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Abstract. Genus 2 curves have been an object of much mathematical

interest since eighteenth century and continued interest to date. They
have become an important tool in many algorithms in cryptographic

applications, such as factoring large numbers, hyperelliptic curve cryp-

tography, etc. Choosing genus 2 curves suitable for such applications
is an important step of such algorithms. In existing algorithms often

such curves are chosen using equations of moduli spaces of curves with

decomposable Jacobians or Humbert surfaces.
In these lectures we will cover basic properties of genus 2 curves, mod-

uli spaces of (n,n)-decomposable Jacobians and Humbert surfaces, mod-
ular polynomials of genus 2, Kummer surfaces, theta-functions and the

arithmetic on the Jacobians of genus 2, and their applications to cryp-

tography. The lectures are intended for graduate students in algebra,
cryptography, and related areas.

Keywords. genus two curves, moduli spaces, hyperelliptic curve cryptography,
modular polynomials

1. Introduction

Genus 2 curves are an important tool in many algorithms in cryptographic ap-
plications, such as factoring large numbers, hyperelliptic curve cryptography, etc.
Choosing such genus 2 curves is an important step of such algorithms.

One of the techniques in counting such points explores genus 2 curves with
decomposable Jacobians. All curves of genus 2 with decomposable Jacobians of a
fixed level lie on a Humbert surface. Humbert surfaces of level n = 3, 5, 7 are the
only explicitly computed surfaces and are computed by the first author in [61],
[63], [49].

In these lectures we will cover basic properties of genus 2 curves, moduli
spaces of (n, n)-decomposable Jacobians, Humbert surfaces of discriminant n2,
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modular polynomials of level N for genus 2, Kummer surfaces, theta-functions,
and the arithmetic on the Jacobians of genus 2.

Our goal is not to discuss genus 2 cryptosystems. Instead, this paper develops
and describes mathematical methods which are used in such systems. In the
second section, we discuss briefly invariants of binary sextics, which determine a
coordinate on the moduli space M2. Furthermore, we list the groups that occur
as automorphism groups of genus 2 curves.

In section three, we study the description of the locus of genus two curves
with fixed automorphism group G. Such loci are given in terms of invariants of
binary sextics. The stratification of the moduli space M2 is given in detail. A
genus two curve C with automorphism group of order > 4 usually has an elliptic
involution. An exception from this rule is only the curve with automorphism group
the cyclic group C10. All genus two curves with elliptic involutions have a pair
(E,E′) of degree 2 elliptic subcovers. We determine the j-invariants of such elliptic
curves in terms of C. The space of genus 2 curves with elliptic involutions is an
irreducible 2-dimensional sublocus L2 ofM2 which is computed explicitly in terms
of absolute invariants i1, i2, i3 of genus 2 curves. A birational parametrization of
L2 is discovered by the first author in [66] in terms of dihedral invariants u and v.
Such invariants have later been used by many authors in genus 2 cryptosystems.

In section four, we discuss the theta functions. In the first part of this section
we define 16 theta functions and the 4 fundamental theta functions. A description
of all the loci of genus two curves with fixed automorphism group G is given in
terms of the theta functions. In detail this is first described in [67] and [58] In
section five, we study the genus two curves with decomposable Jacobians. These
are the curves with degree n elliptic subcovers. Their Jacobian is isogenous to a
pair of degree n elliptic subcovers (E,E′). For n odd the space of genus two curves
with (n, n)-split Jacobians correspond to the Humbert space of discriminant n2.
We state the main result for the case n = 3 and give a graphical representation
of the space. In each case the j-invariants of E and E′ are determined.

In the last section we describe a Maple package which does computation with
genus 2 curves. Such package computes several invariants of genus two curves
including the automorphism group, the Igusa invariants, the splitting of the Ja-
cobian, the Kummer surface, etc. These lectures will be suitable to the graduate
students in algebra, cryptography, and related areas who need genus two curves
in their research.

Notation: Throughout this paper a genus two curve means a genus two irreducible
algebraic curve defined over an algebraically closed field k. Such curve will be
denoted by C and its function field by K = k(C). The field of complex, rational,
and real numbers will be denoted by C,Q, and R respectively. The Jacobian of
C will be denoted by Jac C and the Kummer surface by K(C) or simply JC ,KC .
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ematics and Statistics at Oakland University for their hospitality during the time
that this paper was written.



2. Preliminaries on genus two curves

Throughout this paper, let k be an algebraically closed field of characteristic zero
and C a genus 2 curve defined over k. Then C can be described as a double cover
of P1(k) ramified in 6 places w1, . . . , w6. This sets up a bijection between isomor-
phism classes of genus 2 curves and unordered distinct 6-tuples w1, . . . , w6 ∈ P1(k)
modulo automorphisms of P1(k). An unordered 6-tuple {wi}6i=1 can be described
by a binary sextic (i.e. a homogenous equation f(X,Z) of degree 6).

2.1. Invariants of binary forms

In this section we define the action of GL2(k) on binary forms and discuss the
basic notions of their invariants. Let k[X,Z] be the polynomial ring in two vari-
ables and let Vd denote the (d+ 1)-dimensional subspace of k[X,Z] consisting of
homogeneous polynomials.

f(X,Z) = a0X
d + a1X

d−1Z + ...+ adZ
d (1)

of degree d. Elements in Vd are called binary forms of degree d. We let GL2(k)
act as a group of automorphisms on k[X,Z] as follows:

M =

(
a b
c d

)
∈ GL2(k), then M

(
X
Z

)
=

(
aX + bZ
cX + dZ

)
. (2)

This action of GL2(k) leaves Vd invariant and acts irreducibly on Vd. Let A0,
A1, ... , Ad be coordinate functions on Vd. Then the coordinate ring of Vd can
be identified with k[A0, ..., Ad]. For I ∈ k[A0, ..., Ad] and M ∈ GL2(k), define
IM ∈ k[A0, ..., Ad] as follows

IM (f) := I(M(f)) (3)

for all f ∈ Vd. Then IMN = (IM )N and Eq. (3) defines an action of GL2(k)
on k[A0, ..., Ad]. A homogeneous polynomial I ∈ k[A0, . . . , Ad, X, Z] is called a
covariant of index s if

IM (f) = δsI(f)

where δ = det (M). The homogeneous degree in A1, . . . , An is called the degree
of I, and the homogeneous degree in X,Z is called the order of I. A covariant of
order zero is called invariant. An invariant is a SL2(k)-invariant on Vd.

We will use the symbolic method of classical theory to construct covariants
of binary forms. Let

f(X,Z) :=

n∑
i=0

(
n
i

)
aiX

n−i Zi,

g(X,Z) :=

m∑
i=0

(
m
i

)
biX

n−i Zi

(4)



be binary forms of degree n and m respectively in k[X,Z]. We define the r-
transvection

(f, g)r := ck ·
r∑

k=0

(−1)k
(
r
k

)
· ∂rf

∂Xr−k ∂Y k
· ∂rg

∂Xk ∂Y r−k
(5)

where ck = (m−r)! (n−r)!
n!m! . It is a homogeneous polynomial in k[X,Z] and therefore

a covariant of order m + n − 2r and degree 2. In general, the r-transvection of
two covariants of order m,n (resp., degree p, q) is a covariant of order m+n− 2r
(resp., degree p+ q).

For the rest of this paper F (X,Z) denotes a binary form of order d := 2g+ 2
as below

F (X,Z) =

d∑
i=0

aiX
iZd−i =

d∑
i=0

(
n
i

)
biX

iZn−i (6)

where bi = (n−i)! i!
n! · ai, for i = 0, . . . , d. We denote invariants (resp., covariants)

of binary forms by Is (resp., Js) where the subscript s denotes the degree (resp.,
the order).

Remark 1. It is an open problem to determine the field of invariants of binary
form of degree d ≥ 7.

2.2. Moduli space of curves

LetM2 denote the moduli space of genus 2 curves. To describeM2 we need to find
polynomial functions of the coefficients of a binary sextic f(X,Z) invariant under
linear substitutions in X,Z of determinant one. These invariants were worked out
by Clebsch and Bolza in the case of zero characteristic and generalized by Igusa
for any characteristic different from 2; see [12], [37], or [66] for a more modern
treatment.

Consider a binary sextic, i.e. a homogeneous polynomial f(X,Z) in k[X,Z]
of degree 6:

f(X,Z) = a6X
6 + a5X

5Z + · · ·+ a0Z
6.

Igusa J-invariants {J2i} of f(X,Z) are homogeneous polynomials of degree 2i
in k[a0, . . . , a6], for i = 1, 2, 3, 5; see [37], [66] for their definitions. Here J10 is
simply the discriminant of f(X,Z). It vanishes if and only if the binary sextic
has a multiple linear factor. These J2i are invariant under the natural action of
SL2(k) on sextics. Dividing such an invariant by another one of the same degree
gives an invariant under GL2(k) action.

Two genus 2 curves) in the standard form Y 2 = f(X, 1) are isomorphic if
and only if the corresponding sextics are GL2(k) conjugate. Thus if I is a GL2(k)
invariant (resp., homogeneous SL2(k) invariant), then the expression I(C) (resp.,
the condition I(C) = 0) is well defined. Thus the GL2(k) invariants are functions



on the moduli space M2 of genus 2 curves. This M2 is an affine variety with
coordinate ring

k[M2] = k[a0, . . . , a6, J
−1
10 ]GL2(k)

which is the subring of degree 0 elements in k[J2, . . . , J10, J
−1
10 ]. The absolute

invariants

i1 := 144
J4

J2
2

, i2 := −1728
J2J4 − 3J6

J3
2

, i3 := 486
J10

J5
2

,

are even GL2(k)-invariants. Two genus 2 curves with J2 6= 0 are isomorphic if
and only if they have the same absolute invariants. If J2 = 0 then we can define
new invariants as in [64]. For the rest of this paper if we say “there is a genus 2
curve C defined over k” we will mean the k-isomorphism class of C.

The reason that the above invariants were defined with the J2 in the denom-
inator was so that their degrees (as rational functions in terms of a0, . . . , a6) be
as low as possible. Hence, the computations in this case are simpler. While most
of the computational results on [61], [63], [49] are expressed in terms of i1, i2, i3
we have started to convert all the results in terms of the new invariants

t1 =
J5

2

J10
, t2 =

J5
4

J2
10

, t3 =
J5

6

J3
10

.

2.3. Automorphisms of curves of genus two

Let C be a genus 2 curve defined over an algebraically closed field k. We denote
its automorphism group by Aut(C) = Aut(K/k) or similarly Aut(C). In any char-
acteristic different from 2, the automorphism group Aut(C) is isomorphic to one
of the groups given by the following lemma.

Lemma 1. The automorphism group G of a genus 2 curve C in characteristic
6= 2 is isomorphic to C2, C10, V4, D8, D12, C3oD8, GL2(3), or 2+S5. The case
G∼= 2+S5 occurs only in characteristic 5. If G∼=Z3oD8 (resp., GL2(3)), then C
has equation Y 2 = X6 − 1 (resp., Y 2 = X(X4 − 1)). If G∼=C10, then C has
equation Y 2 = X6 −X.

For the rest of this paper, we assume that char(k) = 0.

