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AbstractLet X be an irreducible, smooth, projective curve of genus g > 2
defined over the complex field C. Then there is a covering 7 : X — P!,
where P! denotes the projective line. The problem of expressing branch
points of the covering 7 in terms of the transcendentals (period matrix,
thetanulls, e.g.) is classical. It goes back to Riemann, Jacobi, Picard and
Rosenhein. Many mathematicians, including Picard and Thomae, have
offered partial treatments for this problem. In this work, we address the
problem for cyclic curves of genus 2, 3, and 4 and find relations among
theta functions for curves with automorphisms. We consider curves of
genus g > 1 admitting an automorphism o such that X? has genus zero
and o generates a normal subgroup of the automorphism group Aut(X)
of X.

To characterize the locus of cyclic curves by analytic conditions on
its Abelian coordinates, in other words, theta functions, we use some
classical formulas, recent results of Hurwitz spaces, and symbolic com-
putations, especially for genera 2 and 3. For hyperelliptic curves, we
use Thomae’s formula to invert the period map and discover relations
among the classical thetanulls of cyclic curves. For non hyperelliptic
curves, we write the equations in terms of thetanulls.

Fast genus 2 curve arithmetic in the Jacobian of the curve is used
in cryptography and is based on inverting the moduli map for genus 2
curves and on some other relations on theta functions. We determine
similar formulas and relations for genus 3 hyperelliptic curves and offer
an algorithm for how this can be done for higher genus curves. It is
still to be determined whether our formulas for ¢ = 3 can be used in
cryptographic applications as in g = 2.
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1. Introduction to Theta Functions of Curves

Let X be an irreducible, smooth, projective curve of genus g > 2 defined over
the complex field C. We denote the moduli space of genus g by M, and the
hyperelliptic locus in M, by H,. It is well known that dim M, = 3g — 3 and H,
is a (29 — 1) dimensional subvariety of M,. Choose a symplectic homology basis
for X, say

{A1,... Ay By,... By}

such that the intersection products A; - A; = B; - B; = 0 and A; - B = d;;. We
choose a basis {w;} for the space of holomorphic 1-forms such that | 4 Wi = 0ij,



where 6;; is the Kronecker delta. The matrix €2 = [ I} B, wj} is the period matrix

of X . The columns of the matrix [I |2] form a lattice L in C9 and the Jacobian
of X is Jac (X) =C9/L. Let

g = {7 : T is symmetric g X g matric with positive definite imaginary part}

be the Siegel upper-half space. Then Q2 € §,. The group of all 2g x 2g matrices
M € GLyy(Z) satistying

— . (0,
M'JM =J  with J—<_Ig0

is called the symplectic group and denoted by Spoy(Z). Let M = (?5 €

Spag(Z) and T € $H, where R, S, T and U are g x g matrices. Spa,(Z) acts
transitively on $, as

M(r) = (Rt + S)(TT+U)™".
Here, the multiplications are matrix multiplications. There is an injection
Mg = 94/Sp2g(Z) =: Ag

where each curve C' (up to isomorphism) goes to its Jacobian in Ag,. If £ is a
positive integer, the principal congruence group of degree g and of level £ is defined
as a subgroup of Spa,(Z) by the condition M = I, mod ¢. We shall denote this
group by Spagy(Z)(£).

For any z € CY9 and 7 € §), the Riemann’s theta function is defined as

9(237.> _ Z e‘/rz'(utTu—&-Zutz)

u€eZ9

where u and z are g-dimensional column vectors and the products involved in the
formula are matrix products. The fact that the imaginary part of 7 is positive
makes the series absolutely convergent over every compact subset of C9 x §,. The
theta function is holomorphic on C¢ x £, and has quasi periodic properties,

0(z+u,7)=0(2,7) and 0(z+ur,7) = T T2 gy 1)
where u € Z9; see [11] for details. The locus © := {z € CI/L : §(z,Q) = 0} is

called the theta divisor of X'. Any point e € Jac (X) can be uniquely written

as e = (b,a) <1Qg> where a,b € RY are the characteristics of e. We shall use the

notation [e] for the characteristic of e where [e¢] = {Z] . For any a,b € QY, the



theta function with rational characteristics is defined as a translate of Riemann’s
theta function multiplied by an exponential factor

0 {Z} (z,7) = e”(“thrzat(”b))@(z +71a+0b,71). (1)
By writing out Eq. (1), we have

a _ mi((uta)tT(uta)+2(uta)t (z4b))
H[b} (z,r)—Ze .

uEZI

0
teristics has the following properties:

The Riemann’s theta function is 6 [O] . The theta function with rational charac-

_a +n Tiatm a
0 _b—i—m] (2’7)262 9|:b:| (Z,T),
0 ch] (z+m,7) = e2ria‘my [Z} (z,7), (2)
0 Z] (z+7mm,7) = emi(=2b'm—miTm—2m’z)y {Z] (z,7)

where n, m € Z™. All of these properties are immediately verified by writing them
out. A scalar obtained by evaluating a theta function with characteristic at z =0
is called a theta constant or thetanulls. When the entries of column vectors a and

b are from the set {0, %}, then the characteristics are called the half-integer

a
b
characteristics. The corresponding theta functions with rational characteristics
are called theta characteristics. Points of order n on Jac (X) are called the *-

periods. Any point p of Jac (X) can be written as p = 7a + b. If {a] is a %—

b

period, then a,b € (%Z/Z)g. The %—period p can be associated with an element
of Hi(X,Z/nZ) as follows: Let a = (a1,--- ,a4)", and b = (by,- -+ ,by)". Then

p=Ta-+b

:(Zai/&wh...’Zai/Biwg)tJr(bl/Alwl,...,bg/A wg)

g9

:(Z(a,;/ w1+b,;/ Wl)a"'vZ(ai/ wg+bi/ wg))'

Bi Ai Bi Ai

:(/th...7/cwg)t

where C' = 3 a; B;+b; A;. We identify the point p with the cycle C' € Hy (X, Z/nZ)
where C' =Y @;B; + bjA;, a; = na; and b; = nb; for all i.



1.1. Half-Integer Characteristics and the Gopel Group

In this section we study groups of half-integer characteristics. Any half-integer
characteristic m € 3729 /729 is given by

1 1 /mimg--m

_ _ g
m=-m= - ;. 7,

mymy - my

!/
where m;, m} € Z. For m = :nn,, € 17% /7%, we define e,(m) = (—1)*™ )m”,
We say that m is an even (resp. odd) characteristic if e.(m) = 1 (resp. e,(m) =
—1). For any curve of genus g, there are 2971(29 + 1) (resp., 2971(29 — 1) )
even theta functions (resp., odd theta functions). Let a be another half-integer
characteristic. We define

1 t1t2-~-tg)
ma=—
2 <t’1 th--- t;
where t; = (m; +a;) mod 2 and t; = (m} +a}) mod 2.

For the rest of the thesis we only consider characteristics %q in which each of
the elements ¢;, ¢} is either 0 or 1. We use the following abbreviations:

g g
|m‘ = Zmzm;a |1'l'l7 Cl| = Z(m;al — mia;),
=1 i=1
m w3 9_ mjal
m, 0, 6] = |a, b] + 6, m| + fm, . (a) _ i)

The set of all half-integer characteristics forms a group I" which has 229 ele-
ments. We say that two half integer characteristics m and a are syzygetic (resp.,
azygetic) if jm,a| = 0 mod 2 (resp., |m,al = 1 mod 2) and three half-integer
characteristics m,a, and b are syzygetic if |m,a,b] = 0 mod 2. A Gdpel group
G is a group of 2" half-integer characteristics where r < g such that every two
characteristics are syzygetic. The elements of the group G are formed by the sums
of r fundamental characteristics; see [2, pg. 489] for details. Obviously, a Gopel
group of order 2" is isomorphic to Cj. The proof of the following lemma can be
found on [2, pg. 490].

Lemma 1. The number of different Gépel groups which have 2" characteristics is

(229 - 1)(229—2 —1)--- (22g—2r+2 —1)
@ -nE-t-1---(2-1)

If G is a Gopel group with 27 elements, it has 229" cosets. The cosets are
called Gopel systems and are denoted by aG, a € I'. Any three characteristics
of a Gopel system are syzygetic. We can find a set of characteristics called a
basis of the Gopel system which derives all its 2" characteristics by taking only
combinations of any odd number of characteristics of the basis.



Lemma 2. Let g > 1 be a fixed integer, r be as defined above and o = g —r. Then
there are 2°~1(2° + 1) Gépel systems which only consist of even characteristics
and there are 2°~1(2° — 1) Gopel systems which consist of odd characteristics.
The other 229(2" — 1) Gépel systems consist of as many odd characteristics as
even characteristics.

Proof. The proof can be found on [2, pg. 492]. O

Corollary 1. When r = g, we have only one (resp., 0) Gépel system which consists
of even (resp., odd) characteristics.

Let us consider s = 229 Gépel systems which have distinct characters. Let us
denote them by

alG, CLQG, s ,CtSG.

We have the following lemma.

Lemma 3. It is possible to choose 20 + 1 characteristics from ay,as,--- , a5, Say
ay, dg, -+, G241, Such that every three of them are azygetic and all have the
same character. The above 20 + 1 fundamental characteristics are even (resp.,

odd) if c = 1,0 mod 4 (resp.,=2,3 mod 4).
The proof of the following lemma can be found on [2, pg. 511].

Lemma 4. For any half-integer characteristics a and by, we have the following:

b

ae

62[a](z1,7)0%[ab](22,7) = 2% Z emilacl ( )92[2](z1, 7)0%[eh] (22, 7).  (3)
4
We can use this relation to get identities among half-integer theta constants.
Here ¢ can be any half-integer characteristic. We know that we have 2971(29 + 1)
even characteristics. As the genus increases, we have multiple choices for ¢. In the
following, we explain how we reduce the number of possibilities for ¢ and how to
get identities among theta constants.
First we replace ¢ by ¢eh and z; = 2o = 0 in Eq. (3). Eq. (3) can then be
written as follows:

2 2 __o9—g Ti|aeh| b
0%[a]0*[ab] = 2 ;e (a

7)ol (@)

We have e”‘“m(uhh) = e“'“e‘(:’e)e”‘”’m. Next we put z; = 22 = 0 in Eq. (3)

4

and add it to Eq. (4) and get the following identity:

262 (a6 [a] = 279 3 eI (1 -+ eIl g2(c] e, 5)

If |ae,h] =1 mod 2, the corresponding terms in the summation vanish. Otherwise
14 e™eehl = 2 In this case, if either ¢ is odd or eh is odd, the corresponding
terms in the summation vanish again. Therefore, we need |ae,h] =0 mod 2 and



le| = |eh] = 0 mod 2, in order to get nonzero terms in the summation. If e*
satisfies [e*| = |e*h*| = 0 mod 2 for some h*, then e*h* is also a candidate for
the left hand side of the summation. Only one of such two values ¢* and e*h* is
taken. As a result, we have the following identity among theta constants

Pll62lan] = 5 3 e 2 ) 1o 0

where a,h are any characteristics and e is a characteristics such that |ae,h| =0
mod 2, [¢e] = |eh| =0 mod 2 and ¢ # eh.

