
A MAPLE PACKAGE FOR HYPERELLIPTIC CURVES

T. SHASKA AND S. ZHENG

Abstract. We implement a Maple package that addresses questions of the
arithmetic of hyperelliptic curves. This implementation is based on [4], [9],

[10], [12], [13], [15], [14], [11]. Our package has as main functions the follow-

ing: determining the automorphism group of a genus g hyperelliptic curve Xg

defined over C, computing the isomorphism class [Xg ] for |Aut (Xg)| > 2, de-

termining the field of moduli and the field of definition, and giving an explicit

equation of the curve over Q when such equation exists. We can accomplish
such tasks for many classes of hyperelliptic curves. For genus g = 2 we can an-

swer these questions completely. Given a genus 2 curve C defined over C, this

package accomplishes the following: computes the moduli point p(C) ∈ M2,
determines the automorphism group of C, determines if a rational model of C

over the Q exists, computes such rational model when it exists, for n = 2, 3, 5,
determines if the Jacobian of C is (n, n)-split, determines if C has small degree

elliptic subcovers and computes such subcovers. To accomplish such tasks we

have implemented many other functions such as Igusa invariants of binary sex-
tics, absolute invariants, etc. We can do most of the above for genus 3 curves

with automorphism group of order > 4. Conditions in terms of classical in-

variants of binary forms are implemented which check if a curve has reduced
automorphism groups A4, S4, A5.

1. Introduction

Hyperelliptic curves have seen a wide range of applications in the last few decades
such as coding theory, cryptography, computer vision, etc. However, there are
amazingly few packages in all of computer algebra systems that deal with the arith-
metic of hyperelliptic curves. With this modest effort we are trying to fill this void
and write a Maple package that will address some computational aspects of hyper-
elliptic curves. In this short note we give an overview of the functions defined in
this package. The complete definitions and the mathematics behind the algorithms
used in our package can mostly be found in [8], [9], [10], [12], [13], [3], [6].

In section 2, we give some basic definitions on hyperelliptic curves of any genus.
In section 3, we briefly describe the genus 2 case. The classical invariants of binary
sextics and a set of absolute invariants are defined. In terms of such invariants we
can determine the automorphism group of genus 2 curves, if whether or not the
curve has (n, n) split Jacobian for small n, the field of definition, and a rational
model over the field of moduli. In section 4, we study the hyperelliptic curves
of higher genus. In the first part we study the case when g = 3. We are able
to determine the automorphism group of curves for g = 3 and provide a rational
model over a field of moduli in all cases when the curve C has extra automorphisms
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and Aut (C) is not isomorphic to V4. In the second part of section 4, we present
some results which are valid for any genus.

Notation: Throughout this note all curves are defined over the field of complex
numbers C. A hyperelliptic curve C is given by the affine equation y2 = f(x).

2. Preliminaries

Let C denote a genus g ≥ 2 hyperelliptic curve defined over C. The automor-
phism group of C is denoted by Aut (C) and its reduced automorphism group by
Aut (C). The Aut (C) is isomorphic to Zn, Dn, A4, S4, A5. For the list of groups
that occur as automorphism groups of hyperelliptic curves see [1], [2], [13].

A genus g hyperelliptic curve C which has a non-hyperelliptic involution in the
automorphism group can be written as

(1) y2 = x2g+2 + agx
2g + · · ·+ a1x

2 + 1

and ∆(a1, . . . , ag) 6= 0 (i.e., ∆ is the discriminant of the polynomial of the right
hand side). We call the above equation the normal form of the curve C. The
isomorphism classes of such curves are determined by dihedral invariants (cf. section
4).

A field F ⊂ C is called a field of definition of C if there exists C ′ defined over
F such that C ′ is isomorphic to C over C. The field of definition is the extension
field Q(p) of Q.

The field of moduli of C is a subfield F ⊂ C such that for every automorphism
σ ∈ Aut (C) the following holds: C is isomorphic to Cσ if and only if σF = id.

