
Applicable Algebra in Engineering, Communication and Computing manuscript No.
(will be inserted by the editor)

David Sevilla · Tanush Shaska

Hyperelliptic curves with reduced
automorphism group A5

Received: date / Revised: date

Abstract We study genus g hyperelliptic curves with reduced automorphism
group A5 and give equations y2 = f(x) for such curves in both cases where
f(x) is a decomposable polynomial in x2 or x5. For any fixed genus the locus
of such curves is a rational variety. We show that for every point in this locus
the field of moduli is a field of definition. Moreover, there exists a rational
model y2 = F (x) or y2 = xF (x) of the curve over its field of moduli where
F (x) can be chosen to be decomposable in x2 or x5. While similar equations
have been given in [2] over R, this is the first time that these equations are
given over the field of moduli of the curve.

1 Introduction

Let Xg denote a genus g hyperelliptic curve defined over an algebraically
closed field k of characteristic zero, z0 its hyperelliptic involution, and G :=
Aut(Xg) its automorphism group. The group G = G/〈z0〉 is called the reduced
automorphism group of Xg. We denote by Hg the moduli space of genus g
hyperelliptic curves and by LGg the locus in Hg of hyperelliptic curves with
automorphism group G.

In previous works we have focused on the loci LGg of hyperelliptic curves

with V4 embedded in the automorphism group G, or when G is isomorphic
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to Zn, or A4; see [6], [9]. This paper continues on the same line of thought
as [9] focusing instead on the case when G is isomorphic to A5.

The second section covers basic facts on automorphism groups of hyper-
elliptic curves. The group G is a finite subgroup of PGL2(C). By a theorem
of Klein (see [8]), G is isomorphic to one of the following: Zn, Dn, A4, S4, A5.
We are interested in the latter case. We give a representation of the group
G = A5 in PGL2(C). The group A5 acts on the genus zero field k(x) via the
natural way. The fixed field is a genus 0 field, say k(z). Thus, z is a degree
60 rational function in x which we denote by z := φ(x). Using this represen-
tation we compute the fixed field of A5. This rational function φ(x) (up to
a coordinate change) can be decomposed in x2, x3, or x5. Using computer
algebra techniques (i.e, see [4]) we compute such decompositions and use the
decomposition in xi, i = 2, 3, 5 to compute an equation y2 = f(xi) of the
hyperelliptic curves. The equation for i = 2 makes it possible to compute
dihedral invariants of such curves (cf. section 4).

In section three we determine the ramification signature σ of the cover
Φ : Xg → Xg/Aut(Xg). Using this ramification structure we are able to show

that if Aut(Xg) ∼= A5 then g ≡ 0, 5, 9, 14, 15, 20, 24, 29 (mod 30). Then the
full automorphism group Aut(Xg) is isomorphic to Z2⊗A5 or SL2(5). Moduli
spaces of covers Φ are Hurwitz spaces, which we denote by Hσ. There is a
map Φσ : Hσ → Mg, where Mg is the moduli space of genus g algebraic
curves. For a fixed g there is only one signature that occurs for the cover
Φ : Xg → Xg/Aut(Xg). Hence, we denote by Lg the image Φσ(Hσ) in the
hyperelliptic locus Hg. Given a curve Xg we would like to determine if it
belongs to the locus Lg and describe points p ∈ Lg. Hence, we need invariants
which determine the isomorphism classes of these curves. In the last part of
section three we determine the parametric equations of such curves in all cases
g ≡ 0, 5, 9, 14, 15, 20, 24, 29 (mod 30). Using the decompositions of φ(x) we
are able to compute these equations y2 = f(x) where f(x) is a decomposable
polynomial in x2, x3, or x5.

In section four we give a brief introduction of the classical invariants
of binary forms. Such invariants classify the orbits of the SL2(k)-action on
the space of binary forms. We use transvections to discover invariants which
give necessary conditions for a curve to have reduced automorphism group
isomorphic to A5 or full automorphism group isomorphic to Z2 ⊗ A5 or
SL2(5). Such conditions appear in the literature for the first time. Further, we
compute the dihedral invariants of such curves and determine the algebraic
relations among them.

In the last section we discuss the field of moduli versus the field of defi-
nition for hyperelliptic curves with reduced automorphism group A5. This is
a problem of algebraic geometry that goes back to Weil and Grothendieck.
It follows from [10] or [6] that for hyperelliptic curves with reduced auto-
morphism group A5 the field of moduli is a field of definition. However, no
rational models of the curve over the field of moduli have been known. We
construct such models for all curves Xg with Aut(Xg) ∼= A5. In the last part
of the paper we discuss in more detail the 1-dimensional families for all cases
g ≡ 0, 5, 9, 14, 15, 20, 24, 29 (mod 30). In these cases we prove computation-
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ally that for such loci Lg we have k(Lg) = k(λ), where λ is the fourth branch
point of the cover Φ : Xg → P1.

There is plenty of literature on the automorphism groups of hyperellip-
tic curves. Among many papers we mention [1], [2], [6], [7], [9], [10]. Most
of these papers have studied determining the automorphism groups of the
hyperelliptic curve. The main focus of this paper is the locus of hyperelliptic
curves with reduced automorphism group isomorphic to A5 as a subvariety of
the hyperelliptic moduli and the field of definition versus the field of moduli
for curves in this locus.

Notation: Throughout this paper k denotes an algebraically closed field of
characteristic zero, g an integer ≥ 2, and Xg a hyperelliptic curve of genus
g. Mg (resp., Hg) is the moduli space of curves (resp., hyperelliptic curves)
defined over k. The symbol (m)r denotes a permutation which is conjugate
in Sn to an r product of m-cycles.

