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ABSTRACT. In 1967, Shioda [20| determined the ring of invariants of binary octavics and their syzygies using the
symbolic method. We discover that the syzygies determined in |20| are incorrect. In this paper, we compute the
correct equations among the invariants of the binary octavics and give necessary and sufficient conditions for two
genus 3 hyperelliptic curves to be isomorphic over an algebraically closed field k, char k # 2,3,5,7. For the first
time, an explicit equation of the hyperelliptic moduli for genus 3 is computed in terms of absolute invariants.

1. INTRODUCTION

Let k be an algebraically closed field. A binary form of degree d is a homogeneous polynomial f(X,Y") of degree
d in two variables over k. Let Vj be the k-vector space of binary forms of degree d. The group G Ly (k) of invertible
2 x 2 matrices over k acts on Vy by coordinate change. Many problems in algebra involve properties of binary
forms which are invariant under these coordinate changes. In particular, any hyperelliptic genus g curve over k has
a projective equation of the form Z2Y?29 = f(X,Y), where f is a binary form of degree d = 2g + 2 and non-zero
discriminant. Two such curves are isomorphic if and only if the corresponding binary forms are conjugate under
GLs (k). Therefore the moduli space H4 of hyperelliptic genus g curves is the affine variety whose coordinate ring
is the ring of GLy(k)-invariants in the coordinate ring of the set of elements of V; with non-zero discriminant. It
is well known that the moduli spaces H, of hyperelliptic curves of genus g, g # 4, are all rational varieties, i.e.
isomorphic to a purely transcendental extension field k(t1,...,¢,); see Igusa [10], Katsylo [11].

Generators for this and similar invariant rings in lower degree were constructed by Clebsch, Bolza and others
in the last century using complicated symbolic calculations. For the case of sextics, Igusa [10] extended this to
algebraically closed fields of any characteristic using difficult techniques of algebraic geometry. For a modern
treatment of the degree six case see [12].

The case of binary octavics has been first studied during the 19th century by von Gall [21,/22] and Alagna [12].
Shioda in his thesis [20] determined the structure of the ring of invariants Rg, which turns out to be generated by
nine SL(2, k)-invariants Ja, - - - , Jio satisfying five algebraic relations. He computed explicitly these five syzygies,
and determined the corresponding syzygy-sequence and therefore the structure of the ring Rg; see Shioda [20].

This paper started as a project to implement an algorithm which determines if two genus 3 hyperelliptic curves
are isomorphic over C. According to Shioda |20, Thm. 5]; two genus 3 hyperelliptic curves are isomorphic if and
only if the corresponding 9-tuples (Ja,. .., Jig) are equivalent, satisfying five syzygies

Ri(J27"'7J10) = 07

for i =1,...,5 and non-zero discriminant A # 0. While trying to implement the syzygies R;(Js,...,Jig) = 0, for
i=1,...,5 we discovered that they are not satisfied for a generic octavic. Hence, such algebraic relations in terms
of Ja, ..., J1p are incorrect as stated in [20]; cf Example

Indeed, if you take any random binary octavics then its invariants will not satisfy the Shioda’s relations. Since
the results in [20] do not hold, then one needs to determine explicitly the algebraic relations between the invariants
in order to have an explicit description of the ring of invariants Rg and its field of fractions Sg. This will be our
goal for the rest of this paper.

In section 2, we give some basic preliminaries on invariants of binary forms. In section 3, we define the main
invariants of binary octavics via transvectants. The definitions are the same as used by classical invariant theorists,
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however, we scale by a constant factor in order to work with primitive polynomials with integer coefficients. We show
an example of a binary form which does not satisfy the syzygies as claimed in [20]; see Example [1] Furthermore,
we determine the algebraic relations between the invariants Js, . .., Jig. Such algebraic relations determine the ring
of invariants Rg.
From the basic SL(2, k)-invariants Ja, ..., Js we define six GL(2, k)-invariants
J2 Ju Js ) Je J7 Js

t1:= =%, loi=—, I3:= ty = t5 = , tg 1= —f,
1 J237 2 J227 3 J2-J3’ 4 J2'J47 5 J2~J5 6 Jé

which we call absolute invariants. There is an algebraic relation

T(tl,...,t(;) =0

that such invariants satisfy, computed for the first time. Shioda in his paper talked about this relation but never
attempted to compute it. It has total degree 14, degrees 5, 10, 6, 6, 5, 5 in tq,...,ts respectively, and has 25
464 monomials. The field of invariants Sg of binary octavics is Sg = k(t1,...,ts), where ty,...,tg satisfy the
equation T'(t1,...,ts) = 0. Hence, we have an explicit description of the hyperelliptic moduli Hs. A birational
parametrization of this variety seems out of reach computationally.

All of our results are implemented in a Maple package and made available at |19]. Such results will be helpful
in the arithmetic of genus 3 hyperelliptic curves. The computation of Eq. makes now possible to describe the
subloci of Hg in terms of the ¢q,...,ts invariants and other problems on genus 3 hyperelliptic curves as described
in [3l[4L[6L|7,/13L|15H18] among others.

