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ABSTRACT. Let p be any point in the moduli space of genus-two curves Mo
and K its field of moduli. We provide a universal equation of a genus-two
curve Co, g defined over K (o, ), corresponding to p, where o and 3 satisfy a
quadratic a2 + b 82 = ¢ such that b and c are given in terms of ratios of Siegel
modular forms. The curve C,, g is defined over the field of moduli K if and only
if the quadratic has a K-rational point («, 3). We discover some interesting
symmetries of the Weierstrass equation of C, g. This extends previous work
of Mestre [15] and others.

1. INTRODUCTION

Let M5 be the moduli space of genus-two curves. It is the coarse moduli space
for smooth, complete, connected curves of genus 2 over C. Let p € Ms(K), where
K is the field of definition of p. Construction a genus 2 curve C' corresponding to p
is interesting from many points of view. In [1], for example, the authors count the
points in M3(Q) according to their moduli height and create a database of genus
2 curves from the moduli points in M3(Q). In creating the database the main
problem was that of constructing an equation for obstruction moduli points. Mestre
[15] has shown how to construct equations for genus-two curves with automorphism
group of order two and defined over Q. This paper provides an equation over a
minimal field of definition for any point p € Mo.

The natural question is if there exists a universal curve for the genus-two curve
given in terms of a generic moduli point p € Ms. In other words, given an affine
moduli point p = (z,y,2), where x,y, z are transcendentals, can we construct a
curve corresponding to p? The answer is negative in the strict definition of “uni-
versal curve”; see [7, pg. 39] for details. As we will show, there is a satisfactory
answer in the sense that our “universal equation” applies to every moduli point
p € Ms. However, the equation is often defined only over a quadratic extension of
the field of moduli.

We focus mainly on constructing a genus-two curve C for any given point p =
(x1,X2,X3) € May, defined over a minimal field of definition, where x;1, x2, X3 are
ratios of modular forms as defined by Igusa in [9]. Our main result is as follows:
For every point p € My such that p € My(K), where K is the field of moduli,
there is a genus-two curve C(,,g) given by

6
(1) C(a,ﬂ) : 92 = Z CLi(OQB) xi )

=0
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corresponding to p with coefficients given by Eq. (52). This curve is defined over
the field of moduli K if and only if there exists a K-rational solution (a, 8) to the
quadratic

A+b-pr=c

where b and c are given in terms of the moduli point p. There are some interesting
properties of the coefficients defining C(,,3) which seem to be particular to this
model and not noticed before.

It must be noticed that this equation is universal in the sense that it works for
every moduli point [Jy : Jy : Jg : J1g] given in terms of the Igusa invariants Jo, Jy,
Js, J10.- The equation is defined at worst over a quadratic extension of the field of
moduli K. If the equation over the field of moduli is needed, then we must search
locally for a rational point in the above quadratic when evaluated at the given p.
In the process we discover some very interesting absolute invariants (cf. Eq. (21))
which as far as we are aware have not been used before.

The paper is organized as follows: In Section 2 we give a brief summary of Siegel
modular forms, classical invariants of binary sextics and the relations among them.
While this material can be found in many places in the literature, there is plenty of
confusion on the labeling and normalization of such invariants and relations among
them. We also introduce a set of absolute invariants that is well-suited for the
construction of a universal sextic.

In Section 3 we construct the equation of the genus-two curve by determining the
Clebsch conic and the cubic. We diagonalize the corresponding conic and discover a
new set of invariants which make the equation of this conic short and elegant. The
diagonalized conic can be quickly determined from the invariants of the curve. The
intersection of this conic and the cubic gives the equation of the genus-two curve.
This equation shows some interesting symmetries of the coefficients, which to the
knowledge of the authors have never been discovered before. When this universal
equation is restricted to loci of curves with automorphisms or the Clebsch invariant
D = 0 (not covered by Mestre’s approach) it shows that the field of moduli is a
field of definition, results which agree with previous results of other authors.

2. PRELIMINARIES

2.1. The Siegel modular three-fold. The Siegel three-fold is a quasi-projective
variety of dimension 3 obtained from the Siegel upper half-plane of degree two which
by definition is the set of two-by-two symmetric matrices over C whose imaginary
part is positive definite, i.e.,

(2)

e fee(23)
z T2

quotiented out by the action of the modular transformations I'y := Sp,(Z), i.e.,

T1,T2,2 € C, Im(m) Im(72) > Im(2)2, Im(7p) > 0} ,

(3) Ay =Hy /Ty .
Each 7 € Hy determines a principally polarized complex abelian surface

A, =C*/(Z?©1Z?
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with period matrix (7,Is) € Mat(2,4;C). Two abelian surfaces A . and A, are
isomorphic if and only if there is a symplectic matrix

(@ M= p)er

such that 7’ = M(r) := (Ar+B)(C1+D)~!. Tt follows that the Siegel three-fold Az
is also the set of isomorphism classes of principally polarized abelian surfaces. The
sets of abelian surfaces that have the same endomorphism ring form sub-varieties of
As. The endomorphism ring of principally polarized abelian surface tensored with
Q is either a quartic CM field, an indefinite quaternion algebra, a real quadratic
field or in the generic case Q. Irreducible components of the corresponding subsets
in As have dimensions 0,1,2 and are known as CM points, Shimura curves and
Humbert surfaces, respectively.

