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Abstract. We describe explicit formulas relevant to the F-theory/heterotic
string duality that reconstruct from a specific Jacobian elliptic fibration on
the Shioda-Inose surface covering a generic Kummer surface the corresponding
genus-two curve using the level-two Satake coordinate functions. We derive
explicitly the rational map on the moduli space of genus-two curves realizing
the algebraic correspondence between a sextic curve and its corresponding
Satake sextic. We will prove that it is not the original sextic defining the genus-
two curve, but its corresponding Satake sextic which is manifest in the F-theory
model, dual to the so(32) heterotic string with an unbroken so(28)�su(2) gauge
algebra.

1. Introduction

Constructing equations of algebraic curves from a given point in the moduli
space or a given Jacobian has always been interesting to both mathematicians and
physicists. The only case where such constructions can be made explicit is the
case of genus two curves. There have been attempts by other authors before where
equations of the genus two curve is written in terms of the thetanulls of the jacobian;
see [26] and [28].

By a sextic curve we mean a projective curve of degree six. To each sextic
curve one can associate another sextic curve, called the Satake sextic. The alge-
braic correspondence between these two sextics is quite complicated, and we give
explicit formulas for its construction. In fact, starting with a plane curve, for ex-
ample in Rosenhain normal form, the computation of the Igusa invariants provides
an e↵ective method for computing the corresponding Satake sextic. Conversely,
starting with the roots of the Satake sextic we will derive explicit formulas for the
reconstruction of the original sextic up to equivalence.

For a generic genus-two curve C the Jacobian variety Jac(C) is principally po-
larized abelian surface, and the minimal resolution of the quotient by the involu-
tion automorphism is a special K3 surface called the Kummer surface Kum(Jac C).
There is a closely related K3 surface, called the Shioda-Inose surface SI(Jac C)
which carries a Nikulin involution, i.e., an automorphism of order two preserving
the holomorphic two-form, such that the quotient by this involution and blowing
up the fixed points one recovers the Kummer surface. By using the Shioda-Inose
surface SI(Jac C) that covers the Kummer surface, one establishes a one-to-one cor-
respondence between two di↵erent types of surfaces with the same Hodge-theoretic
data, principally polarized abelian surfaces and algebraic K3 surfaces polarized by
a special lattice, which is known as a geometric two-isogeny.
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In string theory, compactifications of the so-called type-IIB string in which the
complex coupling varies over a base generically referred to as F-theory. The sim-
plest such construction corresponds to a Jacobian elliptic fibration on a K3 surface.
By taking this K3 surface to be the aforementioned Shioda-Inose surface SI(Jac C)
a phenomenon called F-theory/heterotic string duality is manifested as the afore-
mentioned geometric two-isogeny. An important question is whether the original
genus-two curve C is still manifest in this F-theoretic description of non-geometric
heterotic string backgrounds. We will prove that it is not the original sextic defin-
ing the genus-two curve C, but the corresponding Satake sextic which is manifest
in the F-theoretic data. In fact, the ramification locus of the Satake sextic is the
genus-two component of the fixed point set of the Nikulin involution.

This article is structured as follows: in Section 2 we give a brief review of prin-
cipally polarized abelian surfaces, the thetanulls for genus two, and the Satake
coordinate functions, as well as their relations to the Igusa invariants and Siegel
modular forms of genus two. We then prove a Picard like result, which gives the
Rosenhein roots of a genus-two curve in terms of the thetanulls and also in terms
of the Satake coordinate functions. These explicit formulas are instrumental in our
that the algebraic correspondence between the sextic and its corresponding Satake
sextic defines a rational map on the moduli space of genus-two curves of degree 16.
In Section 3 we describe the construction of the Kummer surface Kum(Jac C) and
Shioda-Inose surface SI(Jac C), as well as the Jacobian elliptic fibrations on them
which are relevant for the F-theory/heterotic string duality. We then prove that
the positions of 7-branes with string charge (1, 0) in the F-theory model dual to the
so(32) heterotic string with an unbroken so(28)� su(2) gauge algebra and only one
non-vanishing Wilson line form the ramification locus of the Satake sextic which is
in algebraic correspondence with the genus-two curve C.

2. The correspondence between a sextic and its Satake sextic

In section 2 we give a brief review of principally polarized abelian surfaces, the
thetanulls for genus two, and the Satake coordinate functions, as well as their
relations to the Igusa invariants and Siegel modular forms of genus two. We then
prove a Picard like result, which gives the Rosenhein roots of genus two curve in
terms of the thetanulls and also in terms of the Satake coordinate functions. We
give the explicit formulas that prove that the algebraic correspondence between the
sextic and its corresponding Satake sextic is of degree 16.

2.1. Abelian surfaces. The Siegel upper-half space is the set of two-by-two sym-
metric matrices over C whose imaginary part is positive definite, i.e.,

H2 =

⇢
⌧ =

✓
⌧1 z

z ⌧2

◆���� ⌧1, ⌧2, z 2 C , Im(⌧1) Im(⌧2) > Im(z)2 , Im(⌧2) > 0

�
.

The Siegel three-fold is a quasi-projective variety of dimension three obtained from
the Siegel upper half plane when quotienting out by the action of the modular
transformations �2 := Sp4(Z), i.e.,

(1) A2 = H2/�2 .

For each ⌧ 2 H2 the columns of the matrix [ I2|⌧ ] form a lattice ⇤ in C
2 and

determine a principally polarized complex abelian surfaceA⌧ = C
2
/⇤. Two abelian

surfaces A⌧ and A⌧ 0 are isomorphic if and only if there is a symplectic matrix



SATAKE SEXTIC IN ELLIPTIC FIBRATIONS 3

M 2 �2 such that ⌧ 0 = M(⌧). It follows that the Siegel three-fold A2 is also the set
of isomorphism classes of principally polarized abelian surfaces. The even Siegel
modular forms of A2 are a polynomial ring in four free generators of degrees 4, 6,
10 and 12 that will be denoted by  4, 6,�10 and �12, respectively. Igusa showed
in [15] that for the full ring of modular forms, one needs an additional generator
�35 which is algebraically dependent on the others. We also define �2(2n) = {M 2

�2|M ⌘ I mod 2n} with corresponding Siegel modular threefold A2(2) such that
�2/�2(2) ⇠= S6 where S6 is the permutation group of order 720.

If C is an irreducible nonsingular projective curve with self-intersection C · C = 2
then C is a smooth curve of genus two. We choose a symplectic homology basis for
C, say {A1, A2, B1, B2}, such that the intersection products Ai · Aj = Bi · Bj = 0
and Ai ·Bj = �ij , where �ij is the Kronecker delta. We choose a basis {wi} for the
space of holomorphic one-forms such that

R
Ai

wj = �ij . The matrix

⌧ =

Z

Bi

wj

�

is the period matrix of C and Jac (C) = A⌧ is the Jacobian of C. Moreover, the map
|C : C ! Jac(C) is an embedding of the variety of moduli of curves of genus two
M2 into the space of principally polarized abelian surfaces, i.e.,

M2 ,! A2 ,

where the hermitian form associated to the divisor class [C] is a principal polariza-
tion ⇢ on Jac(C). Moreover, a curve C of genus-two is called generic if the Néron-
Severi lattice is generated by [C], i.e., NS(Jac C) = Z[C]. Since we have ⇢2 = 2, the
transcendental lattice is T (Jac C) = H � H � h�2i in this case.1 Conversely, one
can always regain C from the pair (Jac C, ⇢) where ⇢ is a principal polarization.

The Humbert surface H� with invariant � is the space of principally polarized
abelian surfaces admitting a symmetric endomorphism with discriminant �. It
turns out that � is always a positive integer ⌘ 0, 1 mod 4. In fact, H� is the
image associated to the equation

(2) a ⌧1 + b z + c ⌧3 + d (z2 � ⌧1 ⌧2) + e = 0 ,

with integers a, b, c, d, e satisfying � = b
2
� 4 a c � 4 d e and ⌧ =

� ⌧1 z
z ⌧2

�
2 H2.

Therefore, inside of A2 sit the Humbert surfaces H1 and H4 that are defined as the
images of the rational divisors associated to z = 0 and ⌧1 = ⌧2, respectively. In
fact, H1 and H4 form the two connected components of the singular locus of A2,
and the formal sum H1 +H4 of Humbert surfaces is the vanishing divisor of �35.

