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Abstract

We consider families of curves with extra automorphisms in H3, the
moduli space of smooth hyperelliptic curves of genus g = 3. Such families
of curves are explicitly determined in terms of the absolute invariants of bi-
nary octavics. For each family of positive dimension where |Aut (C)| > 4,
we determine the possible distributions of weights of 2-Weierstrass points.

1 Introduction

In this paper, we focus primarily on 2-Weierstrass points on hyperelliptic curves
of genus 3 with extra automorphisms. Our goal is to classify the 2-Weierstrass
points in terms of the coordinates of the hyperelliptic moduli H3. This follows
[9], where the authors classify 3-Weierstrass points on curves of genus 2 with
extra automorphisms.

We fix a group G which acts on a genus 3 hyperelliptic curve as a full auto-
morphism group. For a given signature, the locus of curves with automorphism
group G is an irreducible locus in the hyperelliptic moduli H3. We focus on the
groups G which determine a family of dimension d > 0 in H3. A complete list
of such groups, signatures, and inclusions among the loci is given in [12]. The
locus of curves C with the Klein four-group V4 ↪→ Aut (C) is a 3-dimensional
locus in H3. The appropriate invariants in this case are the dihedral invariants
s2, s3, s4 as defined in [15]. All the other cases can be described directly in terms
of absolute invariants t1, . . . , t6 or their equivalents as defined in [13]. Our main
result is the following:

Theorem. Let G be a group with |G| > 4 such that the corresponding locus
H3(G) has dimension d > 0 in H3. Let p ∈ H3(G), s2, s3, s4 its corresponding
dihedral invariants, and C a representative for p. Then each branch point of
the hyperelliptic projection π : C → P1 has 2-weight 6 and one of the following
holds:

i) If Aut (C)∼=Z3
2, then C has non-branch 2-Weierstrass points of weight

greater than one if and only if s2, s3, s4 satisfy(
16 s2

3 − 784 s2
2 + 56 s2s3 − s3

2
)
G(s2, s3) = 0,
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where G(s2, s3) is given as in Eq. (10).
ii) If Aut (C)∼=Z2 ×D8, then C has exactly four non-branch 2-Weierstrass

points of weight 3, unless C is isomorphic one of the curves

y2 = tx8 + tx4 + 1,

for t = 196 (resp. t = − 196
15 ) in which case it has in addition 8 other points of

weight 3 (resp. 16 points of weight 2).
iii) If Aut (C)∼=D12 then C has non-branch 2-Weierstrass points with weight

greater than one if and only if C is isomorphic to one of the curves

y2 = x(tx6 + tx3 + 1),

for t = − 49
8 or t = 1728

8 ± 621
4

√
2. In the first case, the curve has twelve 2-

Weierstrass points of weight 3 and in the other two cases twelve 2-Weierstrass
points of weight 2.

iv) If Aut (C)∼=Z2×Z4 then C has 2-Weierstrass points if and only if C is
isomorphic to one of the curves y2 =

(
tx4 − 1

) (
tx4 + tx2 + 1

)
, for t = −8 or

it is a root of

t8 + 600822 t7 + 71378609 t6 + 4219381768 t5 + 85080645104 t4 − 2272444082944 t3

+16480136388352 t2 − 50330309965824 t+ 56693912375296 = 0.

In the first case, the curve has two 2-Weierstrass points of weight 3.

This paper is organized as follows. In Section 2 we give some basic prelimi-
naries for Weierstrass points and their weights. We also give an introduction to
genus 3 hyperelliptic curves with extra involutions and their dihedral invariants.

In Section 3 we focus on the q-Weierstrass points of genus 3 curves for
q = 1 and 2. We show how to construct of basis for the space of holomorphic
q-differentials. We use this basis for our computations in Section 4.

In Section 4 we compute the Wronskian Ωq for q = 2 in terms of coordinates
in the hyperelliptic moduli for each case when the group G has size |G| > 2 and
the G-locus has dimension d > 0. Computations are challenging, especially in
the case of G∼=V4. In this case we make use of the dihedral invariants s2, s3, s4
which make such computations possible.

2 Preliminaries

Below we give definitions of ordinary and higher-order Weierstrass points and
establish some of the basic facts about these points on curves over C. For more
information, the reader is encouraged to see [2, 10,11,14].

Let C be a non-singular projective curve over k = C of genus g, and let k(C)
be the associated function field. For any f ∈ k(C), div(f) denotes the divisor
associated to f , div(f)0 and div(f)∞ respectively the zero and pole divisors of
f . For any divisor D on C, we have D =

∑
P∈C nPP for nP ∈ Z with almost

all nP = 0. Let νP (D) = nP , and let νP (f) = νP (div(f)).
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For any divisor D on C, let L(D) = {f ∈ k(C) : div(f) +D ≥ 0} ∪ {0} and
`(D) = dimk(L(D)). By the Riemann-Roch theorem, for any canonical divisor
K, we have

`(D)− `(K −D) = deg(D) + 1− g.
Since the degree of a canonical divisor is 2g − 2, and since L(D) = {0} for any
divisor D with negative degree, if deg(D) ≥ 2g − 1, then deg(K − D) < 0, so
`(K −D) = 0. Thus, if deg(D) ≥ 2g − 1, then `(D) = deg(D) + 1− g.

Let P be a degree 1 point on C. Consider the chain of vector spaces

L(0) ⊆ L(P ) ⊆ L(2P ) ⊆ L(3P ) ⊆ · · · ⊆ L ((2g − 1)P ) .

