zero
for

(13) 52 4 256 0

j + 65536

(v? —4u®) (v — Ju+27) =0

Remark 2. From lemma 5, v? = 4u® if and only if Aut(C)= D4. So for C such
that Aut(C) = Dy, E is isomorphic to Eo. 1t is easily checked that zy and z2 = 2921
are conjugate when G = Dy. So they fix isomorphic subfields.
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If v = 9(u — 3) then the locus of these curves is given by,
4i% — 9i} 4 73728i%i3 — 15099494472 = 0
28975 — 72947 + 5diqiz — i3 =0
For (u,v) = (3, —2) the curve has Aut(C)= D, and for (u,v) = (137,1206) it has
Aut(C) = Dg. All other curves with v = 9(u — 3) belong to the general case, so
C

Aut(C)=2Vy. The j-invariants of elliptic curves are j; = jo = 256(9 — u). Thus,
these genus 2 curves are parameterized by the j-invariant of the elliptic subcover.

(14)

Remark 3. This embeds the moduli space My into My in a functorial way.

5.2. Isogenous degree 2 elliptic subfields. In this section we study pairs of
degree 2 elliptic subfields of K which are 2 or 3-isogenous. We denote by @,,(z,y)
the n-th modular polynomial (see Blake et al. [1] for the formal definitions. Two
elliptic curves with j-invariants j; and j, are n-isogenous if and only if ®,,(j1, j2) =
0.

5.2.1. 3-Isogeny. Suppose E; and Es are 3-isogenous. Then, from equation (13)
and ®3(j1,j2) = 0 we eliminate j; and js. Then,
(15) (4v — u? + 110u — 1125) - g1 (u,v) - g2(u,v) =0
where g1 and go are
g1 = —27008u’ + 256u” — 2432u°v + v* + 7296uv? — 669203 u — 17550675001
+ 2419308v° — 34553439u* 4 127753092vu> + 16274844vu”® — 1720730u°v>
— 1941120u° + 3816315000 4 1018668150u> — 116158860u° 4 52621974v°
+ 387712utv — 4839636600 — 334166760 1 + 922640625

(16)

g2 = 291350448u° — v*u® — 998848uSv — 3456u" v + 4749840u* v + 17032u°v?
+ 4v° 4 80368u® 4 256u” + 6848224u" — 105350400°u> — 358720°u® + 26478v"u
— 77908736u"v + 9516699v" + 307234984u°v” — 419583744v°u — 826436736v°
+ 27502903296u" + 28808773632vu” — 23429955456vu® + 54553340161 v°
— 41278242816v 4 82556485632u° — 108737593344u” — 121230950400°

+ 41278242816vu + 350355456002 u + 5341019904u” — 2454612480u™ v

Thus, there is a isogeny of degree 3 between E; and Fs if and only if u and v
satisfy equation (15). The vanishing of the first factor is equivalent to G = Dg. So,
if Aut(C)= D¢ then E; and Fy are isogenous of degree 3. This was also noted by
Gaudry and Schost [7].

5.2.2. 2-Isogeny. Below we give the modular 2-polynomial.
(18) Oy = 2® — 2y* + y® + 1488y (x + ) + 407733752y — 162000(x? — y*)+
8748000000(z + y) — 157464000000000

Suppose E; and E5 are isogenous of degree 2. Substituting j; and js in ®5 we get

(19) fi(u,v) - fa(u,v) =0

where f; and fo are

fi= —16v® — 812160 — 892296v — 2460375 + 3312uv” 4 707616vu + 3805380u+
18360vu* — 1296162u” — 1744u’v — 140076u” + 801u® + 256u°

(20)
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f2 = 4096u" 4 256016u° — 45824u°v + 4736016u° — 2126736vu” + 23158143u*
— 25451712y — 119745540u° + 5291136v°u” — 48166488vu” — 23905003500
— 179712uv® 4 35831808uv” 4 1113270480vu + 9300217500 — 4036608v°
— 17911530000 — 8303765625 — 1024v* + 163840u°v* — 1222503840 + 256u°v®

5.2.3. Other isogenies between elliptic subcovers. If G= Dy, then z; and z, are
in the same conjugacy class. There are again two conjugacy classes of elliptic
involutions in G. Thus, there are two degree 2 elliptic subfields (up to isomorphism)
of K. One of them is determined by double root j of the equation (13), for v?—4u3 =
0. Next, we determine the j-invariant j’ of the other degree 2 elliptic subfield and
see how it is related to j.