Furthermore, Torelli’s theorem states that the map sending a curve C to its
Jacobian variety Jac(C) induces a birational map from the moduli space M2 of
genus-two curves to the complement of the Humbert surface H1 in A2. This locus
is expressed in terms of modular forms as A2\ supp(�10)0. That is, a period point
⌧ is equivalent to a point with z = 0, i.e., ⌧ 2 H1, if and only if �10(⌧) = 0, if
and only if the principally polarized abelian surface A⌧ is a product of two elliptic
curves A⌧ = E⌧1 ⇥ E⌧2 . In turn, the transcendental lattice is to T (A⌧ ) = H �H.

On the other hand, it is known that the vanishing divisor of Q = 212 39 �2
35/�10

is the Humbert surface H4 [11], that is, a period point ⌧ is equivalent to a point
with ⌧1 = ⌧2, i.e., ⌧ 2 H4, if and only if Q(⌧) = 0. In turn, the transcendental
lattice degenerates to T (A⌧ ) = H � h2i � h�2i. Bolza [4] described the possible

1
H is the standard hyperbolic lattice with the quadratic form q = x1x2.
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automorphism groups of genus-two curves defined by sextics. In particular, he
proved that a sextic curve Y

2 = F (X) defining the genus-two curve C with A⌧ =
Jac(C) has an extra involution, which can be represented as (X,Y ) 7! (�X,Y ), if
and only if Q = 0.

2.2. Thetanulls for genus two. For any z 2 C
2 and ⌧ 2 Hw Riemann’s theta

function is defined as

✓(z, ⌧) =
X

u2Zw

e
⇡i(ut⌧u+2utz)

where u and z are two-dimensional column vectors and the products involved in the
formula are matrix products. The fact that the imaginary part of ⌧ is positive makes
the series absolutely convergent over any compact sets. Therefore, the function is
analytic. The theta function is holomorphic on C

2
⇥H2 and satisfies

✓(z + u, ⌧) = ✓(z, ⌧), ✓(z + u⌧, ⌧) = e
�⇡i(ut⌧u+2ztu)

· ✓(z, ⌧),

where u 2 Z
2; see [23] for details. Any point e 2 Jac (C) can be written uniquely

as e = (b, a)

✓
I2

⌧

◆
, where a, b 2 R

2. We shall use the notation [e] =


a

b

�
for the

characteristic of e. For any a, b 2 Q
2, the theta function with rational characteristics

is defined as

✓


a

b

�
(z, ⌧) =

X

u2Z2

e
⇡i((u+a)t⌧(u+a)+2(u+a)t(z+b))

.

When the entries of column vectors a and b are from the set {0, 1
2}, then the

characteristics


a

b

�
are called the half-integer characteristics. The corresponding

theta functions with rational characteristics are called theta characteristics. A
scalar obtained by evaluating a theta characteristic at z = 0 is called a theta

constant. Points of order n on Jac (C) are called the 1
n -periods. Any half-integer

characteristic is given by

m =
1

2
m =

1

2

✓
m1 m2

m
0
1 m

0
2

◆

where mi,m
0
i 2 Z. For � =


�
0

�
00

�
2

1
2Z

4
/Z

4 we define e⇤(�) = (�1)4(�
0)t�00

. Then,

✓[�](�z, ⌧) = e⇤(�)✓[�](z, ⌧).

We say that � is an even (resp. odd) characteristic if e⇤(�) = 1 (resp. e⇤(�) = �1).
For any genus-two curve we have six odd theta characteristics and ten even theta

characteristics; see [26] for details. The following are the sixteen theta character-
istics, where the first ten are even and the last six are odd. We denote the even
theta constants by

✓1 =

"
0 0

0 0

#
, ✓2 =

"
0 0
1
2

1
2

#
, ✓3 =

"
0 0
1
2 0

#
, ✓4 =

"
0 0

0 1
2

#
, ✓5 =

"
1
2 0

0 0

#
,

✓6 =

"
1
2 0

0 1
2

#
, ✓7 =

"
0 1

2

0 0

#
, ✓8 =

"
1
2

1
2

0 0

#
, ✓9 =

"
0 1

2
1
2 0

#
, ✓10 =

"
1
2

1
2

1
2

1
2

#
,
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where we write

(3) ✓i(z) instead of ✓


a
(i)

b
(i)

�
(z, ⌧) where i = 1, . . . , 10,

and ✓i = ✓i(0). Similarly, the odd theta functions correspond to the following
characteristics

"
0 1

2

0 1
2

#
,

"
0 1

2
1
2

1
2

#
,

"
1
2 0
1
2 0

#
,

"
1
2

1
2

1
2 0

#
,

"
1
2 0
1
2

1
2

#
,

"
1
2

1
2

0 1
2

#
.

Thetanulls are modular forms of A2(2), and the even theta fourth powers define a
compactification of A2(2) as Proj[✓41 : · · · : ✓410], called the Satake compactfication.
✓1, . . . , ✓4 are called fundamental thetanulls; see [26] for details. They are deter-
mined via the Göpel systems. We have the following Frobenius identities relating
the remaining theta constants to the fundamental thetanulls

(4)

✓
2
5✓

2
6 = ✓

2
1✓

2
4 � ✓

2
2✓

2
3 , ✓

4
5 + ✓

4
6 = ✓

4
1 � ✓

4
2 � ✓

4
3 + ✓

4
4 ,

✓
2
7✓

2
9 = ✓

2
1✓

2
3 � ✓

2
2✓

2
4 , ✓

4
7 + ✓

4
9 = ✓

4
1 � ✓

4
2 + ✓

4
3 � ✓

4
4 ,

✓
2
8✓

2
10 = ✓

2
1✓

2
2 � ✓

2
3✓

2
4 , ✓

4
8 + ✓

4
10 = ✓

4
1 + ✓

4
2 � ✓

4
3 � ✓

4
4 ,

as well as the mixed relations

(5) ✓
2
5✓

2
9 = ✓

2
3✓

2
8 � ✓

2
4✓

2
10 , ✓

2
5✓

2
7 = ✓

2
1✓

2
8 � ✓

2
2✓

2
10.

Let a genus-two curve C be given by

(6) Y
2 = F (X) = X(X � 1)(X � �1)(X � �2)(X � �3).

The ordered tuple (�1,�2,�3) where the �i are all distinct and di↵erent from 0, 1,1
determines a point in M2(2), the moduli space of genus-two curves together with a
level-two structure, and, in turn, a level-two structure on the corresponding Jaco-
bian variety, i.e., a point in A2(2). As functions onM2(2), the Rosenhain invariants
generate its coordinate ring C(�1,�2,�3) and hence generate the function field of
A2(2), that is the three-dimensional moduli space of principally polarized abelian
surfaces with level-two structure.

The three �-parameters in the Rosenhain normal (6) can be expressed as ratios of
even theta constants by Picard’s lemma. There are 720 choices for such expressions
since the forgetful map M2(2) ! M2 is a Galois covering of degree 720 = |S6|

where S6 acts on the roots of F by permutations. Any of the 720 choices may be
used, we picked the one from [27]:

Lemma 1. If C is a genus-two curve with period matrix ⌧ and �10(⌧) 6= 0, then C

is equivalent to the curve (6) with Rosenhain parameters �1,�2,�3 given by

(7) �1 =
✓
2
1✓

2
3

✓
2
2✓

2
4

, �2 =
✓
2
3✓

2
8

✓
2
4✓

2
10

, �3 =
✓
2
1✓

2
8

✓
2
2✓

2
10

.

Conversely, given three distinct complex numbers (�1,�2,�3) di↵erent from 0, 1,1
there is complex abelian surface A⌧ with period matrix [I2|⌧ ] such that A⌧ = Jac(C)
where C is the genus-two curve with period matrix ⌧ .
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2.3. Igusa functions and Siegel modular forms. Let I2, . . . , I10 denote Igusa
invariants of the binary sextic Y

2 = F (X) as defined in [29, Eq. 9] and explicitly
given by Equations (44) for the curve (6) in Rosenhain normal form. The Igusa
functions or absolute invariants are defined as

(j1, j2, j3) =

✓
I
5
2

I10
,
I4I

3
2

I10
,
I6I

2
2

I10

◆

Two genus-two curves C and C
0 are isomorphic if and only if

(j1, j2, j3) = (j01, j
0
2, j

0
3) .

Moreover, j1, j2, j3 are given as rational functions of fourth powers of the funda-
mental theta functions ✓1, . . . , ✓4.

The even Siegel modular forms of A2 are a polynomial ring in four free generators
of degrees 4, 6, 10 and 12 denoted by  4, 6,�10 and �12, respectively. Igusa
[15, p. 848] proved that the relation between the Igusa invariants and the even
Siegel modular forms are as follows:

I2(F ) = �23 · 3
�12(⌧)

�10(⌧)
,

I4(F ) = 22  4(⌧) ,

I6(F ) = �
23

3
 6(⌧)� 25

 4(⌧)�12(⌧)

�10(⌧)
,

I10(F ) = �214 �10(⌧) .