Since L(0) = k, we have `(0) = 1. And ` ((2g − 1)P ) = g. We obtain the
corresponding non-decreasing sequence of integers

`(0) = 1, `(P ), `(2P ), `(3P ), . . . , ` ((2g − 1)P ) = g.

If `(nP ) = `((n− 1)P ), then we call n a Weierstrass gap number. Weierstrass’
Lückensatz (“gap theorem”), from the 1860s, states that for any point P there
are exactly g Weierstrass gap numbers. If the gap numbers are 1, 2, . . . , g, then
P is an ordinary point. Otherwise, we call P a Weierstrass point. (Equivalently,
we call P a Weierstrass point if `(gP ) > 1, which is the case when there is some
f ∈ k(C)× with div(f)∞ = mP for 1 < m ≤ g.)

An integer n is a gap number when `(nP ) = `((n − 1)P ), which occurs
exactly when `(K − (n− 1)P )− `(K −nP ) = 1, for K a canonical divisor of C.
This means there is some f ∈ k(C)× such that div(f)+K ≥ (n−1)P but 6≥ nP .
Thus, there’s a differential dx with div(dx) = K so that νP (f · dx) = n − 1.
Further, f · dx is a holomorphic differential.

Using Riemann-Roch, since `(K) = g, the space H0(C, (Ω1)) of holomorphic
differentials has dimension g. If two basis elements have the same order of
vanishing, there is a linear combination of the two elements that has a higher
order of vanishing. Thus, a basis can be chosen such that the orders of vanishing
at P are all different, and P is an ordinary point when these orders of vanishing
are {0, 1, 2, . . . , g − 1}; otherwise P is a Weierstrass point.

Above, we considered the spaces L(K − nP ). Now, fix q ∈ N and consider
L(qK −nP ). Analogously, if `(qK − (n− 1)P )− `(qK −nP ) = 1, then there is
a holomorphic q-differential with a zero of order n − 1 at P . Let H0(C, (Ω1)q)
denote the space of holomorphic q-differentials on C, with its dimension denoted
by dq. By Riemann-Roch,

dq =

{
g if q = 1,

(g − 1)(2q − 1) if q > 1.

As before, we take a basis {ψ1, . . . , ψdq} of H0(C, (Ω1)q) such that

ordP (ψ1) < ordP (ψ2) < · · · < ordP (ψdq ).

For i = 1, . . . , dq, let ni = ordP (ψi) + 1. The sequence of natural numbers
G(q)(P ) = {n1, n2, . . . , ndq} is called the q-gap sequence of P . With such a
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gap sequence, we can calculate the q-weight of P , denoted wt(q)(P ), given by

wt(q)(P ) =
∑dq
i=1(ni−i). We call the point P a q-Weierstrass point if wt(q)(P ) >

0.
Given a basis {ψ1, . . . , ψdq} of H0(C, (Ω1)q), where ψi = fi(x)dx for a holo-

morphic function fi of a local coordinate x for each i, the Wronskian is the
determinant of the following dq × dq matrix:

W = W (f1(x), . . . , fdq (x)) =

∣∣∣∣∣∣∣∣∣∣
f1(x) f2(x) · · · fdq (x)
f ′1(x) f ′2(x) · · · f ′dq (x)

...
...

. . .
...

f
(dq−1)
1 (x) f

(dq−1)
2 (x) · · · f

(dq−1)
dq

(x)

∣∣∣∣∣∣∣∣∣∣
.

The Wronskian form is Ωq = W (dx)m, for

m = q + (q + 1) + (q + 2) + · · ·+ (q + dq − 1) =
dq
2

(2q − 1 + dq).

The following result is due to Hurwitz. For a proof, see [11].

Theorem 1 (Hurwitz). P is a q-Weierstrass point with weight wt(q)(P ) = r
if and only if P is a zero of multiplicity r for the Wronskian form Ωq (or,
equivalently, in the support of div(Ωq)).

Since the Wronskian form is a holomorphic m-differential, div(Ωq) is effec-
tive. Thus, the q-Weierstrass points are the support of div(Ωq), and the sum
of the q-weights of the q-Weierstrass points is the degree of div(Ωq), which is
m(2g − 2) = dq(2q − 1 + dq)(g − 1). In particular, this means there are a finite
number of q-Weierstrass points.

Let W(C) denote the set of all Weierstrass points and Wq(C) the set of
all q-Weierstrass points on C. W1(C), the set of 1-Weierstrass points on C,
is exactly the set of Weierstrass points described earlier. We summarize some
properties in the following lemma; see [10, Section III.5] for details.

Lemma 1. Let C be a genus g ≥ 2 curve. The following hold:
i) There are q-Weierstrass points for any q ≥ 1.
ii) For q > 1 ∑

P∈C
wt(q)(P ) = g(g − 1)2(2q − 1)2.

iii) 2g + 2 ≤ |W1(C)| ≤ g3 − g.

Now we give some results specific to the g = 3 case.

Example 1. For g = 3 we have dq = 2(2q − 1). The total weight is 24 for q = 1
and for q > 1 is ∑

P∈C
wt(q)(P ) = 12(2q − 1)2.

Notice that for q = 2 we have d2 = 6 and the total weight is 108. For q = 3,
d3 = 10 and the total weight is 300. In these cases we have, respectively, a 6×6
and a 10× 10 Wronskian.
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In Section 3, we give the following result for q = 2, cf. Remark 2.

Remark 1. Let C be a genus 3 hyperelliptic curve. For any point P ∈ C, the
2-weight of P is wt(2)(P ) ≤ 6. Further, if wt(2)(P ) = 6, then P ∈ W1(C). If
P /∈W1(C), then wt(2)(P ) ≤ 3.