We will use p = [C] ∈ M2 to denote the corresponding moduli point and
M2(p) the residue field of p in M2. The field of moduli of C coincides with the
residue field M2(p) of the point p in M2.

If there is a curve C ′ isomorphic to C and defined over M(p), we say that C has
a rational model over its field of moduli. The field of moduli of curves is not
necessarily a field of definition. For details see [4], [12].

3. Curves of genus 2

Genus 2 curves are the most used of all hyperelliptic curves due to their applica-
tion in cryptography and also best understood. The moduli space M2 of genus 2
curves is a 3-dimensional variety. To understand how to describe the moduli points
of this space we need to define the invariants of binary sextics. For details on such
invariants and on the genus 2 curves in general the reader can check [5], [10], [7].

3.1. Invariants of curves and moduli points. Let C be a genus 2 curve with
equation

y2 = a6x
6 + a5x

5 . . . a1x + a0

The classical invariants (sometimes called Igusa invariants) are defined as fol-
lows
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J2 := − 240a0a6 + 40a1a5 − 16a2a4 + 6a
2
3

J4 :=48a0a
3
4 + 48a

3
2a6 + 4a

2
2a

2
4 + 1620a

2
0a

2
6 + 36a1a

2
3a5 − 12a1a3a

2
4 − 12a

2
2a3a5 + 300a

2
1a4a6

+ 300a0a
2
5a2 + 324a0a6a

2
3 − 504a0a4a2a6 − 180a0a4a3a5 − 180a1a3a2a6 + 4a1a4a2a5

− 540a0a5a1a6 − 80a
2
1a

2
5

J6 := 176a
2
1a

2
5a

2
3 + 64a

2
1a

2
5a4a2 + 1600a

3
1a5a4a6 + 1600a1a

3
5a0a2

− 160a0a
4
4a2 − 96a

2
0a

3
4a6 + 60a0a

3
4a

2
3 + 72a1a

4
3a5 − 24a1a

3
3a

2
4

− 160a
4
2a4a6 − 96a

3
2a0a

2
6 + 60a

3
2a

2
3a6 − 24a

2
2a

3
3a5 + 8a

2
2a

2
3a

2
4

− 900a
2
2a

2
1a

2
6 − 24a

3
2a

3
4 − 36a

4
2a

2
5 − 36a

2
1a

4
4 + 424a0a

2
4a

2
2a6

+ 492a0a
2
4a2a3a5 + 20664a

2
0a4a

2
6a2 + 3060a

2
0a4a6a3a5 − 468a0a4a

2
3a2a6

− 198a0a4a
3
3a5 − 640a0a4a

2
2a

2
5 + 3472a0a4a2a5a1a6 − 18600a0a4a

2
1a

2
6

− 876a0a
2
4a1a6a3 + 492a1a3a

2
2a4a6 − 238a1a

2
3a2a4a5 + 76a1a3a2a

3
4

+ 3060a1a3a0a
2
6a2 + 1818a1a

2
3a0a6a5 − 198a1a

3
3a2a6 + 26a1a3a

2
2a

2
5

− 1860a
2
1a3a2a5a6 + 330a

2
1a

2
3a6a4 + 76a

3
2a4a3a5 − 876a

2
2a0a6a3a5

+ 616a
3
2a5a1a6 + 2250a

2
0a

3
5a3 − 900a

2
0a

2
5a

2
4 − 10044a

2
0a

2
6a

2
3

+ 28a1a
2
4a

2
2a5 − 640a

2
1a

2
4a2a6 + 26a

2
1a

2
4a3a5 − 1860a1a4a0a

2
5a3

+ 616a1a
3
4a0a5 − 18600a

2
0a

2
5a6a2 + 59940a

2
0a5a

2
6a1 + 330a0a

2
5a

2
3a2

− 119880a
3
0a

3
6 − 320a

3
1a

3
5 − 2240a

2
1a

2
5a0a6 + 2250a

3
1a3a

2
6 + 162a0a6a

4
3

J10 :=a
−1
6 ResX(f,

∂f

∂X
)

(2)

Here J10 is the discriminant of f(x). The absolute invariants are defined as
follows