3. Automorphism groups and the description of the corresponding loci.

In this section we will study genus two curves which have and extra involution in
the automorphism group. It turns out that there is only one automorphism group
from the above lemma which does not have this property, namely the cyclic group
C10. However, there is only one genus two curve (up to isomorphism) which has
automorphism group C10. Hence, such case is not very interesting to us.

Thus, we will study genus two curves which have an extra involution, which
is equivalent with having a degree 2 elliptic subcover; see the section on decom-
posable Jacobians for degree n > 2 elliptic subcovers.



3.1. Genus 2 curves with degree 2 elliptic subcovers

An elliptic involution of K is an involution in G which is different from z0 (the hy-
perelliptic involution). Thus the elliptic involutions of G are in 1-1 correspondence
with the elliptic subfields of K of degree 2 (by the Riemann-Hurwitz formula).

If z1 is an elliptic involution and z0 the hyperelliptic one, then z2 := z0 z1

is another elliptic involution. So the elliptic involutions come naturally in pairs.
This pairs also the elliptic subfields of K of degree 2. Two such subfields E1 and
E2 are paired if and only if E1 ∩ k(X) = E2 ∩ k(X). E1 and E2 are G-conjugate
unless G∼=D6 or G∼=V4.

Theorem 1. Let K be a genus 2 field and e2(K) the number of Aut(K)-classes
of elliptic subfields of K of degree 2. Suppose e2(K) ≥ 1. Then the classical
invariants of K satisfy the equation,

−J7
2J

4
4 + 8748J10J

4
2J

2
6507384000J2

10J
2
4J2 − 19245600J2

10J4J
3
2 − 592272J10J

4
4J

2
2

−81J3
2J

4
6 − 3499200J10J2J

3
6 + 4743360J10J

3
4J2J6 − 870912J10J

2
4J

3
2J6

+1332J4
2J

4
4J6 − 125971200000J3

10 + 384J6
4J6 + 41472J10J

5
4 + 159J6

4J
3
2

−47952J2J4J
4
6 + 104976000J2

10J
2
2J6 − 1728J5

4J
2
2J6 + 6048J4

4J2J
2
6 + 108J4

2J4J
3
6

+12J6
2J

3
4J6 + 29376J2

2J
2
4J

3
6 − 8910J3

2J
3
4J

2
6 − 2099520000J2

10J4J6 − 236196J2
10J

5
2

+31104J5
6 − 6912J3

4J
3
64 + 972J10J

6
2J

2
4 + 77436J10J

3
4J

4
2 − 78J5

2J
5
4

+3090960J10J4J
2
2J

2
6 − 5832J10J

5
2J4J6 − 80J7

4J2 − 54J5
2J

2
4J

2
6 − 9331200J10J

2
4J

2
6 = 0

(7)

Further, e2(K) = 2 unless K = k(X,Y ) with

Y 2 = X5 −X

in which case e2(K) = 1.

Lemma 2. Suppose z1 is an elliptic involution of K. Let z2 = z1z0, where z0

is the hyperelliptic involution. Let Ei be the fixed field of zi for i = 1, 2. Then
K = k(X,Y ) where

Y 2 = X6 − s1X
4 + s2X

2 − 1 (8)

and 27 − 18s1s2 − s2
1s

2
2 + 4s3

1 + 4s3
2 6= 0. Further E1 and E2 are the subfields

k(X2, Y ) and k(X2, Y X).

We need to determine to what extent the normalization above determines
the coordinate X. The condition z1(X) = −X determines the coordinate X up
to a coordinate change by some γ ∈ Γ centralizing z1. Such γ satisfies γ(X) =
mX or γ(X) = m

X , m ∈ k \ {0}. The additional condition abc = 1 forces 1 =
−γ(α1) . . . γ(a6), hence m6 = 1. So X is determined up to a coordinate change
by the subgroup H ∼=D6 of Γ generated by τ1 : X → ξ6X, τ2 : X → 1

X , where
ξ6 is a primitive 6-th root of unity. Let ξ3 := ξ2

6 . The coordinate change by τ1
replaces s1 by ξ3s2 and s2 by ξ2

3s2. The coordinate change by τ2 switches s1 and
s2. Invariants of this H-action are:



u := s1s2, v := s3
1 + s3

2 (9)

Remark 2. Such invariants were quite important in simplifying computations for
the locus L2. Later they have been used by Duursma and Kiyavash to show that
genus 2 curves with extra involutions are suitable for the vector decomposition
problem; see [20] for details. In this volume they are used again, see the paper
by Cardona and Quer. They were later generalized to higher genus hyperelliptic
curves and were called dihedral invariants; see [32].

Figure 1. The space L2 of genus 2 curves with extra involutions.

The following proposition determines the group G in terms of u and v.

Proposition 1. Let C be a genus 2 curve such that G := Aut(C) has an elliptic
involution and J2 6= 0. Then,

a) G∼=Z3oD4 if and only if (u, v) = (0, 0) or (u, v) = (225, 6750).
b) G∼=W1 if and only if u = 25 and v = −250.
c) G∼=D6 if and only if 4v− u2 + 110u− 1125 = 0, for u 6= 9, 70 + 30

√
5, 25.

Moreover, the classical invariants satisfy the equations,

−J4J4
2 + 12J3

2J6 − 52J2
4J

2
2 + 80J3

4 + 960J2J4J6 − 3600J2
6 = 0

864J10J
5
2 + 3456000J10J

2
4J2 − 43200J10J4J

3
2 − 2332800000J2

10 − J2
4J

6
2

−768J4
4J

2
2 + 48J3

4J
4
2 + 4096J5

4 = 0

(10)

d) G∼=D4 if and only if v2−4u3 = 0, for u 6= 1, 9, 0, 25, 225. Cases u = 0, 225
and u = 25 are reduced to cases a),and b) respectively. Moreover, the classical
invariants satisfy (7) and the following equation,



1706J2
4J

2
2 + 2560J3

4 + 27J4J
4
2 − 81J3

2J6 − 14880J2J4J6 + 28800J2
6 = 0 (11)

Remark 1. The following graphs are generated by Maple 13. Notice the singular
point in both spaces of curves with automorphism group D4 and D6. Such points
correspond to larger automorphism groups, namely the groups of order 24 and 48
respectively. This can be easily seen from the group theory since D4 ↪→ Z3oD4

and D6 ↪→W1.

Figure 2. The space of genus 2 curves with automorphism group D4 and D6 respectively.

Proposition 2. The mapping

A : (u, v) −→ (i1, i2, i3)

gives a birational parametrization of L2. The fibers of A of cardinality > 1 corre-
spond to those curves C with | Aut(C)| > 4.

Proof. See [66] for the details.

3.1.1. Elliptic subcovers

Let j1 and j2 denote the j-invariants of the elliptic curves E1 and E2 from
Lemma 2. The invariants j1 and j2 are the roots of the quadratic

j2 + 256
(2u3 − 54u2 + 9uv − v2 + 27v)

(u2 + 18u− 4v − 27)
j + 65536

(u2 + 9u− 3v)

(u2 + 18u− 4v − 27)2
= 0

(12)

3.1.2. Isomorphic elliptic subcovers

The elliptic curves E1 and E2 are isomorphic when equation (12) has a double
root. The discriminant of the quadratic is zero for

(v2 − 4u3)(v − 9u+ 27) = 0



Remark 3. From lemma 2, v2 = 4u3 if and only if Aut(C)∼=D4. So for C such
that Aut(C)∼=D4, E1 is isomorphic to E2. It is easily checked that z1 and z2 =
z0z1 are conjugate when G∼=D4. So they fix isomorphic subfields.

If v = 9(u− 3) then the locus of these curves is given by,

4i51 − 9i41 + 73728i21i3 − 150994944i23 = 0

289i31 − 729i21 + 54i1i2 − i22 = 0
(13)

For (u, v) = ( 9
4 ,−

27
4 ) the curve has Aut(C)∼=D4 and for (u, v) = (137, 1206) it

has Aut(C)∼=D6. All other curves with v = 9(u− 3) belong to the general case,
so Aut(C)∼=V4. The j-invariants of elliptic curves are j1 = j2 = 256(9−u). Thus,
these genus 2 curves are parameterized by the j-invariant of the elliptic subcover.

Remark 4. This embeds the moduli space M1 into M2 in a functorial way.

3.2. Isogenous degree 2 elliptic subfields

In this section we study pairs of degree 2 elliptic subfields of K which are 2 or
3-isogenous. We denote by Φn(x, y) the n-th modular polynomial (see Blake et
al. [9] for the formal definitions. Two elliptic curves with j-invariants j1 and j2
are n-isogenous if and only if Φn(j1, j2) = 0. In the next section we will see how
such modular polynomials can be generalized for higher genus.

3.2.1. 3-Isogeny.

Suppose E1 and E2 are 3-isogenous. Then, from equation (12) and Φ3(j1, j2) = 0
we eliminate j1 and j2. Then,

(4v − u2 + 110u− 1125) · g1(u, v) · g2(u, v) = 0 (14)

where g1 and g2 are given in [66].
Thus, there is a isogeny of degree 3 between E1 and E2 if and only if u and

v satisfy equation (14). The vanishing of the first factor is equivalent to G∼=D6.
So, if Aut(C)∼=D6 then E1 and E2 are isogenous of degree 3.

3.2.2. 2-Isogeny

Below we give the modular 2-polynomial.

Φ2 = x3 − x2y2 + y3 + 1488xy(x+ y) + 40773375xy − 162000(x2 − y2)+

8748000000(x+ y)− 157464000000000
(15)

Suppose E1 and E2 are isogenous of degree 2. Substituting j1 and j2 in Φ2 we get

f1(u, v) · f2(u, v) = 0 (16)

where f1 and f2 are displayed in [65]



3.2.3. Other isogenies between elliptic subcovers

If Aut(C)∼=D4, then z1 and z2 are in the same conjugacy class. There are again
two conjugacy classes of elliptic involutions in Aut(C). Thus, there are two degree
2 elliptic subfields (up to isomorphism) of K. One of them is determined by double
root j of the equation (12), for v2 − 4u3 = 0. Next, we determine the j-invariant
j′ of the other degree 2 elliptic subfield and see how it is related to j.

C

��ww   ''
E1 E2 E′1 E′2

If v2−4u3 = 0 then Aut(C)∼=V4 and P = {±1,±
√
a,±
√
b}. Then, s1 = a+ 1

a+1 =
s2. Involutions of C are τ1 : X → −X, τ2 : X → 1

X , τ3 : X → − 1
X . Since τ1 and

τ3 fix no points of P then they lift to involutions in Aut(C). They each determine
a pair of isomorphic elliptic subfields. The j-invariant of elliptic subfield fixed by
τ1 is the double root of equation (12), namely

j = −256
v3

v + 1

To find the j-invariant of the elliptic subfields fixed by τ3 we look at the degree 2
covering φ : P1 → P1, such that φ(±1) = 0, φ(a) = φ(− 1

a ) = 1, φ(−a) = φ( 1
a ) =

−1, and φ(0) = φ(∞) = ∞. This covering is, φ(X) =
√
a

a−1
X2−1
X . The branch

points of φ are qi = ± 2i
√
a√

a−1
. From lemma 2 the elliptic subfields E′1 and E′2 have

2-torsion points {0, 1,−1, qi}. The j-invariants of E′1 and E′2 are

j′ = −16
(v − 15)3

(v + 1)2

Then Φ2(j, j′) = 0, so E1 and E′1 are isogenous of degree 2. Thus, τ1 and τ3
determine degree 2 elliptic subfields which are 2-isogenous.