By starting from the Eq. (3) with z; = 25 and following a similar argument
to the one above, we can derive the identity,

04[(1] + 67ri|a,h\94[am _ 29%1 Zeﬂi\ac|{04[e] + eﬂ'i|a,h|94[eh]} (7)

where a, h are any characteristics and ¢ is a characteristic such that |h|+Je,h| =0
mod 2, [e] = |eh| =0 mod 2 and e # eh.

Remark 1. |ae,h| = 0 mod 2 and |eh| = |¢] = 0 mod 2 implies |a,h| + |h] = 0
mod 2.

We use Eq. (6) and Eq. (7) to get identities among thetanulls in Chapter 2
and in Chapter 3.

1.2. Hyperelliptic Curves and Their Theta Functions

A hyperelliptic curve X, defined over C, is a cover of order two of the projec-
tive line P'. Let z be the generator (the hyperelliptic involution) of the Galois
group Gal(X /P1). Tt is known that (2) is a normal subgroup of the Aut(X) and
z is in the center of Aut(X’). A hyperelliptic curve is ramified in (2g 4+ 2) places
wi, -, Wag+2. This sets up a bijection between isomorphism classes of hyperel-
liptic genus g curves and unordered distinct (2g+2)-tuples wy,- -+, wag42 € P!
modulo automorphisms of P*. An unordered (2g + 2)-tuple {wi}?gr2 can be de-
scribed by a binary form (i.e. a homogenous equation f(X,Z) of degree 2g + 2).
To describe H,4, we need rational functions of the coefficients of a binary form
f(X, Z), invariant under linear substitutions in X and Z. Such functions are called
absolute invariants for g = 2; see [17] for their definitions. The absolute invariants
are G Ly(C) invariants under the natural action of GL2(C) on the space of binary
forms of degree 2g + 2. Two genus g hyperelliptic curves are isomorphic if and
only if they have the same absolute invariants. The locus of genus g hyperellip-
tic curves with an extra involution is an irreducible g-dimensional subvariety of
‘Hy which is denoted by £,. Finding an explicit description of £, means finding
explicit equations in terms of absolute invariants. Such equations are computed
only for g = 2; see [17] for details. Writing the equations of Lo in terms of theta
constants is the main focus of Chapter 2. Computing similar equations for g > 3
requires first finding the corresponding absolute invariants. This is still an open
problem in classical invariant theory even for g = 3.



Let X — P! be the degree 2 hyperelliptic projection. We can assume that
oo is a branch point.
Let

B = {a17a2; e 7a2g+1}

be the set of other branch points. Let S = {1,2,--- ,2g + 1} be the index set of
Band n:S — 1729/7% be a map defined as follows:

0---0%0...0
7722'—1):{ 2 }
( %...%00...0
0---0%0...0
7]22':{ ? }
(24) 1...11g... g

where the nonzero element of the first row appears in i column. We define 7(oo)

to be [0 00

0.0 O] . For any T' C B, we define the half-integer characteristic as

nr =Y n(k).

ap €T

Let T°¢ denote the complement of T in B. Note that np € Z29. If we view nr as
an element of 17Z29/Z%9 then nr = nre. Let A denote the symmetric difference
of sets, that is TAR = (TUR) — (T'N R). It can be shown that the set of subsets
of B is a group under /A. We have the following group isomorphism:

1
{TCB|#T=g+1 mod 2}/T ~ T° = 5229/22’9.

/

For v = D,,] € 1729/7%9, we have

0(=2,7) = ex(M)01](2, 7). (8)

It is known that for hyperelliptic curves, 2971(29 + 1) — (29;1) of the even theta
constants are zero. The following theorem provides a condition for the character-

istics in which theta characteristics become zero. The proof of the theorem can
be found in [12].

Theorem 1. Let X' be a hyperelliptic curve, with a set B of branch points. Let S
be the index set as above and U be the set of all odd values of S. Then for all
T C S with even cardinality, we have 8nr] = 0 if and only if #(TAU) # g+ 1,
where O[nr] is the theta constant corresponding to the characteristics np.

When the characteristic v is odd, e.(y) = 1. Then from Eq. (8) all odd
theta constants are zero. There is a formula which satisfies half-integer theta
characteristics for hyperelliptic curves called Frobenius’ theta formula.



Lemma 5 (Frobenius). For all z; € C9, 1 <i <4 such that z1 + 20+ 23+ 24 =0
and for all b; € Q9,1 <4 < 4 such that by + by + bz + by = 0, we have

4

S 0w + () =o,

je€SU{oo} i=1

where for any A C B,

(k) = {1 ifk e A,

—1 otherwise.

Proof. See [11, pg. 107]. O
A relationship between theta constants and the branch points of the hyper-
elliptic curve is given by Thomae’s formula.

Lemma 6 (Thomae). For all sets of branch points B = {a1, g, - ,asq41}, there
s a constant A such that for oll T C B, #T is even,

Olnr)(0;7)* = (~1)#T7 A H (i — ) H (0 — )
z‘,jé;jAU i,jés“jAU

where Ny is a non singular even half-integer characteristic corresponding to the
subset T' of branch points.

See [11, pg. 128] for the description of A and [11, pg. 120] for the proof. Using
Thomae’s formula and Frobenius’ theta identities we express the branch points
of the hyperelliptic curves in terms of even theta constants.

1.3. Cyclic Curves and Their Theta Functions

A cyclic cover X — P! is defined to be a Galois cover with cyclic Galois group
C. We call it a normal cyclic cover of P! if C' is normal in G = Aut(X) where
Aut(X) is the automorphism group of the curve X. Then G = G//C embeds as a
finite subgroup of PGL(2,C) and it is called the reduced automorphism group of
G.

An affine equation of a cyclic curve can be given by the following:

S

ymzf(x):H(x—ai)d"7m:|C|, 0<d; <m. (9)

i=1

Note that when d; > 0 for some 4 the curve is singular. Hyperelliptic curves
are cyclic curves with m = 2. After Thomae, many mathematicians, for exam-
ple Fuchs, Bolza, Fay, Mumford, et al., gave derivations of Thomae’s formula in
the hyperelliptic case. In 1988 Bershdaski and Radul found a generalization of
Thomae’s formula for Zn curves of the form



Nm

vV = f@) = [[ @ - a) (10)

i=1

In 1988 Shiga showed the representation of the Picard modular function by
theta constants. He considered the algebraic curve in the (z,y) plane which is
given by

Ce) 1y = z(x — ap)(x — ar)(x — ay) (11)

where € = [ag, a1, az] is a parameter on the domain

A= {E : aoalag(ao - al)(ao - ag)(al - ag) 7é 0}

He gave a concrete description of the Picard work [14]. His result can be considered
4
%?
Jacobi’s theta function and 6; is the convention for 8;(0, 7), for the elliptic modular

function A(7) to the special case of genus 3.

In 1991, Gonzalez Diez studied the moduli spaces parameterizing algebraic
curves which are Galois covering of P! with prime order and with given ramifica-
tion numbers. These curves have equation of the form

an extension of the classical Jacobi representation A = where 6;(z, 7) indicates

r

yP = f(x) = H(:v —a;)™ 5 p prime and p 1 Zmi. (12)

i=1

He expresses a; in terms of functions of the period matrix of the curve.
Farkas (1996) gave a procedure for calculating the complex numbers a; which
appear in the algebraic equation

k
yP = H(ac —a;) with plk (13)
i=1

in terms of the theta functions associated with the Riemann surface of the alge-
braic curve defined by the Eq. (13). He used the generalized cross ratio of four
points according to Gunning. Furthermore he considered the more general prob-
lem of a branched two-sheeted cover of a given compact Riemann surface and
obtained the relations between the theta functions on the cover and the theta
function to the original surface.

Nakayashiki, in 1997, gave an elementary proof of Thomae’s formula for Zy
curves which was discovered by Bershadsky and Radul. Enolski and Grava, in
2006, derived the analogous generalized Thomae’s formula for the Zy singular
curve of the form

m

(@ = X))V [ (@ = Aziga)- (14)

i=1 i=1

Neg

2

I
pug
&

i
—

We summarize all the results in the following theorem.



Theorem 2. Consider the algebraic curve X : y"™ = f(x) defined over the complex
field C.
Case 1: If Ay # 0, say f(z) = Hle(a: — \i) then,

i) If n|k, say k = mn for some m € N then,

for an ordered partition A = (Ag,--+ ,An_1) of {1,2,--+ ,nm}, we have

n—1)(2n—1)
6

0ea] (07" = C(detA)" [T(x — Ay e achaath)

1<j

where k; = j fori € Aj andex = Ay +2A0+ -+ (n—1)Ap_1 — D —¢ is the
associated divisor class of the partition A, L = { — %, —% +1,---, %},
qe(i) = L8 + fraction part of (%) for £ € L, ¢ is Riemann’s constant and
C\ depends on the partition A having the property that for two different partitions
A and A" we have C3N = C3N.

Moreover if n is a prime p, the branch points \; of the curve y" = z(x —
D(z— A1)+ (x — Ap—3) can be given by

Ei'Ai = (MPr, Qo, @1, Qo))"

f(e Py))6(e .
where )‘(kaQleono) = 9Eeiz§i(gzg)é(:fggggiiia while QO; le and Qoo de-

note the points in the curve corresponding to the points 0, 1, and oo in P! respec-
tively, P;’s are points in the curve corresponding to the points \;, F; is a constant
depending on the point P; and ¢p is an injective map from X to C9/G.

it) If nt k, then,

ifn =3 and k = 4, then the parameters A1, X2, A3 can be given as follows:

oio 0io 0io
)‘1293[0?0]> >\2=93{1?1], )‘3293{2?2]
6 36 3 36 3

Case 2: If Ay =0, let f(z) = [Ti—o(@ — Aoks1) [[hey (& — Xog)" L. Then,

N-1 oON
: det A:
H[em}(o; Q)4N :M H ()\21 - )\Zk)N(Nil)

N2mN(N—1)
(2mi)2m 1<i<k<m

< JI OQaipr = Agrg) VA

0<i<k<m

« ( [Licr, jes, Vi = 2) [ier, jes, (X = Aj) 2081
Hieh,k’elg()‘i — k) HjeJl,keJQO‘i - )‘j) 7

where ey = V(N = 1) 3 icr, Pi+ (N = 1) 3 505 Py — D — A) is a nonsingular
% characteristic, J; C Jo ={2,4,--- ,2m +2} and I, C Ip = {1,3,--- ,2m + 1}
with ‘J1|+ ‘I1| =m+1 and IQ = Io—Il,JQ = J()—Jl —2m—|—2, and A\ =
(N —1)>"7" | Pop — P is the Riemann divisor of the curve X.