2 Preliminaries

Let Xg be a genus g hyperelliptic curve defined over an algebraically closed
field k of characteristic zero. We take the equation of Xg to be y2 = F (x),
where deg(F ) = 2g + 2. Denote the function field of Xg by K := k(x, y).
We identify the places of k(x) with the points of P1 = k ∪ {∞} in the
natural way. Then, K is a quadratic extension field of k(x) ramified exactly
at n = 2g + 2 places α1, . . . , αn of k(x). The corresponding places of K are
called the Weierstrass points of K. Let P := {α1, . . . , αn}. Thus, K = k(x, y),
where y2 =

∏
α∈P(x− α) and α 6=∞.

Let G = Aut(K/k). Since k(x) is the only genus 0 subfield of degree 2
of K, then G fixes k(x). Thus, Gal(K/k(x)) = 〈z0〉, with z2

0 = 1, is central
in G. We call the reduced automorphism group of K the group G := G/〈z0〉.
Then, G is naturally isomorphic to the subgroup of Aut(k(x)/k) induced by

G. We have a natural isomorphism Γ := PGL2(k)
∼=→Aut(k(x)/k). The action

of Γ on the places of k(x) corresponds under the above identification to the
usual action on P1 by fractional linear transformations t 7→ at+b

ct+d . Further, G

permutes α1, . . . , αn. This yields an embedding G ↪→ Sn.
Because K is the unique degree 2 extension of k(x) ramified exactly at

α1, . . . , αn, each automorphism of k(x) permuting these n places extends to
an automorphism of K. Thus, G is the stabilizer in Aut(k(x)/k) of the set
P. Hence under the isomorphism Γ 7→ Aut(k(x)/k), G corresponds to the
stabilizer ΓP in Γ of the n-set P.

By a theorem of Klein, G is isomorphic to one of the following: Zn, Dn,
A4, S4 or A5. We are interested in the latter case. The branching indices of
the corresponding cover φ : P1 → P1/A5 are 2, 5, 3 respectively; see [9] for
details of the general setup. That means that A5 is given as A5

∼= 〈σ1, σ2, σ3〉
where σ1σ2σ3 = 1 and σ1, σ2, σ3 have orders 2, 5, 3. How σ1, σ2, σ3 lift in the
extension of A5 will determine G. In the next section, we will determine the
cover φ : P1 → P1 explicitly. The lifting of the elements will determine the
group and the equation of the hyperelliptic curve.
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Let σ1 =

(
w 1
1 −w

)
and σ2 =

(
ε2 0
0 1

)
, where ω = −1+

√
5

2 and ε is a

primitive 5th root of unity. Then σ1, σ2 have orders 2 and 5 respectively and
σ3 = (σ1σ2)−1 has order 3. This gives an embedding of A5 in PGL2(C) in
the following way: A5

∼= 〈σ1, σ2〉 ↪→ PGL2(k). In the next section we will
find the fixed field L of k(x) under the A5 action and study intermediate
fields of the extension k(x)/L.

The group A5 given above acts on k(x) via the natural way. The fixed
field is a genus 0 field, say k(z). Thus, z is a degree 60 rational function in
x, say z = φ(x). In this section we determine φ(x) and its decompositions.

Lemma 1 Let H be a finite subgroup of PGL2(k). Let us identify each ele-
ment of H with the corresponding Moebius transformation and let si be the
i-th elementary symmetric polynomial in the elements of H, i = 1, . . . , |H|.
Then any non-constant si generates k(z).

Proof It is easy to check that the si are the coefficients of the minimum
polynomial of x over k(z). It is well-known that any non-constant coefficient
of this polynomial generates the field. ut

Corollary 1 The fixed field of A5 is generated by the function

z = −
(
x20 − 228x15 + 494x10 + 228x5 + 1

)3
x5 (x10 + 11x5 − 1)

5 .

Proof Apply the theorem to the embedding of A5 given above. ut

The branch points of φ : P1 → P1 are 0, 1728 and ∞. These correspond
respectively to the elements σ1, σ2, σ3 in the monodromy group (cf. Section
3.1). At the place z = 1728 the function has the following ramification:

φ(x)− 1728 = −
(
x30 + 522x25 − 10005x20 − 10005x10 − 522x5 + 1

)2
x5 (x10 + 11x5 − 1)

5 .

We denote the following by

R = x20 − 228x15 + 494x10 + 228x5 + 1

S = x (x10 + 11x5 − 1)

T = x30 + 522x25 − 10005x20 − 10005x10 − 522x5 + 1.

As we will see in the next section these functions will be instrumental in
determining the equation of the hyperelliptic curves.

2.1 Decomposition of φ(x)

The automorphism group of k(x)/k(φ) is the embedding of A5 detailed be-
fore. As |A5| = [k(x) : k(φ)], there is a degree-preserving correspondence be-
tween subgroups of A5 and intermediate fields in the extension. By Lüroth’s



Hyperelliptic curves with reduced automorphism group A5 5

Theorem, each of those fields is k(h) for some rational function h. Now, it is
clear that, in general, k(f) ⊂ k(h)⇔ f = g ◦ h for some g. Thus, we can use
computer algebra techniques to find all the decompositions of φ and describe
the lattice of intermediate fields.