4. Theta functions

In this section we give a brief description of the basic setup. All of this material
can be found in any standard book on theta functions.

Let C be a genus g ≥ 2 algebraic curve. We choose a symplectic homology basis
for C, say {A1, . . . , Ag, B1, . . . , Bg}, such that the intersection products Ai ·Aj =
Bi ·Bj = 0 and Ai ·Bj = δij , where δij is the Kronecker delta. We choose a basis
{wi} for the space of holomorphic 1-forms such that

∫
Ai
wj = δij . The matrix

O =
[∫
Bi
wj

]
is the period matrix of C. The columns of the matrix [I |O] form

a lattice L in Cg and the Jacobian of C is Jac (C) = Cg/L. Let Hg be the Siegel
upper-half space. Then O ∈ Hg and there is an injection



Mg ↪→ Hg/Sp2g(Z) =: Ag

where Sp2g(Z) is the symplectic group. For any z ∈ Cg and τ ∈ Hg Riemann’s
theta function is defined as

θ(z, τ) =
∑
u∈Zg

eπi(u
tτu+2utz)

where u and z are g−dimensional column vectors and the products involved in
the formula are matrix products. The fact that the imaginary part of τ is positive
makes the series absolutely convergent over any compact sets. Therefore, the
function is analytic. The theta function is holomorphic on Cg ×Hg and satisfies

θ(z + u, τ) = θ(z, τ), θ(z + uτ, τ) = e−πi(u
tτu+2ztu) · θ(z, τ),

where u ∈ Zg; see [54] for details. Any point e ∈ Jac (C) can be written uniquely

as e = (b, a)

(
1g
O

)
, where a, b ∈ Rg. We shall use the notation [e] =

[
a
b

]
for the

characteristic of e. For any a, b ∈ Qg, the theta function with rational character-
istics is defined as

θ

[
a
b

]
(z, τ) =

∑
u∈Zg

eπi((u+a)tτ(u+a)+2(u+a)t(z+b)).

When the entries of column vectors a and b are from the set {0, 1
2}, then the

characteristics

[
a
b

]
are called the half-integer characteristics. The corresponding

theta functions with rational characteristics are called theta characteristics. A
scalar obtained by evaluating a theta characteristic at z = 0 is called a theta
constant. Points of order n on Jac C are called the 1

n -periods. Any half-integer
characteristic is given by

m =
1

2
m =

1

2

(
m1 m2 · · · mg

m′1 m
′
2 · · · m′g

)

where mi,m
′
i ∈ Z. For γ =

[
γ′

γ′′

]
∈ 1

2Z
2g/Z2g we define e∗(γ) = (−1)4(γ′)tγ′′ .

Then,

θ[γ](−z, τ) = e∗(γ)θ[γ](z, τ).

We say that γ is an even (resp. odd) characteristic if e∗(γ) = 1 (resp. e∗(γ) = −1).
For any curve of genus g, there are 2g−1(2g + 1) (respectively 2g−1(2g − 1) ) even
theta functions (respectively odd theta functions). Let a be another half integer
characteristic. We define ma as follows.

ma =
1

2

(
t1 t2 · · · tg
t′1 t
′
2 · · · t′g

)



where ti ≡ (mi + ai) mod 2 and t′i ≡ (m′i + a′i) mod 2.
For the rest of this section we consider only characteristics 1

2q in which each
of the elements qi, q

′
i is either 0 or 1. We use the following abbreviations

|m| =
g∑
i=1

mim
′
i, |m, a| =

g∑
i=1

(m′iai −mia
′
i),

|m, a, b| = |a, b|+ |b,m|+ |m, a|,
(
m

a

)
= eπi

∑g
j=1mja

′
j .

The set of all half integer characteristics forms a group Γ which has 22g

elements. We say that two half integer characteristics m and a are syzygetic (resp.,
azygetic) if |m, a| ≡ 0 mod 2 (resp., |m, a| ≡ 1 mod 2) and three half integer
characteristics m, a, and b are syzygetic if |m, a, b| ≡ 0 mod 2.

A Göpel group G is a group of 2r half integer characteristics where r ≤ g
such that every two characteristics are syzygetic. The elements of the group G
are formed by the sums of r fundamental characteristics; see [2, pg. 489] for
details. Obviously, a Göpel group of order 2r is isomorphic to Cr2 . The proof of
the following lemma can be found on [2, pg. 490].

Lemma 3. The number of different Göpel groups which have 2r characteristics is

(22g − 1)(22g−2 − 1) · · · (22g−2r+2 − 1)

(2r − 1)(2r−1 − 1) · · · (2− 1)

If G is a Göpel group with 2r elements, then it has 22g−r cosets. The cosets
are called Göpel systems and denoted by aG, a ∈ Γ. Any three characteristics of
a Göpel system are syzygetic. We can find a set of characteristics called a basis
of the Göpel system which derives all its 2r characteristics by taking only the
combinations of any odd number of characteristics of the basis.

Lemma 4. Let g ≥ 1 be a fixed integer, r be as defined above and σ = g− r. Then
there are 2σ−1(2σ + 1) Göpel systems which consist of even characteristics only
and there are 2σ−1(2σ − 1) Göpel systems which consist of odd characteristics.
The other 22σ(2r − 1) Göpel systems consist as many odd characteristics as even
characteristics.

Proof. The proof can be found on [2, pg. 492].

Corollary 1. When r = g we have only one (resp., 0) Göpel system which consists
of even (resp., odd) characteristics.

Proposition 3. The following statements are true.

θ2[a]θ2[ah] =
1

2g−1

∑
e

eπi|ae|
(
h

ae

)
θ2[e]θ2[eh] (17)



θ4[a] + eπi|a,h|θ4[ah] =
1

2g−1

∑
e

eπi|ae|{θ4[e] + eπi|a,h|θ4[eh]} (18)

where θ[e] is the theta constant corresponding to the characteristic e, a and h are
any half integer characteristics and e is an even characteristic such that |e| ≡ |eh|
mod 2. There are 2 · 2g−2 (2g−1 + 1) such candidates for e.

Proof. For the proof, see [2, pg. 524].

The statements given in the proposition above can be used to get identities
among theta constants; see section 3.

4.1. Cyclic curves with extra automorphisms

A normal cyclic curve is an algebraic curve C such that there exist a normal cyclic
subgroup Cm / Aut(C) such that g(C/Cm) = 0. Then Ḡ = G/Cm embeds as a
finite subgroup of PGL(2,C). An affine equation of a birational model of a cyclic
curve can be given by the following

ym = f(x) =

s∏
i=1

(x− αi)di , 0 < di < m. (19)

Hyperelliptic curves are cyclic curves with m = 2. Note that when 0 < di
for some i the curve is singular. A hyperelliptic curve C is a cover of order two
of the projective line P1. Let z be the generator (the hyperelliptic involution)
of the Galois group Gal(C/P1). It is known that 〈z〉 is a normal subgroup of
the automorphism group Aut(C). Let C −→ P1 be the degree 2 hyperelliptic
projection. We can assume that infinity is a branch point. Let

B := {α1, α2, · · · , α2g+1}

be the set of other branch points. Let S = {1, 2, · · · , 2g + 1} be the index set of
B and ξ : S −→ 1

2Z
2g/Z2g be a map defined as follows;

ξ(2i− 1) =

[
0 · · · 0 1

2 0 · · · 0
1
2 · · ·

1
2 0 0 · · · 0

]
ξ(2i) =

[
0 · · · 0 1

2 0 · · · 0
1
2 · · ·

1
2

1
2 0 · · · 0

]
where the nonzero element of the first row appears in ith column. We define ξ(∞)

to be

[
0 · · · 0 0
0 · · · 0 0

]
. For any T ⊂ B, we can define the half-integer characteristic as

ξT =
∑
ak∈T

ξ(k).

Let T c denote the complement of T in B. Note that ξB ∈ Z2g. If we view ξT
as an element of 1

2Z
2g/Z2g then ξT = ξT c . Let M denote the symmetric difference



of sets, that is T M R = (T ∪R)− (T ∩R). It can be shown that the set of subsets
of B is a group under M. We have the following group isomorphism

{T ⊂ B |#T ≡ g + 1 mod 2}/T ∼=
1

2
Z2g/Z2g.

For hyperelliptic curves, it is known that 2g−1(2g + 1) −
(

2g+1
g

)
of the even

theta constants are zero. The following theorem provides a condition on the char-
acteristics in which theta characteristics become zero. The proof of the theorem
can be found in [55, pg. 102].

Theorem 2. Let C be a hyperelliptic curve, with a set B of branch points. Let S be
the index set as above and U be the set of all odd values of S. Then for all T ⊂ S
with even cardinality, we have θ[ξT ] = 0 if and only if #(T4U) 6= g + 1, where
θ[ξT ] is the theta constant corresponding to the characteristics ξT .

Notice also that by parity, all odd theta constants are zero. There is a formula
(so called Frobenius’ theta formula) which half-integer theta characteristics for
hyperelliptic curves satisfy.

Lemma 5 (Frobenius). For all zi ∈ Cg, 1 ≤ i ≤ 4 such that z1 + z2 + z3 + z4 = 0
and for all bi ∈ Q2g, 1 ≤ i ≤ 4 such that b1 + b2 + b3 + b4 = 0, we have

∑
j∈S∪{∞}

εU (j)

4∏
i=1

θ[bi + ξ(j)](zi) = 0,

where for any A ⊂ B,

εA(k) =

{
1 if k ∈ A
−1 otherwise

Proof. See [54, pg. 107].

A relationship between theta constants and the branch points of the hyper-
elliptic curve is given by Thomae’s formula.

Lemma 6 (Thomae). For a non singular even half integer characteristics e cor-
responding to the partition of the branch points {1, 2, · · · , 2(g + 1)} = {i1 < i2 <
· · · < ig+1} ∪ {j1 < j2 < · · · < jg+1}, we have

θ[e](0; τ)8 = A
∏
k<l

(λik − λil)2(λjk − λjl)2.

See [54, pg. 128] for the description of A and [54, pg. 120] for the proof. Using
Thomae’s formula and Frobenius’ theta identities we express the branch points
of the hyperelliptic curves in terms of even theta constants.



4.2. Genus 2 curves

The automorphism groupG of a genus 2 curve C in characteristic 6= 2 is isomorphic

to Z2, Z10, V4, D8, D12, SL2(3), GL2(3), or 2+S5. The case when G∼= 2+S5

occurs only in characteristic 5. If G∼=SL2(3) (resp., GL2(3)) then C has equation

Y 2 = X6 − 1 (resp., Y 2 = X(X4 − 1)). If G∼=Z10 then C has equation Y 2 =

X6 − X. For a fixed G from the list above, the locus of genus 2 curves with

automorphism group G is an irreducible algebraic subvariety of M2. Such loci

can be described in terms of the Igusa invariants.
For any genus 2 curve we have six odd theta characteristics and ten even

theta characteristics. The following are the sixteen theta characteristics, where
the first ten are even and the last six are odd. For simplicity, we denote them by

θi =

[
a
b

]
instead of θi

[
a
b

]
(z, τ) where i = 1, . . . , 10 for the even theta functions.

