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Abstract. In 1967, Shioda [20] determined the ring of invariants of binary octavics and their syzygies using the

symbolic method. We discover that the syzygies determined in [20] are incorrect. In this paper, we compute the

correct equations among the invariants of the binary octavics and give necessary and sufficient conditions for two
genus 3 hyperelliptic curves to be isomorphic over an algebraically closed field k, char k 6= 2, 3, 5, 7. For the first

time, an explicit equation of the hyperelliptic moduli for genus 3 is computed in terms of absolute invariants.

1. Introduction

Let k be an algebraically closed field. A binary form of degree d is a homogeneous polynomial f(X,Y ) of degree
d in two variables over k. Let Vd be the k-vector space of binary forms of degree d. The group GL2(k) of invertible
2 × 2 matrices over k acts on Vd by coordinate change. Many problems in algebra involve properties of binary
forms which are invariant under these coordinate changes. In particular, any hyperelliptic genus g curve over k has
a projective equation of the form Z2Y 2g = f(X,Y ), where f is a binary form of degree d = 2g + 2 and non-zero
discriminant. Two such curves are isomorphic if and only if the corresponding binary forms are conjugate under
GL2(k). Therefore the moduli space Hg of hyperelliptic genus g curves is the affine variety whose coordinate ring
is the ring of GL2(k)-invariants in the coordinate ring of the set of elements of Vd with non-zero discriminant. It
is well known that the moduli spaces Hg of hyperelliptic curves of genus g, g 6= 4, are all rational varieties, i.e.
isomorphic to a purely transcendental extension field k(t1, . . . , tr); see Igusa [10], Katsylo [11].

Generators for this and similar invariant rings in lower degree were constructed by Clebsch, Bolza and others
in the last century using complicated symbolic calculations. For the case of sextics, Igusa [10] extended this to
algebraically closed fields of any characteristic using difficult techniques of algebraic geometry. For a modern
treatment of the degree six case see [12].

The case of binary octavics has been first studied during the 19th century by von Gall [21,22] and Alagna [1,2].
Shioda in his thesis [20] determined the structure of the ring of invariants R8, which turns out to be generated by
nine SL(2, k)-invariants J2, · · · , J10 satisfying five algebraic relations. He computed explicitly these five syzygies,
and determined the corresponding syzygy-sequence and therefore the structure of the ring R8; see Shioda [20].

This paper started as a project to implement an algorithm which determines if two genus 3 hyperelliptic curves
are isomorphic over C. According to Shioda [20, Thm. 5]; two genus 3 hyperelliptic curves are isomorphic if and
only if the corresponding 9-tuples (J2, . . . , J10) are equivalent, satisfying five syzygies

Ri(J2, . . . , J10) = 0,

for i = 1, . . . , 5 and non-zero discriminant ∆ 6= 0. While trying to implement the syzygies Ri(J2, . . . , J10) = 0, for
i = 1, . . . , 5 we discovered that they are not satisfied for a generic octavic. Hence, such algebraic relations in terms
of J2, . . . , J10 are incorrect as stated in [20]; cf Example 1.

Indeed, if you take any random binary octavics then its invariants will not satisfy the Shioda’s relations. Since
the results in [20] do not hold, then one needs to determine explicitly the algebraic relations between the invariants
in order to have an explicit description of the ring of invariants R8 and its field of fractions S8. This will be our
goal for the rest of this paper.

In section 2, we give some basic preliminaries on invariants of binary forms. In section 3, we define the main
invariants of binary octavics via transvectants. The definitions are the same as used by classical invariant theorists,
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however, we scale by a constant factor in order to work with primitive polynomials with integer coefficients. We show
an example of a binary form which does not satisfy the syzygies as claimed in [20]; see Example 1. Furthermore,
we determine the algebraic relations between the invariants J2, . . . , J10. Such algebraic relations determine the ring
of invariants R8.

From the basic SL(2, k)-invariants J2, . . . , J8 we define six GL(2, k)-invariants

t1 :=
J2

3

J3
2

, t2 :=
J4

J2
2

, t3 :=
J5

J2 · J3
, t4 :=

J6

J2 · J4
, t5 :=

J7

J2 · J5
, t6 :=

J8

J4
2

,

which we call absolute invariants. There is an algebraic relation

T (t1, . . . , t6) = 0

that such invariants satisfy, computed for the first time. Shioda in his paper talked about this relation but never
attempted to compute it. It has total degree 14, degrees 5, 10, 6, 6, 5, 5 in t1, . . . , t6 respectively, and has 25
464 monomials. The field of invariants S8 of binary octavics is S8 = k(t1, . . . , t6), where t1, . . . , t6 satisfy the
equation T (t1, . . . , t6) = 0. Hence, we have an explicit description of the hyperelliptic moduli H3. A birational
parametrization of this variety seems out of reach computationally.

All of our results are implemented in a Maple package and made available at [19]. Such results will be helpful
in the arithmetic of genus 3 hyperelliptic curves. The computation of Eq. (17) makes now possible to describe the
subloci of H3 in terms of the t1, . . . , t6 invariants and other problems on genus 3 hyperelliptic curves as described
in [3, 4, 6, 7, 13,15–18] among others.

2. Preliminaries on invariants of binary forms

In this section we define the action of GL2(k) on the space of binary forms and discuss the basic notions of
their invariants. Most of this section is a summary of section 2 in [12]. Throughout this section k denotes an
algebraically closed field.

2.1. Action of GL2(k) on binary forms. Let k[X,Y ] be the polynomial ring in two variables and let Vd denote
the (d+ 1)-dimensional subspace of k[X,Y ] consisting of homogeneous polynomials.