It is clear from the expression of φ that there is a decomposition φ = g(x5).
This comes also from the fact that the subgroup 〈εx〉 of A5 corresponds to
the field generated by x · εx · ε2x · ε3x · ε4x = x5.

It is also possible to find decompositions involving x2 or x3 for functions
that are equivalent to φ. Namely, for any σ ∈ PGL2(k), a generator of the
field fixed for the conjugate group σA5σ

−1 is φ(σ−1). If σ is chosen in such
a way as having {x,−x} < σA5σ

−1, then k(x · (−x)) = k(x2) will be an
intermediate field by Lemma 1. This can be accomplished by conjugating
any involution of A5 into −x. In the same manner, if an element of order
3 in A5 is conjugated into ζ3x, where ζ3 is a primitive cubic root of 1, the
resulting function can be written in terms of x · ζ3x · ζ2

3x = x3.
We present the former case here, as it will be used later. The element

−1/x ∈ A5 satisfies σ ◦ −1
x ◦ σ

−1 = −x, where σ = ix+1
−ix+1 . Therefore, φ1 :=

φ(σ−1) will have x2 as a component. Indeed,

φ1 = 64
R̄3

S̄5
, φ1 − 1728 = 256(i+ 2)

T̄ 2

S̄5

where

R̄ =(25x8 − (210− 280 i)x4 − 7− 24 i) · (15x4 + (10 + 20 i)x2 − 9 + 12 i)

(25x8 + (300 + 600 i)x6 + (1110− 1480 i)x4 − (660 + 120 i)x2 − 7− 24 i)

S̄ =(x2 − 1) (5x2 + 3− 4i) (25x8 − (100 + 200 i)x6 + (630− 840 i)x4

+ (220 + 40 i)x2 − 7− 24 i)

T̄ =x · (5x4 + 10x2 + 1) (x4 + 10x2 + 5) (125x4 − 150x2 + 200ix2 − 7− 24i)

(5x4− 30x2+ 40ix2− 7− 24i) (5x4+ 3− 4i) (5x4− 10x2− 20ix2− 27+ 36i)

(45x4 − 10x2 − 20ix2 − 3 + 4i).

3 Automorphism groups and the corresponding loci

In this section we determine the automorphism group of Xg and the ramifi-
cation structure of the cover Xg → Xg/Aut(Xg). Further, we will discuss the
locus of such curves in the variety of moduli.

The automorphism group G of the hyperelliptic curve is a degree 2 central
extension of A5. The following lemma is proved in [6].

Lemma 2 Let p ≥ 2, α ∈ G and ᾱ its image in G with order | ᾱ | = p. Then,
i) |α | = p if and only if it fixes no Weierstrass points.
ii) |α | = 2p if and only if it fixes some Weierstrass point.

Thus, G is the monodromy group of a cover φ : P1 → P1 with signature
(σ1, σ2, σ3) as in section 2; see §2 in [9] for further details. We fix the co-
ordinates in P1 as x and z respectively and from now on denote the cover
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φ : P1
x → P1

z. Thus, z is a rational function in x of degree |G|. We denote by
q1, q2, q3 the corresponding branch points of φ. Let S be the set of branch
points of Φ : Xg → P1. Clearly q1, q2, q3 ∈ S. Let W denote the images in P1

x

of Weierstrass places of Xg and V := ∪3
i=1φ

−1(qi).

Let z = Ψ(x)
Υ (x) , where Ψ, Υ ∈ k[x]. For each branch point qi, i = 1, 2, 3 we

have the degree |G| equation z ·Υ (x)−qi ·Υ (x) = Ψ(x), where the multiplicity
of the roots correspond to the ramification index for each qi (i.e., the index
of the normalizer in G of σi). We denote the ramification of φ : P1

x → P1
z, by

ϕrm, χ
s
n, ψ

t
p, where the subscript denotes the degree of the polynomial.

Let λ ∈ S \ {q1, q2, q3}. The points in the fiber of a non-branch point λ
are the roots of the equation: Ψ(x)−λ ·Υ (x) = 0. To determine the equation
of the curve we simply need to determine the Weierstrass points of the curve.
For each fixed φ there are the following cases:

1) V ∩W = ∅,
2) V ∩W = φ−1(q1),
3) V ∩W = φ−1(q2),
4) V ∩W = φ−1(q3),
5) V ∩W = φ−1(q1) ∪ φ−1(q2),
6) V ∩W = φ−1(q2) ∪ φ−1(q3),
7) V ∩W = φ−1(q1) ∪ φ−1(q3),
8) V ∩W = φ−1(q1) ∪ φ−1(q2) ∪ φ−1(q3).

From the above lemma we have that if the places in the fiber φ−1(q1),
φ−1(q2), φ−1(q3), are Weierstrass points then σ1, σ2, σ3 lift in G to elements
of order 4, 6, and 10 respectively. The first four cases give the group Z2⊗A5

and the other four cases give the group SL2(5). We have the following table.
The column containing the dimension δ of the corresponding spaces will be
explained in the next subsection. In the Table we give the ramification struc-

Table 1 All possible signatures when the reduced automorphism group is A5

# G G δ Φ : Xg → P1 φ : P1 → P1

1 Z2 ⊗A5
g+1
30

(340, 524, 260, . . . , 260)

2 Z2 ⊗A5
g−5
30

(340, 1012, 260, . . . , 260)

3 Z2 ⊗A5
g−15
30

(620, 1012, 260, . . . , 260)

4 Z2 ⊗A5 A5
g−9
30

(620, 524, 260, . . . , 260) (230, 320, 512)