7 N

B By E| ~Z E}

If v2 — 4u® = 0 then G2V, and P = {+1,+/a, +vb}. Then, 31 =a+i+1=s,.
Involutions of C are 71 : X = —X, 75 : X — )1(, X = fy Smce 71 and T3
fix no points of P the they lift to involutions in G. They each determine a pair of
isomorphic elliptic subfields. The j-invariant of elliptic subfield fixed by 77 is the
double root of equation (13), namely

3

v+1

To find the j-invariant of the elliptic subfields fixed by 73 we look at the degree 2
covering ¢ : P! — P!, such that ¢(£1) = 0, ¢(a) = ¢(—%) =1, ¢(—a) = ¢(%) =
—1, and ¢(0) = ¢(c0) = oo. This covering is, ¢p(X) = f X1 <. The branch points
of ¢ are ¢; =t 20Va  Trom lemma 5 the elliptic subﬁelds El and EY, have 2-torsion

j = —256

Va1
points {0,1, —1,¢;}. The j-invariants of F{ and E) are
—15)3
g gle=1
(v+1)?

Then ®5(j,5') = 0, so E; and Ej are isogenous of degree 2. Thus, 7 and 73
determine degree 2 elliptic subfields which are 2-isogenous.

6. GENUS 2 CURVES WITH DEGREE 3 ELLIPTIC SUBCOVERS
This case was studied in detail in[16]. The main theorem was:

Theorem 4. Let K be a genus 2 field and e3(K) the number of Aut(K/k)-classes
of elliptic subfields of K of degree 3. Then;

i) es(K)=0,1,2, or4

ii) e3(K) > 1 if and only if the classical invariants of K satisfy the irreducible
equation F(Ja, Jy, Jg, J10) = 0 displayed in [16, Appendix A].

There are exactly two genus 2 curves (up to isomorphism) with e3(K) = 4. The
case e3(K) = 1 (resp., 2) occurs for a 1-dimensional (resp., 2-dimensional) family
of genus 2 curves, see [16].
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Lemma 6. Let K be a genus 2 field and E an elliptic subfield of degree 3.
i) Then K = k(X,Y) such that

(22) V2= (4X3 + X2 + 26X + 1)(X® + aX? +bX +1)
for a,b € k such that
(23) (4a® + 27 — 18ab — a?b* + 4b>)(b® — 27) # 0

The roots of the first (resp. second) cubic correspond to W (K, E), (resp. W3 (K, E))
in the coordinates X,Y , (see theorem 1).
it) E=k(U,V) where

X2
U= raxtrox +1
and
b? — 6a> + 9b 12a — b? 4
24 2_ 8402 2 _Z
(24) \% U®+ 7 U+ 7 U 7
where R = 4a® + 27 — 18ab — a?b? + 4b® # 0.
iii) Define

w:=ab, v:=0b

Let K' be a genus 2 field and E' C K' a degree 3 elliptic subfield. Let a’,b' be
the associated parameters as above and u' := a'b', v = (b')3. Then, there is a k-
isomorphism K — K' mapping E — E' if and only if exists a third root of unity
€€k withad = &a and V = &2b. If b # 0 then such & exists if and only if v = v’
and u=1'.

iv) The classical invariants of K satisfy equation [16, Appendix A].

Let
F(X)=X*+aX?+bX +1
G(X):=4X>+ X% + 20X + 1

Denote by R = 4a® + 27 — 18ab — a?b? + 4b> the resultant of F' and G. Then we
have the following lemma.