Proof. For proof of the part ) of case 1, see [1]. When n is prime, the proof can
be found in [4]. The main point of [19] is to prove part i7) of case 1. The proof of
case 2 can be found in [3]. O

1.8.1. Relations Among Theta Functions for Algebraic Curves with
Automorphisms

In this section we develop an algorithm to determine relations among theta func-
tions of a cyclic curve X with automorphism group Aut(X’). The proof of the
following lemma can be found in [16].

Lemma 7. Let f be a meromorphic function on X, and let

(f) = Zbi - ZCi
i=1 i=1

be the divisor defined by f. Take paths from Py (initial point) to b; and Py to ¢;

bi Cj
so that 377, [ w =" [p w.
For an effective divisor Py + --- + Py, we have

P; b
1 H(Zifp w— Pw—A,T)
f(Pl)"'f(Pg)ZEH i o (15)
e 0022, fpo W= Jp W A7)
where E is a constant independent of P1, ..., Py, the integrals from Py to P; take
the same paths both in the numerator and in the demominator, /\ denotes the

¢
. P, P; P;
’ (A i i
Riemann’s constant, and fPo W= (fPo Wiy.ens fPo wg> )

This lemma gives us a tool that can be used to find branch points in terms
of theta constants. By considering the meromorphic function f = z on X and
suitable effective divisors, we can write branch points as ratios of thetanulls. We
present some explicit calculations using the Lemma 7 in Chapter 3 and 4. The
hard part of this
method is the difficulty of writing complex integrals in terms of characteristics.

Algorithm 1. Input: A cyclic curve X with automorphism group G, o € G such
that |o| =n, g(X7) =0 and (o) <G.

Output: Relations among the theta functions of X

Step 1: Let T' = G/{o) and pick T € T such that T has the largest order m.
Step 2: Write the equation of the curve in the form

y" = f(z™) or y" =xf(z™).

Step 3: Determine the roots A1, ..., A of f(x7) in terms of the theta functions.
Step 4: Determine relations on theta functions using Grobner basis tech-
NIQUES.



For step 3, we can use Lemma 7. If the curve in step 3 falls into one of the
categories given in Theorem 2, we can use the corresponding equation to invert
the period map without worrying about the complex integrals.

2. Genus 2 curves

Let k be an algebraically closed field of characteristic zero and X be a genus 2

curve defined over k. Consider a binary sextic, i.e. a homogeneous polynomial
f(X,Z) in k[X, Z] of degree 6:

f(X,2) =a¢X® +asX°Z + -+ apZ°.

The polynomial functions of the coefficients of a binary sextic f(X,Z) invari-
ant under linear substitutions in X, Z of determinant one. These invariants were
worked out by Clebsch and Bolza in the case of zero characteristic and generalized
by Igusa for any characteristic different from 2.

Igusa J-invariants {Ja;} of f(X,Z) are homogeneous polynomials of degree
2i in klag, ..., agl, for i = 1,2,3,5; see [17] for their definitions. Here Jyg is the
discriminant of f(X, Z). It vanishes if and only if the binary sextic has a multiple
linear factor. These Jy; are invariant under the natural action of SLo (k) on sextics.
Dividing such an invariant by another invariant with the same degree, gives an
invariant (eg. absolute invariant) under GLo(k) action. The absolute invariants
of X are defined in terms of Igusa invariants as follows:

Ja Jody — 3Jg Jio

i 1= 144ﬁ, i 1= —1728T, 13 1= 486 —.
2 2

Two genus 2 fields (resp., curves) in the standard form Y2 = f(X, 1) are isomor-
phic if and only if the corresponding sextics are G Lo (k) conjugate.

2.1. Half Integer Theta Characteristics

For genus two curve, we have six odd theta characteristics and ten even theta
characteristics. The following are the sixteen theta characteristics where the first
ten are even and the last six are odd. For simplicity, we denote them by 6;(2)
instead of 6; {(Z} (z,7) where i = 1,...,10 for the even functions and ¢ = 11,...,16

for the odd functions.

0 =01 g )] (o) on(e) =02 1] (27

0a(2) = 0 g . 0u(2) = 04 |\ (ﬂ (2,7)
1 0] M1

05(2) = b5 |2 0| (7). o(2) = b |2 g] (2,7)
LEY S

0r(2) = b7 [ 3| (7). fs(z) = b |2 5] (2,7)




o(2) = o B é} (2,7), B10(2) = b0 E ﬂ (2,7)
011(2) = 01 8 ﬂ (27), O15(2) = 01 B ﬂ (2,7)
015(2) = Or % 8} (27), 014(2) = Ou E (ﬂ (2,7)
015(2) = 015 é (ﬂ (2,7), Br5(2) = 16 E) %] (2,7)

Remark 2. All the possible half-integer characteristics except the zero character-
istic can be obtained as the sum of not more than 2 characteristics chosen from
the following 5 characteristics:

HRRAR HE S

The sum of all 5 characteristics in the set determines the zero characteristic.

Take 0 = g —r = 0. Then a Gopel group G contains four elements. The
number of such Gopel groups is 15. Let G = {0, my, my, myma} be a Gopel group
of even characteristics (we have six such groups). Let by, ba, b1bs be the charac-
teristics such that the G, b1 G, baG, b1boG are all the cosets of the group G. Then
each of the systems other than G contains two odd characteristics and two even
characteristics. Consider equations given by Eq. (6) and Eq. (7). If h denotes any
one of the 3 characteristics m;, mg, m;msy, then we have 6 possible characteristics
for e, which satisfy |e,h| = [h| = 0. They are 0,n, b, b, nh, bh where n is a charac-
teristic in the Gopel group other than fh, and b is an even characteristic chosen
from one of the systems b1 G, boG, b1b2G. The following three cases illustrate the
possible values for characteristic h and for characteristic e. Without loss of gen-
erality, we can take only three values for ¢ which give rise to different terms on
the right hand side of Eq. (6) and Eq. (7).

Case 1: h = m;.
Take ¢ € {0,mo, b1} and take a = b;. Then from Eq. (6) and Eq. (7) we have

(‘:D 02[0]0%[my] + emlormel < ‘1““112) 62 [m5]02[mymy] — 0%[61]6%[bymy] = 0,
94[0} + 04[1‘(11] + €7Ti|blm2|[94[m2] + 04[11121’(11]] — [94[51] + 94[511111]] =0.

Case 2: h = ms.
Take ¢ € {0,mq, by} and take a = by. Then from Eq. (6) and Eq. (7) we have

(‘:2> 62[0]6%[my] + eriiloam| (b‘“2 )92[m1]e2[m1m2} — 6%[62)6%[bomy] = 0,
2 2y

04[0] + 94[1112] + 6pii|b2m2| [94[1111} + 94[11111112}] — [94[52} + 94[521112]} =0.



Case 3: h = myms.

Take ¢ € {0, my, b1bs} and take a = b1by. Then from Eq. (6) and Eq. (7) we
have

MMz 1214142 iilbybomy | [ M2 ) o 2
62(0]0 r 02m,102[may] —
(blb2) 0162 [myms)] + e (blbzml) 4]0 )

92[[11[12}92[[]1 bgmlmg} = 0,
94[0] + 94[m1m2] + €pii‘blb2ml‘[94[m1] + 94[1112]] — [94[5152} + 94[blb2m1m2]] =0.

The identities above express the even theta constants in terms of four theta con-
stants; therefore, we may call them fundamental theta constants,

0[0], 0[m1], 6[mo], O[mims].
2.2. Identities of Theta Constants

We have only six Gopel groups such that all characteristics are even. The following
are such Gopel groups and corresponding identities of theta constants.

i)G=<0= 00 ,my = 0? , My = (1)0 ,mimy = (1)(1) is a Gopel group.
00 0} 10 11
1

p) 2
1 1
If by = (2) 8 ,by = [(1) (2) , then the corresponding Gopel systems are given
2

by the following:

o~ B B L)
= (b 9 [ 1)
o= (14 01 BB}

O ol

- (80 B4 61D

Notice that from all four cosets, only G has all even characteristics as noticed
in Corollary 1. Using Eq. (6) and Eq. (7), we have the following six identities
for the above Gopel group:

0203 = 0307 — 0363,
02 + 03 =0 — 03 — 03 + 01,
94%93 4 _ 941210?2’ _40%9247 4
02 + 0 =04 — 03 + 04 — 04,
0507, = 0705 — 0303,

0% + 01, = 01 + 05 — 05 — 04.



These identities express even theta constants in terms of four theta con-
stants. We call them fundamental theta constants 61, 6o, 03, 8,. Following
the same procedure, we can find similar identities for each possible Gopel

group.
00 00 11 11
ii) G = {0: [ ] ,my = [1 ] , My = [% %] ,mymy = [2 2}} is a Gopel group.
00 1§ 0 535 00
Ifb; = {(1) 8 ,by = [0 (1) , then the corresponding Gopel systems are given
2

by the following;:

o={[oa)-[39] [14)- 53]}
wo={[33] [od] [s1)- 3]}
o= {[53]-[15)- (3] [o 1]}
so={[13]- [0

We have the following six identities for the above Gopel group:

0307 = 0703 — 0367,
05 + 01 =01 + 05 — 03 — 01,
9(2503 :_9%91 +62987

0f + 08 = 01 — 05 — 03 + 01,
0202 = 0702 — 6303,
M+M % 03 + 03 — 01,.

1 1
1051 .. .
} mo = [0 O} ,mymy = h 0] } is a Gopel group.

- fo-[p]n

Ifb; = (1) by =

1{
2
0

0
0
] then the corresponding Gopel systems are given

OL\D\P—‘M‘H o

by the followmg

o~ (B3 9 B L)
oo {1 B ) B1)
{11690
e {0 BB B




We have the following six identities for the above Gopel group:

0303 = 0303 — 0363,
05+ 07 =01+ 05— 03— 04,
0303 = 0707 — 0365,
03 + 02 =01 — 03+ 03— 03,
0203, = —03603 4 0202

94+90794_94_94+94

o fo-i]

00 ,m 0 ,Mmpmy = %0 is a Gopel grou
0% 2 = OO 1mg = 05 pel group.
1

If by = 8 2

1
, by = 8 , then the corresponding Gopel systems are given

by the followmg

=[] b330 (51}
we={[29)-[00) (18] [10}
= {[33]-[33]- 03] [0 1]}
we={[11].[18] [31] [38]}

We have the following six identities for the above Gopel group:

0303 = 026% — 0262,
03 + 05 =067+ 07— 03 — 64,
98+97 :91_94+95_967
0202, = —0202 + 0262,

04+00_04—04—04+04

00 1y 01 11
— — — |2 — 22| 5
v) G = {0 [O O] ,my = {0 O] , My = {0 0} mpmy = [0 O]} is a Gopel group.
1

If b, = 0 (1) ,by = (1) 8], then the corresponding Gopel systems are given
2
by the followmg:



o= (B [ 86D
o= (18 BB B

We have the following six identities for the above Gopel group:

oﬁ?g , _ Giﬂg _403%4’ 4

o _ph o g
339—’2— wZ 259_2 659—296;7 -
2Vip = Uibg — U507,

04 + 04, = 04 — 04 — 03 + 02,

00 1y ol 11
vi) G=<0= ,mp = |2 7| ,me= |7 2|, mmy=|%? 7| ;isaGopel group.
{ [O 0} {0 z] {2 0] [2 2} }
1o 0L
If by = {8 0} ,bo = [0 (2)], then the corresponding Gopel systems are given
by the following;:

o ()G B)
o= (B )
o= (B b [ 1)
o= (34 6 B )

We have the following six identities for the above Gopel group:

0505 = 0107 — 0363,
05+ 05 =01+ 01— 03 — 03,
0307 = 0703 — 03065,
03 + 03 =01 — 05+ 02 — 04,
0507, = —07605 + 0306z,

04 + 01, = 01 — 07 — 02 + 0¢.