5 SL2(5) g−14
30

(430, 340, 524, 260, . . . , 260)

6 SL2(5) g−20
30

(430, 340, 1012, 260, . . . , 260)

7 SL2(5) g−24
30

(430, 620, 524, 260, . . . , 260)

8 SL2(5) g−30
30

(430, 620, 1012, 260, . . . , 260)

ture of Φ : Xg → P1. The tuple (σ1, . . . , σr) corresponding to this signature is
such that G ∼= 〈σ1, . . . , σr〉 and σ1 · · ·σr = 1. We call this tuple (σ1, . . . , σr)
the signature tuple of the covering (cf. Section 3.1 for details).
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Corollary 2 Let Xg be a genus g ≥ 2 hyperelliptic curve with reduced au-
tomorphism group isomorphic to A5. If g is odd then Aut(Xg) ∼= Z2 ⊗ A5,
otherwise Aut(Xg) ∼= SL2(5).

3.1 Hurwitz spaces

In this section we give a brief introduction to Hurwitz spaces. For further
details the reader can check [11] among many other authors. Let X be a curve
of genus g and f : X → P1 be a covering of degree n with r branch points.
We denote the branch points by q1, . . . , qr ∈ P1 and let p ∈ P1 \ {q1, . . . , qr}.
Choose loops γi around qi such that

Γ := π1(P1 \ {q1, . . . , qr}, p) = 〈γ1, . . . , γr〉, γ1 · · · γr = 1.

Γ acts on the fiber f−1(p) by path lifting, inducing a transitive subgroup
G of the symmetric group Sn (determined by f up to conjugacy in Sn). It
is called the monodromy group of f . The images of γ1, . . . , γr in Sn form a
tuple of permutations σ = (σ1, . . . , σr) called a tuple of branch cycles of f .
We call such a tuple the signature of φ. The covering f : X → P1 is of type
σ if it has σ as tuple of branch cycles relative to some homotopy basis of
P1 \ {q1, . . . , qr}.

Two coverings f : X → P1 and f ′ : X ′ → P1 are weakly equivalent
(resp. equivalent) if there is a homeomorphism h : X → X ′ and an analytic
automorphism g of P1 such that g ◦ f = f ′ ◦ h (resp., g = 1). Such classes
are denoted by [f ]w (resp., [f ]). The Hurwitz space Hσ (resp., symmetrized
Hurwitz space Hsσ) is the set of weak equivalence classes (resp., equivalence)
of covers of type σ, it carries a natural structure of an quasiprojective variety.

Let Ci denote the conjugacy class of σi in G and C = (C1, . . . , Cr). The
set of Nielsen classes N (G,C) is

N (G, σ) := {(σ1, . . . , σr) | σi ∈ Ci, G = 〈σ1, . . . , σr〉, σ1 · · ·σr = 1}

The braid group acts on N (G,C) as

[γi] : (σ1, . . . , σr)→ (σ1, . . . , σi−1, σ
σi
i+1, σi, σi+2, . . . , σr)

where σσii+1 = σiσi+1σ
−1
i . We have Hσ = Hτ if and only if the tuples σ, τ

are in the same braid orbit Oτ = Oσ.
Let Mg be the moduli space of genus g curves. We have morphisms

Hσ
Φσ−→ Hsσ

Φ̄σ−→ Mg where [f ]w → [f ] → [X]. Each component of Hσ
has the same image in Mg. We denote by Lg := Φ̄σ(Hsσ). This causes no
confusion since for a fixed g we are in one of the cases of Table 1.

Next, we see how this applies to our particular situation. The family of
covers Φ : Xg → P1 as in Table 1, have monodromy group Z2⊗A5 or SL2(5).
We denote the set of branch points of f by S := {q1, . . . , qr}. The branch
cycle description of f is (σ1, . . . , σr) as in Table 1. Since we have at least r−3
branch points which have the same ramification then there is an action of
Sr permuting these branch points (i.e., which correspond to the ramification
type (2)60). Notice that in case 1 there is an action of Sr+1 on the set of
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branch points. The symmetrized Hurwitz space is birationally isomorphic
to the locus of hyperelliptic curves in hyperelliptic moduli Hg with reduced
automorphism group A5. It will be our goal to determine this locus for any
g. We summarize the results of this section in the next lemma.

Lemma 3 Let Xg be a genus g ≥ 2 hyperelliptic curve with reduced auto-
morphism group isomorphic to A5 and Lg denote the locus of such curves
in the hyperelliptic moduli Hg. Then, G := Aut(Xg) and the signature σ of
the covering Φ : Xg → P1 are given in Table 1. Further, each locus Lg is
δ-dimensional irreducible subvariety of the hyperelliptic moduli Hg.

Proof The moduli dimension of these families of covers is δ = r− 3, where r
is the number of branch points of the cover Φ : Xg → P1. The ramification
of each branch point q ∈ S \ {q1, q2, q3} is of the type (2)n. The Hurwitz-
Riemann formula determines the number of branch points in each case. ut

3.2 Parametrization of families

In this section we state the equations of curves in each case of Table 1. Con-
tinuing with the notation of section 4.1 we have W ⊂

⋃
λ∈S\{q1,q2,q3} φ

−1(λ).

Thus the places of W are roots of the polynomial

Λ(x) :=
∏

λ∈S\{q1,q2,q3}

(Ψ(x)− λ · Υ (x)) .