(25)

Lemma 7. Let a,b € k satisfy equation (23). Then equation (22) defines a genus
2 field K = k(X,Y). It has elliptic subfields of degree 3, E; = k(U;,V;), i = 1,2,
where U;, and V; are as follows:

X2 X3 —bX —2
= - zyi
“mrxy F(X)?
2
(X _é)()(())( = i b® — 4ba+9) £ 0
_ 3X —a) . _
2
(I;(GJ(F;? if (b°—dba+9)=0
where
_§ b 3a — b?
Ty T B _dab+ 9
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V27T —b3Y
W(Mab —8—b)X? — (b> —4ab)X> +bX +1) if b(b> —4ba+9) #0
8X°% —4aX? -1

@n  Va= (AX® 1 1)2

if b=0

8 Y 3 2, 2 . 3 _
g\/Bm(bx +9X2 02X +b) if (b® —4ba+9)=0
Proof. We skip the details of the proof.
O

6.1. Function field of £3. The absolute invariants i1, 42, and i3 are expressed in
terms of u, v. Let u, v be independent transcendentals over k and i1, ia, i3 € k(u,v).
Further elements rq,rs € k(u,v) are defined below; see § 6.1.1.

From the resultants of equations if 71,149,435 in terms of u, v, we determine that
[k(v) : k(i1,i2)] = 16, [k(v) : k(ia,i3)] = 40, and [k(v) : k(i1,i3)] = 26. We
also can show that w € k(i1,142,13,v), the expression is large and we display it on
[16, Appendix A]. Thus, [k(u,v) : k(i1, i2,43)] < 2, see figure 1.

k(i1,i2,13) = k(r1,72)

k(i1,i2) k(i1,i3) k(ia,13)
FIGURE 1.
Computing the equation [16, Appendix A] directly from the equations of i1, iz, i3

in terms of u,v, exceeds available computer power. We use additional invariants
r1, 72 to overcome this problem.

6.1.1. Invariants of Two Cubics. We define the following invariants of two cubic
polynomials. For F(X) = a3 X? + a2 X2+ a1 X + ap and G(X) = b3 X3 + by X2 +
b1 X + by define

1 1
H(F, G) = a3b0 — §a261 + galbg — a0b3

We denote by R(F,G) the resultant of F' and G and by D(F') the discriminant of
F. Also,

H(F,G)? H(F,G)*

ik il Al F Q)= —— ")
rREG o E9

Remark 4. Note that D(FG) = D(F) - D(G) - R*(F,G).

rl(FaG) =

For
F(X)=X*4+aX?+bX +1, G(X)=4X>+b*X? +2bX + 1
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from lemma 6 we have
v(v—9 — 2u)3
v2 — 18uw + 27v — v?v + 4u?
v(v—9—2u)t
(v —27)(4v?% — 18uwv + 27Tv — u?v + 4u?)

Remark 5. Note that r1,r2 are defined for any u,v by (23).

r(F,G) = 27
(28) !

ro(F,G) = —1296

Taking the resultants from the above equations we get the following equations
for w and v over k(rq,r2):

655367175 u” + (42467328r5 + 212336647371 + 480rar] + 215 + 41472r57%
(29) +1548288r5r; — 2949127571 )u — 382205952r5 + 238878720r5T1 — 265420857,
+13934592r5 75 + 2856967575 + 2400727t + Try =0

1638405 + (2211847571 + ri + 115207577 — 4423685 4 192ror v

—5971968r53r1 — 864rars — 12441672r2 — 2rt =0

In equation (29) express r1 and 75 in terms of u and v. Roots of this equation
are u and v(u) where,

(v — 3u)(324u? + 15uv — 378uw — 4uv? 4 243v + 7207)

31 =
(31) v(u) (v —27)(4u> 4+ 27v — 18uv — u?v + 4v?)

Similarly for v we get

_ 4(v — 3u)?
4ud + 27v — 18uv — u2v + 4v?

