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Abstract. Let p be any point in the moduli space of genus-two curves M2

and K its field of moduli. We provide a universal equation of a genus-two
curve C↵,� defined over K(↵,�), corresponding to p, where ↵ and � satisfy a
quadratic ↵2 + b�2 = c such that b and c are given in terms of ratios of Siegel
modular forms. The curve C↵,� is defined over the field of moduli K if and only
if the quadratic has a K-rational point (↵,�). We discover some interesting
symmetries of the Weierstrass equation of C↵,� . This extends previous work
of Mestre [15] and others.

1. Introduction

Let M2 be the moduli space of genus-two curves. It is the coarse moduli space
for smooth, complete, connected curves of genus 2 over C. Let p 2 M2(K), where
K is the field of definition of p. Construction a genus 2 curve C corresponding to p
is interesting from many points of view. In [1], for example, the authors count the
points in M2(Q) according to their moduli height and create a database of genus
2 curves from the moduli points in M2(Q). In creating the database the main
problem was that of constructing an equation for obstruction moduli points. Mestre
[15] has shown how to construct equations for genus-two curves with automorphism
group of order two and defined over Q. This paper provides an equation over a
minimal field of definition for any point p 2 M2.

The natural question is if there exists a universal curve for the genus-two curve
given in terms of a generic moduli point p 2 M2. In other words, given an a�ne
moduli point p = (x, y, z), where x, y, z are transcendentals, can we construct a
curve corresponding to p? The answer is negative in the strict definition of “uni-
versal curve”; see [7, pg. 39] for details. As we will show, there is a satisfactory
answer in the sense that our “universal equation” applies to every moduli point
p 2 M2. However, the equation is often defined only over a quadratic extension of
the field of moduli.

We focus mainly on constructing a genus-two curve C for any given point p =
(x1,x2,x3) 2 M2, defined over a minimal field of definition, where x1, x2, x3 are
ratios of modular forms as defined by Igusa in [9]. Our main result is as follows:
For every point p 2 M2 such that p 2 M2(K), where K is the field of moduli,
there is a genus-two curve C(↵,�) given by

(1) C(↵,�) : y2 =
6X

i=0

ai(↵,�)x
i ,
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corresponding to p with coe�cients given by Eq. (52). This curve is defined over
the field of moduli K if and only if there exists a K-rational solution (↵,�) to the
quadratic

↵2 + b · �2 = c

where b and c are given in terms of the moduli point p. There are some interesting
properties of the coe�cients defining C(↵,�) which seem to be particular to this
model and not noticed before.

It must be noticed that this equation is universal in the sense that it works for
every moduli point [J2 : J4 : J6 : J10] given in terms of the Igusa invariants J2, J4,
J6, J10. The equation is defined at worst over a quadratic extension of the field of
moduli K. If the equation over the field of moduli is needed, then we must search
locally for a rational point in the above quadratic when evaluated at the given p.
In the process we discover some very interesting absolute invariants (cf. Eq. (21))
which as far as we are aware have not been used before.

The paper is organized as follows: In Section 2 we give a brief summary of Siegel
modular forms, classical invariants of binary sextics and the relations among them.
While this material can be found in many places in the literature, there is plenty of
confusion on the labeling and normalization of such invariants and relations among
them. We also introduce a set of absolute invariants that is well-suited for the
construction of a universal sextic.

In Section 3 we construct the equation of the genus-two curve by determining the
Clebsch conic and the cubic. We diagonalize the corresponding conic and discover a
new set of invariants which make the equation of this conic short and elegant. The
diagonalized conic can be quickly determined from the invariants of the curve. The
intersection of this conic and the cubic gives the equation of the genus-two curve.
This equation shows some interesting symmetries of the coe�cients, which to the
knowledge of the authors have never been discovered before. When this universal
equation is restricted to loci of curves with automorphisms or the Clebsch invariant
D = 0 (not covered by Mestre’s approach) it shows that the field of moduli is a
field of definition, results which agree with previous results of other authors.

2. Preliminaries

2.1. The Siegel modular three-fold. The Siegel three-fold is a quasi-projective
variety of dimension 3 obtained from the Siegel upper half-plane of degree two which
by definition is the set of two-by-two symmetric matrices over C whose imaginary
part is positive definite, i.e.,
(2)

H2 =

⇢
⌧ =

✓
⌧1 z
z ⌧2

◆���� ⌧1, ⌧2, z 2 C , Im(⌧1) Im(⌧2) > Im(z)2 , Im(⌧2) > 0

�
,

quotiented out by the action of the modular transformations �2 := Sp4(Z), i.e.,

(3) A2 = H2/�2 .

Each ⌧ 2 H2 determines a principally polarized complex abelian surface

A ⌧ = C
2/hZ2

� ⌧ Z2
i
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with period matrix (⌧ , I2) 2 Mat(2, 4;C). Two abelian surfaces A ⌧ and A ⌧ 0 are
isomorphic if and only if there is a symplectic matrix

(4) M =

✓
A B
C D

◆
2 �2

such that ⌧ 0 = M(⌧) := (A⌧+B)(C⌧+D)�1. It follows that the Siegel three-foldA2

is also the set of isomorphism classes of principally polarized abelian surfaces. The
sets of abelian surfaces that have the same endomorphism ring form sub-varieties of
A2. The endomorphism ring of principally polarized abelian surface tensored with
Q is either a quartic CM field, an indefinite quaternion algebra, a real quadratic
field or in the generic case Q. Irreducible components of the corresponding subsets
in A2 have dimensions 0, 1, 2 and are known as CM points, Shimura curves and
Humbert surfaces, respectively.

The Humbert surface H� with invariant � is the space of principally polarized
abelian surfaces admitting a symmetric endomorphism with discriminant �. It
turns out that � is a positive integer ⌘ 0, 1 mod 4. In fact, H� is the image inside
A2 under the projection of the rational divisor associated to the equation

(5) a ⌧1 + b z + c ⌧3 + d (z2 � ⌧1 ⌧2) + e = 0 ,

with integers a, b, c, d, e satisfying � = b2 � 4 a c� 4 d e and ⌧ =
� ⌧1 z

z ⌧2

�
2 H2. For

example, inside of A2 sit the Humbert surfaces H1 and H4 that are defined as the
images under the projection of the rational divisor associated to z = 0 and ⌧1 = ⌧2,
respectively. In fact, the singular locus of A2 has H1 and H4 as its two connected
components. As analytic spaces, the surfaces H1 and H4 are each isomorphic to
the Hilbert modular surface

(6)
⇣
(SL2(Z)⇥ SL2(Z))o Z2

⌘
\

⇣
H⇥H

⌘
.