The Humbert surface Ha with invariant A is the space of principally polarized
abelian surfaces admitting a symmetric endomorphism with discriminant A. It
turns out that A is a positive integer = 0,1 mod 4. In fact, Ha is the image inside
Az under the projection of the rational divisor associated to the equation

(5) ati+bz+cems+d(Z2—Tm)+e=0,

with integers a, b, ¢, d, e satisfying A = > —4ac—4de and 7 = (T; TZQ) € H,. For
example, inside of A5 sit the Humbert surfaces H; and Hy that are defined as the
images under the projection of the rational divisor associated to z = 0 and 71 = 79,
respectively. In fact, the singular locus of Ay has H; and Hy as its two connected
components. As analytic spaces, the surfaces H; and H4 are each isomorphic to
the Hilbert modular surface

(6) ((SLQ(Z) % SLa(Z)) x Zg)\(H X H) .

For a more detailed introduction to Siegel modular form, Humbert surfaces, and
the Satake compactification of the Siegel modular threefold we refer to Freitag’s
book [5].

2.2. Siegel modular forms. In general, we can define the Eisenstein series oy,
of degree g and weight 2k (where we assume 2k > g+ 1 for convergence) by setting

(7) Yor(r) = Y det (C-7+ D),

(C,D)

where the sum runs over non-associated bottom rows (C, D) of elements in Sp,,(Z)
where non-associated means with respect to the multiplication by GL4(Z). In the
following, we will always assume g = 2 in the definition of 9. Using Igusa’s
definition [9, Sec. 8, p. 195] we define a cusp form of weight 10 by

(®) X10(z) = ~ iy gz (Ba(1) Yo(r) — ro(r))

It is well known that the vanishing divisor of the cusp form xig is the Humbert
surface H; because a period point 7 is equivalent to a point with z = 0 if and only
if x10(7) = 0. Based on Igusa’s definition [9, Sec.8, p.195] and the work in [14] we
define a second cusp form x12 of weight 12 by

9 xiolr) = g 2%

== m (32 721/)2(1) +2' 531/)3(1) — 6911/)12(1)) .



4 A. MALMENDIER AND T. SHASKA

Moreover, Igusa proved [10, 11] that the ring of Siegel modular forms is generated
by 4, Y6, X10, X12 and by one more cusp form ys5 of odd weight 35 whose square
is the following polynomial [10, p.849] in the even generators

X5 = 5y 10 (23 xhs — 2%3° 0 s — 2787 0y +3° wi s
—2-3% i xia — 2 8° i e xa0 X2 — 2% 8" 57 ¢ xio X1z + 3° 5 X
+2M3%37 94 xTo xi2 + 2" 3°5 - Teha v xFo X2 — 2% 37 5% 96 XTo X2
(10) — 3290 xTo xa2 + 2 3201 g xTo xa2 + 2" 375 1995 ¥ X0 X12
+2%03% 5% 119 xio x12 — 3% ¢ba b XTo xa2 + 211 37 5% 90§ xTo xa2 — 298 ¥6 Yo
— 22384 xlo + 27w g xbo + 2'7 3% 57 4 9 xo + 271 375 va s x3o
— 298 xd +2%3°5" %) -
Hence, the expression @ := 21239 y2. /x1¢ is a polynomial of degree 60 in the even

generators. Igusa also proved that each Siegel modular form (with trivial character)
of odd weight is divisible by the form x35. The following fact is well-known [6]:

Proposition 1. The vanishing divisor of Q is the Humbert surface Hy, i.e., a
period point T is equivalent to a point with 7, = o if and only if Q = 0. Accordingly,
the vanishing divisor of xss is the formal sum Hy + Hy of Humbert surfaces, that
constitutes the singular locus of As.

In accordance with Igusa [9, Thm. 3] we also introduce the following ratios of
Siegel modular forms

2 3 6
i oot voxh
X12 X12 Xi2
as well as
3 3 2 2 2 2
x » X (0 xiX2 Y76 X10
(12)  yi=—t=—% yy=2=-0 y=—t—=-=
X3 X12 X3 X12 X3 X12

where we have suppressed the dependence of each Siegel modular form on 7. These
ratios have the following asymptotic expansion for z — 0 [9, pp. 180-182] in terms
of ordinary FEisenstein series E4 and Eg and the Dedekind n-function

x1 = Ey(11) Es(12) (7rz)4 + 0(25) ,
(13) Xo = EG(TI) Eﬁ(Tg) (7'('2)6 + 0(2’7) s

xg = 0" (1) **(r2) (m2)? + O(z"%)
and

y1=13(n)j(r) + 0%,
- (1728 - j(n)> (1728 - j(Tg)) +O(2?),
ya = E3(11) Ef(72) Es(1) Es(72)
n?4 (1) n?*(72)

where we have set

o™}

(14) Y

(m2)” + O(2%)

(r) = 1728 B3(r;)  E3(ry)

(15) P T B ) - B () ()
1728 — () = 1728 E2(;)  E2(r))

N =B )~ Eiry) i)
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The following fact is well-known [6]:

Proposition 2. The modulus point T is equivalent to a point with z =0 or [1] €
H, C As such that the principally polarized abelian surface is a product of two
elliptic curves A, = E. x E., if and only if x10(r) = 0. The elliptic modular
parameters are determined by Eq. (14).

2.3. Igusa invariants. Suppose that C is an irreducible projective non-singular
curve. If the self-intersection is C - C = 2 then C is a curve of genus two. For
every curve C of genus two there exists a unique pair (Jac(C), jc) where Jac(C) is
an abelian surface, called the Jacobian variety of the curve C, and j¢ : C — Jac(C)
is an embedding. One can always regain C from the pair (Jac(C),P) where P = [C]
is the class of C in the Néron-Severi group NS(Jac(C)). Thus, if C is a genus-
two curve, then Jac(C) is a principally polarized abelian surface with principal
polarization P = [C], and the map sending a curve C to its Jacobian variety Jac(C)
is injective. In this way, the variety of moduli of curves of genus two is also the
moduli space of their Jacobian varieties with canonical polarization.