(8)

Notice that the Igusa invariant I10 is the discriminant of the sextic Y
2 = F (X),

i.e., �F = I10(F ). Conversely, for r 6= 0 the point [I2 : I4 : I6 : I10] in weighted
projective space equals
h
23 3 (3r�12) : 2232  4 (r�10)

2 : 23 32
⇣
4 4 (3r�12) +  6 (r�10)

⌘
(r�10)

2 : 22 (r�10)
6
i
.

Furthermore, Igusa showed in [15] that for the full ring of modular forms, one
needs an additional generator �35 which is algebraically dependent on the others.
In fact, its square can be written as follows:

�2
35 =

1
212 39

�10

⇣
224 315 �5

12 � 213 39  3
4 �

4
12 � 213 39  2

6 �
4
12 + 33  6

4 �
3
12

� 2 · 33  3
4  

2
6 �

3
12 � 214 38  2

4  6 �10 �
3
12 � 223 312 52  4 �

2
10 �

3
12 + 33  4

6 �
3
12

+ 211 36 37 4
4 �

2
10 �

2
12 + 211 36 5 · 7 4  

2
6 �

2
10 �

2
12 � 223 39 53  6 �

3
10 �

2
12

� 32  7
4 �

2
10 �12 + 2 · 32  4

4  
2
6 �

2
10 �12 + 211 35 5 · 19 3

4  6 �
3
10 �12

+ 220 38 53 11 2
4 �

4
10 �12 � 32  4  

4
6 �

2
10 �12 + 211 35 52  3

6 �
3
10 �12 � 2 6

4  6 �
3
10

� 212 34  5
4 �

4
10 + 22  3

4  
3
6 �

3
10 + 212 34 52  2

4  
2
6 �

4
10 + 221 37 54  4  6 �

5
10

� 2 5
6 �

3
10 + 232 39 55 �6

10

⌘
.

(9)

Hence, Q = 212 39 �2
35/�10 is a polynomial of degree 60 in the even generators.

2.4. The Satake coordinate functions. For a symplectic matrix T 2 Sp4(Z),
there is an induced action on the characteristics of the theta constants m 7! T · m
such that the characteristic T ·m has the same parity as m and T ·m = m if T ⌘ I(2).
The latter property implies that �2/�2(2) ⇠= Sp4(F2) acts on the characteristics. It
turns out that this action is transitive on the six odd characteristics and gives an
isomorphism between the permutation group S6 and Sp4(F2) [12].
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On any function f : H2 ! C, a right action of T =
�
a b
c d

�
2 Sp4(R) is given

by setting f � [T ](⌧) := det (c⌧ + d)�2
f(T · ⌧). It then follows that ✓4m � [T�1] =

±✓
4
T ·m for all T 2 Sp4(Z) with �2(2) acting trivially. Thus, S6 acts on the vector

space Mat2 (�(2)) spanned by the ten even theta fourth powers. The vector space
Mat2 (�(2)) is five-dimensional vector space. We will use the set of theta functions

�
✓
4
1, ✓

4
2, ✓

4
3, ✓

4
4, ✓

4
5

 

as a basis for the space Mat2 (�2(2)). In fact, the other even theta fourth powers
are represented in terms of this basis as

✓
4
6 = ✓

4
1 � ✓

4
2 � ✓

4
3 + ✓

4
4 � ✓

4
5,

✓
4
7 = ✓

4
3 � ✓

4
4 + ✓

4
5,

✓
4
8 = ✓

4
2 � ✓

4
4 + ✓

4
5,

✓
4
9 = ✓

4
1 � ✓

4
2 � ✓

4
5,

✓
4
10 = ✓

4
1 � ✓

4
3 � ✓

4
5.

(10)

If we set uk =
P

m ✓
4k
m it can be checked using the Frobenius identities (4) that

u
2
2 = 4u4; see [12]. Therefore, Equations (10) realize the Satake compactification

of A2(2) as the quartic threefold u
2
2 = 4u4 in Proj[✓41 : · · · : ✓45].

The following functions are linear combinations of the fourth-powers of even
generators and are called level-two Satake coordinate functions

x1 = �✓
4
1 + 2 ✓42 + 2 ✓43 � ✓

4
4 + 3 ✓45,

x2 = �✓
4
1 + 2 ✓42 � ✓

4
3 � ✓

4
4,

x3 = �✓
4
1 � ✓

4
2 � ✓

4
3 + 2 ✓44,

x4 = 2 ✓41 � ✓
4
2 � ✓

4
3 � ✓

4
4,

x5 = �✓
4
1 � ✓

4
2 + 2 ✓43 � ✓

4
4,

x6 = 2 ✓41 � ✓
4
2 � ✓

4
3 + 2 ✓44 � 3 ✓45.

(11)

It is obvious that
P

i xi = 0. A direct computation also shows that the permutation
group S6 acts on (x1, . . . , x6) by permutation [12].

We have the following lemma:

Lemma 2. For ⌧ 2 A2 with �10(⌧) 6= 0, the level-two Satake coordinate functions

x1, . . . x6 determine a curve in Rosenhain normal from (6) with �F = �214 �10(⌧)
and Igusa invariants given by (8) where the Rosenhain roots (�1,�2,�3) are given

by relations

(12) �1 =
1

2
+
✓
4
1✓

4
3 � ✓

4
7✓

4
9

2 ✓42✓
4
4

, �2 =
1

2
+
✓
4
3✓

4
8 � ✓

4
5✓

4
9

2 ✓44✓
4
10

, �3 =
1

2
+
✓
4
1✓

4
8 � ✓

4
5✓

4
7

2 ✓42✓
4
10

,

and

(13)

✓
4
1 = �

1
3 (x2 + x3 + x5) , ✓

4
2 = �

1
3 (x3 + x4 + x5) ,

✓
4
3 = �

1
3 (x2 + x3 + x4) , ✓

4
4 = �

1
3 (x2 + x4 + x5) ,

✓
4
5 = 1

3 (x1 + x3 + x4) , ✓
4
6 = �

1
3 (x1 + x2 + x5) ,

✓
4
7 = 1

3 (x1 + x4 + x5) , ✓
4
8 = 1

3 (x1 + x2 + x4) ,

✓
4
9 = �

1
3 (x1 + x2 + x3) , ✓

4
10 = �

1
3 (x1 + x3 + x5) .
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Proof. The proof follows when using the Frobenius identities (4) to re-write the
Rosenhain roots in terms of fourth powers of theta functions and solving Equa-
tions (11) for ✓41, . . . , ✓

4
10. ⇤

Define the j-th power sums sj are defined by

sj =
6X

i=1

x
j
i .

Apart from the obvious identity s1 = 0, the relation u
2
2 = 4u4 implies the relation

s
2
2 = 4 s4. Therefore, Equations (11) define an embedding of the Satake compact-
fication of A2(2), into P

5
3 [x1 : x2 : x3 : x4 : x5 : x6]. The image in P

5, known
as the Igusa quartic, is the intersection of the hyperplane s1 = 0 and the quartic
hypersurface s

2
2 = 4 s4.

We have the following lemma describing the descent to the Igusa invariants:

Lemma 3. We have the following relations between s2, s3, s5, s6 and the Igusa

invariants

s2 = 3 I4,

s3 =
3

2
I2I4 �

9

2
I6,

s5 =
15

8
I2I

2
4 �

45

8
I4I6 + 1215I10,

s6 =
27

16
I
3
4 +

3

8
I
2
2I

2
4 �

9

4
I2I4I6 +

27

8
I
2
6 +

729

4
I2I10 ,

(14)

and conversely

I2 =
5

3

3 s32 + 8s23 � 48s6
5s2s3 � 12s5

,

I4 =
1

3
s2,

I6 =
1

27

15 s42 + 10s2s23 � 240s2s6 + 72s3s5
5 s2s3 � 12s5

,

I10 = �
1

2916
s2s3 +

1

1215
s5.

