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ABSTRACT. Basic invariants of binary forms over C up to degree 6 (and lower degrees)
were constructed by Clebsch and Bolza in the 19-th century using complicated symbolic
calculations. Igusa extended this to algebraically closed fields of any characteristic using
difficult techniques of algebraic geometry. In this paper a simple proof is supplied that
works in characteristic p > 5 and uses some concepts of invariant theory developed by
Hilbert (in characteristic 0) and Mumford, Haboush et al. in positive characteristic. Further
the analogue for pairs of binary cubics is also treated.

1. INTRODUCTION

Let k be an algebraically closed field of characteristic not equal to 2. A binary form of
degree d is a homogeneous polynomial f (X ,Y ) of degree d in two variables over k. Let Vd
be the k- vector space of binary forms of degree d. The group GL2(k) of invertible 2× 2
matrices over k acts on Vd by coordinate change. Many problems in algebra involve prop-
erties of binary forms which are invariant under these coordinate changes. In particular,
any genus 2 curve over k has a projective equation of the form Z2Y 4 = f (X ,Y ), where f is
a binary sextic (= binary form of degree 6) of non-zero discriminant. Two such curves are
isomorphic if and only if the corresponding sextics are conjugate under GL2(k). Therefore
the moduli space M2 of genus 2 curves is the affine variety whose coordinate ring is the
ring of GL2(k)-invariants in the coordinate ring of the set of elements of V6 with non-zero
discriminant.

Generators for this and similar invariant rings in lower degree were constructed by Cleb-
sch, Bolza and others in the last century using complicated calculations. For the case of
sextics, Igusa [Ig] extended this to algebraically closed fields of any characteristic using
difficult techniques of algebraic geometry. Igusa’s paper is very difficult to read and has
some proofs only sketched. It is mostly the case of characteristic 2 which complicates his
paper.

Hilbert [Hi] developed some general, purely algebraic tools (see Theorem 1 and Theo-
rem 2 below) in invariant theory. Combined with the linear reductivity of GL2(k) in char-
acteristic 0, this permits a more conceptual proof of the results of Clebsch [2] and Bolza
[Bo]. After Igusa’s paper appeared, the concept of geometric reductivity was developed
by Mumford [Mu1], Haboush [Ha] and others. In particular it was proved that reductive
algebraic groups in any characteristic are geometrically reductive. This allows application
of Hilbert’s methods in any characteristic. For example, Hilbert’s finiteness theorem (see
Theorem 1 below) was extended to any characteristic by Nagata [Na]. Here we give a proof
of the Clebsch-Bolza-Igusa result along those lines. The proof is elementary in character-
istic 0, and extends to characteristic p > 5 by quoting the respective results on geometric
reductivity. This is contained in sections 2 and 3.

In section 4 we treat the analogue for invariants of pairs of binary cubics. To our knowl-
edge this has not been worked out before.
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2. INVARIANTS OF BINARY FORMS

In this chapter we define the action of GL2(k) on binary forms and discuss the basic
notions of their invariants. Throughout this chapter k denotes an algebraically closed field.

2.1. Action of GL2(k) on binary forms. Let k [X ,Y ] be the polynomial ring in two vari-
ables and let Vd denote the d + 1-dimensional subspace of k [X ,Y ] consisting of homoge-
neous polynomials.

(1) f (X ,Y ) = a0Xd +a1Xd−1Y + · · ·+adY d

of degree d. Elements in Vd are called binary forms of degree d.
We let GL2(k) act as a group of automorphisms on k [X ,Y ] as follows: if

g =

(
a b
c d

)
∈ GL2(k)

then

g(X) = aX +bY

g(Y ) = cX +dY
(2)

This action of GL2(k) leaves Vd invariant and acts irreducibly on Vd .

Remark 2.1. It is well known that SL2(k) leaves a bilinear form (unique up to scalar
multiples) on Vd invariant. This form is symmetric if d is even and skew symmetric if d is
odd.

Let A0, A1, . . . , Ad be coordinate functions on Vd . Then the coordinate ring of Vd
can be identified with k [A0, . . . ,Ad ]. For I ∈ k [A0, . . . ,Ad ] and g ∈ GL2(k), define Ig ∈
k [A0, . . . ,Ad ] as follows

(3) Ig ( f ) = I (g( f ))

for all f ∈Vd . Then Igh = (Ig)h and Eq. (3) defines an action of GL2(k) on k [A0, . . . ,Ad ].

Definition 2.2. Let Rd be the ring of SL2(k) invariants in k [A0, . . . ,Ad ], i.e., the ring of all
I ∈ k [A0, . . . ,d ] with Ig = I for all g ∈ SL2(k).

Note that if I is an invariant, so are all its homogeneous components. So Rd is graded
by the usual degree function on k [A0, . . . ,Ad ].

Since k is algebraically closed, the binary form f (X ,Y ) in Eq. (1) can be factored as

(4) f (X ,Y ) = (y1X− x1Y ) · · ·(ydX− xdY ) = ∏
1≤i≤d

det
((

X xi
Y yi

))
The points with homogeneous coordinates (xi,yi) ∈ P1 are called the roots of the binary
form (1). Thus for g ∈ GL2(k) we have

g( f (X ,Y )) = (det(g))d(y
′
1X− x

′
1Y ) · · ·(y′dX− x

′
dY ),

where

(5)
(

x
′
i

y
′
i

)
= g−1

(
xi
yi

)
.
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2.2. The Null Cone of Vd .

Definition 2.3. The null cone Nd of Vd is the zero set of all homogeneous elements in Rd
of positive degree

Lemma 2.4. Let char(k) = 0 and Ωs be the subspace of k [A0, . . . ,Ad ] consisting of homo-
geneous elements of degree s. Then there is a k-linear map R : k [A0, . . . ,Ad ]→ Rd with
the following properties:

(a) R(Ωs)⊆Ωs for all s
(b) R(I) = I for all I ∈Rd
(c) R(g( f )) = R( f ) for all f ∈ k [A0, . . . ,Ad ]

Proof. Ωs is a polynomial module of degree s for SL2(k). Since SL2(k) is linearly reductive
in char(k) = 0, there exists a SL2(k)-invariant subspace Λs of Ωs such that Ωs = (Ωs ∩
Rd)

⊕
Λs. Define R : k [A0, . . . ,Ad ]→ Rd as R(Λs) = 0 and R|Ωs∩Rd

= id. Then R is
k-linear and the rest of the proof is clear from the definition of R.

�

The map R is called the Reynold’s operator.

Lemma 2.5. Suppose char(k) = 0. Then every maximal ideal in Rd is contained in a
maximal ideal of k [A0, . . . ,Ad ].

Proof. If I is a maximal ideal in Rd which generates the unit ideal of k [A0, . . . ,Ad ], then
there exist m1, . . . ,mt ∈I and f1, f2, . . . , ft ∈ k [A0, . . . ,Ad ] such that

1 = m1 f1 + · · ·+mt ft
Applying the Reynold’s operator to the above equation we get

1 = m1 R( f1)+ · · ·+mt R( ft)

But R( fi) ∈Rd for all i. This implies 1 ∈I , a contradiction.
�

Theorem 2.6. (Hilbert’s Finiteness Theorem) Suppose char(k) = 0. Then Rd is finitely
generated over k.