(32) V() =

Define a ring homomorphism
v klu,v] = k(u,v)
u—v(u), v—vv)

Then, we compute > = 1. Thus, v extends to an involutory automorphism of
k(u,v) which we again denote by v. Since,

7 k(u,v) = k(u,v)
(u,v) = (u,v(v))
is not involutory, then [k(u,v) : k(r1,r2)] = 2 and Galy(y,v)/k(ri,r) = (V)-
Lemma 8. The fields k(i1,i2,13) = k(r1,r2) are the same.

Remark 6. To find the equation in [16, Appendix A] we eliminate 1 and ro from
the three equations of the above lemma. This equation has degree 8, 13, and 20 in
11,19, 13 respectively.

Proof. (Theorem 4) The map
0: (u,v) — (il,ig,ig,)

generically has degree 2, by previous section. Denote the minors of the Jacobian
matrix of 6 by M (u,v), Ma(u,v), Ms(u,v). The system
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M (u,v) =
(33) Ms(u,v) =0
Ms(u,v) =
has solutions
(34) 8v3 + 2702 — 5duv? — u?v? + 108uv + 4uPv — 108u® = 0

and 7 further solutions which we display in the following table together with the
corresponding values (i1,142,i3) and properties of the corresponding genus 2 field
K.

(u,v) (i1,42,13) Aut(K) | e3(K)
(-1,2) Jip =0, no associated
genus 2 field K
775 125
(* 8 a%)a
25 250 8019 _ 1240029 531441
(77 T) T 720 T 200 100000 Dy 2
(27— Zy/=1,23 4+ Z/=1),
77 T 729 1240029 531441
(27+ 2 —1,23 — 9 _1) (mv 97336 ° 13181630464 Dy 2
35 25 | 35
35 25 35 5103 729
(*15*§ 5’7*€ 5) 8 > 725 0 12500 Deg 2

FIGURE 2. Corresponding (u,v) for which the Jacobian matrix of
0is 0

Assume that equation (34) holds for some (u,v) € k2. Then the corresponding
quantities Jo;, i = 1,2, 3,5 satisfy the equation

(35) F(J2,Ja,J6,J10) =0

where F(Js, Js, Jg, J10) is displayed in [16]. This is obtained by taking the resul-
tants of equations of i1,i2,i3 and (34). We define Jyg := F(Ja, Jy, Jg, J10). By
previous section 6 is generically a covering of degree 2. So exists a Zariski open
subset U of k% with the following properties: Firstly, 6 is defined everywhere on U
and is a covering of degree 2 from U to 6(U). Further, if u € U then all v’ € k? with
6 defined at v’ and (') = 6(u) also lie in U. Suppose i € k3 such that [71(i)| > 2
and det(Jac(f)) does not vanish at any point of §~1(i). Then by implicit function
theorem, there is an open ball B around each element of #~1(i) such that each point
in #(B) has > 2 inverse images under 6. But B has to intersect the Zariski open set
U. This is a contradiction. Thus, if i € k* and |§=1(i)| > 2, then det(Jac()) = 0
at some point of §~1(i) and so Jyg vanishes.

Let e3(K) > 1 and Jy # 0, Jyg # 0. Then 4y,i9,i3 are defined and by previ-
ous paragraph |071(iq,42,i3)] < 2. Thus, by lemma 6 part iii) e3(K) < 2. This
completes the proof of theorem 4.

O
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6.2. Elliptic subcovers. We express the j-invariants j; of the elliptic subfields E;
of K, from lemma 7, in terms of v and v as follows:

(vu? + 2160 — 126vu — 972u + 120 + 4050)3

(v —27)3(4v2% + 27v + 4u3 — 18vu — vu?)?
(u? — 3v)?

v(4v? 4 27v + 4u? — 18vu — vu?)

j1 = 161}
(36)

ja = —256

where v # 0, 27.