Let C be a genus 3 hyperelliptic curve defined over C, K its function field,
and G be the full automorphism group G := Aut (K). All such groups G have
distinct ramification structures and therefore there is no confusion to denote
such locusH3(G) for any fixed G. In this paper we will make use of the following
facts, which are proven in [15, Sections 3 – 5].

Lemma 2. Let C be a genus 3 hyperelliptic curve defined over a field k with a
non-hyperelliptic involution. Then C is given by the equation y2 = x8 + ax6 +
bx4 + cx2 + 1 for some a, b, c ∈ k.

The dihedral invariants of C are s2, s3, s4 where s2 = ac, s3 = (a2 + c2)b,
and s4 = a4 + c4.

Theorem 2. Let C be a genus 3 hyperelliptic curve such that |G| > 2 and
dimH (G) ≥ 1. Then, one of the following holds:

i) G∼=V4 and the locus H(V4) is 3-dimensional. A generic curve in this
locus has equation

y2 = Ax8 +
A

s4 + 2s22
x6 +

s3(A+ s22)

(s4 + 2s22)3
x4 +

s2
(s4 + 2s22)3

x2 +
1

(s4 + 2s22)4
(1)

where A satisfies A2 − s4A+ s42 = 0.
ii) G∼=Z3

2 and the locus H(Z3
2) is 2-dimensional. A generic curve in this

locus has equation

y2 = s22x
8 + s22x

6 +
1

2
s3x

4 + s2x
2 + 1. (2)

iii) G∼=Z2×D8 and the locus H(Z2×D8) is 1-dimensional. A generic curve
in this locus has equation

y2 = tx8 + tx4 + 1. (3)

iv) G∼=D12 and the locus H(D12) is 1-dimensional. A generic curve in this
locus has equation

y2 = x (tx6 + tx3 + 1). (4)

v) G∼=Z2 ×Z4 and the locus H(Z2 ×Z4) is 1-dimensional. A generic curve
in this locus has equation

y2 =
(
tx4 − 1

) (
tx4 + tx2 + 1

)
. (5)

Notice that in each case of the above, it is assumed that the discriminant of
the polynomial in x is not zero.
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3 2-Weierstrass points for genus 3 hyperelliptic
curves

Let C be a hyperelliptic curve of genus g = 3 given by y2 = f(x) with deg(f) =
8. Let {α1, . . . , α8} denote the eight distinct roots of f(x), and for each i let
Ri = (αi, 0) denote the corresponding ramification points on C. Throughout
this section, let ω ∈ C denote any non-root of f(x), and let Pω1 and Pω2 denote
the two (distinct) points above ω. And let P∞1 and P∞2 denote the two points
over ∞ in the non-singular model of C.

Here are the divisors associated to some functions and the differential dx:

• div(y) =

8∑
i=1

Ri − 4(P∞1 + P∞2 ),

• div(x− αi) = 2Ri − (P∞1 + P∞2 ),

• div(x− ω) = Pω1 + Pω2 − (P∞1 + P∞2 ).

• div(dx) =

8∑
i=1

Ri − 2(P∞1 + P∞2 ),

In particular, note that div(dx/y) = 2(P∞1 + P∞2 ), which is effective. With
these divisors, we can explicitly construct bases of H0(C, (Ω1)q) for all q ≥ 1.
For dq = dimH0(C, (Ω1)q) and g = 3, we have d1 = 3 and dq = 4q−2 for q ≥ 2.

Theorem 3. Let C be a hyperelliptic curve of genus g = 3 given by the equation
y2 = f(x) with deg(f(x)) = 8. For any β ∈ C, one has the following bases of
holomorphic q-differentials.

For q = 1, a basis for H0(C, (Ω1)1) is

B1,β =
{

(dx/y), (x− β)(dx/y), (x− β)2(dx/y)
}
.

For q ≥ 2, a basis for H0(C, (Ω1)q), is

Bq,β =
{

(x− β)j(dx/y)q : 0 ≤ j ≤ 2q
}
∪
{

(x− β)ky(dx/y)q : 0 ≤ k ≤ 2q − 4
}
.

Note that the only poles occur at infinity, so to prove this, one needs to
ensure that the pole orders are different and that there are dq elements. For a
proof, see [4, 2.1, Example (ii)].

Using these bases, we can calculate q-weights of ramification points.

Corollary 1. Let R be any ramification point on C. For q = 1, the 1-gap
sequence of R is {1, 3, 5}, so wt(1)(R) = 3. For any q ≥ 2, the q-gap sequence
of R is {1, 3, 5, . . . , 4q + 1} ∪ {2, 4, 6, . . . , 4q − 6}, so wt(q)(R) = 6.

Hence, for q ≥ 2 the eight branch points contribute 8 · 6 = 48 to the total
weight of q-Weierstrass points on the curve.

In particular, the 2-gap sequence for a branch point is {1, 2, 3, 5, 7, 9}. The
corollary below gives the 2-gap sequence for a non-branch point.
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Remark 2. Following from [8], the possible 2-gap sequences of 2-Weierstrass
points on a curve of genus 3 are given in [1, Lemma 5]. From this, we see that if
Pωi is a non-branch point on a hyperelliptic curve of genus 3, the 2-gap sequence
contains 4 and 5, so wt(2)(Pωi ) ≤ 3.

We can use divisors to characterize the non-branch 2-Weierstrass points.