2. PRELIMINARIES ON INVARIANTS OF BINARY FORMS

In this section we define the action of GLo(k) on the space of binary forms and discuss the basic notions of
their invariants. Most of this section is a summary of section 2 in |12]. Throughout this section k denotes an
algebraically closed field.

2.1. Action of GLy(k) on binary forms. Let k[X,Y] be the polynomial ring in two variables and let V; denote
the (d 4+ 1)-dimensional subspace of k[X, Y] consisting of homogeneous polynomials.

(1) f(X,Y) =aoX?+ a1 XY + -+ 4 gV

of degree d. Elements in Vj are called binary forms of degree d. We let GL2(k) act as a group of automorphisms

on k[X,Y] as follows: if
a b
g= (C d) S GLQ(k)
then

@) X\  [aX+bY
I\y) = \eX +dy
This action of GLa(k) leaves Vy invariant and acts irreducibly on Vj.

Remark 1. [t is well known that SLo(k) leaves a bilinear form (unique up to scalar multiples) on Vg invariant.
This form is symmetric if d is even and skew symmetric if d is odd.

Let Ag, A1, ..., Ay be coordinate functions on V;. Then the coordinate ring of V; can be identified with
k[Ao, ..., Ad]. For I € k[Ay,..., A4 and g € GLy(k), define I9 € k[Ay, ..., Aq4] as follows
(3) I7(f) = I(g(f))

for all f € V. Then I9" = (I9)" and (3] defines an action of GLy(k) on k[Ao, ..., Aqd].

Definition 1. Let Ry be the ring of SLy(k) invariants in k[Ao, ..., A4, i.e., the ring of all I € k[Ao, ..., Aq] with
I9 =1 for all g € SLa(k).

Note that if I is an invariant, so are all its homogeneous components. So R, is graded by the usual degree
function on k[Ay, ..., Ag4].
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Since k is algebraically closed, the binary form f(X,Y) in Eq. can be factored as
X xX;
(4) FXY) = (n X —a1Y) - (yaX —azaV) = [] det I
1<i<d Yi

The points with homogeneous coordinates (z;, ;) € P! are called the roots of the binary form in Eq. . Thus
for g € GLy(k) we have

g(f(X,Y)) = (det(g9)) (), X — 1Y) -+ (y, X — 2,Y).

where

x, Y 7
5 i) =
® ()=o)
Definition 2. The nullcone Ny of Vy is the zero set of all homogeneous elements in Ry of positive degree

The notion of nullcone was first used by Hilbert; see [9]. Next we define the Reynold’s operator on k[Ay, ..., A4).

Lemma 1. Let char(k) =0 and Q4 be the subspace of k[Ay, ..., Aq] consisting of homogeneous elements of degree
s. Then there is a k-linear map

R: k[Ao,...,Ad] — Ry
with the following properties:
(a) R(Qs) C Qq for all s
(b) R(I)=1 for allI € Rq
(c) R(g(f)) = R(f) for all f € k[Ao,..., Ad]

Proof. Qg is a polynomial module of degree s for SLo(k). Since SLo(k) is linearly reductive in char(k) = 0, there
exists a SLo(k)-invariant subspace Ag of 4 such that Qs = (Qs NRy) P As. Define

RIk[A07...7Ad]—>’R,d

such that R(As) = 0 and Rjg,nr, = id. Then R is k-linear and the rest of the proof is clear from the definition of
R.

O
The map R is called the Reynold’s operator.
Lemma 2. Suppose char(k) = 0. Then every mazimal ideal in Ry is contained in a mazimal ideal of k[Ao, ..., Ad.
Proof. If 7 is a maximal ideal in R4 which generates the unit ideal of k[Ay,..., A4], then there exist my, ma,
...,my € Z and fl, fg, o ft € k[Ao, ey Ad] such that
L=mifi+-+mef
Applying the Reynold’s operator to the above equation we get
L=miR(f1) + - +mR(f2)
But R(f;) € R4 for all i. This implies 1 € Z, a contradiction. O

Theorem 1. [Hilbert’s Finiteness Theorem] Suppose char(k) = 0. Then Ry is finitely generated over k.

See [12] for details. If k is of arbitrary characteristic, then SLy(k) is geometrically reductive, which is a weakening
of linear reductivity; see Haboush [8]. It suffices to prove Hilbert’s finiteness theorem in any characteristic; see
Nagata [14]. The following theorem is also due to Hilbert [9]; see [12] for details of the proof.

Theorem 2. Let I1, I, ..., I, be homogeneous elements in Ry whose common zero set equals the null cone Ny.
Then Rq is finitely generated as a module over k[Iy,. .., I].
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2.2. Hyperelliptic curves of genus 3. In this section we want to use the projective equivalence of binary octavics
in order two give conditions that two hyperelliptic curves of genus 3 are isomorphic.
Denote a binary form of order 2g 4+ 2 by

2g+2
f(X, Y) — Z GJZ'Xi Y2g+27i
i=0
To each f(X,Y) with no multiple roots we associate the non-singular hyperelliptic curve Cy with affine equation
Z% = f(X,1). Every hyperelliptic curve of genus g is obtained this way.
Two hyperelliptic curves Cy and C}, are birationally equivalent if and only if f(X,Y") and h(X,Y) are projectively
equivalent, i.e., there exists a 7 € SLa(k) and A € k\ {0} such that f7 = \- h.
Let Ay denote the discriminant of the polynomial f(X,1). It is an invariant of degree 2(2g +1). When g =3
then the discriminant has degree 14 and is given as a polynomial in Js, ..., Jg.