(15)

Proof. Using the definition of the Igusa invariants we prove the lemma by explicit
computation. ⇤
2.5. The Satake sextic. We combine the level-two Satake functions in another
plane sextic curve, called Satake sextic, given by

f(x) =
6Y

i=1

(x� xi)

The coe�cients of the Satake sextic are polynomials in Z
⇥
1
2 ,

1
3 , s2, s3, s4, s6

⇤
. In

fact, we obtain

f(x) = x
6 +

6X

i=1

(�1)i

i!
Bi(Z)x6�i

where Z = {s1,�s2, 2! s3,�3! s4, 4! s5,�5! s6} and Bi(Z) is the complete Bell poly-
nomial of order i in the variables contained in Z. The following proposition follows:
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Proposition 4. Level-two Satake coordinate functions x1, . . . , x6 are the roots of

the Satake polynomial f 2 Z
⇥
1
2 ,

1
3 , I2, I4, I6, I10

⇤
[x] given by

f(x) =x
6
�

1

2
s2x

4
�

1

3
s3x

3 +
1

16
s
2
2x

2

+

✓
1

6
s2s3 �

1

5
s5

◆
x+

✓
1

96
s
3
2 +

1

18
s
2
3 �

1

6
s6

◆
,

(16)

which defines a genus-two curve S by y
2 = f(x) i↵ the discriminant does not vanish,

i.e.,

�f = I10(f) = 252321 Q 6= 0 .

Proof. The proof follows from explicit computation of the Bell polynomials and
using the relations s1 = 0 and s

2
2 = 4 s4. One then checks that the discriminant

of Equation (16) after using relations (14) and (8) coincides up to factor with
Q = 212 39 �2

35/�10 where �2
35 was given in Equation (9). ⇤

The proposition and Equations (14) prove that the Igusa invariants

(17)
h
I2(F ) : I4(F ) : I6(F ) : I10(F )

i

of a sextic curve Y
2 = F (X) defining a genus-two curve C determine the Satake

sextic polynomial (16) in Proposition 4. The roots of the Satake sextic polynomial in
turn determine by means of Equation (12) and Equation (13) the Rosenhaim roots
of an equivalent genus-two curve corresponding to a curve in Rosenhain normal
form (6), with the original Igusa invariants (17). Therefore, we get a map

� : M2 ! M2

C 7! S
(18)

by mapping the genus-two curve C with period matrix ⌧ defined by the sextic
Y

2 = F (X) with F given in Equation (6) to the Satake sextic y
2 = f(x) with f

given in Equation (16). Note that this map is defined if and only if�F = �10(⌧) 6= 0
and �f = Q(⌧) 6= 0 because only then define the sextics two genus-two curves in
the domain and range with period matrixes ⌧ and ⌧ 0, respectively. Though not by
explicit formulas it was proved in [10] that this map is a rational map of degree 16.
The following lemma provides the explicit formulas:

Proposition 5. Let (j1, j2, j3) and (j01, j
0
2, j

0
3) be the absolute invariants of C and

S, respectively. The map � : M2\supp(�35)0 ! M2 in Equation (18) is given by

j
0
1 =

64

729

g
(1)(j1, j2, j3)

h(j1, j2, j3)
, j

0
2 =

4

729

g
(2)(j1, j2, j3)

h(j1, j2, j3)
, j

0
3 =

1

729

g
(3)(j1, j2, j3)

h(j1, j2, j3)
,

(19)

where the rational functions g
(n)

for n = 1, 2, 3 and h are given in Equations (46)

in the appendix.

Proof. Let C be a genus-two curve defined by the sextic Y
2 = F (X) with F given

in Equation (6). Then the corresponding moduli point in M2 is determined by the
Igusa functions (j1, j2, j3). Indeed, we have

s2 = 3j1j2, s3 =
3

2
j
2
1 (j2 � 3j3), s5 =

15

8
j
3
1

�
j
2
2 � 3 j2 , j3 + 648 j1

�
,

s6 =
3

16
j
3
1

�
2 j1 j

2
2 � 12 j1 j2 j3 + 18 j1 j

2
3 + 9j32 + 972 j21

�
.
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Let y
2 = f(x) with f given in Equation (16) define a second genus-two curve S.

Then, the Igusa functions (j01, j
0
2, j

0
3) of the genus-two curve S are given by where

the rational functions g
(n) for n = 1, 2, 3 and h are given in Equations (46). In

particular, we have
Q(⌧) = 2�63

j
15
1 h(j1, j2, j3) .

It is clear from these expressions that [k(j1, j2, j3)/k(j01, j
0
2, j

0
3)] = 16 and therefore

deg� = 16. If we denote the period matrix of S by ⌧ 0 such that j
0
n = jn(⌧ 0) for

n = 1, 2, 3 we find that

Q
0 = Q(⌧ 0) = 22103132 Q(⌧)M(⌧)2 ,

where M is a polynomial of degree 90 in the even generators. ⇤

3. Jacobian elliptic Kummer and Shioda-Inose surfaces

In this section we describe the construction of the Kummer surface Kum(Jac C)
and the Shioda-Inose surface SI(Jac C) together with the Jacobian elliptic fibrations
on these surfaces which are relevant to the F-theory/heterotic string duality.

3.1. Jacobian elliptic fibrations. A surface is called Jacobian elliptic fibration if
it is a (relatively) minimal elliptic surface ⇡ : X ! P

1 over P1 with a distinguished
section S0. The complete list of possible singular fibers has been given by Ko-
daira [17]. It encompasses two infinite families (In, I⇤n, n � 0) and six exceptional
cases (II, III, IV, II⇤, III⇤, IV ⇤). To each Jacobian elliptic fibration ⇡ : X ! P

1

there is an associated Weierstrass model ⇡̄ : X̄ ! P
1 with a corresponding distin-

guished section S̄0 obtained by contracting all components of fibers not meeting
S0. The fibers of X̄ are all irreducible whose singularities are all rational double
points, and X is the minimal desingularization. If we choose t 2 C as a local a�ne
coordinate on P

1, we can present X̄ in the Weierstrass normal form

(20) Y
2 = 4X3

� g2(t)X � g3(t) ,

where g2 and g3 are polynomials in t of degree four and six, respectively, because
X is a K3 surface. Type of singular fibers can then be read o↵ from the orders of
vanishing of the functions g2, g3 and the discriminant � = g

3
2 �27 g23 at the various

singular base values. Note that the vanishing degrees of g2 and g3 are always less or
equal three and five, respectively, as otherwise the singularity of X̄ is not a rational
double point.

For a family of Jacobian elliptic surfaces ⇡ : X ! P
1, the two classes in Néron-

Severi lattice NS(X ) associated with the elliptic fiber and section span a sub-lattice
H isometric to the standard hyperbolic lattice H with the quadratic form q = x1x2,
and we have the following decomposition as a direct orthogonal sum

NS(X ) = H�W .

The orthogonal complement T (X ) = NS(X )? 2 H
2(X ,Z) \H

1,1(X ) is called the
transcendental lattice and carries the induced Hodge structure.

3.2. The Kummer surface. For the Jacobian variety Jac(C) of a genus-two curve
C, let ı be the involution automorphism on Jac(C) given by ı : a 7! �a. The
quotient, Jac(C)/{I, ı}, is a singular surface with sixteen ordinary double points.
Its minimum resolution, Kum(Jac C), is a special K3 surface called the Kummer

surface associated to Jac C.
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On the Kummer surface Kum(Jac C), there are two sets of sixteen (�2)-curves,
called nodes and tropes, which are either the exceptional divisors corresponding to
blowup of the 16 two-torsion points of the Jacobian Jac(C) or they arise from the
embedding of C into Jac(C) as symmetric theta divisors. These two sets of smooth
rational curves have a rich symmetry, the so-called 166-configuration, where each
node intersects exactly six tropes and vice versa [13].

Using curves and symmetries in the 166-configuration one can define various
elliptic fibrationson Kum(Jac C), since all irreducible components of a reducible
fiber in an elliptic fibration are (�2)-curves [17]. In fact, for the Kummer surface
of a generic curve of genus two all inequivalent elliptic fibrations where determined
explicitly by Kumar in [19]. In particular, Kumar computed elliptic parameters
and Weierstrass equations for all twenty five di↵erent fibrations that appear, and
analyzed the reducible fibers and Mordell-Weil lattices.

3.2.1. A first elliptic fibration on Kum(Jac C). Given a genus-two curve C defined
by a sextic y

2 = f(x), the Jacobian variety Jac(C) is birational to the symmetric
product of two copies of C, i.e., (C ⇥ C)/{I,⇡}, where we have set ⇡(x1) = x2

and ⇡(y1) = y2. The function field is the sub-field of C[x1, x2, y1, y2] such that
y
2
i = f(xi) for i = 1, 2 which is fixed under ⇡.
The Kummer surface Kum(Jac C) is birational to the quotient Jac(C)/{I, ı} with

ı(xi) = xi and ı(yi) = �yi for i = 1, 2. Its function field is the sub-field of
C[x1, x2, y1, y2] with y

2
i = f(xi) for i = 1, 2 which is fixed under both ⇡ and ı.