For a more detailed introduction to Siegel modular form, Humbert surfaces, and
the Satake compactification of the Siegel modular threefold we refer to Freitag’s
book [5].

2.2. Siegel modular forms. In general, we can define the Eisenstein series  2k

of degree g and weight 2k (where we assume 2k > g+1 for convergence) by setting

(7)  2k(⌧) =
X

(C,D)

det (C · ⌧ +D)�2k ,

where the sum runs over non-associated bottom rows (C,D) of elements in Sp2g(Z)
where non-associated means with respect to the multiplication by GLg(Z). In the
following, we will always assume g = 2 in the definition of  2k. Using Igusa’s
definition [9, Sec. 8, p. 195] we define a cusp form of weight 10 by

�10(⌧) = �
43867

212 35 52 7 · 53
( 4(⌧) 6(⌧)�  10(⌧)) .(8)

It is well known that the vanishing divisor of the cusp form �10 is the Humbert
surface H1 because a period point ⌧ is equivalent to a point with z = 0 if and only
if �10

�
⌧
�
= 0. Based on Igusa’s definition [9, Sec. 8, p. 195] and the work in [14] we

define a second cusp form �12 of weight 12 by

�12(⌧) =
131 · 593

213 37 53 72 337

�
32 72  3

4(⌧) + 2 · 53  2
6(⌧)� 691 12(⌧)

�
.(9)
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Moreover, Igusa proved [10, 11] that the ring of Siegel modular forms is generated
by  4,  6, �10, �12 and by one more cusp form �35 of odd weight 35 whose square
is the following polynomial [10, p. 849] in the even generators

�2
35 =

1
212 39

�10

⇣
224 315 �5

12 � 213 39  3
4 �

4
12 � 213 39  2

6 �
4
12 + 33  6

4 �
3
12

� 2 · 33  3
4  

2
6 �

3
12 � 214 38  2

4  6 �10 �
3
12 � 223 312 52  4 �

2
10 �

3
12 + 33  4

6 �
3
12

+ 211 36 37 4
4 �

2
10 �

2
12 + 211 36 5 · 7 4  

2
6 �

2
10 �

2
12 � 223 39 53  6 �

3
10 �

2
12

� 32  7
4 �

2
10 �12 + 2 · 32  4

4  
2
6 �

2
10 �12 + 211 35 5 · 19 3

4  6 �
3
10 �12

+ 220 38 53 11 2
4 �

4
10 �12 � 32  4  

4
6 �

2
10 �12 + 211 35 52  3

6 �
3
10 �12 � 2 6

4  6 �
3
10

� 212 34  5
4 �

4
10 + 22  3

4  
3
6 �

3
10 + 212 34 52  2

4  
2
6 �

4
10 + 221 37 54  4  6 �

5
10

� 2 5
6 �

3
10 + 232 39 55 �6

10

⌘
.

(10)

Hence, the expression Q := 212 39 �2
35/�10 is a polynomial of degree 60 in the even

generators. Igusa also proved that each Siegel modular form (with trivial character)
of odd weight is divisible by the form �35. The following fact is well-known [6]:

Proposition 1. The vanishing divisor of Q is the Humbert surface H4, i.e., a

period point ⌧ is equivalent to a point with ⌧1 = ⌧2 if and only if Q = 0. Accordingly,
the vanishing divisor of �35 is the formal sum H1 +H4 of Humbert surfaces, that

constitutes the singular locus of A2.

In accordance with Igusa [9, Thm. 3] we also introduce the following ratios of
Siegel modular forms

(11) x1 =
 4 �2

10

�2
12

, x2 =
 6 �3

10

�3
12

, x3 =
�6
10

�5
12

,

as well as

(12) y1 =
x
3
1

x3
=

 3
4

�12
, y2 =

x
2
2

x3
=

 2
6

�12
, y3 =

x
2
1 x2

x3
=
 2
4  6 �10

�12
,

where we have suppressed the dependence of each Siegel modular form on ⌧ . These
ratios have the following asymptotic expansion for z ! 0 [9, pp. 180–182] in terms
of ordinary Eisenstein series E4 and E6 and the Dedekind ⌘-function

x1 = E4(⌧1) E4(⌧2) (⇡z)
4 +O(z5) ,

x2 = E6(⌧1) E6(⌧2) (⇡z)
6 +O(z7) ,

x3 = ⌘24(⌧1) ⌘
24(⌧2) (⇡z)

12 +O(z13) ,

(13)

and

y1 = j(⌧1) j(⌧2) +O(z2) ,

y2 =
⇣
1728� j(⌧1)

⌘⇣
1728� j(⌧2)

⌘
+O(z2) ,

y3 =
E2

4(⌧1)E
2
4(⌧2)E6(⌧1)E6(⌧2)

⌘24(⌧1) ⌘24(⌧2)
(⇡z)2 +O(z3) ,

(14)

where we have set

j(⌧j) =
1728E3

4(⌧j)

E3
4(⌧j)� E2

6(⌧j)
=

E3
4(⌧j)

⌘24(⌧j)
,

1728� j(⌧j) =
1728E2

6(⌧j)

E3
4(⌧j)� E2

6(⌧j)
=

E2
6(⌧j)

⌘24(⌧j)
.

(15)
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The following fact is well-known [6]:

Proposition 2. The modulus point ⌧ is equivalent to a point with z = 0 or [⌧ ] 2
H1 ⇢ A2 such that the principally polarized abelian surface is a product of two

elliptic curves A⌧ = E⌧1 ⇥ E⌧2 if and only if �10(⌧) = 0. The elliptic modular

parameters are determined by Eq. (14).

2.3. Igusa invariants. Suppose that C is an irreducible projective non-singular
curve. If the self-intersection is C · C = 2 then C is a curve of genus two. For
every curve C of genus two there exists a unique pair (Jac(C), jC) where Jac(C) is
an abelian surface, called the Jacobian variety of the curve C, and jC : C ! Jac(C)
is an embedding. One can always regain C from the pair (Jac(C),P) where P = [C]
is the class of C in the Néron-Severi group NS(Jac(C)). Thus, if C is a genus-
two curve, then Jac(C) is a principally polarized abelian surface with principal
polarization P = [C], and the map sending a curve C to its Jacobian variety Jac(C)
is injective. In this way, the variety of moduli of curves of genus two is also the
moduli space of their Jacobian varieties with canonical polarization.

We write the equation defining a genus-two curve C by a degree-six polynomial
or sextic in the form

(16) C : y2 = f(x) = a0

6Y

i=1

(x� ↵i) =
6X

i=0

ai x
i .