3. PROJECTIVE INVARIANCE OF BINARY OCTAVICS.

Throughout this section char (k) # 2,3,5,7.

3.1. Covariants and invariants of binary octavics. We will use the symbolic method of classical theory to
construct covariants of binary octavics. They were first constructed by van Gall who showed that there are 70 such
covariants; see von Gall [21]. First we recall some facts about the symbolic notation. Let

n

f(X, Y) = Z (?) aanii Yi, and g(X, Y) p— Z (7?) bl_ani yi

i=0 i=0
be binary forms of degree n and m respectively. We define the r-transvection

r (m—=r)(n—r) - PNV o f _ d"g
<f7g) Y DS R ;( 1) (k) AXT—k gyk Xk gyr—k’

see Grace and Young [5] for details.
The following result gives relations among the invariants of binary forms and it is known as the Gordon’s formula.
It is the basis for most of the classical papers on invariant theory.

Theorem 3 (Gordon). Let ¢;, i =0, 1,2 be covariants of order m; and e; be three non-negative integers such that
e; +e; < my, for distinct i,5,k. The following is true:

el ~mi1—ep—e2 . ey  o~mg2—eg—eq .
S (os? ) T T e GG (g0 ge) ) O
cmotmIFI=2e3—3 ’ . omotmati=2e1—i ’ ’

where eg = 0 or e; + e = my.
This result has been used by many XIX century mathematicians to compute algebraic relations among invariants,
most notably by Bolza for binary sextics and by Alagna for binary octavics. It provides algebraic relations among
the invariants in a very similar manner that the Frobenious identities do for theta functions of hyperelliptic curves.

Whether there exists some explicit relation among both formulas seems to be unknown.
For the rest of this paper f(X,Y) denotes a binary octavic as below:

8 8
(6) FXY) =Y aXxiyii=3%" (’Z) b Xy
=0

=0

(n—1)! 4!

—— - a;, for i =0,...,8. We define the following covariants:

g:<f7f)47 k:(.ﬂf)fs? h:(kvk)Q’ m:(fak)47
n=(f,n)" p=(9K" q¢=I(g.n"

where b; =
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Then, the following

B= 25T (f 0, J=5 25T (fg)

Jy =237 (k, k)4, Js=27.5.7° (m, k)4,
(8) Jg =2 .32.75 . (k h)*, Jr=2".3.5.77. (m, h)*,

Jg=217.3.52.79. (p,h)*, Jo=219.32.5.79 . (n,h)*,

Jl() — 222 . 32 . 52 . 711(q7 h)4

are SLo(k)- invariants. Notice that we are scaling such invariants up to multiplication by a constant for computa-
tional purposes only. We display only the first two of such invariants to avoid any confusion in the definitions

Jo =280 asao — 35 ara; + 10agas — 5 azas + 2 a4>

J3 =1050 agas? + 1050 ag2ag + 75 agas® + 75 as2as + 12 as® + 3920 agasag
— 2450 agagay + 735 araqar — 2450 arasag — 175 arazas — 110 agagas
— 175 agasar — 45 asaqas

In other words, we take the numerator of the corresponding transvectants since we prefer to work over Z instead
of Q and then take the primitive part of each invariant. Hence, we have J; € Z|ag,...,as], for i =2,...,8 and J;’s
are primitive polynomials. In |20] such scaling is not done and these invariants are homogenous polynomials with
coefficients in Q|ao, . . ., ag] and not primitive.

Lemma 3. For each binary octavic f(X,Y), its invariants defined in Eq. are primitive homogeneous polynomzials
Ji € Zlag, ... ,as] of degree i, for i =2,...,10. Let ' = g(f), where

9= (Z Z) € GLa(k),

and denote the corresponding Jo, ..., Jio of f' by J5, ..., Jiy. Then,
Jl = (AN J;
where A = ad — bc and i = 2,...,10.

Proof. The first claim is immediate from the definition of the covariants and invariants. Let f and f’ be two binary
octavics as in the hypothesis. One can check the result computationally. O

Remark 2. There are 68 invariants defined this way as discovered by van Gall |21,22] in 1880. Indeed, van Gall
claimed 70 such invariants, but as discovered in XX-century there are only 68 of them. Perhaps, one that needs to
be mentioned is J14 which is the discriminant of the binary octavic.

In a couple of papers in 1892 and 1896 R. Alagna determined the algebraic relations among such invariants; see
[LL[2] for details. All these works have computational mistakes and are almost impossible to check.

Next we want to show that the ring of invariants Rg is finitely generated as a module over k[Js,..., J7|. First
we need some auxiliary lemmas.