Thus, the function field of Kum(Jac C) is generated by Y = y1y2, t = x1x2, and
X = x1 + x2. We have the following lemma:

Lemma 6. The function field of the Kummer surface Kum(Jac C) for the genus-two
curve C given by the sextic (6) is generated by ⌘, ⇠, t subject to the relation

(21) K(Y,X, t) : Y
2 = t

�
1�X+ t

� �
�
2
1��1 X+ t

� �
�
2
2��2 X+ t

� �
�
2
3��3 X+ t

�
.

Equation (21) defines a Jacobian elliptic fibration ⇡̄ : X̄ ! P
1 with a distin-

guished section S̄0 on X = Kum(Jac C) by choosing t as the elliptic parameter and
the point at infinity in each fiber for the section. In fact, this fibration is well-known
and labeled fibration ‘1’ in [19]. The following lemma is immediate and follows by
comparison with the explicit results in [19].

Lemma 7. Equation (21) is a Jacobian elliptic fibration ⇡̄ : X̄ ! P
1
with 6

singular fibers of type I2, two singular fibers of type I
⇤
0 , and the Mordell-Weil group

of sections MW(⇡̄) = (Z/2)2 � h1i.

The sextic curve C is recovered directly from the Jacobian elliptic fibration by
the following corollary:

Corollary 8. The sextic associated with the genus-two curve C is recovered from

the Jacobian elliptic fibration (21) on Kum(Jac C) by letting X ! 1 while keeping

t/X = x, Y
2
/X

5 = y
2
fixed, i.e.,

(22) lim
✏!0

✏
10

K

✓
Y =

y

✏5
, X =

1

✏2
, t =

x

✏2

◆
= C .

Proof. The proof follows by explicit computation. ⇤
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3.2.2. A second elliptic fibration on Kum(Jac C). There is another elliptic fibration
X ! P

1 on Kum(Jac C) which is more relevant for us, labeled fibration ‘23’ in [19].
Kumar proved the following [18]:

Proposition 9. A Jacobian elliptic fibration ⇡̄ : X̄ ! P
1
with 6 singular fibers of

type I2, one fiber of type I
⇤
5 , and one fiber of type I1, and a Mordell-Weil group of

sections MW(⇡̄) = Z/2 is given by the Weierstrass equation

Y
2 =X

3
� 2

✓
t
3
�

I4

12
t+

I2I4 � 3I6
108

◆
X

2

+

 ✓
t
3
�

I4

12
t+

I2I4 � 3I6
108

◆2

+ I10

✓
t�

I2

24

◆!
X .

(23)

An immediate corollary is the following:

Corollary 10. The positions of the I2 fibers in the elliptic fibration (23) on the

Kummer surface Kum(Jac C) are given by the roots of the polynomial

(24)

✓
t
3
�

I4

12
t+

I2I4 � 3I6
108

◆2

+ I10

✓
t�

I2

24

◆
= 0 ,

or equivalently by

(25)

✓
t
3
�
 4

3
t+

2 6

27

◆2

� 214 (�10 t+ �12) = 0 .

Equivalently, the loci of I2 fibers form the ramification locus of the Satake sextic (16)

if we set t = �x/3.

3.3. The Shioda-Inose surface. A K3 surface Y has a Shioda-Inose structure
if it admits an involution fixing the holomorphic two-form, such that the quotient
is Kummer surface Kum(A) of a principally polarized abelian surface A and the
rational quotient map p : Y 99K Kum(A) of degree two induces a Hodge isometry2

between the transcendental lattices T (Y)(2)3 and T (KumA). Morrison proved that
a K3 surface Y admits a Shioda-Inose structure if and only if there exists a Hodge
isometry between the following transcendental lattices T (Y) ⇠= T (A).

The Shioda-Inose Y of the Kummer surface Kum(Jac C) for a generic genus-two
curve C is a K3 surface of Picard-rank 17 and has a transcendental lattice isomorphic
to H �H � h�2i by Morrison’s criterion. It was shown in [22] that for fixed C this
K3 surface Y is in fact unique. In the following, we always let Y := SI(Jac C) be
this K3 surface with Shioda-Inose structure.

Clingher and Doran proved in [6] that as the genus-two curve C varies the K3
surface Y admits a birational model isomorphic to a quartic surface with canon-
ical H � E8(�1) � E7(�1)4 lattice polarization5 that fits into the following four-
parameter family in P

3 [6, Eq. (3)] given in terms of the variables [W : X : Y : Z] 2

2A Hodge isometry between two transcendental lattices is an isometry preserving the Hodge
structure.

3The notation T (Y)(2) indicates that the bilinear pairing on the transcendental lattice T (Y)
is multiplied by 2.

4Here, E8(�1) and E7(�1) are the negative definite lattice associated with the exceptional
root systems of E8 and E7, respectively.

5A lattice polarization of a K3 surface Y is a primitive embedding of a lattice L
0
,! L =

H2(Y,Z) such that the image of L
0 lies in the Néron-Severi group NS(Y) = L \ H

1,1(Y) and
contains a pseudo-ample class.
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P
3 by the equation

(26) Y2ZW� 4X3Z+3↵XZW2 + � ZW3 + �XZ2W�
1

2
(�Z2W2 +W4) = 0.

They also found the parameters (↵,�, �, �) in terms of the standard even Siegel
modular forms  4, 6,�10,�12 (cf. [14]) given by

(27) (↵,�, �, �) =
�
 4, 6, 2

1235 �10, 2
1236 �12

�
,

or, equivalently, in terms of the Igusa-Clebsch invariants using Equations (8) by

(28) (↵,�, �, �) =

✓
1

4
I4,

1

8
I2 I4 �

3

8
I6,�

243

4
I10,

243

32
I2 I10

◆
,

where In for n = 2, 4, 6, 10 are the Igusa invariants of the sexic curve (6) defining
the genus-two curve C if I10 6= 0. The Shioda-Inose surface Y = SI(Jac C) of a
generic genus-two curve C admits two Jacobian elliptic fibrations realizing the two
inequivalent ways of embedding of H into the lattice H �E8(�1)�E7(�1). These
two elliptic fibrations were described in [7, 18]. A similar picture was developed in
earlier work for the case of a H � E8(�1) � E8(�1) lattice polarization in [5, 30]
that generalized a special two-parameter family of K3 surfaces introduced by Inose
in [16].

From the point of view of K3 geometry, if the periods are preserved by a reflection
of � with �

2 = �2, then � must belong to the Néron-Severi lattice of the K3
surface. That is, the lattice H � E8(�1) � E7(�1) must be enlarged by adjoining
�. It is not hard to show (using methods of [25], for example), that there are
only two ways this enlargement can happen (if we have adjoined a single element
only): either the lattice is extended to H � E8(�1) � E8(�1) or it is extended to
H � E8(�1)� E7(�1)� h�2i.

3.3.1. The alternate fibration. The first Jacobian elliptic fibration on (26), called
the alternate fibration, has two disjoint sections and a singular fiber of Kodaira-type
I
⇤
10. For convenience, let us introduce the parameters (a, b, c, d, e) given by

(29) a = �
I4

12
, b =

I2 I4 � 3 I6
108

, c = �1, d =
I2

24
, e =

I10

4
.

The alternate fibration is obtained by setting

(30) X =
t x

3

229 35
, Y =

p
6 i x2

y

229 35
, W = �

x
3

228 36
, Z =

x
2

228 39
,

in Equation (26), and given in Weierstrass form by

(31) y
2 = x

3 + (t3 + at+ b)x2 + e (ct+ d)x .

The fibration (31) has special fibers of Kodaira-types I
⇤
10 and I2, and six fibers of

Kodaira-type I1, and a second section (x, y) = (0, 0). This proves the following:

Proposition 11. For a generic genus-two curve C there is a Jacobian elliptic

fibration ⇡̄alt : Ȳ ! P
1
on Y = SI(Jac C) given by Equation (31) with 6 singular

fibers of type I1, one fiber of type I
⇤
10, and one fiber of type I2, and a Mordell-Weil

group of sections MW(⇡̄) = Z/2 with elliptic parameter t = talt.

The discriminant of Equation (31) is given by

(32) � = 16 e2 (ct+ d)2
⇣
(t3 + at+ b)2 � 4 e (ct+ d)

⌘
.

The following corollary is crucial:
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Corollary 12. The positions of the I1 fibers in the Jacobian elliptic fibration (23)

are given by the roots of the polynomial

(33) f(t) = (t3 + at+ b)2 � 4 e (ct+ d) = 0 .

Equivalently, the loci of I1 fibers form the ramification locus of the Satake sextic (16)

if we set t = �x/3.

