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AbstractLet X be an irreducible, smooth, projective curve of genus g ≥ 2
defined over the complex field C. Then there is a covering π : X −→ P1,

where P1 denotes the projective line. The problem of expressing branch

points of the covering π in terms of the transcendentals (period matrix,
thetanulls, e.g.) is classical. It goes back to Riemann, Jacobi, Picard and

Rosenhein. Many mathematicians, including Picard and Thomae, have
offered partial treatments for this problem. In this work, we address the

problem for cyclic curves of genus 2, 3, and 4 and find relations among

theta functions for curves with automorphisms. We consider curves of
genus g > 1 admitting an automorphism σ such that Xσ has genus zero

and σ generates a normal subgroup of the automorphism group Aut(X )

of X .
To characterize the locus of cyclic curves by analytic conditions on

its Abelian coordinates, in other words, theta functions, we use some

classical formulas, recent results of Hurwitz spaces, and symbolic com-
putations, especially for genera 2 and 3. For hyperelliptic curves, we

use Thomae’s formula to invert the period map and discover relations

among the classical thetanulls of cyclic curves. For non hyperelliptic
curves, we write the equations in terms of thetanulls.

Fast genus 2 curve arithmetic in the Jacobian of the curve is used
in cryptography and is based on inverting the moduli map for genus 2

curves and on some other relations on theta functions. We determine

similar formulas and relations for genus 3 hyperelliptic curves and offer
an algorithm for how this can be done for higher genus curves. It is

still to be determined whether our formulas for g = 3 can be used in

cryptographic applications as in g = 2.
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1. Introduction to Theta Functions of Curves

Let X be an irreducible, smooth, projective curve of genus g ≥ 2 defined over
the complex field C. We denote the moduli space of genus g by Mg and the
hyperelliptic locus inMg by Hg. It is well known that dimMg = 3g− 3 and Hg
is a (2g − 1) dimensional subvariety of Mg. Choose a symplectic homology basis
for X , say

{A1, . . . , Ag, B1, . . . , Bg}

such that the intersection products Ai · Aj = Bi · Bj = 0 and Ai · Bj = δij . We
choose a basis {wi} for the space of holomorphic 1-forms such that

∫
Ai
wj = δij ,



where δij is the Kronecker delta. The matrix Ω =
[∫
Bi
wj

]
is the period matrix

of X . The columns of the matrix [I |Ω] form a lattice L in Cg and the Jacobian
of X is Jac (X ) = Cg/L. Let

Hg = {τ : τ is symmetric g × gmatrix with positive definite imaginary part}

be the Siegel upper-half space. Then Ω ∈ Hg. The group of all 2g × 2g matrices
M ∈ GL2g(Z) satisfying

M tJM = J with J =

(
0 Ig
−Ig 0

)

is called the symplectic group and denoted by Sp2g(Z). Let M =

(
R S
T U

)
∈

Sp2g(Z) and τ ∈ Hg where R, S, T and U are g × g matrices. Sp2g(Z) acts
transitively on Hg as

M(τ) = (Rτ + S)(Tτ + U)−1.

Here, the multiplications are matrix multiplications. There is an injection

Mg ↪→ Hg/Sp2g(Z) =: Ag

where each curve C (up to isomorphism) goes to its Jacobian in Ag. If ` is a
positive integer, the principal congruence group of degree g and of level ` is defined
as a subgroup of Sp2g(Z) by the condition M ≡ I2g mod `. We shall denote this
group by Sp2g(Z)(`).

For any z ∈ Cg and τ ∈ Hg the Riemann’s theta function is defined as

θ(z, τ) =
∑
u∈Zg

eπi(u
tτu+2utz)

where u and z are g-dimensional column vectors and the products involved in the
formula are matrix products. The fact that the imaginary part of τ is positive
makes the series absolutely convergent over every compact subset of Cg×Hg. The
theta function is holomorphic on Cg × Hg and has quasi periodic properties,

θ(z + u, τ) = θ(z, τ) and θ(z + uτ, τ) = e−πi(u
tτu+2ztu) · θ(z, τ)

where u ∈ Zg; see [11] for details. The locus Θ := {z ∈ Cg/L : θ(z,Ω) = 0} is
called the theta divisor of X . Any point e ∈ Jac (X ) can be uniquely written

as e = (b, a)

(
1g
Ω

)
where a, b ∈ Rg are the characteristics of e. We shall use the

notation [e] for the characteristic of e where [e] =

[
a
b

]
. For any a, b ∈ Qg, the



theta function with rational characteristics is defined as a translate of Riemann’s
theta function multiplied by an exponential factor

θ

[
a
b

]
(z, τ) = eπi(a

tτa+2at(z+b))θ(z + τa+ b, τ). (1)

By writing out Eq. (1), we have

θ

[
a
b

]
(z, τ) =

∑
u∈Zg

eπi((u+a)tτ(u+a)+2(u+a)t(z+b)).

The Riemann’s theta function is θ

[
0
0

]
. The theta function with rational charac-

teristics has the following properties:

θ

[
a+ n
b+m

]
(z, τ) = e2πiatmθ

[
a
b

]
(z, τ),

θ

[
a
b

]
(z +m, τ) = e2πiatmθ

[
a
b

]
(z, τ),

θ

[
a
b

]
(z + τm, τ) = eπi(−2btm−mtτm−2mtz)θ

[
a
b

]
(z, τ)

(2)

where n,m ∈ Zn. All of these properties are immediately verified by writing them
out. A scalar obtained by evaluating a theta function with characteristic at z = 0
is called a theta constant or thetanulls. When the entries of column vectors a and

b are from the set {0, 1
2}, then the characteristics

[
a
b

]
are called the half-integer

characteristics. The corresponding theta functions with rational characteristics
are called theta characteristics. Points of order n on Jac (X ) are called the 1

n -

periods. Any point p of Jac (X ) can be written as p = τ a + b. If

[
a
b

]
is a 1

n -

period, then a, b ∈ ( 1
nZ/Z)g. The 1

n -period p can be associated with an element
of H1(X ,Z/nZ) as follows: Let a = (a1, · · · , ag)t, and b = (b1, · · · , bg)t. Then

p = τa+ b

=
(∑

ai

∫
Bi

ω1, · · · ,
∑

ai

∫
Bi

ωg
)t

+
(
b1

∫
A1

ω1, · · · , bg
∫
Ag

ωg
)

=
(∑

(ai

∫
Bi

ω1 + bi

∫
Ai

ω1), · · · ,
∑

(ai

∫
Bi

ωg + bi

∫
Ai

ωg)
)t

=
( ∫

C

ω1, · · · ,
∫
C

ωg
)t

where C =
∑
aiBi+biAi.We identify the point p with the cycle C̄ ∈ H1(X ,Z/nZ)

where C̄ =
∑
āiBi + b̄iAi, āi = nai and b̄i = nbi for all i.



1.1. Half-Integer Characteristics and the Göpel Group

In this section we study groups of half-integer characteristics. Any half-integer
characteristic m ∈ 1

2Z
2g/Z2g is given by

m =
1

2
m =

1

2

(
m1 m2 · · · mg

m′1 m
′
2 · · · m′g

)
,

where mi,m
′
i ∈ Z. For m =

[
m′

m′′

]
∈ 1

2Z
2g/Z2g, we define e∗(m) = (−1)4(m′)tm′′ .

We say that m is an even (resp. odd) characteristic if e∗(m) = 1 (resp. e∗(m) =
−1). For any curve of genus g, there are 2g−1(2g + 1) (resp., 2g−1(2g − 1) )
even theta functions (resp., odd theta functions). Let a be another half-integer
characteristic. We define

ma =
1

2

(
t1 t2 · · · tg
t′1 t
′
2 · · · t′g

)
where ti ≡ (mi + ai) mod 2 and t′i ≡ (m′i + a′i) mod 2.

For the rest of the thesis we only consider characteristics 1
2q in which each of

the elements qi, q
′
i is either 0 or 1. We use the following abbreviations:

|m| =
g∑
i=1

mim
′
i, |m, a| =

g∑
i=1

(m′iai −mia
′
i),

|m, a, b| = |a, b|+ |b,m|+ |m, a|,
(
m

a

)
= eπi

∑g
j=1mja

′
j .

The set of all half-integer characteristics forms a group Γ which has 22g ele-
ments. We say that two half integer characteristics m and a are syzygetic (resp.,
azygetic) if |m, a| ≡ 0 mod 2 (resp., |m, a| ≡ 1 mod 2) and three half-integer
characteristics m, a, and b are syzygetic if |m, a, b| ≡ 0 mod 2. A Göpel group
G is a group of 2r half-integer characteristics where r ≤ g such that every two
characteristics are syzygetic. The elements of the group G are formed by the sums
of r fundamental characteristics; see [2, pg. 489] for details. Obviously, a Göpel
group of order 2r is isomorphic to Cr2 . The proof of the following lemma can be
found on [2, pg. 490].

Lemma 1. The number of different Göpel groups which have 2r characteristics is

(22g − 1)(22g−2 − 1) · · · (22g−2r+2 − 1)

(2r − 1)(2r−1 − 1) · · · (2− 1)
.

If G is a Göpel group with 2r elements, it has 22g−r cosets. The cosets are
called Göpel systems and are denoted by aG, a ∈ Γ. Any three characteristics
of a Göpel system are syzygetic. We can find a set of characteristics called a
basis of the Göpel system which derives all its 2r characteristics by taking only
combinations of any odd number of characteristics of the basis.



Lemma 2. Let g ≥ 1 be a fixed integer, r be as defined above and σ = g− r. Then
there are 2σ−1(2σ + 1) Göpel systems which only consist of even characteristics
and there are 2σ−1(2σ − 1) Göpel systems which consist of odd characteristics.
The other 22σ(2r − 1) Göpel systems consist of as many odd characteristics as
even characteristics.

Proof. The proof can be found on [2, pg. 492].

Corollary 1. When r = g, we have only one (resp., 0) Göpel system which consists
of even (resp., odd) characteristics.

Let us consider s = 22σ Göpel systems which have distinct characters. Let us
denote them by

a1G, a2G, · · · , asG.

We have the following lemma.

Lemma 3. It is possible to choose 2σ + 1 characteristics from a1, a2, · · · , as, say
ā1, ā2, · · · , ā2σ+1, such that every three of them are azygetic and all have the
same character. The above 2σ + 1 fundamental characteristics are even (resp.,
odd) if σ ≡ 1, 0 mod 4 (resp.,≡ 2, 3 mod 4).

The proof of the following lemma can be found on [2, pg. 511].

Lemma 4. For any half-integer characteristics a and h, we have the following:

θ2[a](z1, τ)θ2[ah](z2, τ) =
1

2g

∑
e

eπi|ae|
(
h

ae

)
θ2[e](z1, τ)θ2[eh](z2, τ). (3)

We can use this relation to get identities among half-integer theta constants.
Here e can be any half-integer characteristic. We know that we have 2g−1(2g + 1)
even characteristics. As the genus increases, we have multiple choices for e. In the
following, we explain how we reduce the number of possibilities for e and how to
get identities among theta constants.

First we replace e by eh and z1 = z2 = 0 in Eq. (3). Eq. (3) can then be
written as follows:

θ2[a]θ2[ah] = 2−g
∑
e

eπi|aeh|
(

h

aeh

)
θ2[e]θ2[eh]. (4)

We have eπi|aeh|
(

h
aeh

)
= eπi|ae|

(
h
ae

)
eπi|ae,h|. Next we put z1 = z2 = 0 in Eq. (3)

and add it to Eq. (4) and get the following identity:

2θ2[a]θ2[ah] = 2−g
∑
e

eπi|ae|(1 + eπi|ae,h|)θ2[e]θ2[eh]. (5)

If |ae, h| ≡ 1 mod 2, the corresponding terms in the summation vanish. Otherwise
1 + eπi|ae,h| = 2. In this case, if either e is odd or eh is odd, the corresponding
terms in the summation vanish again. Therefore, we need |ae, h| ≡ 0 mod 2 and



|e| ≡ |eh| ≡ 0 mod 2, in order to get nonzero terms in the summation. If e∗

satisfies |e∗| ≡ |e∗h∗| ≡ 0 mod 2 for some h∗, then e∗h∗ is also a candidate for
the left hand side of the summation. Only one of such two values e∗ and e∗h∗ is
taken. As a result, we have the following identity among theta constants

θ2[a]θ2[ah] =
1

2g−1

∑
e

eπi|ae|
(
h

ae

)
θ2[e]θ2[eh], (6)

where a, h are any characteristics and e is a characteristics such that |ae, h| ≡ 0
mod 2, |e| ≡ |eh| ≡ 0 mod 2 and e 6= eh.

By starting from the Eq. (3) with z1 = z2 and following a similar argument
to the one above, we can derive the identity,

θ4[a] + eπi|a,h|θ4[ah] =
1

2g−1

∑
e

eπi|ae|{θ4[e] + eπi|a,h|θ4[eh]} (7)

where a, h are any characteristics and e is a characteristic such that |h|+ |e, h| ≡ 0
mod 2, |e| ≡ |eh| ≡ 0 mod 2 and e 6= eh.

Remark 1. |ae, h| ≡ 0 mod 2 and |eh| ≡ |e| ≡ 0 mod 2 implies |a, h| + |h| ≡ 0
mod 2.

We use Eq. (6) and Eq. (7) to get identities among thetanulls in Chapter 2
and in Chapter 3.

1.2. Hyperelliptic Curves and Their Theta Functions

A hyperelliptic curve X , defined over C, is a cover of order two of the projec-
tive line P1. Let z be the generator (the hyperelliptic involution) of the Galois
group Gal(X/P1). It is known that 〈z〉 is a normal subgroup of the Aut(X ) and
z is in the center of Aut(X ). A hyperelliptic curve is ramified in (2g + 2) places
w1, · · · , w2g+2. This sets up a bijection between isomorphism classes of hyperel-
liptic genus g curves and unordered distinct (2g+2)-tuples w1, · · · , w2g+2 ∈ P1

modulo automorphisms of P1. An unordered (2g + 2)-tuple {wi}2g+2
i=1 can be de-

scribed by a binary form (i.e. a homogenous equation f(X,Z) of degree 2g + 2).
To describe Hg, we need rational functions of the coefficients of a binary form
f(X,Z), invariant under linear substitutions in X and Z. Such functions are called
absolute invariants for g = 2; see [17] for their definitions. The absolute invariants
are GL2(C) invariants under the natural action of GL2(C) on the space of binary
forms of degree 2g + 2. Two genus g hyperelliptic curves are isomorphic if and
only if they have the same absolute invariants. The locus of genus g hyperellip-
tic curves with an extra involution is an irreducible g-dimensional subvariety of
Hg which is denoted by Lg. Finding an explicit description of Lg means finding
explicit equations in terms of absolute invariants. Such equations are computed
only for g = 2; see [17] for details. Writing the equations of L2 in terms of theta
constants is the main focus of Chapter 2. Computing similar equations for g ≥ 3
requires first finding the corresponding absolute invariants. This is still an open
problem in classical invariant theory even for g = 3.



