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CODES OVER RINGS OF SIZE FOUR, HERMITIAN LATTICES,
AND CORRESPONDING THETA FUNCTIONS

T. SHASKA AND G. S. WIJESIRI

ABSTRACT. Let K = Q(v/—f) be an imaginary quadratic field with ring of
integers Ok, where £ is a square free integer such that £ = 3 mod 4 and
C = [n, k] be a linear code defined over Ok /20 . The level £ theta function
©n,(c) of C is defined on the lattice A,(C) := {z € O% : pe(z) € C}, where
pe : O — Ok /20K is the natural projection. In this paper, we prove
that: i) for any £,¢' such that £ < ¢/, ©4,(q) and ©x, () have the same

41
coefficients up to ¢ 4, ii) for £ > M —1, ©4,(C) determines the code

C uniquely, iii) for £ < M — 1 there is a positive dimensional family

of symmetrized weight enumerator polynomials corresponding to ©4,(C).

1. INTRODUCTION

Let K = Q(v/—/) be an imaginary quadratic field with ring of integers O,
where £ is a square free integer such that £ =3 mod 4. Then the image Ok /20K
of the projection py : O — Ok /20K is Fy (resp., Fo x Fy) if { =3 mod 8 (resp.,
¢ =7 mod 8).

Let R be a ring isomorphic to Fy or Fy x Fy and C' = [n, k] be a linear code
over R of length n and dimension k. An admissible level ¢ is an ¢ such that
¢ = 3 mod 8 if R is isomorphic to F4 or £ = 7 mod 8 if R is isomorphic to
Fy x Fo. Fix an admissible ¢ and define A¢(C') := {x € O} : ps(x) € C}. Then, the
level ¢ theta function ©,,)(7) of the lattice A¢(C) is given as the symmetric
weight enumerator swec of C, evaluated on the theta functions defined on cosets
of Ok /20k. In this paper we study the following two questions:

i) How do the theta functions ©,, () of the same code C differ for different
levels £7

ii) Can non-equivalent codes give the same theta functions for all levels £7
In an attempt to study the second question Chua in [1] gives an example of two
non-equivalent codes that give the same theta function for level ¢ = 7 but not
for higher level thetas. We will show in this paper how such an example is not a
coincidence. Our main results are as follows:

Theorem 1: Let C be a code defined over R. For all admissible £,¢' such that
> 1 the following holds

O, (C) = B4, (C) + O(g" ).
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Theorem 2: Let C be a code of size n defined over R and O,,(C) be its corre-
sponding theta function for level £. Then the following hold:

i): For l < w — 1 there is a d-dimensional family of symmetrized

weight enumerator polynomials corresponding to ©,,(C), where
5> (n4+1)(n4+2)  n+1) 1.

ii): For ¢ > w —landn < Z'f'Tl there is a unique symmetrized weight
enumerator polynomial which corresponds to Oy, (C).

This paper is organized as follows. In the second section, we give a basic intro-
duction of lattices and theta functions. We define a lattice A over a number field
K in general, the theta series of a lattice, and one dimensional theta series and its
shadow. Then we discuss the lattices over imaginary quadratic fields K = Q(v/—¢)
with ring of integers Ok, where ¢ is a square free integer such that £ =3 mod 4.
The ring Ok /(20k) is equivalent to either the field of order 4 or a ring of order
4 depending on whether / =3 mod 8 or £ =7 mod 8. We define bi-dimensional
theta functions for the four cosets of Ok /(20k).

In the third section, we define codes over F4 and Fo x o, the weight enumerators
of a code, and recall the main result of [1]. We simplify the expressions for bi-
dimensional theta series and prove Theorem 1.

In the fourth section, we study families of codes corresponding to the same theta
function. We call an acceptable theta series ©(q) a series for which there exists
a code C such that ©(q) = 6,,(C)(g). For any given ¢ and an acceptable theta
series O(q) we can determine a family of symmetrized weight enumerators which
correspond to O(q). For small ¢ this is a positive dimensional family, where the
dimension is given by Theorem 2, i). Hence, the example given in |1] is no surprise.
For large ¢ (see Theorem 2, ii)) this is a 0-dimensional family of symmetrized weight
enumerators which correspond to ©(q). Therefore, the example that Chua provides
can not occur for larger ¢.