Lemma 4. If J; =0, fori=2,...7, then the f(X,Y) has a multiple root.
Proof. Compute J; =0, for i =2,...7. These equations imply that
Res(f(X,1), f'(X,1),X) =0,
where f’ is the derivative of f. This proves the lemma. |

Theorem 4. The following hold true for any octavic.
i) An octavic has a root of multiplicity exactly four if and only if the basic invariants take the form

Jo=2-1% J3=2%.3.0% Jy =200 Jy=20.4"
Jo =275 J; =207 Jg=211.32.48

(9)
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for some r #£ 0. Moreover, if the octavic has equation
f(z,y) = z*(az* + b3y + cx?y® + dxy® + ey?),

then r =e.
i1) An octavic has a root of multiplicity 5 if and only if

J;=0, for i=2,...,8.
Proof. i) Let
f(X,Y)=aoX®+ a7 XY +--- 4 agV®
be an octavic with a root of multiplicity four. Let this root be at (1,0). Then,
F(X,Y) = (@ X 4+ a3 X3Y + a2 X2Y2 + a1 XY3 + aYVH) X4

Thus, for r = a4, J; for i =2,...,8 are as claimed.

Conversely assume that Eq. @ holds. Then, we have a multiple root. We assume the multiple root is at (1,0).
If this is the only root then r = 0. Thus, there is at least one more root. We assume the other root is (0,1). Then
the octavic takes the form

(10) FX,Y) = ap XOV? + a3 X°Y? + au X*Y? + a5 X3Y° + a6 XY 4 a7 XY

and @D becomes a system of six equations. We eliminate ao, a3 to get that as =0or ay =r. If ay =r and a5 # 0
then as = ag = 0 and (1,0) is a root of multiplicity four. If as = 0 then from the system we get as = 0 or ag = 0.

In both cases we have a root of multiplicity four. O
ii) Suppose (1,0) is a root of multiplicity 5. Then, as in previous lemma we can take ag = a7 = ag = a5 = a4 = 0.
Then by a lemma of Hilbert [9] or by simple computation we have these invariants J; =0, for i = 2,...,7.

For the converse, since Ji4 = 0, there is a multiple root. If there is no root other than the multiple root, we are
done. Otherwise, let the multiple root be at (1,0) and the other root be at (0, 1). Since SLy(k) acts 3-transitively
on the points of the projective space, then as in the previous lemma the octavic becomes

(11) fX,Y) = aeXOV? + a3 X°Y3 + as XV + a5 X3Y5 + a6 X?YC® + a7 XY”
Compute all Jy,...J7;. From the corresponding system of equations we can eliminate as,as,ay;. We have a few
cases:

as (—2agag + a2) (—34aqg ag + 15a2) (5476 agai + 2025 a3 — 6780 as aZag) = 0
Careful analysis of each case leads to the existence of a root of multiplicity 5. The proof is computational and we
skip the details. O

Remark 3. An alternative proof of the above can provided using the k-th subresultants of f and its derivatives. Two
forms have k roots in common if and only if the first k subresultants vanish. This is equivalent to Jo = --- = J; = 0.

3.2. The Null Cone of V3 and Algebraic Dependencies.
Theorem 5. Rg is finitely generated as a module over k[Ja, ..., J7].

Proof. By Theorem 2 we only have to prove Ng =V (Ja,...,J7). For A € k*, set

g(A) = (A(_)l ?\)

Suppose Ja, ..., J7 vanish on an octavic f € V5. Then we know from Theorem [4] that f has a root of multiplicity
at least 5. Let this multiple root be (1,0). Then f is of the form
F(X,Y) = (a5 X3 + a6 XY + a7 XY? +agY3)Y?
If I € Rg is homogeneous of degree s > 0, then
I(fIN) = M T(as X3V + XN2ag X2V % + X3ar XY 4+ AagV?®)
Thus I(f9™) is a polynomial in A with no constant term. But since I is an SLy(k)-invariant, we have I(f9V) =
I(f) for all A\. Thus I(f) =0. Then, Ny = V(Ja, Js, J4, J5, Js, J7). This completes the proof.
O

The above lemma is proven by Shioda in a more computational way using the symbolic method; see below for
more details.
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Corollary 1. Js,...,J7 are algebraically independent over k because Rg is the coordinate ring of the 5-dimensional
variety Vs//SLa(k).

3.2.1. Shioda’s computations. The algebraic relations between Js, ..., Jig were computed by Shioda in [20] using
the symbolic method. However, we could not confirm the correctness of such results with our computations. For a
binary octavic

8
FXY) =) a XV
i=0

Shioda invariants are defined as

Jy =2 agag — 16 aza; + 56 agas — 112 asas + 70 as’
9

9
o= 2, 9 2 2 2 9 9
3 T39g #8027 ¥ 305 06700 F 51eg 46037 F yeg 45702 T+ e 070401 — 2 A70500
33 27
- @ arazag — 13720 AeQ40 — @ agas50a1 — 27440 a5a40a3 + % aga4ag
3 3
T 56 8™ T 350 M

Notice that that definition of Jo looks different from that of Shioda |20, page 1037], but that is because there J5 is
evaluated for

f(X,Y) = 28: (f) a; X'y’

i=0
Now we are ready to show that the syzygies in [20, Th. 5] are not correct. Below is an example of a genus 3
hyperelliptic curve with invariants which do not satisfy Shioda relations.