(1) f(X,Y ) = a0X
d + a1X

d−1Y + · · ·+ adY
d

of degree d. Elements in Vd are called binary forms of degree d. We let GL2(k) act as a group of automorphisms
on k[X,Y ] as follows: if

g =

(
a b
c d

)
∈ GL2(k)

then

(2) g

(
X
Y

)
=

(
aX + bY
cX + dY

)
This action of GL2(k) leaves Vd invariant and acts irreducibly on Vd.

Remark 1. It is well known that SL2(k) leaves a bilinear form (unique up to scalar multiples) on Vd invariant.
This form is symmetric if d is even and skew symmetric if d is odd.

Let A0, A1, . . . , Ad be coordinate functions on Vd. Then the coordinate ring of Vd can be identified with
k[A0, . . . , Ad]. For I ∈ k[A0, . . . , Ad] and g ∈ GL2(k), define Ig ∈ k[A0, . . . , Ad] as follows

(3) Ig(f) = I(g(f))

for all f ∈ Vd. Then Igh = (Ig)h and (3) defines an action of GL2(k) on k[A0, . . . , Ad].

Definition 1. Let Rd be the ring of SL2(k) invariants in k[A0, . . . , Ad], i.e., the ring of all I ∈ k[A0, . . . , Ad] with
Ig = I for all g ∈ SL2(k).

Note that if I is an invariant, so are all its homogeneous components. So Rd is graded by the usual degree
function on k[A0, . . . , Ad].
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Since k is algebraically closed, the binary form f(X,Y ) in Eq. (1) can be factored as

(4) f(X,Y ) = (y1X − x1Y ) · · · (ydX − xdY ) =
∏

1≤i≤d

det

(
X xi
Y yi

)
The points with homogeneous coordinates (xi, yi) ∈ P1 are called the roots of the binary form in Eq. (1). Thus
for g ∈ GL2(k) we have

g(f(X,Y )) = (det(g))d(y
′

1X − x
′

1Y ) · · · (y′dX − x
′

dY ).

where

(5)

(
x
′

i

y
′

i

)
= g−1

(
xi
yi

)
Definition 2. The nullcone Nd of Vd is the zero set of all homogeneous elements in Rd of positive degree

The notion of nullcone was first used by Hilbert; see [9]. Next we define the Reynold’s operator on k[A0, . . . , Ad].

Lemma 1. Let char(k) = 0 and Ωs be the subspace of k[A0, . . . , Ad] consisting of homogeneous elements of degree
s. Then there is a k-linear map

R : k[A0, . . . , Ad]→ Rd
with the following properties:

(a) R(Ωs) ⊆ Ωs for all s
(b) R(I) = I for all I ∈ Rd
(c) R(g(f)) = R(f) for all f ∈ k[A0, . . . , Ad]

Proof. Ωs is a polynomial module of degree s for SL2(k). Since SL2(k) is linearly reductive in char(k) = 0, there
exists a SL2(k)-invariant subspace Λs of Ωs such that Ωs = (Ωs ∩Rd)

⊕
Λs. Define

R : k[A0, . . . , Ad]→ Rd

such that R(Λs) = 0 and R|Ωs∩Rd
= id. Then R is k-linear and the rest of the proof is clear from the definition of

R.
�

The map R is called the Reynold’s operator.

Lemma 2. Suppose char(k) = 0. Then every maximal ideal in Rd is contained in a maximal ideal of k[A0, . . . , Ad].

Proof. If I is a maximal ideal in Rd which generates the unit ideal of k[A0, . . . , Ad], then there exist m1, m2,
. . . ,mt ∈ I and f1, f2, . . . ,ft ∈ k[A0, . . . , Ad] such that

1 = m1f1 + · · ·+mtft

Applying the Reynold’s operator to the above equation we get

1 = m1R(f1) + · · ·+mtR(ft)

But R(fi) ∈ Rd for all i. This implies 1 ∈ I, a contradiction. �

Theorem 1. [Hilbert’s Finiteness Theorem] Suppose char(k) = 0. Then Rd is finitely generated over k.

See [12] for details. If k is of arbitrary characteristic, then SL2(k) is geometrically reductive, which is a weakening
of linear reductivity; see Haboush [8]. It suffices to prove Hilbert’s finiteness theorem in any characteristic; see
Nagata [14]. The following theorem is also due to Hilbert [9]; see [12] for details of the proof.

Theorem 2. Let I1, I2, . . . , Is be homogeneous elements in Rd whose common zero set equals the null cone Nd.
Then Rd is finitely generated as a module over k[I1, . . . , Is].
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2.2. Hyperelliptic curves of genus 3. In this section we want to use the projective equivalence of binary octavics
in order two give conditions that two hyperelliptic curves of genus 3 are isomorphic.

Denote a binary form of order 2g + 2 by

f(X,Y ) =

2g+2∑
i=0

aiX
i Y 2g+2−i

To each f(X,Y ) with no multiple roots we associate the non-singular hyperelliptic curve Cf with affine equation
Z2 = f(X, 1). Every hyperelliptic curve of genus g is obtained this way.

Two hyperelliptic curves Cf and Ch are birationally equivalent if and only if f(X,Y ) and h(X,Y ) are projectively
equivalent, i.e., there exists a τ ∈ SL2(k) and λ ∈ k \ {0} such that fτ = λ · h.

Let ∆f denote the discriminant of the polynomial f(X, 1). It is an invariant of degree 2(2g + 1). When g = 3
then the discriminant has degree 14 and is given as a polynomial in J2, . . . , J8.

3. Projective invariance of binary octavics.

Throughout this section char (k) 6= 2, 3, 5, 7.