2. INTRODUCTION TO LATICES AND THETA FUNCTIONS

Let K be a number field and Ok be its ring of integers. A lattice A over K is
an Og-submodule of K™ of full rank. The Hermitian dual is defined by

(2.1) N ={zeK" |z -y€Ox,forallyeA},

where z-y := 2?21 x;y;. In the case that A is a free Ok - module, for every O basis
{v1,v2, ..., v} We can associate a Gram matrix G(A) given by G(A) = (v;.v;)7 ;24
and the determinant det A := det(G) defined up to squares of units in Og. If
A = A* then A is Hermitian self-dual (or unimodular) and integral if and only if
A C A*. An integral lattice has the property A C A* C deﬁA. An integral lattice
is called even if z - & = 0 mod 2 for all x € A, and otherwise it is odd. An odd
unimodular lattice is called a Type 1 lattice and even unimodular lattice is called
a Type 2 lattice.

The theta series of a lattice A in K™ is given by ©4(7) = >, ., €™7*%, where
7€ H ={z€C:Im(z) >0}. Usually we let ¢ = e™7. Then, Ox(q) = >, ¢°*
The 1-dimensional theta series and its shadow are given by

(2.2) Os(q) =D ™, faa):= > ™.

meZ meZ+1/2
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Let £ > 0 be a square free integer and K = Q(v/—F) be the imaginary quadratic
field with discriminant dg. Recall that dgy = —¢ if / = 3 mod 4 and dx = —4¢
otherwise.

Let Ok be ring of integers of K. The Hermitian lattice A over K is an Ok -
submodule of K™ of full rank. Let £ =3 mod 4 and d be a positive number such
that £ = 4d — 1. Then, —¢ = 1 mod 4. This implies that the ring of integers is
Ok = Z]wy], where wy = _1%‘/_7 and w? +wy +d = 0. The principal norm form of
K is given by Qq(z,y) = |x — yw|? = 22 + 2y + dy?. Since £ =3 mod 4, we can
consider two cases:

(1) If £ =3 mod 8 then —¢ =5 mod 8. Thus, the prime ideal (2) C Z lifts to
a prime 20k C Og. Since the ring of integers O is a Dedekind domain, 20 is
a maximal ideal. Therefore Ok /(20K ) ~ Fy.

(2) If £=7 mod 8 then —¢ =1 mod 8. Then the prime ideal (2) € Z splits in
K. Therefore 20 splits in O. Hence, Ok /(20k) ~ Fy x Fo. In either case, a
complete set of coset representatives is {0,1,wy, 1 + wp}.

Let the following be the bi-dimensional theta series for the four cosets:

Ad(q) = Bao, (1) = Y ¢'Qulmm)

m,neEZ
Cd(q) — @1+20K (7_) _ Z q4Qd(m+%,n)
m,n€Z
(2.3) 1Qu(mintd)
Gd(Q) = 6w1+20K (T) = Z q T
m,n€”z
Hd(q) = @1+we+201< (7_) = Z q4Qd(m+%,n+%)
m,neEZ

Then we have the following lemma.

Lemma 1. Bi-dimensional theta series can be further expressed in terms of the
standard one dimensional theta series and its shadow.

Aa(g) = 05(4")03(q") + 02(¢")b2(¢")
(2.4) Ca(q) = b2(g")03(q") + 03(¢")b2(¢")

¢
Gala) = Halg) = 92(q)§2(q )
Moreover,
(2.5) 2Ga(g) = Aa(g"*) — Aalg) — Ca(q)-
Proof. See [3] for details. O

3. CODES OVER F4 AND [y x [Fy

Let Fy = {O7 1, w,wz}, where w? +w + 1 = 0, be the finite field of four elements.
The conjugation is given by z = 22, 2 € F4. In particular © = w? = w + 1. Let
R, = Fy + wF, with the new equation for w is w? +w = 0. Notice that R, has two
maximal ideals namely (w) and (w + 1). Furthermore, one can show that Ry/(w)
and Ry/(w + 1) are both isomorphic to Fo. The Chinese remainder theorem tells
us that Ry = (w) @ (w + 1). Therefore, Ry ~ Fy x F5. The conjugate of w is w + 1.
Let R be the field F4 if =3 mod 8 or the ring Ry ~ Fy x Fy when £ =7 mod 8.
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A linear code C of length n over R is an R-submodule of R™. The dual is defined
asCt={ueR:u-v=0 for allv e C}. If C = C* then C is self-dual.

We define Ay(C) := {z € O% : pe(x) € C} where p; : O — Ok /20, — R .
In other words, A,(C) consists of all vectors in O% which when taken mod 20k
componentwise are in pzl(C). The following is immediate.