Then, the equation of the curve for all cases 1-8 is y2 = f(x) where f(x) is
respectively

Λ, ϕ · Λ, χ · Λ, ψ · Λ, ϕ · χ · Λ, χ · ψ · Λ, ϕ · ψ · Λ, ϕ · χ · ψ · Λ. (1)

Since we know z = Ψ(x)
Υ (x) in each case, then it is an elementary exercise to

compute the equation of the curve for all cases of Table 1. In our case we can
apply the above when z = φ(x) or z = φ1(x). In the first case we have

Λi(x) = −x60 + (684− λi)x
55 − (55λi + 157434)x50 − (1205λi − 12527460)x45

− (13090λi+77460495)x40+(130689144−69585λi)x
35+(33211924−134761λi)x

30

+ (69585λi − 130689144)x25− (13090λi+77460495)x20− (12527460− 1205λi)x
15

− (157434 + 55λi)x
10 + (λi − 684)x5 − 1

Then, Λ(x) =
∏δ
i=1 Λi(x). By replacing ϕ, χ, ψ with R,S, T we determine

the equation of the curve in each case. In the second case we determine Λ(x)
using z = φ1(x) and R̄, S̄, T̄ .
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4 Isomorphism classes of hyperelliptic curves with reduced
automorphism group A5

In this section we discuss the invariants of hyperelliptic curves with reduced
automorphism group A5. Such invariants are needed to describe the loci
LGg and discuss the field of definition of such curves. We will consider the
coefficients of our curves as variables in order to study the relations among
the different function fields that will be introduced.

To get a description of LGg for each case of Table 1, we need invariants
which would classify the isomorphism classes of hyperelliptic genus g curves.
These invariants are generators of the fixed field of GL2(k) acting on the
(d+ 1)-dimensional space Vd of binary forms of degree d.

We use the symbolic method of classical invariant theory to construct
invariants of binary forms. Let f(X,Y ) and g(X,Y ) be binary forms of degree
n and m respectively. We denote by (f, g)r their r-transvection; see [9] for
details. For the rest of this paper F (X,Y ) denotes a binary form of degree
d := 2g + 2. Invariants (resp., covariants) of binary forms are denoted by Is
(resp., Js) where the subscript s denotes the degree (resp., the order). We
define the following covariants and invariants:

J4j := (F, F )d−2j , j = 1, . . . , g,

I4 := (J12, J12)12,

I∗6 := ((F, J20)20, (F, J20)20)d−20.

I2 := (F, F )d,

I6 := ((F, J12)12, (F, J12)12)d−12,

The GL2(k)-invariants are called absolute invariants. We define the fol-
lowing absolute invariants:

i1 :=
I4
I2
2

, i2 :=
I6
I3
2

, i3 =
I∗6
I3
2

, i4 =
I2
6

I3
4

.

We will only perform computations on subvarieties Lg ⊂ Hg of dimension
δ ≤ 1, hence don’t need other absolute invariants. Next we will give necessary
conditions on these invariants for the corresponding curve to have reduced
automorphism group A5 and full automorphism group Z2 ⊗A5 or SL2(5).

Lemma 4 Let Xg be a hyperelliptic curve with genus g ≤ 60 such that

Aut(Xg) ∼= A5. Then the invariants (Ji, Ji)
i are zero for i = 4, 8, 16, 28.

Proof In all cases, it can be directly computed that the corresponding Ji’s
are zero. ut

Let Xg be a genus g hyperelliptic curve such that Aut(Xg) ∼= A5. Then,
Xg is isomorphic to a curve given by the equation y2 = F (x2) or y2 =
x F (x2), with

F (x) = xd + ad−1x
d−1 + · · ·+ a1x+ 1,

where d = g + 1 or g. Such equation is called the normal equation of the
curve Xg. The following

ui := ad−i1 ai + ad−id−1 ad−i, for 1 ≤ i ≤ d− 1
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are called dihedral invariants. Assume d = g + 1 (the other case is similar).
From the definition of the invariants we have

ui = ag+1−i
1 ai + ag+1−i

g ag+1−i,

ug+1−i = ai1ag+1−i + aigai,

for each 2 ≤ i ≤ g − 1. Notice that solving this linear system we have
ai ∈ k(u1, . . . , ug, a1, ag), for each 2 ≤ i ≤ g − 1. For u1, ug we have the
equation

2g+1 a2g+2
g − 2g+1 u1 a

g+1
g + ug+1

g = 0 (2)

which is a quadratic polynomial in ag+1
g . It is shown in [6] that Lg is a rational

variety and k(Lg) = k(u1, . . . , ud−1). The next theorem determines a relation
between dihedral invariants.

Theorem 1 Let Xg be a genus g hyperelliptic curve with Aut(Xg) ∼= A5 and
(u1, . . . , ug) its corresponding dihedral invariants. Then

i) If g is odd then Aut(Xg) ∼= Z2 ⊗A5 and 2
d−2
2 u1 − u

d
2

d−1 = 0.

ii) If g is even then Aut(Xg) ∼= SL2(5) and 2
d−2
2 u1 + u

d
2

d−1 = 0.