Proof. Let I0 be the ideal in k [A0, . . . ,Ad ] generated by all homogeneous invariants of
positive degree. Because k [A0, . . . ,Ad ] is Noetherian, there exist finitely many homoge-
neous elements J1, . . . ,Jr in Rd such that I0 = (J1, . . . ,Jr). We prove Rd = k [J1, . . . ,Jr].
Let J ∈Rd be homogeneous of degree d. We prove J ∈ k [J1, . . . ,Jr] using induction on d.
If d = 0, then J ∈ k ⊂ k [J1, . . . ,Jr]. If d > 0, then

(6) J = f1 J1 + · · ·+ fr Jr

with fi ∈ k [A0, . . . ,Ad ] homogeneous and deg( fi) < d for all i. Applying the Reynold’s
operator to Eq. (6) we have

J = R( f1)J1 + · · ·+R( fr)Jr

then by Lemma 1 R( fi) is a homogeneous element in Rd with deg(R( fi))< d for all i and
hence by induction we have R( fi) ∈ k [J1, . . . ,Jr] for all i. Thus J ∈ k [J1, . . . ,Jr].

�

If k is of arbitrary characteristic, then SL2(k) is geometrically reductive, which is a
weakening of linear reductivity; see Haboush [Ha]. It suffices to prove Hilbert’s finiteness
theorem in any characteristic; see Nagata [Na]. The following theorem is also due to
Hilbert.
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Theorem 2.7. Let I1, I2, . . . , Is be homogeneous elements in Rd whose common zero set
equals the null cone Nd . Then Rd is finitely generated as a module over k [I1, . . . , Is].

Proof. (i) char(k) = 0: By Theorem 2.6 we have Rd = k [J1,J2, . . . ,Jr] for some homoge-
neous invariants J1, . . . , Jr. Let I0 be the maximal ideal in Rd generated by all homoge-
neous elements in Rd of positive degree. Then the theorem follows if I1, . . . , Is generate
an ideal I in Rd with rad(I ) =I0. For if this is the case, we have an integer q such that

(7) Jq
i ∈I , for all i

Set S := {Ji1
1 Ji2

2 . . .Jir
r |0 ≤ i1, . . . , ir < q}. Let M be the k [I1, . . . Is]-submodule in Rd

generated by S. We prove Rd = M . Let J ∈ Rd be homogeneous. Then J = J
′
+ J

′′

where J
′ ∈M , J

′′
is a k-linear combination of Ji1

1 Ji2
2 . . .Jir

r with at least one iν ≥ q and
deg(J) = deg(J

′
) = deg(J

′′
). Hence Eq. (7) implies J

′′ ∈I and so we have

J
′′
= f1 I1 + · · ·+ fs Is

where fi ∈ Rd for all i. Then deg( fi) < deg(J
′′
) = deg(J) for all i. Now by induction

on degree of J we may assume fi ∈M for all i. This implies J
′′ ∈M and hence J ∈M .

Therefore M =Rd . So it only remains to prove rad(I )=I0. This follows from Hilbert’s
Nullstellensatz and the following claim.

Claim: I0 is the only maximal ideal containing I1, . . . , Is.

Suppose I1 is a maximal ideal in Rd with I1, . . . , Is ∈ I1. Then from Lemma 2 we
know there exists a maximal ideal J of k [A0, . . . ,Ad ] with I1 ⊂J . The point in Vd cor-
responding to J lies on the null cone Nd because I1, . . . , Is vanish on this point. Therefore
I0 ⊂J , by definition of Nd . Therefore J ∩Rd contains both the maximal ideals I1
and I0. Hence, I1 = J ∩Rd = I0.

(ii) char(k) = p: The same proof works if Lemma 2 holds. Geometrically this means
the morphism π : Vd → Vd // SL2(k) corresponding to the inclusion Rd ⊂ k [A0, . . . ,Ad ] is
surjective. Here Vd // SL2(k) denotes the affine variety corresponding to the ring Rd and is
called the categorical quotient. π is surjective because SL2(k) is geometrically reductive.
The proof is by reduction modulo p, see Geyer [Ge].

�

3. PROJECTIVE INVARIANCE OF BINARY SEXTICS.

Throughout this section char(k) 6= 2,3,5

3.1. Construction of invariants and characterization of multiplicities of the roots. We
let

f (X ,Y ) = a0X6 +a1X5Y + · · ·+a6Y 6

= (y1X− x1Y )(y2X− x2Y ) . . .(y6X− x6Y )
(8)

be an element in V6. Set

Di j :=
(

xi x j
yi y j

)
.

For g ∈ SL2(k), we have

g( f ) = (y
′
1X− x

′
1Y ) . . .(y

′
6X− x

′
6Y ), with

(
x
′
i

y
′
i

)
= g−1

(
xi
yi

)
.
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Clearly Di j is invariant under this action of SL2(k) on P1. Let {i, j,k, l,m,n}= {1,2,3,4,5,6}.
Treating ai as variables, we construct the following elements in R6 (proof follows).

I10 = ∏
i< j

D2
i j

I2 = ∑
i< j,k<l,m<n

D2
i jD

2
klD

2
mn

I4 = (4I2
2 −B)

I6 = (8I3
2 −160I2I4−C)

(9)

where

B = ∑
i< j, j<k,l<m,m<n

D2
i jD

2
jkD2

kiD
2
lmD2

mnD2
nl

C = ∑
i< j, j<k,l<m,m<n

i<l
′
, j<m

′
,k<n

′

l
′
,m
′
,n
′∈{l,m,n}

D2
i jD

2
jkD2

kiD
2
lmD2

mnD2
nlD

2
il
′D2

jm′
D2

kn
′(10)

The number of summands in B (resp. C) equals

(
6
3

)
2! = 10 (resp. 60).

Lemma 3.1. I2i are homogeneous elements in R6 of degree 2i, for i = 1,2,3,5.

Proof. Each I2i can be written as

(y1 . . .y6)
2i · Ĩ2i(

x1

y1
, . . . ,

x6

y6
)

with Ĩ2i a symmetric polynomial in x1
y1
, x1

y2
, . . . , x6

y6
for i = 1, 2, 3, 5. Therefore by the funda-

mental theorem of elementary symmetric functions we have

I2i = a2i
0 · fi(

a1

a0
, . . . ,

a6

a0
),

where fi is a polynomial in 6 variables and hence I2i is a rational function in a0, . . . a6 with
denominator a power of a0. Switching the roles X and Y we also see that the denominator
is a power of a6. Thus I2i ∈ k [a0, . . . ,a6]. Clearly I2i are SL2(k)-invariants and hence
lie in R6. Further, replacing f by c f with c ∈ k∗, multiplies I2i by c2i. Hence, I2i are
homogeneous of degree 2i. �

Note that I2 is the SL2(k)-invariant quadratic form on V6 (see Remark 2.1) and I10 is the
discriminant of the sextic. I10 vanishes if and only if two of the roots coincide. Also note
that if for a sextic all its roots are equal, then all the basic invariants vanish. These basic
invariants when evaluated on a sextic f (X ,Y ) = a0X6 + a1X5Y + . . .a6Y 6 with a root at
(1,0), i.e., with a0 = 0, take the following form.
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I2 =−20a1a5 +8a2a4−3a2
3