The roots {↵i}
6
i=1 of the sextic are the six ramification points of the map C ! P

1.
Their pre-images on C are the six Weierstrass points. The isomorphism class of f
consists of all equivalent sextics where two sextics are considered equivalent if there
is a linear transformation in GL2(C) which takes the set of roots to the roots of the
other.

The ring of invariants of binary sextics is generated by the Igusa invariants
(J2, J4, J6, J10) as defined in [12, Eq. (9)], which are the same invariants as the ones
denoted by (A0, B0, C 0, D0) in [15, p.319] and also the same invariants as (A,B,C,D)
in [9, p.176]. For expressions of such invariants in terms of the coe�cients a0, . . . , a6
of the binary sextic, or Jk 2 Z[a0, . . . , a6] for k 2 {2, 4, 6, 10}; see [12, Eq. (11)]
and in terms of thetanulls see [13]. One can then ask what the Igusa invariants
of a genus-two curve C defined by a sextic curve f are in terms of ⌧ such that
(⌧ , I2) 2 Mat(2, 4;C) is the period matrix of the principally polarized abelian surface
A⌧ = Jac(C). Based on the asymptotic behavior in Equations (13) and (14), Igusa
[10, p. 848] proved that the relations are as follows:

J2 = �23 · 3
�12(⌧)

�10(⌧)
,

J4 = 22  4(⌧) ,

J6 = �
23

3
 6(⌧)� 25

 4(⌧)�12(⌧)

�10(⌧)
,

J10 = �214 �10(⌧) .

(17)

Thus, the invariants of a sextic define a point in a weighted projective space
[J2 : J4 : J6 : J10] 2 WP

3
(2,4,6,10) that equals

h
23 3 (3�12) : 2232  4 �

2
10 : 23 32

⇣
4 4 (3�12) +  6 �10

⌘
�2
10 : 22 �6

10

i
.
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Torelli’s theorem states that the map sending a curve C to its Jacobian variety
Jac(C) induces a birational map from the moduli space M2 of genus-two curves
to the complement of the Humbert surface H1 in A2, i.e., A2 � supp(�10)0. In
other words, points in the projective variety Proj C[J2, J4, J6, J10] which are not
on J10 = 0 are in one-to-one correspondence with isomorphism classes of regular
sextics [9].

Often the Clebsch invariants (A,B,C,D) of a sextic are used instead. They
are defined in terms of the transvectants of the binary sextics; see [4] for de-
tails. The invariants (A,B,C,D) are polynomial expressions in the Igusa invariants
(J2, J4, J6, J10) with rational coe�cients:

A = �
1

233 · 5
J2 ,

B =
1

233354
�
J2
2 + 20 J4

�
,

C = �
1

253556
�
J3
2 + 80 J2J4 � 600 J6

�
,

D = �
1

2839510
�
9 J5

2 + 700 J3
2J4 � 3600 J2

2J6

�12400 J2J
2
4 + 48000 J4 J6 + 10800000 J10

�
.

(18)

For formulas giving relations between all these sets of invariants see [1].

2.3.1. Absolute invariants. Dividing any SL2(C) invariant by another one of the
same degree gives an invariant under GL2(C) action. The term absolute invari-

ants is used first by Igusa [8] for GL2(C) invariants. It was the main result of [9,
Theorem 3] that

(19) x1 = 144
J4
J2
2

, x2 = �1728
J2J4 � 3J6

J3
2

, x3 = 486
J10
J5
2

,

for J2 6= 0. We use x1,x2,x3 to write the point [J2 : J4 : J6 : J10] 2 WP
3
(2,4,6,10) as


1 :

1

24 32
x1 :

1

26 34
x2 +

1

24 33
x1 :

1

2 · 35
x3

�
.(20)

Since the invariants J4, J6, J10 vanish simultaneously for sextics with triple roots
all such curves are mapped to [1 : 0 : 0 : 0] 2 WP

3
(2,4,6,10) with uniformizing

a�ne coordinates x1,x2,x3 around it. Blowing up this point gives a variety that
parameterizes genus-two curves with J2 6= 0 and their degenerations. In the blow-
up space we have to introduce additional coordinates that are obtained as ratios
of x1,x2,x3 and have weight zero. Those are precisely the coordinates y1,y2,y3

already introduced in Eq. (12). It turns out that the coordinate ring of the blown-up
space is C[x1,x2,x3,y1,y2,y3].
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We introduce the three absolute invariants

⇢ = �
4
�
9 J2

2 � 320 J4

� �
J2
2 + 20 J4

�2

(3 J3
2 + 140 J2 J4 � 800 J6)

2 ,

� = �
48

�
J2
2 + 20 J4

�2

(3 J3
2 + 140 J2 J4 � 800 J6)

3

⇥
�
9 J5

2 � 700 J3
2J4 + 2400 J2

2J6 � 262400 J2 J
2
4 + 768000 J4 J6 + 172800000 J10

�
,

 =
2
�
27 J4

2 + 2380 J2
2 J4 � 12000 J2 J6 + 12800 J2

4

� �
J2
2 + 20 J4

�

(3 J3
2 + 140 J2 J4 � 800 J6)

2 .

(21)

It follows:

Lemma 1. For invariants (⇢,�,) given by Eq. (21) such that ⇢ and  do not

vanish simultaneously, a point [J2 : J4 : J6 : J10] in WP
3
(2,4,6,10) is given by

J2 = 8(� ⇢), J4 =
9

5
(� ⇢)2 + 45⇢,

J6 =
111

25
(� ⇢)3 � 30(� ⇢)2 + 63⇢(� ⇢)� 270⇢ ,

J10 =
6

3125
(� ⇢)5 +

4

15
(� ⇢)4 +

46

75
⇢(� ⇢)3

+

✓
�
1

6
� +

42

5
⇢

◆
(� ⇢)2 + 12⇢2(� ⇢) +

3

2
⇢ (36⇢� �).

(22)

In particular, for J2 6= 0 we have Q(x1,x2,x3) = Q(⇢,�,).

Proof. The proof is computational. We express ⇢,�, as rational functions of x1,
x2, x3 and vice versa over Q. The condition that ⇢ and  do not vanish simultane-
ously is based on the fact that J2, J4, J6, J10 must not vanish simultaneously. ⇤

Remark 1. Consider the image of [J2 : J4 : J6 : J10] in WP
3
(2,4,6,10) under the

morphism WP
3
(2,4,6,10) ! P

5
given by

(23)
⇥
486J4J6 : 486J10 : �1728(J2J4 � 3J6)J

2
2 : 144J3

2J4 : 20736J2J
2
4 : J5

2

⇤
,

which is a linear transformation of the usual morphism to P
5
given by

[J2 : J4 : J6 : J10] 7! [J10 : J4J6 : J2
2J6 : J3

2J4 : J2J
2
4 : J5

2 ].