From now on, we consider 61, 65, 63, and 6, as the fundamental theta constants.



2.3. Inverting the Moduli Map

Let A\;; ¢ = 1,...,n, be branch points of the genus g smooth curve X. Then
the moduli map is a map from the configuration space A of ordered n distinct
points on P! to the Siegel upper half space £,. In this section, we determine
the branch points of genus 2 curves as functions of theta characteristics. The
following lemma describes these relations using Thomae’s formula. The identities
are known as Picard’s formulas. We will formulate a somewhat different proof for
Picard’s lemma.

Lemma 8 (Picard). Let a genus 2 curve be given by
VZ2=X(X-1)(X - N(X —p)(X —v). (16)
Then, \, p,v can be written as follows:

_ o5 6368 0763

A= B = L v=8
0303 0307, 0307,

(17)

Proof. There are several ways to relate A, u, v to theta constants, depending on
the ordering of the branch points of the curve. Let B = {v,u,A,1,0} be the
branch points of the curve in this order and U = {v, A, 0} be the set of odd branch
points. Using Lemma 6, we have the following set of equations of theta constants
and branch points:

01 = AvA(p—1)(v = N), 05 = Ap(p—1)(v —N),
0l = —ApAu—N(v - ), 01 = —Av(v - \(— ),
05 = Adu(v — 1) (v — p), g = —A(—p)(v—N)(u—2N), (18)

07 = —Ap(v-1A-1)(v—2A), 0 = —Apv(v — p)(A-1),
08 = Av(p— A= 1) N, 0l = —ANA—1)(v - p)

where A is a constant. By choosing appropriate equations from the set Eq. (18)
we have the following:

2 2 2
V;(%%) ﬁ:<%%> ﬁ:(%%).
0362 ) 0z, ) 002,

Each value for (A, p, ) gives isomorphic genus 2 curves. Hence, we can choose

_ 003 6368 6768

A= 3 =_38 =8
302 " gzer VT azen,

This completes the proof. O



2.4. Automorphism Groups of Curves

Let X be a genus 2 curve defined over an algebraically closed field k of character-
istic zero. We denote its function field by K := k(&) and Aut(X) = Aut(K/k)
is the automorphism group of X. In any characteristic different from 2, the auto-
morphism group Aut(X) is isomorphic to one of the groups given by the following
lemma.

Lemma 9. The automorphism group G of a genus 2 curve X in characteristic # 2
is isomorphic to Cso, Cig, Vi, Dg, D12, C3 x Dg, GL2(3), or 2TS5. The case
G 2% 8S5 occurs only in characteristic 5. If G=7Zs3 x Dg (resp., GLy(3)), then
X has equation Y2 = X6 — 1 (resp., Y? = X(X* - 1)). If G=C)y, then X has
equation Y? = X6 — X.

For the proof of the above lemma and the description of each group see [17].
For the rest of this chapter, we assume that char(k) = 0. One of the main goals
of Section 2.4 is to describe each locus of genus 2 curves with fixed automorphism
group in terms of the fundamental theta constants. We have the following lemma.

Lemma 10. Every genus two curve can be written in the form:

0262 02 92 + 62 92 0262
2 _ 1 _ Uju3 g bz T UTbL i%3 o
ol ’(”” 0202 gy )

03 . .
where o = % can be given in terms of 61,05,03, and 04,

04 + 04 — 04 — 0

2
1=0.
o’ + 050270%0% a4+

Furthermore, if oo = £1 then Vy — Aut(X).

Proof. Let us write the genus 2 curve in the following form:
Y2 =X(X-1)(X - N)(X - p)(X —-v)
where A, 1, v are given by Eq. (17). Let o := 6975. Then,
10

_ 0 _ o
‘UJ—@O[,V—@O[.

Using the following two identities,
O3 + 01y = 01 + 05 — 03 — 04,
0303 = 0705 — 0307
we have

2, 0i+05—05—0;
0203 — 0263

a+1=0. (20)



If @« = £1 then uv = A. It is well known that this implies that the genus 2 curve
has an elliptic involution. Hence, V; < Aut(X).
O

Remark 3. i) From the above we have that 03 = 03, implies that Vy — Aut(X).
Lemma 11 determines a necessary and equivalent statement when Vy — Aut(X).

ii) The last part of Lemma 2.4 shows that if 03 = 01,, then all coefficients of
the genus 2 curve are given as rational functions of the four fundamental theta
functions. Such fundamental theta functions determine the field of moduli of the
given curve. Hence, the curve is defined over its field of moduli.

Corollary 2. Let X be a genus 2 curve which has an elliptic involution. Then X
is defined over its field of moduli.

This was the main result of [5].

2.5. Describing the Locus of Genus Two Curves with Fized Automorphism
Group by Theta Constants

The locus Lo of genus 2 curves X which have an elliptic involution is a closed
subvariety of May. Let W = {1, ag, 81, B2, 71,72} be the set of roots of the binary
sextic, and A and B be subsets of W such that W = AU B and |[ANB| =2. We
define the cross ratio of the two pairs z1, 29; 23, 24 by

. _ R13%3,%Z4 21 — X3 k2 — 23
(21722723724) - . - . M
22523, %4 21 — 24 22— 24

Take A = {ay, a9, b1, 82} and B = {v1,72, b1, B2}. Jacobi [8] gives a description
of Lo in terms of the cross ratios of the elements of W:

ar—=P1 =B m-=B r-pHh

a1 =B az—P2 =B 22— P

We recall that the following identities hold for cross ratios:
(o1, a3 B1, B2) = (aa, a1; B2, 1) = (B1, Bas an, a2) = (B2, Brsaz, o)
and
(a1, 2300, B2) = (00, Bo; a1, a2) = (Bas g, ).

Next, we use this result to determine relations among theta functions for a genus
2 curve in the locus £5. Let X be any genus 2 curve given by the equation

Y2 =X(X - 1)(X —a)(X —az)(X — az).

We take oo € AN B. Then there are five cases for « € AN B, where « is an
element of the set {0,1, a1, as,as}. For each of these cases there are three possible
relationships for cross ratios as described below:
i) AN B = {0,00}: The possible cross ratios are



(alu 17 0070) = (a37a2;oo70), (GQ, la 0070) = (a17a3;0070)u

(ala 17 o, O) = (a/27 as; 0o, 0)
ii) AN B = {1,00}: The possible cross ratios are

(alao; o0, 1) = (a27a3;ooa 1)3 (alao; o0, 1) = (a37a2;ooa 1)a

(az,0;00,1) = (a1, asz; 00, 1).
iti) AN B = {a1,00}: The possible cross ratios are

(170;0070'1) = (0137012;0070,1), (CLQ,O;OO,CH) = (170‘3;0070‘1)7

(17 01 00, al) = (0,27 as; 0, a’l)'
iv) AN B = {a3,00}: The possible cross ratios are

(170;007042) = (a17a3;oova2)7 (170;007042) = (0‘,370‘,1;0070‘,2),

(ala 07 0, a2) = (17 as; 0o, a?)'
v) AN B = {as,00}: The possible cross ratios are

(al,O;oo,ag) = (17(12;0070’3)7 (150;007043) = (a2,a1;oo,a3),

(1,0;00,a3) = (a1, az; 00, as).

We summarize these relationships in Table 2.1.

Lemma 11. Let X be a genus 2 curve. Then Aut(X) =V, if and only if the theta
functions of X satisfy

(61 — 02)(03 — 03) (05 — 010)(—07030303 — 0703630, + 010367, + 636,63,
(03650505 — 030507, + 070305070 — 03630%0) (—050363 + 6303070073
+HOTO3030%0 — 0303070) (—010307 — 010100 + 030307003 + 01030503
(—07030307 + 0707004 + 070307, — 030307007)(—0105030] + 0107003 o)
—0103030%) + 020503) (—030303 + 0710307005 — 0301403 + 03030307)
(010303 — 07030507, — 07030503 + 030,03) (010505 — 07030303
—0703030% + 03050)(070305 — 01050700 + 070301, — 03050307)
(070305 — 070360303, + 0705603 — 03030363) = 0.
However, we are unable to determine a similar result for cases Dg or Dys by
this argument. Instead, we will use the invariants of genus 2 curves and a more

computational approach. In the process, we will offer a different proof for the
lemma above.