θ1 =

[
0 0
0 0

]
, θ2 =

[
0 0
1
2

1
2

]
, θ3 =

[
0 0
1
2
0

]
, θ4 =

[
0 0
0 1

2

]
, θ5 =

[
1
2
0

0 0

]
,

θ6 =

[
1
2
0

0 1
2

]
, θ7 =

[
0 1

2

0 0

]
, θ8 =

[
1
2

1
2

0 0

]
, θ9 =

[
0 1

2
1
2
0

]
, θ10 =

[
1
2

1
2

1
2

1
2

]
,

and the odd theta functions correspond to the following characteristics

[
0 1

2
0 1

2

]
,

[
0 1

2
1
2

1
2

]
,

[
1
2 0
1
2 0

]
,

[
1
2

1
2

1
2 0

]
,

[
1
2 0
1
2

1
2

]
,

[
1
2

1
2

0 1
2

]

Consider the following Göpel group

G =

{
0 =

[
0 0
0 0

]
,m1 =

[
0 0
0 1

2

]
,m2 =

[
0 0
1
2 0

]
,m1m2 =

[
0 0
1
2

1
2

]}
.

Then, the corresponding Göpel systems are given by:

G =

{[
0 0
0 0

]
,

[
0 0
0 1

2

]
,

[
0 0
1
2 0

]
,

[
0 0
1
2

1
2

]}
b1G =

{[
1
2 0
0 0

]
,

[
1
2 0
0 1

2

]
,

[
1
2 0
1
2 0

]
,

[
1
2 0
1
2

1
2

]}
b2G =

{[
0 1

2
1
2 0

]
,

[
0 1

2
1
2

1
2

]
,

[
0 1

2
0 0

]
,

[
0 1

2
0 1

2

]}
b3G =

{[
1
2

1
2

1
2 0

]
,

[
1
2

1
2

1
2

1
2

]
,

[
1
2

1
2

0 0

]
,

[
1
2

1
2

0 1
2

]}

Notice that from all four cosets, only G has all even characteristics as noticed in

Corollary 1. Using the Prop. 3 we have the following six identities for the above

Göpel group.





θ2
5θ

2
6 = θ2

1θ
2
4 − θ2

2θ
2
3

θ4
5 + θ4

6 = θ4
1 − θ4

2 − θ4
3 + θ4

4

θ2
7θ

2
9 = θ2

1θ
2
3 − θ2

2θ
2
4

θ4
7 + θ4

9 = θ4
1 − θ4

2 + θ4
3 − θ4

4

θ2
8θ

2
10 = θ2

1θ
2
2 − θ2

3θ
2
4

θ4
8 + θ4

10 = θ4
1 + θ4

2 − θ4
3 − θ4

4

These identities express even theta constants in terms of four theta constants. We
call them fundamental theta constants θ1, θ2, θ3, θ4.

Next we find the relation between theta characteristics and branch points of
a genus two curve.

Lemma 7 (Picard). Let a genus 2 curve be given by

Y 2 = X(X − 1)(X − λ)(X − µ)(X − ν). (20)

Then, λ, µ, ν can be written as follows:

λ =
θ2

1θ
2
3

θ2
2θ

2
4

, µ =
θ2

3θ
2
8

θ2
4θ

2
10

, ν =
θ2

1θ
2
8

θ2
2θ

2
10

. (21)

Proof. There are several ways for relating λ, µ, ν to theta constants, depending
on the ordering of the branch points of the curve. Let B = {ν, µ, λ, 1, 0} be the
branch points of the curves in this order and U = {ν, λ, 0} be the set of odd
branch points. Using Lemma 6 we have the following set of equations of theta
constants and branch points.

θ4
1 = Aνλ(µ− 1)(ν − λ) θ4

2 = Aµ(µ− 1)(ν − λ)
θ4

3 = Aµλ(µ− λ)(ν − λ) θ4
4 = Aν(ν − λ)(µ− λ)

θ4
5 = Aλµ(ν − 1)(ν − µ) θ4

6 = A (ν − µ)(ν − λ)(µ− λ)
θ4

7 = Aµ(ν − 1)(λ− 1)(ν − λ) θ4
8 = Aµν(ν − µ)(λ− 1)

θ4
9 = Aν(µ− 1)(λ− 1)(µ− λ) θ4

10 = Aλ(λ− 1)(ν − µ),

(22)

where A is a constant. Choosing the appropriate equation from the set Eq. (22)
we have the following:

λ2 =

(
θ2

1θ
2
3

θ2
2θ

2
4

)2

µ2 =

(
θ2

3θ
2
8

θ2
4θ

2
10

)2

ν2 =

(
θ2

1θ
2
8

θ2
2θ

2
10

)2

.

Each value for (λ, µ, ν) gives isomorphic genus 2 curves. Hence, we can choose

λ =
θ2

1θ
2
3

θ2
2θ

2
4

, µ =
θ2

3θ
2
8

θ2
4θ

2
10

, ν =
θ2

1θ
2
8

θ2
2θ

2
10

.

This completes the proof.

One of the main goals of this paper is to describe each locus of genus 2 curves
with fixed automorphism group in terms of the fundamental theta constants. We
have the following



Corollary 2. Every genus two curve can be written in the form:

y2 = x (x− 1)

(
x− θ2

1θ
2
3

θ2
2θ

2
4

) (
x2 − θ2

2 θ
2
3 + θ2

1 θ
2
4

θ2
2 θ

2
4

· αx+
θ2

1θ
2
3

θ2
2θ

2
4

α2

)
,

where α =
θ28
θ210

and in terms of θ1, . . . , θ4 is given by

α2 +
θ4

1 + θ4
2 − θ4

3 − θ4
4

θ2
1θ

2
2 − θ2

3θ
2
4

α+ 1 = 0

Furthermore, if α = ±1 then V4 ↪→ Aut(C).

Remark 2. i) From the above we have that θ4
8 = θ4

10 implies that V4 ↪→ Aut(C).
ii) The last part of the lemma above shows that if θ4

8 = θ4
10 then all coefficients

of the genus 2 curve are given as rational functions of the 4 fundamental theta
functions. Such fundamental theta functions determine the field of moduli of the
given curve. Hence, the curve is defined over its field of moduli.

Corollary 3. Let C be a genus 2 curve which has an elliptic involution. Then C is
defined over its field of moduli.

This was the main result of [13].

4.3. Describing the locus of genus two curves with fixed automorphism group by
theta constants

The locus L2 of genus 2 curves C which have an elliptic involution is a closed
subvariety ofM2. Let W = {α1, α2, β1, β2, γ1, γ2} be the set of roots of the binary
sextic and A and B be subsets of W such that W = A ∪B and |A ∩B| = 2. We
define the cross ratio of the two pairs z1, z2; z3, z4 by

(z1, z2; z3, z4) =
z1; z3, z4

z2; z3, z4
=
z1 − z3

z1 − z4
:
z2 − z3

z2 − z4
.

Take A = {α1, α2, β1, β2} and B = {γ1, γ2, β1, β2}. Jacobi [45] gives a description
of L2 in terms of the cross ratios of the elements of W.

α1 − β1

α1 − β2
:
α2 − β1

α2 − β2
=
γ1 − β1

γ1 − β2
:
γ2 − β1

γ2 − β2

We recall that the following identities hold for cross ratios:

(α1, α2 ;β1, β2) = (α2, α1;β2, β1) = (β1, β2;α1, α2) = (β2, β1;α2, α1)

and

(α1, α2;∞, β2) = (∞, β2;α1, α2) = (β2;α2, α1)

Next we want to use this result to determine relations among theta functions for
a genus 2 curve in the locus L2. Let C be any genus 2 curve given by equation



Y 2 = X(X − 1)(X − a1)(X − a2)(X − a3)

We take ∞ ∈ A ∩ B. Then there are five cases for α ∈ A ∩ B, where α is an
element of the set{0, 1, a1, a2, a3}. For each of these cases there are three possible
relationships for cross ratios as described below:
i) A ∩B = {0,∞}: The possible cross ratios are

(a1, 1;∞, 0) = (a3, a2;∞, 0)

(a2, 1;∞, 0) = (a1, a3;∞, 0)

(a1, 1;∞, 0) = (a2, a3;∞, 0)

ii) A ∩B = {1,∞}: The possible cross ratios are

(a1, 0;∞, 1) = (a2, a3;∞, 1)

(a1, 0;∞, 1) = (a3, a2;∞, 1)

(a2, 0;∞, 1) = (a1, a3;∞, 1)

iii) A ∩B = {a1,∞}: The possible cross ratios are

(1, 0;∞, a1) = (a3, a2;∞, a1)

(a2, 0;∞, a1) = (1, a3;∞, a1)

(1, 0;∞, a1) = (a2, a3;∞, a1)

iv) A ∩B = {a2,∞}: The possible cross ratios are

(1, 0;∞, a2) = (a1, a3;∞, a2)

(1, 0;∞, a2) = (a3, a1;∞, a2)

(a1, 0;∞, a2) = (1, a3;∞, a2)

v) A ∩B = {a3,∞}: The possible cross ratios are

(a1, 0;∞, a3) = (1, a2;∞, a3)



(1, 0;∞, a3) = (a2, a1;∞, a3)

(1, 0;∞, a3) = (a1, a2;∞, a3)

We summarize these relationships in the following table:

Cross ratio f(a1, a2, a3) = 0 theta constants

1 (1, 0;∞, a1) = (a3, a2;∞, a1) a1a2 + a1 − a3a1 − a2 −θ21θ23θ28θ22 − θ21θ22θ24θ210+

θ41θ
2
3θ

2
10 + θ23θ

4
2θ

2
10

2 (a2, 0;∞, a1) = (1, a3;∞, a1) a1a2 − a1 + a3a1 − a3a2 θ23θ
2
8θ

2
2θ

2
4 − θ22θ44θ210+

θ21θ
2
3θ

2
4θ

2
10 − θ43θ22θ210

3 (1, 0;∞, a1) = (a2, a3;∞, a1) a1a2 − a1 − a3a1 + a3 −θ48θ23θ22 + θ28θ
2
2θ

2
10θ

2
4+

θ21θ
2
3θ

2
8θ

2
10 − θ23θ22θ410

4 (1, 0;∞, a2) = (a1, a3;∞, a2) a1a2 − a2 − a3a2 + a3 −θ21θ48θ24 − θ21θ410θ24+

θ28θ
2
2θ

2
10θ

2
4 + θ21θ

2
3θ

2
8θ

2
10

5 (1, 0;∞, a2) = (a3, a1;∞, a2) a1a2 − a1 + a2 − a3a2 −θ21θ28θ23θ24 + θ21θ
2
10θ

4
4+

θ21θ
4
3θ

2
10 − θ23θ22θ210θ24

6 (a1, 0;∞, a2) = (1, a3;∞, a2) a1a2 − a3a1 − a2 + a3a2 −θ21θ28θ22θ24 + θ41θ
2
10θ