3.1. Covariants and invariants of binary octavics. We will use the symbolic method of classical theory to
construct covariants of binary octavics. They were first constructed by van Gall who showed that there are 70 such
covariants; see von Gall [21]. First we recall some facts about the symbolic notation. Let

f(X,Y ) :=

n∑
i=0

(
n
i

)
aiX

n−i Y i, and g(X,Y ) :=

m∑
i=0

(
m
i

)
biX

n−i Y i

be binary forms of degree n and m respectively. We define the r-transvection

(f, g)r :=
(m− r)! (n− r)!

n!m!

r∑
k=0

(−1)k
(
r
k

)
· ∂rf

∂Xr−k ∂Y k
· ∂rg

∂Xk ∂Y r−k
,

see Grace and Young [5] for details.
The following result gives relations among the invariants of binary forms and it is known as the Gordon’s formula.

It is the basis for most of the classical papers on invariant theory.

Theorem 3 (Gordon). Let φi, i = 0, 1, 2 be covariants of order mi and ei be three non-negative integers such that
ei + ej ≤ mk for distinct i, j, k. The following is true:

∑
i

C
e1
i · C

m1−e0−e2
i

C
m0+m1+1−2e2−i
i

(
(φ0 φ1)

e2+1
, φ2

)e0+e1−i
=
∑
i

C
e2
i · C

m2−e0−e1
i

C
m0+m2+1−2e1−i
i

(
(φ0 φ2)

e1+1
, φ1

)e0+e2−i
,

where e0 = 0 or e1 + e2 = m0.

This result has been used by many XIX century mathematicians to compute algebraic relations among invariants,
most notably by Bolza for binary sextics and by Alagna for binary octavics. It provides algebraic relations among
the invariants in a very similar manner that the Frobenious identities do for theta functions of hyperelliptic curves.
Whether there exists some explicit relation among both formulas seems to be unknown.

For the rest of this paper f(X,Y ) denotes a binary octavic as below:

(6) f(X,Y ) =

8∑
i=0

aiX
iY 8−i =

8∑
i=0

(
n
i

)
biX

iY n−i

where bi = (n−i)! i!
n! · ai, for i = 0, . . . , 8. We define the following covariants:

g = (f, f)4, k = (f, f)6, h = (k, k)2, m = (f, k)4,

n = (f, h)4, p = (g, k)4, q = (g, h)4.
(7)
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Then, the following

(8)

J2 = 22 · 5 · 7 · (f, f)8, J3 =
1

3
· 24 · 52 · 73 · (f, g)8,

J4 = 29 · 3 · 74 · (k, k)4, J5 = 29 · 5 · 75 · (m, k)4,

J6 = 214 · 32 · 76 · (k, h)4, J7 = 214 · 3 · 5 · 77 · (m,h)4,

J8 = 217 · 3 · 52 · 79 · (p, h)4, J9 = 219 · 32 · 5 · 79 · (n, h)4,

J10 = 222 · 32 · 52 · 711(q, h)4

are SL2(k)- invariants. Notice that we are scaling such invariants up to multiplication by a constant for computa-
tional purposes only. We display only the first two of such invariants to avoid any confusion in the definitions

J2 =280 a8a0 − 35 a7a1 + 10 a6a2 − 5 a5a3 + 2 a4
2

J3 =1050 a8a2
2 + 1050 a6

2a0 + 75 a6a3
2 + 75 a5

2a2 + 12 a4
3 + 3920 a8a4a0

− 2450 a8a3a1 + 735 a7a4a1 − 2450 a7a5a0 − 175 a7a3a2 − 110 a6a4a2

− 175 a6a5a1 − 45 a5a4a3

In other words, we take the numerator of the corresponding transvectants since we prefer to work over Z instead
of Q and then take the primitive part of each invariant. Hence, we have Ji ∈ Z[a0, . . . , a8], for i = 2, . . . , 8 and Ji’s
are primitive polynomials. In [20] such scaling is not done and these invariants are homogenous polynomials with
coefficients in Q[a0, . . . , a8] and not primitive.

Lemma 3. For each binary octavic f(X,Y ), its invariants defined in Eq.(8) are primitive homogeneous polynomials
Ji ∈ Z[a0, . . . , a8] of degree i, for i = 2, . . . , 10. Let f ′ = g(f), where

g =

(
a b
c d

)
∈ GL2(k),

and denote the corresponding J2, . . . , J10 of f ′ by J ′2, . . . , J
′
10. Then,

J ′i = (∆4)i Ji

where ∆ = ad− bc and i = 2, . . . , 10.

Proof. The first claim is immediate from the definition of the covariants and invariants. Let f and f ′ be two binary
octavics as in the hypothesis. One can check the result computationally. �

Remark 2. There are 68 invariants defined this way as discovered by van Gall [21, 22] in 1880. Indeed, van Gall
claimed 70 such invariants, but as discovered in XX-century there are only 68 of them. Perhaps, one that needs to
be mentioned is J14 which is the discriminant of the binary octavic.

In a couple of papers in 1892 and 1896 R. Alagna determined the algebraic relations among such invariants; see
[1, 2] for details. All these works have computational mistakes and are almost impossible to check.

Next we want to show that the ring of invariants R8 is finitely generated as a module over k[J2, . . . , J7]. First
we need some auxiliary lemmas.

Lemma 4. If Ji = 0, for i = 2, . . . 7, then the f(X,Y ) has a multiple root.

Proof. Compute Ji = 0, for i = 2, . . . 7. These equations imply that

Res(f(X, 1), f ′(X, 1), X) = 0,

where f ′ is the derivative of f . This proves the lemma. �

Theorem 4. The following hold true for any octavic.
i) An octavic has a root of multiplicity exactly four if and only if the basic invariants take the form

J2 = 2 · r2, J3 = 22 · 3 · r3, J4 = 26 · r4, J5 = 26 · r5,

J6 = 29 · r6, J7 = 29 · r7, J8 = 211 · 32 · r8,
(9)



6 T. SHASKA

for some r 6= 0. Moreover, if the octavic has equation

f(x, y) = x4(ax4 + bx3y + cx2y2 + dxy3 + ey4),

then r = e.
ii) An octavic has a root of multiplicity 5 if and only if

Ji = 0, for i = 2, . . . , 8.