I4 =−24000a2
1a4a6 +10000a2

1a2
5 +14400a1a3a2a6−1800a1a2

3a5−3200a1a4a2a5

+960a1a3a2
4−3840a3

2a6 +960a2
2a3a5 +256a2

2a2
4−432a2a4a2

3 +81a4
3

I6 =100a1a4
3a5−40a1a3

3a2
4 +6250a3

1a3a2
6−160a4

2a4a6 +60a3
2a2

3a6

−40a2
2a3

3a5−8a2
2a2

3a2
4−2500a2

2a2
1a2

6 +8a2a4
3a4−2500a2

1a3a6a2a5

−100a4
2a2

5−24a3
2a3

4−350a1a2
3a2a4a5 +300a1a3a2

2a4a6 +1000a3
2a1a6a5

−100a2
1a4

4−a6
3 +250a2

1a2
3a6a4 +250a2

1a2
4a3a5−100a1a2

4a2
2a5

+250a1a3a2
2a2

5 +140a3
2a4a3a5−150a1a3

3a2a6 +140a1a3a2a3
4

(11)

Lemma 3.2. A sextic has a root of multiplicity exactly three if and only if the basic invari-
ants take the form

(12) I2 = 3r2, I4 = 81r4, I6 = r6, I10 = 0.

for some r 6= 0.

Proof. Let f (X ,Y ) = a0X6 +a1X5Y + · · ·+a6Y 6 be a sextic with triple root. Let the triple
root be at (1,0). Then a0 = a1 = a2 = 0. Set a3 = r. Then I2i for i = 1, 2, 3 take the
form mentioned in the lemma. Conversely assume Eq. (12). Since I10 = 0, the sextic has a
multiple root. Since I6 6= 0, there is at least one more root. We assume the multiple root is
at (1,0) and other root is (0,1). Then the sextic takes the form

a2X4Y 2 +a3X3Y 3 +a4X2Y 4 +a5XY 5

and Eq. (12) becomes

−8a2a4 +3a2
3 =3r2

960a2
2a3a5 +256a2

2a2
4−432a2a4a2

3 +81a4
3 =81r4

40a2
2a3

3a5 +8a2
2a2

3a2
4−8a2a4

3a4 +24a3
2a3

4 +100a4
2a2

5−140a3
2a4a3a5 +a6

3 =r6

(13)

Now eliminating a4 from Eq. (13), we have,

26a2
2a3a5 = 3(a2

3− r2)2 and 29a2
4a5

2 = (a2
3− r2)3.

Eliminating a2 and a5 from these equations we get

(a2
3− r2)3(a3

2− (3r)2) = 0.

If a3
2 = r2, then a2 a4 = a2 a5 = 0. In this case either (0,1) or (1,0) is a triple root. On the

other hand if we have a3
2 = (3r)2, then a2 a4 = 3r2 and a2

2 a5 = r3 or −r3. Hence, either
(ra2

−1,1) or (−ra2
−1,1) is a triple root.

�

Lemma 3.3. A sextic has a root of multiplicity at least four if and only if the basic invari-
ants vanish simultaneously.

Proof. Suppose (1,0) is a root of multiplicity 4. Then a1 = a2 = a3 = 0. Therefore I2 =
I4 = I6 = I10 = 0. For the converse, since I10 = 0, there is a multiple root. If there is no
root other than the multiple root, we are done. Otherwise, let the multiple root be at (1,0)
and the other root be at (0, 1). Then as in the previous lemma, the sextic becomes

a2X4Y 2 +a3X3Y 3 +a4X2Y 4 +a5XY 5
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Now I2 = 0 implies a2 a4 = 2−3 ·3 ·a3
2 and hence I4 = 0 implies

a2
2 a3 a5 = 2−6 ·3 ·a3

4.

Using these two equations in I6 = 0 we find a2 a3 = 0. Let a2 6= 0. This implies a3 = a4 =
a5 = 0 and the sextic has a root of multiplicity four at (0,1). If a2 = 0, then I2 = 0 implies
a3 = 0 and therefore the sextic has a root of multiplicity four at (1,0). �

3.2. The Null Cone of V6 and Algebraic Dependencies.

Lemma 3.4. R6 is finitely generated as a module over k [I2, I4, I6, I10].

Proof. By Theorem 2.7 we only have to prove N6 = V (I2, I4, I6, I10). For λ ∈ k∗, set

g(λ ) :=
((

λ−1 0
0 λ

))
. Suppose I2, I4, I6 and I10 vanish on a sextic f ∈ V6. Then we

know from Lemma 3.3 that f has a root of multiplicity at least 4. Let this multiple root be
(1,0). Then f is of the form

f (X ,Y ) = (a4X2 +a5XY +a6Y 2)Y 4.

If I ∈R6 is homogeneous of degree s > 0, then

I( f g(λ )) = λ
2sIs(a4X2Y 4 +a5λ

2XY 5 +a6λ
4Y 6).

Thus I( f g(λ )) is a polynomial in λ with no constant term. But since I is an SL2(k)-
invariant, we have I( f g(λ )) = I( f ) for all λ . Thus I( f ) = 0. This proves the null cone
N6 =V (I2, I4, I6, I10). �

Remark 3.5. (a) Lemma 3.4 implies I2, I4, I6 and I10 are algebraically independent over k
because R6 is the coordinate ring of the four dimensional variety V6 // SL2(k).

(b) The quotient of two homogeneous elements in k [I2, I4, I6, I10] of same degree in
A0, A1, . . . , A6 is a GL2(k)-invariant. In particular the following elements are GL2(k)-
invariants.

T1 :=
I4

I2
2
, T2 :=

I6

I3
2
, T3 :=

I10

I5
2

(c) Assertion (a) implies T1, T2 and T3 are algebraically independent over k. For if there
exists an equation

(14) ∑ae f gT e
1 T f

2 T g
3 = 0.

Multiplying Eq. (14) by Ih
2 gives

(15) ∑ae f gIe
4I f

6 Ig
10Ih−2e−3 f−5g

2 = 0.

For large h, Eq. (15) is a nontrivial polynomial relation between I2, I4, I6 and I10. This
contradicts (a).

Further define the following

U1 :=
I5
2

I10
=

1
T3

, U2 :=
I3
2 I4

I10
=

T1

T3
, U3 :=

I2
2 I6

I10
=

T2

T3
, U4 :=

I5
4

I2
10

=
T 5

1
T 2

3

U5 :=
I4I6

I10
=

T1T2

T3
, U6 :=

I5
6

I3
10

=
T 5

2
T 3

3
, U7 :=

I2I2
4

I10
=

T 2
1

T3
, U8 :=

I2I3
6

I2
10

=
T 3

2
T 2

3
.