2
4−

θ21θ
2
3θ

2
2θ

2
10 + θ42θ

2
4θ

2
10

7 (a1, 0;∞, a3) = (1, a2;∞, a3) a1a2 − a3a1 − a3a2 + a3 −θ48θ22θ24 + θ21θ
2
8θ

2
10θ

2
4−

θ22θ
4
10θ

2
4 + θ23θ

2
8θ

2
2θ

2
10

8 (1, 0;∞, a3) = (a2, a1;∞, a3) a3a1 − a1 − a3a2 + a3 θ48 − θ410

9 (1, 0;∞, a3) = (a1, a2;∞, a3) a3a1 + a2 − a3 − a3a2 θ41θ
2
8θ

2
4 − θ21θ22θ24θ210−

θ21θ
2
3θ

2
8θ

2
2 + θ28θ

4
2θ

2
4

10 (a1, 0;∞, 1) = (a2, a3;∞, 1) −a1 + a3a1 + a2 − a3 θ41θ
2
3θ

2
8 − θ21θ28θ22θ24−

θ21θ
2
3θ

2
2θ

2
10 + θ23θ

2
8θ

4
2

11 (a1, 0;∞, 1) = (a3, a2;∞, 1) a1a2 − a1 − a2 + a3 θ21θ
4
8θ

2
3 − θ21θ28θ210θ24+

θ21θ
2
3θ

4
10 − θ23θ28θ22θ210

12 (a2, 0;∞, 1) = (a1, a3;∞, 1) a1 − a2 + a3a2 − a3 θ21θ
2
8θ

4
4 − θ21θ23θ24θ210+

θ21θ
4
3θ

2
8 − θ23θ28θ22θ24

13 (a1, 1;∞, 0) = (a3, a2;∞, 0) a1a2 − a3 θ48 − θ410

14 (a2, 1;∞, 0) = (a1, a3;∞, 0) a1 − a3a2 θ43 − θ44

15 (a1, 1;∞, 0) = (a2, a3;∞, 0) a3a1 − a2 θ41 − θ42

Table 1. Relation of theta functions and cross ratios



Lemma 8. Let C be a genus 2 curve. Then Aut(C)∼=V4 if and only if the theta
functions of C satisfy

(θ41 − θ42)(θ43 − θ44)(θ48 − θ410)(−θ21θ23θ28θ22 − θ21θ22θ24θ210 + θ41θ
2
3θ

2
10 + θ23θ

4
2θ

2
10)

(θ23θ
2
8θ

2
2θ

2
4 − θ22θ44θ210 + θ21θ

2
3θ

2
4θ

2
10 − θ43θ22θ210)(−θ48θ23θ22 + θ28θ

2
2θ

2
10θ

2
4 + θ21θ

2
3θ

2
8θ

2
10 − θ23θ22θ410)

(−θ21θ48θ24 − θ21θ410θ24 + θ28θ
2
2θ

2
10θ

2
4 + θ21θ

2
3θ

2
8θ

2
10)(−θ21θ28θ23θ24 + θ21θ

2
10θ

4
4 + θ21θ

4
3θ

2
10 − θ23θ22θ210θ24)

(−θ21θ28θ22θ24 + θ41θ
2
10θ

2
4 − θ21θ23θ22θ210 + θ42θ

2
4θ

2
10)(−θ48θ22θ24 + θ21θ

2
8θ

2
10θ

2
4 − θ22θ410θ24 + θ23θ

2
8θ

2
2θ

2
10)

(θ41θ
2
8θ

2
4 − θ21θ22θ24θ210 − θ21θ23θ28θ22 + θ28θ

4
2θ

2
4)(θ41θ

2
3θ

2
8 − θ21θ28θ22θ24 − θ21θ23θ22θ210 + θ23θ

2
8θ

4
2)

(θ21θ
4
8θ

2
3 − θ21θ28θ210θ24 + θ21θ

2
3θ

4
10 − θ23θ28θ22θ210)(θ21θ

2
8θ

4
4 − θ21θ23θ24θ210 + θ21θ

4
3θ

2
8 − θ23θ28θ22θ24) = 0

(23)

However, we are unable to get a similar result for cases D8 or D12 by this ar-
gument. Instead, we will use the invariants of genus 2 curves and a more com-
putational approach. In the process, we will offer a different proof of the lemma
above.

Our goal is to express each loci in terms of the theta characteristics. We
obtain the following result.

Theorem 3. Let C be a genus 2 curve. Then the following hold:
i) Aut(C)∼=V4 if and only if the relations of theta functions given Eq. (23)

holds.
ii) Aut(C)∼=D8 if and only if Eq. (1) in [65] is satisfied.
iii) Aut(C)∼=D12 if and only if Eq. (2) in [65] is satisfied.

Proof. Part i) of the theorem is Lemma 2. Here we give a somewhat different
proof. Assume that C is a genus 2 curve with equation

Y 2 = X(X − 1)(X − a1)(X − a2)(X − a3)

whose classical invariants satisfy Eq. (7). Expressing the classical invariants of
C in terms of a1, a2, a3, substituting them into (7), and factoring the resulting
equation yields

(a1a2 − a2 − a3a2 + a3)
2(a1a2 − a1 + a3a1 − a3a2)2(a1a2 − a3a1 − a3a2 + a3)

2

(a3a1 − a1 − a3a2 + a3)
2(a1a2 + a1 − a3a1 − a2)2(a1a2 − a1 − a3a1 + a3)

2

(a3a1 + a2 − a3 − a3a2)2(−a1 + a3a1 + a2 − a3)2(a1a2 − a1 − a2 + a3)
2

(a1a2 − a1 + a2 − a3a2)2(a1 − a2 + a3a2 − a3)2(a1a2 − a3a1 − a2 + a3a2)
2

(a1a2 − a3)2(a1 − a3a2)2(a3a1 − a2)2 =0

(24)

It is no surprise that we get the 15 factors of Table 1. The relations of theta
constants follow from the table. ii) Let C be a genus 2 curve which has an elliptic
involution. Then C is isomorphic to a curve with equation

Y 2 = X(X − 1)(X − a1)(X − a2)(X − a1a2).

If Aut(C)∼=D8 then the SL2(k)-invariants of such curve must satisfy the equation
of the D8 locus. Then, we get the equation in terms of a1, a2. By writing the



relation a3 = a1a2 in terms of theta constants, we get θ4
4 = θ4

3. All the results

above lead to part ii) of the theorem. iii) The proof of this part is similar to part

ii).

We would like to express the conditions of the previous lemma in terms of

the fundamental theta constants only.

Lemma 9. Let C be a genus 2 curve. Then we have the following:

i) V4 ↪→ Aut(C) if and only if the fundamental theta constants of C satisfy(
θ43 − θ44

) (
θ41 − θ43

) (
θ42 − θ44

) (
θ41 − θ44

) (
θ43 − θ42

) (
θ41 − θ42

)
(
−θ24 + θ23 + θ21 − θ22

) (
θ24 − θ23 + θ21 − θ22

) (
−θ24 − θ23 + θ22 + θ21

) (
θ24 + θ23 + θ22 + θ21

)
(
θ1

4θ2
4 + θ3

4θ2
4 + θ1

4θ3
4 − 2 θ21θ

2
2θ

2
3θ

2
4

) (
−θ34θ24 − θ24θ44 − θ34θ44 + 2 θ21θ

2
2θ

2
3θ

2
4

)
(
θ2

4θ4
4 + θ1

4θ2
4 + θ1

4θ4
4 − 2 θ21θ

2
2θ

2
3θ

2
4

) (
θ1

4θ4
4 + θ3

4θ4
4 + θ1

4θ3
4 − 2 θ21θ

2
2θ

2
3θ

2
4

)
=0

(25)

ii D8 ↪→ Aut(C) if and only if the fundamental theta constants of C satisfy Eq. (3)

in [65]

iii D6 ↪→ Aut(C) if and only if the fundamental theta constants of C satisfy Eq. (4)

in [65]

Proof. Notice that Eq. (23) contains only θ1, θ2, θ3, θ4, θ8 and θ10. Using Eq. (5),

we can eliminate θ8 and θ10 from Eq. (23). The J10 invariant of any genus two

curve is given by the following in terms of theta constants:

J10 =
θ12

1 θ12
3

θ28
2 θ28

4 θ40
10

(θ2
1θ

2
2 − θ2

3θ
2
4)12(θ2

1θ
2
4 − θ2

2θ
2
3)12(θ2

1θ
2
3 − θ2

2θ
2
4)12.

Since J10 6= 0 we can cancel the factors (θ2
1θ

2
2 − θ2

3θ
2
4), (θ2

1θ
2
4 − θ2

2θ
2
3) and (θ2

1θ
2
3 −

θ2
2θ

2
4) from the equation of V4 locus. The result follows from Theorem 3. The proof

of part ii) and iii) is similar and we avoid details.

Remark 3. i) For the other two loci, we can also obtain equations in terms of

the fundamental theta constants. However, such equations are big and we don’t

display them here.

ii) By using Frobenius’s relations we get

J10 =
(θ1θ3)

12

(θ2θ4)
28
θ16

10

(θ5θ6θ7θ8θ9)
24

Hence, θi 6= 0 for i = 1, 3, 5, . . . 9.



4.4. Kummer surface

The Kummer surface is an algebraic variety which is quite useful in studying
genus two curves. Using the Kummer surface we can take the Jacobian as a double
cover of the Kummer surface. Both the Kummer surface and the Jacobian, as
noted above, can be given in terms of the theta functions and theta-nulls.

The Kummer surface is a variety obtained by grouping together two opposite
points of the Jacobian of a genus 2 curve. More precisely, there is a map

Ψ : Jac (C)→ K(C)

such that each point of K has two preimages which are opposite elements of
Jac C. There are 16 exceptions that correspond to the 16 two-torsion points.
The Kummer surface does not naturally come with a group structure. However
the group law on the Jacobian endows a pseudo-group structure on the Kummer
surface that is sufficient to define scalar multiplication.

Let Ω be a matrix in H2. The Kummer surface associate to Ω is the locus of
the images by the map ϕ from C2 to P3(C) given in terms of the theta functions.
It is a projective variety of dimension 2 that we will denote by K(Ω) or simply
K. The group law on the Jacobian does not carry to a group law on K.

We shall consider a Kummer surface K = Ka,b,c,d parameterized by theta
constants θ1, θ2, θ3, θ4.

We write (x, y, z, t) the projective coordinate of points on K, that is:

x = λθ1(z), y = λθ2(z), z = λθ3(z), t = λθ4(z)

for some z ∈ C2, and some λ ∈ C∗. Then, the Kummer surface is given by the
equation:

(x4 +y4 +z4 + t4)+Axyzt−B(x2t2 +y2z2)−C(x2z2 +y2t2)−D(x2y2 +z2t2) = 0
(26)

where

A =
1

128

θ1θ2θ3θ4

(θ2
1θ

2
4 − θ2

3θ
2
2) (θ2

1θ
2
3 − θ2

4θ
2
2) (θ2

1θ
2
2 − θ2

4θ
2
3)

(
θ1

2 + θ2
2 + θ3

2 + θ4
2
)

(
θ1

2 + θ2
2 − θ3

2 − θ4
2
) (
θ1

2 − θ2
2 + θ3

2 − θ4
2
) (
θ1

2 − θ2
2 − θ3

2 + θ4
2
)

B =
θ1

4 − θ2
4 + θ4

4

(θ2
1θ

2
4 − θ2

3θ
2
2)

C =
θ1

4 − θ2
4 + θ3

4 − θ4
4

(θ2
1θ

2
3 − θ2

4θ
2
2)

D =
θ1

4 + θ2
4 − θ3

4 − θ4
4

(θ2
1θ

2
2 − θ2

4θ
2
3)

Such equation can be easily obtained by sipmle computations using main
definitions of the Kummer surface in the book of cassels and Flyyn [25] or work
of Gaudry [27].