Proof. i) Let
f(X,Y ) = a0X

8 + a7X
7Y + · · ·+ a8Y

8

be an octavic with a root of multiplicity four. Let this root be at (1, 0). Then,

f(X,Y ) = (a4X
4 + a3X

3Y + a2X
2Y 2 + a1XY

3 + a0Y
4)X4

Thus, for r = a4, Ji for i = 2, . . . , 8 are as claimed.
Conversely assume that Eq. (9) holds. Then, we have a multiple root. We assume the multiple root is at (1, 0).

If this is the only root then r = 0. Thus, there is at least one more root. We assume the other root is (0, 1). Then
the octavic takes the form

(10) f(X,Y ) = a2X
6Y 2 + a3X

5Y 3 + a4X
4Y 4 + a5X

3Y 5 + a6X
2Y 6 + a7XY

7

and (9) becomes a system of six equations. We eliminate a2, a3 to get that a5 = 0 or a4 = r. If a4 = r and a5 6= 0
then a2 = a3 = 0 and (1, 0) is a root of multiplicity four. If a5 = 0 then from the system we get a2 = 0 or a6 = 0.
In both cases we have a root of multiplicity four. �

ii) Suppose (1, 0) is a root of multiplicity 5. Then, as in previous lemma we can take a8 = a7 = a6 = a5 = a4 = 0.
Then by a lemma of Hilbert [9] or by simple computation we have these invariants Ji = 0, for i = 2, . . . , 7.

For the converse, since J14 = 0, there is a multiple root. If there is no root other than the multiple root, we are
done. Otherwise, let the multiple root be at (1,0) and the other root be at (0, 1). Since SL2(k) acts 3-transitively
on the points of the projective space, then as in the previous lemma the octavic becomes

(11) f(X,Y ) = a2X
6Y 2 + a3X

5Y 3 + a4X
4Y 4 + a5X

3Y 5 + a6X
2Y 6 + a7XY

7

Compute all J2, . . . J7. From the corresponding system of equations we can eliminate a2, a3, a7. We have a few
cases:

a4

(
−2 a4 a6 + a2

5

) (
−34 a4 a6 + 15 a2

5

) (
5476 a2

6a
2
4 + 2025 a4

5 − 6780 a4 a
2
5a6

)
= 0

Careful analysis of each case leads to the existence of a root of multiplicity 5. The proof is computational and we
skip the details. �

Remark 3. An alternative proof of the above can provided using the k-th subresultants of f and its derivatives. Two
forms have k roots in common if and only if the first k subresultants vanish. This is equivalent to J2 = · · · = J7 = 0.

3.2. The Null Cone of V8 and Algebraic Dependencies.

Theorem 5. R8 is finitely generated as a module over k[J2, . . . , J7].

Proof. By Theorem 2 we only have to prove N8 = V (J2, . . . , J7). For λ ∈ k∗, set

g(λ) :=

(
λ−1 0

0 λ

)
Suppose J2, . . . , J7 vanish on an octavic f ∈ V8. Then we know from Theorem 4 that f has a root of multiplicity
at least 5. Let this multiple root be (1, 0). Then f is of the form

f(X,Y ) = (a5X
3 + a6X

2Y + a7XY
2 + a8Y

3)Y 5

If I ∈ R8 is homogeneous of degree s > 0, then

I(fg(λ)) = λ2sI(a5X
3Y 5 + λ2a6X

2Y 6 + λ3a7XY
7 + λ4a8Y

8)

Thus I(fg(λ)) is a polynomial in λ with no constant term. But since I is an SL2(k)-invariant, we have I(fg(λ)) =
I(f) for all λ. Thus I(f) = 0. Then, N8 = V (J2, J3, J4, J5, J6, J7). This completes the proof.

�
The above lemma is proven by Shioda in a more computational way using the symbolic method; see below for

more details.
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Corollary 1. J2, . . . , J7 are algebraically independent over k because R8 is the coordinate ring of the 5-dimensional
variety V8//SL2(k).

3.2.1. Shioda’s computations. The algebraic relations between J2, . . . , J10 were computed by Shioda in [20] using
the symbolic method. However, we could not confirm the correctness of such results with our computations. For a
binary octavic

f(X,Y ) =

8∑
i=0

aiX
iY 8−i,

Shioda invariants are defined as

J2 =2 a8a0 − 16 a7a1 + 56 a6a2 − 112 a5a3 + 70 a4
2

J3 =
9

392
a8a2

2 +
9

392
a6

2a0 +
9

5488
a6a3

2 +
9

5488
a5

2a2 +
9

560
a7a4a1 −

3

56
a7a5a0

− 3

784
a7a3a2 −

33

13720
a6a4a2 −

3

784
a6a5a1 −

27

27440
a5a4a3 +

3

35
a8a4a0

− 3

56
a8a3a1 +

9

34300
a4

3

Notice that that definition of J2 looks different from that of Shioda [20, page 1037], but that is because there J2 is
evaluated for

f(X,Y ) =

8∑
i=0

(
8

i

)
aiX

iY 8−i.

Now we are ready to show that the syzygies in [20, Th. 5] are not correct. Below is an example of a genus 3
hyperelliptic curve with invariants which do not satisfy Shioda relations.