(16)

Remark 3.6. From the definitions of U1, U2 and U3 it is clear that k (U1,U2,U3) = k (T1,T2,T3).
Therefore U1, U2 and U3 are also algebraically independent over k.
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Lemma 3.7. Let a, b, c and d be non-negative integers such that a+2b+3c = 5d. Then,

m =
Ia
2 · Ib

4 · Ic
6

Id
10

∈ k [U1,U2, . . . ,U8]

Proof. From first column in the above table we see that it is enough to prove the lemma
for non-negative integers a, b, c, d < 5. The proof is now by inspection. �

Lemma 3.8. R := k [U1,U2,U3,U4,U5,U6,U7,U8] is normal

Proof. Suppose an element J in the field of fractions of R is integral over R. Then we
have an equation

(17) Jn + pn−1(U1, . . . ,U8)Jn−1 + · · ·+ p0(U1, . . . ,U8) = 0

where pi is a polynomial in 8 variables over k. Let e be a positive integer such that
Ie
10 pi ∈ k [I2, I4, I6, I10] for all i. Then multiplying Eq. (17) by Ine

10 , we see that Ie
10 J is

integral over k [I2, I4, I6, I10]. By Remark 2 (a) we know that k [I2, I4, I6, I10] is a poly-
nomial ring. Also the field of fractions of R is contained in k (I2, I4, I6, I10). Therefore
Ie
10J ∈ k [I2, I4, I6, I10]. Since Ie

10 J is a homogeneous element of degree 10e in k [A0, . . . ,A6],
J is a k- linear combination of elements of the form m in Lemma 3.7. Therefore J ∈R.
Hence the claim.

�

3.3. The Field of Invariants of GL2(k) on k(A0, . . . ,A6). Let K denote the invariant field
under the GL2(k) action on k(A0, . . . ,A6).

Theorem 3.9. The field K of GL2(k) invariants in k(A0, . . . ,A6) is a rational functional
field, namely K = k(T1,T2,T3) = k(U1,U2,U3).

Remark 3.6 implies we only have to show K = k(T1,T2,T3). The proof occupies the re-
mainder of this section.

Remark 3.10. If R
S ∈ K with R and S coprime polynomials, then R

S = Rg

Sg for every g ∈
GL2(k). Since R and S are coprime we have R = cgRg and S = cgSg with cg ∈ k∗ for every
g ∈ GL2(k). Hence R and S are homogeneous of same degree. The map g 7→ cg is a group
homomorphism GL2(k)→ k∗. Since SL2(k) is a perfect group, it is in its kernel. Thus R,
S ∈R6.

We introduce the following notations.

U (6) := {(p1, p2, . . . , p6) : pi ∈ P1, pi 6= p j ∀i, j}
A := { f ∈V6 : I10( f ) 6= 0}

C := {(0,1,∞,c1,c2,c3) : ci ∈ k−{0,1},ci 6= c j ∀i, j} ⊆U (6)

B := { f = XY (X−Y ) f3 : f3 = X3−b1X2Y +b2XY 2−b3Y 3 =

(X− c1Y )(X− c2Y )(X− c3Y ),(0,1,∞,c1,c2,c3) ∈ C }

(18)

Then we have k(B) = k(B1,B2,B3) where Bi is the function mapping XY (X −Y )(X3−
b1X2Y +b2XY 2−b3Y 3) to bi. Similarly k(C ) = k(C1,C2,C3).

S6 acts on U (6) by (p1, p2, . . . , p6)
τ7→(pτ(1), . . . , pτ(6)) and GL2(k) acts on U (6) by

(p1, p2, . . . , p6)
g7→(g−1(p1), . . . ,g−1(p6)). These actions commute. This induces an action

of S6 on U (6) / PGL2(k). Each PGL2(k) orbit meets C in precisely one point. Therefore
U (6) / PGL2(k) ∼= C and we have an action of S6 on C and hence on k(C1,C2,C3). If τi j
is the transposition (i, j), the S6 action on k(C1,C2,C3) is explicitly given as follows.
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(a). (C1,C2,C3)
τ127−→(1−C1,1−C2,1−C3)

(b). (C1,C2,C3)
τ237−→( C1

C1−1 ,
C2

C2−1 ,
C3

C3−1 ).

(c). (C1,C2,C3)
τ347−→(1−C1,

C2(1−C1)
C2−C1

, C3(1−C1)
C3−C1

).

(d). (C1,C2,C3)
τ457−→(C2,C1,C3).

(e). (C1,C2,C3)
τ567−→(C1,C3,C2).

Let F denote the fixed field of S6 action on k(C1,C2,C3). The natural map C →B given
by

(0,1,∞,c1,c2,c3) 7→ XY (X−Y )(X− c1Y )(X− c2Y )(X− c3Y )

induces a Galois extension C(C1,C2,C3) / k(B1,B2,B3) with Galois group S3 < S6, where
S3 is embedded as the subgroup of S6 permuting the letters 4, 5, 6 and fixing 1, 2, 3.

k(C1,C2,C3)

S3

k(B1,B2,B3)

120

F

Lemma 3.11. The inclusion B ⊂V6 induces an embedding

K ⊆ F ⊂ k(B1,B2,B3).

Proof. B ⊂ A and every element in A is GL2(k)- conjugate to a unique element in B.
Recall by Remark 3.10, if R

S ∈ K with R and S coprime polynomials, then S = cgSg for all
g ∈ GL2(k). If S vanishes on B, it also vanishes on A . But A is open in k6 and so S ≡ 0
which is a contradiction. Therefore S does not vanish on B and hence the restriction map
K→ k(B) is well defined. Thus we have K ⊂ k(B)⊂ k(C ). Let I ∈ K and Ī its image in
k(C ) = k(k1,C2,C3). Denote p = (0,1,∞,c1,c2,c3) ∈U (6) by (p1, . . . , p6). For τ ∈ S6 we
have

Ī(pτ) = Ī(g(pτ(1)), . . . ,g(pτ(6)))

= I((X−g(pτ(1))Y ) . . .(X−g(pτ(6))Y ))

= I((X− pτ(1)Y ) . . .(X− pτ(6)Y )) = Ī(p)

for some g ∈ GL2(k) and so the lemma follows. �

Let us now see how the elements Ti of K embed in k(B1,B2,B3). Evaluating I2i on
sextics of the form XY (X −Y )(b0X3− b1X2Y + b2XY 2− b3Y 3) yields the following ho-
mogeneous polynomials J2i in B0, . . . ,B3 of degree 2i.
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J2 =−12B0B3 +8B0B2 +2B1B2 +8B1B3−3B2
1−3B2