Proposition 1. For the curve C given by y2 = f(x) and non-branch point Pωi
above x = ω, let h(x) = f(x)1/2, chosen so that Pωi lies on the curve y = h(x).
Let

N = min
{
n ∈ N : n ≥ 5, h(n)(ω) 6= 0

}
,

where h(n)(x) denotes the nth derivative of h(x). Then wt(2)(Pωi ) = N − 5 and
5 ≤ N ≤ 8. Thus, Pωi is a 2-Weierstrass point if and only if h(5)(ω) = 0.

Proof. Let

Tω,4,i(x) =

4∑
n=0

h(n)(ω)

n!
(x− ω)n,

the fourth degree Taylor polynomial for h(x) at x = ω. As in Theorem 3, the
set

{(x− ω)j(dx/y)2 : 0 ≤ j ≤ 4} ∪ {(y − Tω,4,i(x)) (dx/y)2}
is a basis for H0(C, (Ω1)2). The orders of vanishing at Pωi are

νPω
i

((x− ω)j(dx/y)2) = j for 0 ≤ j ≤ 4,

and

νPω
i

(
(y − Tω,4,i(x))(dx/y)2

)
= νPω

i

( ∞∑
n=5

h(n)(ω)

n!
(x− ω)n

)
= N.

Thus, the 2-gap sequence of Pωi is {1, 2, 3, 4, 5, N + 1}, and so wt(2)(Pωi ) =
N − 5. Thus, Pωi is a 2-Weierstrass point precisely when N > 5. Finally, since
wt(q)(Pωi ) ≤ 3 by Remark 2, we see N ≤ 8.

Of course, we can perform these calculations with the Wronskian as well.
With the basis {xj(dx/y)2 : 0 ≤ j ≤ 4} ∪ {y(dx/y)2} of H0(C, (Ω1)2), the
Wronskian is

W = W

(
1

y2
,
x

y2
,
x2

y2
,
x3

y2
,
x4

y2
,
y

y2

)
=

1

y12
W (1, x, x2, x3, x4, y).

Thus, W =
1

y12

(∏4
i=0 i!

)
y(5), so the Wronskian form is Ω2 = W (dx)27. Since

y2 = f(x), five derivatives will yield y(5) = φ(x)/y9 for some polynomial φ(x)
of degree at most 29 (depending on f(x)). That is,

Ω2 =

(
4∏
i=0

i!

)
φ(x)

y21
(dx)27.

Thus,
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div(Ω2) = div(φ(x))− div(y21) + div((dx)27)

= div(φ(x))0 + 6

(
8∑
i=1

Ri

)
+ (30− deg(φ))(P∞1 + P∞2 ).

We see that the branch points have 2-weight 6 and the other 2-Weierstrass
points are the zeros of y(5). Note that this result agrees with Corollary 1 and
Proposition 1. Also, the points at infinity are 2-Weierstrass points with 2-weight
30− deg(φ).

4 Computation of 2-Weierstrass points

In this section we will study the distributions of 2-Weierstrass points for curves
in each family H3(G) such that dimH3(G) > 0; that is, for curves with full
automorphism group isomorphic to V4,Z3

2,Z2 × D8, D12, or Z2 × Z4. These
families are described in Theorem 2. For our computations, we make use of the
dihedral invariants and the results in [15]. We also need the following elementary
result.

Lemma 3. Let f(x) =
∑n
i=0 ai x

i and g(x) =
∑m
i=0 bi x

i be polynomials with
no common roots. Then, the discriminant of f(g(x)) is given by

∆f◦g = (−1)
mn(3mn−2m−1)

2 · am−1n · bn(nm−m−1)m ∆m
f · Res(f(g(x)), g′(x))

Moreover, if f(x) =
∑n
i=0 ai x

i and g(x) = xm. Then, the discriminant of f ◦ g
is

∆f◦g = (−1)
mn(3mn−2m−1)

2 · am−1n ∆m
f · Res(f(xm),mxm−1) (6)

Proof. The first part of the Lemma is proved by J. Cullinan in [5]. To prove
the second part we have to compute Res(f(xm),mxm−1). Indeed,

Res(f(xm),mxm−1) = .....

This completes the proof.

Remark 3. Notice that if f(x) =
∑n
i=0 ai x

i and g(x) = x2. Then, the discrim-
inant of f(x2) is

∆(f(x2) = (−1)n · 22n · a0an ·∆2
f . (7)

4.1 The case Aut (C)∼= V4.

Let C be a genus 3 hyperelliptic curve with a non-hyperelliptic involution. From
Lemma 2, we know that the equation of C can be given by y2 = f(x), for

f(x) = x8 + ax6 + bx4 + cx2 + 1. (8)

The Wronskian form is

Ω2 =
1

y12
W (1, x, x2, x3, x4, y) = 4320

xΦ(x2)

y21
(dx)27,
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where Φ(x) is a polynomial of degree 14 which depends on a, b, c. We don’t
display its coefficients since they are large.

Let Φ(x2) =
∑14
i=0 cix

2i. The leading coefficient c14 and the constant term
c0 are

c14 = −3a3 + 12ab− 24c and c0 = −(−3c3 + 12bc− 24a).

In general, the coefficients ci and c14−i differ by a permutation of a and c and a
factor of −1. In other words the permutation of the curve τ1 : (x, y)→

(
1
x ,

y
x4

)
which permutes coefficients a and c of te curve given in Eq. (8) acts on the
coefficients of Φ(x) by

τ1(ci) = −c14−i.