Let X −→ P1 be the degree 2 hyperelliptic projection. We can assume that
∞ is a branch point.

Let

B := {α1, α2, · · · , α2g+1}

be the set of other branch points. Let S = {1, 2, · · · , 2g + 1} be the index set of
B and η : S −→ 1

2Z
2g/Z2g be a map defined as follows:

η(2i− 1) =

[
0 · · · 0 1

2 0 · · · 0
1
2 · · ·

1
2 0 0 · · · 0

]
,

η(2i) =

[
0 · · · 0 1

2 0 · · · 0
1
2 · · ·

1
2

1
2 0 · · · 0

]
where the nonzero element of the first row appears in ith column. We define η(∞)

to be

[
0 · · · 0 0
0 · · · 0 0

]
. For any T ⊂ B, we define the half-integer characteristic as

ηT =
∑
ak∈T

η(k).

Let T c denote the complement of T in B. Note that ηB ∈ Z2g. If we view ηT as
an element of 1

2Z
2g/Z2g then ηT = ηT c . Let 4 denote the symmetric difference

of sets, that is T4R = (T ∪R)− (T ∩R). It can be shown that the set of subsets
of B is a group under 4. We have the following group isomorphism:

{T ⊂ B |#T ≡ g + 1 mod 2}/T ∼ T c ∼=
1

2
Z2g/Z2g.

For γ =

[
γ′

γ′′

]
∈ 1

2Z
2g/Z2g, we have

θ[γ](−z, τ) = e∗(γ)θ[γ](z, τ). (8)

It is known that for hyperelliptic curves, 2g−1(2g + 1)−
(

2g+1
g

)
of the even theta

constants are zero. The following theorem provides a condition for the character-
istics in which theta characteristics become zero. The proof of the theorem can
be found in [12].

Theorem 1. Let X be a hyperelliptic curve, with a set B of branch points. Let S
be the index set as above and U be the set of all odd values of S. Then for all
T ⊂ S with even cardinality, we have θ[ηT ] = 0 if and only if #(T4U) 6= g + 1,
where θ[ηT ] is the theta constant corresponding to the characteristics ηT .

When the characteristic γ is odd, e∗(γ) = 1. Then from Eq. (8) all odd
theta constants are zero. There is a formula which satisfies half-integer theta
characteristics for hyperelliptic curves called Frobenius’ theta formula.



Lemma 5 (Frobenius). For all zi ∈ Cg, 1 ≤ i ≤ 4 such that z1 + z2 + z3 + z4 = 0
and for all bi ∈ Q2g, 1 ≤ i ≤ 4 such that b1 + b2 + b3 + b4 = 0, we have

∑
j∈S∪{∞}

εU (j)

4∏
i=1

θ[bi + η(j)](zi) = 0,

where for any A ⊂ B,

εA(k) =

{
1 if k ∈ A,
−1 otherwise.

Proof. See [11, pg. 107].
A relationship between theta constants and the branch points of the hyper-

elliptic curve is given by Thomae’s formula.

Lemma 6 (Thomae). For all sets of branch points B = {α1, α2, · · · , α2g+1}, there
is a constant A such that for all T ⊂ B, #T is even,

θ[ηT ](0; τ)4 = (−1)#T∩UA
∏
i<j

i,j∈T4U

(αi − αj)
∏
i<j

i,j /∈T4U

(αi − αj)

where ηT is a non singular even half-integer characteristic corresponding to the
subset T of branch points.

See [11, pg. 128] for the description of A and [11, pg. 120] for the proof. Using
Thomae’s formula and Frobenius’ theta identities we express the branch points
of the hyperelliptic curves in terms of even theta constants.

1.3. Cyclic Curves and Their Theta Functions

A cyclic cover X −→ P1 is defined to be a Galois cover with cyclic Galois group
C. We call it a normal cyclic cover of P1 if C is normal in G = Aut(X ) where
Aut(X ) is the automorphism group of the curve X . Then Ḡ = G/C embeds as a
finite subgroup of PGL(2,C) and it is called the reduced automorphism group of
G.
An affine equation of a cyclic curve can be given by the following:

ym = f(x) =

s∏
i=1

(x− αi)di , m = |C|, 0 < di < m. (9)

Note that when di > 0 for some i the curve is singular. Hyperelliptic curves
are cyclic curves with m = 2. After Thomae, many mathematicians, for exam-
ple Fuchs, Bolza, Fay, Mumford, et al., gave derivations of Thomae’s formula in
the hyperelliptic case. In 1988 Bershdaski and Radul found a generalization of
Thomae’s formula for ZN curves of the form



yN = f(x) =

Nm∏
i=1

(x− ai). (10)

In 1988 Shiga showed the representation of the Picard modular function by
theta constants. He considered the algebraic curve in the (x, y) plane which is
given by

C(ε) : y3 = x(x− a0)(x− a1)(x− a2) (11)

where ε = [a0, a1, a2] is a parameter on the domain

Λ = {ε : a0a1a2(a0 − a1)(a0 − a2)(a1 − a2) 6= 0}.

He gave a concrete description of the Picard work [14]. His result can be considered

an extension of the classical Jacobi representation λ =
θ42
θ43

, where θi(z, τ) indicates

Jacobi’s theta function and θi is the convention for θi(0, τ), for the elliptic modular
function λ(τ) to the special case of genus 3.

In 1991, Gonzalez Diez studied the moduli spaces parameterizing algebraic
curves which are Galois covering of P1 with prime order and with given ramifica-
tion numbers. These curves have equation of the form

yp = f(x) =

r∏
i=1

(x− ai)mi ; p prime and p -
∑

mi. (12)

He expresses ai in terms of functions of the period matrix of the curve.
Farkas (1996) gave a procedure for calculating the complex numbers ai which

appear in the algebraic equation

yp =

k∏
i=1

(x− ai) with p|k (13)

in terms of the theta functions associated with the Riemann surface of the alge-
braic curve defined by the Eq. (13). He used the generalized cross ratio of four
points according to Gunning. Furthermore he considered the more general prob-
lem of a branched two-sheeted cover of a given compact Riemann surface and
obtained the relations between the theta functions on the cover and the theta
function to the original surface.

Nakayashiki, in 1997, gave an elementary proof of Thomae’s formula for ZN
curves which was discovered by Bershadsky and Radul. Enolski and Grava, in
2006, derived the analogous generalized Thomae’s formula for the ZN singular
curve of the form

yN = f(x) =

m∏
i=1

(x− λ2i)
N−1

m∏
i=1

(x− λ2i+1). (14)

We summarize all the results in the following theorem.



Theorem 2. Consider the algebraic curve X : yn = f(x) defined over the complex
field C.
Case 1: If 4f 6= 0, say f(x) =

∏k
i=1(x− λi) then,

i) If n|k, say k = mn for some m ∈ N then,
for an ordered partition Λ = (Λ0, · · · ,Λn−1) of {1, 2, · · · , nm}, we have

θ[eΛ](0)2n = CΛ(detA)n
∏
i<j

(λi − λj)2n
∑

`∈L q`(ki)q`(kj)+
(n−1)(2n−1)

6

where ki = j for i ∈ Λj and eΛ ≡ Λ1 + 2Λ2 + · · · + (n − 1)Λn−1 −D − ς is the
associated divisor class of the partition Λ, L =

{
− N−1

2 ,−N−1
2 + 1, · · · , N−1

2

}
,

q`(i) = 1−N
2N + fraction part of

( `+i+ N−1
2

N

)
for ` ∈ L, ς is Riemann’s constant and

CΛ depends on the partition Λ having the property that for two different partitions
Λ and Λ′ we have C2N

Λ = C2N
Λ′ .

Moreover if n is a prime p, the branch points λi of the curve yn = x(x −
1)(x− λ1) · · · (x− λk−3) can be given by

Eni λi = (λ(Pk, Q0, Q1, Q∞))n

where λ(Pk, Q0, Q1, Q∞) =
θ(e+φQ0

(Pk))θ(e+φQ∞ (Q1))

θ(e+φQ∞ (Pk))θ(e+φQ0
(Q1)) , while Q0, Q1, and Q∞ de-

note the points in the curve corresponding to the points 0, 1, and ∞ in P1 respec-
tively, Pi’s are points in the curve corresponding to the points λi, Ei is a constant
depending on the point Pi and φP is an injective map from X to Cg/G.

ii) If n - k, then,
if n = 3 and k = 4, then the parameters λ1, λ2, λ3 can be given as follows:

λ1 = θ3

[
0 1

6 0
0 1

6 0

]
, λ2 = θ3

[
0 1

6 0
1
3

1
6

1
3

]
, λ3 = θ3

[
0 1

6 0
2
3

1
6

2
3

]
.

Case 2: If 4f = 0, let f(x) =
∏m
k=0(x− λ2k+1)

∏m
k=1(x− λ2k)n−1. Then,

θ[em](0; Ω)4N =

∏N−1
i=1 det A2N

i

(2πi)2mN(N−1)

∏
1≤i<k≤m

(λ2i − λ2k)N(N−1)

×
∏

0≤i<k≤m

(λ2i+1 − λ2k+1)N(N−1)

× (

∏
i∈I1,j∈J1(λi − λj)

∏
i∈I2,j∈J2(λi − λj)∏

i∈I1,k∈I2(λi − λk)
∏
j∈J1,k∈J2(λi − λj)

)2(N−1),

where em = ν((N − 1)
∑
i∈I1 Pi + (N − 1)

∑
j∈J1 Pj − D − 4) is a nonsingular

1
N characteristic, J1 ⊂ J0 = {2, 4, · · · , 2m+ 2} and I1 ⊂ I0 = {1, 3, · · · , 2m+ 1}
with |J1| + |I1| = m + 1 and I2 = I0 − I1, J2 = J0 − J1 − 2m + 2, and 4 =
(N − 1)

∑m
k=1 P2k − P∞ is the Riemann divisor of the curve X .



Proof. For proof of the part i) of case 1, see [1]. When n is prime, the proof can
be found in [4]. The main point of [19] is to prove part ii) of case 1. The proof of
case 2 can be found in [3].

1.3.1. Relations Among Theta Functions for Algebraic Curves with
Automorphisms

In this section we develop an algorithm to determine relations among theta func-
tions of a cyclic curve X with automorphism group Aut(X ). The proof of the
following lemma can be found in [16].

Lemma 7. Let f be a meromorphic function on X , and let

(f) =

m∑
i=1

bi −
m∑
i=1

ci

be the divisor defined by f. Take paths from P0 (initial point) to bi and P0 to ci
so that

∑m
i=1

∫ bi
P0
ω =

∑m
i=1

∫ ci
P0
ω.

For an effective divisor P1 + · · ·+ Pg, we have

f(P1) · · · f(Pg) =
1

E

∏
k=1

θ(
∑
i

∫ Pi

P0
ω −

∫ bk
P0
ω −4, τ)

θ(
∑
i

∫ Pi

P0
ω −

∫ ck
P0
ω −4, τ)

(15)

where E is a constant independent of P1, . . . , Pg, the integrals from P0 to Pi take
the same paths both in the numerator and in the denominator, 4 denotes the

Riemann’s constant, and
∫ Pi

P0
ω =

(∫ Pi

P0
ω1, . . . ,

∫ Pi

P0
ωg

)t
.

This lemma gives us a tool that can be used to find branch points in terms
of theta constants. By considering the meromorphic function f = x on X and
suitable effective divisors, we can write branch points as ratios of thetanulls. We
present some explicit calculations using the Lemma 7 in Chapter 3 and 4. The
hard part of this
method is the difficulty of writing complex integrals in terms of characteristics.

Algorithm 1. Input: A cyclic curve X with automorphism group G, σ ∈ G such
that |σ| = n, g(X σ) = 0 and 〈σ〉 / G.

Output: Relations among the theta functions of X

Step 1: Let Γ = G/〈σ〉 and pick τ ∈ Γ such that τ has the largest order m.
Step 2: Write the equation of the curve in the form

yn = f(xm) or yn = xf(xm).

Step 3: Determine the roots λ1, . . . , λr of f(xτ ) in terms of the theta functions.
Step 4: Determine relations on theta functions using Gröbner basis tech-

niques.



For step 3, we can use Lemma 7. If the curve in step 3 falls into one of the
categories given in Theorem 2, we can use the corresponding equation to invert
the period map without worrying about the complex integrals.

2. Genus 2 curves

Let k be an algebraically closed field of characteristic zero and X be a genus 2
curve defined over k. Consider a binary sextic, i.e. a homogeneous polynomial
f(X,Z) in k[X,Z] of degree 6:

f(X,Z) = a6X
6 + a5X

5Z + · · ·+ a0Z
6.

The polynomial functions of the coefficients of a binary sextic f(X,Z) invari-
ant under linear substitutions in X,Z of determinant one. These invariants were
worked out by Clebsch and Bolza in the case of zero characteristic and generalized
by Igusa for any characteristic different from 2.

Igusa J-invariants {J2i} of f(X,Z) are homogeneous polynomials of degree
2i in k[a0, . . . , a6], for i = 1, 2, 3, 5; see [17] for their definitions. Here J10 is the
discriminant of f(X,Z). It vanishes if and only if the binary sextic has a multiple
linear factor. These J2i are invariant under the natural action of SL2(k) on sextics.
Dividing such an invariant by another invariant with the same degree, gives an
invariant (eg. absolute invariant) under GL2(k) action. The absolute invariants
of X are defined in terms of Igusa invariants as follows:

i1 := 144
J4

J2
2

, i2 := −1728
J2J4 − 3J6

J3
2

, i3 := 486
J10

J5
2

.

Two genus 2 fields (resp., curves) in the standard form Y 2 = f(X, 1) are isomor-
phic if and only if the corresponding sextics are GL2(k) conjugate.

2.1. Half Integer Theta Characteristics

For genus two curve, we have six odd theta characteristics and ten even theta
characteristics. The following are the sixteen theta characteristics where the first
ten are even and the last six are odd. For simplicity, we denote them by θi(z)

instead of θi

[
a
b

]
(z, τ) where i = 1, . . . , 10 for the even functions and i = 11, . . . , 16

for the odd functions.

θ1(z) = θ1

[
0 0
0 0

]
(z, τ), θ2(z) = θ2

[
0 0
1
2

1
2

]
(z, τ)

θ3(z) = θ3

[
0 0
1
2 0

]
(z, τ), θ4(z) = θ4

[
0 0
0 1

2

]
(z, τ)

θ5(z) = θ5

[
1
2 0
0 0

]
(z, τ), θ6(z) = θ6

[
1
2 0
0 1

2

]
(z, τ)

θ7(z) = θ7

[
0 1

2
0 0

]
(z, τ), θ8(z) = θ8

[
1
2

1
2

0 0

]
(z, τ)



θ9(z) = θ9

[
0 1

2
1
2 0

]
(z, τ), θ10(z) = θ10

[
1
2

1
2

1
2

1
2

]
(z, τ)

θ11(z) = θ11

[
0 1

2
0 1

2

]
(z, τ), θ12(z) = θ12

[
0 1

2
1
2

1
2

]
(z, τ)

θ13(z) = θ13

[
1
2 0
1
2 0

]
(z, τ), θ14(z) = θ14

[
1
2

1
2

1
2 0

]
(z, τ)

θ15(z) = θ15

[
1
2 0
1
2

1
2

]
(z, τ), θ16(z) = θ16

[
1
2

1
2

0 1
2

]
(z, τ)

Remark 2. All the possible half-integer characteristics except the zero character-
istic can be obtained as the sum of not more than 2 characteristics chosen from
the following 5 characteristics:

{[
0 0
1
2

1
2

]
,

[
1
2 0
0 1

2

]
,

[
0 1

2
0 0

]
,

[
1
2 0
1
2

1
2

]
,

[
0 1

2
0 1

2

]}
.