2

J4 =−432B0B2B2
1 +608B3B2

1B2−312B0B3B2
1−1728B2

0B3B2 +960B0B2B2
3−432B1B3B2

2−312B0B3B2
2−1728B0B2

3B1 +608B0B1B2
2

+960B3B2
0B1−2800B0B3B1B2 +7056B2

0B2
3 +528B0B3

2 +528B3B3
1 +256B2

0B2
2−122B2

1B2
2 +256B2

1B2
3−108B3

1B2−108B1B3
2 +81B4

1 +81B4
2

J6 =−36B3B3
1B2

2 +118B3
0B2

3B2−24B0B3
1B2

2−8B2
1B2

2B2
3−36B0B2

1B3
2−24B3

0B3
2−124B3

0B3
3−24B3

1B3
3−136B3B2

0B3
2 +8B1B4

2B3 +52B3
1B2B2

3

+36B0B1B4
2−32B3B3

0B2
2−32B0B2

1B3
3−100B2

3B4
0−B6

1−B6
2−40B0B3

2B2
3−10B3

0B2
3B1 +28B0B4

2B3 +8B0B4
1B2−8B2

0B2
1B2

2−38B2
0B2

2B2
3

+140B3B3
0B2B1−100B2

0B4
3 +36B3B4

1B2−136B0B3
1B2

3−38B2
0B2

1B2
3−40B3B2

0B3
1 +52B2

0B1B3
2−10B2

0B2B3
3 +118B2

0B1B3
3−24B3B2

1B3
2 +28B3B0B4

1

−32B0B5
2−32B3B5

1 +2B5
1B2 +9B4

1B2
2−12B3

1B3
2 +9B2

1B4
2 +2B1B5

2 +32B2
0B4

2 +32B4
1B2

3 +150B0B3
1B2B3−72B0B2

1B2
2B3−178B0B2

1B2B2
3

+150B0B1B3
2B3−66B0B1B2

2B2
3−66B3B2

0B2
1B2−178B3B2

0B1B2
2 +508B2

0B1B2B2
3 +140B0B1B2B3

3

J10 =−37540800B4
0B5

3B1−37540800B5
0B4

3B2 +148500B3
0B3

3B4
2 +148500B3

0B3
3B4

1−4028400B4
0B4

3B2
1−860400B2

0B4
3B4

1 +5308200B3
0B4

3B3
1

+6696000B5
0B4

3B1 +6696000B5
3B4

0B2 +5308200B3
3B4

0B3
2−860400B2

3B4
0B4

2−27000B3
0B4

3B3
2−27000B3

0B2
3B5

2−25600B2
0B5

3B3
1−100800B3

0B5
3B2

1

−44287200B4
0B4

3B1B2−100800B5
0B3

3B2
2−25600B5

0B2
3B3

2−27000B2
0B3

3B5
1−27000B4

0B3
3B3

1−4028400B4
0B4

3B2
2−1854600B3

0B3
3B2

1B2
2

−543600B3
0B3

3B1B3
2 +7719000B3

0B4
3B2

1B2 +7719000B4
0B3

3B1B2
2−19800B3

0B2
3B3

1B2
2−543600B3

0B3
3B3

1B2 +72600B3
0B2

3B2
1B3

2 +142200B3
0B2

3B1B4
2

−1225800B3
0B4

3B1B2
2 +142200B2

0B3
3B4

1B2 +351734400B5
0B5

3 +72600B2
0B3

3B3
1B2

2−19800B2
0B3

3B2
1B3

2 +146400B4
0B2

3B1B3
2 +146400B2

0B4
3B3

1B2

−18400B2
0B2

3B3
1B3

2 +3600B2
0B4

3B2
1B2

2 +3600B4
0B2

3B2
1B2

2 +3600B2
0B2

3B4
1B2

2 +3600B2
0B2

3B2
1B4

2−1225800B4
0B3

3B2
1B2

−1080000B6
3B4

0−1080000B6
0B4

3 +216000B3
0B5

3B1B2 +216000B5
0B3

3B2B1

(19)

Now the Ti embed in k(B1,B2,B3) as follows

(20) T1 =
J4(1,B1,B2,B3)

J2
2 (1,B1,B2,B3)

, T2 =
J6(1,B1,B2,B3)

J3
2 (1,B1,B2,B3)

, T3 =
J10(1,B1,B2,B3)

J5
2 (1,B1,B2,B3)

Since T1, T2 and T3 are independent variables over k and k(T1,T2,T3,Bi) ⊆ k(B1,B2,B3)
for i = 1, 2 and 3, it follows k(B1,B2,B3) / k(T1,T2,T3) is a finite algebraic extension. Also
note k(C1,C2,C3) / F is Galois with group S6 and [k(B1,B2,B3) : F ] = 120.

Proof of Theorem 3.9. We know k(T1,T2,T3) ⊆ K ⊆ F . The claim follows if F =
k(T1,T2,T3). Also N := [k(B1,B2,B3) : k(T1,T2,T3)] is a multiple of [k(B1,B2,B3) : F ] =
120. Therefore, if N = 120, we are done. Let Ω be the algebraic closure of k(T1,T2,T3).
Then N is the number of embeddings α of k(B1,B2,B3) into Ω with α|k(T1,T2,T3) = id.
Therefore, the tuples

(1,α(B1),α(B2),α(B3))

constitute N distinct projective solutions for the following system of homogeneous equa-
tions in S0,S1,S2,S3.

T1J2
2 (S0,S1,S2,S3)− J4(S0,S1,S2,S3) = 0

T2J3
2 (S0,S1,S2,S3)− J6(S0,S1,S2,S3) = 0

T3J5
2 (S0,S1,S2,S3)− J10(S0,S1,S2,S3) = 0

Besides these N solutions there is the additional solution (0,0,0,1) by Lemma 3.3. Recall J2i
are homogeneous polynomials of degree 2i. Therefore by Bezout’s theorem, N+1≤ 4 ·6 ·
10= 240. Hence, N being a multiple of 120, must equal 120. This proves F = k(T1,T2,T3).

3.4. The Ring of Invariants of GL2(k) in k[A0, . . . ,A6, I−1
10 ].

Theorem 3.12. R = k [U1,U2, . . . ,U8] is the ring of GL2(k)-invariants
in k [A0, . . . ,A6, I−1

10 ].

Proof. Let R0 = k [A0, . . . ,A6, I−1
10 ]GL2(k). If R

S ∈ R0 with R and S coprime polynomials,
then R and S are homogeneous elements of same degree in R6 by Remark 3.10. Since S
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divides Ie
10 (for some e) in k [A0, . . . ,A6], we have SS

′
= Ie

10 with S
′ ∈R6. Thus R

S = RS
′

Ie
10

=
I

Ie
10

with I ∈R6.
We have R0 ⊂K. By Theorem 3.9 we know K is the field of fractions of R. By Lemma

3.8 we know R is normal. Since R ⊆R0 ⊂ K, it only remains to prove R0 is integral over
R. Let u∈R0. Then by the preceding paragraph, u = I

Ie
10

with I ∈R6. Thus deg(I) = 10e.
Lemma 3.4 implies we have an equation

In + pn−1In−1 + · · ·+ p0 = 0

where pi ∈ k [I2, . . . , I10]. By dropping all terms of degree 6= deg(In), we may assume pi
are homogeneous. Dividing by Ien

10 we have

un +
pn−1

Ie
10

un−1 + · · ·+ p0

Ien
10

= 0

where the coefficients lie in R by Lemma 3.7. This proves R0 is integral over R. �

Corollary 3.13. (Clebsch-Bolza-Igusa) Two binary sextics f and g with I10 6= 0 are GL2(k)
conjugate if and only if there exists an r 6= 0 in k such that for every i = 1, 2, 3, 5 we have

(21) I2i( f ) = r2i I2i(g)

Proof. The only if part is clear. Now assume Eq. (21) holds. First note that we can as-
sume the sextics to be of the form f (X ,Y ) = XY (X −Y )(X − a1Y )(X − a2Y )(X − a3Y )
and g(X ,Y ) = XY (X −Y )(X − b1Y )(X − b2Y )(X − b3Y ) because every element in A is
GL2(k) conjugate to a element in B. Now suppose that they are not GL2(k) conjugate.
Then a := (a1,a2,a3) and b := (b1,b2,b3) belong to different S6 orbits on C and these
orbits are finite subsets of k3. Therefore there exists a polynomial p(C1,C2,C3) such that
for all τ ∈ S6, we have p(aτ) = 0 and p(bτ) = 1. Consider the element s(C1,C2,C3) ∈
k [C ] = k [C1,C2,C3,

1
Ci
, 1

Ci−1 ,
1

Ci−C j
] (i, j = 1,2,3 and i 6= j) given as

s =
1
|S6| ∑

τ∈S6

p((C1,C2,C3)
τ).