Example 1. Let a genus 3 hyperelliptic curve be given by the equation
Y=+ +2%+5+at+ 2P+ +a+1

Then, its invariants are

L9 8L 87T . 2187 6885
27 5773 T 2450 7t T 15687 70 1097607 “° T 43904
L8645 410427 231009 5972697
T 12293127 8 T 17210368’ 7 172103680 10 T 860518400
Then evaluating all expressions as in Shioda’s paper we have
3645 130491 15261615
= - 5 A7 = 5 Ag = — )
9604 439040 87808
130491 1414989 143437311
7= ) By = ————r, Bg = ——"—,
351232 172103680 21512960
809753208633 (. _ _51828148570131
9 = 376476800000 10 = T 150590720000
Do _ _ 10104738471171 _ 1097050897751848407621
10T T 385512243200 © C'® T T 925614895923200000

Substituting all these values in the first equation of |20, Thm. 5] we get the value

~ 546607935510034107123
462807447961600000

This implies that the relations determined by Shioda are not correct.

£0

Indeed, if you take any random binary octavics then its invariants will not satisfy the Shioda’s relations. Since
the results in [20] do not hold, then one needs to determine explicitly the algebraic relations between the invariants
in order to have an explicit description of the ring of invariants Rg and its field of fractions Sg. This will be our
goal for the rest of this paper.
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3.2.2. Algebraic dependencies among the invariants. In this section we will determine algebraic relations among
the invariants Js, ..., Js. We will use computational algebra techniques such as elimination by resultants, Groebner
bases, etc. Any computer algebra package can be used to reproduce our results. Once obtained, these results can

be easily verified. All our results are organized in a Maple package and will be freely made available at [19].

Without loss of generality we can assume that the generic binary octavic is given by
(12 FX, 1) = X(X —1)(X® —s1 X + 52 X3 — 53X2 + 54X — s5)
= X" — (s1 +1)XO + (52 +51)X% — (53 +52)X* + (54 +53) X3 — (54 + 55) X% + 55X

Denote by
a:=81,+83, b:=85+83, c:=83+ 584, d:= 84+ 85, S:= S5.
Then we have
fX,1)=X"4+(-14b—s+d—c—a)X®+aX® —bX* +cX® - dX? +sX
We first compute the Ja, ..., Jig for f(X,1).
Jo(f) = =355 +10d — 10db+ 10ds — 10d*> + 10dc + 10da — 5 ac + 2 b
J(f)==75 +75b— 75 s +75¢2d —75¢% — 75¢%a — 75da® — 120° 4+ 110db
—110db* 4 110 dbs — 110 d*b + 110 dbc + 110 dba + 175 as — 175 asb + 175 as”
—175asd + 175asc + 175 a*s — 735 bs + 175 dc + 45 cba,

J4,...,Jg are larger expressions and we do not display them.
Our goal is to express Jg, Jg, J1g in terms of Js, ..., J;. Indeed, from Thm. [5]it is enough to express Jg in terms
of Jo,...,J7. Since in [20] the syzygies include expressing Jo and Jy in terms of Js, ..., JJ; we will comment on

how that can be done also.
We have the following system of equations

Fy:=Jy — Jo(a,b,c,d,s) =0
F5:=Js— Js(a,b,c,d,s) =0
Fy:=Jy— Js(a,b,c,dys) =0
(13) Fs :=J5 — Js(a,b,c,d,s) =0
Fs := Js — Js(a,b,c,d,s) =0
Fr;:=J; — J7(a,b,c,d,s) =0
Fy:=Js — Js(a,b,c,d,s) =0

We compute the equation of Jg in terms of Js, ..., J; using the following technique. Take the resultant with
respect to a of the polynomials F;, Fg, for i = 2,...7. Let G; := Res(F;, Fg,a), for i = 2,...7. For each resultant
we want to factor the result and take the primitive part. It is exactly this part that is important and it is not
usually done by implementations of Grobener basis algorithms. In many cases the resultant will be factored to a
power or will have factors which imply that J14 = 0. Since we are computing in an integral domain, we cancel such
factors.

We continue now with the system G; := Res(F;, Fg,a), for i = 2,...7 and compute the resultants H; :=
Res(G;, Gr,b) for i = 2,...6. Hence, we are left 5 equations and transcendentals ¢, d, s. Continuing this process we
get a degree 8 equation of Jg in terms of the other Js, ..., J7, as expected by Shioda; see |20, pg. 1044]. Its leading
monomial has coefficient 22 - 320 . 512, Since we are assuming that the characteristic of the field is # 2,3,5, 7 then
we can divide by this coefficient. Hence, denote the minimal quintic by

J85+C4J§1+"~+01J8+00=0.