Given the discussion at the end of previous section, the following corollaries are
immediate:

Corollary 13. For the Jacobian elliptic fibration (31) two I1 fibers coalesce and

form a fiber of type I2 if and only if the discriminant of the Satake sextic (33)

vanishes, i.e.,

�f = 252 3�9
Q = 264 �2

35/�10 = q(a, b, c, d, e) = 0 ,

with

q(a, b, c, d, e) = 212 e3
⇣
16 a7c2d� 16 a6bc3 + 16 a5c4e+ 16 a6d3

+216 a4b2c2d+ 888 a4c2d2e� 216 a3b3c3 � 3420 a3bc3de+ 2700 a2b2c4e

+4125 a2c4de2 � 5625 abc5e2 + 3125 c6e3 + 216 a3b2d3 + 864 a3d4e

�2592 a2bcd3e+ 729 ab4c2d� 5670 ab2c2d2e+ 16200 ac2d3e2 � 729 b5c3

+6075 b3c3de� 13500 bc3d2e2 + 729 b4d3 � 5832 b2d4e+ 11664 d5e2
⌘
.

(34)

Equivalently, �f = 0 i↵ the lattice polarization H � E8(�1)� E7(�1) of the fam-

ily (31) extends to H � E8(�1)� E7(�1)� h�2i.

Remark 14. We remark that each of the I1-fiber will coalesce with the I2-fiber to

form a fiber of type III if and only if

e
3 (a c2 d� b c

3 + d
3) = �

236

33
�
2 6 �

3
10 + 9 4 �

2
10 �12 � 27�3

12

�
= 0

However, it is easy to show that this does not change the lattice polarization of the

family (31).

If we use a normalization consistent with F-theory [20] and set

(35) X =
t x

3

29 35
, Y =

x
2
y

215/2 39/2
, W =

x
3

210 36
, Z =

x
2

216 39
,

and obtain from Equation (26) the Jacobian elliptic fibration

(36) y
2 = x

3 +

✓
t
3
�
 4

48
t�

 6

864

◆
x
2
�

⇣
4�10 t� �12

⌘
x ,

which is equivalent to Equation (36) for �10(⌧) 6= 0. Equation (36) remains well-
defined for �10(⌧) = 0 when the principally polarized abelian surface A⌧ degener-
ates to a product of two elliptic curves A⌧ = E⌧1 ⇥ E⌧2 . It follows:

Corollary 15. For the Jacobian elliptic fibration (36) the two fibers of type I2

and I
⇤
10 coalesce and form a fiber of type I

⇤
12 if and only if the discriminant of the

sextic (6) vanishes, i.e.,

�F = I10 = �214 �10 = 4 e = 0 .

Equivalently, �F = 0 i↵ the lattice polarization H �E8(�1)�E7(�1) of the fam-

ily (36) extends to H � E8(�1)� E8(�1).
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Using fibration (31) and fibration (23), the rational quotient map

p : Y = SI(Jac C) 99K X = Kum(Jac C)

can be realized as a fiberwise two-isogeny between elliptic surfaces, also known as a
Van Geemen-Sarti involution. Together with the dual isogeny one obtains a chain
of rational maps Y 99K X 99K Y called a Kummer sandwich in [30]. In fact, the
translation of the elliptic fiber E = Yt in Equation (31) by a two-torsion point
S̄1 : (x, y) = (0, 0) yields the two-isogeneous fiber E 0 = E/{S0, S1} given by

(37) Y
2 = X

3
� 2(t3 + at+ b)X2 +

⇣
(t3 + at+ b)2 � 4 e (ct+ d)

⌘
X,

which is precisely the fibration (23). The fibrewise isogeny E ! E
0 = Xt is given by

(38) (x, y) 7! (X,Y ) =

✓
y
2

x2
,
y (e (ct+ d)� x

2)

x2

◆
,

and the dual isogeny E
0
! E is given by

(39) (X,Y ) 7! (x, y) =

0

@ Y
2

4X2
,

Y

⇣
(t3 + at+ b)2 � 4e(ct+ d)�X

2
⌘

X2

1

A .

The resulting Nikulin involution ' on the K3 surface Y, i.e., the automorphism of
order two preserving the holomorphic two-form, in this case the two-form dt^dx/y,
is given by mapping (x, y) to

0

B@�

⇣
x
2
� e
�
ct+ d

�⌘2

4 y2
,

⇣
x
2
� e
�
ct+ d

�⌘⇣
y
4
� f(t)x4

⌘

8x2y3

1

CA

in each generic fiber Yt. A fiber of type I1 is a rational curve with a node, whereas
a fiber of type I2 looks like two copies of P1 intersecting in two distinct points. The
involution ' is free on the generic fibers and has exactly 8 fixed points, namely the
nodal points on the I1 fibers and the intersecting points on the I2 fiber. We have
the following corollary:

Corollary 16. The positions of the I1 fibers in the Jacobian elliptic fibration (23)

are contained in the fixed point set of the Nikulin involution '.

3.3.2. The standard fibration. The second elliptic fibration, called the standard fi-

bration, is the Jacobian elliptic fibration with two distinct special fibers of Kodaira-
types II⇤ and III

⇤, respectively. By setting

(40) X = �
27 �3

10 t x

35
, Y =

27
p
6 i�3

10 y

35
, W =

28 �3
10 t

3

36
, Z =

�
2
10 t

2

24 39
,

in Equation (26) we obtain

(41) y
2 = x

3 + t
3 (a t+ c)x+ t

5 (e t2 + b t+ d) .

The fibration (41) was investigated in [18, Theorem 11]. The birational transfor-
mation between the standard and the alternate fibration is given by

(42)
⇣
t, x, y

⌘

std
=
⇣
x

e
,
tx

2

e2
,�

x
2
y

e3

⌘

alt
,
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and combining it with Equation (3.3.1) recovers the Nikulin involution for the
standard elliptic fibration given by (cf. [18, Theorem11])

(43)
⇣
t, x, y

⌘
7!

✓
cx+ dt

2

et3
,
x(cx+ dt

2)2

e2t8
,�

y(cx+ dt
2)3

e3t12

◆
.

It then follows:

Proposition 17. For a generic genus-two curve C there is a Jacobian elliptic

fibration ⇡̄std : Ȳ ! P
1
on Y = SI(Jac C) given by Equation (41) with 5 singular

fibers of type I1, one fiber of type II
⇤
, one fiber of type III

⇤
, and a trivial Mordell-

Weil group with elliptic parameter t = tstd.

For the standard fibration, there are statements analogous to Corollary 13 or
Corollary 15 when for the fibration (41) two I1 fibers are coalescing to form a fiber
of type II or a fiber from type III

⇤ goes to type II
⇤, respectively [20].

3.4. Relation to string theory. In string theory a nontrivial connection appears
as the eight-dimensional manifestation of a phenomenon called F-theory/heterotic

string duality. This correspondence leads to a geometric picture that links together
moduli spaces for two seemingly distinct types of geometrical objects: Jacobian
elliptic fibrations on K3 surfaces and flat bundles over elliptic curves [9].

In string theory compactifications of the so-called type-IIB string in which the
complex coupling varies over a base are generically referred to as F-theory. The
simplest such construction corresponds to K3 surfaces that are elliptically fibered
over P1 with a section, in physics equivalent to type-IIB string theory compactified
on P

1 and hence eight-dimensional in the presence of 7-branes [2]. In this way, a
Jacobian elliptic K3 surface with elliptic fibers E⌧ = C/(Z�Z⌧) defines an F-theory
vacuum in eight dimensions where the complex-valued scalar field ⌧ of the type-
IIB string theory is now allowed to be multi-valued. The Kodaira-table of singular
fibers gives a precise dictionary between the characteristics of the Jacobian elliptic
fibrations and the content of the 7-branes present in the physical theory.

To make contact with the F-theory/heterotic string duality one considers Ja-
cobian elliptic fibrations on a special K3 surface, namely the Shioda-Inose surface
SI(Jac C) of the principally polarized abelian surface Jac(C) that was defined in
Section where C is a generic genus-two curve. The K3 surface Y = SI(Jac C) car-
ries a Nikulin involution ' such that the quotient Y/{I,'} is birational to the
Kummer surface Kum(Jac C) and we have a Hodge-isometry between the transcen-
dental lattices T (Y) ⇠= T (Jac C). In this way, a one-to-one correspondence between
two di↵erent types of surfaces with the same Hodge-theoretic data is established:
the principally polarized abelian surfaces Jac C and the algebraic K3 surfaces Y

polarized by the rank-17 lattice H � E8(�1)� E7(�1).
To see the connection to the heterotic string theory, let us first consider the limit

as the Jacobian variety degenerates to a product of two elliptic curves E1 ⇥ E2 and
the involved K3 surfaces have Picard-rank 18, obtained by letting �10 ! 0. This
limit describes a well-understood case of the F-theory/heterotic string duality in
the absence of any additional data given by so-called Wilson lines. In fact, the
moduli space of Jacobian elliptic K3 surfaces with H � E8(�1) � E8(�1) lattice
polarization is identified with the moduli space of the heterotic string vacua with
gauge algebra e8 � e8 and so(32), respectively, compactified on a two-torus T

2

(cf. [1]). If any flat connection on T
2 is assumed to be trivial, the only two moduli
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of such a string theory, i.e, the Kähler metric and the B-field of T 2, identify the
torus with the elliptic curves E1 and E2, respectively. Notice that the existence
of two inequivalent elliptic fibrations, the standard and the alternate fibration, is
essential and corresponds to the two possible gauge groups of the heterotic string.