The sum of all 5 characteristics in the set determines the zero characteristic.

Take σ = g − r = 0. Then a Göpel group G contains four elements. The
number of such Göpel groups is 15. Let G = {0,m1,m2,m1m2} be a Göpel group
of even characteristics (we have six such groups). Let b1, b2, b1b2 be the charac-
teristics such that the G, b1G, b2G, b1b2G are all the cosets of the group G. Then
each of the systems other than G contains two odd characteristics and two even
characteristics. Consider equations given by Eq. (6) and Eq. (7). If h denotes any
one of the 3 characteristics m1,m2,m1m2, then we have 6 possible characteristics
for e, which satisfy |e, h| ≡ |h| ≡ 0. They are 0, n, b, h, nh, bh where n is a charac-
teristic in the Göpel group other than h, and b is an even characteristic chosen
from one of the systems b1G, b2G, b1b2G. The following three cases illustrate the
possible values for characteristic h and for characteristic e. Without loss of gen-
erality, we can take only three values for e which give rise to different terms on
the right hand side of Eq. (6) and Eq. (7).
Case 1: h = m1.

Take e ∈ {0,m2, b1} and take a = b1. Then from Eq. (6) and Eq. (7) we have(
m1

b1

)
θ2[0]θ2[m1] + eπi|b1m2|

(
m1

b1m2

)
θ2[m2]θ2[m1m2]− θ2[b1]θ2[b1m1] = 0,

θ4[0] + θ4[m1] + eπi|b1m2|[θ4[m2] + θ4[m2m1]]− [θ4[b1] + θ4[b1m1]] = 0.

Case 2: h = m2.
Take e ∈ {0,m1, b2} and take a = b2. Then from Eq. (6) and Eq. (7) we have(
m2

b2

)
θ2[0]θ2[m2] + epii|b2m1|

(
m2

b2m1

)
θ2[m1]θ2[m1m2]− θ2[b2]θ2[b2m2] = 0,

θ4[0] + θ4[m2] + epii|b2m2|[θ4[m1] + θ4[m1m2]]− [θ4[b2] + θ4[b2m2]] = 0.



Case 3: h = m1m2.
Take e ∈ {0,m1, b1b2} and take a = b1b2. Then from Eq. (6) and Eq. (7) we

have(
m1m2

b1b2

)
θ2[0]θ2[m1m2] + epii|b1b2m1|

(
m1m2

b1b2m1

)
θ2[m1]θ2[m2]−

θ2[b1b2]θ2[b1b2m1m2] = 0,

θ4[0] + θ4[m1m2] + epii|b1b2m1|[θ4[m1] + θ4[m2]]− [θ4[b1b2] + θ4[b1b2m1m2]] = 0.

The identities above express the even theta constants in terms of four theta con-
stants; therefore, we may call them fundamental theta constants,

θ[0], θ[m1], θ[m2], θ[m1m2].

2.2. Identities of Theta Constants

We have only six Göpel groups such that all characteristics are even. The following
are such Göpel groups and corresponding identities of theta constants.

i) G =

{
0 =

[
0 0
0 0

]
,m1 =

[
0 0
0 1

2

]
,m2 =

[
0 0
1
2 0

]
,m1m2 =

[
0 0
1
2

1
2

]}
is a Göpel group.

If b1 =

[
1
2 0
0 0

]
, b2 =

[
0 1

2
1
2 0

]
, then the corresponding Göpel systems are given

by the following:

G =

{[
0 0
0 0

]
,

[
0 0
0 1

2

]
,

[
0 0
1
2 0

]
,

[
0 0
1
2

1
2

]}
,

b1G =

{[
1
2 0
0 0

]
,

[
1
2 0
0 1

2

]
,

[
1
2 0
1
2 0

]
,

[
1
2 0
1
2

1
2

]}
,

b2G =

{[
0 1

2
1
2 0

]
,

[
0 1

2
1
2

1
2

]
,

[
0 1

2
0 0

]
,

[
0 1

2
0 1

2

]}
,

b3G =

{[
1
2

1
2

1
2 0

]
,

[
1
2

1
2

1
2

1
2

]
,

[
1
2

1
2

0 0

]
,

[
1
2

1
2

0 1
2

]}
.

Notice that from all four cosets, onlyG has all even characteristics as noticed
in Corollary 1. Using Eq. (6) and Eq. (7), we have the following six identities
for the above Göpel group:

θ2
5θ

2
6 = θ2

1θ
2
4 − θ2

2θ
2
3,

θ4
5 + θ4

6 = θ4
1 − θ4

2 − θ4
3 + θ4

4,
θ2

7θ
2
9 = θ2

1θ
2
3 − θ2

2θ
2
4,

θ4
7 + θ4

9 = θ4
1 − θ4

2 + θ4
3 − θ4

4,
θ2

8θ
2
10 = θ2

1θ
2
2 − θ2

3θ
2
4,

θ4
8 + θ4

10 = θ4
1 + θ4

2 − θ4
3 − θ4

4.



These identities express even theta constants in terms of four theta con-
stants. We call them fundamental theta constants θ1, θ2, θ3, θ4. Following
the same procedure, we can find similar identities for each possible Göpel
group.

ii) G =

{
0 =

[
0 0
0 0

]
,m1 =

[
0 0
1
2 0

]
,m2 =

[
1
2

1
2

1
2

1
2

]
,m1m2 =

[
1
2

1
2

0 0

]}
is a Göpel group.

If b1 =

[
0 0
1
2 0

]
, b2 =

[
1
2 0
0 1

2

]
, then the corresponding Göpel systems are given

by the following:

G =

{[
0 0
0 0

]
,

[
0 0
1
2 0

]
,

[
1
2

1
2

1
2

1
2

]
,

[
1
2

1
2

0 0

]}
,

b1G =

{[
0 0
1
2 0

]
,

[
0 0
0 1

2

]
,

[
1
2

1
2

0 1
2

]
,

[
1
2

1
2

1
2 0

]}
,

b2G =

{[
1
2 0
0 1

2

]
,

[
1
2 0
1
2 0

]
,

[
0 1

2
1
2 0

]
,

[
0 1

2
0 1

2

]}
,

b3G =

{[
1
2 0
1
2

1
2

]
,

[
1
2 0
0 0

]
,

[
0 1

2
0 0

] [
0 1

2
1
2

1
2

]}
.

We have the following six identities for the above Göpel group:



θ2
3θ

2
4 = θ2

1θ
2
2 − θ2

8θ
2
10,

θ4
3 + θ4

4 = θ4
1 + θ4

2 − θ4
8 − θ4

10,
θ2

6θ
2
9 = −θ2

1θ
2
10 + θ2

2θ
2
8,

θ4
6 + θ4

9 = θ4
1 − θ4

2 − θ4
8 + θ4

10,
θ2

5θ
2
7 = θ2

1θ
2
8 − θ2

2θ
2
10,

θ4
5 + θ4

7 = θ4
1 − θ4

2 + θ4
8 − θ4

10.

iii) G =

{
0 =

[
0 0
0 0

]
,m1 =

[
0 0
1
2 0

]
,m2 =

[
0 1

2
0 0

]
,m1m2 =

[
0 1

2
1
2 0

]}
is a Göpel group.

If b1 =

[
0 0
1
2

1
2

]
, b2 =

[
1
2

1
2

0 0

]
, then the corresponding Göpel systems are given

by the following:

G =

{[
0 0
0 0

]
,

[
0 0
1
2 0

]
,

[
0 1

2
0 0

]
,

[
0 1

2
1
2 0

]}
,

b1G =

{[
0 0
1
2

1
2

]
,

[
0 0
0 1

2

]
,

[
0 1

2
1
2

1
2

]
,

[
0 1

2
0 1

2

]}
,

b2G =

{[
1
2

1
2

0 0

]
,

[
1
2

1
2

1
2 0

]
,

[
1
2 0
0 0

]
,

[
1
2 0
1
2 0

]}
,

b3G =

{[
1
2

1
2

1
2

1
2

]
,

[
1
2

1
2

0 1
2

]
,

[
1
2 0
1
2

1
2

]
,

[
1
2 0
0 1

2

]}
.



We have the following six identities for the above Göpel group:

θ2
2θ

2
4 = θ2

1θ
2
3 − θ2

7θ
2
9,

θ4
2 + θ4

4 = θ4
1 + θ4

3 − θ4
7 − θ4

9,
θ2

8θ
2
5 = θ2

1θ
2
7 − θ2

3θ
2
9,

θ4
8 + θ4

5 = θ4
1 − θ4

3 + θ4
7 − θ4

9,
θ2

6θ
2
10 = −θ2

1θ
2
9 + θ2

3θ
2
7,

θ4
6 + θ4

10 = θ4
1 − θ4

3 − θ4
7 + θ4

9.

iv) G =

{
0 =

[
0 0
0 0

]
,m1 =

[
0 0
0 1

2

]
,m2 =

[
1
2 0
0 0

]
,m1m2 =

[
1
2 0
0 1

2

]}
is a Göpel group.

If b1 =

[
0 0
1
2

1
2

]
, b2 =

[
1
2

1
2

0 0

]
, then the corresponding Göpel systems are given

by the following:

G =

{[
0 0
0 0

]
,

[
0 0
0 1

2

]
,

[
1
2 0
0 0

]
,

[
1
2 0
0 1

2

]}
,

b1G =

{[
0 0
1
2

1
2

]
,

[
0 0
1
2 0

]
,

[
1
2 0
1
2

1
2

]
,

[
1
2 0
1
2 0

]}
,

b2G =

{[
1
2

1
2

0 0

]
,

[
1
2

1
2

0 1
2

]
,

[
0 1

2
0 0

]
,

[
0 1

2
0 1

2

]}
,

b3G =

{[
1
2

1
2

1
2

1
2

]
,

[
1
2

1
2

1
2 0

]
,

[
0 1

2
1
2

1
2

]
,

[
0 1

2
1
2 0

]}
.

We have the following six identities for the above Göpel group:



θ2
2θ

2
3 = θ2

1θ
2
4 − θ2

5θ
2
6,

θ4
2 + θ4

3 = θ4
1 + θ4

4 − θ4
5 − θ4

6,
θ2

8θ
2
7 = θ2

1θ
2
5 − θ2

4θ
2
6,

θ4
8 + θ4

7 = θ4
1 − θ4

4 + θ4
5 − θ4

6,
θ2

9θ
2
10 = −θ2

1θ
2
6 + θ2

4θ
2
5,

θ4
9 + θ4

10 = θ4
1 − θ4

4 − θ4
5 + θ4

6.

v) G =

{
0 =

[
0 0
0 0

]
,m1 =

[
1
2 0
0 0

]
,m2 =

[
0 1

2
0 0

]
,m1m2 =

[
1
2

1
2

0 0

]}
is a Göpel group.

If b1 =

[
1
2 0
0 1

2

]
, b2 =

[
0 0
1
2 0

]
, then the corresponding Göpel systems are given

by the following:

G =

{[
0 0
0 0

]
,

[
1
2 0
0 0

]
,

[
0 1

2
0 0

]
,

[
1
2

1
2

0 0

]}
,

b1G =

{[
1
2 0
0 1

2

]
,

[
0 0
0 1

2

]
,

[
1
2

1
2

0 1
2

]
,

[
0 1

2
0 1

2

]}
,



b2G =

{[
0 0
1
2 0

]
,

[
1
2 0
1
2 0

]
,

[
0 1

2
1
2 0

]
,

[
1
2

1
2

1
2 0

]}
,

b3G =

{[
1
2 0
1
2

1
2

]
,

[
0 0
1
2

1
2

]
,

[
1
2

1
2

1
2

1
2

]
,

[
0 1

2
1
2

1
2

]}
.

We have the following six identities for the above Göpel group:



θ2
4θ

2
6 = θ2

1θ
2
5 − θ2

7θ
2
8,

θ4
4 + θ4

6 = θ4
1 + θ4

5 − θ4
7 − θ4

8,
θ2

3θ
2
9 = θ2

1θ
2
7 − θ2

5θ
2
8,

θ4
3 + θ4

9 = θ4
1 − θ4

5 + θ4
7 − θ4

8,
θ2

2θ
2
10 = θ2

1θ
2
8 − θ2

5θ
2
7,

θ4
2 + θ4

10 = θ4
1 − θ4

5 − θ4
7 + θ4

8.

vi) G =

{
0 =

[
0 0
0 0

]
,m1 =

[
1
2 0
0 1

2

]
,m2 =

[
0 1

2
1
2 0

]
,m1m2 =

[
1
2

1
2

1
2

1
2

]}
is a Göpel group.

If b1 =

[
1
2 0
0 0

]
, b2 =

[
0 1

2
0 0

]
, then the corresponding Göpel systems are given

by the following:

G =

{[
0 0
0 0

]
,

[
1
2 0
0 1

2

]
,

[
0 1

2
1
2 0

]
,

[
1
2

1
2

1
2

1
2

]}
,

b1G =

{[
1
2 0
0 0

]
,

[
0 0
0 1

2

]
,

[
1
2

1
2

1
2 0

]
,

[
0 1

2
1
2

1
2

]}
,

b2G =

{[
0 1

2
0 0

]
,

[
1
2

1
2

0 1
2

]
,

[
0 0
1
2 0

]
,

[
1
2 0
1
2

1
2

]}
,

b3G =

{[
1
2

1
2

0 0

]
,

[
0 1

2
0 1

2

]
,

[
1
2 0
1
2 0

]
,

[
0 0
1
2

1
2

]}
.

We have the following six identities for the above Göpel group:



θ2
2θ

2
3 = θ2

1θ
2
4 − θ2

5θ
2
6,

θ4
2 + θ4

3 = θ4
1 + θ4

4 − θ4
5 − θ4

6,
θ2

8θ
2
7 = θ2

1θ
2
5 − θ2

4θ
2
6,

θ4
8 + θ4

7 = θ4
1 − θ4

4 + θ4
5 − θ4

6,
θ2

9θ
2
10 = −θ2

1θ
2
6 + θ2

4θ
2
5,

θ4
9 + θ4

10 = θ4
1 − θ4

4 − θ4
5 + θ4

6.

From now on, we consider θ1, θ2, θ3, and θ4 as the fundamental theta constants.