Since this equation is a homogenous equation of degree 40 in Js,...,Js, then all other coefficients of Jg are
homogenous polynomials in Js, ..., J; of degree 8, 16, 24, 32, 40 respectively. We denote the primitive part of each
of these coefficients by Is, I1g, I24, I32, L10-

For now on we use the following notation

Joi=a, Js:=b, Jy:=c¢, Js:=d, Jg:i=e, Jr:=Ff,

to display the expressions of Ig, I1g, I24, I32, I40-




SOME REMARKS ON THE HYPERELLIPTIC MODULI OF GENUS 3 9

Is = —277%a* + 225373302 ¢ + 2933 7%ab? + 225%7%ae — 223°527bd — 335%17¢2
Ie = 22375°7%a%d? 4+ 223%5%7 . 116c%d + 22587 a%e? — 2. 375%73abef + 293574 a%p?

—3.2%5%7% . 31a%ce — 22385573 acd® + 233*5°7%11%b% ce — 2 - 3°577%13a% 3 — 571735 72 ab? 2

+ 2939537503 b f + 223%5% 7% a?df + 273°527%a bd — 385773 af? — 2530547224 — 25375272 19b% ¢

— 22375772 d%e + 21171908 4 203452754307 c — 285%77 e — 223%5°7* 11a%bed + 273%5% 7% a?b%e

+2%3%5%75491a% c® — 29385273 ab®d — 29395377 f — 223°5%7% abde — 223°57 72 bef — 21132770502

+22325772601ac’e — 2'°3%527%a%¢c + 3°5°19¢* + 2235772 17cdf — 2 - 5277 ce?
The invariant I3o is an equation of degree 14, 8, 8, 4, 5, 4 in a, b, ¢, d, e, f respectively. We denote it as I3 =
Z;io b;J> and display its coefficients as follows:

by =—2%.3.7%.¢

by =221 . 5.7 .41 e
b12 :220 ) 34 . 52 . 716 . C2

by =2'%.3.7% ¢ (13.824b2 - 1401255)

big =2 . 5. 7. (—466560bcd — 874800df — 283392b%e — 246375¢° + 401750e2)

14

bg =24 .32 .5% . 712 <370440dbe — 90720bcf — 157248b%c? — 510300cd” + 1055875ec? + 595350f2)

bs =237 (988722000b% ce + 1190700000bc>d + 3051168750cdf + 1190700000d>e — 48771072b% ¢
— 1189015625¢%¢ — 100453125¢*)

Next we describe Ig. It is a degree 17 polynomial in Jo and we denote it by I4g = 2307 A;Ji. Then, we have

Ay = 933 | 722
A16:228~32~5'721'(12
A5 =2%8.3.5%. 7% . ce
Ay =222 .5.7'8 <193536b23 — 22342563 — 266875e2)
Ay =224 .34 .52 . 717 (7168b202 — 1975¢%e — 1890 f2 — 1680bde + 504bcf>

__ ol8 3 16 2 2 4 2 2
Agp =28 .3.5% . 710 (4898880cdf — 6531840d>e + 2668750ce” + 924075¢* + 326592bc>d — 1935360b° ce
Ay =29 .5.75 (1020600000bcde + 9651960067 — 172226250c%d* — 41803776b"e + 143184375c%¢

+115290000b% e + 602791875 f%c — 71225000e> — 306180000bc> f + 1262992500def)

The other coefficients are displayed in the Appendix of the extended paper in [19]. The solution to the following
problem would provide a more elegant treatment of these results.

Problem 1. Ezxpress all invariants Ig, I1g, o4, I32, 149 in terms of the transvectants of the binary octavics.

We summarize the above in the following theorem.

Theorem 6. The invariants Jo, . .., Js satisfy the following equation
I I I I I
5 8 14 16 43 24 2 32 40 .
(14) Js + 34.53‘]8 +2 38_56J8 + 2,312.56J8 + 316.510']8+ 92.320 . 512 =0,

Proof. To prove that this relation holds we take a generic octavic
8
flz,2) = Z aix' 280
i=1

Compute the invariants Js, ..., Js and substitute them in the Eq. . We see that the equation is satisfied. This
completes the proof.
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Remark 4. i) In terms of the coefficients of the binary octavic the above equation is a degree 40 homogenous
equation.

it) The equation has degrees in J;, i = 2,...,8, respectively 17, 10, 10, 6, 6, 5, 5.

iii) Similar relations as that in previous Theorem can be determined for Jo and Jig in terms of Jo,...,J7.
However, such relations, as expected, are too long to display.

iv) In 20| it is commented that the field of fractions of R is determined by a degree 5 equation

J85+CL1J§+...045:O,

where ay, . ..,as are homogenous elements in Q[Ja,. .., J7| but are not computed; see page 1043. That equation is

precisely Eq. .
v) All coefficients of these equation can be expressed in terms of the transvectants of binary octavics.
vi) The reader can check the correctness of the above equation in [19)

Lemma 5. The following hold true for any octavic.