We write the equation defining a genus-two curve C by a degree-six polynomial
or sextic in the form

6 6

(16) C:y*=f(z)=ao H(x—ai):Zaixi.

i=1 =0

The roots {a;}9_; of the sextic are the six ramification points of the map C — P*.
Their pre-images on C are the six Weierstrass points. The isomorphism class of f
consists of all equivalent sextics where two sextics are considered equivalent if there
is a linear transformation in GLg(C) which takes the set of roots to the roots of the
other.

The ring of invariants of binary sextics is generated by the Igusa invariants
(J2, J4, Js, J10) as defined in [12, Eq. (9)], which are the same invariants as the ones
denoted by (4’, B',C’, D') in [15, p.319] and also the same invariants as (A, B, C, D)
in [9, p.176]. For expressions of such invariants in terms of the coefficients ay, . . . , ag
of the binary sextic, or J, € Z[ag,...,ag] for k € {2,4,6,10}; see [12, Eq. (11)]
and in terms of thetanulls see [13]. One can then ask what the Igusa invariants
of a genus-two curve C defined by a sextic curve f are in terms of 7 such that
(1,13) € Mat(2, 4; C) is the period matrix of the principally polarized abelian surface
A, = Jac(C). Based on the asymptotic behavior in Equations (13) and (14), Igusa
[10, p. 848] proved that the relations are as follows:

_ o3 o x12(7)
fo=2d XlO(I) ’
Ji= 22¢4(7),
(7) 3
I e
o= 3 volz) ~2 X10(T)

Jio = =2 x10(7)

Thus, the invariants of a sextic define a point in a weighted projective space
[Jo:Jy: Js: Jig] € WP?2,4,6,10) that equals

123 (3x12) + 2282 g xy ¢ 2°3% (40 (Baz) + o xa0) 1o+ 225 -
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Torelli’s theorem states that the map sending a curve C to its Jacobian variety
Jac(C) induces a birational map from the moduli space Mo of genus-two curves
to the complement of the Humbert surface H; in A, i.e., Az — supp(xi0),- In
other words, points in the projective variety Proj C[Ja, Jy, Js, J1p] which are not
on Jig = 0 are in one-to-one correspondence with isomorphism classes of regular
sextics [9].

Often the Clebsch invariants (A, B,C, D) of a sextic are used instead. They
are defined in terms of the transvectants of the binary sextics; see [4] for de-
tails. The invariants (A, B, C, D) are polynomial expressions in the Igusa invariants
(J2, J4, Jg, J10) with rational coefficients:

1

A=
B= Wﬁy(ﬁmoh),

(18) C = —@(J§+80J2J4—600J6) :
D= — @ (9J3 + 700 J3 J4 — 3600 J3 Jg

—12400 JJ? + 48000 J4 Js -+ 10800000 Jo) -

For formulas giving relations between all these sets of invariants see [1].

2.3.1. Absolute invariants. Dividing any SLy(C) invariant by another one of the
same degree gives an invariant under GL2(C) action. The term absolute invari-
ants is used first by Igusa [8] for GL2(C) invariants. It was the main result of [9,
Theorem 3] that

J Jody — 3J, J
(19) x| = 1447‘,;, X5 = —1728%, X3 = 486%,
2 2 2

for Jo # 0. We use x1,X2,X3 to write the point [Ja : Jy : Js : Jio] € WP?2,476,10) as

11 1
ToagXligeza X2 T qrgs X1t 5 g3

(20) 1 X3

Since the invariants Jy, Jg, Jig vanish simultaneously for sextics with triple roots
all such curves are mapped to [1 : 0 : 0 : 0] € WP‘?QA,&IO) with uniformizing
affine coordinates X1, X2, x3 around it. Blowing up this point gives a variety that
parameterizes genus-two curves with Jo # 0 and their degenerations. In the blow-
up space we have to introduce additional coordinates that are obtained as ratios
of x1,X2,x3 and have weight zero. Those are precisely the coordinates yi1,y2,y3
already introduced in Eq. (12). It turns out that the coordinate ring of the blown-up
Space is (C[Xla X2,X3,¥Y1,Y2; Y3]
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We introduce the three absolute invariants
4(9J3 — 320 J4) (J3 +20J4)°
T (3U3 4+ 1405 J1 — 800 Jg)°
48 (J3 +20J4)°

@1) 77 T (373 + 140 Js J1 — 800 Jg)°

x (9J5 — 700 J5 Ja + 2400 J3 J — 262400 J2 J; + 768000 J4 Js + 172800000 Jio) ,

2(27J3 + 2380 J5 Ju — 12000 J2 Js + 12800 J5) (J3 + 20 Ja)

" (3J3 + 140 J5 J4 — 800 Jg)? ’

I

It follows:

Lemma 1. For invariants (p,o,k) given by Eq. (21) such that p and k do not
vanish simultaneously, a point [Jo : Jy : Jg : Jig] in WIE”?QA’GJO) is given by

9
J2:8("{_p)v J4:7(/€_p)2+45pa

5
111 5 2
Jo = g (5= p)* = 30(k = p)* + 63p(x — p) = 270p ,
(22) 6 4 46
_ - _ 5 - _ 4 = _ 3
Tio = g5z (k= p)” + 72 (k= p)" + = p(k = p)
1 42 3
+ <60 + 5p> (k= p)* +12p%( = p) + 5 (36p — 7).