For J2 6= 0, points in Eq. (23) equal

(24)


1

1536
x1(x2 + 12x1) : x3 : x2 : x1 : x2

1 : 1

�
.

The invariants x1,x2,x3 are not defined for J2 = 0, but ⇢,�, remain well-defined

if ⇢ =  6= 0. In this case we have

(25) J (0)
2 = 0, J (0)

4 = 45⇢, J (0)
6 = �270⇢, J (0)

10 =
3

2
⇢ (36⇢� �) ,

and the invariants ⇢ and � with

(26) ⇢ =  =
4

5

J3
4

J2
6

, � =
144

5

J3
4

J2
6

+ 6480
J3
4

J2
6

J10
J4J6

,
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determine genus-two curves with J2 = 0, J4 ·J6 6= 0 up to isomorphism. In addition

to J2 = 0, we have J10 = 0 if and only if � = 36⇢. Using ✏ = ( � ⇢) in Eq. (22),
one checks that points in Eq. (23) up to terms of order O(✏2) equal

"
1�

7

30
✏ :

J (0)
10

J (0)
4 J (0)

6

�
2

2025
✏ : 0 : 0 : �

512

9
✏ : 0

#
.

This means that under the usual morphism to P
5
the regular genus-two curves with

J2 = 0 and constant ratio J10/(J4J6) are mapped to the same point.

2.4. Recovering the equation of the curve from invariants. Let p 2 M2

and C a genus-two curve corresponding to p defined by the sextic polynomial f in
Eq. (16). Then, Aut(p) is a finite group as described in [18]. The quotient space
C/Aut(p) is a genus zero curve and therefore isomorphic to a conic. Since conics
are in one to one correspondence with three-by-three symmetric matrices (up to
equivalence), let M = [Aij ] be the symmetric matrix corresponding to this conic.
Let X = [X1 : X2 : X3] 2 P

2 and

(27) Q : X
t
·M ·X =

3X

i,j=1

Aij XiXj = 0.

Clebsch [4] determined the entries of this matrix M as follows

A11 = 2C +
1

3
AB ,

A22 = A13 = D ,

A33 =
1

2
BD +

2

9
C (B2 +AC) ,

A23 =
1

3
B (B2 +AC) +

1

3
C (2C +

1

3
AB) ,

A12 =
2

3
(B2 +AC) .

(28)

The coe�cients are obtained as follows: from the sextic f in Eq. (16) three binary
quadrics yi(x) with i = 1, 2, 3 are obtained by an operation called ‘Überschiebung’
[15, p. 317] or transvection. The quadrics yi for i = 1, 2, 3 have the property that
their coe�cients are polynomial expressions in the coe�cients of f with rational
coe�cients. Moreover, under the operation f(x) 7! f̃(x) = f(�x) the quadrics
change according to yi(x) 7! ỹi(x) = yi(�x) for i = 1, 2, 3. Hence, they are not
invariants of the sextic f . The coe�cients Aij in Eq. (28) satisfy Aij = (yiyj)2.

1

Therefore, the coe�cients Aij are invariant under the operation f(x) 7! f̃(x) =
f(�x), and the locus D = 0 is equivalent to

(29) D = 0 , (y1y3)2 = (y2y2)2 = 0 .

We define R to be 1/2 times the determinant of the three binary quadrics yi
for i = 1, 2, 3 with respect to the basis x2, x, 1. If one extends the operation of
Überschiebung by product rule [15, p. 317], then R can be re-written as

(30) R = �(y1y2)1 (y2y3)1 (y3y1)1,

1For two binary forms f, g of degree m and n, respectively, we denote the Überschiebung of
order k by (fg)k = (�1)k(gf)k. For f̃(x) = f(�x) and g̃(x) = g(�x) and m = n = k, we have
(fg)m = (�1)m(f̃ g̃)m.
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or, equivalently, as

R = �
1

8

⇣
y1,yy y2,xy y3,xx � y1,yy y2,xx y3,xy � y1,xy y2,yy y3,xx

+ y1,xy y2,xx y3,yy + y1,xx y2,yy y3,xy � y1,xx y2,xy y3,yy
⌘
.

(31)

It is then obvious that under the operation f(x) 7! f̃(x) = f(�x) the determinant
R changes its sign, i.e., R(f) 7! R(f̃) = �R(f). A straightforward calculation
shows that

(32) R2 =
1

2

������

A11 A12 A13

A12 A22 A23

A13 A23 A33

������
,

where Aij are the invariants in Eq. (28). Like the coe�cients Aij , R2 is invari-
ant under the operation f(x) 7! f̃(x) = f(�x) and must be a polynomial in
(J2, J4, J6, J10). Substituting (17) into the Clebsch invariants and then Eq. (28) it
follows that

R2 =

✓
29 3�9 5�10 i

�35(⌧)

�10(⌧)2

◆2

.(33)

Bolza [3] described the possible automorphism groups of genus-two curves defined
by sextics and provided criteria for the cases when the automorphism group of the
sextic curve in Eq. (16) is nontrivial. For a detailed discussion of the automorphism
groups of genus-two curve defined over any field k and the corresponding loci in
M2 see [18]. We have the following lemma summarizing our discussion:

Lemma 2. We have the following statements:

(1) R2
is an order 30 invariant of binary sextics expressed as a polynomial

in (J2, J4, J6, J10) as in [18, Eq. (17)] given by plugging Clebsch invariants

and (28) into Eq. (33).
(2) The locus of curves p 2 M2 such that V4 ,! Aut(p) is a two-dimensional

irreducible rational subvariety of M2 given by the equation R2 = 0 and a

birational parametrization given by the u, v-invariants as in [18, Thm. 1].