Proof i) This follows from Theorem 3, i) in [6].
ii) The equation of Xg is given by y2 = x F (x2) where F (x2) is a polyno-

mial of degree d = g in x2. Computing invariants is the same as in part i). In
this case the involutions of Aut(Xg) lift to elements of order 4 in Aut(Xg).
From Theorem 3, ii) in [6] we have the equation of part ii). This completes
the proof. ut

Since the discriminant of the quadratic in Eq. (2) is zero (see Thm. 1)
we have ag+1

g = u1

2 . Hence, [k(a1, . . . , ag) : k(u1, . . . , ug)] = g + 1. Let Yg
be a hyperelliptic curve with reduced automorphism group A5 and equation
y2 = bg+1x

2g+2 +bgx
2g+ · · ·+b1x2 +b0. Since u1, . . . , ug are invariants under

any coordinate change then k(b0, . . . , bg+1) is an extension of k(u1, . . . , ug).
This curve Yg can be normalized by means of the transformation (x, y) →(
x · 2g+2

√
b0
bg+1

, y ·
√
b0

)
, which gives

y
2

= x
2g+2

+
bg

b0

(
b0

bg+1

) 2g
2g+2

x
2g

+
bg−1

b0

(
b0

bg+1

) 2g−2
2g+2

x
2g−2

+ · · ·+
b1

b0

(
b0

bg+1

) 2
2g+2

x
2

+1.

Notice that ag+1
g ∈ k(b0, . . . , bg+1). Since all the other ai’s can be ex-

pressed in terms of ag then [k(a1, . . . , ag) : k(b0, . . . , bg+1)] = g + 1 we have
that k(u1, . . . , ug) = k(b0, . . . , bg+1).

The cover Φ : Xg → P1 has δ + 3 branch points. Let S \ {q1, q2, q3} =
{λ1, . . . , λδ}. Then, the isomorphism class of the corresponding curve is
determined up to permutation of λ1, . . . , λδ. Invariants of this action are
the symmetric polynomials in λ1, . . . , λδ. Hence, Λ(x) has coefficients in
terms of the elementary symmetric polynomials s1, . . . , sδ of λ1, . . . , λδ. Thus,
k(b0, . . . , bg+1) ⊂ k(s1, . . . , sδ). Since k(Lg) ⊂ k(b0, . . . , bg+1) then there are
at least δ-independent bi’s. Therefore, s1, . . . , sδ can be expressed in terms
of b0, . . . , bg+1. Thus, k(b0, . . . , bg+1) = k(s1, . . . , sδ). Thus, we have the fol-
lowing:
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Lemma 5 k(u1, . . . , ud) = k(s1, . . . , sδ).

From the computational point of view, to express s1, . . . , sδ as rational
functions in terms of u1, . . . , ud one can proceed as follows. A quick inspection
shows that the coefficients of

Λi(x) = x60 + a29 x
58 + · · ·+ a1 x

2 + 1,

which are linear polynomials in λ, satisfy ai · εi3 = a30−i, for i = 1, . . . , 14,
where ε3 is the primitive cubic root of unity with negative imaginary part.

For the polynomial

Λ(x) =

δ∏
i=1

Λi(x) = x60δ +A30δ−1x
60δ−2 + · · ·+A1x

2 + 1,

each coefficient is symmetric in λ1, . . . , λδ; moreover, each Ai is a linear
polynomial in s1, . . . , sδ. Also,

Ai · εi3 = A30δ−i, i = 1, . . . , 15δ − 1.

Applying these relations to the dihedral invariants (starting with the last
one) we obtain:

u30δ−1 = A1A30δ−1 + A30δ−1A1 = 2 ε3A
2
1,

u30δ−2 = A2
1A30δ−2 + A2

30δ−1A2 = 2 ε23A
2
1A2,

. . .

u30δ−i = Ai1A30δ−i + Ai30δ−1Ai = 2 εi3A
i
1Ai.

Since, ui = ad−i1 ai + ad−id−1 ad−i for 1 ≤ i ≤ d − 1, then combining the
first equation and the ones for even values of i, we obtain equalities Ai =

u30δ−i
(ε3 u30δ−1)i/2

and as each Ai is a linear polynomial in s1, . . . , sδ, this provides

a linear system of equations, from which we can express each sj as a rational
function in u1, . . . , u30δ−1.

4.1 One-dimensional families

Next we describe explicitly the 1-dimensional loci. We find the equations of
such loci in terms of invariants i1, i2. Further, we give a computational proof
of the above lemma. As an example, we will compute dihedral invariants in
the case that g ≡ 29 (mod 30) and δ = 1.

Let us denote the only parameter as λ. In this case, g = 29 and y2 = Λ(x)
with Λ defined above. Then

u1 = 231 · 515 (11λ+ 32832)30

(λ− 1728)30
, u29 = 23 · 5 (11λ+ 32832)2

(λ− 1728)2
,

ui =
(αiλ+ βi)(11λ+ 32832)30−i

(λ− 1728)31−i , i = 2, . . . , 28 , αi, βi ∈ Z.
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It is easily checked that 214u1 − u15
29 = 0, as expected from above.

Also, any generator of the field k(u1, . . . , u29) is a rational function in λ
whose degree divides those of ui. As the degrees of u28 and u29 are 3 and 2
respectively, without loss of generality we can choose any degree one rational
function in λ, that is, k(u1, . . . , u29) = k(λ) as expected. The next lemma
gives a computational proof of this result for all 1-dimensional loci. From the
proof of the following lemma we get an explicit expression on λ in terms of
i1, i2. Such expression will be used in the next section.

Lemma 6 For each of the 1-dimensional Lg we have k(Lg) = k(λ).

Proof The invariants are

i1 =
1948908

7397845567

(−15159961555740000 − 610337874000λ + 791091587λ2)2

(11586093746490000 + 872196589λ2 − 931385301000λ)2
,

i2 =
4947228 (79290599λ − 42335695500)2(−15159961555740000 − 610337874000λ + 791091587λ2)2

1083437009726901515 (11586093746490000 + 872196589λ2 − 931385301000λ)3
.