2.3. Inverting the Moduli Map

Let λi, i = 1, . . . , n, be branch points of the genus g smooth curve X . Then

the moduli map is a map from the configuration space Λ of ordered n distinct

points on P1 to the Siegel upper half space Hg. In this section, we determine

the branch points of genus 2 curves as functions of theta characteristics. The

following lemma describes these relations using Thomae’s formula. The identities

are known as Picard’s formulas. We will formulate a somewhat different proof for

Picard’s lemma.

Lemma 8 (Picard). Let a genus 2 curve be given by

Y 2 = X(X − 1)(X − λ)(X − µ)(X − ν). (16)

Then, λ, µ, ν can be written as follows:

λ =
θ2

1θ
2
3

θ2
2θ

2
4

, µ =
θ2

3θ
2
8

θ2
4θ

2
10

, ν =
θ2

1θ
2
8

θ2
2θ

2
10

. (17)

Proof. There are several ways to relate λ, µ, ν to theta constants, depending on

the ordering of the branch points of the curve. Let B = {ν, µ, λ, 1, 0} be the

branch points of the curve in this order and U = {ν, λ, 0} be the set of odd branch

points. Using Lemma 6, we have the following set of equations of theta constants

and branch points:

θ4
1 = Aνλ(µ− 1)(ν − λ), θ4

2 = Aµ(µ− 1)(ν − λ),
θ4

3 = −Aµλ(µ− λ)(ν − λ), θ4
4 = −Aν(ν − λ)(µ− λ),

θ4
5 = Aλµ(ν − 1)(ν − µ), θ4

6 = −A (ν − µ)(ν − λ)(µ− λ),
θ4

7 = −Aµ(ν − 1)(λ− 1)(ν − λ), θ4
8 = −Aµν(ν − µ)(λ− 1),

θ4
9 = Aν(µ− 1)(λ− 1)(µ− λ), θ4

10 = −Aλ(λ− 1)(ν − µ)

(18)

where A is a constant. By choosing appropriate equations from the set Eq. (18)

we have the following:

λ2 =

(
θ2

1θ
2
3

θ2
2θ

2
4

)2

, µ2 =

(
θ2

3θ
2
8

θ2
4θ

2
10

)2

, ν2 =

(
θ2

1θ
2
8

θ2
2θ

2
10

)2

.

Each value for (λ, µ, ν) gives isomorphic genus 2 curves. Hence, we can choose

λ =
θ2

1θ
2
3

θ2
2θ

2
4

, µ =
θ2

3θ
2
8

θ2
4θ

2
10

, ν =
θ2

1θ
2
8

θ2
2θ

2
10

.

This completes the proof.



2.4. Automorphism Groups of Curves

Let X be a genus 2 curve defined over an algebraically closed field k of character-
istic zero. We denote its function field by K := k(X ) and Aut(X ) = Aut(K/k)
is the automorphism group of X . In any characteristic different from 2, the auto-
morphism group Aut(X ) is isomorphic to one of the groups given by the following
lemma.

Lemma 9. The automorphism group G of a genus 2 curve X in characteristic 6= 2
is isomorphic to C2, C10, V4, D8, D12, C3 o D8, GL2(3), or 2+S5. The case
G∼= 2+S5 occurs only in characteristic 5. If G∼=Z3 o D8 (resp., GL2(3)), then
X has equation Y 2 = X6 − 1 (resp., Y 2 = X(X4 − 1)). If G∼=C10, then X has
equation Y 2 = X6 −X.

For the proof of the above lemma and the description of each group see [17].
For the rest of this chapter, we assume that char(k) = 0. One of the main goals
of Section 2.4 is to describe each locus of genus 2 curves with fixed automorphism
group in terms of the fundamental theta constants. We have the following lemma.

Lemma 10. Every genus two curve can be written in the form:

y2 = x (x− 1)

(
x− θ2

1θ
2
3

θ2
2θ

2
4

) (
x2 − θ2

2 θ
2
3 + θ2

1 θ
2
4

θ2
2 θ

2
4

· αx+
θ2

1θ
2
3

θ2
2θ

2
4

α2

)
,

where α =
θ28
θ210

can be given in terms of θ1, θ2, θ3, and θ4,

α2 +
θ4

1 + θ4
2 − θ4

3 − θ4
4

θ2
3θ

2
4 − θ2

1θ
2
2

α+ 1 = 0.

Furthermore, if α = ±1 then V4 ↪→ Aut(X ).

Proof. Let us write the genus 2 curve in the following form:

Y 2 = X(X − 1)(X − λ)(X − µ)(X − ν)

where λ, µ, ν are given by Eq. (17). Let α :=
θ28
θ210

. Then,

µ =
θ23
θ24
α, ν =

θ21
θ22
α.

Using the following two identities,

θ4
8 + θ4

10 = θ4
1 + θ4

2 − θ4
3 − θ4

4,

θ2
8θ

2
10 = θ2

1θ
2
2 − θ2

3θ
2
4

(19)

we have

α2 +
θ4

1 + θ4
2 − θ4

3 − θ4
4

θ2
3θ

2
4 − θ2

1θ
2
2

α+ 1 = 0. (20)



If α = ±1 then µν = λ. It is well known that this implies that the genus 2 curve
has an elliptic involution. Hence, V4 ↪→ Aut(X ).

Remark 3. i) From the above we have that θ4
8 = θ4

10 implies that V4 ↪→ Aut(X ).
Lemma 11 determines a necessary and equivalent statement when V4 ↪→ Aut(X ).

ii) The last part of Lemma 2.4 shows that if θ4
8 = θ4

10, then all coefficients of
the genus 2 curve are given as rational functions of the four fundamental theta
functions. Such fundamental theta functions determine the field of moduli of the
given curve. Hence, the curve is defined over its field of moduli.

Corollary 2. Let X be a genus 2 curve which has an elliptic involution. Then X
is defined over its field of moduli.

This was the main result of [5].

2.5. Describing the Locus of Genus Two Curves with Fixed Automorphism
Group by Theta Constants

The locus L2 of genus 2 curves X which have an elliptic involution is a closed
subvariety ofM2. Let W = {α1, α2, β1, β2, γ1, γ2} be the set of roots of the binary
sextic, and A and B be subsets of W such that W = A ∪B and |A ∩B| = 2. We
define the cross ratio of the two pairs z1, z2; z3, z4 by

(z1, z2; z3, z4) =
z1; z3, z4

z2; z3, z4
=
z1 − z3

z1 − z4
:
z2 − z3

z2 − z4
.

Take A = {α1, α2, β1, β2} and B = {γ1, γ2, β1, β2}. Jacobi [8] gives a description
of L2 in terms of the cross ratios of the elements of W :

α1 − β1

α1 − β2
:
α2 − β1

α2 − β2
=
γ1 − β1

γ1 − β2
:
γ2 − β1

γ2 − β2
.

We recall that the following identities hold for cross ratios:

(α1, α2 ;β1, β2) = (α2, α1;β2, β1) = (β1, β2;α1, α2) = (β2, β1;α2, α1)

and

(α1, α2;∞, β2) = (∞, β2;α1, α2) = (β2;α2, α1).

Next, we use this result to determine relations among theta functions for a genus
2 curve in the locus L2. Let X be any genus 2 curve given by the equation

Y 2 = X(X − 1)(X − a1)(X − a2)(X − a3).

We take ∞ ∈ A ∩ B. Then there are five cases for α ∈ A ∩ B, where α is an
element of the set {0, 1, a1, a2, a3}. For each of these cases there are three possible
relationships for cross ratios as described below:
i) A ∩B = {0,∞}: The possible cross ratios are



(a1, 1;∞, 0) = (a3, a2;∞, 0), (a2, 1;∞, 0) = (a1, a3;∞, 0),

(a1, 1;∞, 0) = (a2, a3;∞, 0).

ii) A ∩B = {1,∞}: The possible cross ratios are

(a1, 0;∞, 1) = (a2, a3;∞, 1), (a1, 0;∞, 1) = (a3, a2;∞, 1),

(a2, 0;∞, 1) = (a1, a3;∞, 1).

iii) A ∩B = {a1,∞}: The possible cross ratios are

(1, 0;∞, a1) = (a3, a2;∞, a1), (a2, 0;∞, a1) = (1, a3;∞, a1),

(1, 0;∞, a1) = (a2, a3;∞, a1).

iv) A ∩B = {a2,∞}: The possible cross ratios are

(1, 0;∞, a2) = (a1, a3;∞, a2), (1, 0;∞, a2) = (a3, a1;∞, a2),

(a1, 0;∞, a2) = (1, a3;∞, a2).

v) A ∩B = {a3,∞}: The possible cross ratios are

(a1, 0;∞, a3) = (1, a2;∞, a3), (1, 0;∞, a3) = (a2, a1;∞, a3),

(1, 0;∞, a3) = (a1, a2;∞, a3).

We summarize these relationships in Table 2.1.

Lemma 11. Let X be a genus 2 curve. Then Aut(X )∼=V4 if and only if the theta
functions of X satisfy

(θ4
1 − θ4

2)(θ4
3 − θ4

4)(θ4
8 − θ4

10)(−θ2
1θ

2
3θ

2
8θ

2
2 − θ2

1θ
2
2θ

2
4θ

2
10 + θ4

1θ
2
3θ

2
10 + θ2

3θ
4
2θ

2
10)

(θ2
3θ

2
8θ

2
2θ

2
4 − θ2

2θ
4
4θ

2
10 + θ2

1θ
2
3θ

2
4θ

2
10 − θ4

3θ
2
2θ

2
10)(−θ4

8θ
2
3θ

2
2 + θ2

8θ
2
2θ

2
10θ

2
4

+θ2
1θ

2
3θ

2
8θ

2
10 − θ2

3θ
2
2θ

4
10)(−θ2

1θ
4
8θ

2
4 − θ2

1θ
4
10θ

2
4 + θ2

8θ
2
2θ

2
10θ

2
4 + θ2

1θ
2
3θ

2
8θ

2
10)

(−θ2
1θ

2
8θ

2
3θ

2
4 + θ2

1θ
2
10θ

4
4 + θ2

1θ
4
3θ

2
10 − θ2

3θ
2
2θ

2
10θ

2
4)(−θ2

1θ
2
8θ

2
2θ

2
4 + θ4

1θ
2
10θ

2
4

−θ2
1θ

2
3θ

2
2θ

2
10 + θ4

2θ
2
4θ

2
10)(−θ4

8θ
2
2θ

2
4 + θ2

1θ
2
8θ

2
10θ

2
4 − θ2

2θ
4
10θ

2
4 + θ2

3θ
2
8θ

2
2θ

2
10)

(θ4
1θ

2
8θ

2
4 − θ2

1θ
2
2θ

2
4θ

2
10 − θ2

1θ
2
3θ

2
8θ

2
2 + θ2

8θ
4
2θ

2
4)(θ4

1θ
2
3θ

2
8 − θ2

1θ
2
8θ

2
2θ

2
4

−θ2
1θ

2
3θ

2
2θ

2
10 + θ2

3θ
2
8θ

4
2)(θ2

1θ
4
8θ

2
3 − θ2

1θ
2
8θ

2
10θ

2
4 + θ2

1θ
2
3θ

4
10 − θ2

3θ
2
8θ

2
2θ

2
10)

(θ2
1θ

2
8θ

4
4 − θ2

1θ
2
3θ

2
4θ

2
10 + θ2

1θ
4
3θ

2
8 − θ2

3θ
2
8θ

2
2θ

2
4) = 0.

(21)

However, we are unable to determine a similar result for cases D8 or D12 by
this argument. Instead, we will use the invariants of genus 2 curves and a more
computational approach. In the process, we will offer a different proof for the
lemma above.



Table 1. Relation of theta functions and cross ratios

Cross ratio f(a1, a2, a3) = 0 theta constants

1 (1, 0;∞, a1) = (a3, a2;∞, a1) a1a2 + a1 − a3a1 − a2 −θ21θ23θ28θ22 − θ21θ22θ24θ210+

θ41θ
2
3θ

2
10 + θ23θ

4
2θ

2
10

2 (a2, 0;∞, a1) = (1, a3;∞, a1) a1a2 − a1 + a3a1 − a3a2 θ23θ
2
8θ

2
2θ

2
4 − θ22θ44θ210+

θ21θ
2
3θ

2
4θ

2
10 − θ43θ22θ210

3 (1, 0;∞, a1) = (a2, a3;∞, a1) a1a2 − a1 − a3a1 + a3 −θ48θ23θ22 + θ28θ
2
2θ

2
10θ

2
4+

θ21θ
2
3θ

2
8θ

2
10 − θ23θ22θ410

4 (1, 0;∞, a2) = (a1, a3;∞, a2) a1a2 − a2 − a3a2 + a3 −θ21θ48θ24 − θ21θ410θ24+

θ28θ
2
2θ

2
10θ

2
4 + θ21θ

2
3θ

2
8θ

2
10

5 (1, 0;∞, a2) = (a3, a1;∞, a2) a1a2 − a1 + a2 − a3a2 −θ21θ28θ23θ24 + θ21θ
2
10θ

4
4+

θ21θ
4
3θ

2
10 − θ23θ22θ210θ24

6 (a1, 0;∞, a2) = (1, a3;∞, a2) a1a2 − a3a1 − a2 + a3a2 −θ21θ28θ22θ24 + θ41θ
2
10θ

2
4−

θ21θ
2
3θ

2
2θ

2
10 + θ42θ

2
4θ

2
10

7 (a1, 0;∞, a3) = (1, a2;∞, a3) a1a2 − a3a1 − a3a2 + a3 −θ48θ22θ24 + θ21θ
2
8θ

2
10θ

2
4−

θ22θ
4
10θ

2
4 + θ23θ

2
8θ

2
2θ

2
10

8 (1, 0;∞, a3) = (a2, a1;∞, a3) a3a1 − a1 − a3a2 + a3 θ48 − θ410

9 (1, 0;∞, a3) = (a1, a2;∞, a3) a3a1 + a2 − a3 − a3a2 θ41θ
2
8θ

2
4 − θ21θ22θ24θ210−

θ21θ
2
3θ

2
8θ

2
2 + θ28θ

4
2θ

2
4

10 (a1, 0;∞, 1) = (a2, a3;∞, 1) −a1 + a3a1 + a2 − a3 θ41θ
2
3θ

2
8 − θ21θ28θ22θ24−

θ21θ
2
3θ

2
2θ

2
10 + θ23θ

2
8θ

4
2

11 (a1, 0;∞, 1) = (a3, a2;∞, 1) a1a2 − a1 − a2 + a3 θ21θ
4
8θ

2
3 − θ21θ28θ210θ24+

θ21θ
2
3θ

4
10 − θ23θ28θ22θ210

12 (a2, 0;∞, 1) = (a1, a3;∞, 1) a1 − a2 + a3a2 − a3 θ21θ
2
8θ

4
4 − θ21θ23θ24θ210+

θ21θ
4
3θ

2
8 − θ23θ28θ22θ24

13 (a1, 1;∞, 0) = (a3, a2;∞, 0) a1a2 − a3 θ48 − θ410

14 (a2, 1;∞, 0) = (a1, a3;∞, 0) a1 − a3a2 θ43 − θ44

15 (a1, 1;∞, 0) = (a2, a3;∞, 0) a3a1 − a2 θ41 − θ42

Lemma 12. i) The locus L2 of genus 2 curves X which have a degree 2 elliptic
subcover is a closed subvariety of M2. The equation of L2 is given by

8748J10J
4
2J

2
6 − 507384000J2

10J
2
4J2 − 19245600J2

10J4J
3
2 − 6912J3

4J
34
6

−592272J10J
4
4J

2
2 + 77436J10J

3
4J

4
2 − 3499200J10J2J

3
6 + 4743360J10J

3
4J2J6

−870912J10J
2
4J

3
2J6 + 3090960J10J4J

2
2J

2
6 − 78J5

2J
5
4 − 125971200000J3

10

−81J3
2J

4
6 + 1332J4

2J
4
4J6 + 384J6

4J6 + 41472J10J
5
4 + 159J6

4J
3
2

−47952J2J4J
4
6 + 104976000J2

10J
2
2J6 − 1728J5

4J
2
2J6 + 6048J4

4J2J
2
6



−9331200J10J
2
4J

2
6 − J7

2J
4
4 + 12J6

2J
3
4J6 + 29376J2

2J
2
4J

3
6 − 8910J3

2J
3
4J

2
6

−2099520000J2
10J4J6 + 31104J5

6 − 5832J10J
5
2J4J6 − 54J5

2J
2
4J

2
6

−236196J2
10J

5
2 − 80J7

4J2 + 108J4
2J4J

3
6 + 972J10J

6
2J

2
4 =0.