Computing the discriminant ∆(Φ, x) we get the following factors:

∆ = 216 c0c14 · g(a, b, c)2 ·∆(f, x)28,

where g(a, b, c) is a degree 24, 28, 24 polynomial in terms of a, b, c respectively.
We know that ∆(f, x) 6= 0. Let us assume that c0c14 6= 0. Then, the 2-
Weierstrass points are those when g(a, b, c) = 0. The polynomial g(a, b, c) can
be easily computed. However, the triples (a, b, c) do not correspond uniquely to
the isomorphism classes of curves. Naturally we would prefer to express such
result in terms of the dihedral invariants s2, s3, s4. One can take the equations
g(a, b, c) = 0 and three equations from the definitions of s2, s3, s4 and eliminate
a, b, c. It turns out that this is a challenging task computationally.

Hence, we continue with the following approach. From Theorem 2, we know
that a curve C with Aut (C)∼=V4 is isomorphic to a curve with equation

y2 = Ax8 +
A

s4 + 2s22
x6 +

s3(A+ s22)

(s4 + 2s22)3
x4 +

s2
(s4 + 2s22)3

x2 +
1

(s4 + 2s22)4

where A satisfies
A2 − s4A+ s42 = 0, (9)

for some (s2, s3, s4) ∈ k3 \ {∆s2,s3,s4
= 0}).

The numerator in the Wronskian form is a degree 29 polynomial in x written
as xφ(x2). From Lemma 3, it is enough to compute the discriminant of the
polynomial φ(t), where t = x2. This is a degree 14 polynomial. Its discriminant
is a polynomial G(A, s2, s3, s4) in terms of s2, s3, s4 and A. Then, the relation
between s2, s3, s4 is obtained by taking the resultant Res (G,A2− s4A+ s42, A).
The result is quite a large polynomial in terms of s2, s3, s4. Fortunately, it turns
out that the remaining cases are much easier.

Remark 4. The equivalent statement of Theorem 2, i) is proved in [3] for any
genus g ≥ 3. Also the s-invariants are defined for every g > 3. Hence, this
method will work for any g > 3. With some modifications the method works
for all superelliptic curves as in [12].
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4.2 The case Aut (C)∼=Z3
2.

Proposition 2. Let C be a genus 3 hyperelliptic curve with full automorphism
group Z3

2. Then, C has non-branch 2-Weierstrass points of weight greater than
one if and only if its corresponding dihedral invariants s2, s3, s4 satisfy Eq. (10)

∆ =
(
−784 s22 + 16 s32 + 56 s2s3 − s23

)
G(s2, s3) = 0 (10)

where

G = 617400s
9
3 + 180s2 (315560 + 871s2) s

8
3 + 2s

2
2

(
4023040s2 + 970717440 + 31077s

2
2

)
s
7
3

+ s
3
2

(
9s

3
2 − 3251241728s2 + 31937525760 + 5011112s

2
2

)
s
6
3 + 8s

4
2 (−9204034560s2

−105048636s
2
2 + 15801s

3
2 + 41193015808

)
s
5
3 − 16s

5
2

(
22041513s

3
2 + 59872104320s2

+11s
4
2 − 4535327496s

2
2 − 193117539328

)
s
4
3 − 256s

6
2

(
−2870647262s

2
2 − 73789452800

+34876810752s2 − 47803959s
3
2 + 54199s

4
2

)
s
3
3 − 256s

7
2

(
5s

5
2 − 41807037944s

2
2

+2624158985s
3
2 − 19769334s

4
2 + 283441853184s2 − 365995685888

)
s
2
3 − 2048s

8
2

(
308705831s

3
2

+28144998s
4
2 − 39227605228s

2
2 + 123966280704s2 + 31711s

5
2 − 175618897664

)
s3

+ 4096s
9
2

(
455870765s

4
2 − 4058869s

5
2 + 7s

6
2 − 16649626455s

3
2 − 214358360384s2

+85982595160s
2
2 + 144627327488

)
.

Proof. The equation of the curve is given by Eq. (2), for s2, s3 6= 0, 4. For

Ω2 =
1

y12
W (1, x, x2, x3, x4, y)(dx)27, we find

Ω2 =
x (s2x

4 − 1)g(t)

(4 s22x
8 + 4 s22x

6 + 2 s3x4 + 4 s2x2 + 4)21/2
(dx)27

where g(t) =
∑12
i=0 ci · ti is a degree 12 polynomial for t = x2 with the following

coefficients:

c0 = 12 s2,

c1 = −4(−7 s3 + 4 s22 − 28 s2),

c2 = 12 s2 (22 s2 − 3 s3) ,

c3 = −4(−28 s22 + 9 s23 + 4 s32 + 29 s2s3),

c4 = s2
(
−s23 − 1180 s22 + 16 s32 − 376 s2s3

)
,

c5 = 3 s33 − 24 s2s
2
3 − 48 s32s3 − 1696 s42 − 1568 s32 − 536 s22s3,

c6 = −26 s22
(
20 s2s3 + 152 s22 − s23 + 16 s32

)
,

c7 = s2
(
3 s33 − 24 s2s

2
3 − 48 s32s3 − 1696 s42 − 1568 s32 − 536 s22s3

)
,

c8 = s32
(
−s23 − 1180 s22 + 16 s32 − 376 s2s3

)
,

c9 = −4 s32
(
−28 s22 + 9 s23 + 4 s32 + 29 s2s3

)
,

c10 = 12 s52 (22 s2 − 3 s3) ,

c11 = −4 s52
(
−7 s3 + 4 s22 − 28 s2

)
,

c12 = 12 s72.
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We note that c12−i = s6−i2 ci for i = 0, . . . , 6.
The discriminant of g(t) factors as is written in Eq. (10). Each component

can be expressed in terms of the absolute invariants t1, . . . t6 as defined in [13].
Since they are large expressions we do not display them.