i) If an octavic has a root of multiplicity exactly four then
IS —_ 211 . 36 . 54 . 7,8’ I16 _ 222 . 312 . 57 ,’,,16, 1‘24 _ 235 . 318 . 57 T24,
(15) Isp = 244324 511,82 [ 957 330 512,40

for some r # 0. Moreover, if the octavic has equation
fla,y) = ot (az® + b2y + ex®y® + day® + ey?),

then r =e.
it) If an octavic has a root of multiplicity 5 then

Igi:07 fO’I’ Z:1,75

Proof. i) The proof follows Theorem [4] part i) or by direct computation.
ii) Since all Ig; for ¢ = 1,...,5 are all homogenous polynomials in terms of Ja,...,J; this is an immediate
consequence of Theorem [ O

Corollary 2. If Jy = J5 = Jsg = J7 =0, then Isy = I30 = I49 = 0. In this case, the Eq. becomes
Jg (—10125Jg + 107564875 — 42336.J3 Jg) =0

The equation Eq. corrects the result of [20, Thm. 1]. To compute the other syzygies we follow a similar
technique replacing Jg by Jy or Jig. Indeed, both such cases are a bit easier from the computational point of view.
For our purposes of determining the field of invariants Sg the Eq. is enough.

k[Ao, ... As]
SLa(k) Ss = F(Rs)
/ i
Rs = P[Js] F(P)
5 /
P=k[Js,...,Jq|

F1GURE 1. The ring of invariants Rg and its field of fractions



SOME REMARKS ON THE HYPERELLIPTIC MODULI OF GENUS 3 11

Example 2. Let C be the generic genus 3 hyperelliptic curve with automorphism group Aut(C)=Zs x Dg. Then
C has equation

C:y?=ab4+ X2 +1

Then, invariants Is;, i = 1,...5 of the corresponding binary form are given below.

Ig = — 2134 5% (9A% — 2450) (A — 14)> (A + 14)°

L =222 3% 57 (922 +980) (312 —1960) (A — 14)° (A + 14)°

Iy = —2%.312.57 (9A% — 9310) (9A% + 980)° (A — 14)? (A + 14)°

Igp =2*4.316 .51 (90% — 12740) (922 +980)" (A — 14)"% (A 4 14)"2

Lo = — 257371512 (3X% = 5390) (9A% +980)" (A — 14)'7 (A + 14)°
If X2 =14 then Is; = 0, fori =1,...,5 and J; = 0 fori = 4,...,8. This corresponds to the single curve with
automorphism group Aut(C) =7y x Sy.
Theorem 7. Two genus 3 hyperelliptic curves C and C' in Weierstrass form, given by equations

C:7%=f(X,Y) and C': 2* = g(X,Y)
are isomorphic over k if and only if there exists some X € k \ {0} such that
Ji(C) = NoJ,(C, for i=2,...,1,
and Js, ... Jg satisfy the Eq. , Moreover, the automorphism is given by
C =

X X
HRsH
where M € GLy(k) and X = (det M)*.

Proof. The proof follows directly from the properties of invariants and Lemma
O
The above theorem gives a necessary and sufficient condition for two hyperelliptic curves to be isomorphic.
However, GL(2, k)-invariants are preferred for identifying the isomorphism classes of curves. In order to find such
invariants we need to determine the field of fractions of Rg = k[Js, ..., J7, Jg].

3.3. On the invariant field of GLs(k). Let us assume that Js, J3, Jy, J5 are all nonzero. Define the invariants

J2 Ji Js Jo s s

16 t1 ===, ty:i=—, 13: : = tg i = —.
(16) R A - A A A Jp-Js 0T B

= — . 5

Such invariants have the same degree in numerator and denominator, therefore they are GL(2, k)-invariants. Hence,
t1,...,tg € Sg. For analogy with the genus 2 case, we call them absolute invariants. For any two isomorphic
genus 3 hyperelliptic curves C' and C’ we have t;(C) = ¢;(C’), for j =1,...,6. We would prefer an if and only if
statement.

By substituting in Eq. get an affine equation of the hyperelliptic moduli of genus 3 as

(17) T(ti,... ts) =0

This is an algebraic variety of dimension 5. It has degrees in t¢1,...,tg respectively as 5, 10, 6, 6, 5, 5 and it has
25 464 terms. We denote this variety by T3. The equation of T3 is explicitly computed and very useful in the
arithmetic of genus 3 curves. The reader can check it at [19)].

Then we have the following theorem.

Theorem 8. The field of invariants of binary octavics is Ss = k(t1,...,tg), where t1,...,ts satisfy the equa-

tion .
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Proof. The proof of the theorem follows directly from Thm. 5 in Shioda. However, since that is based on Thm. 1
which contains syzygies which are incorrect, we provide a direct proof for this result.

We denote the roots of the octavic f(X,Y) by («y, 8;). Every g € GLa(k) which fixes f(X,Y) permutes these
roots. Thus there is an Sg action on {ay,...,ar}. The fixed field is the invariant field of GLy(k) which we denote
by Ss. We can fix a5 = 0, ag = 1, and ay = co. Let s1,...,s5 denote the symmetric polynomials of ag, ..., a4.
Then [k(ag, ..., 04) : k(s1,...,55)] = 120. Thus, [k(s1,...,55) : Sg] =6-7-8 = 336.

E(ag, ..., 04)
120
k(s1,...,85)
336
S
k(ty,...,te)
5
E(ty,...,ts5)

Our goal is to determine Sg.