In particular, for Jo # 0 we have Q(x1,%2,%x3) = Q(p, 0, k).

Proof. The proof is computational. We express p, o, k as rational functions of x,
X3, X3 and vice versa over Q. The condition that p and x do not vanish simultane-
ously is based on the fact that Js, Jy, Jg, J19 must not vanish simultaneously. [

Remark 1. Consider the image of [Jo : Jy : Jg : Jio] in WP?2,476,10) under the
morphism W]P’z()’27476710) — P? given by
(23)  [486J4J5 : 48610 1 —1728(JoJs — 3Jg)J5 : 1445 Jy : 207360207 : J3 ],
which is a linear transformation of the usual morphism to P° given by

[Jo: Jy: Jo = Jig] = [Jio : Jads : JaJs 2 J3Jdy = JoJi : J3).
For Jy # 0, points in Eq. (23) equal

(24) (X0 4+12x1) i X3 :Xp i X i x50 1

1
—X
1536
The invariants X1,Xg,X3 are not defined for Jo =0, but p, o, k remain well-defined
if p=kr # 0. In this case we have

3
(25) IV =0, 1 =a5p, JO = —270p, JQ = 50 (36p—0)

and the invariants p and o with

473 144 J} }
_ A T gL o

26 —p=od Ji 0
(26) P=R=572 5 J2 T2 Tids



8 A. MALMENDIER AND T. SHASKA

determine genus-two curves with Jo =0, Jy-Jg # 0 up to isomorphism. In addition
to Jo = 0, we have Jigp = 0 if and only if 0 = 36p. Using e = (k — p) in Eq. (22),
one checks that points in Eq. (23) up to terms of order O(€*) equal

7 Iy 2 512

1o e =10 2 0.0 -2%c:0
307 70 70 T 2025° 9 ¢

This means that under the usual morphism to P° the reqular genus-two curves with
Ja =0 and constant ratio Jio/(JsJs) are mapped to the same point.

2.4. Recovering the equation of the curve from invariants. Let p € M,
and C a genus-two curve corresponding to p defined by the sextic polynomial f in
Eq. (16). Then, Aut(p) is a finite group as described in [18]. The quotient space
C/Aut(p) is a genus zero curve and therefore isomorphic to a conic. Since conics
are in one to one correspondence with three-by-three symmetric matrices (up to
equivalence), let M = [A;;] be the symmetric matrix corresponding to this conic.
Let X = [Xl : Xo Xg] € P? and

3
(27) oF Xt-M~X:ZAinin:0.
i,j=1

Clebsch [4] determined the entries of this matrix M as follows

1
A11:20+§AB,
Ap =A13= D,

1 2
(28) A33=§BD+§C(BQ+AC),
1 1 1
A23:gB(BQ+AC)+§C(2C+§AB),

2
Ay = g(BQ—s-AC).

The coefficients are obtained as follows: from the sextic f in Eq. (16) three binary
quadrics y;(z) with ¢ = 1,2, 3 are obtained by an operation called ‘Uberschiebung’
[15, p.317] or transvection. The quadrics y; for ¢ = 1,2,3 have the property that
their coefficients are polynomial expressions in the coefficients of f with rational
coefficients. Moreover, under the operation f(z) — f(z) = f(—=z) the quadrics
change according to y;(x) — ¥;(z) = y;(—x) for i = 1,2,3. Hence, they are not
invariants of the sextic f. The coefficients A;; in Eq. (28) satisfy 4;; = (yiy;)2.!
Therefore, the coefficients A;; are invariant under the operation f(z) + f(z) =
f(—=x), and the locus D = 0 is equivalent to

(29) D=0 < (y1ys)2 = (yay2)2 =0.

We define R to be 1/2 times the determinant of the three binary quadrics y;
for i = 1,2,3 with respect to the basis 22, x,1. If one extends the operation of
Uberschiebung by product rule [15, p. 317], then R can be re-written as

(30) R = —(y1y2)1 (YQY3)1 (Y3Y1)1’

IFor two binary forms f,g of degree m and n, respectively, we denote the Uberschiebung of
order k by (fg)r = (=1)*(gf)x. For f(z) = f(—z) and §(z) = g(—x) and m = n = k, we have
(f9m = (D" ([P m.
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or, equivalently, as

1
R = _g (yl,yy y2,zy Y3,m - yl,yy YQ,M- y3,wy - yl,xy y2,yy y3,1;$
(31)

+ Y12y ¥Y2,22 Y3,y T V1,22 Y2,9y Y3,2y — Y122 Y2,2y y3,yy) .

It is then obvious that under the operation f(z) — f(x) = f(—=z) the determinant

R changes its sign, i.e., R(f) — R(f) = —R(f). A straightforward calculation
shows that

1| An A A
(32) R? = 3 Az Axp Aoz |,
Ais Axs Ass

where A;; are the invariants in Eq. (28). Like the coefficients A;;, R? is invari-
ant under the operation f(z) — f(z) = f(—z) and must be a polynomial in
(J2, J4, Jg, J10). Substituting (17) into the Clebsch invariants and then Eq. (28) it
follows that

2_ (9939510, X35(T) ?

Bolza [3] described the possible automorphism groups of genus-two curves defined
by sextics and provided criteria for the cases when the automorphism group of the
sextic curve in Eq. (16) is nontrivial. For a detailed discussion of the automorphism
groups of genus-two curve defined over any field k£ and the corresponding loci in
M see [18]. We have the following lemma summarizing our discussion:

Lemma 2. We have the following statements:

(1) R? is an order 30 invariant of binary sextics expressed as a polynomial
in (Ja, Ja, Js, J10) as in [18, Eq. (17)] given by plugging Clebsch invariants
and (28) into Eq. (33).