Then s takes the value 0 on a and 1 on b. Clearly s ∈ F = k(T1,T2,T3) = k(U1,U2,U3).
Let q be a rational function in the S6 orbit of p. Then from the explicit formulas for the
S6 action described earlier, we see that the denominator of q is a product of the factors Ci,
Ci−1, Ci−C j for all i, j = 1,2,3 and i 6= j.

The sum Q = ∑σ∈S3
q((C1,C2,C3)

σ ) can be written as a quotient of two symmetric
polynomials in C1, C2, C3. The denominator is a product of factors mentioned in the
previous paragraph and hence divides a power of J10(1,B1, B2,B3) in the ring k [B1,B2,B3]
; this is because J10(1,B1,B2,B3) factors in k [C1,C2,C3] as

C2
1C2

2C2
3(C1−1)2(C2−1)2(C3−1)2(C1−C2)

2(C2−C3)
2(C3−C1)

2.

Thus Q ∈ k [B1,B2,B3,J−1
10 ] and hence s ∈ k [B1,B2,B3,J−1

10 ].
Since K = k(A0, . . . ,A6)

GL2(k) ∼= k(C1,C2,C3)
S6 = F by Theorem 3.9, the inverse image

of s in K is a rational function in A0, . . . , A6 which is defined at each point of B by the
previous paragraph. Thus it is defined at each point of A because it is GL2(k)-invariant.
Therefore it lies in k [A ]GL2(k) = k [A0, . . . ,A6, I−1

10 ]GL2(k) = R. But R = k [U1, . . . ,U8] by
Theorem 4. On the other hand Eq. (21) implies that each Ui takes the same value on f and
g. This implies s takes the same value on a and b, contradicting s(a) = 0 and s(b) = 1.
This proves the claim.

�
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4. PROJECTIVE INVARIANCE OF UNORDERED PAIRS OF BINARY CUBICS

4.1. Null Cone of V3
⊕

V3. In this chapter k is an algebraically closed field with char(k) 6=
2,3. The Representation (see section 2.1) of GL2(k) in V3 induces a representation of
GL2(k) in V3

⊕
V3. Let Γ0 (∼= k∗)be the group of maps ( f ,g) 7→ (c f ,c−1g), c ∈ k∗ on

V3
⊕

V3. Let Γ be the semi-direct product of Γ0 and < ν >, where ν : V3
⊕

V3→ V3
⊕

V3
is ( f ,g) 7→ (g, f ). Then Γ centralizes the GL2(k) action. Therefore we have an ac-
tion of GL2(k)× Γ on V3

⊕
V3. The coordinate ring of V3

⊕
V3 can be identified with

k [A0, . . . ,A3,B0, . . . ,B3] where Ai and Bi are coordinate functions on V3
⊕

V3. Let D f

and Dg be the discriminants of the cubics f (X ,Y ) = A0X3 +A1X2Y +A2XY 2 +A3Y 3 and
g(X ,Y ) = B0X3 +B1X2Y +B2XY 2 +B3Y 3 respectively. Let R be their resultant.

This gives the following SL2(k)×Γ0-invariants in k [A0, . . . ,A3,B0, . . . ,B3] of degree 4,6
and 8 respectively. I = I2( f g), R and D = D f Dg. Further the skew symmetric form on V3
yields a SL2(k)×Γ0-invariant H of degree 2. These are listed below.

H = 3A0B3−A1B2 +A2B1−3A3B0

I = 228A0B0A3B3−52A1B0A3B2−24A1B0A2B3−24A0B1A3B2−52A0B1A2B3

+4A2B0A3B1 +16A2
2B0B2 +16A1B1

2A3 +4A1B1A2B2 +16A1
2B1B3

+16A0B2
2A2 +4A0B2A1B3−6A3

2B0
2−6A2

2B1
2−6A1

2B2
2−6A0

2B3
2

R = 3B2
0A0B3A2

3−B3
0A3

3 +2B2
0A2

3B2A1−B2
2B0A2

1A3−A2
0B3

2A3

+B2
0A2B1A2

3−B2
0A2

2B2A3−B2
1B0A1A2

3 +A0B3
1A2

3−3B0A2
0B2

3A3

−B0A3
1B2

3 +A3
0B3

3 +B2
0A3

2B3−B0A0B3B2A1A3 +3A2
0B3B2B1A3 +B0A3B3A0B1A2

+3B0A0B2
3A1A2−2A2

0B2
3B1A2−3B0A2

3B2A0B1−3B2
0A3B3A1A2−B2A1A2

0B2
3

+B2
2A1A0B1A3 +B2B0A2

1B3A2−B2A1B3A0B1A2 +A2
0B2

2A2B3 +2B0A0B2
2A2A3

−2B0A0B2B3A2
2−2B2

1A1A3A0B3 +B1A2
1B2

3A0 +2B1B0A2
1B3A3 +B1B0A1B2A2A3

−B1B0A1B3A2
2−A0B2

1B2A2A3 +A0B2
1B3A2

2

D = (−27A2
0A2

3 +18A0A3A2A1 +A2
1A2

2−4A3
1A3−4A3

2A0)(−27B2
0B2

3 +18B0B3B2B1

+B2
1B2

2−4B3
1B3−4B3

2B0)

(22)

Note that R and H change by a sign if the cubics are switched (i.e., they are not ν-
invariant) but I and D are ν-invariant.

Definition 4.1. Let R(3,3) denote the ring of SL2(k)×Γ0-invariants in

k [A0, . . . ,A3,B0, . . . ,B3].

The null cone N(3,3) is the common zero set of all homogeneous elements of positive
degree in R(3,3)

Lemma 4.2. (i). Let f ,g ∈ V3. Then f g = 0 or has a root of multiplicity at least 4 if and
only if D, R, H and I vanish simultaneously on the pair ( f ,g).

(ii). The null cone N(3,3) is the common zero set of D, R, I and H.
(iii). R(3,3) is finitely generated as a module over k [D,R,H, I].