The first author together with David Morrison studied in [20] the non-geometric

heterotic string compactified on T
2 that produces an eight-dimensional e↵ective

theory corresponding to the Jacobian elliptic K3 surfaces with Picard-rank 17 when
�10 6= 0. The corresponding heterotic models were called non-geometric because
the Kähler and complex structures on T

2, and the Wilson line values, are not
distinguished but instead are mingled together. The fibration in Equation (41)
then describes a model dual to the e8� e8 heterotic string, with an unbroken gauge
algebra of e8�e7 ensuring that only a single Wilson line expectation value is nonzero
and all remaining Wilson lines values associated to the E8(�1)�E7(�1) sublattice
be trivial. Similarly, the fibration in Equation (41) gives the analogous story for
the so(32) heterotic string: the fibration in Equation (31) describes a model dual
to the so(32) heterotic string, with an unbroken gauge algebra of so(28) � su(2).
By a result of Vinberg [31] and its interpretation in string theory given in [20], the
function field of the Narain moduli space of these heterotic theories turns out to be
generated by the ring of Siegel modular forms with g = 2 of even weight. This is
the physical manifestation of why the fibrations (41) and (31) only depend on the
polynomial ring in the four free generators of degrees 4, 6, 10 and 12 given by the
even Siegel modular forms.6

Generic non-geometric compactification constructed from the lattice-polarized
K3 surfaces in Equation (26) will have two types of five-branes, corresponding to
the situations discussed in Corollary 13 and Corollary 15. From the heterotic side,
these five-brane solitons are easy to see: when �f = �

2
35/�10 = 0, we have an

additional gauge symmetry enhancement by a factor of su(2), and the parameters
of the theory will include a Coulomb branch on which the Weyl group Wsu(2) = Z2

acts. Therefore, there is a five-brane solution in which the field has a Z2 ambiguity
encircling the location in the moduli space of enhanced gauge symmetry. The other
five-brane solution is similar: when �F = �10 = 0, the gauge group enhances to
so(32) gauge symmetry, and a similar Z2 acts on the moduli space, leading to a
solution with a Z2 ambiguity. These two brane solutions are the analogue of the
simplest brane (a single D7-brane) in F-theory.

More general degenerations of the multi-parameter family of K3 surfaces in Equa-
tion (26) are then obtained from degenerations of the underlying genus-two curves.
As we have seen, the parameters in Equation (26) are Siegel modular forms of even
degree or, equivalently, the Igusa-Clebsch invariants of a binary sextic. Namikawa
and Ueno gave a geometrical classification of all (degenerate) fibers in pencils of
curves of genus two in [24]. For each such pencil allowed by their classification
one can now apply the heterotic/F-theory duality map to express the heterotic
background in terms of F-theory compactifications. Each resulting F-theory com-
pactification will be a family of Jacobian elliptic K3 surfaces. Notice that any such
degenerating pencil of genus-two curves is not the description of a heterotic model
itself, but rather a computational tool for providing an interesting class of degen-
erations and their associated five-branes. Moreover, the F-theory background dual

6In contrast, Igusa showed in [15] that for the full ring of modular forms, one needs an additional
generator �35 which is algebraically dependent on the others.
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to a given five-brane defect on the heterotic side can be highly singular. In some
cases the singularities can be resolved by performing a finite number of blow-ups
in the base. For some cases the resulting smooth geometry was constructed in [8].

Conversely, the combination of Proposition 4 and Corollary 12 give a computa-
tional recipe for how a degenerating pencil of genus-two curves is obtained from an
F-theory background dual to the so(32) string with only one non-vanishing Wilson
line. In comparison, the work of the authors in [21] always allows for the construc-
tion of an explicit pencil of sextic curves given any family of Igusa invariants over
a quadratic extension of the full ring of modular forms. However, this construction
does not use the F-theoretic data of the so(32) string background, i.e., the Jacobian
elliptic fibration, and requires lifting of the family to a covering space of the moduli
space. In contrast, Corollary 12 shows that the Satake sextic is inherently manifest
in the Jacobian elliptic fibration (31).

We rephrase Corollary 12 according to the discussion in this section as follows:

Corollary 18. The positions of the 7-branes with string charge (1, 0) in the F-

theory model, dual to the so(32) heterotic string with an unbroken gauge algebra of

so(28)�su(2) and only a single non-vanishing Wilson line expectation value and no

additional gauge-extension, are given by the loci of I1 fibers in the Jacobian elliptic

fibration (31) on the Shioda-Inose surface SI(Jac C) of a generic genus-two curve

C and form the ramification locus of the Satake sextic (24) given in terms of the

Igusa invariants the sextic defining C.

Remark 19. The section (x, y) = (0, 0) defines an element of order 2 in the

Mordell-Weil group of the Jacobian elliptic fibration (31). It follows as in [1,3] that
the actual gauge group of this heterortic model is (Spin(28)⇥ SU(2))/Z2.

In turn, the roots of the Satake sextic then determine a sextic curve (6) with full
level-two structure by using Equation (13) and Equation (12).
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4. Appendix

The Igusa-Clebsch invariants for the curve (6) in Rosenhain normal form are given by the following expressions:

I2 = 40�1�2�3 � 16 (1 + �1 + �2 + �3) (�1�2�3 + �2�1 + �3�1 + �2�3) + 6 (�2�1 + �3�1 + �2�3 + �1 + �2 + �3)
2 ,

I4 = �12 (�1 + �2 + �3)
3 �1�2�3 + 4 (�1 + �2 + �3)

2 (�2�1 + �3�1 + �2�3)
2 � 4 (�1 + �2 + �3)

2 (�2�1 + �3�1 + �2�3)�1�2�3

+ 4 (�1 + �2 + �3)
2 �2

1�
2
2�

2
3 + 12 (�1 + �2 + �3)

2 �1�2�3 � 4 (�1 + �2 + �3) (�2�1 + �3�1 + �2�3)
2

+ 44 (�1 + �2 + �3) (�2�1 + �3�1 + �2�3)�1�2�3 � 12 (�2�1 + �3�1 + �2�3)
3 + 12 (�2�1 + �3�1 + �2�3)

2 �1�2�3

� 12 (�2�1 + �3�1 + �2�3)�
2
1�

2
2�

2
3 � 12 (�1 + �2 + �3)�1�2�3 + 4 (�2�1 + �3�1 + �2�3)

2 � 72�2
1�

2
2�

2
3,(44)

I6 = �24 (�1 + �2 + �3)
3 �1�2�3 + 10 (�1 + �2 + �3)

2 �2
1�

2
2�

2
3 + 32 (�2�1 + �3�1 + �2�3)

2 �1�2�3 + 150 (�2�1 + �3�1 + �2�3)�
2
1�

2
2�

2
3

+ 8 (�1 + �2 + �3)
2 (�2�1 + �3�1 + �2�3)

2 �2
1�

2
2�

2
3 + 118 (�1 + �2 + �3)

3 (�2�1 + �3�1 + �2�3)�1�2�3

� 194 (�1 + �2 + �3)
2 (�2�1 + �3�1 + �2�3)�

2
1�

2
2�

2
3 + 118 (�1 + �2 + �3) (�2�1 + �3�1 + �2�3)

3 �1�2�3

� 66 (�1 + �2 + �3) (�2�1 + �3�1 + �2�3)
2 �2

1�
2
2�

2
3 + 76 (�1 + �2 + �3) (�2�1 + �3�1 + �2�3)�

3
1�

3
2�

3
3

� 194 (�1 + �2 + �3) (�2�1 + �3�1 + �2�3)
2 �1�2�3 + 412 (�1 + �2 + �3) (�2�1 + �3�1 + �2�3)�

2
1�

2
2�

2
3

+ 20 (�1 + �2 + �3)
4 (�2�1 + �1�3 + �2�3)�1�2�3 � 36 (�1 + �2 + �3)

3 (�2�1 + �1�3 + �2�3)
2 �1�2�3

+ 20 (�1 + �2 + �3)
3 (�2�1 + �1�3 + �2�3)�

2
1�

2
2�

2
3 � 8 (�1 + �2 + �3)