The following determines a nice family of curves with automorphism group
Z3
2.

Lemma 4. Let C be a genus 3 curve with equation

y2 =
t4

256
x8 +

t4

256
x6 +

t2

32
(t+ 28)x4 +

t2

16
x2 + 1

such that t ∈ C\{−16, 0, 48}. Then, Aut (C)∼=Z3
2 and C has Nr 2-Weierstrass

points of weight r as described in the table below.

N1 N2 N3

t = −112/3 24 0 12

t = 14± 14
√
−15 16 16 4

t ∈ C \ {−16, 0, 48,−112/3, 14± 14
√
−15} 48 0 4

Proof. Let us assume that the dihedral invariants satisfy the first factor of the
Eq. (10). Since this is a rational curve we can parametrize it as follows:

s2 =
1

16
t2, s3 =

1

16
(t+ 28) t2.

In this case the curve C becomes

y2 =
t4

256
x8 +

t4

256
x6 +

t2

32
(t+ 28)x4 +

t2

16
x2 + 1

with discriminant ∆ = t28 (t− 48)4 (t+ 16)6 6= 0. The Wronskian form is

Ω2 =
x (tx2 + 4)(tx2 − 4)3

(t4x8 + t4x6 + 8 t3x4 + 224 t2x4 + 16 t2x2 + 256)21/2

(
t
2
x
4

+ 24 tx
2

+ 16
)

(3t
8
x
16

− 4 t
6

(
−16 t + t

2 − 896
)
x
14 − 16 t

5
(
5 t

2
+ 3584 + 220 t

)
x
12 − 192 t

4
(
9 t

2
+ 2688 + 368 t

)
x
10

− 512 t
3

(
487 t + 3584 + 23 t

2
)
x
8 − 3072 t

2
(
9 t

2
+ 2688 + 368 t

)
x
6 − 4096 t

(
5 t

2
+ 3584 + 220 t

)
x
4

+ (14680064 + 262144 t − 16384 t
2
)x

2
+ 196608)(dx)

27
.

Hence, the curve has four 2-Weierstrass points of weight 3 which come from
the two roots of the factor (tx2 − 4)3 = 0. Note that x = 0 is a root of order
1, so the points (0,±1) have weight 1. Removing these factors as well as the
denominator, we obtain a polynomial in x2 which we can write as

h(x2) = Ω2 ·
(t4x8 + t4x6 + 8 t3x4 + 224 t2x4 + 16 t2x2 + 256)21/2

x(tx2 − 4)3
,

for deg(h(x)) = 11. We now check h(x) for multiple roots. One finds that

∆(h, x) = 22893973 · t93(16 + t)14(3t+ 112)6(t− 48)6(t2 − 28t+ 3136)4.
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Since we do not consider the cases where t = 0,−16, 48, to make ∆(h, x) = 0,
we look at t = −112/3 and t = 14± 14

√
−15. When t = −112/3, then

h(x) = c(28x− 3)(81 + 168x+ 784x2)(784x2 − 504x+ 9)3(3 + 56x+ 2352x2),

for some constant c. Thus, h(x) has two roots of order 3 and five roots of order
1. Going back to Ω2, these roots lead to eight 2-Weierstrass points of weight 3
and twenty 2-Weierstrass points of weight 1.

When t = 14 ± 14
√
−15, h(x) has four roots of order 2 and 3 roots of

order 1. These lead to sixteen 2-Weierstrass points with weight 2 and twelve
2-Weierstrass points with weight 1.

Note that for any t 6= 0, the numerator of Ω2 is a polynomial of degree 29,
so the two points at infinity are 2-Weierstrass points with weight 1.

The other component is also a genus 0 curve and the same method as above
can also be used here.

Theorem 4. The locus in H3 of curves with full automorphism group Z3
2 which

have 2-Weierstrass points is a 1-dimensional variety with two irreducible com-
ponents. Each component is a rational family. The equation of a generic curve
in each family is given in terms of the parameter t.

Next, we consider the 1-dimensional loci. There are three cases of groups
which correspond to 1-dimensional loci in H3, namely the groups Z2×D8, D12,
and Z2 × Z4. Let us first consider the case Aut (C)∼=Z2 ×D8.

4.3 The case Aut (C)∼=Z2 ×D8.

Proposition 3. Let C be a genus 3 hyperelliptic curve with full automorphism
group Z2×D8. Then C is isomorphic to a curve of the form y2 = tx8 + tx4 + 1
for some t 6= 0, 4. For any other t 6= −140,−980/3, C has Nr 2-Weierstrass
points of weight r as described in the table below.

N1 N2 N3

t = 196 24 0 12
t = −196/5 16 16 4

t ∈ C \ {0, 4,−140,−980/3} 48 0 4

Proof. In this case the curve has equation y2 = tx8 + tx4 + 1, with discriminant
∆ = 216 · t7 (t − 4)4 6= 0, where t = −28 5t4+28

t4−4 ; see [15, Lemma 7]. Ω2 is the
product of the two following factors,

34560 t(t− 4)x3
(
tx8 − 1

)
(tx8 + tx4 + 1)

21/2
and(

7 t2x16 − 18 t2x12 + 3 t2x8 − 98 tx8 − 18 tx4 + 7
)

(dx)27.

