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Let X be an algebraic curve of genus g > 2 defined over a field F, of characteristic p > 0. From X', under
certain conditions, we can construct an algebraic geometry code C. If the code C is self-orthogonal under
the symplectic product then we can construct a quantum code @, called a QAG-code. In this paper we study
the construction of such codes from curves with automorphisms and the relation between the automorphism
group of the curve X and the codes C and Q.
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1. Introduction

In recent years there is an increased interest on the use of algebraic geometry in the theory
of quantum cryptography and quantum coding. In this survey we study the way of constructing
quantum codes from algebraic geometry codes (AG-codes). We call such codes quantum algebraic
geometry codes (QAG-codes). Furthermore, we discuss the relation between the automorphism
group of the algebraic curve, the automorphism group of the AG-code, and the automorphism
group of the corresponding quantum code.

Throughout this paper X denotes a genus g irreducible, algebraic curve defined over a finite
field ;. Under certain conditions, starting with X one can construct an algebraic geometry code
which we denote by Cy. If Cy is self-orthogonal then from Cy we can construct a quantum
code @y, which will be called a QAG-code. The goal of this paper is to explore when the above
constructions are possible. There are several papers in this area and a few algorithms, some of
which have been implemented on some computer algebra systems. To our surprise the current
versions of such algorithms have many weaknesses and their capabilities are quite limited. Also,
their implementations are very inefficient when the size of the field increases. Our goal is to study
how one can broaden the scope of these algorithms and improve their implementations. Such
implementations will be discussed in detail in a subsequent paper.

In classical coding theory AG-codes with a large group of automorphisms have good error-
correcting properties. Under certain conditions the automorphism group of the curve is embedded
in the automorphism group of the corresponding code. Hence, AG-codes which come from algebraic
curves with a large group of automorphisms are of special interest. Very little is known how
the automorphism group of the quantum code @y relates to the automorphism group of X and
Cx. The second goal of this paper is to study the relation among such groups. Furthermore, we
discuss this problem from the computational viewpoint. The existing algorithms for computing the
automorphism group of curves and codes have some limitations.

It is interesting to note that our method of constructing QAG-codes is based on the existence
of an automorphism of the curve X'. We focus on the algebraic curves with cyclic automorphism
group, but other curves may be used as well. Hence, curves with non-trivial automorphism groups
are of interest in this construction. In the last section we give a complete table of groups which
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occur as automorphism groups of curves of genus 3 and 4 over a field of characteristic 2. This paper
is organized as follows:

In section 2 we give a brief description of the main definitions of algebraic geometry codes and
stabilizer codes. This prepares for the construction of quantum codes when an algebraic curve X
defined over a finite field F, is given. Given a linear code C' in a vector space V, using the properties
of stabilizer codes we can construct a quantum code if C' is self-dual under some symplectic form.

In section 3 we study the construction of quantum algebraic codes based on the existence of
the rational points on the curve X and the existence of an involution o € Aut p(X). We use
this method to construct QAG-codes from hyperelliptic and non-hyperelliptic curves as well. In
section 4 we illustrate this construction for hyperelliptic curves. We are able to easily construct
many QAG-codes over small size fields and give an algorithm how this can be done in general.

In the last section we study the automorphism group of quantum codes. We compare the
automorphism group Aut (X) of the curve X with the automorphism group of the corresponding
quantum AG-code.

Notation: Throughout the paper F, denotes a finite field of ¢ elements where ¢ is a prime power.
The notation [n,k,d] denotes a classical code of length n, dimension k, and minimum distance
d. [[n,k,d]] will denote a quantum code. A cyclic group of order n is denoted by C,,. In general,
given a genus g > 2 algebraic curve X’ defined over F, the automorphism group of X is denoted by
Aut (X) and is defined to be the group of automorphisms of X' defined over the algebraic closure
of F. The group of automorphisms defined over F is denoted by Aut p(X).

The permutation automorphism group of the code C' C Fy is the subgroup of S, (acting on
[y by coordinate permutation) which preserves C'. We denote such group by PAut (C). The set
of monomial matrices that map C to itself forms the monomial automorphism group, denoted by
MAut (C). Every monomial matrix M can be written as M = DP where D is a diagonal matrix
and P a permutation matrix. Let v be a field automorphism of IF; and M be a monomial matrix.
Denote by M, the map M, : C — C such that Vx € C we have M, (x) = v(Mx). The set of all
maps M, forms the automorphism group of C, denoted by I'Aut (C).