Lemma 2. (1) Ae(C) is an Ok -lattice.
(2) Ap(CL) =2A4(C)*.
(3) C is self dual if and only if L\/g) is self dual.

Let u = (uy,ug, -+ ,u,) € R™ be a codeword and o € R. Then the counting
function nq(u) is defined as the number of elements in the set {j : u; = a}. For
a code C we define the complete weight enumerator (cwe), symmetrized weight
enumerator (swe) and Hamming weight enumerator (W) to be

cwec(X,Y, Z, W) := Z Xo(w)yna(u) zne (W) pprnate (v)
ueC
swec(X,Y,7Z) = cwec(X,Y,Z,Z)

Weo(X,Y) := swec(X,Y,Y).

(3.1)

Then we have the following.

Ae(C)

Proposition 1. Let £ = 3 mod 4, C be a linear code over R, and 73 be a

2
Hermitian lattice constructed via the construction A. Then

(32) 91\1{(0) (T) = swec (Ad(Q)7 Cd(q)v Gd(q))

where Aq(q), Ca(q), and G4(q) are given as in Eq. (2.4]).

For a proof of the above statement the reader can see [1]. From the definition of
one dimensional theta series we have

. 2 i2_
02(q) =2¢"*> " ¢', 02(q") =24 ¢ 7', Os(¢") =1+2¢" > ",

€S irodd i€Zt

where S = {j2_1 :7=1 mod 2}. From Eq. (2.4) we can write

¢

02(q)02(q" (e+1)
2(q)22(q ) _ 20,

Galq) =
where oy = ), q Zjes ¢%. Then,

Aa(q) = 05(q")0s(q™) + 02(¢*)02(¢*)
_ (1+2q4 Z q4(i2’1))(1+2q4z Z q4€(j271))

1€ZT JELT

1 4qt+? Z qi%l Z q(j%w

icodd j:odd

41

=y + ¢z + q*ay,
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where as, a3 and a4 have the following forms
o = 1 + 2q4 Z q4(i271)

i€Zt
a3 =4 Z qi2—1 Z q(j2—1)e
irodd jrodd
=2 Z q4£(1‘2—1)(1 +2q4 Z q4(i2—1))_
jEZT i€zt

Furthermore,
Calq) = 02(¢")03(¢*) + 03(q*)02(¢")
=92 Z q712—1(1 +2q4e Z q4e(¢2—1))

iodd i€z
+(1 +2q4 Z q4(i271))(2qé Z q(i%l)e
iE€ZT i:odd

4€+1a

:Oé5+q4046+q 75

where a5, ag and a7 have the following forms

as =2 Z qizfl

i:odd

g =2 Z q(j2_1)€(1 + 2q4 Z q4(12_1))
jrodd iez+

ar =4 Z qi2—1 Z q4£(j2—1).
i:odd JEL*

The next result shows that for large enough admissible ¢ and ¢’ the theta functions
04,(C) and ©4,,(C) are virtually the same.

Theorem 1. Let C be a code defined over R. For all admissible £,0 such that
>0, the following holds

41

(3.3) 04,(C) =04, (C)+0(q ).
Proof. Let

swea(X,Y,Z) = > aijk- X'YIZF
it+j+k=n
be a degree n polynomial. Write this as a polynomial in Z. Then

swee(Z) = Xn:LkZ’“ =Lo+ Z(zn: Lz 1.
k=0 k=1
Terms in Lg are of the form of a; ; X*Y7, where i + j = n. From the above we have
Ad(q)" - Ca(q) = (o2 + ¢as + " as)’ - (a5 + ¢'as + ¢ ar)
= (terms independent from £) + ¢*(--)
Also we have seen that Gy(q) = ¢“T1/%q;. This gives
O, (C) = swec(Aa(q), Calq), Galq))
= (terms independent from £) + O(q%).
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Then the result follows. O

Example 1. Let C be a code defined over Ry which has symmetrized weight enu-
merator

swec(X,Y,Z2) = XP + X?Z + XY? 4+ 2X7° +Y?Z + 275
Then we have the following:
Ong, (C) = 14 6¢* +12¢° + 8¢"? +12¢'6 + 6¢'® + 48¢*° 4 30¢*2 + - - -
(3.4) 04, (C) =146¢" 4+ 12¢° + 8¢'? + 6¢'° 4 30¢%° + 6¢*2 + 48¢** + - -
Onr (C) = O, (C) + O(¢").

4. A FAMILY OF CODES CORRESPONDING TO THE SAME THETA FUNCTION

If we are given the code over R and its symmetrized weight enumerator poly-
nomial, then by Eq. we can find the theta function of the lattice constructed
from the code by using the construction A. Now, we would like to give a way to
construct families of codes corresponding to the same theta function.