Since x = 0 is of multiplicity 3, then the points (0,±1) have each weight 3.
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The other factors of the Wronskian, namely(
tx8 − 1

) (
7 t2x16 − 18 t2x12 + 3 t2x8 − 98 tx8 − 18 tx4 + 7

)
have double roots if the discriminant is zero. This happens if t = 196 or t =
− 196

15 . If t = 196 then

Ω2 = 9103933440
x3
(
14x4 + 1

) (
196x8 − 476x4 + 1

) (
14x4 − 1

)3
(196x8 + 196x4 + 1)

9/2
(dx)27.

Hence, there are 24 points of weight 1, and 8 other points of weight 3 which
come from the roots of 14x4 = 1.

If t = − 196
15 , then the curve C becomes

y2 = −196

15
x8 − 196

15
x4 + 1

and

Ω2 = −614515507200000
x3
(
15 + 196x8

) (
−15− 252x4 + 196x8

)2
(−15 (14x4 + 15) (14x4 − 1))

9/2
(dx)27.

Hence, there are 16 points of weight 1 and 16 points of weight 2.
Finally, observe that since the numerator of Ω2 is a polynomial in x of degree

27, the two points at infinity have 2-weight equal to 30− 27 = 3.

4.4 The case Aut (C)∼=D12

Let us now assume that C has full automorphism group D12. In this case the
curve has equation

y2 = x (tx6 + tx3 + 1)

for t = 7
2

5t4+7
t4−2 and discriminant ∆ = 36 · t5 (t− 4)3 6= 0; see [15, Lemma 8] for

details.
In particular, for a curve C given by the equation y2 = f(x), with deg(f) = 7,

there is one point at infinity, which is singular. This point is a branch point,
and in the desingularization remains as one point, which we will denote here
by P∞. Let {αi} denote the roots of f(x), and Ri = (αi, 0) the affine branch
points. Let ω ∈ C \ {αi} and let Pω1 and Pω2 denote the points over ω. One has
the following divisors.

• div(y) =

(
7∑
i=1

Ri

)
− 7P∞,

• div(x− ω) = Pω1 + Pω2 − 2P∞,

• div(x− αi) = 2Ri − 2P∞.
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• div(dx) =

(
7∑
i=1

Ri

)
− 3P∞,

Working with these divisors, as in Theorem 3 one finds that a basis of holomor-
phic 2-differentials is given by{

(x− β)j(dx/y)2 : 0 ≤ j ≤ 4
}
∪
{
y(dx/y)2

}
,

for any β ∈ C. Letting β = αi, the 2-Weierstrass weight for the affine branch
point Ri is 6. And using any value of β, one finds orders of vanishing 8, 6, 4, 2, 0, 1
at P∞, so wt(2)(P∞) = 6 as well.

Proposition 4. Let C be a genus 3 hyperelliptic curve with full automorphism
group D12. By [15, Lemma 8], C has equation y2 = x(tx6 + tx3 + 1). Then,
C has non-branch points with 2-Weierstrass weight greater than 1 if and only if
t = − 49

8 or t = 1787
8 ± 621

4

√
2.

In particular, for each value of t, C has Nr 2-Weierstrass points of weight r
as described in the table below.

N1 N2 N3

t = −49/8 24 0 12

t = 1787/8± 621/4
√

2 36 12 0

t ∈ C \ {0, 4,−49/8, 1787/8± 621/4
√

2} 60 0 0

Proof. In this case the curve has equation y2 = x (tx6 + tx3 + 1) for t = 7
2

5t4+7
t4−2

and discriminant ∆ = 36 · t5 (t − 4)3 6= 0; see [15, Lemma ] for details. The
Wronskian is

Ω2 = −135

(
tx6 − 1

)
(x (tx6 + tx3 + 1))

9/2

(
7 t4x24 + 28 t4x21 − 336 t4x18 + 1216 t4x15

−128 t4x12 + 1540 t3x18 − 4668 t3x15 + 6672 t3x12 + 1216 t3x9 − 24150 t2x12

−4668 t2x9 − 336 t2x6 + 1540 tx6 + 28 tx3 + 7
)

(dx)27.

Its discriminant factors as

∆(Ω2, x) = t145 (t− 4)42
(
64 t2 − 28592 t+ 108241

)9
(8 t+ 49)

12
.

Since t 6= 0, 4, then the Ω2 form has multiple roots if and only if

t = −49

8
, t =

1787

8
+

621

4

√
2, or t =

1787

8
− 621

4

√
2.

For each one of these values of t, Ω2 has multiple zeros and hence 2-Weierstrass
points of weight at least 2.

For t = − 49
8 the numerator of Ω2 is the polynomial(
49x6 + 8

) (
49x6 + 616x3 − 8

) (
49x6 − 140x3 − 8

)3
,
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which has six roots of multiplicity 3. Hence, the curve y2 = x
(
− 49

8 x
6 − 49

8 x
3 + 1

)
has twelve 2-Weierstrass points of weight 3. There are twelve simple roots of
this polynomial and therefore twenty-four points of weight 1.

For t = 1787
8 ± 621

4

√
2, the numerator of Ω2 is the polynomial(

108241x6 − (60536± 35532
√

2)x3 + (14296± 9936
√

2)
)2
g(x),

for g(x) a degree-18 polynomial with coefficients in Z[
√

2] and distinct roots.
The numerator of Ω2 has six double roots which lead to twelve 2-Weierstrass
points of weight 2. The remaining eighteen roots are single roots, leading to
thirty-six 2-Weierstrass points of weight 1.