(22)

ii) The locus of genus 2 curves X with Aut(X )∼=D8 is given by the equation
of L2 and

1706J2
4J

2
2 + 2560J3

4 + 27J4J
4
2 − 81J3

2J6 − 14880J2J4J6 + 28800J2
6 = 0. (23)

iii) The locus of genus 2 curves X with Aut(X )∼=D12 is

−J4J
4
2 + 12J3

2J6 − 52J2
4J

2
2 + 80J3

4 + 960J2J4J6 − 3600J2
6 = 0,

864J10J
5
2 + 3456000J10J

2
4J2 − 43200J10J4J

3
2 − 2332800000J2

10

−J2
4J

6
2 − 768J4

4J
2
2 + 48J3

4J
4
2 + 4096J5

4 = 0.

(24)

Our goal is to express each of the above loci in terms of the theta characteristics.
We obtain the following result.

Theorem 3. Let X be a genus 2 curve. Then the following hold:
i) Aut(X )∼=V4 if and only if the relations of theta functions given Eq. (21)

holds.
ii) Aut(X )∼=D8 if and only if the Eq. I in [18] is satisfied.
iii) Aut(X )∼=D12 if and only if the Eq. II and Eq. III in [18] are satisfied.

Proof. Part i) of the theorem is Lemma 11. Here we give a somewhat different
proof. Assume that X is a genus 2 curve with equation

Y 2 = X(X − 1)(X − a1)(X − a2)(X − a3)

whose classical invariants satisfy Eq. (12). Expressing the classical invariants of
X in terms of a1, a2, a3, substituting them into (12), and factoring the resulting
equation yields

(a1a2 − a3)2(a1 − a3a2)2(a3a1 − a2)2(a1a2 − a2 − a3a2 + a3)2

(a3a1 + a2 − a3 − a3a2)2(−a1 + a3a1 + a2 − a3)2(a1a2 − a1 − a2 + a3)2

(a1a2 − a1 + a3a1 − a3a2)2(a1a2 − a3a1 − a3a2 + a3)2

(a3a1 − a1 − a3a2 + a3)2(a1a2 + a1 − a3a1 − a2)2

(a1a2 − a1 − a3a1 + a3)2(a1a2 − a1 + a2 − a3a2)2

(a1 − a2 + a3a2 − a3)2(a1a2 − a3a1 − a2 + a3a2)2 = 0.

(25)

It is no surprise that we get the 15 factors of Table 2.1. The relations of theta
constants follow from Table 2.1.



ii) Let X be a genus 2 curve which has an elliptic involution. Then X is

isomorphic to a curve with the equation

Y 2 = X(X − 1)(X − a1)(X − a2)(X − a1a2).

If Aut(X )∼=D8 then the SL2(k)-invariants of such curve must satisfy Eq. (23).

Then, we get the equation in terms of a1 and a2. By writing the relation a3 = a1a2

in terms of theta constants, we get θ4
4 = θ4

3. All the results above lead to part ii)

of the theorem. iii) The proof of this part is similar to part ii).

We express the conditions of the previous lemma in terms of the fundamental

theta constants only.

Lemma 13. Let X be a genus 2 curve. Then we have the following:

i) V4 ↪→ Aut(X ) if and only if the fundamental theta constants of X satisfy

(θ4
3 − θ4

4)(θ4
1 − θ4

3)(θ4
2 − θ4

4)(θ4
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4)(θ4
3 − θ4

2)(θ4
1 − θ4
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2
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2
4
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4
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2
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2
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2
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4θ4
4 + θ3
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4 + θ1
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4 − 2 θ2
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2
2θ

2
3θ

2
4

)
= 0.

(26)

ii) D8 ↪→ Aut(X ) if and only if the fundamental theta constants of X satisfy

Eq.(3) in [6].

iii) D6 ↪→ Aut(X ) if and only if the fundamental theta constants of X satisfy

Eq.(4) in [6].

Proof. Notice that Eq. (21) contains only θ1, θ2, θ3, θ4, θ8 and θ10. Using Eq. (19),

we can eliminate θ8 and θ10 from Eq. (21). The J10 invariant of any genus two

curve is given by the following in terms of theta constants:

J10 =
θ12

1 θ12
3

θ28
2 θ28

4 θ40
10

(θ2
1θ

2
2 − θ2

3θ
2
4)12(θ2

1θ
2
4 − θ2

2θ
2
3)12(θ2

1θ
2
3 − θ2

2θ
2
4)12.

Since J10 6= 0, the factors (θ2
1θ

2
2 − θ2

3θ
2
4), (θ2

1θ
2
4 − θ2

2θ
2
3) and (θ2

1θ
2
3 − θ2

2θ
2
4) cancel in

the equation of the V4 locus. The result follows from Theorem 3. The proof of

part ii) and iii) is similar and we avoid details.

Remark 4. For part ii) and iii), the equations are lengthy and we don’t show them

here. But by using the extra conditions θ2
4 = θ2

3 or θ2
4 = −θ2

3, we could simplify

the equation of the D8 locus as follows:

i)When θ2
4 = θ2

3, we have
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(27)

ii) When θ2
4 = −θ2

3, we have
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6θ2
14θ3

4

+126 θ1
6θ2

2θ3
16 − 24 θ1

6θ2
6θ3

12 − 68 θ1
6θ2

10θ3
8 − 24 θ1

12θ2
12

+16 θ1
14θ2

6θ3
4 − 10 θ1

12θ3
8θ2

4 − 16 θ1
12θ3

4θ2
8 − 88 θ1

10θ3
4θ2

10

−18 θ1
10θ2

2θ3
12 + 8 θ2

8θ1
16) =0.

(28)

Define the following as

A = (
θ2

θ1
)4, B = (

θ3

θ1
)4, C = (

θ4

θ1
)4, D = (

θ8

θ1
)4, E = (

θ10

θ1
)4.

Using the two identities given by Eq. (19), we have

1 +A−B − C −D − E = 0,

A2 − 2DEA+ 2BCA+ C2B2 − 2DECB +D2E2 = 0.

Then we formulate the following lemma.

Lemma 14. Let X be a genus 2 curve. Then V4 ↪→ Aut(X ) if and only if the theta

constants of X satisfy



(B −A)(A− C)(B − C)(1−A)(1−B)(1− C)(1− 2C + 2A+A2C2

−4DE −AC − 2A2BC + 2ADEBC +AB2 +DEBC +ADEB −A2

+4ABC − 2AB2C2 −A2B +ADE −B2C2 − 2BC2 +B2C)(−DEBC

−4ABC +B2C2 +AC +AB2C −ADEB +A2 +A2C +ABC2

−DEC − 2ADEC −A2C2 −A2BC −AC2 −ADE) =0.

(29)

3. Genus 3 curves

3.1. Introduction to Genus 3 Curves

In this section, we focus on genus 3 cyclic curves. The locus L3 of genus 3 hy-
perelliptic curves with extra involutions is a 3-dimensional subvariety of H3. If
X ∈ L3 then V4 ↪→ Aut(X ). The normal form of the hyperelliptic genus 3 curve
is given by

y3 = x8 + a3X
6 + a2x

4 + a1x
2 + 1

and the dihedral invariants of X3 are u1 = a4
1 + a4

3, u2 = (a2
1 + a2

3)a2, u3 = 2a1a3.
The description of the locus of genus 3 hyperelliptic curves in terms of dihedral
invariants or classical invariants is given in [7]. We would like to describe the locus
of genus 3 hyperelliptic curves with extra involutions and all its sub loci in terms
of theta functions.

The list of groups that occur as automorphism groups of genus 3 curves has
been computed by many authors. We denote the following groups by G1 and G2:

G1 = 〈x, y|x2, y6, xyxy4〉, G2 = 〈x, y|x4, y4, (xy)2, (x−1y)2〉.

In Table 2, we list all possible hyperelliptic genus 3 algebraic curves; see [10] for
details. In this case Aut(X ) has a central subgroup C of order 2 such that the
genus of XC is zero. In the second column of the table, the groups which occur as
full automorphism groups are given, and the third column indicates the reduced
automorphism group for each case. The dimension δ of the locus and the equation
of the curve are given in the next two columns. The last column is the GAP
identity of each group in the library of small groups in GAP. Note that C2, C4

and C14 are the only groups which don’t have extra involutions. Thus, curves
with automorphism group C2, C4 or C14 do not belong to the locus L3 of genus
3 hyperelliptic curves with extra involutions.

In Table 3, we list the automorphism groups of genus 3 nonhyperelliptic
curves. In the table, the second column represents the normal cyclic subgroup C
such that g(XC) = 0. For the last 3 cases in the table, the automorphism groups
of the curves are not normal homocyclic covers of P1. The only cyclic curves are
curves with automorphism groups C2

4 oS3, C3, C6, C9 and two other groups given
by (16, 13) and (48, 33) in GAP identity. In this chapter we write the equations
of the cyclic curves of genus 3 by using theta constants.



Table 2. Genus 3 hyperelliptic curves and their automorphisms

Aut(X ) Aut (X ) δ equation y2 = f(x) Id.

1 C2 {1} 5 x(x− 1)(x5 + ax4 + bx3 + cx2 + dx+ e) (2, 1)

2 C2 × C2 C2 3 x8 + a3x6 + a2x4 + a1x2 + 1 (4, 2)

3 C4 C2 2 x(x2 − 1)(x4 + ax2 + b) (4, 1)

4 C14 C7 0 x7 − 1 (14, 2)

5 C3
2 D4 2 (x4 + ax2 + 1)(x4 + bx2 + 1) (8, 5)

6 C2 ×D8 D8 1 x8 + ax4 + 1 (16, 11)

7 C2 × C4 D4 1 (x4 − 1)(x4 + ax2 + 1) (8, 2)

8 D12 D6 1 x(x6 + ax3 + 1) (12, 4)

9 G1 D12 0 x(x6 − 1) (24, 5)

10 G2 D16 0 x8 − 1 (32, 9)

11 C2 × S4 S4 0 x8 + 14x2 + 1 (48, 48)

Table 3. Genus 3 non hyperelliptic curves and their automorphisms

# Aut(X ) C Aut(X )/C equation Id.

1 V4 V4 {1} x4 + y4 + ax2y2 + bx2 + cy2 + 1 = 0 (4,2)

2 D8 V4 C2 take b = c (8,3)

3 S4 V4 S3 take a = b = c (24,12)

4 C2
4oS3 V4 S4 take a = b = c = 0 or y4 = x(x2 − 1) (96,64)

5 16 C4 V4 y4 = x(x− 1)(x− t) (16,13)

6 48 C4 A4 y4 = x3 − 1 (48,33)

7 C3 C3 {1} y3 = x(x− 1)(x− s)(x− t) (3,1)

8 C6 C3 C2 take s = 1− t (6,2)

9 C9 C3 C3 y3 = x(x3 − 1) (9,1)

10 L3(2) x3y + y3z + z3x = 0 (168,42)

11 S3 a(x4 + y4 + z4) + b(x2y2 + x2z2 + y2z2)+ (6,1)

c(x2yz + y2xz + z2xy) = 0

12 C2 x4 + x2(y2 + az2) + by4 + cy3z + dy2z2 (2,1)

+eyz3 + gz4 = 0, either e = 1 or g = 1



Figure 1 describes the inclusions among all subloci for genus 3 curves. In order
to study such inclusions, the lattice of the list of automorphism groups of genus 3
curves needs to be determined. Let’s consider the locus of the hyperelliptic curve
whose automorphism group is V4 = {1, α, β, αβ}. Suppose α is the hyperelliptic
involution. Since the hyperelliptic involution is unique, the genus of the quotient
curve X 〈β〉 is 1. Also we have 〈α〉 ∼= C2 ↪→ V4 and 〈β〉 ∼= C2 ↪→ V4. Therefore the
locus of the hyperelliptic curve with automorphism group V4 can be embedded
into two different loci with automorphism group C2. One comes from a curve
that has hyperelliptic involution and the other comes from a curve which does
not have hyperelliptic involution. Similarly we can describe the inclusions of each
locus. The lattice of the automorphism groups for genus 3 curves is given Figure
1.

3.2. Theta Functions for Hyperelliptic Curves

For genus three hyperelliptic curves, we have 28 odd theta characteristics and 36
even theta characteristics. The following shows the corresponding characteristics
for each theta function. The first 36 are for the even functions and the last 28
are for the odd functions. For simplicity, we denote them by θi(z) instead of

θi

[
a
b

]
(z, τ) where i = 1, . . . , 36 for the even functions and i = 37, . . . , 64 for the

odd functions.

θ1(z) = θ1

[
0 0 0
0 0 0

]
(z, τ), θ2(z) = θ2

[
1
2 0 1

2
1
2

1
2

1
2

]
(z, τ)

θ3(z) = θ3

[
1
2

1
2

1
2

0 0 0

]
(z, τ), θ4(z) = θ4

[
0 0 0
1
2 0 0

]
(z, τ)

θ5(z) = θ5

[
1
2 0 0
0 1

2 0

]
(z, τ), θ6(z) = θ6

[
1
2

1
2 0

0 0 1
2

]
(z, τ)

θ7(z) = θ7

[
0 1

2
1
2

1
2 0 0

]
(z, τ), θ8(z) = θ8

[
0 0 1

2
0 1

2 0

]
(z, τ)

θ9(z) = θ9

[
0 0 0
0 0 1

2

]
(z, τ), θ10(z) = θ10

[
1
2 0 0
0 0 0

]
(z, τ)

θ11(z) = θ11

[
1
2

1
2 0

1
2

1
2 0

]
(z, τ), θ12(z) = θ12

[
1
2

1
2

1
2

1
2 0 1

2

]
(z, τ)

θ13(z) = θ13

[
0 0 0
1
2

1
2 0

]
(z, τ), θ14(z) = θ14

[
0 1

2 0
0 0 0

]
(z, τ)

θ15(z) = θ15

[
0 1

2
1
2

0 1
2

1
2

]
(z, τ), θ16(z) = θ16

[
0 1

2 0
1
2 0 1

2

]
(z, τ)

θ17(z) = θ17

[
0 0 0
0 1

2
1
2

]
(z, τ), θ18(z) = θ18

[
0 0 1

2
0 0 0

]
(z, τ)
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Figure 1. Inclusions among the loci for genus 3 curves with automorphisms.