By Lüroth’s Theorem there is a rational function in λ that generates
k(i1, i2). By computing this generator (see for example [5]) it is proved that
λ is a generator of k(i1, i2). The other cases are proved in the same way. ut

By eliminating λ we can explicitly find the curve

F (i1, i2) = 0 (3)

for each of the eight cases. For example, the equation of the curve in the first
case is given by

20104543529222176607891970551365425625i
4
2 − 6001516794980613854767134781868434500i

3
2i1

+671664430878843510918689481392772150i
2
2i

2
1 − 467825523547842914848108169841758572200i

3
1i

2
2

−33400604375309785622232551775685380i
3
1i2 + 69851513504555488123050532974625671120i

4
1i2

+622702796403678565883409475309881i
4
1 − 2609325640118276782171286285338389288i

5
1

+2733479091269756882118693138958399101456i
6
1 = 0

In each case this is a genus 0 curve with degrees 6 and 4 in i1 and i2
respectively, hence these curves have singular points. In each case there are
exactly three singular points and for each singular point (i1, i2) there are two
corresponding values of λ.

We determine these points explicitly and present the quadratic equations
in λ whose roots determine those points. For each case the second and third
singular point corresponds to (i1, i2) = (0, 0) and the point at infinity given
by I2 = 0.

5 Rational models over the field of moduli

In this section we study the field of moduli of hyperelliptic curves with re-
duced automorphism group A5. Let X be a curve defined over C. A field
F ⊂ C is called a field of definition of X if there exists X ′ defined over F
such that X ′ is isomorphic to X over C.
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Table 2 Singular points of 1-dimensional loci

# Values of λ

452144735218242469277017λ2 − 482828029389149632341153000λ − 8593063274412012696185238840000

1 791091587λ2 − 610337874000λ − 15159961555740000

872196589λ2 − 931385301000λ + 11586093746490000

45116739209875087720855199586628λ2 − 43556541042223826596073807880918300λ
−138531873472176494963183499855707291875

2 1651853764λ2 − 1226334498300λ − 5257525430501875

5700085544λ2 − 5799389184300λ + 29819258427080625

25920118616911092183126784613617142λ2 − 44031520362372236593738424989592507950λ
−380728179705646173243900805566261020741875

3 1123023677098λ2 − 1632357832704050λ − 16735382221690758125

11130104653λ2 − 19337115814550λ + 144111607427085625

1190289762560291723133371786217787λ2 − 2109180129399825416728336502192357000λ
−102603051826076134426802508773908422000000

4 31930385620603λ2 − 46875776542808000λ − 2760999374275855500000

6105542623λ2 − 10818953153000λ + 230260862893387500

6333690499915638419332937497733λ2 − 2171594295704055460635952732129500λ
−388162393043218880265390321313068639375

5 2357171794013λ2 − 531948616761375λ − 144507437760700783125

1639203229λ2 − 562023733500λ + 54739184825587500

6548345875574794801166675435529962539362λ2 − 2054584724746639344314578064291669769060100λ
−66477004559491595548969707908580013974645529375

6 17638004386446978λ2 − 3958284234892272700λ − 179314085452120858954375

29883184652λ2 − 9770219914300λ + 286336970555605625

5197143015623358421052917257787762λ2 − 4064516960859449385634468871138790750λ
−1973346971902336126577309580519879740484375

7 167241649141649λ2 − 87194298622737750λ − 63518438366227732921875

7883609626λ2 − 6165515349750λ + 932376249595828125

50049608492559474153964972804988742465553λ2 − 36990019047097223907490687861759806337326200λ
−2950939252953188574421512956195380140260947773125

8 14303777741547512λ2 − 7805526971818231735λ − 844416597642584618857750

4237002269λ2 − 3224689016170λ + 134559773845245500

The field of moduli of X is a subfield F ⊂ C such that for every auto-
morphism σ ∈ Aut(C) the following holds: X is isomorphic to X σ if and
only if σF = id. We will use p = [X ] ∈ Mg to denote the corresponding
moduli point and Mg(p) the residue field of p in Mg. The field of moduli of
X coincides with the residue fieldMg(p) of the point p inMg. The notation
Mg(p) (resp., M(X )) will be used to denote the field of moduli of p ∈ Mg

(resp., X ). If there is a curve X ′ isomorphic to X and defined over M(X ),
we say that X has a rational model over its field of moduli. As mentioned
above, the field of moduli of curves is not necessarily a field of definition.

Let Xg be a genus g hyperelliptic curve with reduced automorphism group
isomorphic to A5. Then its field of moduli is a field of definition. Next, we
give a rational model of the curve over the field of moduli.

Theorem 2 Let p ∈ Hg such that Aut(p) ∼= A5 and u1, . . . , us, s = g or
g − 1, the corresponding dihedral invariants. Then, there is a rational model
over the field of moduli M(p) given in the form y2 = F (x) or y2 = xF (x)
where:

a) F (x) can be chosen to be decomposable polynomial in x2 as below

i) if Aut(p) ∼= Z2 ⊗A5 then

y2 = u1x
2g+2 + u1x

2g + u2x
2g−2 + u3x

2g−4 + · · ·+ ugx
2 + 2;
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ii) if Aut(p) ∼= SL2(5) then

y2 = x(u1x
2g + u1x

2g−2 + u2x
2g−4 + · · ·+ ug−1x

2 + 2);

b) F (x) can be chosen to be decomposable in x5 as in Eq. (1).