Since ti,...,ts are GL(2, k)-invariants then k(t1,...,ts) C Ss. We know that [k(t1,...,t6) : k(t1,...,5)]
since the degree in tg of the irreducible polynomial from Eq. is 5. If we show that [k(s1,...,85) : k(t1,...,t5)] =
5 - 336, or equivalently [k(s1,...,s5): k(t1,...,ts)] = 336 then we are done.

The proof is computational. Compute ¢1,...,t5 in terms of s1,...,s5. This is computationally easy and we do
not display these expressions here. By Bezout’s theorem we know that the degree d = [k(s1,...,s5) : k(t1,...,t5)]
isd<6-4-5-6-7, because the degrees of i1, . ..,i5 are respectively 6, 4, 5, 6, 7. There is at least one more solution

at infinity. Moreover, d must be divisible by 5 - 336. Hence, d =5-336 or d =2 -5 - 336.

From the system of equations we eliminate first s5. Continuing via the resultants we eliminate also s; and sy4.
We are left with two equations of degree 36 and 56. From Bezout’s theorem, the degree d < 36 - 56 and divisible
by 1680. Hence d = 1680 and the proof is complete.

O

Corollary 3. Two hyperelliptic genus 3 curves with nonzero invariants Js, J3, Jy, J5 are isomorphic if and only
if they correspond to the same point on the algebraic variety Ts.

Proof. The proof is an immediate consequence of the previous Theorem.
O
Since the moduli space of hyperelliptic curves is a rational variety then 73 must have a birational parametrization.
Finding such parametrization via an equation of this size is very difficult.

3.4. Cases when tq,...,ts are not defined. To describe the moduli points in cases when absolute invariants are
not defined is not difficult. In this case, one has to treat each case separately when any of the invariants Js, ... Js
are zero.
Indeed, we can define invariants depending of which of the invariants is nonzero. If Jy # 0, then we define
PO R N S O SR SN
1_J§7 2_.]227 3_J257 4_J§)7 5_Jga G_Jé
If J5 = 0 then we pick the smallest degree invariant among Js, ..., J7 which is not zero. This is possible because
if Jo =+ = J; =0, then from Lemma [4] the binary octavic has a double root, hence we don’t have a genus 3
curve. For example, if J3 # 0, then we define
. J Jy . Jg . J3 J3
11 = —

==, log=——, i3 4= —, I5= —F
2 ’ ’ 40 5
J3 Js - Jy Js - J5 J3 J3
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Such invariants have high degree in some cases and therefore are not suitable for computations. Hence, we prefer
invariants t1,...,tg defined in Eq. .

In the next example we see what happens in the case when all J, = J3 = Jy = J5 = 0. We see that we get a
genus 0 curve in the hyperelliptic moduli Hs.

Example 3. Let us assume that Jo = J3 = Jy = J5 = 0. In this case Ig and Is = I14 =0 and
Iy = —2679687500000u”,
I35 = —3204948120117187500 u> v2,
Ly = —306653442317962646484375 u? v*

where u,v € kla,b,c,d,e]. Moreover,
(25194 Iyg — 2135) (25194 Iy + 213,) = 0
In this case, the Eq. (14) becomes
2125764 J3 — 343000000 Jg J2 + 16206750000 Jg J7 Jg — 191442234375 J3 J7 =0
By defining
6 3
S/ |
e - o740
JG J6
the Eq. (14) becomes
—1064211156161261718750000000000 71 72 + 40353607000000000000000000 7>
+4649919888623184000000 72* — 9606056659007943744 155 — 750282026508000000000000 72>
+7016382605513364494808197021484375 712 — 19786546042268119734375000000 71 722 = 0

This is a genus 0 curve that can be parametrized as follows
(t + 211 39 518 712)2 24 56 73 (t + 211 39 518 712)2
5 ’ 2= o 2

It is possible in this case to express the equation of the curve in terms of the parameter t.

= 246 36 560 736 .

3.5. A computational package for genus 3 hyperelliptic curves. All the computational results described in
this paper are implemented in a Maple package which is made freely available at |[19]. This package among other
things computes the following:

i) Invariants J; for i« = 1,...,10. Their formulas are given in terms of the coefficients of a generic octavic
8
FXY) =) a; XY
i=1

and can be evaluated on any given octavic.

ii) Invariants I5;, for ¢ = 1,...,5. Their formulas are given in terms of Js,...,J7 and can be evaluated on any
octavic.

iii) The equation ([14]) in terms of the invariants Js, ..., Js.

iv) The equation in terms of invariants iy, . .., ig.

Some problems which we are further studying are finding a minimal model of a genus 3 curve over its minimal
field of definition, determining an algorithm which determines when the field of moduli is a field of definition, and
describing the loci of curves with fixed automorphism group in terms of invariants tq,...,ts. For some of these
problems and new addtional features on computational aspects of genus 3 hyperelliptic curves the reader can check
[19].

An extended version of these paper with all equations displayed in its Appendix is posted in [19].

Acknowledgments: We want to thank the anonymous referee for useful suggestions on improving this paper.
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