Remark 7. The automorphism v € Galy(y ) /k(r,,ry) PeTmutes the elliptic subfields.
One can easily check that:

v(ji) =Jj2, v(j2) =5
Define T and N as follows;

1 : 5
T = W(lnzzsmm%or;rf + 1528823808315 + 4994157772875
271

— 38928384r5r> — 258048577 + 123863047575 + 901736973729792ro7,°
+966131712r5r; + 162312655271362567,° + 480rsr1 + 101376752 + A79047767293952r57"
+ 7247757312r5r} + 7827577896960r5 7y + 270521092118937677 + 61968325017615 1]

7 + 216416873695150087, > + 32462531054272512r1 " + rj + 37572373905408r5 7]

+ 140896402145280075 7] + 45595641249792r275)

1 . . .\ \
= = (84934656 1179648 — 53084167% — 442368
68710476736r 273 mt 172 1 TiTe

— 138247212 — 192r175 — 13)°

Lemma 9. The j-invariants of the elliptic subfields satisfy the following quadratic
equations over k(ri,m2);

(38) j?=Tj+N=0
Proof. Substitute j; and js as in Eq. (36) in equation Eq. (38). O

6.2.1. Isomorphic Elliptic Subfields. Suppose that F1 = FEs. Then, j; = jo implies
that

(39) 8v® + 270° — 5duv® — u’v® + 108u”v + 4u’v — 108u® = 0
or
324v*u? — 5832v%u + 37908v* — 314928v3u — 81v3u* + 255879v° + 30618v>u?

(40) — 864v3u® — 6377292uv? + 850305602 — 324u°v? + 2125764u’v? — 215784u>0?
+ 14580u*v? + 16u’v? + 78732u v + 8748u°v — 864u’v — 157464u’v + 11664u° = 0

The former equation is the condition that det(Jac(f)) = 0 see Eq. (35). From
equation Eq. 35 and expressions of i1, 42,43 we can express u as a rational function
in 41,42, and v. This is displayed in [16, Appendix B]. Also, [k(v) : k(i1)] = 8 and
[k(v) : k(i2)] = 12. Eliminating v we get a curve in i; and iz which has degree 8
and 12 respectively. Thus, k(u,v) = k(i1,42). Hence, e3(K) = 1 for any K such
that the associated v and v satisfy equation (35).
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6.2.2. The Degenerate Case. We assume now that one of the extensions K/E; from
lemma 7 is degenerate, i.e. has only one branch point. The following lemma
determines a relation between j; and js.

Lemma 10. Suppose that K/FE> has only one branch point. Then,
72951jo — (j2 — 432)* =0
Making the substitution T" = —275; we get

(T +16)3
T

where F5(T) is the Fricke polynomial of level 2.
If both K/E; and K/FE5 are degenerate then

{ 7295172 — (j1 — 432)> =0

J1=E(T) =

(41) o . 5
7295142 — (j2 —432)° =0

There are 7 solutions to the above system. Three of which give isomorphic elliptic
curves

1
j1=0G2=1728, j1=j2 = 5(207£81V/~15)

The other 4 solutions are given by:

(42) 7295172 = (71 — 432)° =0
3% + 43 — 1296(j1 + j2) + jrja + 559872 =0
This corrects [19] where it is claimed there is only one solution j; = jo = 1728.

7. FURTHER REMARKS

If es5(C) > 1 then the automorphism group of C is one of the following: Za, Vy,
Dy, or Dg. Moreover; there are exactly 6 curves C € L3 with automorphism group
Dy and six curves C € L3 with automorphism group Dg. They are listed in [17]
where rational points of such curves are found.

Genus 2 curves with degree 5 elliptic subcovers are studied in [13] where a de-
scription of the space L5 is given and all its degenerate loci. The case of degree 7
is the first case when all possible degenerate loci occur.

We have organized the results of this paper in a Maple package which determines
if a genus 2 curve has degree n = 2,3 elliptic subcovers. Further, all its elliptic
subcovers are determined explicitly. We intend to implement the results for n =5
and the degenerate cases for n = 7.
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