2. Algebraic geometry codes and stabilizer codes

There are many ways of constructing quantum codes from the existing algebraic geometry
codes. In this section we give a brief description of algebraic geometry codes, stabilizer codes, and
quantum algebraic codes.

Let X be an algebraic curve defined over a finite field F, with characteristic p > 0. By F = F,(X)
we will denote the function field of X

2.1. Algebraic geometry codes

Let Py,..., P, be places of degree one and let D = P, + --- + P,,. Furthermore let G be a
divisor with supp(G) Nsupp(D) = (). Then the Goppa code (respectively AG code) Cr C F}! is
defined by

Ce(D,G) ={(f(P1),-... f(P)) | f € L(G)} CFy.
Define the following linear evaluation map

Then the Goppa Code is given by Cr(D,G) = ¢(L(G)). The code Cr(D,G) is a linear [n, k, d
code with parameters

k=dimG —dim(G — D), d>n—degG =: dges.

The parameter dges is called the designed distance of the Goppa code. Assume deg G < n and
let g be the genus of F/F,. Then we have:

384



Quantum codes from algebraic curves with automorphisms

1. ¢: L(G) — Cr(D,G) is injective and C (D, G) is an [n, k, d] code with
k= dimG >degG+1—g,
d > n-—degdG.

2. If in addition 2g — 2 < deg G < n, then

k = degG+1-—g.
3. If (f1,..., fr) is a basis of L(G), then
AP - fi(Pa)
Moo= | z
fe(Pr) o fu(P)
is a generator matriz for Cr (D, G).

Let D = P, + --- + P, be a divisor, where the P;’s are places of degree one of an algebraic
function field F//F,, Furthermore, let G be a divisor with supp(G) N supp(D) = 0. Then we define
the code Cq(D, G) by

Ca(D,G) :={(resp, (w),...,resp, (w)) |we Qp(G—D)} C Fy-
The following result is well known:
Lemma 1. The code Cq(D,G), where D and G are as above, has the following properties:
1. C¢(D,G)*+ = Cq(D,G).
2. Co(D,G) =a-Cr(D,H) with H= D — G+ (n) where n is a differential, vp,(n) = —1 for
i=1,...,n, and a = (resp, (n),...,resp, (N)).
3. Ce(D,G)* =a-Cp(D,H).

One common construction is the so-called one point code. We define as admissible a class of
curves which have some additional conditions on their divisors.

Definition 1. A genus g > 1 curve X'/F, is called admissible if it satisfies the condition:

i) there exists a rational point Py, and two functions z, y € F|(X) such that (2)ec = kPso, (Y)oo =
[Py, and k, | > 1;

ii) for m > 0, the elements 'y with 0 < 4,0 <j <k—1, and ki +1j < m form a basis of the
space L(mPx).

Next we define
Aut p.g(X) :={o € Aut (X)|o(D) = D and o(G) = G}.

Let X/F, be an admissible curve over F, of genus g where | > k. Assume that m > [. Let
D =3} pc; P where J C P\{P}, P is the set of all rational points of &'. The one point code of
level m is the code

L(D,mPx).

With the above notation we have the following:

Lemma 2. Let X/F, be an admissible curve over F, of genus g where l > k. Assume that m > .
Let D =3 pc; P where J CP\{P}, P is the set of all rational points of X. If

k-1 k-1
r - .
IR ey o

where n=1J|, f=min{k — 1, r|y" € L(mPx)} then
Aut (CL‘,(D,’ITLPOO)) ~ Aut D,mPx (X)

n > max{2g + 2,2m, k(I +

)}
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Proof. See [18] for details. O

Next we give a brief introduction to the way of constructing quantum codes from algebraic
geometry codes.

2.2. Stabilizer codes

Stabilizer codes are helpful devices that make possible the construction of quantum codes from
classical codes. Let V denote the qubit state space and GG, the Pauli group on n qubits. Let H < G,
and denote by Vg the subspace of V fixed by H;

Vg :={veV]|gv=uvVgeGqG,}
The proof of the following lemma is elementary.
Lemma 3. Vy is non-trivial if and only if H is Abelian and —I ¢ H.

From now on we will assume that H is Abelian and —I ¢ H. The subspace Vy is called the
stabilizer code C(H) of H. For a proof of the following see [2].

Proposition 1. Let {E;} be a set of operators in Gy, such that E;Ek ¢ N(H)\ H for all j and
k, where ET denotes the adjoint of E. Then {E;} is a correctable set of errors for the code C(H).