θ19(z) = θ19

[
1
2

1
2 0

1
2

1
2

1
2

]
(z, τ), θ20(z) = θ20

[
0 1

2 0
0 0 1

2

]
(z, τ)

θ21(z) = θ21

[
0 0 0
0 1

2 0

]
(z, τ), θ22(z) = θ22

[
0 1

2
1
2

0 0 0

]
(z, τ)

θ23(z) = θ23

[
1
2

1
2

1
2

1
2

1
2 0

]
(z, τ), θ24(z) = θ24

[
1
2 0 1

2
1
2 0 1

2

]
(z, τ)



θ25(z) = θ25

[
1
2 0 0
0 0 1

2

]
(z, τ), θ26(z) = θ26

[
0 0 0
1
2

1
2

1
2

]
(z, τ)

θ27(z) = θ27

[
0 1

2 0
1
2 0 0

]
(z, τ), θ28(z) = θ28

[
0 0 1

2
1
2

1
2 0

]
(z, τ)

θ29(z) = θ29

[
1
2 0 1

2
0 0 0

]
(z, τ), θ30(z) = θ30

[
1
2

1
2

1
2

0 1
2

1
2

]
(z, τ)

θ31(z) = θ31

[
1
2 0 1

2
0 1

2 0

]
(z, τ), θ32(z) = θ32

[
0 0 1

2
1
2 0 0

]
(z, τ)

θ33(z) = θ33

[
0 1

2
1
2

1
2

1
2

1
2

]
(z, τ), θ34(z) = θ34

[
0 0 0
1
2 0 1

2

]
(z, τ)

θ35(z) = θ35

[
1
2 0 0
0 1

2
1
2

]
(z, τ), θ36(z) = θ36

[
1
2

1
2 0

0 0 0

]
(z, τ)

θ37(z) = θ37

[
1
2 0 0
1
2 0 0

]
(z, τ), θ38(z) = θ38

[
1
2

1
2 0

0 1
2 0

]
(z, τ)

θ39(z) = θ39

[
1
2

1
2

1
2

0 0 1
2

]
(z, τ), θ40(z) = θ40

[
0 1

2 0
1
2

1
2 0

]
(z, τ)

θ41(z) = θ41

[
0 1

2
1
2

1
2 0 1

2

]
(z, τ), θ42(z) = θ42

[
0 0 1

2
0 1

2
1
2

]
(z, τ)

θ43(z) = θ43

[
1
2

1
2

1
2

1
2 0 0

]
(z, τ), θ44(z) = θ44

[
0 1

2
1
2

0 1
2 0

]
(z, τ)

θ45(z) = θ45

[
0 0 1

2
0 0 1

2

]
(z, τ), θ46(z) = θ46

[
0 1

2 0
0 1

2
1
2

]
(z, τ)

θ47(z) = θ47

[
1
2

1
2 0

1
2 0 1

2

]
(z, τ), θ48(z) = θ48

[
1
2 0 0
1
2

1
2 0

]
(z, τ)

θ49(z) = θ49

[
1
2 0 1

2
1
2

1
2 0

]
(z, τ), θ50(z) = θ50

[
1
2 0 0
1
2 0 1

2

]
(z, τ)

θ51(z) = θ51

[
1
2

1
2 0

0 1
2

1
2

]
(z, τ), θ52(z) = θ52

[
0 0 1

2
1
2

1
2

1
2

]
(z, τ)

θ53(z) = θ53

[
0 1

2
1
2

0 0 1
2

]
(z, τ), θ54(z) = θ54

[
0 1

2 0
0 1

2 0

]
(z, τ)

θ55(z) = θ55

[
1
2 0 1

2
0 0 1

2

]
(z, τ), θ56(z) = θ56

[
1
2

1
2

1
2

1
2

1
2

1
2

]
(z, τ)

θ57(z) = θ57

[
1
2

1
2 0

1
2 0 0

]
(z, τ), θ58(z) = θ58

[
1
2

1
2

1
2

0 1
2 0

]
(z, τ)

θ59(z) = θ59

[
1
2 0 1

2
1
2 0 0

]
(z, τ), θ60(z) = θ60

[
1
2 0 0
1
2

1
2

1
2

]
(z, τ)

θ61(z) = θ61

[
1
2 0 1

2
0 1

2
1
2

]
(z, τ), θ62(z) = θ62

[
0 0 1

2
1
2 0 1

2

]
(z, τ)

θ63(z) = θ63

[
0 1

2
1
2

1
2

1
2 0

]
(z, τ), θ64(z) = θ64

[
0 1

2 0
1
2

1
2

1
2

]
(z, τ)



Remark 5. Each half-integer characteristic other than the zero characteristic can
be formed as a sum of not more than 3 of the following seven characteristics:

{[
1
2 0 0
1
2 0 0

]
,

[
1
2

1
2 0

0 1
2 0

]
,

[
1
2

1
2

1
2

0 0 1
2

]
,

[
1
2 0 1

2
0 1

2
1
2

]
,

[
0 0 1

2
1
2 0 1

2

]
,[

0 1
2

1
2

1
2

1
2 0

]
,

[
0 1

2 0
1
2

1
2

1
2

]}
.

The sum of all characteristics of the above set gives the zero characteristic. The
sums of three characteristics give the rest of the 35 even characteristics and the
sums of two characteristics give 21 odd characteristics.

It can be shown that one of the even theta constants is zero. Let’s pick
S = {1, 2, 3, 4, 5, 6, 7} and U = {1, 3, 5, 7}. Let T = U. Then By Theorem 1 the

theta constant corresponding to the characteristic ηT =

[
1
2

1
2

1
2

1
2 0 1

2

]
is zero. That is

θ12 = 0. Next, we give the relation between theta characteristics and branch points
of the genus 3 hyperelliptic curve in the same way we did in the genus 2 case. Once
again, Thomae’s formula is used to get these relations. We get 35 equations with
branch points and non-zero even theta constants. By picking suitable equations,
we were able to express branch points in terms of thetanulls similar to Picard’s
formula for genus 2 curves. Let B = {a1, a2, a3, a4, a5, 1, 0} be the finite branch
points of the curves and U = {a1, a3, a5, 0} be the set of odd branch points.

Theorem 4. Any genus 3 hyperelliptic curve is isomorphic to a curve given by the
equation

Y 2 = X(X − 1)(X − a1)(X − a2)(X − a3)(X − a4)(X − a5),

where

a1 =
θ2

31θ
2
21

θ2
34θ

2
24

, a2 =
θ2

31θ
2
13

θ2
9θ

2
24

, a3 =
θ2

11θ
2
31

θ2
24θ

2
6

, a4 =
θ2

21θ
2
7

θ2
15θ

2
34

, a5 =
θ2

13θ
2
1

θ2
26θ

2
9

.

Proof. Thomae’s formula expresses the thetanulls in terms of branch points of
hyperelliptic curves. To invert the period map we are going to use Lemma 6. For
simplicity we order the branch points in the order of a1, a2, a3, a4, a5, 0, 1, and
∞. Then the following set of equations represents the relations of theta constants
and a1, . . . , a5. We use the notation (i, j) for (ai − aj).

θ1
4 = A (1, 6) (3, 6) (5, 6) (1, 3) (1, 5) (3, 5) (2, 4) (2, 7) (4, 7)

θ2
4 = −A (3, 6) (5, 6) (3, 5) (1, 2) (1, 4) (2, 4) (3, 7) (5, 7)

θ3
4 = A (3, 6) (4, 6) (3, 4) (1, 2) (1, 5) (2, 5) (1, 7) (2, 7) (5, 7)

θ4
4 = −A (2, 6) (3, 6) (5, 6) (2, 3) (2, 5) (3, 5) (1, 4) (1, 7) (4, 7)

θ5
4 = A (4, 6) (5, 6) (4, 5) (1, 2) (1, 3) (2, 3) (1, 7) (2, 7) (3, 7)

θ6
4 = A (1, 6) (2, 6) (3, 4) (3, 5) (4, 5) (1, 2) (1, 7) (2, 7)



θ7
4 = A (2, 6) (3, 6) (4, 6) (1, 5) (2, 3) (2, 4) (3, 4) (1, 7) (5, 7)

θ8
4 = A (2, 6) (3, 6) (2, 3) (1, 4) (1, 5) (4, 5) (1, 7) (4, 7) (5, 7)

θ9
4 = −A (1, 6) (3, 6) (1, 3) (2, 4) (2, 5) (4, 5) (1, 7) (3, 7)

θ10
4 = −A (3, 6) (5, 6) (3, 5) (1, 2) (1, 4) (2, 4) (1, 7) (2, 7) (4, 7)

θ11
4 = −A (3, 6) (4, 6) (5, 6) (3, 4) (3, 5) (4, 5) (1, 2) (1, 7) (2, 7)

θ13
4 = A (2, 6) (4, 6) (5, 6) (1, 3) (2, 4) (2, 5) (4, 5) (1, 7) (3, 7)

θ14
4 = A (2, 6) (5, 6) (2, 5) (1, 3) (1, 4) (3, 4) (1, 7) (3, 7) (4, 7)

θ15
4 = −A (1, 6) (5, 6) (1, 5) (2, 3) (2, 4) (3, 4) (1, 7) (5, 7)

θ16
4 = A (1, 6) (2, 3) (2, 4) (2, 5) (3, 4) (3, 5) (4, 5) (1, 7)

θ17
4 = A (1, 6) (4, 6) (2, 3) (2, 5) (3, 5) (1, 4) (1, 7) (4, 7)

θ18
4 = −A (2, 6) (4, 6) (1, 3) (1, 5) (3, 5) (2, 4) (1, 7) (3, 7) (5, 7)

θ19
4 = A (3, 6) (4, 6) (1, 2) (1, 5) (2, 5) (3, 4) (3, 7) (4, 7)

θ20
4 = −A (2, 6) (1, 3) (1, 4) (1, 5) (3, 4) (3, 5) (4, 5) (2, 7)

θ21
4 = −A (1, 6) (4, 6) (5, 6) (1, 4) (1, 5) (4, 5) (2, 3) (2, 7) (3, 7)

θ22
4 = −A (1, 6) (3, 6) (4, 6) (1, 3) (1, 4) (3, 4) (2, 5) (2, 7) (5, 7)

θ23
4 = A (1, 6) (2, 6) (3, 4) (3, 5) (4, 5) (1, 2) (3, 7) (4, 7) (5, 7)

θ24
4 = A (4, 6) (5, 6) (1, 2) (1, 3) (2, 3) (4, 5) (4, 7) (5, 7)

θ25
4 = A (3, 6) (1, 2) (1, 4) (1, 5) (2, 4) (2, 5) (4, 5) (3, 7)

θ26
4 = −A (2, 6) (4, 6) (1, 3) (1, 5) (3, 5) (2, 4) (2, 7) (4, 7)

θ27
4 = −A (1, 6) (5, 6) (1, 5) (2, 3) (2, 4) (3, 4) (2, 7) (3, 7) (4, 7)

θ28
4 = −A (1, 6) (3, 6) (1, 3) (2, 4) (2, 5) (4, 5) (2, 7) (4, 7) (5, 7)

θ29
4 = A (1, 6) (2, 6) (4, 6) (3, 5) (1, 2) (1, 4) (2, 4) (3, 7) (5, 7)

θ30
4 = A (5, 6) (1, 2) (1, 3) (1, 4) (2, 3) (2, 4) (3, 4) (5, 7)

θ31
4 = −A (1, 6) (2, 6) (3, 6) (1, 2) (1, 3) (2, 3) (4, 5) (4, 7) (5, 7)

θ32
4 = A (1, 6) (4, 6) (2, 3) (2, 5) (3, 5) (1, 4) (2, 7) (3, 7) (5, 7)

θ33
4 = A (2, 6) (5, 6) (1, 3) (1, 4) (3, 4) (2, 5) (2, 7) (5, 7)

θ34
4 = A (2, 6) (3, 6) (1, 4) (1, 5) (4, 5) (2, 3) (2, 7) (3, 7)

θ35
4 = −A (4, 6) (1, 2) (1, 3) (1, 5) (2, 3) (2, 5) (3, 5) (4, 7)

θ36
4 = −A (1, 6) (2, 6) (5, 6) (1, 2) (1, 5) (2, 5) (3, 4) (3, 7) (4, 7)



Our expectation is to write down the branch points as quotients of thetanulls. By
using the set of equations given above we have several choices for a1, . . . , a5 in
terms of theta constants.

Branch Points Possible Ratios

a2
1

(
θ236θ

2
22

θ233θ
2
19

)2

,
(
θ231θ

2
21

θ234θ
2
24

)2

,
(
θ229θ

2
1

θ226θ
2
2

)2

a2
2

(
θ24θ

2
29

θ22θ
2
17

)2

,
(
θ236θ

2
7

θ215θ
2
19

)2

,
(
θ231θ

2
13

θ29θ
2
24

)2

a2
3

(
θ24θ

2
22

θ233θ
2
17

)2

,
(
θ211θ

2
31

θ224θ
2
6

)2

,
(
θ27θ

2
1

θ226θ
2
15

)2

a2
4

(
θ211θ

2
29

θ22θ
2
6

)2

,
(
θ221θ

2
7

θ215θ
2
34

)2

,
(
θ222θ

2
13

θ29θ
2
33

)2

a2
5

(
θ24θ

2
21

θ234θ
2
17

)2

,
(
θ211θ

2
36

θ219θ
2
6

)2

,
(
θ213θ

2
1

θ226θ
2
9

)2

Let’s select the following choices for a1, · · · , a5:

a1 =
θ2

31θ
2
21

θ2
34θ

2
24

, a2 =
θ2

31θ
2
13

θ2
9θ

2
24

, a3 =
θ2

11θ
2
31

θ2
24θ

2
6

, a4 =
θ2

21θ
2
7

θ2
15θ

2
34

, a5 =
θ2

13θ
2
1

θ2
26θ

2
9

.

This completes the proof.

Remark 6. i) Unlike the genus 2 case, here only θ1, θ6, θ7, θ11, θ15, θ24, θ31 are
from the same Göpel group.

ii) For genus 2 case such relations are known as Picard’s formulae. The cal-
culations proposed by Gaudry on genus 2 arithmetic on theta function in cryptog-
raphy is mainly based on Picard’s formulae.