5. Decomposable Jacobians

Let C be a genus 2 curve defined over an algebraically closed field k, of charac-
teristic zero. Let ψ : C → E be a degree n maximal covering (i.e. does not factor
through an isogeny) to an elliptic curve E defined over k. We say that C has a
degree n elliptic subcover. Degree n elliptic subcovers occur in pairs. Let (E,E′)
be such a pair. It is well known that there is an isogeny of degree n2 between
the Jacobian JC of C and the product E × E′. We say that C has (n,n)-split
Jacobian.

Curves of genus 2 with elliptic subcovers go back to Legendre and Jacobi.
Legendre, in his Théorie des fonctions elliptiques, gave the first example of a
genus 2 curve with degree 2 elliptic subcovers. In a review of Legendre’s work,
Jacobi (1832) gives a complete description for n = 2. The case n = 3 was studied
during the 19th century from Hermite, Goursat, Burkhardt, Brioschi, and Bolza.
For a history and background of the 19th century work see Krazer [43, pg. 479].
Cases when n > 3 are more difficult to handle. Recently, Shaska dealt with cases
n = 5, 7 in [49].

The locus of C, denoted by Ln, is an algebraic subvariety of the moduli
space M2. The space L2 was studied in Shaska/Völklein [66]. The space Ln for
n = 3, 5 was studied by Shaska in [63,49] were an algebraic description was given
as sublocus of M2.

5.1. Curves of genus 2 with split Jacobians

Let C and E be curves of genus 2 and 1, respectively. Both are smooth, projective
curves defined over k, char(k) = 0. Let ψ : C −→ E be a covering of degree
n. From the Riemann-Hurwitz formula,

∑
P∈C (eψ (P ) − 1) = 2 where eψ(P )

is the ramification index of points P ∈ C, under ψ. Thus, we have two points
of ramification index 2 or one point of ramification index 3. The two points of
ramification index 2 can be in the same fiber or in different fibers. Therefore, we
have the following cases of the covering ψ:

Case I: There are P1, P2 ∈ C, such that eψ(P1) = eψ(P2) = 2, ψ(P1) 6= ψ(P2),
and ∀P ∈ C \ {P1, P2}, eψ(P ) = 1.

Case II: There are P1, P2 ∈ C, such that eψ(P1) = eψ(P2) = 2, ψ(P1) =
ψ(P2), and ∀P ∈ C \ {P1, P2}, eψ(P ) = 1.

Case III: There is P1 ∈ C such that eψ(P1) = 3, and ∀P ∈ C \ {P1},
eψ(P ) = 1.

In case I (resp. II, III) the cover ψ has 2 (resp. 1) branch points in E.
Denote the hyperelliptic involution of C by w. We choose O in E such that w

restricted to E is the hyperelliptic involution on E. We denote the restriction of
w on E by v, v(P ) = −P . Thus, ψ ◦w = v ◦ψ. E[2] denotes the group of 2-torsion
points of the elliptic curve E, which are the points fixed by v. The proof of the
following two lemmas is straightforward and will be omitted.

Lemma 10. a) If Q ∈ E, then ∀P ∈ ψ−1(Q), w(P ) ∈ ψ−1(−Q).
b) For all P ∈ C, eψ(P ) = eψ (w(P )).



Let W be the set of points in C fixed by w. Every curve of genus 2 is given, up
to isomorphism, by a binary sextic, so there are 6 points fixed by the hyperelliptic
involution w, namely the Weierstrass points of C. The following lemma determines
the distribution of the Weierstrass points in fibers of 2-torsion points.

Lemma 11. The following hold:

1. ψ(W ) ⊂ E[2]
2. If n is an odd number then

i) ψ(W ) = E[2]
ii) If Q ∈ E[2] then #(ψ−1(Q) ∩W ) = 1 mod (2)

3. If n is an even number then for all Q ∈ E[2], #(ψ−1(Q)∩W ) = 0 mod (2)

Let πC : C −→ P1 and πE : E −→ P1 be the natural degree 2 projections.
The hyperelliptic involution permutes the points in the fibers of πC and πE .
The ramified points of πC , πE are respectively points in W and E[2] and their
ramification index is 2. There is φ : P1 −→ P1 such that the diagram commutes.

C
πC−→ P1

ψ ↓ ↓ φ
E

πE−→ P1

(27)

Next, we will determine the ramification of induced coverings φ : P1 −→ P1. First
we fix some notation. For a given branch point we will denote the ramification
of points in its fiber as follows. Any point P of ramification index m is denoted
by (m). If there are k such points then we write (m)k. We omit writing sym-
bols for unramified points, in other words (1)k will not be written. Ramification
data between two branch points will be separated by commas. We denote by
πE(E[2]) = {q1, . . . , q4} and πC(W ) = {w1, . . . , w6}.

5.2. Maximal coverings ψ : C −→ E.

Let ψ1 : C −→ E1 be a covering of degree n from a curve of genus 2 to an elliptic
curve. The covering ψ1 : C −→ E1 is called a maximal covering if it does not
factor through a nontrivial isogeny. A map of algebraic curves f : X → Y induces
maps between their Jacobians f∗ : JY → JX and f∗ : JX → JY . When f is
maximal then f∗ is injective and ker(f∗) is connected, see [61] for details.

Let ψ1 : C −→ E1 be a covering as above which is maximal. Then ψ∗1 :
E1 → JC is injective and the kernel of ψ1,∗ : JC → E1 is an elliptic curve which
we denote by E2. For a fixed Weierstrass point P ∈ C, we can embed C to its
Jacobian via

iP : C −→ JC

x→ [(x)− (P )]
(28)

Let g : E2 → JC be the natural embedding of E2 in JC , then there exists g∗ :
JC → E2. Define ψ2 = g∗ ◦ iP : C → E2. So we have the following exact sequence

0→ E2
g−→ JC

ψ1,∗−→ E1 → 0



The dual sequence is also exact

0→ E1
ψ∗1−→ JC

g∗−→ E2 → 0

If deg(ψ1) is an odd number then the maximal covering ψ2 : C → E2 is unique.

If the cover ψ1 : C −→ E1 is given, and therefore φ1, we want to determine ψ2 :

C −→ E2 and φ2. The study of the relation between the ramification structures

of φ1 and φ2 provides information in this direction. The following lemma (see

answers this question for the set of Weierstrass points W = {P1, . . . , P6} of C

when the degree of the cover is odd.

Lemma 12. Let ψ1 : C −→ E1, be maximal of degree n. Then, the map ψ2 : C →
E2 is a maximal covering of degree n. Moreover,

i) if n is odd and Oi ∈ Ei[2], i = 1, 2 are the places such that #(ψ−1
i (Oi) ∩

W ) = 3, then ψ−1
1 (O1) ∩W and ψ−1

2 (O2) ∩W form a disjoint union of

W .

ii) if n is even and Q ∈ E[2], then #
(
ψ−1(Q)

)
= 0 or 2.

The above lemma says that if ψ is maximal of even degree then the corre-

sponding induced covering can have only type I ramification.

5.3. The locus of genus two curves with (n, n) split Jacobians

Two covers f : X → P1 and f ′ : X ′ → P1 are called weakly equivalent if there

is a homeomorphism h : X → X ′ and an analytic automorphism g of P1 (i.e., a

Moebius transformation) such that g ◦ f = f ′ ◦ h. The covers f and f ′ are called

equivalent if the above holds with g = 1.

Consider a cover f : X → P1 of degree n, with branch points p1, ..., pr ∈ P1.

Pick p ∈ P1 \ {p1, ..., pr}, and choose loops γi around pi such that γ1, ..., γr is a

standard generating system of the fundamental group Γ := π1(P1 \{p1, ..., pr}, p),
in particular, we have γ1 · · · γr = 1. Such a system γ1, ..., γr is called a homotopy

basis of P1 \ {p1, ..., pr}. The group Γ acts on the fiber f−1(p) by path lifting,

inducing a transitive subgroup G of the symmetric group Sn (determined by f

up to conjugacy in Sn). It is called the monodromy group of f . The images of

γ1, ..., γr in Sn form a tuple of permutations σ = (σ1, ..., σr) called a tuple of

branch cycles of f .

We say a cover f : X → P1 of degree n is of type σ if it has σ as tuple of

branch cycles relative to some homotopy basis of P1 minus the branch points of

f . Let Hσ be the set of weak equivalence classes of covers of type σ. The Hurwitz

space Hσ carries a natural structure of an quasiprojective variety.

We have Hσ = Hτ if and only if the tuples σ, τ are in the same braid orbit

Oτ = Oσ. In the case of the covers φ : P1 → P1 from above, the corresponding

braid orbit consists of all tuples in Sn whose cycle type matches the ramification

structure of φ.



5.3.1. Humbert surfaces

Let A2 denote the moduli space of principally polarized Abelian surfaces. It is
well known that A2 is the quotient of the Siegel upper half space H2 of symmetric
complex 2× 2 matrices with positive definite imaginary part by the action of the
symplectic group Sp4(Z).

Let ∆ be a fixed positive integer and N∆ be the set of matrices

τ =

(
z1 z2

z2 z3

)
∈ H2

such that there exist nonzero integers a, b, c, d, e with the following properties:

az1 + bz2 + cz3 + d(z2
2 − z1z3) + e = 0

∆ = b2 − 4ac− 4de
(29)

The Humbert surface H∆ of discriminant ∆ is called the image of N∆ under
the canonical map

H2 → A2 := Sp4(Z) \H2,

see [36,10,53] for details. It is known that H∆ 6= ∅ if and only if ∆ > 0 and ∆ ≡
0 or 1 mod 4. Humbert (1900) studied the zero loci in Eq. (29) and discovered
certain relations between points in these spaces and certain plane configurations
of six lines; see [36] for more details.

For a genus 2 curve C defined over C, [C] belongs to Ln if and only if the
isomorphism class [JC ] ∈ A2 of its (principally polarized) Jacobian JC belongs to
the Humbert surface Hn2 , viewed as a subset of the moduli space A2 of princi-
pally polarized Abelian surfaces; see [53, Theorem 1, p. 125] for the proof of this
statement. In [53] is shown that there is a one to one correspondence between the
points in Ln and points in Hn2 . Thus, we have the map:

Hσ −→ Ln −→ Hn2

([f ], (p1, . . . , pr)→ [C]→ [JC ]
(30)

In particular, every point in Hn2 can be represented by an element of H2 of the
form

τ =

(
z1

1
n

1
n z2

)
, z1, z2 ∈ H.

There have been many attempts to explicitly describe these Humbert surfaces.
For some small discriminant this has been done in [66], [63], [49]. Geometric
characterizations of such spaces for ∆ = 4, 8, 9, and 12 were given by Humbert
(1900) in [36] and for ∆ = 13, 16, 17, 20, 21 by Birkenhake/Wilhelm.