Proof. (i) If f g has a root of multiplicity four then f and g must have a common root.
Therefore R = 0. Moreover this common root must be of multiplicity at least 2 in either f
or g and hence D = 0. Also from Lemma 3.3 we know I = 0. One also checks that H = 0.
Conversely, let D = R = H = I = 0. Recall D = D f Dg where D f and Dg are discriminants
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of f and g respectively. We may assume f 6= 0 6= g. Say D f = 0. Then we may assume
f = X3 or X2Y .

Case(1): f = X3. Since R = 0, we get X divides g and hence X4 divides f g.
Case(2): f = X2Y . Since R = 0, either X or Y divides g. Thus g = X(aX2+bXY +cY 2)

or g = Y (aX2 +bXY + cY 2).
(2a): Let g = X(aX2 +bXY + cY 2). Then H =−c. Therefore H = 0 implies c = 0 and

hence X4 divides f g.
(2b): Let g = Y (aX2 +bXY + cY 2). Then H =−b and I = 16ac. Therefore H = I = 0

implies a = b = 0 or b = c = 0 and hence Y 4 divides f g or X4 divides f g.
(ii) : Suppose I ∈R(3,3) is homogeneous of degree s> 0. We know I( f ,g)= I(c f ,c−1g)

for every c∈ k∗. Then I( f ,0) = I(c f ,0) for every c∈ k∗, so I( f ,0) viewed as a polynomial
in A0, . . . , A3 is constant and hence is 0 (by taking f = 0). Rest is as in Lemma 3.3.

(iii) : The claim follows because the analogue of Theorem 2.7 holds here (with the same
proof).

�

Remark 4.3. (a) Since V3
⊕

V3 / SL2(k)×Γ0 is a 4 dimensional variety, Lemma 4.2 (iii)
implies D, R, H and I are algebraically independent over k.

(b) The quotient of two homogeneous elements in R(3,3) of the same degree is GL2(k)×
Γ-invariant if and only if it is ν-invariant. In particular the following elements are GL2(k)×
Γ-invariants.

R1 :=
H2

I
, R2 :=

H3

R
, R3 :=

H4

D
(c) Assertion (a) implies R1, R2, R3 are algebraically independent over k. The proof of

this fact is similar to Remark 3.5 (c) (for 1
R1

, 1
R2

, 1
R3

).

Further define the following

V1 :=
IH
R

=
R2

R1
, V2 :=

H3

R
= R2, V3 :=

H4

D
= R3,

V4 :=
I2

D
=

R3

R2
1
, V5 :=

I3

R2 =
R2

2

R3
1
, V6 :=

IH2

D
=

R3

R1

(23)

Remark 4.4. The definitions of V1, V2, V3 imply k(R1,R2,R3) = k(V1,V2,V3). Therefore
V1, V2 and V3 are also algebraically independent over k.

Lemma 4.5. Let a, b, c and d be non-negative integers such that a+2b = 3c+4d. Then
m = HaIb

RcDd ∈ k [V1,V2, . . . ,V6].

Proof. Extracting powers of V2 and V3 we may assume a≤ 3 and extracting powers of V4
and V5 we may assume b ≤ 1. This gives six possibilities for the pair (a,b) and this leads
to V1, . . . ,V6. �

Lemma 4.6. The ring S = k [V1,V2,V3,V4,V5,V6] is normal.

Proof. Suppose an element U in the field of fractions of S is integral over S . Then we
have an equation.

(24) Un + pn−1(V1, . . . ,V6)Un−1 + · · ·+ p0(V1, . . . ,V6) = 0

where pi are polynomials in 6 variables over k. Let e be a positive integer such that
(RD)e pi ∈ k [H, I,R,D]. Then multiplying the above equation by (RD)en, we see that
(RD)eU is integral over k [H, I,R,D]. By Remark 4.3, (a) we know that k [H, I,R,D] is
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a polynomial ring. Also the field of fractions of S is contained in k(H, I,R,D). Therefore
(RD)eU ∈ k [H, I,R,D]. Lemma 4.5 implies U ∈S . �

4.2. The Field of Invariants of GL2(k)×Γ in k(A0, . . . ,A3,B0, . . . ,B3).

Theorem 4.7. The field L of GL2(k)×Γ-invariants in k(A0, . . . ,A3,B0, . . . ,B3) is a rational
function field , namely L = k (R1,R2,R3) = k (V1,V2,V3).

By Remark 4.4 we only have to show L= k(R1,R2,R3). The rest of this section occupies
the proof.

Remark 4.8. If T
S ∈ L with T and S coprime polynomials, then it follows as in Remark

3.10 that T = cgT g, S = cgSg for every g ∈GL2(k)×Γ and cg = 1 for g ∈ SL2(k)×Γ0, the
commutator subgroup of GL2(k)×Γ. Thus T , S ∈R(3,3). Further T and S are homoge-
neous of the same degree.

We introduce the following notations.
¯A := {( f ,g) ∈V3

⊕
V3 : R( f ,g) ·D( f ,g) 6= 0}

B̄ := {(XY (X−Y ), f3) : f3 = X3 +b1X2Y +b2XY 2 +b3Y 3

= (X− c1Y )(X− c2Y )(X− c3Y ), (0,1,∞,c1,c2,c3) ∈ C }
(25)

Let Bi be functions on B̄ mapping (XY (X −Y ), X3Y + b1X2Y + b2XY 2 + b3Y 3) 7→ bi.
Then k(B̄) = k (B1,B2,B3) ⊂ k(C ) . Let M denote the fixed field of the action of (S3×
S3)oZ2 = S3 oZ2 < S6 on k (C1,C2,C3). Here S3 oZ2 denotes the wreath product.

k(C1,C2,C3)

6

k(B1,B2,B3)

12

M

Lemma 4.9. The inclusion B̄ ⊂V3
⊕

V3 yields an embedding

L⊆M ⊂ k(B1,B2,B3).

Proof. Note that any ( f ,g) ∈ V3
⊕

V3 with R( f ,g) ·D( f ,g) 6= 0 is GL2(k)×Γ-conjugate
to an element in B̄. Indeed, using SL2(k) we can move the roots of f to (1,0), (0,1) and
(1,1). Then f becomes a scalar multiple of XY (X −Y ). Further we can replace f and g
by scalar multiples because given c ∈ k∗, there are elements γ1, γ2 ∈ GL2(k)×Γ such that
( f ,g)γ1 = (c f ,g) and ( f ,g)γ2 = ( f , cg).

If T
S ∈ L with T and S coprime polynomials, then S does not vanish on B̄ by the previous

paragraph. Therefore the restriction map L→ k(B̄)⊂ k(C ) is well defined. Let I ∈ L and Ī
its image in k(C ). Denote p = (0,1,∞,c1,c2,c3)∈C by (p1, p2, . . . , p6). For τ ∈ S3 oZ2 <
S6, we have

Ī(pτ ) =Ī(g(pτ(1)), . . . ,g(pτ(6))) = I((X−g(pτ(1))Y )(X−g(pτ(2))Y )(X−g(pτ(3))Y ),

(X−g(pτ(4))Y )(X−g(pτ(5))Y )(X−g(pτ(6))Y ))

=I((X− pτ(1)Y )(X− pτ(2)Y )(X− pτ(3)Y ),(X− pτ(4)Y )(X− pτ(5)Y )(X− pτ(6)Y )
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for some g∈GL2(k). But {τ(1),τ(2),τ(3)} equals {1,2,3} or {4,5,6} and I is symmetric
in f and g, it follows Ī(pτ) = Ī(p). Thus Ī ∈M.