3.3. Theta Identities for Hyperelliptic Curves

Similar to the genus 2 case we can find identities that hyperelliptic theta constants
are satisfied. We would like to find a set of identities that contains all possible
even theta constants. A Göpel group, Eq. (6) and Eq. (7) all play a main role
in this task. Now consider a Göpel group for genus 3 curves. Any Göpel group
G contains 23 = 8 elements. The number of such Göpel groups is 135. We have
24 Göpel groups such that all of the characteristics of the groups are even. The
following is one of the Göpel groups which has only even characteristics:

G =

{
c1 =

[
0 0 0
0 0 0

]
, c2 =

[
1
2

1
2

1
2

0 0 0

]
, c3

[
1
2 0 0
0 0 0

]
, c4 =

[
0 1

2 0
0 0 0

]
, c5 =

[
0 1

2
1
2

0 0 0

]
,

c6 =

[
1
2 0 1

2
0 0 0

]
, c7 =

[
1
2

1
2 0

0 0 0

]
, c8 =

[
0 0 1

2
0 0 0

]}
.

By picking suitable characteristics b1, b2, and b3 we can find the Göpel systems

for group G. Let’s pick b1 =

[
0 0 0
1
2

1
2 0

]
, b2 =

[
0 0 0
0 1

2 0

]
, and b3 =

[
0 0 0
1
2 0 1

2

]
, then the

corresponding Göpel systems are given by the following:



G =

{[
0 0 0
0 0 0

]
,

[
1
2

1
2

1
2

0 0 0

]
,

[
1
2 0 0
0 0 0

]
,

[
0 1

2 0
0 0 0

]
,

[
0 1

2
1
2

0 0 0

]
,[

1
2 0 1

2
0 0 0

]
,

[
1
2

1
2 0

0 0 0

]
,

[
0 0 1

2
0 0 0

]}
,

b1G =

{[
0 0 0
1
2

1
2 0

]
,

[
1
2

1
2

1
2

1
2

1
2 0

]
,

[
1
2 0 0
1
2

1
2 0

]
,

[
0 1

2 0
1
2

1
2 0

]
,

[
0 1

2
1
2

1
2

1
2 0

]
,[

1
2 0 1

2
1
2

1
2 0

]
,

[
1
2

1
2 0

1
2

1
2 0

]
,

[
0 0 1

2
1
2

1
2 0

]}
,

b2G =

{[
0 0 0
0 1

2 0

]
,

[
1
2

1
2

1
2

0 1
2 0

]
,

[
1
2 0 0
0 1

2 0

]
,

[
0 1

2 0
0 1

2 0

]
,

[
0 1

2
1
2

0 1
2 0

]
,[

1
2 0 1

2
0 1

2 0

]
,

[
1
2

1
2 0

0 1
2 0

]
,

[
0 0 1

2
0 1

2 0

]}
,

b3G =

{[
0 0 0
1
2 0 1

2

]
,

[
1
2

1
2

1
2

1
2 0 1

2

]
,

[
1
2 0 0
1
2 0 1

2

]
,

[
0 1

2 0
1
2 0 1

2

]
,

[
0 1

2
1
2

1
2 0 1

2

]
,[

1
2 0 1

2
1
2 0 1

2

]
,

[
1
2

1
2 0

1
2 0 1

2

]
,

[
0 0 1

2
1
2 0 1

2

]}
,

b1b2G =

{[
0 0 0
1
2 0 0

]
,

[
1
2

1
2

1
2

1
2 0 0

]
,

[
1
2 0 0
1
2 0 0

]
,

[
0 1

2 0
1
2 0 0

]
,

[
0 1

2
1
2

1
2 0 0

]
,[

1
2 0 1

2
1
2 0 0

]
,

[
1
2

1
2 0

1
2 0 0

]
,

[
0 0 1

2
1
2 0 0

]}
,

b1b3G =

{[
0 0 0
0 1

2
1
2

]
,

[
1
2

1
2

1
2

0 1
2

1
2

]
,

[
1
2 0 0
0 1

2
1
2

]
,

[
0 1

2 0
0 1

2
1
2

]
,

[
0 1

2
1
2

0 1
2

1
2

]
,[

1
2 0 1

2
0 1

2
1
2

]
,

[
1
2

1
2 0

0 1
2

1
2

]
,

[
0 0 1

2
0 1

2
1
2

]}
,

b2b3G =

{[
0 0 0
1
2

1
2

1
2

]
,

[
1
2

1
2

1
2

1
2

1
2

1
2

]
,

[
1
2 0 0
1
2

1
2

1
2

]
,

[
0 1

2 0
1
2

1
2

1
2

]
,

[
0 1

2
1
2

1
2

1
2

1
2

]
,[

1
2 0 1

2
1
2

1
2

1
2

]
,

[
1
2

1
2 0

1
2

1
2

1
2

]
,

[
0 0 1

2
1
2

1
2

1
2

]}
,

b1b2b3G =

{[
0 0 0
0 0 1

2

]
,

[
1
2

1
2

1
2

0 0 1
2

]
,

[
1
2 0 0
0 0 1

2

]
,

[
0 1

2 0
0 0 1

2

]
,

[
0 1

2
1
2

0 0 1
2

]
,[

1
2 0 1

2
0 0 1

2

]
,

[
1
2

1
2 0

0 0 1
2

]
,

[
0 0 1

2
0 0 1

2

]}
.

The above Göpel systems contain all 64 characteristics for genus 3. Except

for the Göpel group, each of the systems contains 4 odd characteristics and 4 even

characteristics. If h denotes one of the characteristics from the Göpel group other

than

[
0 0 0
0 0 0

]
, then |eh| ≡ |e| ≡ 0 mod 2 has 20 solutions.



Example 1. If h =

[
1
2

1
2

1
2

0 0 0

]
, then all the characteristics of G and all the even

characteristics of the Göpel systems of b1G, b3G and b1b3G are the possible char-
acteristics for e. There are 20 of them.

Without loss of generality, take the 10 possible choices for e which give rise
to different terms in the series Eq. (6) and Eq. (7). For each h in the Göpel group

other than

[
0 0 0
0 0 0

]
, we can choose a such that |a, h|+ |h| ≡ 0 mod 2. Take a to be

respectively b1, b2, b3, b1b2, b1b3, b2b3, and b1b2b3 to the cases when h is equal
to the characteristics c2, c3, c4, c5, c6, c7, and c8 respectively. By picking a and h
with these characteristics, we can obtain formulas which express the zero values
of all the even theta functions in terms of 8 theta nulls: θ1, θ3, θ10, θ14, θ18, θ22,
θ29, θ36. We obtain the following 14 equations. The first set is obtained by using
Eq. (6); all the computations are done by using Maple 10,

3 θ13
2θ23

2 − θ28
2θ11

2 − θ34
2θ12

2 + θ35
2θ15

2 + θ24
2θ16

2 − θ30
2θ17

2 = θ3
2θ1

2

− θ22
2θ10

2 − θ29
2θ14

2 + θ36
2θ18

2,

3 θ21
2θ5

2 + θ20
2θ6

2 − θ31
2θ8

2 − θ25
2θ9

2 + θ30
2θ15

2 − θ35
2θ17

2 = θ10
2θ1

2

− θ22
2θ3

2 − θ36
2θ14

2 + θ29
2θ18

2,

3 θ34
2θ16

2 − θ27
2θ4

2 + θ25
2θ6

2 + θ32
2θ7

2 − θ20
2θ9

2 − θ24
2θ12

2 = θ14
2θ1

2

+ θ29
2θ3

2 − θ36
2θ10

2 − θ22
2θ18

2,

3 θ4
2θ32

2 + θ31
2θ5

2 − θ27
2θ7

2 − θ21
2θ8

2 + θ23
2θ11

2 − θ28
2θ13

2 = θ18
2θ1

2

− θ36
2θ3

2 − θ29
2θ10

2 + θ22
2θ14

2,

3 θ17
2θ15

2 + θ19
2θ2

2 − θ7
2θ4

2 − θ33
2θ26

2 + θ32
2θ27

2 − θ35
2θ30

2 = θ22
2θ1

2

+ θ10
2θ3

2 − θ18
2θ14

2 − θ36
2θ29

2,

3 θ26
2θ2

2 + θ8
2θ5

2 + θ16
2θ12

2 − θ33
2θ19

2 − θ31
2θ21

2 − θ34
2θ24

2 = θ29
2θ1

2

− θ14
2θ3

2 − θ18
2θ10

2 + θ36
2θ22

2,

3 θ9
2θ6

2 + θ33
2θ2

2 − θ13
2θ11

2 − θ26
2θ19

2 − θ25
2θ20

2 + θ28
2θ23

2 = θ36
2θ1

2

+ θ14
2θ10

2 − θ18
2θ3

2 − θ29
2θ22

2.

By using Eq. (7) we have the following set of equations:

3 θ13
4 + 3 θ23

4 − θ28
4 − θ11

4 − θ34
4 − θ12

4 + θ35
4 + θ15

4 + θ24
4 + θ16

4 − θ30
4

− θ17
4 = θ3

4 + θ1
4 − θ22

4 − θ10
4 − θ29

4 − θ14
4 + θ36

4 + θ18
4,

3 θ21
4 + 3 θ5

4 + θ20
4 + θ6

4 − θ31
4 − θ8

4 − θ25
4 − θ9

4 + θ30
4 + θ15

4 − θ35
4

− θ17
4 = θ10

4 + θ1
4 − θ22

4 − θ3
4 − θ36

4 − θ14
4 + θ29

4 + θ18
4,



3 θ34
4 + 3 θ16

4 − θ27
4 − θ4

4 + θ25
4 + θ6

4 + θ32
4 + θ7

4 − θ20
4 − θ9

4 − θ24
4

− θ12
4 = θ14

4 + θ1
4 + θ29

4 + θ3
4 − θ36

4 − θ10
4 − θ22

4 − θ18
4,

3 θ4
4 + 3 θ32

4 + θ31
4 + θ5

4 − θ27
4 − θ7

4 − θ21
4 − θ8

4 + θ23
4 + θ11

4 − θ28
4

− θ13
4 = θ18

4 + θ1
4 − θ36

4 − θ3
4 − θ29

4 − θ10
4 + θ22

4 + θ14
4,

3 θ17
4 + 3 θ15

4 + θ19
4 + θ2

4 − θ7
4 − θ4

4 − θ33
4 − θ26

4 + θ32
4 + θ27

4 − θ35
4

− θ30
4 = θ22

4 + θ1
4 + θ10

4 + θ3
4 − θ18

4 − θ14
4 − θ36

4 − θ29
4,

3 θ26
4 + 3 θ2

4 + θ8
4 + θ5

4 + θ16
4 + θ12

4 − θ33
4 − θ19

4 − θ31
4 − θ21

4 − θ34
4

− θ24
4 = θ29

4 + θ1
4 − θ14

4 − θ3
4 − θ18

4 − θ10
4 + θ36

4 + θ22
4,

3 θ9
4 + 3 θ6

4 + θ33
4 + θ2

4 − θ13
4 − θ11

4 − θ26
4 − θ19

4 − θ25
4 − θ20

4 + θ28
4

+ θ23
4 = θ36

4 + θ1
4 − θ18

4 − θ3
4 + θ14

4 + θ10
4 − θ29

4 − θ22
4.

Remark 7. Similar to the genus 2 case we can consider all the Göpel groups and
obtain all possible relations among thetanulls by following the above procedure. It
is tedious and quite long so we don’t do it here.

3.4. Genus 3 Non-Hyperelliptic Cyclic Curves

Using formulas similar to Thomae’s formula for each family of cyclic curve yn =
f(x), one can express the roots of f(x) in terms of ratios of theta functions as
in the hyperelliptic case. In this section we study such curves for g = 3. We
only consider the families of curves with positive dimensions since the curves
which belong to 0-dimensional families are well known. Notice that the definition
of thetanulls is different in this part from the definitions of thetanulls in the
hyperelliptic case. We define the following three theta constants:

θ1 = θ

[
0 1

6 0
2
3

1
6

2
3

]
, θ2 = θ

[
0 1

6 0
1
3

1
6

1
3

]
, θ3 = θ

[
0 1

6 0
0 1

6 0

]
.

Next we consider the cases 7, 8 and 5 from Table 3.2.
Case 7: If the group is C3, then the equation of X is given by

y3 = x(x− 1)(x− s)(x− t).

Let Qi where i = 1..5 be ramifying points in the fiber of 0, 1, s, t,∞ respectively.
Consider the meromorpic function f = x on X of order 3. Then we have (f) =
3Q1 − 3Q5. By applying the Lemma 7 with P0 = Q5 and an effective divisor
2Q2 +Q3, we have the following:

Es =

3∏
k=1

θ(2
∫ Q2

Q5
ω +

∫ Q3

Q5
ω −

∫ bk
Q5
ω −4, τ)

θ(2
∫ Q2

Q5
ω +

∫ Q3

Q5
ω −4, τ)

. (30)



Once again, we apply Lemma 7 with an effective divisor Q2 + 2Q3 and we have
the following:

Es2 =

3∏
k=1

θ(
∫ Q2

Q5
ω + 2

∫ Q3

Q5
ω −

∫ bk
Q5
ω −4, τ)

θ(
∫ Q2

Q5
ω + 2

∫ Q3

Q5
ω −4, τ)

. (31)

By dividing Eq. (31) by Eq. (30) we have

s =

3∏
k=1

θ(
∫ Q2

Q5
ω + 2

∫ Q3

Q5
ω −

∫ bk
Q5
ω −4, τ)

θ(
∫ Q2

Q5
ω + 2

∫ Q3

Q5
ω −4, τ)

×
3∏
k=1

θ(2
∫ Q2

Q5
ω +

∫ Q3

Q5
ω −4, τ)

θ(2
∫ Q2

Q5
ω +

∫ Q3

Q5
ω −

∫ bk
Q5
ω −4, τ)

.

(32)

By a similar argument, we have

t =

3∏
k=1

θ(
∫ Q2

Q5
ω + 2

∫ Q4

Q5
ω −

∫ bk
Q5
ω −4, τ)

θ(
∫ Q2

Q5
ω + 2

∫ Q4

Q5
ω −4, τ)

×
3∏
k=1

θ(2
∫ Q2

Q5
ω +

∫ Q4

Q5
ω −4, τ)

θ(2
∫ Q2

Q5
ω +

∫ Q4

Q5
ω −

∫ bk
Q5
ω −4, τ)

.

(33)

Computing the right hand side of Eq. (32) and Eq. (33) was one of the main

points of [19]. As a result we have s =
θ32
θ31

and r =
θ33
θ31
.

Case 8: If the group is C6, then the equation is y3 = x(x− 1)(x− s)(x− t) with
s = 1− t. By using the results from Case 7, we have θ3

2 = θ3
1 − θ3

3.
Case 5: If Aut(X )∼= (16, 13), then the equation of X is given by

y4 = x(x− 1)(x− t).