Table 1. Relation of theta functions and cross ratios

Cross ratio flai,a2,a3) =0 theta constants
L | (1,0;00,a1) = (a3,a2;00,a1) | aiaz +a1 —azar —az | —076036365 — 03636367+
010303, + 03030%
2 (a2,0;00,a1) = (1,a3;00,a1) | aiaz — a1 + aza; — azaz 0%9%0%02 — 0%036’%0—&—
03030367, — 03030%
3 (1,0; 00,a1) = (a2, as;00,a1) aiaz —aj —asal + as —9§9§9§ + 059%«9%002—0—
03030303, — 030301,
4 (1,0; 00, a2) = (a1, as; 00, a2) aiaz —az — aszaz + as 7€f9§92 — 9%9%0€i+
03030307 + 003030%,
5 (1,0; 00,a2) = (as, a1;00,a2) ajas — ay + az — azas 79%959392 + 9%9%003+
030503, — 030367,
6 (a1,0;00,a2) = (1,a3;00,a2) | araz —azar — az + asaz 79%939392 + 9‘119%0027
03030367, + 03036%
7 (a1,0;00,a3) = (1,a2;00,a3) | aiaz —aza1 — azaz + a3 —9;10%92 + 0%950%002—
036107 + 0363636%
8 (1,0; 00,a3) = (a2, a1;00,as) agza] — a1 — azas + as 0;31 - 9%0
9 (1,0; 00,a3) = (a1, az2; 00, as) asal + as — a3z — azaz 9%9502 — 9%9%920%0—
02020202 + 026562
10 (a1,0;00,1) = (a2, as3;00,1) —a1 +agay +az — as 9%9%05 — 9%9%9%93—
62020203, + 0260203
11 (a1,0;00,1) = (a3, az;00,1) aijas — a1 —as + as 9%939% - 9%9%9%093—&-
036301, — 05650367
12 (a2,0;00,1) = (a1, a3;00,1) a1 —ag +azas —as 0%9%92 - 9%0%020%0—&-
620302 — 02026267
13 (a1,1;00,0) = (as, az;00,0) aiaz — as 6“81 — 9‘1*0
14 (az,1;00,0) = (a1, as;00,0) a1 — azas 931 - 02
15 (a1,1;00,0) = (a2, as; o0, 0) asaj — as 01 — 03

Lemma 12. i) The locus Lo of genus 2 curves X which have a degree 2 elliptic
subcover is a closed subvariety of My. The equation of Lo is given by

8748.J10J5 Jg — 507384000J3.J3 J2 — 192456007 .J4.J5 — 6912.J3 J3*

—592272.J10J1 J3 + 77436105 Jy — 3499200.J10J2J8 + 4743360.10.J; JoJg

—870912.J10J7 J3 J + 3090960.J10J4 J3 Jg — 78J5J3 — 125971200000.J5,

—81J3J§ + 1332J3 T} Jg + 38405 Jg + 41472.J10J5 + 1595 J3

—47952.J5.J4J¢ + 10497600072 J3 Jo — 172813 J3 Js + 6048.J3 Jo J2




—9331200J10J3J2 — J3J§ +12J5.T3 Js + 29376.J2J7 T8 — 8910J3.J35 T2
—2099520000.7%, J4J + 31104.J5 — 5832J10.J5 JuJs — 54J5J3J2  (22)
—236196.J%)J5 — 80.J Jo + 108.J5 JuJg 4+ 972J10JS J7 =0.

it) The locus of genus 2 curves X with Aut(X) = Dg is given by the equation
of Lo and

1706.J2 J2 + 2560.J3 4 27J4Jy — 81.J3.Js — 148801504 Jg + 28800J2 = 0.  (23)
iii) The locus of genus 2 curves X with Aut(X)= Do is

—JuJy 4+ 12J3 J5 — 5223 + 80.J3 + 96054 Js — 3600.J2 = 0,
864.J10J5 + 3456000.J10.J; Jo — 43200.J19J4.J5 — 2332800000.J5, (24)
—J3JS — T68J4J3 + 48J3 T3 + 409675 = 0.

Our goal is to express each of the above loci in terms of the theta characteristics.
We obtain the following result.

Theorem 3. Let X be a genus 2 curve. Then the following hold:

i) Aut(X) 2 Vy if and only if the relations of theta functions given Eq. (21)
holds.

it) Aut(X) = Dg if and only if the Eq. I in [18] is satisfied.

i11) Aut(X) = D1y if and only if the Eq. II and Eq. III in [18] are satisfied.

Proof. Part i) of the theorem is Lemma 11. Here we give a somewhat different
proof. Assume that X is a genus 2 curve with equation

V2=X(X-1)(X —a)(X —a2)(X —az)

whose classical invariants satisfy Eq. (12). Expressing the classical invariants of
X in terms of aj,aq, as, substituting them into (12), and factoring the resulting
equation yields

(a1as — az)?(a1 — azaz)?(aza; — az)?*(araz — az — azas + az)?

(azay + as — a3 — azaz)*(—a1 + aza; + az — az)?*(aras — ay — as + az)?

2

no

2
(a3a1 — aip — azaz + a3) (a1a2 + a1 — aszay] — ag

)
)
(araz — a1 + aza; — azaz)*(a1as — asa; — azas + as)
)
)2

2
(CL1(L2 — a1 —asa; + CL3) (a1a2 — a1 + as — asaz

(a1 — az + azas — az)*(a1az — azar — az + azaz)? =0.

It is no surprise that we get the 15 factors of Table 2.1. The relations of theta
constants follow from Table 2.1.



ii) Let X be a genus 2 curve which has an elliptic involution. Then X is
isomorphic to a curve with the equation

Y2 =X(X - 1)(X —a))(X —a2)(X — araz).

If Aut(X)2 Dg then the SLo(k)-invariants of such curve must satisfy Eq. (23).
Then, we get the equation in terms of a; and as. By writing the relation a3 = ajas
in terms of theta constants, we get 65 = 03. All the results above lead to part ii)
of the theorem. iii) The proof of this part is similar to part ii). O

We express the conditions of the previous lemma in terms of the fundamental
theta constants only.

Lemma 13. Let X be a genus 2 curve. Then we have the following:
i) Vi = Aut(X) if and only if the fundamental theta constants of X satisfy

(65 — 03)(61 — 05)(05 — 63)(01 — 63)(05 — 62)(61 — 62)

(=07 + 603 + 67 — 03)(67 — 63 + 67 — 03)(—07 — 63 + 63 + 67)

(02 + 02 + 02 + 62)(0:%02" + 0310, + 0,%05* — 262020262)

(—05%02" — 0,%04* — 0320, + 202026307) (0204* + 61%62" + 0,0,
—203030303) (0104 + 03704 + 0,%03* — 207030307) =0.

ii) Dg — Aut(X) if and only if the fundamental theta constants of X satisfy
Eq.(3) in [6].
iii) Dg — Aut(X) if and only if the fundamental theta constants of X satisfy

Proof. Notice that Eq. (21) contains only 61,62, 65,04, 05 and 61. Using Eq. (19),
we can eliminate g and 61y from Eq. (21). The Jyg invariant of any genus two
curve is given by the following in terms of theta constants:

12912
91 93

J10 = S5 58 010
28 )28 40
05°01°010

(0703 — 0303)™ (6705 — 0303)" (0765 — 030)".

Since Jig # 0, the factors (6303 — 03603), (0703 — 0363) and (03602 — 0367) cancel in
the equation of the Vj locus. The result follows from Theorem 3. The proof of
part ii) and iii) is similar and we avoid details. O

Remark 4. For part i) and iii), the equations are lengthy and we don’t show them
here. But by using the extra conditions 63 = 03 or 03 = —02%, we could simplify
the equation of the Dg locus as follows:

i)When 03 = 03, we have



(01 — 03)(02602 — 05*) (02> + 612 +205%)(02° + 6,2 — 2605%)(26,*
201205 + 05%)(—262* — 5% +260,%6,%)(—1060,%0,12605°
+206 0140503 4+ 860,%0,'% — 340,%0,%05"% — 126 6,260,°05'°
+1860,%0,"005% +2760,%05'° — 1326,%6,505° — 340,%0,%05 2
—16 60,2050, — 160,°0,"405* — 126 6,506,205 + 2460,°0,505"2
+686150,'005% — 246,120, + 860,50, — 106,'20550,*
—1660,"2050,% + 880,'°0510,1° + 180,190,205 + 68 6,°05%6,°
+27 60,5055 — 16 0,40,505) =0.

i) When 03 = —03, we have

(0F — 03)(05* + 0,%05%) (=027 + 017 — 2605%) (=657 + 017 + 2657)
(05" +20,%05> +20,")(202" + 05" +20,%057)(206 0,62 05'°
—106,%021%05% 4+ 2760,%05'° — 340,%0,%05'% + 126 6,26,565'°
—1860,%65'°03" — 686,°05%05° + 80,50, + 276,%05'°
—1326,%0,505% — 3460,%0,%05'% — 16 0,%0510,'% + 16 6,°0,1105*
4126 6,565,205 — 2460,50,505% — 6860,°0,1°05° — 240,126,
+160,0,505* — 100,2605%0,* — 16 6,1%05%0,° — 88 6,1°05%0,™°
—186,°0,%05" + 86,20, '%) =0.

(28)

Define the following as

b2
01

b5
01

04

971)4’ D = (7)47 E= (7)4

A= 5,

)45 B:( )4’ C:(

Using the two identities given by Eq. (19), we have

1+A—-B-C-D-E=0,
A? —2DFEA+2BCA+ C?B? -2DECB + D*E? =0.

Then we formulate the following lemma.

Lemma 14. Let X be a genus 2 curve. Then Vy — Aut(X) if and only if the theta
constants of X satisfy



(B—A)(A-C)(B-C)(1—-A)(1-B)(1-0C)(1-2C+2A+ A%C?
~4DFE — AC —2A*BC +2ADEBC + AB? + DEBC + ADEB — A*
+4ABC —2 AB?C? — A’B + ADE — B*C? — 2 BC? + B*C)(-DEBC  (29)
—4ABC + B*C? + AC + AB?C — ADEB + A% + A>C + ABC?
~DEC —2ADEC — A*C? — A2BC — AC? — ADE) =0.

3. Genus 3 curves
3.1. Introduction to Genus 3 Curves

In this section, we focus on genus 3 cyclic curves. The locus L3 of genus 3 hy-
perelliptic curves with extra involutions is a 3-dimensional subvariety of Hs. If
X € L3 then Vy < Aut(X). The normal form of the hyperelliptic genus 3 curve
is given by

y> =28 4+ a3 X® + aszt + a2? + 1

and the dihedral invariants of X3 are u; = af + a3, uz = (a? + a?)aq, uz = 2a;a3.
The description of the locus of genus 3 hyperelliptic curves in terms of dihedral
invariants or classical invariants is given in [7]. We would like to describe the locus
of genus 3 hyperelliptic curves with extra involutions and all its sub loci in terms
of theta functions.

The list of groups that occur as automorphism groups of genus 3 curves has
been computed by many authors. We denote the following groups by G and Ga:

G = (z,yl2?,y°, ayaxy"), Gy = (z,ylz*, v, (2y)?, (27 'y)?).

In Table 2, we list all possible hyperelliptic genus 3 algebraic curves; see [10] for
details. In this case Aut(X) has a central subgroup C of order 2 such that the
genus of X'C is zero. In the second column of the table, the groups which occur as
full automorphism groups are given, and the third column indicates the reduced
automorphism group for each case. The dimension 6 of the locus and the equation
of the curve are given in the next two columns. The last column is the GAP
identity of each group in the library of small groups in GAP. Note that Cs, Cy
and Cy4 are the only groups which don’t have extra involutions. Thus, curves
with automorphism group Cs, Cy or C14 do not belong to the locus L3 of genus
3 hyperelliptic curves with extra involutions.

In Table 3, we list the automorphism groups of genus 3 nonhyperelliptic
curves. In the table, the second column represents the normal cyclic subgroup C
such that g(X®) = 0. For the last 3 cases in the table, the automorphism groups
of the curves are not normal homocyclic covers of P'. The only cyclic curves are
curves with automorphism groups C3 x S3, Cs, Cs, Cg and two other groups given
by (16,13) and (48,33) in GAP identity. In this chapter we write the equations
of the cyclic curves of genus 3 by using theta constants.



Table 2. Genus 3 hyperelliptic curves and their automorphisms

Aut(X) | Aut (X) | ¢ equation y2 = f(z) Id.