�

The evaluation of H, I, R and D on (XY (X−Y ), b0X3+b1X2Y +b2XY 2+b3Y 3) gives
the following homogeneous polynomials of degree 1, 2, 3 and 4 respectively.

H̃ (B0,B1,B2,B3) =−(B1 +B2)

Ĩ (B0,B1,B2,B3) = 24B3B0 +16B2B0−4B1B2 +16B1B3−6B1
2−6B2

2

R̃(B0,B1,B2,B3) = B0B3(B0 +B1 +B2 +B3)

D̃(B0,B1,B2,B3) =−4B0B2
3 +B1

2B2
2 +18B0B1B2B3−4B1

3B3−27B0
2B3

2

(26)

Thus the elements R1, R2 and R3 of L embed in k (B1,B2,B3) as follows

R1 =
H̃2(1,B1,B2,B3)

Ĩ(1,B1,B2,B3)
, R2 =

H̃3(1,B1,B2,B3)

R̃(1,B1,B2,B3)
, R3 =

H̃4(1,B1,B2,B3)

D̃(1,B1,B2,B3)
.

Proof of Theorem 4.7 . We know k(R1,R2,R3) ⊆ L ⊆ M. The theorem follows if M =
k(R1,R2,R3). Furthermore

m := [k(B1,B2,B3) : k(R1,R2,R3)]

is a multiple of [k(B1,B2,B3) : M] = 12. Therefore the claim follows if m= 12. Let Λ be the
algebraic closure of k (R1,R2,R3). Then m is the number of embeddings β of k(B1,B2,B3)
into Λ with β|k(R1,R2,R3) = id. Therefore the tuples (1,β (B1),β (B2),β (B3)) constitute m
distinct projective solutions for the following system of homogeneous equations in S0, S1,
S2 and S3.

H̃2(S0, . . . ,S3)−R1 Ĩ(S0, . . . ,S3) = 0

H̃3(S0, . . . ,S3)−R2R̃(S0, . . . ,S3) = 0

H̃4(S0, . . . ,S3)−R3D̃(S0, . . . ,S3) = 0

(27)

Besides these m solutions there is the additional solution (0,0,0,1). Therefore by Bezout ′s
theorem, m+ 1 ≤ 2 · 3 · 4 = 24. Hence, m being a multiple of 12, must equal 12. This
proves L = k(R1,R2,R3).

4.3. The Ring of GL2(k)× Γ-invariants in k [A0, . . . ,A3,B0, . . . ,B3,R−1,D−1]. In this
section we prove the following:

Theorem 4.10. S = k [V1,V2, . . . ,V6] is the ring of GL2(k)×Γ-invariants in
k [A0, . . . ,A3,B0, . . . ,B3,R−1,D−1].

Proof. Let S0 = k [A0, . . . ,A3,B0, . . . ,B3,R−1,D−1]GL2(k)×Γ. If T
S ∈S0 with T and S co-

prime polynomials, then T and S are homogeneous elements of R(3,3) of the same degree
by Remark 4.8. Since S divides (RD)e (for some e) in k [A0, . . . ,A3,B0, . . . ,B3], we have
SS
′
= (RD)e with S

′ ∈R(3,3). Thus

T
S
=

T S
′

(RD)e =
I

(RD)e

with I ∈R(3,3).



16 VISHWANATH KRISHNAMOORTHY, TANUSH SHASKA, AND HELMUT VÖLKLEIN

We have S0 ⊂ L. Further by Theorem 4.7 we know L is the field of fractions of S . By
Lemma 4.6 we know S is normal. Since S ⊆ S0 ⊂ L, it only remains to prove S0 is
integral over S . Let u ∈S0. Then by the previous paragraph u = I

(RD)e with I ∈R(3,3).
Thus, deg(I) = 14e. Lemma 4.2 (iii) implies

(28) In + pn−1In−1 + · · ·+ p0 = 0

where pi ∈ k [H, I,R,D]. By dropping all terms of degree 6= deg(In), we may assume pi
are homogeneous. Dividing by (RD)en we have

un +
pn−1

(RD)e un−1 + · · ·+ p0

(RD)ne = 0

where the coefficients lie in S , by Lemma 4.5. This proves S0 is integral over S .
�

Corollary 4.11. Suppose {P,Q} and {P′ ,Q′} are two unordered pairs of disjoint 3-sets in
P1. They are conjugate under PGL2(k) if and only if V1, . . . , V6 take the same value on the
two pairs.

Corollary 4.12. Two pairs ( f1, f2), (g1,g2) ∈ V3
⊕

V3 with R( f1, f2) ·D( f1, f2) 6= 0 and
R(g1,g2) ·D(g1,g2) 6= 0 are GL2(k)×Γ-conjugate if and only if there exists an r 6= 0 in k
such that

H( f1, f2) = r2H(g1,g2)

I( f1, f2) = r4I(g1,g2)

R( f1, f2) = r6R(g1,g2)

D( f1, f2) = r8D(g1,g2)

(29)

Proof. The only if part is clear. Now assume Eq. (29) holds. We can assume

f1 = g1 = XY (X−Y ),

f2 and g2 equals (X−α1Y )(X−α2Y )(X−α3Y ) and (X−β1Y )(X−β2Y )(X−β3Y ) respec-
tively. This is because every element in A is GL2(k)×Γ-conjugate to an element in B.
Suppose they are not GL2(k)×Γ-conjugate. Then α := (α1,α2,α3) and β := (β1,β2,β3)
belong to different S3 oZ2 orbits on C and these orbits are finite subsets of k3. Therefore
there exists a polynomial p(C1,C2,C3) such that for all τ ∈ S3 oZ2, we have p(ατ) = 0
and p(β τ) = 1. Consider the element t ∈ k [C ] given as

t =
1

|(S3 oZ2| ∑
τ∈S3oZ2

p((C1,C2,C3)
τ)

Clearly t ∈M. As in the proof of Corollary 3.13, we have

t ∈ k [B1,B2,B3,J−1
10 ] = k [B1,B2,B3,R−1,D−1].

Since
L = k(A0, . . . ,A3,B0, . . . ,B3)

GL2(k)×Γ ∼= k(C1,C2,C3)
S3oZ2 = M

by Theorem 4.7, the inverse image of t in L is a rational function in A0, . . . ,A3, B0, . . . ,B3
which is defined at each point of B̄ by the previous paragraph. Thus it is defined at each
point of ¯A because it is a GL2(k)×Γ-invariant. Therefore it lies in

k [ ¯A ]GL2(k)×Γ = k [A0, . . . ,A3,B0, . . . ,B3,R−1,D−1]GL2(k)×Γ = S .
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But S = k [V1, . . . ,V6] by Theorem 4.10. On the other hand Eq. (29) implies each Vi takes
the same value on ( f1, f2) and (g1,g2). This implies t takes the same value on α and β ,
contradicting t(α) = 0 and t(β ) = 1. This proves the claim.

�
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