This curve has 4 ramifying points Qi where i = 1..4 in the fiber of 0, 1, t,∞
respectively. Consider the meromorpic function f = x on X of order 4. Then we
have (f) = 4Q1 − 4Q4. By applying Lemma 7 with P0 = Q4 and an effective
divisor 2Q2 +Q3, we have the following:

Et =

4∏
k=1

θ(2
∫ Q2

Q4
ω +

∫ Q3

Q4
ω −

∫ bk
Q4
ω −4, τ)

θ(2
∫ Q2

Q4
ω +

∫ Q3

Q4
ω −4, τ)

. (34)

Once again, we apply Lemma 7 with an effective divisor Q2 + 2Q3 and we have
the following:



Et2 =

4∏
k=1

θ(
∫ Q2

Q4
ω + 2

∫ Q3

Q4
ω −

∫ bk
Q4
ω −4, τ)

θ(
∫ Q2

Q4
ω + 2

∫ Q3

Q4
ω −4, τ)

. (35)

We have the following by dividing Eq. (35) by Eq. (34):

t =

4∏
k=1

θ(
∫ Q2

Q4
ω + 2

∫ Q3

Q4
ω −

∫ bk
Q4
ω −4, τ)

θ(
∫ Q2

Q4
ω + 2

∫ Q3

Q4
ω −4, τ)

×
4∏
k=1

θ(2
∫ Q2

Q4
ω +

∫ Q3

Q4
ω −4, τ)

θ(2
∫ Q2

Q4
ω +

∫ Q3

Q4
ω −

∫ bk
Q4
ω −4, τ)

.

(36)

In order to compute the explicit formula for t, one has to find the integrals on
the right-hand side. Such computations are long and tedious and we intend to
include them in further work.

Remark 8. In case 5 of Table 3, the parameter t is given by

θ[e]4 = A(t− 1)4t2,

where [e] is the theta characteristic corresponding to the partition ({1}, {2}, {3}, {4})
and A is a constant; see [1] for details. However, this is not satisfactory since
we would like t as a rational function in terms of theta constants. The method
in [1] does not lead to another relation among t and the thetanulls, since the only
partition we could take is the above.

Summarizing all of the above, we have

Theorem 5. Let X be a non-hyperelliptic genus 3 curve. The following statements
are true:

i) If Aut(X )∼=C3, then X is isomorphic to a curve with equation

y3 = x(x− 1)

(
x− θ3

2

θ3
1

)(
x− θ3

3

θ3
1

)
.

ii) If Aut(X )∼=C6, then X is isomorphic to a curve with equation

y3 = x(x− 1)

(
x− θ3

2

θ3
1

)(
x− θ3

3

θ3
1

)
with θ3

2 = θ3
1 − θ3

3.

iii) If Aut(X ) is isomorphic to the group with GAP identity (16, 13), then X is
isomorphic to a curve with equation

y4 = x(x− 1)(x− t)

where t is given by Eq. (36).



4. Genus 4 curves

In this section we focus on genus 4 curves. For the genus 4 curves, the complete
set of all possible full automorphism groups and the corresponding equations are
not completely calculated yet. In this chapter we consider a few of the cyclic
curves of genus 4. Let us first consider the genus 4 hyperelliptic algebraic curves.
For these curves, we have 2g−1(2g +1) = 136 even half-integer characteristics and
2g−1(2g − 1) = 120 odd half-integer characteristics. Among the even thetanulls,
10 of them are 0. We won’t show the exact information here. Following the same
procedure as for g = 3, the branch points of genus 4 hyperelliptic curves can be
expressed as ratios of even theta constants and identities among theta constants
can be obtained. The following Table 4 gives some genus 4 non-hyperelliptic
cyclic curves; see Table 2 of [9] for the complete list.

Table 4. Some genus 4 non hyperelliptic cyclic curves and their automorphisms

# dim Aut(X ) Equation

1 3 C2 y3 = x(x− 1)(x− a1)(x− a2)(x− a3)

2 2 C3 × C2 y3 = (x2 − 1)(x2 − α1)(x2 − α2)

3 1 C5 y5 = x(x− 1)(x− α)

4 1 C3 × C2 y3 = (x2 − 1)(x4 − αx2 + 1)

The Figure 2 shows the inclusions of loci of the genus 4 curves.

4.1. Inverting the Moduli Map

In this section we will express branch points of each cyclic curve in Table 4.1 as
ratios of theta nulls.
Case 1: C : y3 = x(x−1)(x−a1)(x−a2)(x−a3). In this curve∞ is a branch point.
We can use result of [1] to find out a1, a2, a3 in terms of thetanulls. First we need
to find the partitions of the set {1, 2, 3, 4, 5, 6}. The Table 5 shows all possible
partitions of {1, 2, 3, 4, 5, 6} into 3 sets and the labeling of the corresponding
thetanulls.

For each partition we can apply the generalized Thomae’s formula to obtain
an identity. According to this labeling of theta constants and the generalized
Thomae’s formula we have the following relations:

θ1
6 = c1 (a1 − a2)

3
(a1 − a3) (a2 − a3) a1a2a3 (a1 − 1) (a2 − 1) (a3 − 1)

3
,

θ2
6 = c2 (a1 − a2)

3
(a1 − a3) (a2 − a3) a1a2a3

3 (a1 − 1) (a2 − 1) (a3 − 1) ,

θ3
6 = c3 (a1 − a2)

3
(a1 − a3) (a2 − a3) a1a2a3 (a1 − 1) (a2 − 1) (a3 − 1) ,

θ4
6 = c4 (a1 − a2) (a1 − a3)

3
(a2 − a3) a1a2a3 (a1 − 1) (a2 − 1)

3
(a3 − 1) ,

θ5
6 = c5 (a1 − a2) (a1 − a3)

3
(a2 − a3) a1a2

3a3 (a1 − 1) (a2 − 1) (a3 − 1) ,

θ6
6 = c6 (a1 − a2) (a1 − a3)

3
(a2 − a3) a1a2a3 (a1 − 1) (a2 − 1) (a3 − 1) ,



Table 5. Partitions of {1, 2, 3, 4, 5, 6} into 3 sets

Theta constant Corresponding partition

θ1 [1, 2], [3, 4], [5, 6]

θ2 [1, 2], [3, 5], [4, 6]

θ3 [1, 2], [3, 6], [4, 5]

θ4 [1, 3], [2, 4], [5, 6]

θ5 [1, 3], [2, 5], [4, 6]

θ6 [1, 3], [2, 6], [4, 5]

θ7 [1, 4], [2, 3], [5, 6]

θ8 [1, 4], [2, 5], [3, 6]

θ9 [1, 4], [2, 6], [3, 5]

θ10 [1, 5], [2, 3], [4, 6]

θ11 [1, 5], [2, 4], [3, 6]

θ12 [1, 5], [2, 6], [3, 4]

θ13 [1, 6], [2, 3], [4, 5]

θ14 [1, 6], [2, 4], [3, 5]

θ15 [1, 6], [2, 5], [3, 4]

θ7
6 = c7 (a1 − a2) (a1 − a3) (a2 − a3)

3
a1a2a3 (a1 − 1)

3
(a2 − 1) (a3 − 1) ,

θ8
6 = c8 (a1 − a2) (a1 − a3) (a2 − a3) a1a2

3a3 (a1 − 1)
3

(a2 − 1) (a3 − 1) ,

θ9
6 = c9 (a1 − a2) (a1 − a3) (a2 − a3) a1a2a3

3 (a1 − 1)
3

(a2 − 1) (a3 − 1) ,

θ10
6 = c10 (a1 − a2) (a1 − a3) (a2 − a3)

3
a1

3a2a3 (a1 − 1) (a2 − 1) (a3 − 1) ,

θ11
6 = c11 (a1 − a2) (a1 − a3) (a2 − a3) a1

3a2a3 (a1 − 1) (a2 − 1)
3

(a3 − 1) ,

θ12
6 = c12 (a1 − a2) (a1 − a3) (a2 − a3) a1

3a2a3 (a1 − 1) (a2 − 1) (a3 − 1)
3
,

θ13
6 = c13 (a1 − a2) (a1 − a3) (a2 − a3)

3
a1a2a3 (a1 − 1) (a2 − 1) (a3 − 1) ,

θ14
6 = c14 (a1 − a2) (a1 − a3) (a2 − a3) a1a2a3

3 (a1 − 1) (a2 − 1)
3

(a3 − 1) ,

θ15
6 = c15 (a1 − a2) (a1 − a3) (a2 − a3) a1a2

3a3 (a1 − 1) (a2 − 1) (a3 − 1)
3

where ci’s are constants and depend on the partition Λi. From the above set
of equations we can write a1, a2, a3 in terms of theta constants:

a2
1 = δ1(

θ10

θ13
)6, a2

2 = δ2(
θ5

θ6
)6, a2

3 = δ3(
θ2

θ3
)6 (37)

where δ1 = c10
c13
, δ2 = c5

c6
, δ3 = c2

c3
.

Using the result of case 1 we can write the equations of cases 2 and case 4 in
terms of thetanulls.
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Figure 2. Inclusions among the loci for genus 4 curves.



Case 2: In this case the curve can be written as

y3 = (x− 1)(x+ 1)(x−
√
α1)(x+

√
α1)(x−

√
α2)(x+

√
α2). (38)

Consider the transformation given by

x −→ x− 1

2x− 1
.

Under this transformation we obtain a curve that is isomorphic to the given curve
and
the new curve is given by the equation

y3 = x(x− 2

3
)(x− γ1)(x− γ2)(x− γ3)(x− γ4)

where γ1 =
√
α1−1

2
√
α1−1 , γ2 =

−√α1−1
−2
√
α1−1 , γ3 =

√
α2−1

2
√
α2−1 , and γ4 =

−√α2−1
−2
√
α2−1 . Using this

transformation we map the branch point 1 of the curve given by the Eq. (38) to
0. Again by using the transformation

x −→ −2x+ 1

3x− 2
,

we can find another curve isomorphic to the above two curves. This transformation
maps 2

3 to ∞. With this transformation the curve is given by the equation

y3 = x(x− δ1)(x− δ2)(x− δ3)(x− δ4)

where δi = −2γi+1
3γi−2 . By using the transformation given by

x −→ x+ 1
δ1
δ1+1x+ 2δ1+1

δ1+1

,

we can find the curve

y3 = x(x− 1)(x− β1)(x− β2)(x− β3)

where βi = (δ1+1)(δi+1+1)
δ1δi+1+2δ1+1 , which is isomorphic to the previous 3 algebraic curves.

Now we are in case 1. From the result of case 1, we can write the βi, i = 1, 2, 3 as
ratios of thetanulls. But we like to have α1 and α2 as functions of theta constants.
Notice that we have the following 3 relations on α1, α2, β1, β2, and β3:

β1 =
α1

α1 − 2− 2(
√
α1 − 1)

,

β2 =

√
α1α2√

α1α2 +
√
α1 −

√
α2
,



β3 =

√
α1α2√

α1α2 −
√
α1 −

√
α2
.

Using these relations, α1 and α2 can be written as rational functions of β1, β2,
and β3 given by the following:

α1 =
2β1β2 (−β3 + β2)

2β1β3 + 2β1β2 + β2
2β3 − 6β1β2β3 − 2β1β2

2 + 3β1β2
2β3

,

α2 =
2β1(β3 − β2)

−4β1 − β2β3 + 4β1β3 + 4β1β2 − 3β1β2β3
,

(39)

with the condition of β1, β2 and β3

(β1β3
2 + 2β1β2β3 + β1β2

2 + β2
2β3

2 − 4β1β2β3
2 − 4β1β2

2β3 + 3β1β2
2β3

2)

(−β3 − β2 + 2β2β3) = 0.

The branch points of the curve given by Eq. (38) can be expressed as ratios of
theta constants by using all of the above information.
Case 4: In this case the curve is given by

y3 = (x2 − 1)(x4 − αx2 + 1). (40)

This is a special case of case 2. By writing out the equation of case 2, we have
y3 = (x2 − 1)(x4 − (α1 + α2)x2 + α1α2). Take α = α1 + α2 and α1α2 = 1.
Case 3: In this case, the equation is given by y5 = x(x − 1)(x − α). This curve
has 4 ramifying points Qi where i = 1..4 in the fiber of 0, 1, t,∞ respectively. The
meromorpic function f = x on X of order 4 has (f) = 4Q1 − 4Q4. By applying
Lemma 7 with
P0 = Q4 and an effective divisor 4Q2 +Q3, we have the following:

Eα =

5∏
k=1

θ(4
∫ Q2

Q4
ω +

∫ Q3

Q4
ω −

∫ bk
Q4
ω −4, τ)

θ(4
∫ Q2

Q4
ω +

∫ Q3

Q4
ω −4, τ)

. (41)

Again by applying Lemma 7 with an effective divisor 3Q2 + 2Q3, we have the
following:

Eα2 =

5∏
k=1

θ(3
∫ Q2

Q4
ω + 2

∫ Q3

Q4
ω −

∫ bk
Q4
ω −4, τ)

θ(3
∫ Q2

Q4
ω + 2

∫ Q3

Q4
ω −4, τ)

. (42)

We have the following by dividing Eq. (42) by Eq. (41):

α =

5∏
k=1

θ(3
∫ Q2

Q4
ω + 2

∫ Q3

Q4
ω −

∫ bk
Q4
ω −4, τ)

θ(3
∫ Q2

Q4
ω + 2

∫ Q3

Q4
ω −4, τ)

×
5∏
k=1

θ(4
∫ Q2

Q4
ω +

∫ Q3

Q4
ω −4, τ)

θ(4
∫ Q2

Q4
ω +

∫ Q3

Q4
ω −

∫ bk
Q4
ω −4, τ)

.

(43)



By calculating integrals on the right-hand side in terms of thetanulls, we can write
the branch point α as a ratio of thetanulls. Summarizing all of the above, we have

Theorem 6. i) If Aut(X ) ∼= C3, then X is isomorphic to a curve with equation

y3 = x(x− 1)(x− a1)(x− a2)(x− a3),

where a1, a2, and a3 are given in case (1) in terms of thetanulls.

ii) If Aut(X ) ∼= C3 × C2, then X is isomorphic to a curve with equation

y3 = (x2 − 1)(x2 − α1)(x2 − α2),

where α1, and α2 are given in case (2) in terms of thetanulls.

iii) If Aut(X ) ∼= C5, then X is isomorphic to a curve with equation

y5 = x(x− 1)(x− α),

where α is given in case (4) in terms of thetanulls.

iv) If Aut(X ) ∼= C6 × C2, then X is isomorphic to a curve with equation

y3 = (x2 − 1)(x4 − αx2 + 1),

where α is given in case (3) in terms of thetanulls.

5. Concluding Remarks

In Sections 2, 3, and 4, the main idea was to write down the branch points
as quotients of thetanulls explicitly for cyclic curves of genus 2, 3, and 4 with
extra automorphisms. For hyperelliptic algebraic curves, we can use Thomae’s
formula to express branch points as ratios of thetanulls. We used Maple 10 for
all computations. For non-hyperelliptic cyclic curves, we used various methods in
order to invert the period map. The method described in Lemma 7 in Chapter 1
gives the general method to find branch points in terms of thetanulls. The main
drawback of this method is the difficulty of writing complex integrals as functions
of theta characteristics. Some of the results in Chapter 2 and Chapter 3 already
appeared in [15].
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