Corollary 1. Let H be an Abelian subgroup of Gy,. If a state |¢) is in the +1 eigenspace of a set
of generators {g1,...,qi} of H, it is an eigenstate of all elements in H.

Since we have seen that it suffices to look at a set of generators, we can represent a stabilizer
code in an easier way. A generator matrix G of a stabilizer code is an | X 2n-matrix G(X|Z2)
where the first n components represent the X errors, the second n components represent the Z
errors. This matrix defines a [[n, k, d]] quantum error correcting code with k =n — .

The weight wt of an operator U; ® - - - ® U, is the number of elements U; that are not equal
to the identity.

Let E € G,, be an error operator. Then:

1. If £ € H then E is a codeword.
2. If E € G,\N(H) the error is detectable and can be corrected.

3. If E € N(H)\H the error cannot be detected and therefore is not correctable.

The above allows us to introduce the distance of a stabilizer code. The distance d of a quantum
stabilizer code C' is the minimum weight of all normalizer elements that are not in the stabilizer.

d=min{wt(z) |z € N(H)\H}.

Let x = (z1,...,%21), ¥ = (Y1,--+,Y2n) € qun. We call (z,y), the standard symplectic inner
product,

n

(T, y)s = Z TiYn+i — Tntili -

i=1
The stabilizer code of the normalizer N(H) is equal to the dual code C*s with respect to the
symplectic inner product {, )s. We obtain that

d = min {wt(z) | z € C*+\C}.

The next proposition gives a way of constructing quantum codes from classical codes; see [2] for
details.

Proposition 2. Let C C FqQ” be a (n + k)-dimensional subspace such that C+s C C. Then, there
exists a quantum code Q C H®™ of dimension ¢* and minimum distance d :== dim C'\ C*t=.

Hence, in order to construct quantum AG-codes we need to construct AG-codes which are
self-orthogonal.
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3. Quantum algebraic geometry codes from algebraic curves w ith automor-
phisms

We continue with the notation of the previous session; X is a genus g curve defined over a finite
field F,; and F is its function field. The following lemma is cited from [11, Prop. VIL.1.2]. It permits
to construct differentials with special properties that help to construct a self-orthogonal code.

Lemma 4. Let x and y be elements of F' such that vp,(y) = 1, vp,(x) = 0 and z(P;) = 1 for
i=1,...,n. Then the differential n := x~% satisfiesvp,(n) = —1 andresp, () =1 fori=1,...,n.

First, we show under which circumstances a quantum stabilizer code can be obtained from an
algebraic geometric construction.

Theorem 1. Let X be a genus g irreducible algebraic curve defined over Fy and Py, ..., P, degree
one rational points on X. Let o € Aut g(X) be an involution such that oP; # P;, Vi,j =1,...,n.
Further assume that we have a divisor G such that G = G, vp,(G) = vyp,(G) =0 for all i. Then,
there exists a quantum code Qx = [[n, k,d]] such that
{deg GJ
n— .
2

Proof. Let F = F,(X) be the function field of X. Let P;,..., P, be pairwise distinct places of
degree one such that oP; # P;, Vi,j = 1,...,n. Then, by a strong approximation theorem there
is a differential n such that

k=dimG—-dim(G—-P,— - P,—o(P)—--0(P,))—n, d

WV

Up, (77) = Vo P (’r]) = -1,
resp,(n) =1, (2)
resqyp,(n) = —1.

Further assume that we have a divisor G such that cG = G, vp,(G) = v,p,(G) = 0 for all i. Define

C(G) ={(f(P1),--, f(Pn), f(aP1),.... f(aPy)) | f € L(G)} CFy".

Let
H=FP+ - +P,+0Pi+---+0PF,) -G+ (n),

where 7 is as in equation (2). Then, we have C(G)*: = C(H).

Let us assume that H < G. Then, L(H) C L(G). Hence, C(D,G)*+ C C(D,G). We have
k = dim C(D, G) — n which implies the result.

Let f € L(G) such that wt (f(P1),..., f(c(Py)) = J # 0. Hence, there exists a set of coordi-

nates f(P1),..., f(Pi—s) which are all zero. Thus, we have f € L (G - Z?_f(Pi,j + UPM)) The

dimension of this space is > 0, which implies the result.
O

Next, we should like to construct quantum codes starting from algebraic curves which have non-
trivial automorphisms. The most common class of curves are obviously the hyperelliptic curves.
However, we start in a more general setting. Our first class of curves are the curves that have a
cyclic group embedded in the automorphism group of the curve. The hyperelliptic curves will be
studied more in detail in the next section.