Finally, note that in both cases, the 2-Weierstrass points we have calculated
make a contribution of 60 to the total weight. The eight branch points (in-
cluding the point at infinity) each have 2-Weierstrass weight 6, thus making a
contribution of 48 to the total weight, which is 108.

Remark 5. Notice that in the case of the curve y2 = x
(
− 49

8 x
6 − 49

8 x
3 + 1

)
,

even though the curve is defined over Q the 2-Weierstrass points are defined
over a degree 6 extension of Q.

4.5 The case Aut (C)∼=Z2 × Z4

Proposition 5. Let C be a genus 3 hyperelliptic curve with full automorphism
group Z2×Z4. Then, C has 2-Weierstrass points if and only if C is isomorphic
to one of the curves y2 =

(
tx4 − 1

) (
tx4 + tx2 + 1

)
, for t = −8 or it is a root

of

t8 + 600822 t7 + 71378609 t6 + 4219381768 t5 + 85080645104 t4 − 2272444082944 t3

+16480136388352 t2 − 50330309965824 t+ 56693912375296 = 0.

(11)

In the first case, the curve has two 2-Weierstrass points of weight 3.

Proof. The equation of this curve is given by

y2 =
(
tx4 − 1

) (
tx4 + tx2 + 1

)
with discriminant ∆ = −212 · t14(t− 4)6. The numerator of the Wronskian is a
degree 29 polynomial in x, given by xφ(x), where

φ(x) =
(
24 t7 − 3 t8

)
x28 +

(
−4 t7 + 4 t8 + 224 t6

)
x26 +

(
63 t7 + 504 t6

)
x24 + 1368 t6x22

+
(
4 t7 + 2888 t5 + 1045 t6

)
x20 +

(
3360 t4 + 588 t6 + 3780 t5

)
x18 + (3375 t5 + 108 t6

+ 5544 t4)x16 +
(
7632 t4 + 1056 t5

)
x14 +

(
5544 t3 + 3375 t4 + 108 t5

)
x12 + (3780 t3

+ 3360 t2 + 588 t4)x10 +
(
1045 t3 + 4 t4 + 2888 t2

)
x8 + 1368 t2x6 +

(
504 t+ 63 t2

)
x4

+
(
−4 t+ 4 t2 + 224

)
x2 + 24− 3t.
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Its discriminant is

∆ = t275 (t− 4)90 (t− 8)4
(
t8 + 600822 t7 + 71378609 t6 + 4219381768 t5 + 85080645104 t4

−2272444082944 t3 + 16480136388352 t2 − 50330309965824 t+ 56693912375296
)4
.

Hence, for t = 8 or t satisfying the degree 8 polynomial the corresponding curve
has 2-Weierstrass points. In the first case, t = 8, the curve becomes

y2 =
(
8x4 − 1

) (
8x4 + 8x2 + 1

)
.

The Wronskian Ω2 has x = 0 as a triple root. Hence, the points (0, i) and (0,−i),
for i2 = −1 are 2-Weierstrass points of weight 3. If t is a root of the second
factor, then the Galois group of this degree 8 polynomial is S8 and therefore
not solvable by radicals.

Summarizing we have the following theorem.

Theorem 5. Let G be a group such that |G| > 4 and H(G) is a locus of
dimension d > 0 in H3. Let C be a curve in the locus H(G), s2, s3, s4 its
corresponding dihedral invariants and π : C → P1 the hyperelliptic projection.
Then each branch point of π has 2-weight 6 and one of the following holds:

i) If Aut (C)∼=Z3
2, then C has non-branch 2-Weierstrass points of weight

greater than one if and only if s2, s3, s4 satisfy Eq. (10).
ii) If Aut (C)∼=Z2 ×D8 then C has at least four non-branch 2-Weierstrass

points of weight 3. Moreover, if C is isomorphic to the curve

y2 = tx8 + tx4 + 1,

for t = 196 (resp. t = − 196
15 ) then C has in addition 8 other points of weight 3

(resp. 16 points of weight 2).
iii) If Aut (C)∼=D12 then C has non-branch 2-Weierstrass points with weight

greater than one if and only if C is isomorphic to one of the curves

y2 = x(tx6 + tx3 + 1),

for t = − 49
8 or t = 1728

8 ± 621
4

√
2. In the first case, the curve has twelve 2-

Weierstrass points of weight 3 and in the other two cases twelve 2-Weierstrass
points of weight 2.

iv) If Aut (C)∼=Z2×Z4 then C has 2-Weierstrass points if and only if C is
isomorphic to one of the curves y2 =

(
tx4 − 1

) (
tx4 + tx2 + 1

)
, for t = −8 or

it is a root of

t8 + 600822 t7 + 71378609 t6 + 4219381768 t5 + 85080645104 t4 − 2272444082944 t3

+16480136388352 t2 − 50330309965824 t+ 56693912375296 = 0.

In the first case, the curve has two 2-Weierstrass points of weight 3.
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5 Concluding remarks

In this paper we explicitly determined the 2-Weierstrass points of genus 3 hy-
perelliptic curves with extra automorphisms. Similar methods can be used for
3-Weierstrass points even though the computations are longer and more difficult.

The method, especially the result of Lemma 3 can be used for q-Weierstrass
points of all superelliptic curves. The automorphism groups of such curves are
fully classified and their equations are yn = f(xm) for different values of n and
m, see [6, 7, 12] among other papers.

Acknowledgements. Part of this paper was written during the first au-
thor’s visit at Princeton University. The first author wants to thank the De-
partment of Mathematics at Princeton University for their hospitality.
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