Example 1. Let a genus 3 hyperelliptic curve be given by the equation

y2 = x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1

Then, its invariants are

J2 =
9

5
, J3 =

81

2450
, J4 =

837

1568
, J5 =

2187

109760
, J6 = − 6885

43904
,

J7 = − 3645

1229312
, J8 = − 410427

17210368
, J9 =

234009

172103680
, J10 =

5972697

860518400

Then evaluating all expressions as in Shioda’s paper we have

A6 == −
3645

9604
, A7 =

130491

439040
, A8 = −

15261615

87808
,

B7 =
130491

351232
, B9 =

1414989

172103680
, B8 =

143437311

21512960
,

C9 =
809753208633

376476800000
, C10 = −

51828148570131

150590720000
,

D10 = −
19194738471171

385512243200
, A16 = −

1097050897751848407621

925614895923200000
.

Substituting all these values in the first equation of [20, Thm. 5] we get the value

−546607935510034107123

462807447961600000
6= 0.

This implies that the relations determined by Shioda are not correct.

Indeed, if you take any random binary octavics then its invariants will not satisfy the Shioda’s relations. Since
the results in [20] do not hold, then one needs to determine explicitly the algebraic relations between the invariants
in order to have an explicit description of the ring of invariants R8 and its field of fractions S8. This will be our
goal for the rest of this paper.
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3.2.2. Algebraic dependencies among the invariants. In this section we will determine algebraic relations among
the invariants J2, . . . , J8. We will use computational algebra techniques such as elimination by resultants, Groebner
bases, etc. Any computer algebra package can be used to reproduce our results. Once obtained, these results can
be easily verified. All our results are organized in a Maple package and will be freely made available at [19].

Without loss of generality we can assume that the generic binary octavic is given by

f(X, 1) = X(X − 1)(X5 − s1X4 + s2X
3 − s3X2 + s4X − s5)

= X7 − (s1 + 1)X6 + (s2 + s1)X5 − (s3 + s2)X4 + (s4 + s3)X3 − (s4 + s5)X2 + s5X
(12)

Denote by

a := s1 + s2, b := s2 + s3, c := s3 + s4, d := s4 + s5, s := s5.

Then we have

f(X, 1) = X7 + (−1 + b− s+ d− c− a)X6 + aX5 − bX4 + cX3 − dX2 + sX

We first compute the J2, . . . , J10 for f(X, 1).

J2(f) =− 35 s+ 10 d− 10 db+ 10 ds− 10 d2 + 10 dc+ 10 da− 5 ac+ 2 b2

J3(f) =− 75 c2 + 75 c2b− 75 c2s+ 75 c2d− 75 c3 − 75 c2a− 75 d a2 − 12 b3 + 110 db

− 110 db2 + 110 dbs− 110 d2b+ 110 dbc+ 110 dba+ 175 as− 175 asb+ 175 as2

− 175 asd+ 175 asc+ 175 a2s− 735 bs+ 175 dc+ 45 cba,

J4, . . . , J8 are larger expressions and we do not display them.
Our goal is to express J8, J9, J10 in terms of J2, . . . , J7. Indeed, from Thm. 5 it is enough to express J8 in terms

of J2, . . . , J7. Since in [20] the syzygies include expressing J9 and J10 in terms of J2, . . . , J7 we will comment on
how that can be done also.

We have the following system of equations

(13)



F2 := J2 − J2(a, b, c, d, s) = 0

F3 := J3 − J3(a, b, c, d, s) = 0

F4 := J4 − J4(a, b, c, d, s) = 0

F5 := J5 − J5(a, b, c, d, s) = 0

F6 := J6 − J6(a, b, c, d, s) = 0

F7 := J7 − J7(a, b, c, d, s) = 0

F8 := J8 − J8(a, b, c, d, s) = 0

We compute the equation of J8 in terms of J2, . . . , J7 using the following technique. Take the resultant with
respect to a of the polynomials Fi, F8, for i = 2, . . . 7. Let Gi := Res(Fi, F8, a), for i = 2, . . . 7. For each resultant
we want to factor the result and take the primitive part. It is exactly this part that is important and it is not
usually done by implementations of Grobener basis algorithms. In many cases the resultant will be factored to a
power or will have factors which imply that J14 = 0. Since we are computing in an integral domain, we cancel such
factors.

We continue now with the system Gi := Res(Fi, F8, a), for i = 2, . . . 7 and compute the resultants Hi :=
Res(Gi, G7, b) for i = 2, . . . 6. Hence, we are left 5 equations and transcendentals c, d, s. Continuing this process we
get a degree 8 equation of J8 in terms of the other J2, . . . , J7, as expected by Shioda; see [20, pg. 1044]. Its leading
monomial has coefficient 22 · 320 · 512. Since we are assuming that the characteristic of the field is 6= 2, 3, 5, 7 then
we can divide by this coefficient. Hence, denote the minimal quintic by

J5
8 + c4J

4
8 + · · ·+ c1J8 + c0 = 0.

Since this equation is a homogenous equation of degree 40 in J2, . . . , J8, then all other coefficients of J8 are
homogenous polynomials in J2, . . . , J7 of degree 8, 16, 24, 32, 40 respectively. We denote the primitive part of each
of these coefficients by I8, I16, I24, I32, I40.