Let ©(g) = Y 2, Aiq" be an acceptable theta series for level ¢ and

f(.’lf, Y, Z) = Z ci,j,kxiyjzk
i+j+k=n
be a degree n generic ternary homogeneous polynomial. We want to find out how
many polynomials f(z,y, z) correspond to ©(q) for a fixed £.
We have the following lemma.

Lemma 3. Let C be a code of size n defined over R and ©(q) be its theta function

n({+1)
4

for level £. Then, ©(q) is uniquely determined by its first coefficients.

Proof. Let C be a code over R, ©(q) = Y=y \ig" be its theta series, s = @
and
f(‘ra Y, Z) = Z Ci,j,kxzyj Zk
i+j+k=n

be a degree n generic ternary homogeneous polynomial. Find A4(q), Cu(q),Ga(q)
for the given ¢ and substitute in f(x,y,z). Hence f(x,y,z) is now written as a
series in q. Recall that a generic degree n ternary polynomial has r = ("H)QM
coefficients. So, the corresponding coefficients of the two sides of the equation are
equal:

f( ()Cd Z/\zq

Consider the term

40+1,, )i ¢+ K

e 7 (¢ 7 a)

cijrlae +q az+ q4£0¢4) (a5 + d‘ag +q

k(/Z+1)

Then ¢; ;1 appears first as a coefficient of ¢/
(Z+1) n(+1)
I+ =7 1

system of equations with equations. Let us denote this system of
equations as =. Solve this system for ¢; ;. Hence, ¢; ;1 is a function of Iy, - -, ;.
For each i > s,1,, is a function of ¢; ; 1, for 4, j,k = 0,--- ,n, and therefore a rational
function on Iy, - -+ ,ls. This completes the proof. [

For all such j,k we have

. Consider the equations where ¢; ;. appears first. This is a
< (n+1)(n+2)
= 2
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Next we have the following theorem:

Theorem 2. Let C be a code of size n defined over R and O,,(C) be its corre-
sponding theta function for level £. Then the following hold:

i): For £ < w — 1 there is a §-dimensional family of symmetrized

weight enumerator polynomials corresponding to ©p,(C), where
5> (n+1)(n+2)  n(+1) 1
= 2 1
ii): For{ > w —landn < H’Tl there is a unique symmetrized weight
enumerator polynomial which corresponds to Oy, (C).

Proof. We want to find out how many polynomials f(z,y, z) correspond to ©4,(C)
for a fixed £. ©,,(C) and f(x,y, z) are defined as above. Consider the system of
equations =.

If % < r then our system has more variables than equations. Since the
system is linear, the solution space is a family of positive dimension.

If w > r then for each equation in = (see the proof of the previous Lemma)
we have only one ¢; ; appearing for the first time. Otherwise suppose c; ;; and
k(ZZ—l) =+ k’(i—s-l).

cir jo.k appear for the first time in an equation of Z. Then j +
This implies

(4.1) 4G -4 =K —k)(L+1).

Without loss of generality, assume &’ > k. We can consider three cases.

case 1: If k' — k > 2, then from Eq. we have dn(j —j') =n(k' —k)({+1) >
4r(k" — k). Then we have n(j — j') > (n + 1)(n + 2). Since n > (j — j'), we have a
contradiction.

case 2: If ¥ —k = 1, then by Eq. j—7 = é'le. Since j—j’ < n and H’Tl > n,
we get a contradiction.

case 3: k' — k =0, then by Eq. we have j = j'. Hence i = 7'.

Notice that ¢y 0,0 is uniquely determined by the equation corresponding to the
equation of coefficient of ¢°. Solve the system Z in the order of the equation that
corresponds to the power of g. We have a unique solution for ¢; j k. (]

4.1. Families of codes of length 3. In this section we discuss the codes of length
3 for different levels £. Our main goal is to investigate the example provided in [1]
and provide some computational evidence for the above two cases. We assume that
the symmetrized weight enumerator polynomial is a generic homogenous polynomial
of degree three.

Let P(z,y, z) be a generic ternary cubic homogeneous polynomial given as below

(42) P(z,y,2) = c12° + coy® + c32° + cax®y + c5222 + coy’x + cry’z
’ + 0822m + 0922y + croxy%.