We have introduced the invariant R2 for any binary sextic f . To the correspond-
ing symmetric matrix M with coe�cients Aij = (yiyj)2 of order zero and invariant
under the operation f(x) 7! f̃(x) = f(�x), we associated a conic Q. Similarly,
there is also a cubic curve given by the equation

(34) T :
X

1i,j,k3

aijk XiXjXk = 0 ,

where the coe�cients aijk are of order zero and invariant under f(x) 7! f̃(x) =
f(�x). In terms of ‘Überschiebung’ the coe�cients are obtained by

(35) aijk = (fyi)2 (fyj)2 (fyk)2 .
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The coe�cients aijk are given explicitly as follows:

36 a111 = 8(A2C � 6BC + 9D),

36 a112 = 4(2B3 + 4ABC + 12C2 + 3AD),

36 a113 = 36 a122 = 4(AB3 + 4/3A2BC + 4B2C + 6AC2 + 3BD),

36 a123 = 2(2B4 + 4AB2C + 4/3A2C2 + 4BC2 + 3ABD + 12CD),

36 a133 = 2
�
AB4 + 4/3A2B2C + 16/3B3C

+26/3ABC2 + 8C3 + 3B2D + 2ACD
�
,

36 a222 = 4(3B4 + 6AB2C + 8/3A2C2 + 2BC2
� 3CD),

36 a223 = 2(�2/3B3C � 4/3ABC2
� 4C3 + 9B2D + 8ACD),

36 a233 = 2(B5 + 2AB3C + 8/9A2BC2 + 2/3B2C2
�BCD + 9D2),

36 a333 = �2B4C � 4AB2C2
� 16/9A2C3

� 4/3BC3

+ 9B3D + 12ABCD + 20C2D.

(36)

The relations between all aforementioned invariants and Siegel modular forms, in
particular the relation between �35 and R2 can be found in [1].

Since ‘Überschiebung’ preserves the rationality of the coe�cients, we have the
following corollary:

Corollary 1. Let p 2 M2 and C a genus-two curve corresponding to p defined

by a sextic polynomial f in Eq. (16). Then, Aut(p) is a finite group, and the

quotient space C/Aut(p) is a genus zero curve isomorphic to the conic Q in Eq. (27).
Moreover, if p 2 M2(K), for some number field K, the conic Q and cubic T have

K-rational coe�cients.

The intersection of the conic Q with the cubic T consists of six points which
are the zeroes of a polynomial f(x) of degree 6 in the parameter x. The roots of
this polynomial are the images of the Weierstrass points under the hyperelliptic
projection. Hence, the a�ne equation of a genus-two curve corresponding to p is
given by y2 = f(x). The main question is if the sextic given by y2 = f(x) provides
a genus-two curve defined over a minimal field of definition. We start with the
following known result.

Proposition 3. A genus g � 2 hyperelliptic curve Xg with hyperelliptic involution

w is defined over the K if and only if the conic Q = Xg/hwi has a K-rational point.

The above result was briefly described in [15, Lemma 1] even though it seems
as it had been known before. Mestre’s method is briefly described as follows: if
the conic Q has a rational point over Q, then this leads to a parametrization of Q,
say (h1(x), h2(x), h3(x)). Substitute X1, X2, X3 by h1(x), h2(x), h3(x) in the cubic
T and we get the degree 6 polynomial f(x). However, if the conic has no rational
point or R2 = 1

2detM = 0 the method obviously fails. In Section 3 we determine
the intersection T \Q over a quadratic extension which is always possible.

3. A universal genus-two curve from the moduli space

The goal of this section is to explicitly determine a universal equation of a genus-
two curve corresponding to this generic point p. We have the following lemma:
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Lemma 3. The conic Q in Eq. (27) for J4 · J6 · J10 6= 0 is equivalent over

Q[J2, ⇢,�,] to the conic

(37) Q
0 : x2

1 � � x2
2 � ⇤6x

2
3 = 0 ,

where (⇢,�,) are the absolute invariants in Eq. (21), � = ⇢2 + � and

⇤6 = ��3 � 27 ⇢ �2 � 81 ⇢2 (⇢+ 12) � + 729 ⇢2 (⇢+ 12)2

+
�
�6 ⇢ �2 + 54⇢ (5 ⇢+ 36) � � 1944 ⇢2 (⇢+ 12)

�


+
�
9 �2 � 9 ⇢ (⇢+ 36) � + 162 ⇢ (⇢2 + 32 ⇢+ 144)

�
2

+ ((30 ⇢+ 216) � � 432 ⇢ (⇢+ 12)) 3 +
�
9 ⇢2 � 24 � + 504 ⇢+ 1296

�
4

+ (�24 ⇢� 288) 5 + 166.

(38)

Moreover, for J2, ⇢,�, 2 Q the conic Q in Eq. (27) has a rational point if and

only if the conic Q
0
in Eq. (37) does.

Proof. For the conic Q in Eq. (27), we apply the coordinate transformation given
by

X1 = 2 (AB + 6C)4
�
AC +B2

�
x1

+ 108B (AB + 6C)2
�
4A2C2 + 8AB2C + 4B4

� 3ABD � 18CD
�
x2

+ 41990B3
�
8A2BC2 + 14AB3C + 6B5 + 12AC3 + 12B2C2

� 27D2
�
x3,

X2 = � (AB + 6C)5 x1 � 419904B3x3

⇥ (4A2B2C + 3AB4 + 30ABC2 + 18B3C � 18ACD � 18B2D + 36C3),

X3 = �2639B3(4A2C2 + 8AB2C + 4B4
� 3ABD � 18CD)x3.

(39)

We then obtain the conicQ0 in Eq. (37). Eq. (39) can be rewritten as transformation
over Q[J2, ⇢,�,] using Eq. (18) and Eq. (21). ⇤

We have the following lemma:

Lemma 4. Assume ⇢,�, 2 Q. The conic Q
0
in Eq. (37) has a rational point if

and only if there are rational numbers ↵,� 2 Q such that

(40) ↵2 + ⇤6�
2� = � .

The rational point on the conic Q
0
is then given by

(41) [x0
1 : x0

2 : x0
3] = [↵⇢+ � : ↵+ ⇢ : ��] .

Conversely, every rational point on the conic Q
0
can be written in the form of

Eq. (41) for some rational numbers ↵,� 2 Q satisfying Eq. (40).

Proof. If rational numbers ↵,� exist such that Eq. (40) is satisfied, then the point
in Eq. (41) is rational and is easily checked to be on the conic. If there is a rational
point on the conic then we can choose � 2 Q in Eq. (41), thus ↵ 2 Q. ⇤

We have the following:

Lemma 5. Assume that a point on the conic in Eq. (37) is given by Eq. (41) with
x0
2 6= 0 which is always possible if ⇢ 6= 0. Then every point on the conic is given by

x1 = (↵⇢+ �)U2 + 2⇤6��UV + ⇤6(↵⇢+ �)V 2,

x2 = (↵+ ⇢)U2
� ⇤6(↵+ ⇢)V 2,

x3 = ��U2 + 2 (↵⇢+ �)UV + ⇤6�� V
2,

(42)
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for some [U : V ] 2 P
1
. The parametrization in Eq. (42) is a rational parametriza-

tion of the conic Q
0
if and only if ↵,�, ⇢,,� 2 Q.