(3) i1 := 144
J4

J2
2

, i2 := −1728
J2J4 − 3J6

J3
2

, i3 := 486
J10

J5
2

,

for J2 6= 0. In the case J2 = 0 we define

(4) a1 :=
J4 · J6

J10
, a2 :=

J6 · J10

J4
4

to determine genus two fields with J2 = 0, J4 6= 0, and J6 6= 0 up to isomorphism.
For a given genus 2 curve C the corresponding moduli point p = [C] is defined

as

p =



(i1, i2, i3) if J2 6= 0

(a1, a2) if J2 = 0, J4 6= 0, J6 6= 0

J5
6

J3
10

if J2 = 0, J4 = 0, J6 6= 0

J5
4

J2
10

if J2 = 0, J6 = 0, J4 6= 0

Notice that the definition of a1, a2 can be totally avoided if one uses absolute in-
variants with J10 in the denominator. However, the degree of such invariants is
higher and therefore they are not effective computationally.

3.2. Automorphism groups. A list of groups that can occur as automorphism
groups of hyperelliptic curves is given in [13] among many other references. The
function in the package that computes the automorphism group is given by AutGroup().
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The output is the automorphism group. Since there is always confusion on the ter-
minology when describing certain groups we also display the GAP identity of the
group from the SmallGroupLibrary.

For a fixed group G one can compute the locus of genus g hyperelliptic curves
with automorphism group G. For genus 2 this loci is well described as subvarieties
of M2.

Example 1. Let y2 = f(x) be a genus 2 curve where f := x5 + 2x3 − x. Then the
function AutGroup(f,x) displays:

> AutGroup(f,x);
[D4, (8, 3)]

Example 2. Let y2 = f(x) be a genus 2 curve where f := x6 + 2x3 − x. Then the
function AutGroup(f,x) displays:

> AutGroup(f,x);
[V4, (4, 2)]

We also have implemented the functions: LocusCurvesAut_V_4(),
LocusCurvesAut_D_4(), LocusCurvesAut_D4_J2(), LocusCurvesAut_D_6(),

which gives equations for the locus of curves with automorphism group D4 or D6.

3.3. Genus 2 curves with split Jacobians. A genus 2 curve which has a degree
n maximal map to an elliptic curve is said to have (n, n)-split Jacobian; see [15] for
details. Genus 2 curves with split Jacobian are interesting in number theory, cryp-
tography, and coding theory. We implement an algorithm which checks if a curve
has (3, 3), and (5, 5)-split Jacobian. The case of (2, 2)-split Jacobian corresponds
to genus 2 curves with extra involutions and therefore can be determined by the
function LocusCurvesAut V 4().

The function which determines if a genus 2 curve has (3, 3)-split Jacobian is
CurvDeg3EllSub() if the curve has J2 6= 0 and CurvDeg3EllSub J 2() otherwise;
see [11]. The input of CurvDeg3EllSub() is the triple (i1, i2, i3) or the pair (a1, a2)
for CurvDeg3EllSub_J_2 (). If the output is 0, in both cases, this means that
the corresponding curve to this moduli point has (3, 3)-split Jacobian. Below we
illustrate with examples in each case.

Example 3. Let y2 = f(x) be a genus 2 curve where f := 4x6 +9x5 +8x4 +10x3 +
5x2 + 3x + 1. Then,

> i1 := i 1(f, x); i2 := i 2(f, x); i3 := i 3(f, x);

i1 :=
78741
100

, i2 :=
53510733

2000
, i3 :=

38435553
51200000

> CurvDeg3EllSub(i1, i2, i3);
0

This means that the above curve has a (3, 3)-split Jacobian.

Example 4. Let y2 = f(x) be a genus 2 curve where f := 4x6 +(52
√

6− 119)x5 +
(39
√

6− 24)x4 + (26
√

6− 54)x3 + (13
√

6− 27)x2 + 3x + 1. Then,
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> a1 := a 1(f, x); a2 := a 2(f, x);

a1 :=
1316599234443

270840023

√
6 +

6310855638567
541680046

,

a2 :=
−96672521239976

1183208072032328121

√
6 +

1467373119039023
7099248432193968726

> CurvDeg3EllSub_J_2(a1, a2)
0

This means that the curve has J2 = 0 and (3, 3)-split Jacobian.