(2) The locus of curves p € My such that Vi — Aut(p) is a two-dimensional
irreducible rational subvariety of Mo given by the equation R?> = 0 and a
birational parametrization given by the u,v-invariants as in [18, Thm. 1].

We have introduced the invariant R? for any binary sextic f. To the correspond-
ing symmetric matrix M with coefficients A;; = (y;y;)2 of order zero and invariant
under the operation f(z) — f(z) = f(—x), we associated a conic Q. Similarly,
there is also a cubic curve given by the equation

(34) T: Z aijk XZX]Xk = O,
1<4,5,k<3

where the coefficients a;;, are of order zero and invariant under f(z) — f(z) =
f(—=z). In terms of ‘Uberschiebung’ the coeflicients are obtained by

(35) Qijk = (fyi)2 (ij)z (fyr)z2 -
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The coefficients a;;, are given explicitly as follows:
36a11; = 8(A*C — 6BC + 9D),
36 a112 = 4(2B* + 4ABC + 12C? 4+ 3AD),
36 a113 = 36 aj90 = 4(AB> +4/3 A’BC + 4B*C + 6AC? 4+ 3BD),
36 a1o3 = 2(2B* + 4AB*C + 4/3 A*C? 4+ 4BC? + 3ABD + 120D),
36a133 =2 (AB* +4/3A*B*C +16/3 B°C
(36) +26/3 ABC? + 8C® + 3B*D + 2ACD) ,
36 aze2 = 4(3B* + 6AB*C + 8/3 A>’C* + 2BC? — 3CD),
36 agos = 2(—2/3 B*C' — 4/3 ABC? — 4C® + 9B?D + 8ACD),
36 agss = 2(B° + 2AB®C + 8/9 A’BC? + 2/3 B2C? — BCD + 9D?),
36 ass3 = —2B*C — 4AB*C? - 16/9 A*C® — 4/3 BC?
+9B*D + 12ABCD + 20C*D.

The relations between all aforementioned invariants and Siegel modular forms, in
particular the relation between yss and R? can be found in [1].

Since ‘Uberschiebung’ preserves the rationality of the coefficients, we have the
following corollary:

Corollary 1. Let p € My and C a genus-two curve corresponding to p defined
by a sextic polynomial f in Eq. (16). Then, Aut(p) is a finite group, and the
quotient space C/Aut(p) is a genus zero curve isomorphic to the conic Q in Eq. (27).
Moreover, if p € My(K), for some number field K, the conic @ and cubic T have
K -rational coefficients.

The intersection of the conic @ with the cubic 7 consists of six points which
are the zeroes of a polynomial f(z) of degree 6 in the parameter . The roots of
this polynomial are the images of the Weierstrass points under the hyperelliptic
projection. Hence, the affine equation of a genus-two curve corresponding to p is
given by y? = f(z). The main question is if the sextic given by y? = f(z) provides
a genus-two curve defined over a minimal field of definition. We start with the
following known result.

Proposition 3. A genus g > 2 hyperelliptic curve Xy with hyperelliptic involution
w 1is defined over the K if and only if the conic Q = Xy /(w) has a K-rational point.

The above result was briefly described in [15, Lemma 1] even though it seems
as it had been known before. Mestre’s method is briefly described as follows: if
the conic @ has a rational point over Q, then this leads to a parametrization of Q,
say (hi(x), ha(x), hs(x)). Substitute X1, Xo, X3 by hi(x), ha(z), hs(z) in the cubic
T and we get the degree 6 polynomial f(z). However, if the conic has no rational
point or R? = %det M = 0 the method obviously fails. In Section 3 we determine
the intersection 7 N Q over a quadratic extension which is always possible.

3. A UNIVERSAL GENUS-TWO CURVE FROM THE MODULI SPACE

The goal of this section is to explicitly determine a universal equation of a genus-
two curve corresponding to this generic point p. We have the following lemma:
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Lemma 3. The conic Q in Eq. (27) for Jy - Js - Jio # 0 is equivalent over
Q[J2, p, 0, K| to the conic

(37) Q' 2 —yai-Aezi=0,
where (p, 0, k) are the absolute invariants in Eq. (21), v = p*> + o and
Ao = =7 = 2Tp~y° —81p% (p+12) v + 729 % (p + 12)°
+ (=6p7° +54p (5p+36)y — 1944 % (p + 12)) &
(38) + (99 = 9p(p+36)y+162p(p° +32p + 144)) &>
+((30p +216) v — 432 p (p + 12)) k* + (9p> — 247 + 504 p + 1296) «*
+(—24p —288) K° + 16 K°.

Moreover, for Jo,p,0,k € Q the conic Q in Eq. (27) has a rational point if and
only if the conic Q" in Eq. (37) does.

Proof. For the conic Q in Eq. (27), we apply the coordinate transformation given
by

X; =2 (AB+60)" (AC + B?) 2,

+108 B(AB +6C)* (4A4%C? + 8AB?C + 4B* — 3ABD — 18 CD) x5

+ 41990 B? (8A*BC? + 14AB*C + 6B® + 12AC® + 12B?C? — 27D?) x5,
Xy =— (AB +6C)° 21 — 419904 B% 3

x (4A2B?C + 3AB* + 30ABC? +18B3C — 18ACD — 18B?D + 36C°),
X3 = —2039B3(4A%C? + 8AB?C + 4B* — 3ABD — 18CD)x3.