Proof. If a point of Q0 is obtained from some (rational) values (↵,�) then there
are three more (rational) points given by setting (↵,�) 7! (±↵,±�). If ⇢ 6= 0, one
of these points satisfies x0

2 = ↵ + ⇢ 6= 0. The proof then follows from the known
formulas parametrizing conics for x0

2 6= 0 given by

x1 = a x0
1 U

2
� 2 c x0

3 U V � c x0
1 V

2,

x2 = a x0
2 U

2 + c x0
2 V

2,

x3 = a x0
3 U

2 + 2 a x0
1 U V � c x0

3 V
2,

(43)

where a = 1, b = ��, c = �⇤6 and x0
1, x

0
2, x

0
3 were given in Eq. (41). ⇤

Remark 2. If ↵ = ⇢ = 0 and � 6= 0, a formula similar to Eq. (42) can be found

using the fact that x0
1 6= 0 in Eq. (41) in this case.

Remark 3. If a point of Q
0
is obtained for some (rational) values (↵,�) then three

more (rational) points on Q
0
are given by setting (↵,�) 7! (±↵,±�) in Eq. (41).

Changing from coordinates [X1 : X2 : X3] to coordinates [x1 : x2 : x3] transforms
the conic Q in Eq. (27) into the conic Q

0 in Eq. (37). Similarly, under the same
change of coordinates the cubic T in Eq. (34) becomes

T
0 : 0 = ⇤1 (18� + ⇤3)x

3
1 + �3⇤2 x

3
2 � (� � ⇤1)⇤

2
6 x

3
3

+ 3⇤1⇤6 x
2
1x3 + 3�(9�⇢+ ⇤3)x

2
1x2 + 3�2⇤3 x1x

2
2

+ 3⇤5⇤6 x1x
2
3 + 3�⇤4⇤6 x2x

2
3 + 3�2⇤6 x

2
2x3 + 6�⇤6 x1x2x3,

(44)

with coe�cients given by

⇤1 = 9⇢+ 2,

⇤2 = � + 18⇢+ 3⇢� 42,

⇤3 = 27⇢(⇢+ 12) + (� � 36⇢)+ 3(⇢+ 12)2 � 43,

⇤4 = ��2 � 9�⇢� 3(�⇢� 9⇢(⇢+ 12))+ (5� � 36⇢)2 + 3(⇢+ 12)3 � 44,

⇤5 = �27�⇢(⇢+ 6) + 243⇢2(⇢+ 12)� (�2 � 45�⇢+ 324⇢2)

� (3�(⇢� 6)� 54⇢(⇢+ 12))2 + (5� � 72⇢)3 + 3(⇢+ 12)4 � 45.

(45)

We also discuss the conic, cubic, rational point and parametrization in the cases
where J2 = 0 and J4 · J6 = 0:

Lemma 6. If J2 = J4 = 0 and J6 · J10 6= 0, the conic Q in Eq. (27) is equivalent

over Q[J6, J10] to the conic

(46) Q
0 : x2

1 � µx2
2 � (1� µ)x2

3 = 0 ,

with µ = J5
6/(2

43455J3
10) and a rational point given by [x0

1 : x0
2 : x0

3] = [1 : 1 : 1]. A

rational parametrization of Q
0
is then given by

x1 = U2 + 2(1� µ)UV + (1� µ)V 2, x2 = U2
� (1� µ)V 2,

x3 =U2 + 2UV + (1� µ)V 2
(47)
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with [U : V ] 2 P
1
. Under the same change of coordinates the cubic T in Eq. (34)

becomes

T
0 : 0 = 2x3

1 � µ2x3
2 � 2(1� µ)2x3

3 � 6µx2
1x2

� 6(1� µ)x2
1x3 + 6(1� µ)x1x

2
3 � 3µ(1� µ)x2x

2
3.

(48)

If J2 = J6 = 0 and J4 · J10 6= 0, the conic Q in Eq. (27) is equivalent over

Q[J4, J10] to the conic

(49) Q
0 : x2

1 � x2
2 � (1� ⌫)x2

3 = 0 ,

with ⌫ = J5
4/(2

23555J2
10) and a rational point given by [x0

1 : x0
2 : x0

3] = [1 : 1 : 0]. A

rational parametrization of Q
0
is then given by

(50) x1 = U2 + (1� ⌫)V 2, x2 = U2
� (1� ⌫)V 2, x3 = 2UV

with [U : V ] 2 P
1
. Under the same change of coordinates the cubic T in Eq. (34)

becomes

T
0 : 0 = (1� ⌫2)x3

1 � ⌫2x3
2 � (1� ⌫)2x3

3 + ⌫(1� 3⌫)x2
1x2

� (1� ⌫)(3 + ⌫)x2
1x3 + ⌫(1� 3⌫)x1x

2
2 � ⌫(1� ⌫)x2

2x3

+ (1� ⌫)(3� ⌫)x1x
2
3 + ⌫(1� ⌫)x2x

2
3 � 2⌫(1� ⌫)x1x2x3.

(51)

Proof. The proof is analogous to the proofs of Lemmas 4, 5. ⇤

Remark 4. The absolute invariants (⇢,�,) in Eq. (21) such that ⇢ and  do not

vanish simultaneously and J10 6= 0 describe the moduli of genus-two curves with

J4 · J6 · J10 6= 0. The discussion of Lemma 6 proves that only for genus-two curves

with J4 · J6 · J10 6= 0, the conic Q in Eq. (27) is not guaranteed to have a rational

point.

Substituting the parametrization of the conic Q
0 in Lemma 5 into the cubic T

0

in Eq. (44) and setting U = x and V = 1, one obtains the ramification locus of a
sextic curve. The ramification locus is equivalent to f(x) =

P6
i=0 ai(↵,�)x

i = 0
where we write the sextic polynomial in the form

f(x) =
⇣
d(1)0 + d(2)0

⌘
x6 +

⇣
d(1)1 + d(2)1

⌘
⇤6x

5 +
⇣
d(1)2 + d(2)2

⌘
⇤6x

4

+ d(1)3 ⇤2
6x

3 +
⇣
d(1)2 � d(2)2

⌘
⇤2
6x

2 +
⇣
d(1)1 � d(2)1

⌘
⇤3
6x+

⇣
d(1)0 � d(2)0

⌘
⇤3
6.