1 Cy {1} 5 | z(x —1)(2® + az* + bz + cx? +dz +e) (2,1)

2 Cay x Cs Coy 3 28 4+ azz® + aszt + a1 + 1 (4,2)

3 Cy Co 2 x(x? — 1)(z* + ax? +b) (4,1)

4 Cia Cr 0 27 —1 (14,2)

5 c3 Dy 2 (z* + az® + 1) (z* + ba? + 1) (8,5)

6 | C2x Ds Dsg 1 28 +azt 4+ 1 (16,11)

7 | CaxCy Dy 1 (x* — 1)(z* + ax? + 1) (8,2)

8 D1s D¢ 1 x(x® +az3 +1) (12,4)

9 G D12 0 x(z8 — 1) (24,5)

10 Ga D16 0 8 —1 (32,9)

11 | O3 x Sy Sy 0 o8 + 1422 + 1 (48, 48)

Table 3. Genus 3 non hyperelliptic curves and their automorphisms
# | Aut(X) | C | Aut(X)/C equation Id.
1 Vi Vi {1} ot oyt Faxy? +ba’+ ey’ +1=0 (4,2)
2 Dg Vi Co take b = ¢ (8,3)
3 Sy Vy Ss3 takea=b=c (24,12)
4 | C3xS3 | Vy Sy take a=b=c=0 or y*=z(z2—-1) (96,64)
5 16 Cy Vi yt=x(x — 1) (xz —1t) (16,13)
6 48 Cy Ay yl=a3-1 (48,33)
7 Cs3 Cs {1} Y2 =z(x—1)(z—s)(z—1t) (3,1)
8 Ce Cs Co take s=1—1 (6,2)
9 Cy Cs C3 Y3 = x(x® — 1) 9,1)
10 | L3(2) 2y +y3z+282=0 (168,42)
11 Ss a(zt +y* + 24) + b(2?y? + 2222 + y222)+ (6,1)
c(x?yz + y?zz + 2%22y) = 0
12 Co zt 4+ 22(y? + az?) + by* + cy®z + dy? 2> (2,1)
+eyz3 4+ g2* =0, eithere=1lorg=1




Figure 1 describes the inclusions among all subloci for genus 3 curves. In order
to study such inclusions, the lattice of the list of automorphism groups of genus 3
curves needs to be determined. Let’s consider the locus of the hyperelliptic curve
whose automorphism group is V4 = {1, a, 8,af}. Suppose « is the hyperelliptic
involution. Since the hyperelliptic involution is unique, the genus of the quotient
curve X#) is 1. Also we have (o) = Cy < Vj and () = Cy — V. Therefore the
locus of the hyperelliptic curve with automorphism group V4 can be embedded
into two different loci with automorphism group C5. One comes from a curve
that has hyperelliptic involution and the other comes from a curve which does
not have hyperelliptic involution. Similarly we can describe the inclusions of each
locus. The lattice of the automorphism groups for genus 3 curves is given Figure
1.

3.2. Theta Functions for Hyperelliptic Curves

For genus three hyperelliptic curves, we have 28 odd theta characteristics and 36
even theta characteristics. The following shows the corresponding characteristics
for each theta function. The first 36 are for the even functions and the last 28
are for the odd functions. For simplicity, we denote them by 6;(z) instead of

a
N

odd functions.

(z,7) where i = 1,...,36 for the even functions and i = 37,...,64 for the

(000 1ol
01(z) =0, (z,7), O2(2) =02 (% 1 2] (2,7)
000 222
(111 000
03(2) = 03 (2) (2) (2)} (z,7), 04(2) = 04 h OO} (2,7)
XN 11lg
05(2) = 05 (2) % O] (z,7), 06(2) = g [(2) (2) ;] (z,7)
011 00}
97(2’) = 97 _% (2) (2):| (Z,T), 98(2) :08 |:0 % (2):| (277')
(000 Loo
99(2’) = 99 _0 O %:| (Z,T), 910(2) = 010 |:(2) OO:| (Z,T)
11 0] 111
011(2) =011 |2 ¢ | (2,7), O12(2) =012 | 2 1| (2,7)
1250 1203
[0 00] (0i0
613(z) = 013 119 (2,7), 014(2) = 614 0 (2) O} (z,7)
[0 1 1] olo
015(2) =615 |, 1 2| (2,7), O16(2) =016 |1 2 1| (2,7)
053] 1203
(00 0] (002
brr(z) = 0o [0 1§ (7). 61s(2) =01s | 0 2] (27




Dimension
of Loci
5 Cs

1 Cy x Cy D12

0 Cu Gi G Co % S84 Co 48

Figure 1. Inclusions among the loci for genus 3 curves with automorphisms.

rii 1

19(2) = 019 g % g] (z,7), 020(2) = 020 {8 8 (ﬂ (2,7)

921(2) =0 8 g 8} (2,7), 922(2) = 02 [8 % é} (ZvT)
(L 11 191

023(2) = 023 i i (2):| (277’), 024(2’) = 924 |:% 0 %:| (Z,T)
L2 2 2V 2

hyperelliptic
- = = - - non hyperelliptic
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Remark 5. Each half-integer characteristic other than the zero characteristic can
be formed as a sum of not more than 3 of the following seven characteristics:

ol (310 6] o
oo 1ol [s31) [5

11 1
EHHiss
2 2 2 2 2

The sum of all characteristics of the above set gives the zero characteristic. The
sums of three characteristics give the rest of the 85 even characteristics and the
sums of two characteristics give 21 odd characteristics.

It can be shown that one of the even theta constants is zero. Let’s pick

S =1{1,2,3,4,5,6,7} and U = {1,3,5,7}. Let T = U. Then By Theorem 1 the
111

theta constant corresponding to the characteristic ny = |7 g %} is zero. That is
272

012 = 0. Next, we give the relation between theta characteristics and branch points
of the genus 3 hyperelliptic curve in the same way we did in the genus 2 case. Once
again, Thomae’s formula is used to get these relations. We get 35 equations with
branch points and non-zero even theta constants. By picking suitable equations,
we were able to express branch points in terms of thetanulls similar to Picard’s
formula for genus 2 curves. Let B = {ay, as, as, a4, as,1,0} be the finite branch
points of the curves and U = {a1, a3, as,0} be the set of odd branch points.

Theorem 4. Any genus 3 hyperelliptic curve is isomorphic to a curve given by the
equation

Y2 =X(X - 1)(X —a)(X —a)(X —a3)(X — as)(X — as),
where

2 n2 2 p2 2 n2 2 n2 2 pn2

a; = 031021 ag = 031913 as = 011931 a4 = 92107 as = 01391
T p2 p2 0  p2p2 T p2 p2> T p2 p2 0 T p2 p2-
934924 09924 02496 915934 92699

Proof. Thomae’s formula expresses the thetanulls in terms of branch points of
hyperelliptic curves. To invert the period map we are going to use Lemma 6. For
simplicity we order the branch points in the order of aj,as,as,ay4,as,0,1, and
0o. Then the following set of equations represents the relations of theta constants
and a1, ..., as. We use the notation (¢, 7) for (a; — a;).

0,:* = A (1,6) (3,6) (5,6) (1,3) (1,5) (3,5) (2,4) (2,7) (4,7)
02" = —A (3,6) (5,6) (3,5) (1,2) (1,4) (2,4) (3,7) (5,7)

03" = A (3,6) (4,6) (3,4) (1,2) (1,5) (2,5) (1,7) (2,7) (5,7)
04" = —A (2,6)(3,6) (5,6) (2,3) (2,5) (3,5) (1,4) (1,7) (4,7)
05* = A (4,6) (5,6) (4,5) (1,2) (1,3) (2,3) (1,7) (2,7) (3,7)
05" = A (1,6) (2,6) (3,4) (3,5) (4,5) (1,2) (1,7) (2,7)



01 = A (2,6) (3,6) (4,6) (1,5) (2,3) (2,4) (3,4) (1,7) (5,7)
0s* = A (2,6) (3,6) (2,3) (1,4) (1,5) (4,5) (1,7) (4,7) (5,7)
o = —A (1,6) (3,6) (1,3) (2,4) (2,5) (4,5) (1,7) (3,7)

010" = —A (3,6) (5,6) (3,5) (1,2) (1,4) (2,4) (1,7) (2,7) (4,7)
01, = —A (3,6) (4,6) (5,6) (3,4) (3,5) (4,5) (1,2) (1,7) (2,7)
013 = A (2,6) (4,6) (5,6) (1,3) (2,4) (2,5) (4,5) (1,7) (3,7)
014" = A (2,6) (5,6) (2,5) (1,3) (1,4) (3,4) (1,7) (3,7) (4,7)

1,6)(2,3)(2,4) (2,5) (3,4) (3,5) (4,5) (1,7)
,6)(4,6)(2,3)(2,5)(3,5) (1,4) (1,7) (4,7)
(2,6) (4,6) (1,3) (1,5) (3,5) (2,4) (1,7) (3,7) (5, 7)

(
(
A
A
A
(
(
015 = —A (1,6) (5,6) (1,5) (2,3) (2,4) (3,4) (1,7) (5,7)
(
(1
A
b19" = A (3,6) (4,6) (1,2) (1,5) (2,5) (3,4) (3,7) (4,7)
A
A
A

O20" = —A (2,6)(1,3) (1,4) (1,5) (3,4) (3,5) (4,5) (2,7)
021" = —A (1,6) (4,6) (5,6) (1,4) (1,5) (4,5) (2,3) (2,7) (3,7)
b2n" = —A (1,6)(3,6) (4,6) (1,3) (1,4) (3,4) (2,5) (2,7) (5,7)
f23" = A (1,6) (2,6) (3,4) (3,5) (4,5) (1,2) (3,7) (4,7) (5,7)
024" = A (4,6) (5,6) (1,2) (1,3) (2,3) (4,5) (4,7) (5,7)
bos" = A (3,6) (1,2) (1,4) (1,5) (2,4) (2,5) (4,5) (3,7)
ba6" = —A (2,6) (4,6) (1,3) (1,5) (3,5) (2,4) (2,7) (4,7)
O27" = —A (1,6) (5,6) (1,5) (2,3) (2,4) (3,4) (2,7) (3,7) (4,7)
bas" = —A (1,6)(3,6) (1,3) (2,4) (2,5) (4,5) (2,7) (4,7) (5,7)

3,5)(1,4) (2,7)(3,7)(5,7)
(1,4) (3,4) (2,5)(2,7) (5,7)

16)(3,6) (1,4) (1,5) (4,5) (2,3) (2,7) (3,7)

) (1,2) (1,3) (1,5) (2,3) (2,5) (3,5) (4,7)

A
A
A
(
(
031" = —A (1,6) (2,6) (3,6) (1,2) (1,3) (2,3) (4,5) (4,7) (5,7)
(1,
(2
(2
A (4,6 5)(3,5)
A (1,6)(2,6) (5,6) (1,2) (1,5) (2,5) (3,4) (3,7) (4,7)



Our expectation is to write down the branch points as quotients of thetanulls. By
using the set of equations given above we have several choices for aq,..

terms of theta constants.