3.1. Codes on the cyclic covers of the projective line

Let k be a field of characteristic p > 0 and Fy = k(x) a function field of the projective line
P! (k). We consider a degree r cyclic extension F := k(z,y), where

S

y = f(z) = H(Ifai)di, 0<di<m

i=1
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for some fixed m € Z*. The only places of Fy that ramify are the places that correspond to the
points * = «;. We denote such places by Q1,...,Qs and by B := {Q1,...,Q} the set of these
places. The ramification indexes are e(Q;) = (T—z) )

Let X denote the algebraic curve with affine equation

defined over k, and let G := Aut (X) be the automorphism group. Then, there is a cyclic group
Cy = Gal(F/Fp) of order r such that C, — Aut (X). Fix a generator o € C,.

Lemma 5. Let 7 € Aut (X) such that 7 & C,., s be the number of ramified places of the extension
F/Fy, and d = deg f(x). Then, the equation of the curve is given by

y" = f(a)
for some §|d. Moreover, f(x?) is a monic polynomial with constant coefficient 1.

Proof. It can be easily obtained from [1, Lemma 2.3] or from the results in [13], [6] that the defining

equation of F' is
d/s

y2 = g aix‘;'i.
i=0

Since X is a smooth algebraic curve, the discriminant of the right hand side should be non-zero.
Hence, all d; = 1,7 =1,...,s. Hence, s = d. The rest follows. O

Let X be an algebraic curve defined over a field F, of characteristic p > 0 given by an equation
yr = f(x(;)’

where d = deg f(z). Let C,. — Aut (X)) such that C,. = (o). The corresponding cover ¢ := X —
X has d branch points. Let B be the branch set. For a given rational point P € X we define
Orby(P) ={o(P) € X}. If (P) & B then |Orb,(P)| =r.

Let Pi,..., P, be rational points on X such that ¢(P;) € B for all i = 1,...,n. Define the
divisor

D= zn: (Pi+o(P) 4+ H(P)) = zn:orb(pi) _

Then deg D = rn. For some P € X such that ¢(P) € B we define G = mP for some integer m.
Then o(G) = G. We can take infinity to be one of the branch points in B. In that case the point
P is the fiber is denoted by Py. It is common in coding theory to take G to be mPy.

We define an algebraic geometry code as previously Cx = L(G, D). The proof of the following
theorem is similar to that of Theorem 1.

Theorem 2. Let X be an algebraic curve defined over a field ¥y of characteristic p > 0 such
that C, = (o) — Aut (X). Let Pi,..., P, be rational points on X such that |Orb,(P;)| = r and
Orb, (P;) N Orb, (P;) =0 for all i, j. Further assume that we have a dwisor G such that oG = G,
vp,(G) = vyp,(G) = 0 for all i. Then, there exists a quantum code Qx = [[nr, k,d]] such that

deg G
5 .

k=dimG — dim(G — D) — nr, d}nr—{

Example 1. Let X be the curve

y —y=2a'
defined over Fy. For characteristic p > 7, Aut (X) is a group of order 96 with Gap identity (96, 64).
Denote the set of affine rational points of X over F, by {Py,...,P,}. Let C = C(D,G), where

n + 1 is the number of rational points of X and

G=mPy, D=P,+---P,.
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The permutation automorphism group PAut (C) is as follows:

i) If 0 <m < 3 or m > n+4 then PAut (C) = 5,.

ii) If n > 24 and 4 < m < n/2 then PAut (C) = Autp mp,_ (X).
For a proof of the above statement see [15].

Let X be defined over Fy. Take m = 6. By computation using GAP, we find that Cz(D,G) is
a [4,4,1] code with a generator matrix

a o> 0 0

o> o 0 0
a o> 1 0 |
1 1 1 1

where « is a primitive element of F;. The permutation automorphism group is isomorphic to the
group with GAP identity [24,12]. In this case

PAut (C) — Aut (X).

This code is clearly an MDS code. The automorphism group I'Aut (C') has Gap identity (1944, 3876).
Next we construct a quantum code from this curve. One can check that this code is self-orthogonal
with respect to the inner product. Hence, there is a quantum code @ which has parameters [[4, 4]].
Its automorphism group is of the order 31104 and is a degree 2 extension of I'Aut (C).