For now on we use the following notation

J2 := a, J3 := b, J4 := c, J5 := d, J6 := e, J7 := f,

to display the expressions of I8, I16, I24, I32, I40.
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I8 = −2
7
7
5
a
4

+ 2
2
5
3
7
3
3a

2
c+ 2

6
3
3
7
2
ab

2
+ 2

3
5
4
7
2
ae− 2

2
3
5
5
2
7bd− 3

3
5
4
17c

2

I16 = 2
2
3
7
5
5
7
5
a
3
d
2

+ 2
2
3
8
5
6
7 · 11bc

2
d+ 2

3
5
8
7
4
a
2
e
2 − 2 · 37

5
6
7
3
abcf + 2

9
3
6
7
4
a
2
b
4

− 3 · 23
5
5
7
6 · 31a

3
ce− 2

2
3
8
5
6
7
3
acd

2
+ 2

3
3
4
5
5
7
2
11

2
b
2
ce− 2 · 33

5
7
7
3
13a

2
c
3 − 57173

5
5
4
7
2
ab

2
c
2

+ 2
6
3
6
5
3
7
5
a
3
bf + 2

2
3
8
5
5
7
4
a
2
df + 2

7
3
5
5
2
7
6
a
4
bd− 3

8
5
7
7
3
af

2 − 2
3
3
10

5
4
7
2
b
2
d
2 − 2

5
3
7
5
2
7
2
19b

4
c

− 2
2
3
7
5
7
7
2
d
2
e+ 2

11
7
10
a
8

+ 2
6
3
4
5
2
7
5
43a

3
b
2
c− 2

8
5
4
7
7
a
5
e− 2

2
3
6
5
5
7
4
11a

2
bcd+ 2

7
3
3
5
4
7
4
a
2
b
2
e

+ 2
3
3
3
5
4
7
5
491a

4
c
2 − 2

6
3
8
5
2
7
3
ab

3
d− 2

5
3
9
5
3
7
2
b
3
f − 2

3
3
5
5
6
7
3
abde− 2

2
3
6
5
7
7
2
bef − 2

11
3
3
7
7
a
5
b
2

+ 2
2
3
2
5
7
7
2
601ac

2
e− 2

10
3
2
5
2
7
8
a
6
c+ 3

5
5
9
19c

4
+ 2

2
3
9
5
7
7
2
17cdf − 2 · 59

7
2
ce

2

The invariant I32 is an equation of degree 14, 8, 8, 4, 5, 4 in a, b, c, d, e, f respectively. We denote it as I32 =∑14
i=0 biJ2 and display its coefficients as follows:

b14 =− 2
24 · 3 · 718 · c

b13 =2
21 · 5 · 717 · 41 · e

b12 =2
20 · 34 · 52 · 716 · c2

b11 =2
16 · 3 · 715 · c

(
13824b

2 − 140125e
)

b10 =2
14 · 5 · 714 ·

(
−466560bcd− 874800df − 283392b

2
e− 246375c

3
+ 401750e

2
)

b9 =2
14 · 32 · 52 · 712

(
370440dbe− 90720bcf − 157248b

2
c
2 − 510300cd

2
+ 1055875ec

2
+ 595350f

2
)

b8 =2
11

3
3
7
10

(988722000b
2
ce+ 1190700000bc

2
d+ 3051168750cdf + 1190700000d

2
e− 48771072b

4
c

− 1189015625e
2
c− 100453125c

4
)

Next we describe I40. It is a degree 17 polynomial in J2 and we denote it by I40 =
∑17
i0
AiJ

i
2. Then, we have

A17 = 2
33 · 722

A16 = 2
28 · 32 · 5 · 721 · c2

A15 = 2
28 · 3 · 54 · 720 · ce

A14 = 2
22 · 5 · 718

(
193536b

2
e− 223425c

3 − 266875e
2
)

A13 = 2
24 · 34 · 52 · 717

(
−168b

2
c
2 − 1975c

2
e− 1890f

2 − 1680bde+ 504bcf
)

A12 = 2
18 · 3 · 53 · 716

(
4898880cdf − 6531840d

2
e+ 2668750ce

2
+ 924075c

4
+ 326592bc

2
d− 1935360b

2
ce
)

A11 = 2
19 · 5 · 715

(
1020600000bcde+ 96519600b

2
c
3 − 172226250c

2
d
2 − 41803776b

4
e+ 143184375c

3
e

+115290000b
2
e
2

+ 602791875f
2
c− 71225000e

3 − 306180000bc
2
f + 1262992500def

)
The other coefficients are displayed in the Appendix of the extended paper in [19]. The solution to the following
problem would provide a more elegant treatment of these results.

Problem 1. Express all invariants I8, I16, I24, I32, I40 in terms of the transvectants of the binary octavics.

We summarize the above in the following theorem.

Theorem 6. The invariants J2, . . . , J8 satisfy the following equation

(14) J5
8 +

I8
34 · 53

J4
8 + 2 · I16

38 · 56
J3

8 +
I24

2 · 312 · 56
J2

8 +
I32

316 · 510
J8 +

I40

22 · 320 · 512
= 0,

Proof. To prove that this relation holds we take a generic octavic

f(x, z) =

8∑
i=1

aix
iz8−i.

Compute the invariants J2, . . . , J8 and substitute them in the Eq. (14). We see that the equation is satisfied. This
completes the proof.

�
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Remark 4. i) In terms of the coefficients of the binary octavic the above equation is a degree 40 homogenous
equation.

ii) The equation has degrees in Ji, i = 2, . . . , 8, respectively 17, 10, 10, 6, 6, 5, 5.
iii) Similar relations as that in previous Theorem can be determined for J9 and J10 in terms of J2, . . . , J7.

However, such relations, as expected, are too long to display.
iv) In [20] it is commented that the field of fractions of R is determined by a degree 5 equation

J5
8 + a1J

4
8 + . . . α5 = 0,

where a1, . . . , a5 are homogenous elements in Q[J2, . . . , J7] but are not computed; see page 1043. That equation is
precisely Eq. (14).

v) All coefficients of these equation can be expressed in terms of the transvectants of binary octavics.
vi) The reader can check the correctness of the above equation in [19]

Lemma 5. The following hold true for any octavic.
i) If an octavic has a root of multiplicity exactly four then

I8 = 211 · 36 · 54 · r8, I16 = 222 · 312 · 57 r16, I24 = 235 · 318 · 57 r24,

I32 = 244 · 324 · 511 r32, I40 = 257 · 330 · 512 r40,
(15)

for some r 6= 0. Moreover, if the octavic has equation

f(x, y) = x4(ax4 + bx3y + cx2y2 + dxy3 + ey4),

then r = e.
ii) If an octavic has a root of multiplicity 5 then

I8i = 0, for i = 1, . . . , 5.