3.4. Rational model of genus 2 curve. For details on the rational model over
its field of moduli see [3], [6], [14]. The rational model of C (if such model exists)
is determined by the function Rational_Model().

Example 5. Let y2 = f(x) be a genus 2 curve where f := x5 +
√

2x3 + x. Then,

> Rational_Model(f,x);

x5 + x3 +
1
2
x

Example 6. Let y2 = f(x) be a genus 2 curve where f := 5x6+x4+
√

2x+1. Then,

> Rational_Model(f,x);

− 365544026018739971082698131028050365165449396926201478x6

− 606501618836700589954579317910699990585971018672445125x5

− 369842283192872727990502041940062429271727924754392250x4

− 32387676975314893414920003149434215247663074288356250x3

+ 74168490079198328987047652288420271784298171220937500x2

+ 38274648493772601723357350829541971828965732551171875x

+ 6501732463119213927460859571034949543087123367187500

Notice that our algorithm doesn’t always find the minimal rational model of the
curve. An efficient way to do this has yet to be determined.

4. Hyperelliptic curves of higher genus

A genus g hyperelliptic curve C which has a non-hyperelliptic involution in the
automorphism group can be written as

(5) y2 = x2g+2 + agx
2g + · · ·+ a1x

2 + 1

and ∆(a1, . . . , ag) 6= 0 (i.e., ∆ is the discriminant of the right hand side). We call
the above equation the normal form of the curve C.

The following

(6) ui := ag−i+1
1 ai + ag−i+1

g ag−i+1, for 1 ≤ i ≤ g

are invariants under the Dg+1-action and are called dihedral invariants of the
genus g. For a detailed treatment of such invariants see [4].
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The functions Normalpol() and Dih_Inv() compute the normal form and the
dihedral invariants of a curve y2 = f(x), provided that f(x) is a decomposable
polynomial in x2.

Example 7. Let y2 := f(x) be a genus 5 curve where f := 6x12 + 4x8 + 3x4 +
2x2 + 12. Then,

>Normalpol(f,x);

x12 +
1
3
· 2 3

2 x8 +
1
4
· 2 1

3 x4 +
1
6
· 2 1

6 x2 + 1

> Dih_Inv(f,x);

[
1

23328
,

1
2592

, 0,
1
54

, 0]

4.1. Genus 3 hyperelliptic curves. Every genus g = 3 hyperelliptic curve is
given by a homogenous equation y2 z6 = f(x, z) where f(x, z) is a binary octavic
(i.e., a degree 8 homogenous polynomial)

f(x, z) =
8∑

i=0

aix
iz8−i.

We define the following covariants:

g = (f, f)4, k = (f, f)6, h = (k, k)2, m = (f, k)4,

n = (f, h)4, p = (g, k)4, q = (g, h)4,

where the symbol (f, g)k denotes the k-th transvection of binary forms (cf. section
4.2).

Then the following

J2 = (f, f)8, J3 = (f, g)8, J4 = (k, k)4,

J5 = (m, k)4, J6 = (k, h)4, J7 = (m,h)4
(7)

are invariants of binary octavics.

4.1.1. Automorphism groups of Genus 3 hyperelliptic curves. A list of groups that
can occur as automorphism groups of hyperelliptic curves is given in [13] among
many other references. The function in the package that computes the automor-
phism group is given by AutGroup(). The output a the GAP identity of the group.

For a fixed group G one can compute the locus of genus g hyperelliptic curves
with automorphism group G. For genus 3 this loci is well described as subvarieties of
M3. The list of groups for g = 3 is: Z2

3, Z2×D8, Z2×Z2, Z2×Z4, U6, V8, Z2×S4, Z6.