O

It is obvious from the above theorem that to construct quantum codes from algebraic geometry
codes we have to start with algebraic curves having many rational points. Hence, we have to
look at classes of curves which are normally used to construct AG-codes. Thus, Hermitian curves,
hyperelliptic curves, and more generally C,;, curves, seem to be good candidate curves. From the
above construction, we also need to have algebraic curves with at least one involution. Hence, we
want curves with automorphisms and with many rational points. An obvious class of curves which
assures the existence of an involution are of course the hyperelliptic curves. They will be the focus
of the next section. However, we should mention that there are many other classes of curves that
have an involution. Many questions remain unanswered about the choice of the involution. Does
the choice of the involution determine any of the parameters of the code? Does the size of the
automorphism group of the curve have any effect on the corresponding algebraic geometry code
or the corresponding quantum code. Very little is known in this field. In the next section we will
see how the hyperelliptic involution can be used to construct quantum algebraic geometry codes.
However, other involutions can be used as well.

4. Hyperelliptic quantum codes

The goal of this section is to construct quantum stabilizer codes starting with AG-codes which
come from hyperelliptic curves. We focus on odd characteristic. Let K := F,= be a finite field of
characteristic p > 2, and &} a genus g hyperelliptic curve given by the equation y? = f(z). Let
F := K(xz,y) be the function field and ¢ denotes the hyperelliptic involution of X,;. Then F has a
set of rational places which are not fixed by the hyperelliptic involution. Choose a set of distinct
places in F such that

SP={P,...,Py,0(P1),...,0(Pn)},

such that 7(P;) = «;, where 7 is the hyperelliptic projection.
Let P, denote the place at infinity and D, G € Jac (X;) be as follows:

D= PiJng(Pi) and G:=(n+g—1—-r)Py,

n n
=1 i=1

9
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where 0 < r < n — ¢g. Then D has degree 2n. By the Riemann’s theorem there exists n € F' such

that
1

N=—4/7n
y [Ty (@ — ai)
Hence, (n) = (2n + 29 — 2)P5, — D. We denote

dx .

Then W is a canonical divisor. and the residues of n at the places Py,..., P, o(Py),...,0(P,)
satisfy
a; :=resp, () = —resy(p,) (0) -
fori=1,...,n.
Now we can construct a Goppa codes C(D,G) and C(D, H). The weighted symplectic inner
product is defined as below

c
(@, )% =" 4na; (Tiynsi — Tniili)
i=0
for all x,y € C and all a; # 0.
Lemma 6. Let C(D,G) and C(D, H) be as above. Then
C(D,G)* = C(D, H) - diag(ay,...,an,1,...,1).

Moreover, C(D,G) C C(D,G)*"¢ with respect to the symplectic inner product { , )

s

Proof. Since G = (n+g—1—1r)Ps then we replace (1) to get H = (n+g—1+71)Psx > G. Hence,
L(G) c L(H) and C(D,G) C C(D, H). From the above lemma we have that C(D,G){a, s)? =
C(D,H).

O

We transform C(D,G) to a self-orthogonal code C’'(D, @) with respect to the standard sym-
plectic inner product by multiplying each component x; of every codeword by the corresponding
a;, for 1 <i < n.

Then, we have the following:

Proposition 3. C'(D, G) is a stabilizer code with parameters [[n, k, d]], where k =g+r —1 and
d> sk,
Z 3

Proof. We can construct a stabilizer code since C'(D, Q) is self-orthogonal; see Theorem 1. The
new code has the same parameters with C’'(D,G). So it is left to compute k and d. From the
Riemman-Roth theorem we have that

k=dimH —dim(H-D)—-n=n+g—14+r)—n=g+r—1,

since dim(H — D) = 0. For d we have d > n — L#J > nok

We summarize in the following theorem.

Theorem 3. Let X' be a genus g irreducible hyperelliptic curve defined over F, and Py, ..., P, be
degree one rational points on X. Let 0 € Aut g(X) be an involution such that oP; # P;, Vi,j =
1,...,n. Further assume that we have a divisor G such that cG = G, vp,(G) = v,p,(G) = 0 for
all i. Then, there exists a quantum code Qx = [[n, k,d]] such that

k=dimG—dim(G—P — P, —a(P)—a(P,))—n, d>n— {degGJ.

2

In the next section we study the relation between the automorphism groups of the curve X,
and the codes Cy and Q-
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4.1. Explicit construction of quantum AG-codes

Next we describe an algorithm which would create a hyperelliptic quantum code.