5.4. Genus 2 curves with degree 3 elliptic subcovers

This case was studied in detail in[63]. The main theorem was:

Theorem 4. Let K be a genus 2 field and e3(K) the number of Aut(K/k)-classes
of elliptic subfields of K of degree 3. Then;

i) e3(K) = 0, 1, 2, or 4
ii) e3(K) ≥ 1 if and only if the classical invariants of K satisfy the irreducible

equation F (J2, J4, J6, J10) = 0 displayed in [63, Appendix A].

There are exactly two genus 2 curves (up to isomorphism) with e3(K) = 4.
The case e3(K) = 1 (resp., 2) occurs for a 1-dimensional (resp., 2-dimensional)
family of genus 2 curves, see [63].

Figure 3. Shaska’s surface as graphed in [4]

A geometrical interpretation of the Shaska’s surface (the space L3) and its
singular locus can be found in [4].

Lemma 13. Let K be a genus 2 field and E an elliptic subfield of degree 3.
i) Then K = k(X,Y ) such that

Y 2 = (4X3 + b2X2 + 2bX + 1)(X3 + aX2 + bX + 1) (31)

for a, b ∈ k such that

(4a3 + 27− 18ab− a2b2 + 4b3)(b3 − 27) 6= 0 (32)



The roots of the first (resp. second) cubic correspond to W (1)(K,E), (resp.
W (2)(K,E)) in the coordinates X,Y , (see Theorem 3).

ii) E = k(U, V ) where

U =
X2

X3 + aX2 + bX + 1

and

V 2 = U3 + 2
ab2 − 6a2 + 9b

R
U2 +

12a− b2

R
U − 4

R
(33)

where R = 4a3 + 27− 18ab− a2b2 + 4b3 6= 0.
iii) Define

u := ab, v := b3

Let K ′ be a genus 2 field and E′ ⊂ K ′ a degree 3 elliptic subfield. Let a′, b′ be
the associated parameters as above and u′ := a′b′, v = (b′)3. Then, there is a
k-isomorphism K → K ′ mapping E → E′ if and only if exists a third root of
unity ξ ∈ k with a′ = ξa and b′ = ξ2b. If b 6= 0 then such ξ exists if and only if
v = v′ and u = u′.

iv) The classical invariants of K satisfy equation [63, Appendix A].

Let

F (X) := X3 + aX2 + bX + 1

G(X) := 4X3 + b2X2 + 2bX + 1
(34)

Denote by R = 4a3 + 27− 18ab− a2b2 + 4b3 the resultant of F and G. Then
we have the following lemma.

Lemma 14. Let a, b ∈ k satisfy equation (32). Then equation (31) defines a genus
2 field K = k(X,Y ). It has elliptic subfields of degree 3, Ei = k(Ui, Vi), i = 1, 2,
where Ui, and Vi are as follows:

U1 =
X2

F (X)
, V1 = Y

X3 − bX − 2

F (X)2

U2 =



(X − s)2(X − t)
G(X)

if b(b3 − 4ba+ 9) 6= 0

(3X − a)
3(4X3 + 1)

if b = 0

(bX + 3)2

b2G(X)
if (b3 − 4ba+ 9) = 0

(35)

where



s = −3

b
, t =

3a− b2

b3 − 4ab+ 9

V2 =



√
27− b3Y
G(X)2

((4ab− 8− b3)X3 − (b2 − 4ab)X2 + bX + 1) if b(b3 − 4ba+ 9) 6= 0

Y
8X3 − 4aX2 − 1

(4X3 + 1)2
if b = 0

8

b

√
b

Y

G(X)
(bX3 + 9X2 + b2X + b) if (b3 − 4ba+ 9) = 0

(36)

5.5. Elliptic subcovers

We express the j-invariants ji of the elliptic subfields Ei of K, from Lemma 14,
in terms of u and v as follows:

j1 = 16v
(vu2 + 216u2 − 126vu− 972u+ 12v2 + 405v)3

(v − 27)3(4v2 + 27v + 4u3 − 18vu− vu2)2

j2 = −256 (u2 − 3v)3

v(4v2 + 27v + 4u3 − 18vu− vu2)

(37)

where v 6= 0, 27.

Remark 5. The automorphism ν ∈ Galk(u,v)/k(r1,r2) permutes the elliptic sub-
fields. One can easily check that:

ν(j1) = j2, ν(j2) = j1

Lemma 15. The j-invariants of the elliptic subfields satisfy the following quadratic
equations over k(r1, r2);

j2 − T j +N = 0, (38)

where T,N are given in [63].

5.5.1. Isomorphic Elliptic Subfields

Suppose that E1
∼=E2. Then, j1 = j2 implies that

8v3 + 27v2 − 54uv2 − u2v2 + 108u2v + 4u3v − 108u3 = 0 (39)

or

324v4u2 − 5832v4u+ 37908v4 − 314928v3u− 81v3u4 + 255879v3 + 30618v3u2

− 864v3u3 − 6377292uv2 + 8503056v2 − 324u5v2 + 2125764u2v2 − 215784u3v2

+ 14580u4v2 + 16u6v2 + 78732u3v + 8748u5v − 864u6v − 157464u4v + 11664u6 = 0

(40)



The former equation is the condition that det(Jac(θ)) = 0. The expressions
of i1, i2, i3 we can express u as a rational function in i1, i2, and v. This is displayed
in [63, Appendix B]. Also, [k(v) : k(i1)] = 8 and [k(v) : k(i2)] = 12. Eliminating
v we get a curve in i1 and i2 which has degree 8 and 12 respectively. Thus,
k(u, v) = k(i1, i2). Hence, e3(K) = 1 for any K such that the associated u and v
satisfy the equation; see [63] for details.

5.5.2. The Degenerate Case

We assume now that one of the extensions K/Ei from Lemma 14 is degenerate,
i.e. has only one branch point. The following lemma determines a relation between
j1 and j2.

Lemma 16. Suppose that K/E2 has only one branch point. Then,

729j1j2 − (j2 − 432)3 = 0

For details of the proof see Shaska [63]. Making the substitution T = −27j1
we get

j1 = F2(T ) =
(T + 16)3

T

where F2(T ) is the Fricke polynomial of level 2.
If both K/E1 and K/E2 are degenerate then{

729j1j2 − (j1 − 432)3 = 0

729j1j2 − (j2 − 432)3 = 0
(41)

There are 7 solutions to the above system. Three of which give isomorphic elliptic
curves

j1 = j2 = 1728, j1 = j2 =
1

2
(297± 81

√
−15)

The other 4 solutions are given by:{
729j1j2 − (j1 − 432)3 = 0

j2
1 + j2

2 − 1296(j1 + j2) + j1j2 + 559872 = 0
(42)

5.6. Further remarks

If e3(C) ≥ 1 then the automorphism group of C is one of the following: Z2, V4,
D4, or D6. Moreover; there are exactly 6 curves C ∈ L3 with automorphism group
D4 and six curves C ∈ L3 with automorphism group D6. They are listed in [62]
where rational points of such curves are found.

Genus 2 curves with degree 5 elliptic subcovers are studied in [49] where a
description of the space L5 is given and all its degenerate loci. The case of degree
7 is the first case when all possible degenerate loci occur.



We have organized the results of this paper in a Maple package which deter-
mines if a genus 2 curve has degree n = 2, 3 elliptic subcovers. Further, all its
elliptic subcovers are determined explicitly. We intend to implement the results
for n = 5 and the degenerate cases for n = 7.

6. Modular Polynomials for genus 2

The term modular polynomial refers to pollynomials which parametrize isogenies
of elliptic curves as for example those in equations (15), (14). Recentely there have
been efforts to define modular polynomials for higher genus, mostly by Lauter
and her collaborators as in [5]. This section is merely a quick recap of that paper
with some suggestions on how to compute some of these polynomials.

Let

Hg = {τ ∈Matg(C) | τT = τ, Im(τ) > 0}

be the Siegel upper half plane. We denote with J the matrix

J =

(
0 Ig
−Ig 0

)
.

The symplectic group

Sp(2g,Z) = {M ∈ GL(4,Z) | MJMT = J}

acts on Hg,

Sp(2g,Z)×Hg → Hg(a
c

b

d

)
× τ → (aτ + b)(cτ + d)−1

where a, b, c, d, τ are g × g matrices. From now on we take g = 2.
Let A/C be a 2-dimensional principally polarized Abelian variety, and let N ≥

1 be a positive integer. The N -torsion A[N ] of A is, non-canonically, isomorphic
to (Z/NZ)4. The polarization on A induces a symplectic form v on the rank 4
(Z/NZ)-module A[N ]. We choose a basis for A[N ] such that v is given by the
matrix ( 0

−I2
I2
0

)
,

and we let Sp(4,Z/NZ) be the subgroup of the matrix group GL(4,Z/NZ) that
respects v. A subspace G ⊂ A[N ] is called isotropic if v restricts to the zero-form
on G×G, and we say that A and A′ are (N,N)-isogenous if there is an isogeny
A→ A′ whose kernel is isotropic of order N2.

The full congruence subgroup Γ2(N) of level N is defined as the kernel of the
reduction map Sp(4,Z) → Sp(4,Z/NZ). Explicitly, a matrix

(
a
c
b
d

)
is contained



in Γ2(N) if and only if we have a, b ≡ I2 mod N and d, c ≡ 02 mod N . The
congruence subgroup Γ2(N) fits in an exact sequence

1 −→ Γ2(N) −→ Sp(4,Z) −→ Sp(4,Z/NZ) −→ 1.

The surjectivity is not completely trivial.
The 2-dimensional analogue of the subgroup Γ0(N) ⊂ SL2(Z) occurring in

the equality Y0(N) = Γ0(N)\Hg of Riemann surfaces is the group

Γ
(2)
0 (N) =

{(a
c

b

d

)
∈ Sp(4,Z) | c ≡ 02 mod N

}
.

From now on, we restrict to the case N = p prime. The following lemma gives the

link between the group Γ
(2)
0 (p) and isotropic subspaces of the p-torsion, see [5]

Lemma 17. The index [Sp(4,Z) : Γ
(2)
0 (p)] equals the number of 2-dimensional

isotropic subspaces of the Fp-vector space F4
p.

Let S(p) be the set of equivalence classes of pairs (A,G), with A a 2-
dimensional principally polarized Abelian variety and G ⊂ A[p] a 2-dimensional
isotropic subspace. Here, two pairs (A,G) and (A′, G′) are said to be isomorphic
if there exists an isomorphism of Abelian varieties ϕ : A→ A′ with ϕ(G) = G′.

Theorem 5. The quotient space Γ
(2)
0 (p)\H2 is in canonical bijection with the set

S(p) via

Γ
(2)
0 (p)τ 7→ (Aτ , 〈(

1

p
, 0, 0, 0), (0,

1

p
, 0, 0)〉)

where Aτ = C2/(Z2 + Z2τ) is the variety associated to τ .

As a quotient space, the 2-dimensional analogue of the curve Y0(p) is

Y
(2)
0 (p) := Γ

(2)
0 (p)\H2.

Problem 1. Let g = 2. Determine Y
(2)
0 (N).