Proof a) Let [Xg] = p ∈ Hg such that Aut(p) ∼= A5. If g is odd then dihedral
invariants are u1, . . . , ug, otherwise they are u1, . . . , ug−1.

i) Let Aut(p) ∼= Z2 ⊗A5. Then Xg has normal equation

y2 = x2g+2 + agx
2g + · · ·+ a1x

2 + 1.

From the definition of the invariants we have

ui = ag+1−i
1 ai + ag+1−i

g ag+1−i,

ug+1−i = ai1ag+1−i + aigai,
(4)

for each 2 ≤ i ≤ g − 1. For u1, ug we have the equation

2g+1 a2g+2
g − 2g+1 u1 a

g+1
g + ug+1

g = 0

which is a quadratic polynomial in ag+1
g . Since the discriminant of this

quadratic is zero (see Theorem 1) we obtain ag+1
g = u1/2. By the trans-

formation x→ √ag x, the curve is isomorphic to a curve with equation

y2 =
u1

2
x2g+2 +

u1

2
x2g + ag−1a

g−1
g x2g−2 + · · ·+ a1agx

2 + 1.

Now, it suffices to show that for 2 ≤ i ≤ g − 1 we have aia
i
g = ug+1−i/2

which is equivalent to aia
i
g = ag+1−ia

i
1 (by the definition of ug+1−i). This

equality can easily be proven by solving the linear system in Eq. (4) for ai
and ag+1−i and using these values in the previous equation.

ii) Let Aut(p) ∼= SL2(5). Then Xg has normal equation

y2 = x
(
x2g + ag−1x

2g−2 + · · ·+ a1x
2 + 1

)
.

The proof is similar to the above by replacing g with g − 1. The transforma-
tion x→ √ag−1 fixes 0 and ∞ and the result follows.

Since the dihedral invariants are in the field of moduli M(p) it is enough
to show that Xg is isomorphic to a curve C whose coefficients are in terms
of such invariants.

Part b) follows from part a) and Lemma 5. ut

Remark 1 Similar equations to the equations in Eq. (1) are given also in
[2], as kindly pointed out by the referee. However, there is no discussion in
that paper of the rational model of the curves over the field of moduli. The
point of the above theorem is that such equations are defined over the field
of moduli.
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As it has already been stated, the expressions in parts a) and b) of the
previous Theorem define the same p. We will explicitly show this by giving
the corresponding isomorphism. In Subsection 2.1 it was determined that the
inverse of the transformation σ : x→ ix+1

−ix+1 transforms φ into φ1. Therefore,

the isomorphism given by (x, y)→
(
x−1
ix+i ,

y
(ix+i)g+1

)
, transforms the equation

of part b) into an equation in x2:

y2 = bg+1x
2g+2 + bgx

2g + · · ·+ b1x
2 + b0.

This can be normalized by means of the isomorphism

(x, y)→

(
x · 2g+2

√
b0
bg+1

, y ·
√
b0

)

which gives

y
2

= x
2g+2

+
bg

b0

(
b0

bg+1

) 2g
2g+2

x
2g

+
bg−1

b0

(
b0

bg+1

) 2g−2
2g+2

x
2g−2

+ · · ·+
b1

b0

(
b0

bg+1

) 2
2g+2

x
2

+1.

As in the proof of the previous Theorem, it is enough to compose this

with (x, y) →
(
x ·
√

bg
b0

(
b0
bg+1

) g
2g+2

, y√
2

)
to obtain the rational model as a

polynomial in x2.

5.1 Computing the rational model

We continue our discussion of 1-dimensional families from section 4. It is clear
from Lemma 6 that λ ∈ k(i1, i2) is a rational function in terms of i1 and i2.
Thus, for every nonsingular moduli point p = (i1, i2) we get λ ∈M(p). Hence,
the equation of the hyperelliptic curve as in Eq. (3) is a rational model over
the field of moduli.

However, on the singular points of the curve F (i1, i2) = 0 direct com-
putation for λ is needed. In all the cases the singular points have rational
coordinates in the curve F (i1, i2) = 0. However, this is not sufficient for the

moduli point to be a rational point. For each point, let k(
√
d) denote the

quadratic extension determined by the corresponding polynomial of Table
2. From the corresponding values of λ we compute the i3 invariant. In all
the cases this is not k-rational and i3 ∈ k(

√
d). Hence, the field of moduli

contains k(
√
d). Since the curve has equation given in Eq. (1) then k(

√
d) is a

field of definition. Hence, k(
√
d) is the field of moduli and Eq. (1) provides a

rational model over this field. These computations are summarized in Table
3, where d is determined for all singular points.
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Table 3 Field of definition for the singular points

# d such that M(p) = k(
√
d)

6594752841114090745134757
1 127067509222

- 27468005002203037701
741854166910125814698682452912604588627104323162904099673

2 120950912295937
- 1318890572777620357905

3877164163606363023773232119905718360665213621866915565002867565515
3 7287697079146593051915

- 67133167127519339801955
287030471019588726034132917522068933305

4 931923194601696118570
- 550642030389053730301265

77622682424472206764752607551443431
5 13982754260355689869

- 3984430259985622758510
1675692149588701583556012593441556134169533164932596422419308648533776178

6 12160207490958418193300962
- 3413118505805601540291498

3266268236007269922068112767862912834922718391
7 1589814414379364704593946359

- 52202574090563189329673
217064892339276374896058217864319147819031514610535561445877911458269709445733

8 1773286019674481300663325709801
- 425427118896332660731
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