Proof. i) The proof follows Theorem 4 part i) or by direct computation.
ii) Since all I8i for i = 1, . . . , 5 are all homogenous polynomials in terms of J2, . . . , J7 this is an immediate

consequence of Theorem 4. �

Corollary 2. If J4 = J5 = J6 = J7 = 0, then I24 = I32 = I40 = 0. In this case, the Eq. (14) becomes

J8

(
−10125J8 + 1075648J4

2 − 42336J2
3 J2

)
= 0

The equation Eq. (14) corrects the result of [20, Thm. 1]. To compute the other syzygies we follow a similar
technique replacing J8 by J9 or J10. Indeed, both such cases are a bit easier from the computational point of view.
For our purposes of determining the field of invariants S8 the Eq. (14) is enough.

k[A0, . . . A8]

SL2(k) S8 = F (R8)

5

R8 = P [J8]

5

F (P )

P = k[J2, . . . , J7]

Figure 1. The ring of invariants R8 and its field of fractions
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Example 2. Let C be the generic genus 3 hyperelliptic curve with automorphism group Aut(C)∼=Z2 ×D8. Then
C has equation

C : y2 = x8 + λx4 + 1

Then, invariants I8i, i = 1, . . . 5 of the corresponding binary form are given below.

I8 =− 211 · 34 · 54
(
9λ2 − 2450

)
(λ− 14)

3
(λ+ 14)

3

I16 =222 · 39 · 57
(
9λ2 + 980

) (
3λ2 − 1960

)
(λ− 14)

6
(λ+ 14)

6

I24 =− 235 · 312 · 57
(
9λ2 − 9310

) (
9λ2 + 980

)2
(λ− 14)

9
(λ+ 14)

9

I32 =244 · 316 · 511
(
9λ2 − 12740

) (
9λ2 + 980

)3
(λ− 14)

12
(λ+ 14)

12

I40 =− 257 · 321 · 512
(
3λ2 − 5390

) (
9λ2 + 980

)4
(λ− 14)

15
(λ+ 14)

15

If λ2 = 14 then I8i = 0, for i = 1, . . . , 5 and Ji = 0 for i = 4, . . . , 8. This corresponds to the single curve with
automorphism group Aut(C)∼=Z2 × S4.

Theorem 7. Two genus 3 hyperelliptic curves C and C ′ in Weierstrass form, given by equations

C : Z2 = f(X,Y ) and C ′ : z2 = g(X,Y )

are isomorphic over k if and only if there exists some λ ∈ k \ {0} such that

Ji(C) = λiJi(C
′), for i = 2, . . . , 7,

and J2, . . . J8 satisfy the Eq. (14). Moreover, the automorphism is given by

C → C ′[
X
Y

]
→M ·

[
X
Y

]
where M ∈ GL2(k) and λ = (detM)

4
.

Proof. The proof follows directly from the properties of invariants and Lemma 3.
�

The above theorem gives a necessary and sufficient condition for two hyperelliptic curves to be isomorphic.
However, GL(2, k)-invariants are preferred for identifying the isomorphism classes of curves. In order to find such
invariants we need to determine the field of fractions of R8 = k[J2, . . . , J7, J8].

3.3. On the invariant field of GL2(k). Let us assume that J2, J3, J4, J5 are all nonzero. Define the invariants

(16) t1 :=
J2

3

J3
2

, t2 :=
J4

J2
2

, t3 :=
J5

J2 · J3
, t4 :=

J6

J2 · J4
, t5 :=

J7

J2 · J5
, t6 :=

J8

J4
2

.

Such invariants have the same degree in numerator and denominator, therefore they are GL(2, k)-invariants. Hence,
t1, . . . , t6 ∈ S8. For analogy with the genus 2 case, we call them absolute invariants. For any two isomorphic
genus 3 hyperelliptic curves C and C ′ we have tj(C) = tj(C

′), for j = 1, . . . , 6. We would prefer an if and only if
statement.

By substituting in Eq.(14) get an affine equation of the hyperelliptic moduli of genus 3 as

(17) T (t1, . . . , t6) = 0

This is an algebraic variety of dimension 5. It has degrees in t1, . . . , t6 respectively as 5, 10, 6, 6, 5, 5 and it has
25 464 terms. We denote this variety by T3. The equation of T3 is explicitly computed and very useful in the
arithmetic of genus 3 curves. The reader can check it at [19].

Then we have the following theorem.

Theorem 8. The field of invariants of binary octavics is S8 = k(t1, . . . , t6), where t1, . . . , t6 satisfy the equa-
tion (17).
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Proof. The proof of the theorem follows directly from Thm. 5 in Shioda. However, since that is based on Thm. 1
which contains syzygies which are incorrect, we provide a direct proof for this result.

We denote the roots of the octavic f(X,Y ) by (αi, βi). Every g ∈ GL2(k) which fixes f(X,Y ) permutes these
roots. Thus there is an S8 action on {α0, . . . , α7}. The fixed field is the invariant field of GL2(k) which we denote
by S8. We can fix α5 = 0, α6 = 1, and α7 = ∞. Let s1, . . . , s5 denote the symmetric polynomials of α0, . . . , α4.
Then [k(α0, . . . , α4) : k(s1, . . . , s5)] = 120. Thus, [k(s1, . . . , s5) : S8] = 6 · 7 · 8 = 336.

k(α0, . . . , α4)

120

k(s1, . . . , s5)

336

S8

k(t1, . . . , t6)

5

k(t1, . . . , t5)

Our goal is to determine S8.
Since t1, . . . , t6 are GL(2, k)-invariants then k(t1, . . . , t6) ⊂ S8. We know that [k(t1, . . . , t6) : k(t1, . . . , t5)] = 5,

since the degree in t6 of the irreducible polynomial from Eq. (17) is 5. If we show that [k(s1, . . . , s5) : k(t1, . . . , t5)] =
5 · 336, or equivalently [k(s1, . . . , s5) : k(t1, . . . , t6)] = 336 then we are done.