Algorithm 1. Hyperelliptic quantum codes

Input: A genus g hyperelliptic curve over a finite field F,.
Output: A quantum code @

i) Find all rational places of degree 1 of X; which are not fixed by the hyperelliptic invo-
lution, say S = {Py,...,Pp,0(P1),...,0(Ppn)}.

ii) Let
D:=) (P+0(P), Gi=(m+g—1-71)Px, (n):=-D+(2n+29—2)Px.
PesS
iii) Create a list A = [a1,...,a,], where a; :=resp,(n) = —resy(p,y(n).

iv) Construct the AG code C = L(D,G) and let the generator matrix of C' be G.

v) Transform C to a self-orthogonal symplectic code @ by multiplying each coordinate z;
by a;,
(cooymgye) = (o @iy, . L),
vi) Return Q.

5. Automorphism groups

In this section we give a brief survey of automorphism groups of curves over finite fields,
automorphism groups of codes, and automorphism groups of quantum codes.

5.1. Automorphism groups of curves

It has been known since Hurwitz (1892) that a Riemann surface of genus g > 1 has at most
84(g — 1) automorphisms. This estimate is optimal; there are Riemann surfaces of arbitrarily high
genus with 84(¢g — 1) automorphisms (Hurwitz’ bound in characteristic 0), the Klein curve most
notable of them. The Hurwitz estimate is not valid in prime characteristic. Roquette (1970) found
that the estimate

G| < 84(g — 1),

on the order of the automorphism group G, holds under the additional assumption p > g + 1,
with one exception: the function field F = K (z,y) with y? — y = x? has genus g = 3(p — 1) and
8g(g +1)(2g + 1) automorphisms.

Stichtenoth (1973) gives a general estimate for the number of automorphisms of a smooth
projective curve in characteristic p > 0. He proves the inequality

|G| <16- 947

but also with one series of exceptions: the function field F = K (z,y) with y?" +y = 2" has

genus g = 2p™(p" —1) and |G| = p*"(p*" +1)(p*" — 1) automorphisms, so |G| is in this case slightly
larger than 16g*.

Let X denote a smooth, genus g algebraic curve defined over k, char k = p > 0. A theorem of
Blichfeld on invariants (in char 0) of subgroups of PG L3(k) implies that the genus g curve lifts to
characteristic 0 for p > 2¢g + 1; see [?, pg. 236-254]. Hence, for large enough p (i.e., p > 2g + 1),
methods described in [?] can be used to determine such groups. Thus, to determine the list of
groups that occur as automorphism groups of genus g curves we have to classify the groups that
occur for all primes p < 2g + 1.
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5.1.1. Automorphisms groups over finite fields of characteri stic 2

Let C be a hyperelliptic curve of genus g over an algebraically closed field K of characteristic 2.
We use an Artin-Schreier generation y? + y = g(z) such that g(z) € K(x). We can find a rational
function h(z) € K(z) such that the rational function g(z) + h(x) + h(z)® has no poles of even
order. Let f(z) := g(z) + h(z) + h(z)? and use the normalized form y2 4+ y = f(x). Then, y is
unique up to transformations of the form y — y + B(z), where B(z) is a rational function of z.

Let ¥n,4(a) be the polar divisor of f(z) on the projective line, P1. C is ramified at each a and
if P, is the unique point of C over a then the curve y? + y = f(z) has the different

Diff(C/P') = ©(n, + 1)P,,
where the n, are odd ([10], Prop I11.7.8)
29 — 2= —2[F : K(z)] + deg(Dif f(C/P')) = deg(Diff(C/P')) =2g +2.

Take two hyperelliptic curves, C : y> +y = f(z) and C’ : y?> + y = h(z). Then there are finite
morphisms f; : C —— P! and f, : C’ — P! of degree 2, and there exists a unique automorphism
o of P! such that f» = o o fi. Any isomorphism between these curves has the form

ar+b

— B
Y+ B@)

(z,y) — (

for some B(x) € K(x). Hence, these curves are isomorphic if and only if

ar +b
cr+d

h(z) = f( ) + s(x) + s(w)’

for some s(x) € K(x). The ramification types determine the isomorphism classes of the hyperelliptic
curves. The solutions of the equation X(n, + 1) = 29+ 2 in the unknown odd positive integers give
us the following ramification types:

(1,1,1,1),(3,1,1),(3,3),(5,1),(7)  for genus 3, 5
(1,1,1,1,1),(3,1,1,1),(3,3,1),(5,1,1),(5,3),(7,1),(9)  for genus 4. )

Therefore, we get the following normal forms for genus 3 and 4 respectively.

a1+ asr  +az(r — 1)+ ay(z — N)7!