We then obtain the conic Q' in Eq. (37). Eq. (39) can be rewritten as transformation
over Q[Jz, p, 0, k] using Eq. (18) and Eq. (21). O
We have the following lemma:

Lemma 4. Assume p,o,k € Q. The conic Q" in Eq. (37) has a rational point if
and only if there are rational numbers a, f € Q such that

(40) o® + AgfPo = .
The rational point on the conic Q' is then given by
(41) (29 : 28 2] = [ap+y:a+p: fo].

Conwversely, every rational point on the conic Q' can be written in the form of
Eq. (41) for some rational numbers a, § € Q satisfying Eq. (40).

Proof. If rational numbers «, 5 exist such that Eq. (40) is satisfied, then the point
in Eq. (41) is rational and is easily checked to be on the conic. If there is a rational
point on the conic then we can choose § € Q in Eq. (41), thus a € Q. O

We have the following:

Lemma 5. Assume that a point on the conic in Eq. (37) is given by Eq. (41) with
29 # 0 which is always possible if p # 0. Then every point on the conic is given by

x1 = (ap+7) U + 20680 UV + Ag(ap +v)V?,
(42) zy = (a4 p)U? = Ag(a + p) V?,
x3=PoU> +2(ap+y)UV + AgBo V2,
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for some [U : V] € PL. The parametrization in Eq. (42) is a rational parametriza-
tion of the conic Q' if and only if o, B, p, k,0 € Q.

Proof. If a point of Q' is obtained from some (rational) values («, ) then there
are three more (rational) points given by setting («, 8) — (£a, £8). If p # 0, one
of these points satisfies 29 = a + p # 0. The proof then follows from the known
formulas parametrizing conics for 29 # 0 given by

1 =a2%U? = 2cx3UV —ca? V2,
(43) T =axyU? +cad V2,
x3=a23U? +2a23UV —cal V2

where a = 1,b = —v,¢ = —Ag and 29, 29, 29 were given in Eq. (41). O

Remark 2. If a = p =0 and v # 0, a formula similar to Eq. (42) can be found
using the fact that 29 # 0 in Eq. (41) in this case.

Remark 3. If a point of Q' is obtained for some (rational) values (c, B) then three
more (rational) points on Q' are given by setting («, 8) — (£, £8) in Eq. (41).

Changing from coordinates [X; : X5 : X3] to coordinates [z : x5 : x3] transforms
the conic Q in Eq. (27) into the conic Q" in Eq. (37). Similarly, under the same
change of coordinates the cubic 7 in Eq. (34) becomes

T': 0=A (1874 Az) 2% + P Agaly — (v — A)AZ 23
(44) + 3A A 233 + 37(9yp + KA3) 23w + 372 A3 2125
+ 3A5A6 xlxg + 3vA4Aq ach% + 372 A¢ x%xg + 6vkAg x1T2T3,
with coefficients given by
Ay =9p + K,
Ay =~ +18p + 3pk — 4K2,
Az =27p(p+12) + (v — 36p)k + 3(p + 12)x* — 4K>,
Ay = =72 = 9vp —3(vp — 9p(p + 12))k + (57 — 36p)K* + 3(p + 12)k> — 4x*,
As = —=2Typ(p + 6) + 243p (p + 12) — (v* — 457p + 324p*)r
— (3y(p —6) — 54p(p + 12)) K + (5y — 72p)x> + 3(p + 12)K* — 4K°.

(45)

We also discuss the conic, cubic, rational point and parametrization in the cases
where Jo, =0 and Jy - Jg = 0:

Lemma 6. If Jo, = Jy =0 and Jg - Jig # 0, the conic Q in Eq. (27) is equivalent
over Q[Jg, J1o] to the conic
(46) Q' af—pai—(1-pai=0,
with p = J§ /(243155 J3)) and a rational point given by [29 : 23 : 29 =[1:1:1]. A
rational parametrization of Q' is then given by

21 =U*+2(1 —p)UV + (1 —p)V? 2o =U% - (1 — p)V?,

47
7) x3 =U? +2UV + (1 — p)V?
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with [U : V] € PL. Under the same change of coordinates the cubic T in Eq. (34)
becomes
(48) T 0=22% — pa3 —2(1 — p)?x3 — 6uaic,
—6(1 — )tz +6(1 — p)zrad — 3u(l — st

If Jo = Js = 0 and Jy - Jio # 0, the conic Q in Eq. (27) is equivalent over
Q[J4, J1o] to the conic

(49) Q: at—ai-(1-v)i=0,
with v = J3 /(223555 J%)) and a rational point given by [z9 : 23 : 28] =[1:1:0]. A
rational parametrization of Q' is then given by
(50) 1 =U4+(1—-v)V? 2=U?-1-0v)V? a3=20UV
with [U : V] € PL. Under the same change of coordinates the cubic T in Eq. (34)
becomes

T 0=(1-vHa} —v?z) — (1 —v)?zs +v(l —3v)riey
(51) — (1 =v)B+v)2ies +v(l —3v)z22 — v(l — v)zies

+ (1= v)(3=v)z123 +v(1 — v)a9zs — 2v(1 — v)z 2923,

Proof. The proof is analogous to the proofs of Lemmas 4, 5. O

Remark 4. The absolute invariants (p,o, k) in Eq. (21) such that p and & do not
vanish stmultaneously and Jig # 0 describe the moduli of genus-two curves with
Jy - Jg - Jig # 0. The discussion of Lemma 6 proves that only for genus-two curves
with Jy - Jg + J1g # 0, the conic Q in Eq. (27) is not guaranteed to have a rational
point.