Assume that there is a code C, of length 3, defined over R such that swec(z,y, z) =
P(z,y,z). First we have to fix the level £. When we fix the level, we can find
Aq(q),Ca(q), Ga(q). By equating both sides of

p(Aa(9), Calq), Gala) = Y Nid',
=0
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we can get a system of equations. When ¢ = 7, we are in the first case of the
previous theorem. The system of equations is given by the following.

€= A0 =0 6y + dcg + 2¢5 + 8¢r — Ay = 0
C C C C7 — =
9 — A\ =0 1 3 5 7 — A\

(43) 8¢y 4+ 8cg +4c1g — A5 =0

dcq 2 = A =0 8¢5 + 83 + 8cr + 8¢5 + 8¢ — Ag = 0
c c c c ce — A¢ = 0.
8¢y 1+ derg — s = 0 5 3 7 8 6 6
The solution for the above system is given by ¢; = Ag,cq = %)\1, and
3 1

1 1 1 1 1
=)\ A3 — =\ =_-Ag— Xy — -\ )
C2 21+83 85+C9, c3 970~ A2 44+86+C7,

1 3 1 1
(44) Cy = —3)\0 + 5)\4 - 4C7 - 2C8, Cg — 5)\0 + Z)\Q - Z)\4 + 207 + Cg,

1
clo = —A1 + 1)\5 — 2¢9

where c7,cg,cg are free variables. By giving different triples (c7,cs,cg), we can
construct different polynomials P(z,y, z) for the same Y ;o \iq".

Consider the following theta function. From [1] there are two non isomorphic
codes that give this theta function for level ¢ = 7:

(45) Oy50,2 =1+ 6¢% + 24 + 56¢° + 114¢% + 168¢'° + 280¢'? 4 294¢'* + - -

For this particular theta function, We can rewrite the solution (Eq. (4.4))) as follows:

C1 = 1, Cy = Cg,C3 = 1—|—C7,C4 = 0705 = 9—407—268, Ce = —3—207—|—CS,610 = —209.
For the triple (1,2,0) (resp., (0,3,0)) we get the symmetrized weight enumerator

polynomial for the code C3 2 (resp. Cs3). That is swec, ,(X,Y, Z) = X3+ X2Z +

XY2+2X 22+ Y2Z + 273 (vesp., swec, ,(X,Y, Z) = X +3X27Z + 3X 7% + 73),

where (52 and (3 3 are given by:

C39=w<[0,1,1] > +(w+1) <[0,1,1] >+

C33=w<[0,0,1] > +(w+1) <[0,0,1] >+ .

When ¢ = 15, we are in the second case of the above theorem. The system of

equations is as follows:

(4.6)

c1—X=0 8cs +4cig— A5 =0
2c, — A1 =0 2¢5 + 8¢y +8cg — Mg =0
(4.7) 4cg — A =0 4eg + 8¢7 +12¢1 +8c5 — A\g =0
8co — A3 =0 10cs + 8cg 4+ 8c19 — Ag =0
6c1 +2c5 — A4 =0 8¢y + 8¢5 + 12¢g + 8¢3 + 8¢1 — A2 = 0.

Each ¢; appears first in exactly one equation. For example consider the seventh
equation. c; is the only variable that appears first in the seventh equation. Solve
the system in given order. The solution for the above system is given by; ¢; = Ag,
Cy = %)\37 Cq = %)\1, Cg — i/\% and

1 3 1 3 1 1
€3 =—Xo — 5)\2 + 1/\4 + — X6 — §>\8 + g)\u, c5 = —3X0 + §>\4

4
3 1 1 1 3 1 1
(4.8)  ¢7 = 1)\0 — 1/\2 — §>\4 + g)\ﬁ, co = g)q - 1/\5 + §>\9

3 1 3 1 1 1
8 = 50+ A2 — 1A — A+ 1A, 10 =—A1+ 27X
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We have a unique solution. This implies that two non equivalent codes cannot give
the same theta function for ¢ = 15 and n = 3.

5. CONCLUDING REMARKS

The main goal of this paper was to find out how theta functions determine the
codes over a ring of size 4. First we have shown how the theta functions of the
same code C' differ for different levels ¢. The first Z'le terms of the theta functions
for levels ¢ and ¢’ are the same, where ¢/ > /.

In [1], two non-isomorphic codes that give the same theta function for level
¢ = 7 but not under higher level constructions are given. We justified the reason
why we don’t have a similar situation for higher level constructions. In this note
we have addressed a method that we can use for finding a family of polynomials
that correspond to a given acceptable theta series for some fixed level £. We have
studied two cases depending upon £ that give either a positive dimensional family
of polynomials or a unique polynomial.
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