2 +ax+ Brt +y(x— 1)1

V4+y=<{ 2*+ax+ Bz 3+ !

2® + ax® + B!

2" + ax® + Ba3

a1 +asr +az(r — 1)+ gz — N+ as(e — p) ! (4)
2+ ar+ Gt + Bz — 1)+ Ba(z — M)t
¥ +oar+pr3+yrt+o(z—1)"1
Vry={ 2 +ard+ Bz 4 y(x—-1)""

2%+ axd + Bx3 + yx!

2’ 4+ ax® + B2 + 4zt

9 + a1x7 + 042:1:5 + agx?’

These are plane curves given in inhomogeneous form, birational to the given nonsingular curves(
i.e. the function fields are isomorphic). We will use the above normal forms to determine G, the
reduced group of automorphisms, namely the quotient of the group of automorphisms, G by (1)
which is contained in the center of G. And then we will compute G.
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Proposition 4. Let C be a genus g hyperelliptic curve defined over an algebraically closed field K
of characteristic 2.

i) If g = 3 then the automorphism group of C is one of the following: Ca, Cy, Vi, Co x Cy x Ca,
Cs, C14, Di3.

i1) If g = 4 then the automorphism group of C is one of the following: Ca, Vi, Cy, Ca x Ca x Ca,
Cs, Cis, Dao.

Proof. See [3] for details. O
Furthermore, the parametric equation of the curve in each case is given by equation in table 1.

Table 1. Automorphism groups of hyperelliptic curves of genus 3 and 4 over fields of charac-

teristic 2.
Curve Condition G
g=3

y2+y:a1x+azm_1 o751 :Oé2>\_1,a3 :a4/\_1,a1 # asA Va
+as(z — 1)71 + oz — /\)71 a1 = a3\, Qg = a4, 0 7# aa\ ! Vi
a1 = 4, Qg = Ot3)\z, 51 ;ﬁ Ozg)\71 Va
a1 = (12)\_1,&3 = a4/\_1,a1 = 013)\ C’zdj
y2+y:x3+am a#0,or B#y Co
+B8zx 4 y(x— 1)1 a=0,and B=1 Vi
y+y=2" +azx none Cy
+ax 3 4 Bt B#L,a=~v=0 Cs
B=la=~v#0 Va
B=lLa=~v(#0 Vi
B=Ta=1C#£0 Vi
B=1la=vy=0 D1,
v +y=2a"+az®+ Bz " none Cy
v +y=2xa +az’+ 82° a=83= Cia
a=0,0#0 Cy
a#0,=c3=0 C>
Oé;ﬁo,B:O,C37£O C14
a#O,B#O,c;,:O Cy
a#0,8#0,c3#0 Cha

g =4 l [ |
y2+y:a1x+a2x_1+a3(x71)_l Qa = Q3,04 = Q5,02 £ Qa |
tas(z — )7 Fas(z — A2) 7 Qs = Q4,03 = a5, Q2 # Q3 Vi
a2 = as,03 = a4, 2 F Q3 Vi
a2 = Q3 =4 = Qs [
Q1 = a2 = a3\ = au\ = s Doo
a1 = g = Oé3>\_1 = (4 = 0[5)\_1 D20
v 4+y=2"+azr+ Pz’ a#0 Co
+B2(x — 1) 4 Ba(x — A) 7! a=0,8=9\y=0\0 =0\ Ce
Y +y=2"+ax none Cs
o+ B (e - 1) B=1,a=1 Vi
vty =22 + oz’ a#0,orl Co
+Bz y(z— 1)t a=0 Vi
a=1 Cy
vry=atarS+az S+ pr ! none Cy
v +y=2a +ax®+ Bz vz " none C>
?42 +y= 2+ a1z’ + asx® + ag,xs a; #0 Ch
o] = 0 Cl8
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Determining complete lists of full automorphism groups for a given genus g > 3 is still an
open problem with tremendous applications in theoretical mathematics and computer science and
electrical engineering. For more details on this problem see [12].

5.2. Automorphism groups of codes

The permutation automorphism group of the code C' C Fy is the subgroup of S, (acting
on Fy by coordinate permutation) which preserves C'. We denote this group by PAut (C). The set
of monomial matrices that map C to itself forms the monomial automorphism group, denoted
by MAut (C). Every monomial matrix M can be written as M = DP where D is a diagonal matrix
and P a permutation matrix. Let v be a field automorphism of F, and M a monomial matrix.
Denote by M, the map M, : C — C such that Vx € C we have M, (x) = v(Mx). The set of all
maps M., forms the automorphism group of C, denoted by I'Aut (C). It is well known that

PAut (C) < MAut (C) < TAut (C).