(52)

In terms of the coordinates of the point [x0
1 : x0

2 : x0
3] in Eq. (41) we have set

d(1)j = c(1)j,0

h
(⇢2 + �)x0

1 + 2�⇢x0
2

i
� + 3c(1)j,1

h
x0
1 + ⇢x0

2

i
�⇤

�j
6 x0

3

� c(1)j,0

h
(⇢2 + �)x0

1 � 2�⇢x0
2

i
⇢2��2⇤6(x

0
3)

2 � 3c(1)j,1

h
x0
1 � ⇢x0

2

i
⇢2��2⇤

1+�j
6 (x0

3)
3

+
h
3�c(1)j,2 � 2⇢2c(1)j,0

i
��1⇤6x

0
1(x

0
3)

2 + c(1)j,3⇤
1+�j
6 (x0

3)
3,

d(2)j = c(2)j,0

h
2⇢x0

1 + (⇢2 + �)x0
2

i
�2 + 6c(2)j,1

h
⇢x0

1 + �x0
2

i
�⇤

�j
6 x0

3

� c(2)j,0

h
2�x0

1 � ⇢(⇢2 + �)x0
2

i
�⇢��2⇤6(x

0
3)

2 � 6c(2)j,1

h
x0
1 � ⇢x0

2

i
�⇢��2⇤

1+�j
6 (x0

3)
3

+ c(2)j,2�⇤
�j
6 x0

1(x
0
3)

2.

(53)
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All coe�cients remain regular and in general non-vanishing for � = 0 since x3
0/� =

�. Here, (↵,�) is a pair solving Eq. (40), and the coe�cients c(n)j,k are given by

(54)

c(1)0,0 = 18�⇤1 + 3�⇤3 + ⇤1⇤3, c(1)0,1 = � + ⇤1,

c(1)0,2 = ��⇤3 + ⇤5, c(1)0,3 = �4� + ⇤1,

c(2)0,0 = 27�⇢ + �⇤2 + 3⇤3, c(2)0,1 = ,

c(2)0,2 = ��⇤2 + 3⇤4,

c(1)1,0 = 6(� + ⇤1), c(1)1,1 = 2(18�⇤1 + �⇤3 + ⇤1⇤3 + 2⇤5),

c(1)1,2 = 2(�2� + 3⇤1), c(1)1,3 = 6(��⇤3 + ⇤5),

c(2)1,0 = 12, c(2)1,1 = 18�⇢ + 2⇤3 + 2⇤4,

c(2)1,2 = 12⇤6,

c(1)2,0 = 3(18�⇤1 � �⇤3 + ⇤1⇤3 + 4⇤5), c(1)2,1 = 5(�� + 3⇤1),

c(1)2,2 = 72�⇤1 + �⇤3 + 4⇤1⇤3 + 11⇤5, c(1)2,3 = 15⇤1,

c(2)2,0 = 3(9�⇢ � �⇤2 + ⇤3 + 4⇤4), c(2)2,1 = 5,

c(2)2,2 = 3(36�⇢ + �⇤2 + 4⇤3 + ⇤4),

c(1)3,0 = 20(�� + ⇤1), c(1)3,1 = 4(18�⇤1 � �⇤3 + ⇤1⇤3 + 4⇤5),

c(1)3,2 = 20⇤1, c(1)3,3 = 4(36�⇤1 + 3�⇤3 + 2⇤1⇤3 + 3⇤5).

The coe�cients ⇤1, . . . ,⇤5 and ⇤6 were given in Eq. (45) and Eq. (38), respectively.

Remark 5. Eq. (53) allows to easily describe the change in the sextic polynomial

under the action of the automorphism of the conic Q
0
given by [x1 : x2 : x3] 7!

[±x1 : ±x2 : x3].

We make the following remark:

Remark 6. The transformation x !
⇤6
x maps the coe�cients d(1)k ± d(2)k 7! d(1)k ⌥

d(2)k for k = 0, 1, 2 and a3 7! a3. This is to be expected since the coe�cients are in

terms of invariants of the binary sextic f(x, z) and x !
1
x just permutes x and z.

We have the following main result:

Theorem 1. Let p 2 M2 such that p 2 M2(K), for some number field K, and

j = [J2 : J4 : J6 : J10] the corresponding point in WP
3
(2,4,6,10)(OK), where OK is

the ring of integers of K. A genus-two curve corresponding to p is constructed as

follows:

i) If J2 · J10 6= 0 there is a genus-two curve C(↵,�) given by

(55) C(↵,�) : y2 =
6X

i=0

ai(↵,�)x
i ,

with coe�cients given in Eq. (52) and Eq. (53), and a pair (↵,�) satisfying

↵2 + ⇤6�
2� = �,

where ⇤6, �, and � are determined by p. Moreover, C(↵,�) is defined over its field of

moduli K, i.e., ai(↵,�) 2 K, i = 0, . . . , 6, if and only if K-rational ↵ and � exist.

ii) If J2 = 0 and J4 · J6 · J10 6= 0, there is a genus-two curve given by setting

⇢ =  6= 0 in Eq. (55).
iii) If J2 = J6 = 0 and J4 · J10 6= 0, there is only one genus-two curve given by

y2 = (4⌫ + 1)(2⌫ � 1)x6 + 2(1� ⌫)(4⌫ + 3)x5
� 15(1� ⌫)x4

+ 20(1� ⌫)2x3 + 5(2⌫ � 3)(1� ⌫)2x2 + 6(1� ⌫)3x� (1� ⌫)3
(56)
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with ⌫ = J5
4/(2

23555J2
10).

iv) If J2 = J4 = 0 and J6 · J10 6= 0, there is only one genus-two curve given by

y2 = 5x6 + 12(1� µ)x5
� 15(1� µ)x4

� 80(1� µ)2x3

+ 15(4µ� 7)(1� µ)2x2
� 60(1� µ)3x+ (4µ� 13)(1� µ)3.

(57)

with µ = J5
6/(2

43455J3
10).

v) If J2 = J4 = J6 = 0 and J10 6= 0, there is only one genus-two curve given by

y2 = x6
� x .

Proof. From the above discussion we know that there are genus-two curves y2 =
f(x) corresponding to p, where f(x) is given in Eq. (52). We obtain coe�cients
ai(↵,�) 2 Q[↵,�, J2, J4, J6, J10] for 0  i  6. The field of moduli K of the point p
is K = Q(x1,x2,x3). For J2 6= 0 the invariants (⇢,�,) are birationally equivalent
to (x1,x2,x3) over Q by Lemma 1. By Lemma 3 the conic Q in Eq. (27) had a
K-rational point if and only if the conic Q0 in Eq. (37) does. By Lemma 4 the conic
Q

0 has a K-rational point, i.e., there is a K-rational solution (↵,�) of Eq. (40).
Therefore, ai(↵,�) 2 K, for i = 0, . . . , 6. The cases with J4 · J6 = 0 are similarly
obtained by applying Lemmas 1 and 6.