2 (�2�1 + �1�3 + �2�3)
3 �1�2�3

+ 8 (�1 + �2 + �3)
2 (�2�1 + �1�3 + �2�3)

2 � 252�3
1�

3
2�

3
3 � 36�4

1�
4
2�

4
3 � 24 (�2�1 + �1�3 + �2�3)

5 + 48 (�2�1 + �1�3 + �2�3)
4

� 24 (�2�1 + �1�3 + �2�3)
3 + 8 (�1 + �2 + �3)

4 (�2�1 + �1�3 + �2�3)
2 � 8 (�1 + �2 + �3)

3 (�2�1 + �1�3 + �2�3)
3

+ 8 (�1 + �2 + �3)
2 (�2�1 + �1�3 + �2�3)

4 � 8 (�1 + �2 + �3)
3 (�2�1 + �1�3 + �2�3)

2 � 36 (�1 + �2 + �3)
2 (�2�1 + �1�3 + �2�3)

3

+ 20 (�1 + �2 + �3) (�2�1 + �1�3 + �2�3)
4 + 20 (�1 + �2 + �3) (�2�1 + �1�3 + �2�3)

3 � 36�2
1�

2
2�

2
3 � 24 (�1 + �2 + �3)

5 �1�2�3

+ 48 (�1 + �2 + �3)
4 �2

1�
2
2�

2
3 � 24 (�1 + �2 + �3)

3 �3
1�

3
2�

3
3 + 24 (�1 + �2 + �3)

4 �1�2�3 � 136 (�1 + �2 + �3)
3 �2

1�
2
2�

2
3

+ 32 (�1 + �2 + �3)
2 �3

1�
3
2�

3
3 + 24 (�2�1 + �1�3 + �2�3)

4 �1�2�3 � 24 (�2�1 + �1�3 + �2�3)
3 �2

1�
2
2�

2
3 + 150 (�1 + �2 + �3)�

3
1�

3
2�

3
3

� 136 (�2�1 + �1�3 + �2�3)
3 �1�2�3 + 10 (�2�1 + �1�3 + �2�3)

2 �2
1�

2
2�

2
3 � 42 (�2�1 + �1�3 + �2�3)�

3
1�

3
2�

3
3

� 42 (�1 + �2 + �3)�
2
1�

2
2�

2
3 + 76 (�1 + �2 + �3) (�2�1 + �1�3 + �2�3)�1�2�3 � 66 (�1 + �2 + �3)

2 (�2�1 + �1�3 + �2�3)�1�2�3,

I10 = �2
1�

2
2�

2
3 (�3 � 1)2 (�2 � 1)2 (��3 + �2)

2 (�1 � 1)2 (��3 + �1)
2 (��2 + �1)

2 .
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The components of the rational map � : M2\supp(�35)0 ! M2 are given by

j
0
1 =

64

729

g
(1)(j1, j2, j3)

h(j1, j2, j3)
, j

0
2 =

4

729

g
(2)(j1, j2, j3)

h(j1, j2, j3)
, j

0
3 =

1

729

g
(3)(j1, j2, j3)

h(j1, j2, j3)
(45)

with

h(j1, j2, j3) = j51

⇣
j42j

3
1 � 12 j31j

3
2j3 + 54 j31j

2
2j

2
3 � 108 j31j2j

3
3 + 81 j31j

4
3 + 78 j52j

2
1 � 1332 j21j

4
2j3 + 8910 j21j

3
2j

2
3 � 29376 j21j

2
2j

3
3 + 47952 j21j2j

4
3

� 31104 j21j
5
3 � 159 j1j

6
2 + 1728 j1j

5
2j3 � 6048 j1j

4
2j

2
3 + 6912 j1j

3
2j

3
3 + 80 j72 � 384 j62j3 � 972 j41j

2
2 + 5832 j41j2j3 � 8748 j41j

2
3 � 77436 j31j

3
2

+ 870912 j31j
2
2j3 � 3090960 j31j2j

2
3 + 3499200 j31j

3
3 + 592272 j42j

2
1 � 4743360 j21j

3
2j3 + 9331200 j21j

2
2j

2
3 � 41472 j1j

5
2 + 236196 j51

+ 19245600 j2j
4
1 � 104976000 j41j3 � 507384000 j22j

3
1 + 2099520000 j31j2j3 + 125971200000 j41

⌘
,

g(1)(j1, j2, j3) =
⇣
� j22j1 + 6 j2j3j1 � 9 j23j1 + j32 + 540 j21

⌘5
,

g(2)(j1, j2, j3) =
⇣
j42j

2
1 � 12 j21j

3
2j3 + 54 j21j

2
2j

2
3 � 108 j21j2j

3
3 + 81 j21j

4
3 � 2 j1j

5
2 + 12 j1j

4
2j3 � 18 j1j

3
2j

2
3 + j62 � 756 j22j

3
1 + 4536 j31j2j3 � 6804 j31j

2
3

+ 5130 j21j
3
2 � 17496 j21j

2
2j3 + 131220 j41 � 2332800 j2j

3
1

⌘⇣
� j22j1 + 6 j2j3j1 � 9 j23j1 + j32 + 540 j21

⌘3
,(46)

g(3)(j1, j2, j3) =
⇣
� j31j

6
2 + 18 j31j

5
2j3 � 135 j31j

4
2j

2
3 + 540 j31j

3
2j

3
3 � 1215 j31j

2
2j

4
3 + 1458 j31j2j

5
3 � 729 j31j

6
3 + 3 j21j

7
2 � 36 j21j

6
2j3 + 162 j21j

5
2j

2
3 � 324 j21j

4
2j

3
3

+ 243 j21j
3
2j

4
3 � 3 j1j

8
2 + 18 j1j

7
2j3 � 27 j1j

6
2j

2
3 + j92 + 1350 j41j

4
2 � 16200 j41j

3
2j3 + 72900 j41j

2
2j

2
3 � 145800 j41j2j

3
3 + 109350 j41j

4
3 � 6345 j31j

5
2

+ 52650 j31j
4
2j3 � 144585 j31j

3
2j

2
3 + 131220 j31j

2
2j

3
3 + 4995 j21j

6
2 � 14580 j21j

5
2j3 � 599724 j51j

2
2 + 3598344 j51j2j3 � 5397516 j51j

2
3 + 4175226 j41j

3
2

� 15390648 j41j
2
2j3 + 4898880 j41j2j

2
3 � 1961496 j31j

4
2 + 87392520 j61 � 881798400 j51j2 � 1259712000 j51j3

⌘

⇥
⇣
� j1j

2
2 + 6 j1j2j3 � 9 j1j

2
3 + j32 + 540 j21

⌘2
.
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Inc., Boston, MA, 2007. With the collaboration of C. Musili, M. Nori, E. Previato and M.
Stillman, Reprint of the 1983 edition. MR2352717

[24] Yukihiko Namikawa and Kenji Ueno, The complete classification of fibres in pencils of curves
of genus two, Manuscripta Math. 9 (1973), 143–186. MR0369362

[25] V. V. Nikulin, Integer symmetric bilinear forms and some of their geometric applications,
Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 1, 111–177, 238. MR525944

[26] E. Previato, T. Shaska, and G. S. Wijesiri, Thetanulls of cyclic curves of small genus, Alba-
nian J. Math. 1 (2007), no. 4, 253–270. MR2367218



22 A. MALMENDIER AND T. SHASKA

[27] , Thetanulls of cyclic curves of small genus, Albanian J. Math. 1 (2007), no. 4, 253–
270. MR2367218

[28] T. Shaska and G. S. Wijesiri, Theta functions and algebraic curves with automorphisms,
Algebraic aspects of digital communications, 2009, pp. 193–237. MR2605301

[29] Tanush Shaska and Helmut Voelklein, Elliptic subfields and automorphisms of genus 2 func-
tion fields, Algebra, arithmetic and geometry with applications (West Lafayette, IN, 2000),
2004, pp. 703–723. MR2037120

[30] Tetsuji Shioda, Kummer sandwich theorem of certain elliptic K3 surfaces, Proc. Japan Acad.
Ser. A Math. Sci. 82 (2006), no. 8, 137–140. MR2279280

[31] E. B. Vinberg, On the algebra of Siegel modular forms of genus 2, Trans. Moscow Math. Soc.
(2013), 1–13. MR3235787

Department of Mathematics and Statistics, Utah State University, Logan, UT 84322

E-mail address: andreas.malmendier@usu.edu

Department of Mathematics and Statistics, Oakland University, Rochester, MI 48309

E-mail address: shaska@oakland.edu