Example 8. Let y2 := f(x) be a genus 3 curve where f := 3x8 +x6 +x4 +2x2 +1.
Then,

> AutGroup(f,x);

[Z2 × Z2, (4, 2)]
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4.1.2. Rational model of genus 3 hyperelliptic curves. We can determine the rational
model of all hyperelliptic curves with extra automorphisms other than the case when
the automorphism group is V4.

Example 9. Let y2 := f(x) be a genus 3 curve where f := x8 +
√

2. Then,

> Rational_Model(f,x);

x8 − 1

Example 10. Let y2 := f(x) be a genus 3 curve where f := x8 +14x4 +
√

6. Then,

> Rational_Model(f,x);

98
3

√
6x8 +

98
3

√
6x4 + 1

This is correct since the field of moduli in this case is Q(
√

6).

4.2. Higher genus hyperelliptic curves. We use the symbolic method of clas-
sical invariant theory to construct invariants of binary forms. Let f(X, Y ) and
g(X, Y ) be binary forms of degree n and m respectively. We define the r-transvection

(f, g)r :=
(m− r)! (n− r)!

n!m!

r∑
k=0

(−1)k

(
r
k

)
· ∂rf

∂Xr−k ∂Y k
· ∂rg

∂Xk ∂Y r−k

see [7] or [8] for details.
For the rest of this paper F (X, Y ) denotes a binary form of degree d := 2g + 2.

We denote invariants (resp., covariants) of binary forms by Is (resp., Js) where the
subscript s denotes the degree (resp., the order). We define the following covariants
and invariants:

J4j := (F, F )d−2j , j = 1, . . . , g,

I4 := (J12, J12)12,

I∗6 := ((F, J20)20, (F, J20)20)d−20.

I2 := (F, F )d,

I6 := ((F, J12)12, (F, J12)12)d−12,

The GL2(k)-invariants are called absolute invariants. We define the following
absolute invariants:

i1 :=
I4

I2
2

, i2 :=
I6

I3
2

, i3 =
I∗6
I3
2

, i4 =
I2
6

I3
4

In [9], [8] we study the 1-dimensional loci of genus g hyperelliptic curves with
reduced automorphism group A4, A5, S5. The above invariants give some nice con-
ditions to determine if the curves have such reduced automorphisms groups.

Lemma 1. Let Xg be a hyperelliptic curve with genus g defined over C.
a) If Aut (Xg) ∼= A5 then

i) the invariants (Ji, Ji)i are zero for i = 4, 8, 16, 28;
ii) if g ≤ 120 then the invariant (J8, J8)8 is zero;
iii) if g ≤ 60 then the invariants (J16, J16)16 and (J28, J28)28 are zero.

b) If Aut (Xg) ∼= A4 then J4(Xg) = 0.

Proof. See [9], [8]. �
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For all curves C with V4 ↪→ Aut (C) we provide a rational model over the field
of moduli as in [4]. Such models are also provided when Aut (C) ∼= A4, A5; see [8],
[9].

4.3. List of functions: In the genus 2 package there are the following functions:

a 1(C,x) a 2(C,x)
i 1(C,x) i 2(C,x)
i 3(C,x) J 2(C,x)
J 4(C,x) J 6(C,x)
J 10(C,x) BranchLoc_Deg3EllSub(i1, i2)

CurvDeg3EllSub(i1, i2, i3) CurvDeg3EllSub J2(s1, s2)
LocusCurvesAut V4(i1, i2, i3) LocusCurvesAut D4(i1, i2, i3)
LocusCurvesAut D6(i1, i2, i3) CurvDeg3EllSub_Degen(i1, i2, i3)

AutGroup(C,x) Rational Model(C,x)

In the genus 3 package there are the following functions:

i 1(C,x) i 2(C,x)
i 3(C,x) J 2(C,x)
J 3(C,x) J 4(C,x)
J 5(C,x) J 6(C,x)
J 7(C,x) J 8(C,x)
u 1(C,x) u 2(C,x)
u 3(C,x) J 14(C,x)

IsRational(C,x) Normalpol(C,x)
Dih Inv(C,x) AutGroup(C,x)

Rational Model(C,x)
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