Recall that for binary codes PAut (C) = MAut (C) = I'Aut (C), which we simply denote by
Aut (C). If the code C is defined over a prime field then MAut (C) = T'Aut (C). Two codes C
and C’ are called permutation equivalent, monomially equivalent, or equivalent if there
is an element o in the respective automorphism group such that o(C) = C’. In classical coding
theory these automorphism groups of codes play an important role in classifying codes. There is a
weight preserving linear transformation between [n, k] codes C' and C” over Fy if and only if Cand
C" are monomially equivalent. Furthermore, the linear transformation agrees with the associated
monomial transformation on every codeword in C see [4, Thm. 7.9.4].

If X is a genus g > 2 algebraic curve defined over IF, then Aut (X') is the group of automorphisms
of X’ over the algebraic closure of F;. There have been published many papers studying the relation
between the automorphism group of the algebraic curve X and the automorphism groups as defined
above of the corresponding AG-code Cy; see [15] among others. Let us assume that Cy is a self-
orthogonal code such that we can construct a quantum code @y as in the previous section. If @
is a symplectic quantum code, then the group of equivalences of the code is the complex Clifford

group.

5.3. Some computational remarks on the automorphism groups of codes

In this section we want to make a few remarks concerning the efficiency of computing the
automorphism group of a given code. There are several open questions related to automorphism
groups of algebraic curves, AG-codes, and naturally quantum codes. We suggest some problems
and point some inefficiencies regarding some existing programs.

Problem 1. Let X be a genus g curve defined over a finite field Fj,. Determine the list of groups
that occur as full groups of automorphisms of X over the algebraic closure of IF,.

Problem 2. Let X be a genus g curve defined over a finite field Fj,. Design and implement a
program that computes the automorphism group of X over F,.

Let Cy and Qx be the codes constructed as in sections 2 and 3. In GAP, the package GUAVA
which is specifically written for coding theory, creates such codes (with some simple implementati-
ons of our algorithms) and computes groups of such codes using an algorithm of Leon [5]. Similar
capabilities are also available in Magma. Both MAGMA and GAP come short when it comes to
computing the automorphism group of a code over a relatively large size field ;. Magma only
computes automorphism groups of codes over a field F, where ¢ = p or p?.

Problem 3. Design and implement an algorithm which computes the automorphism groups
PAut (C),MAut (C),T'Aut (C) of a given code C (including quantum codes) over any field Fy.
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The existing algorithms in Magma and GAP/GUAVA (both are based on the algorithm of Leon)
are slow. It is unclear whether this is because of poor implementations or due to the limitations
of the algorithm. Furthermore, it seems that extending such algorithms and implementations to
larger size fields should be the next step. We intend to pursue such questions in further work.
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KeaHTOBI KOgun 3a anre6paiyHMMn KpMBMMU 3 aBToMmopdiamamn

T.Wacka

1 dakynbTeT MaTeEMaTUKN Ta cTaTUCTUKK, YHiBepcuTeT OkneHay, Pouectep, CLUA
2 YHiBepcuteT Mapii Kiopi-Cknogoscbkoi, JTobniH, MonbLua

OTtpumaHo 31 ciyHg 2008 p.

Hexani x — anrebpaidHa kpuBa Tuny g > 2, WO BM3HaveHa Hag nonem Fy,; xapaktepuctuku p. Mpu
[esKux ymoBax Ha x MuU Moxemo GyaysaTu anrebpaidyHo-reomeTpuydHuin kog C. fAkwo kog C' € camo-
OPTOroHanbHUM BiAMNOBIAHO A0 CUMMNEKTUYHOIO A00YTKY, TO OyAyETLCHA KBAHTOBUI koA, Q, sikuii Byaemo
Ha3uBaTn QAC kofoMm. B cTaTtTi BUBYAIOTLCS KOHCTPYKLIT Takmx KOAiB 32 KPMBUMMK 3 aBTOMOP®Ii3HamMu i
3B’A3KM MiX rpynamu asTomopdiamiB Kpueoi x Ta koajis C' T1a Q.

KnwouoBi cnoBa: asirebpaidHi kpuBi, anrebpaidyHo-reoMeTpuy4Hi Koam, KBaHTOBI anrebpaidHi koam

PACS: 03.67.Dd
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