This completes the proof. ⇤
Remark 7. The four pairs (±↵,±�) belong to the same conic Q

0
. Therefore, we

get four genus-two curves in Theorem 1, but they are all twists of each other. That

is, we get one curve (over the algebraic closure), but four twists.

The main benefit of the above result is that it will give a curve defined over Q

whenever possible. This is an improvement from results in [15] where a curve is
provided only for curves with automorphism group of order 2 and J2 6= 0. The
equation is valid even when the field of moduli is not a field of definition. Hence,
for every point p 2 M2 we get a curve. Next we have the following result:

Corollary 2. For every point p 2 M2 such that p 2 M2(K), for some number

field K, there is a genus-two curves C given by

C(↵,0) : y2 =
6X

i=0

ai(↵, 0)x
i ,

corresponding to p, such that ai(↵, 0) 2 K(↵), i = 0, . . . , 6 as given in Eq. (52).
Moreover, C(↵,0) is at worst defined over the quadratic extension K(↵) of the field

of moduli K with ↵2 = ⇢2 + �.

We have the immediate consequence:

Corollary 3. Let x1,x2,x3 be transcendentals. There exists a genus-two curve

C(↵,0) defined over Q(x1,x2,x3)[↵] with ↵2 = ⇢2 + � such that

x1(C(↵,0)) = x1, x2(C(↵,0)) = x2, x3(C(↵,0)) = x3.

We have the following corollary:

Corollary 4. Let � = 0 and ⇢ 6= 0 for p 2 M2. Then, there is a genus-two curve

C given by Corollary 2, and it is defined over the field of moduli.

Proof. For � = 0 and ⇢ 6= 0, we have � = ⇢2, and we choose the K-rational solution
(↵,�) = (⇢, 0) in Eq. (40). ⇤
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Remark 8. It is easy to check using Eq. (21) that the locus � = 0 and ⇢ 6= 0 for

p 2 M2 corresponds to the locus

J10 = �2�113�35�5
�
9J5

2 � 700J3
2J4 + 2400J2

2J6 � 262400J2J
2
4 + 768000J4J6

�
.

We have the following lemma:

Lemma 7. In terms of the invariants ⇢,�, and � = ⇢2 + �, we have

D = �
J5
2

�
(� ⇢)2 + 9⇢

� �
(2� ⇢)2 � �

�

2173755(� ⇢)5
,

R2 =
J15
2

�
(� ⇢)2 + 9⇢

�3
⇤6

254321515(� ⇢)15
.

(58)

In particular, the locus D = 0 and �35 6= 0 is given by � = (2�⇢)2 or, equivalently,

� = 4(� ⇢).

We have the following corollary:

Corollary 5. Let D = 0 and �2
35 6= 0 for p 2 M2. Then, there is a genus-two

curve C given by Corollary 2, and it is defined over the field of moduli.

Proof. For � = (2�⇢)2 we can choose (↵,�) = (⇢�2, 0) in Eq. (40). As �⇢ 6= 0
we have y0 6= 0 in Eq. (41). ⇤

3.1. A word about extra automorphisms. In this section we derive a sextic
polynomial for the sublocus ofM2 with �35 = 0. We have the following proposition:

Proposition 4. Let D 6= 0 and �35 = 0 for p 2 M2. Then, there is a genus-two

curve C : y2 = F (x) with

F (x) =
⇣
d(1)0 + d(2)0

⌘
x6 +

⇣
d(1)2 + d(2)2

⌘
x4 +

⇣
d(1)2 � d(2)2

⌘
x2 +

⇣
d(1)0 � d(2)0

⌘
,

(59)

and with coe�cients in Z[↵, ⇢,] given by

d(1)0 = 3�2 �
�
2 + 9⇢

�
(11� 9⇢� 126) � �

�
2 + 9⇢

�2
(4� 3⇢� 36)

d(2)0 =
�
�2 +

�
�2 + 3⇢+ 45⇢

�
� � 3

�
2 + 9⇢

�
(4� 3⇢� 36)

�
↵,

d(1)2 = �15�2 + 15
�
2 + 9⇢

�
(5� 3⇢� 18) � � 15

�
2 + 9⇢

�2
(4� 3⇢� 36) ,

d(2)2 =
�
�15�2 +

�
752 � 45⇢� 135⇢

�
� � 15

�
2 + 9⇢

�
(4� 3⇢� 36)

�
↵.

Here, the absolute invariants ↵, �, ⇢, are subject to the constraints ⇤6 = 0 in

Eq. (38) and ↵2 = �.

Proof. For ⇤6 = ✏2 with ✏ ! 0, we rescale the polynomial in Eq. (59) according
to f(✏x)/✏6 before setting ✏ = 0. If we substitute ⇤6 = 0 into Eq. (40) we obtain
↵2 = �,� = 0. Therefore, we will use the absolute invariants ↵, �, ⇢, subject to
the constraints ⇤6 = 0 in Eq. (38) and ↵2 = �. The sextic polynomial in Eq. (59)
has coe�cients in The remainder of the proof then follows from specializing the
formulas in Equation (4) to � = ⇤6 = 0. ⇤

The polynomial in Eq. (59) is a twist of the polynomial given by

(60) F̂ (x) = x6 + ax4 + bx2 + 1
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The curve y2 = F̂ (x) has extra involutions, i.e., it has automorphisms other than the
hyperelliptic involution, for appropriate values of a, b (the discriminant is nonzero).
In [18] for curves with automorphism the dihedral invariants

(61) u = ab, v = a3 + b3,

were defined which give a birational parametrization of this locus L2 which is a
two-dimensional subvariety of M2. We have the following:

Corollary 6. For the genus-two curve C : y2 = F (x) given by Equation (59) with

�35 = 0 we obtain the dihedral invariants

u =

⇣
d(1)2 + d(2)2

⌘⇣
d(1)2 � d(2)2

⌘

⇣
d(1)0 + d(2)0

⌘⇣
d(1)0 � d(2)0

⌘ ,

v =

⇣
d(1)2 � d(2)2

⌘3

⇣
d(1)0 + d(2)0

⌘⇣
d(1)0 � d(2)0

⌘2 +

⇣
d(1)2 + d(2)2

⌘3

⇣
d(1)0 + d(2)0

⌘2 ⇣
d(1)0 � d(2)0

⌘ ,

(62)

and the Igusa invariants [J2 : J4 : J6 : J10] given by [18, Eq. (16)].
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