It is shown in [5] that Y
(2)
0 (p) has the structure of a quasi-projective va-

riety. Siegel defined a metric on H2 that respects the action of the symplectic

group. With this metric, Y
(2)
0 (p) becomes a topological space. Just as in the 1-

dimensional case Y0(p), it is not compact.
We have this Lemma from [5]

Lemma 18. i) Y
(2)
0 (N) is a quasi projective variety non compact of dimension 2.

ii) The Satake compactification

Y
(2)
0 (N)∗ = Y

(2)
0 (N) ∪ Y0(N) ∪ P1(Q)

is a projective variety.



For a fixed prime p we define three functions

Ii : H2 → P1(C)

τ → Ii(pτ).

In [5] it is claimed that

Lemma 19. If N = p is a prime then we have the following:

i) C(Y
(2)
0 (N)) = C(I1, I2, I3)

ii) [k(I1) : k] = p4−1
p−1 .

The N -th modular polynomial ΨN for i1 is defined as the minimal polyno-
mial of Ii over k. Let the corresponding polynomials of field extensions k(I1)/k,
k(I2)/k, k(I3)/k be ΨN ,ΩN ,ΛN , respectively. They are called modular polyno-
mials of genus 2 and level N .

Problem 2. Consider the following problems:
i) Compute explicitly k(I1, I2, I3)/k or C(I1, I2, I3).
ii) Compute ΨN ,ΩN ,ΛN , which are the polynomials Fj(i1, i2, i3, Ij) = 0 for

j = 1, 2, 3.

Let each of the polynomials above be given by some equation

AdI
d
1 + ...+A1I1 +A0 = 0, (43)

and As ∈ C(i1, i2, i3), s = 1, ..., d.

Lemma 20 (Broker, Lauter 2009). The coefficients As of the Eq. 43 are rational
functions in i1, i2, i3, so As = Ns

Ds
for s = 1, ..., d and Ns, Ds ∈ C[i1, i2, i3].

Let LN (i1, i2, i3) be the polynomial representing the Humbert space H2 or the
space LN . For N = p prime LN | Ds for all s = 1, ..., d.

6.1. Computation of modular polynomials

To compute polynomials ΨN ,ΩN ,ΛN the following algorithm is suggested in
Dupont’s thesis, see [20].

• Compute degDs,degNs over C(i1, i2, i3).
• Fix β, γ ∈ Q.
• Take some values α1, . . . , αr.
• For triples (αj , β, γ) find the genus 2 curve Cj using the Rational_Model

function of the genus 2 package described in Section 7.
• For the curve Cj find the corresponding τj .
• Then find the coefficients of I1, I2, I3 for the given τj .



In this process are needed explicit equations of LN . The method is not ef-
ficient, since computation of LN is quite difficult and much information is ’lost’
from the ideal.

Algorithm 1 Algorithm for computing the modular polynomials.

Require: The number p-prime.
Ensure: Modular polynomials Ψp, Ωp, Λp.

1: Pick a matrix τ ∈ H2 which depends on three parameters α1, α2, α3.
2: Find the genus 2 curve C corresponding to τ .
3: Compute i1, i2, i3 as functions of α1, α2, α3.
4: Compute pτ ∈ H2

5: Compute the genus 2 C ′ corresponding to pτ .
6: Find I1, I2, I3 for the curve C ′ as functions of α1, α2, α3.
7: Create a system with six equations

i1 − f1(α1, α2, α3) = 0

i2 − f2(α1, α2, α3) = 0

i3 − f3(α1, α2, α3) = 0

I1 − g1(pα1, pα2, pα3) = 0

I2 − g2(pα1, pα2, pα3) = 0

I3 − g3(pα1, pα2, pα3) = 0

where fj , gj , are rational functions for j = 1, 2, 3.
8: Since M2 has dimension 2 there are at most 3 parameters α1, α2, α3. Elimi-

nate α1, α2, α3 for the three first equations. The result are the modular poly-
nomials Ψp, Ωp,Λp.

Such algorithm requires some elimination theory or Groebner basis argument
to eliminate α1, α2, α3. For details see [18].

7. A computational package for genus two curves

Genus 2 curves are the most used of all hyperelliptic curves due to their application
in cryptography and also best understood. The moduli spaceM2 of genus 2 curves
is a 3-dimensional variety. To understand how to describe the moduli points of
this space we need to define the invariants of binary sextics. For details on such
invariants and on the genus 2 curves in general the reader can check [37], [65],
[44].

i1 := 144
J4

J2
2

, i2 := −1728
J2J4 − 3J6

J3
2

, i3 := 486
J10

J5
2

, (44)



for J2 6= 0. In the case J2 = 0 we define

α1 :=
J4 · J6

J10
, α2 :=

J6 · J10

J4
4

(45)

to determine genus two fields with J2 = 0, J4 6= 0, and J6 6= 0 up to isomorphism.
For a given genus 2 curve C the corresponding moduli point p = [C] is defined

as

p =



(i1, i2, i3) if J2 6= 0

(α1, α2) if J2 = 0, J4 6= 0, J6 6= 0

J5
6

J3
10

if J2 = 0, J4 = 0, J6 6= 0

J5
4

J2
10

if J2 = 0, J6 = 0, J4 6= 0

Notice that the definition of α1, α2 can be totally avoided if one uses absolute
invariants with J10 in the denominator. However, the degree of such invariants is
higher and therefore they are not effective computationally.

We have written a Maple package which finds most of the common proper-
ties and invariants of genus two curves. While this is still work in progress, we
will describe briefly some of the functions of this package. The functions in this
package are:

J_2, J_4, J_6, J_10, J_48, L_3_d, a_1, a_2, i_1, i_2, i_3,

theta_1, theta_2, theta_3, theta_4, AutGroup, CurvDeg3EllSub_J2,

CurveDeg3EllSub, Ell_Sub, LocusCurves,Aut_D4, LocusCurvesAut_D4_J2,

LocusCurvesAut_D6, LocusCurvesAut_V4, Rational_Model, Kummer.

Next, we will give some examples on how some of these functions work.

7.1. Automorphism groups

A list of groups that can occur as automorphism groups of hyperelliptic curves
is given in [65] among many other references. The function in the package that
computes the automorphism group is given by AutGroup(). The output is the
automorphism group. Since there is always confusion on the terminology when
describing certain groups we also display the GAP identity of the group from the
SmallGroupLibrary.

For a fixed group G one can compute the locus of genus g hyperelliptic curves
with automorphism group G. For genus 2 this loci is well described as subvarieties
of M2.

Example 1. Let y2 = f(x) be a genus 2 curve where f := x5 + 2x3 − x. Then the
function AutGroup(f,x) displays:

> AutGroup(f,x);



[D4, (8, 3)]

Example 2. Let y2 = f(x) be a genus 2 curve where f := x6 + 2x3 − x. Then the
function AutGroup(f,x) displays:

> AutGroup(f,x);

[V4, (4, 2)]

We also have implemented the functions: LocusCurvesAut_V_4(),
LocusCurvesAut_D_4(), LocusCurvesAut_D4_J2(), LocusCurvesAut_D_6(),

which gives equations for the locus of curves with automorphism group D4 or D6.

7.2. Genus 2 curves with split Jacobians

A genus 2 curve which has a degree n maximal map to an elliptic curve is said to
have (n, n)-split Jacobian; see [62] for details. Genus 2 curves with split Jacobian
are interesting in number theory, cryptography, and coding theory. We implement
an algorithm which checks if a curve has (3, 3), and (5, 5)-split Jacobian. The case
of (2, 2)-split Jacobian corresponds to genus 2 curves with extra involutions and
therefore can be determined by the function LocusCurvesAut_V_4().

The function which determines if a genus 2 curve has (3, 3)-split Jacobian is
CurvDeg3EllSub() if the curve has J2 6= 0 and CurvDeg3EllSub_J_2 () other-
wise; see [8]. The input of CurvDeg3EllSub() is the triple (i1, i2, i3) or the pair
(α1, α2) for CurvDeg3EllSub_J_2 (). If the output is 0, in both cases, this means
that the corresponding curve to this moduli point has (3, 3)-split Jacobian. Below
we illustrate with examples in each case.

Example 3. Let y2 = f(x) be a genus 2 curve where f := 4x6 + 9x5 + 8x4 +
10x3 + 5x2 + 3x+ 1. Then,

> i_1:=i_1(f,x); i_2:=i_2(f,x); i_3:=i_3(f,x);

i1 :=
78741

100
, i2 :=

53510733

2000
, i3 :=

38435553

51200000

> CurvDeg3EllSub(i1, i2, i3);

0

This means that the above curve has a (3, 3)-split Jacobian.

Example 4. Let y2 = f(x) be a genus 2 curve where f := 4x6 + (52
√

6−119)x5 +
(39
√

6− 24)x4 + (26
√

6− 54)x3 + (13
√

6− 27)x2 + 3x+ 1. Then,

> a_1:=a_1(f,x); a_2:=a_2(f,x);

a1 :=
1316599234443

270840023

√
6 +

6310855638567

541680046
,

a2 :=
−96672521239976

1183208072032328121

√
6 +

1467373119039023

7099248432193968726



> CurvDeg3EllSub_J_2(a1, a2)

0

This means that the curve has J2 = 0 and (3, 3)-split Jacobian.

7.3. Rational model of genus 2 curve

For details on the rational model over its field of moduli see [61]. The ra-
tional model of C (if such model exists) is determined by the function
Rational_Model().

Example 5. Let y2 = f(x) be a genus 2 curve where f := x5 +
√

2x3 + x. Then,

> Rational_Model(f,x);

x5 + x3 +
1

2
x

Example 6. Let y2 = f(x) be a genus 2 curve where f := 5x6 + x4 +
√

2x + 1.
Then,

> Rational_Model(f,x);

− 365544026018739971082698131028050365165449396926201478x
6

− 606501618836700589954579317910699990585971018672445125x
5

− 369842283192872727990502041940062429271727924754392250x
4

− 32387676975314893414920003149434215247663074288356250x
3

+ 74168490079198328987047652288420271784298171220937500x
2

+ 38274648493772601723357350829541971828965732551171875x

+ 6501732463119213927460859571034949543087123367187500

Notice that our algorithm doesn’t always find the minimal rational model of
the curve. An efficient way to do this has yet to be determined.

7.4. A different set of invariants

As explained in Section 2, invariants i1, i2, i3 were defined that way for compu-
tational benefits. However, they make the results involve many subcases and are
inconvinient at times. In the second version the the genus2 package we intend to
convert all the results to the t1, t2, t3 invariants

t1 =
J5

2

J10
, t2 =

J5
4

J2
10

, t3 =
J5

6

J3
10

.

The other improvement of version two is that when the moduli point p is
given the equation of the curve is given as the minimal equation over the minimal
field of definition.



8. Further directions

Genus 2 curves have been suggested for factorization of large numbers as in [16].
In the algorithm suggested in [16] certain genus 2 curves with (2, 2) have been
used. We believe that we have better candidates for selecting such curves. This is
work planned to be presented in [35].

The computation of modular polynomials is also a very challenging computa-
tional problem. We have made some progress on levels p = 3, 5. Equations of the
moduli spaces of genus 2 curves with (3, 3) and (5, 5)-split Jacobians computed
in [63] and [49] have been fundamental in such computations.

The newer version of our genus 2 package will come out soon. It has func-
tions on equations for the Kummer surface KC , the map from KC to Jac C , and
conversion of most of the equations in invariants t1, t2, t3.
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