Branch Points

Possible Ratios

.,a5 in

2 2 2
a2 (9%69232) (agl(a%l) (9§90z)
1 933919 2 ’ 034924 2, 92692 2
2 (), (G2) (%ok)
2 02017 2’ 915919 2, 99924 2
22 (%) (5)', ()
3 933017 27 02406 2, 026615 2
a2 (‘9%9%9) ( 9231923 ) (9222953)
4 6‘266 27 015034 27 6‘9633 2
2 (B2), (%), (54)
5 934917 ’ 91906 ’ 92699
Let’s select the following choices for aq,--- ,as:
2 92 2 2 2 92 2 92 2 2
ag = 03,05, ay = 03,073 5= 01,05, 4y = 03,07 - 01507
= 02 p2 = 9292 = 2 g2 = 92 p2 0 = 02 p2°
034634 05624 03465 075034 03665

This completes the proof.

O

Remark 6. i) Unlike the genus 2 case, here only 61, 0g, 07, 011, 015, 024, 031 are

from the same Gopel group.

i1) For genus 2 case such relations are known as Picard’s formulae. The cal-
culations proposed by Gaudry on genus 2 arithmetic on theta function in cryptog-
raphy is mainly based on Picard’s formulae.

3.8. Theta Identities for Hyperelliptic Curves

Similar to the genus 2 case we can find identities that hyperelliptic theta constants
are satisfied. We would like to find a set of identities that contains all possible
even theta constants. A Gopel group, Eq. (6) and Eq. (7) all play a main role
in this task. Now consider a Gopel group for genus 3 curves. Any Gopel group
G contains 2% = 8 elements. The number of such Gopel groups is 135. We have
24 Gopel groups such that all of the characteristics of the groups are even. The
following is one of the Gopel groups which has only even characteristics:

000 111 100 0lo 0
— — — 122 2 2 — 2 =
G‘{Cl_ [000}’02_ [ooo]’c3 [000]’04_ [000]’05_ {o

Ol

1ol 11lg 00
— |2 2 — |2 2 — 2
= [000]’67_ {000}’08_[000]}'

By picking suitable characteristics by, by, and bs we can find the Gopel systems

for group G. Let’s pick b; = [

03

050 >

corresponding Gopel systems are given by the following:

1
2
i)

(1)(1)8}752— [OOO],ade’s— [?Oo}whenthe
22
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The above Gopel systems contain all 64 characteristics for genus 3. Except

for the Gopel group, each of the systems contains 4 odd characteristics and 4 even

0 mod 2 has 20 solutions.

le| =

} , then [eh|

characteristics. If h denotes one of the characteristics from the Gopel group other
000
000

than {



111
Example 1. If h = |2 2 2| then all the characteristics of G and all the even

characteristics of the Gépel systems of b1G, bsG and b1b3G are the possible char-
acteristics for e. There are 20 of them.

Without loss of generality, take the 10 possible choices for ¢ which give rise

to different terms in the series Eq. (6) and Eq. (7). For each § in the Gopel group
000

other than [0 0 O] ,
respectively by, by, b3, b1bo, b1bs, bobs, and bybsbs to the cases when b is equal
to the characteristics co, c3, ¢4, cs5, cg, 7, and cg respectively. By picking a and §
with these characteristics, we can obtain formulas which express the zero values
of all the even theta functions in terms of 8 theta nulls: 8¢, 03, 01¢, 014, 015, 022,
029, 036. We obtain the following 14 equations. The first set is obtained by using
Eq. (6); all the computations are done by using Maple 10,

we can choose a such that |a, h|+|h] =0 mod 2. Take a to be

3013°023% — 025°0117 — 03470127 + 0357015” + 024°016° — 030°017° = 050,
— 029°010° — 020°014° + 0360157,
3021705 + 020°05° — 031705 — 025709 + 030°015° — O35°017° = 010°601°
— 022%05% — 036%014” + 02070157,
3034°016” — 027204 + 025057 + 032°07” — 020°09% — 0246012° = 614°0,
+ 029057 — 0367010 — 0220157,
304%032° + 031°05° — 027°07° — 021705 + 02370117 — 025°013% = 015°0,°
— 0367057 — 020%010” + 0227014,
301770157 + 010°02° — 07704 — 0337026 + 032°027" — 0357030” = 022°0,”
+ 010057 — 015014 — 0360297,
3026702 + 05205 + 016°012° — 033°010° — 03170217 — 034°024” = 029°0,°
— 0147057 — 015%010” + 0367022,
300°06° + 035205 — 0152011 — 026°010" — 025°020" + 025°023% = 036%0,°
+ 014010 — 015705 — 029°05°.
By using Eq. (7) we have the following set of equations:
3013" + 303" — Os" — 011" — 034" — 012" + 035" + 015" + 024 + 016" — 030"
— 017" = 03" + 01" — 020" — 010" — 029 — 014" + 036" + 015",
3021  + 305" + 020" + 06" — 031" — 05 — 025" — o + 030" + 015" — 035

— 9174 = 9104 + 01" — 00" — 934 — 9364 — 01t + 9294 + 91847



3034  +3016" — 027" — 04" + 005" + 06" + 032" + 07" — 020" — 09" — 04"
— 012" = 014" + 01" + 09" + 05" — 036" — 010" — 022" — 015",

30,  + 303" + 031" + 05" — 07" — 07" — 01" — 05 + 03" + 011" — O
— 013" = 018" + 01" — 036" — 05" — 029" — 010" + 020" + 014",

3017 + 3015  + 010" + 02" — 07" — 04" — 033" — 026" + 032" + 027" — 035
— 030" = 02" + 01" + 010" + 03" — 015" — 014 — 036" — 029",

302" + 302" + 05" + 05" + 016" + 012" — 033" — 019" — 031" — 021" — 034"
— 024" = 00" + 01" — 014 — 05" — 015" — 010" + 036" + 022",

309" + 305" + 033" + 02" — 015" — 011" — 026" — 019" — 025" — 020" + 025"
+ 003" = 036" + 01" — 015" — 03" + 014" + 010" — 029" — 022"

Remark 7. Similar to the genus 2 case we can consider all the Gépel groups and

obtain all possible relations among thetanulls by following the above procedure. It
1s tedious and quite long so we don’t do it here.

3.4. Genus 8 Non-Hyperelliptic Cyclic Curves

Using formulas similar to Thomae’s formula for each family of cyclic curve y™ =
f(z), one can express the roots of f(x) in terms of ratios of theta functions as
in the hyperelliptic case. In this section we study such curves for ¢ = 3. We
only consider the families of curves with positive dimensions since the curves
which belong to O-dimensional families are well known. Notice that the definition
of thetanulls is different in this part from the definitions of thetanulls in the
hyperelliptic case. We define the following three theta constants:

0io 0io 0io
010|:2?2:|, 929|:1?1:|, 939|:0?0:|
36 3 3 6 6

3

Next we consider the cases 7, 8 and 5 from Table 3.2.
Case T: If the group is (s, then the equation of X is given by

¥ =a(x—1)(z —s)(z —1).

Let @; where ¢ = 1..5 be ramifying points in the fiber of 0, 1, s, ¢, 0o respectively.
Consider the meromorpic function f = z on X of order 3. Then we have (f) =
3Q1 — 3Qs5. By applying the Lemma 7 with Py = @5 and an effective divisor
2Q2 + @3, we have the following:

3 9(2]3:w+fQ3 — [ w—NA,T)

ES:H Qs

i 9(2fQ52w+fQ3w—AT



Once again, we apply Lemma 7 with an effective divisor Qs + 2Q3 and we have
the following:

3 H(fQ;w—i—?fQ;’w— W =24, 7').

Es® =[] (31)
paiey Q(fij—i—QfQ;’w—A,T)
By dividing Eq. (31) by Eq. (30) we have
sﬁf‘[Q(fQ;w—i—2f w—AT)
i 9(fQ52w+2fQ3w—AT -
ﬁ 02 )57 w+ [o., w—24,T)
X = .
k=19(2fQ52w+fQ w—f w—A,T)
By a similar argument, we have
b
- ﬁ g, wt2]g, w—Jgw—57)
paie 0 g, w2 g, w—A,T) )

3 02 [PPw+ [Trw—A,T
% H ( st st )
k=1

202 ol vt [l w— ékw—A )

Computing the right hand side of Eq. ( 2) and Eq. (33) was one of the main
points of [19]. As a result we have s = Z—?, and r = Z?

Case 8: If the group is Cp, then the equation is y* = z(z — 1)(z — s)(z — t) with
s = 1 —t. By using the results from Case 7, we have 05 = 03 — 63.

Case 5: If Aut(X)=(16,13), then the equation of X is given by

Yyt =x(x —1)(z —t).

This curve has 4 ramifying points (); where ¢ = 1..4 in the fiber of 0,1,¢,00
respectively. Consider the meromorpic function f = x on X of order 4. Then we
have (f) = 4Q1 — 4Q4. By applying Lemma 7 with Py = @4 and an effective
divisor 2Q)2 + @3, we have the following:

192 [Pwt [Fw— [P ANy
Et:H (f4 Q2f4 3 Q )
Pl 0(2f4w+fQ4wa,7)

(34)

Once again, we apply Lemma 7 with an effective divisor Qs + 2Q3 and we have
the following:



4 6( &2w+2fQ43w— bkw—A,T)

Bt =] Qs : (35)

Q2 :

paie 0o, w2 o, w—24,7)
We have the following by dividing Eq. (35) by Eq. (34):
Q Q b
t:ﬁ (g, w+2Jg, @ —Jg,w— D7)
Q :

o g w25 w—A) (36)

4 9(2fow+fQ43w—A,T)

X .
EG(Qfoerfow 5’1&)*&,7’)

In order to compute the explicit formula for ¢, one has to find the integrals on
the right-hand side. Such computations are long and tedious and we intend to
include them in further work.

Remark 8. In case 5 of Table 3, the parameter t is given by
Ole]* = A(t — 1)*?,

where [e] is the theta characteristic corresponding to the partition ({1}, {2}, {3},{4})
and A is a constant; see [1] for details. However, this is not satisfactory since
we would like t as a rational function in terms of theta constants. The method
in [1] does not lead to another relation among t and the thetanulls, since the only
partition we could take is the above.

Summarizing all of the above, we have

Theorem 5. Let X' be a non-hyperelliptic genus 8 curve. The following statements
are true:

i) If Aut(X) = Cs, then X is isomorphic to a curve with equation

03 63
7 =atae=b (o= 5) (o= )

ii) If Aut(X) = Cg, then X is isomorphic to a curve with equation

03 03
P =x(x—1) <:E— é) (x—é) with 03 = 03 — 63.

iii) If Aut(X) is isomorphic to the group with GAP identity (16, 13), then X is
isomorphic to a curve with equation

yt=z(x —1)(z —t)

where t is given by Eq. (36).