Substituting the parametrization of the conic @’ in Lemma 5 into the cubic 7’
in Eq. (44) and setting U = x and V' = 1, one obtains the ramification locus of a
sextic curve. The ramification locus is equivalent to f(z) = Z?:o ai(a,B)zt =0
where we write the sextic polynomial in the form
f) = (d +dP) a® + () +dP) Aga® + (d” + d) Aga?
(52) ,
- dPAZe 4 (dgl) <2>> AZe? 4 (dﬁ” (2)) Az ( PO (2)) AL

In terms of the coordinates of the point [#) : 29 : 29] in Eq. (41) we have set

d(l) = 0513 [(Pz +7)z] + 27955(2)]7 + 305-}1) [m? + pxg}vAgj x5
- cg-lg [(p2 + )zl — 2’ypwg]p2072A6( 2 — 30(1) [:cl — pxo ] 202 A, o i (29)?
(53 + [30’6 —2p c(l)} “TAexd(x3)? + (1)A1+§ (29)?,
& =) [2;)961 + (P + )z ]7 + 652 [pxl + 79:2] yAg 3
i [2%”61 p(p” + v)wz] vpo*Ag(a])” — 6c) [w? — px(z’]wa”/\é%j (25)

+ ci-?gvAgx?@g)?.
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All coefficients remain regular and in general non-vanishing for o = 0 since z3 /o =

B. Here, (o, ) is a pair solving Eq. (40), and the coefficients CYL) are given by

C((]}()) = 18yA1 + 3vA3 + A1As, C(()%i =~v+ A1,
081,% = —vA3z + As, C((f;, = —4dy + Ay,
C((JQ(), = 27vyp + vA2 + 3kAs, C((JQi =K,
052,% = —vA2 + 3Ay4,
effy  =6(v+ A1), ') =2(18yA; + A5 + ArAs + 2A5),
') =2(-2v+3M), 'y =6(—7As +As),
(54) cfé = 12k, 0523 = 18vp + 2rkA3 + 2Ay4,
?) =12k,
ety =3(18yA1 — Az + A1As +4A5), b =5(—v +3A1),
6(2%% = 72yA1 + yA3 + 4A1 A3 + 11A5, 6(2%% = 15A4,
5(222) =3(97p — vAz + kA5 + 4A4), 5(223 = 5k,
0(22; = 3(36vp + vA2 + 4rA3 + A4),
Cgly()J = 20(—"/ + Al), Cé%i = 4(18’7/\1 — A3 + A1As + 4A5),
) =20, ') =4(367A1 + 3yAs + 2A1 A5 + 3As).

The coefficients Ay, ..., A5 and Ag were given in Eq. (45) and Eq. (38), respectively.

Remark 5. Eq. (53) allows to easily describe the change in the sextic polynomial
under the action of the automorphism of the conic Q' given by [x1 : xo : x3] —
[:l::L‘l : :|:£L'2 : 1‘3].

We make the following remark:

Remark 6. The transformation x — % maps the coefficients d,(;) + dgf) — dg) F

d,(f) for k=0,1,2 and a3 — a3. This is to be expected since the coefficients are in
terms of invariants of the binary sextic f(x,z) and x — % just permutes x and z.

We have the following main result:

Theorem 1. Let p € My such that p € Mo(K), for some number field K, and
j=1[J2: Jy 2 Jg : Jio] the corresponding point in WP:(S27476,10)(0K)’ where Ok is
the ring of integers of K. A genus-two curve corresponding to p is constructed as
follows:

i) If Jo - Jig # 0 there is a genus-two curve C(q 5y given by

6
(55) Clap) : Y’ = Z ai(a, Bz’

i=0
with coefficients given in Eq. (52) and Eq. (53), and a pair (a, B) satisfying
042 + A6520— =7

where Ag, o, and v are determined by p. Moreover, C(, gy is defined over its field of
moduli K, i.e., a;(o, ) € K, i =0,...,6, if and only if K-rational o and B exist.

i) If Jo =0 and Jy - Jg - Jio # 0, there is a genus-two curve given by setting
p=kK#01in Eq (55).

i) If Jo = Jg =0 and Jy - J1o # 0, there is only one genus-two curve given by

v = (dv +1)(2v — 1)2® +2(1 — v)(4v + 3)2® — 15(1 — v)a*

(56) +20(1 — v)?2® +5(2v — 3)(1 — v)22® + 6(1 — v)*z — (1 — v)?
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with v = J3 /(223555 J3,).
w) If Jo =Jy =0 and Jg - Jig # 0, there is only one genus-two curve given by
y? =525 + 12(1 — p)a® — 15(1 — p)z* — 80(1 — p)?2®
+15(4p — 7)(1 — p)?2? — 60(1 — p)®z + (4p — 13)(1 — p)®.
with p = J3/(243*55J3,).
v) If Jo = Jy = Jg =0 and Jyg # 0, there is only one genus-two curve given by

y? =2 -2,

(57)

Proof. From the above discussion we know that there are genus-two curves y? =
f(x) corresponding to p, where f(z) is given in Eq. (52). We obtain coefficients
a;(, B) € Qla, B, J2, Ju, Js, Jio] for 0 < i < 6. The field of moduli K of the point p
is K = Q(x1,%2,x3). For Jy # 0 the invariants (p, o, k) are birationally equivalent
to (x1,X2,x3) over Q by Lemma 1. By Lemma 3 the conic Q in Eq. (27) had a
K-rational point if and only if the conic Q' in Eq. (37) does. By Lemma 4 the conic
Q' has a K-rational point, i.e., there is a K-rational solution («, 3) of Eq. (40).
Therefore, a;(c, 8) € K, for i = 0,...,6. The cases with Jy - J3 = 0 are similarly
obtained by applying Lemmas 1 and 6.