The proof is computational. Compute t1, . . . , t5 in terms of s1, . . . , s5. This is computationally easy and we do
not display these expressions here. By Bezout’s theorem we know that the degree d = [k(s1, . . . , s5) : k(t1, . . . , t5)]
is d ≤ 6 · 4 · 5 · 6 · 7, because the degrees of i1, . . . , i5 are respectively 6, 4, 5, 6, 7. There is at least one more solution
at infinity. Moreover, d must be divisible by 5 · 336. Hence, d = 5 · 336 or d = 2 · 5 · 336.

From the system of equations we eliminate first s5. Continuing via the resultants we eliminate also s1 and s4.
We are left with two equations of degree 36 and 56. From Bezout’s theorem, the degree d ≤ 36 · 56 and divisible
by 1680. Hence d = 1680 and the proof is complete.

�

Corollary 3. Two hyperelliptic genus 3 curves with nonzero invariants J2, J3, J4, J5 are isomorphic if and only
if they correspond to the same point on the algebraic variety T3.

Proof. The proof is an immediate consequence of the previous Theorem.
�

Since the moduli space of hyperelliptic curves is a rational variety then T3 must have a birational parametrization.
Finding such parametrization via an equation of this size is very difficult.

3.4. Cases when t1, . . . , t6 are not defined. To describe the moduli points in cases when absolute invariants are
not defined is not difficult. In this case, one has to treat each case separately when any of the invariants J2, . . . J5

are zero.
Indeed, we can define invariants depending of which of the invariants is nonzero. If J2 6= 0, then we define

i1 =
J2

3

J3
2

, i2 =
J4

J2
2

, i3 =
J2

5

J5
2

, i4 =
J6

J3
2

, i5 =
J2

7

J7
2

, i6 =
J8

J4
2

If J2 = 0 then we pick the smallest degree invariant among J3, . . . , J7 which is not zero. This is possible because
if J2 = · · · = J7 = 0, then from Lemma 4 the binary octavic has a double root, hence we don’t have a genus 3
curve. For example, if J3 6= 0, then we define

i1 =
J3

2

J2
3

, i2 =
J4

J3 · J4
, i3 =

J8

J3 · J5
, i4 =

J3
4

J4
3

, i5 =
J3

5

J5
3

,
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Such invariants have high degree in some cases and therefore are not suitable for computations. Hence, we prefer
invariants t1, . . . , t6 defined in Eq. (16).

In the next example we see what happens in the case when all J2 = J3 = J4 = J5 = 0. We see that we get a
genus 0 curve in the hyperelliptic moduli H3.

Example 3. Let us assume that J2 = J3 = J4 = J5 = 0. In this case I8 and I8 = I16 = 0 and

I24 = −2679687500000u4,

I32 = −3204948120117187500u3 v2,

I40 = −306653442317962646484375u2 v4

where u, v ∈ k[a, b, c, d, e]. Moreover,

(25I24 I40 − 2I2
32)(25I24 I40 + 2I2

32) = 0

In this case, the Eq. (14) becomes

2125764 J5
8 − 343000000 J4

6 J
2
8 + 16206750000 J3

6 J
2
7 J8 − 191442234375 J2

6 J
4
7 = 0

By defining

τ1 :=
J6

7

J7
6

, τ2 =
J3

8

J4
6

,

the Eq. (14) becomes

−1064211156161261718750000000000 τ1 τ2 + 40353607000000000000000000 τ2
2

+4649919888623184000000 τ2
4 − 9606056659007943744 τ2

5 − 750282026508000000000000 τ2
3

+7016382605513364494808197021484375 τ1
2 − 19786546042268119734375000000 τ1 τ2

2 = 0

This is a genus 0 curve that can be parametrized as follows

τ1 = 246 36 560 736 ·
(
t+ 211 39 518 712

)2
t5

, τ2 =
24 56 73

312
·
(
t+ 211 39 518 712

)2
t2

It is possible in this case to express the equation of the curve in terms of the parameter t.

3.5. A computational package for genus 3 hyperelliptic curves. All the computational results described in
this paper are implemented in a Maple package which is made freely available at [19]. This package among other
things computes the following:

i) Invariants Ji for i = 1, . . . , 10. Their formulas are given in terms of the coefficients of a generic octavic

f(X,Y ) =

8∑
i=1

aiX
iY 8−i

and can be evaluated on any given octavic.
ii) Invariants I5i, for i = 1, . . . , 5. Their formulas are given in terms of J2, . . . , J7 and can be evaluated on any

octavic.
iii) The equation (14) in terms of the invariants J2, . . . , J8.
iv) The equation (17) in terms of invariants i1, . . . , i6.

Some problems which we are further studying are finding a minimal model of a genus 3 curve over its minimal
field of definition, determining an algorithm which determines when the field of moduli is a field of definition, and
describing the loci of curves with fixed automorphism group in terms of invariants t1, . . . , t6. For some of these
problems and new addtional features on computational aspects of genus 3 hyperelliptic curves the reader can check
[19].

An extended version of these paper with all equations displayed in its Appendix is posted in [19].

Acknowledgments: We want to thank the anonymous referee for useful suggestions on improving this paper.
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