4. Genus 4 curves

In this section we focus on genus 4 curves. For the genus 4 curves, the complete
set of all possible full automorphism groups and the corresponding equations are
not completely calculated yet. In this chapter we consider a few of the cyclic
curves of genus 4. Let us first consider the genus 4 hyperelliptic algebraic curves.
For these curves, we have 2971(29 + 1) = 136 even half-integer characteristics and
2971(29 — 1) = 120 odd half-integer characteristics. Among the even thetanulls,
10 of them are 0. We won’t show the exact information here. Following the same
procedure as for g = 3, the branch points of genus 4 hyperelliptic curves can be
expressed as ratios of even theta constants and identities among theta constants
can be obtained. The following Table 4 gives some genus 4 non-hyperelliptic
cyclic curves; see Table 2 of [9] for the complete list.

Table 4. Some genus 4 non hyperelliptic cyclic curves and their automorphisms

H # ‘ dim ‘ Aut(X) ‘ Equation H
1 3 C2 Y3 =x(x — 1)(z — a1)(z — a2)(z — as3)
2 2 Cs x Ca Y3 = (22 — 1)(2? — a1)(2? — a2)
3 1 Cs Y =a(x—1)(z—a)
4 1 C3 x Co 3= (22 - 1)(z* —az? +1)

The Figure 2 shows the inclusions of loci of the genus 4 curves.
4.1. Inverting the Moduli Map

In this section we will express branch points of each cyclic curve in Table 4.1 as
ratios of theta nulls.
Case 1: C : y? = z(z—1)(x—ay)(r—az)(z—a3). In this curve oo is a branch point.
We can use result of [1] to find out a1, as, az in terms of thetanulls. First we need
to find the partitions of the set {1,2,3,4,5,6}. The Table 5 shows all possible
partitions of {1,2,3,4,5,6} into 3 sets and the labeling of the corresponding
thetanulls.

For each partition we can apply the generalized Thomae’s formula to obtain
an identity. According to this labeling of theta constants and the generalized
Thomae’s formula we have the following relations:

3

= ¢1 (a1 — a2)® (a1 — as) (a2 — as) arazas (a1 — 1) (az — 1) (a5 — 1)°,
926 = ¢y (a1 — az)® (a1 — a3) (a2 — as) arazas® (a1 — 1) (ag — 1) (a5 — 1),
05% = ¢35 (a1 — az)® (a1 — as) (a2 — a3) ayazas (a; — 1) (a2 — 1) (a3 — 1),
0,5 = ¢4 (a1 — az) (a1 — a3)® (a2 — as) arasas (a1 — 1) (az — 1)® (a5 — 1),
05% = c5 (a1 — az) (a1 — a3)® (a2 — a3) aras®as (a1 — 1) (az — 1) (a3 — 1),
06° = ¢ (a1 — az) (a1 — a3)® (a2 — as) ayazas (a; — 1) (az — 1) (a3 — 1),



Table 5. Partitions of {1,2,3,4,5,6} into 3 sets

H Theta constant ‘ Corresponding partition H

01 [1,2],13,4], [5, 6]
02 [1,2], 3, 5], [4, 6]
03 [1,2], 3, 6], [4, 5]
64 [1,3],[2,4],[5,6]
05 [1,3],1]2, 5], [4, 6]
0s [1,3],]2,6],[4, 5]
07 [1,4], ]2, 3], [5, 6]
0s [1,4],[2,5],[3, 6]
(25 (1,4],[2,6], [3,5]
010 (1,5],[2,3], [4, 6]
011 [1,5],(2,4], 3, 6]
012 [1,5], [2,6], [3,4]
013 (1,6],[2,3], [4,5]
614 (1,6],[2,4], 3,5]
015 [1,6],[2,5], [3,4]

0:° = ¢7 (a1 — az) (a1 — as) (a2 — a3)® ayazas (e — 1)° (ag — 1) (a5 — 1),
636 = Cg (a1 - (LQ) (a1 — a3) (ag — ag) a1a23a3 (a1 — 1)3 (CLQ — 1) (ag — 1) s

996 = C9 (a1 — CLQ) (a1 — CL3) (ag — a3) a1a2a33 (a1 — 1)3 (CL2 — 1) (0,3 — 1) y

010% = c10 (a1 — a2) (a1 — a3) (a2 — a3)3 ar”azaz (ay — 1) (az — 1) (a3 — 1),
011° = c11 (a1 — a2) (a1 — as) (a2 — a3) ar’asas (a1 — 1) (az — 1)® (a5 — 1),
012° = c12 (a1 — a2) (a1 — a3) (az — a3) ar’azaz (a1 — 1) (a2 — 1) (a3 — 1)°,
013° = c13 (a1 — a2) (a1 — as3) (a2 — as)® ayazas (a1 — 1) (az — 1) (a5 — 1),
014° = c14 (a1 — a2) (a1 — a3) (a2 — a3) arazas® (a1 — 1) (a2 — 1) (a3 — 1),
015° = 15 (a1 — az) (a1 — a3) (a2 — as) araz’as (a1 — 1) (a2 — 1) (a3 — 1)°

where ¢;’s are constants and depend on the partition A;. From the above set
of equations we can write ay, as, az in terms of theta constants:

0 0
af =01(;2)° a3 =0a()", = 53( 2)6 (37)
613 ts 03
where §; = Tg’ (52:%2, 03 = 2.

Using the result of case 1 we can write the equations of cases 2 and case 4 in
terms of thetanulls.
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Figure 2. Inclusions among the loci for genus 4 curves.



Case 2: In this case the curve can be written as

v = (z — 1)(x+ 1)(z — o) (z + Vg ) (z — az)(x + az). (38)
Consider the transformation given by

rz—1
2¢ —1°

xr —

Under this transformation we obtain a curve that is isomorphic to the given curve
and
the new curve is given by the equation

¥ = 2(z — 2)(@ — 1)@ —72)(@ — 3) (& — 1)

3
1 —vai—1 —1 —Jaz—1 . .
where v, = 2‘\//?%71, Yo = 72‘\//7%71, Y3 = 2‘\/7%71, and v4 = % Using this

transformation we map the branch point 1 of the curve given by the Eq. (38) to
0. Again by using the transformation

—2z+1
3r—2"

we can find another curve isomorphic to the above two curves. This transformation

maps % to co. With this transformation the curve is given by the equation

Y = x(x — 61)(x — 02)(z — d3)(x — 04)

where §; = =221 By using the transformation given b
525 By using g y
rz+1
z 51, 4 20141
61+1 61+1

we can find the curve

v’ =a(z —1)(z — fi)(z — B2)(z — Bs)

(01 +1)(Sig1+1)
where 51 T 010i41+201+1 0

Now we are in case 1. From the result of case 1, we can write the 3;, 7 =1,2,3 as
ratios of thetanulls. But we like to have a1 and a9 as functions of theta constants.
Notice that we have the following 3 relations on a1, asg, 81, B2, and Ss:

which is isomorphic to the previous 3 algebraic curves.

By = .

YT a —2-2(Jar - 1)
/s

B2

o aQ + (/o — \/0[27



N /109

A/ O1O — /O] — /O '
Using these relations, oy and as can be written as rational functions of 51, Bo,
and B3 given by the following;:

Ps

20182 (B3 + B2)
25183 + 2 B1Ba + o> Bz — 6 B1 2Bz — 2 B182” + 3 512> Bs

2 1(Bs — P2)
—4 81 — B2fs + 45183 + 45162 — 3515283

with the condition of §1, 82 and (3

(B1B3° + 2 B1B2Bs + B1Be” + B2’ Bs” — 4 B1BaB3> — 4 1822 Bs + 3 B182°B5°)
(—B3 — P2 +2p283) =0.

The branch points of the curve given by Eq. (38) can be expressed as ratios of
theta constants by using all of the above information.
Case 4: In this case the curve is given by

! (39)

Qo =

v = (2% — 1)(z* — az® +1). (40)

This is a special case of case 2. By writing out the equation of case 2, we have
Y3 = (22 — 1)(2* — (a1 + a2)2? + ajaz). Take a = a1 + az and ajag = 1.

Case 3: In this case, the equation is given by y°> = x(x — 1)(x — «). This curve
has 4 ramifying points @); where ¢ = 1..4 in the fiber of 0, 1, ¢, co respectively. The
meromorpic function f = x on X of order 4 has (f) = 4Q1 — 4Q4. By applying
Lemma 7 with

Py = Q4 and an effective divisor 4Qs + X3, we have the following:

S 04 [P wH+ [FPw— bkw—A,T
Bo=]] e, 2fQ4 L ). (41)
kel 04[5, wt [o, w—24,7)

Again by applying Lemma 7 with an effective divisor 3Qs + 2Q3, we have the
following:

0B o w2 o] w - é’iw—A,T)

Ea® = . (42)
kl;[l 03 5, w+2[olw—NA,7)

We have the following by dividing Eq. (42) by Eq. (41):

5 9(3fQ42w+2fQ43w R w— A, T)

_ “Jau

03 [, w+2 [ w—2NA,7)

ﬁ 6(4[Q42w+fQ43w7A,7)
X

b
Pt 9(4fQ42w—|—fQ43w— 0w A7)




By calculating integrals on the right-hand side in terms of thetanulls, we can write
the branch point « as a ratio of thetanulls. Summarizing all of the above, we have

Theorem 6. i) If Aut(X) = Cs, then X is isomorphic to a curve with equation

Yy’ = (e —1)(r —a1)(x — az)(z — a3),

where ay, as, and az are given in case (1) in terms of thetanulls.
ii) If Aut(X) = C5 x Cy, then X is isomorphic to a curve with equation

v’ = (@ = 1)(@* — a1)(2® — an),

where a1, and ag are given in case (2) in terms of thetanulls.
iii) If Aut(X) = Cs, then X is isomorphic to a curve with equation

Y’ =a(e—1)(z - a),

where « is given in case (4) in terms of thetanulls.
iv) If Aut(X) = Cg x Cy, then X is isomorphic to a curve with equation

y = (2% — 1)(z* — az® + 1),

where « is given in case (3) in terms of thetanulls.

5. Concluding Remarks

In Sections 2, 3, and 4, the main idea was to write down the branch points
as quotients of thetanulls explicitly for cyclic curves of genus 2, 3, and 4 with
extra automorphisms. For hyperelliptic algebraic curves, we can use Thomae’s
formula to express branch points as ratios of thetanulls. We used Maple 10 for
all computations. For non-hyperelliptic cyclic curves, we used various methods in
order to invert the period map. The method described in Lemma 7 in Chapter 1
gives the general method to find branch points in terms of thetanulls. The main
drawback of this method is the difficulty of writing complex integrals as functions
of theta characteristics. Some of the results in Chapter 2 and Chapter 3 already
appeared in [15].
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