This completes the proof. O

Remark 7. The four pairs (o, ) belong to the same conic Q'. Therefore, we
get four genus-two curves in Theorem 1, but they are all twists of each other. That
is, we get one curve (over the algebraic closure), but four twists.

The main benefit of the above result is that it will give a curve defined over Q
whenever possible. This is an improvement from results in [15] where a curve is
provided only for curves with automorphism group of order 2 and Js # 0. The
equation is valid even when the field of moduli is not a field of definition. Hence,
for every point p € Ms we get a curve. Next we have the following result:

Corollary 2. For every point p € My such that p € Ma(K), for some number
field K, there is a genus-two curves C given by
6

C(OQO) : y2 = Z ai(a70) ! )
i=0
corresponding to p, such that a;(a,0) € K(a), i = 0,...,6 as given in Eq. (52).
Moreover, Cq,0) is at worst defined over the quadratic extension K (o) of the field
of moduli K with o® = p? + 0.

We have the immediate consequence:

Corollary 3. Let x1,x2,x3 be transcendentals. There exists a genus-two curve
Cla,0) defined over Q(x1,x2,x3)[a] with a? = p? + o such that

Xl(c(a,o)) = X1, XQ(C(a,o)) = X, XB(C(a,O)) = X3.
We have the following corollary:

Corollary 4. Let 0 =0 and p # 0 for p € Ms. Then, there is a genus-two curve
C given by Corollary 2, and it is defined over the field of moduli.

Proof. For ¢ =0 and p # 0, we have v = p?, and we choose the K-rational solution
(a, 8) = (p,0) in Eq. (40). 0
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Remark 8. [t is easy to check using Fq. (21) that the locus 0 = 0 and p # 0 for
p € My corresponds to the locus
Jio = —2"11373575 (9J5 — 7003 J4 4 24003 Jg — 262400.J5J3 + 768000.J4.J) -
We have the following lemma:

Lemma 7. In terms of the invariants p, o,k and v = p* + o, we have
I3 ((5=p)* +9p) (26 = p)* =)
2173755(&. _ p)s ’
T (5= p)* +9p)" A
254321515 () — p)15
In particular, the locus D = 0 and x35 # 0 is given by v = (26— p)? or, equivalently,
o =4k(k — p).

D =

(58)
R? =

We have the following corollary:

Corollary 5. Let D = 0 and x35 # 0 for p € Msy. Then, there is a genus-two
curve C given by Corollary 2, and it is defined over the field of moduli.

Proof. For vy = (25— p)? we can choose (a, ) = (p—2k,0) in Eq. (40). Ask—p # 0
we have yo # 0 in Eq. (41). O

3.1. A word about extra automorphisms. In this section we derive a sextic
polynomial for the sublocus of My with y35 = 0. We have the following proposition:

Proposition 4. Let D # 0 and x35 = 0 for p € Msy. Then, there is a genus-two
curve C : y?* = F(x) with

(59)

F(a) = (d" +af?) o+ (a8 + d) ot + (d) = af) 2 + () - a?),
and with coefficients in Z|c, p, K] given by

" = 3ky® — (K% + 9p) (115 — 9p — 126) v — (k% + 9p)” (4K — 3p — 36)

P = (v* + (=% 4+ 3kp +45p) v — 3k (K* + 9p) (4k — 3p — 36)) v,

A = —15k72 + 15 (k% + 9p) (55 — 3p — 18) 7 — 15 (k% + 9p)” (4% — 3p — 36) ,

A = (=152 + (75K — 45kp — 135p) 7 — 15k (K2 + 9p) (4% — 3p — 36)) .
Here, the absolute invariants a,~y,p,k are subject to the constraints Ag = 0 in
Eq. (38) and o® = .

Proof. For Ag = €2 with ¢ — 0, we rescale the polynomial in Eq. (59) according

to f(ex)/€® before setting € = 0. If we substitute Ag = 0 into Eq. (40) we obtain

a? = v,8 = 0. Therefore, we will use the absolute invariants «,, p, & subject to

the constraints Ag = 0 in Eq. (38) and o? = 7. The sextic polynomial in Eq. (59)

has coefficients in The remainder of the proof then follows from specializing the

formulas in Equation (4) to 8 = Ag = 0. O
The polynomial in Eq. (59) is a twist of the polynomial given by

(60) F(z) = 2%+ az* + bz + 1
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The curve y? = F () has extra involutions, i.e., it has automorphisms other than the
hyperelliptic involution, for appropriate values of a, b (the discriminant is nonzero).
In [18] for curves with automorphism the dihedral invariants

(61) u = ab, v=a’+b

were defined which give a birational parametrization of this locus Lo which is a
two-dimensional subvariety of Msy. We have the following:

Corollary 6. For the genus-two curve C : y?> = F(z) given by Equation (59) with
x35 = 0 we obtain the dihedral invariants

(" +aP) (4" - d)
(ng + dff)) (dgw - dg2>) ’
(dg1> - d§2))3 N (d;” + d;2))3
(a8 +af?) (af" - dff))Q (4" + dff))Q (a8 - ag?) ’

and the Igusa invariants [Ja @ Jy 2 Js @ Jio] given by [18, Eq. (16)].

(62)
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