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Abstract
A conformal automorphism τ , of order n � 2, of a closed Riemann surface X , of
genus g � 2, which is central in Aut(X ) and such thatX /〈τ 〉 has genus zero, is called
a superelliptic automorphism of level n. If n = 2, then τ is the hyperelliptic involution
and it is known to be unique. In this paper, for the case n � 3, we investigate the
uniqueness of the cyclic group 〈τ 〉. Let τ1 and τ2 be two superelliptic automorphisms
of level n ofX . If n � 3 is odd, then 〈τ1〉 = 〈τ2〉. If n � 2 is even, the same uniqueness
result holds, up to some explicit exceptional cases.We also provide conditions for these
surfaces to be definable over their field of moduli.

Keywords Generalized superelliptic curves · Cyclic gonal curves · Automorphisms ·
Riemann surfaces
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1 Introduction

Let X be a closed Riemann surface of genus g � 2 and let G = Aut (X ) be its group
of conformal automorphisms. It is well known that Aut(X ) is finite [20] of order at
most 84(g − 1) [13], and that the order of any conformal automorphism is bounded
above by 4g + 2. This paper considers certain cyclic subgroups of Aut(X ) which
behave similarly to the cyclic subgroup generated by the hyperelliptic involution.
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Let τ ∈ G be an n-gonal automorphism, that is, it has order n � 2 and X /〈τ 〉 has
genus zero. In this case, H = 〈τ 〉 ∼= Cn is called an n-gonal group and X a cyclic
n-gonal Riemann surface. Let N be the normalizer of 〈τ 〉 in G. It follows from the
results in [7, 22], that generically N = G.

If n = 2, then τ is the hyperelliptic involution and it is known to be unique and
central in G; in particular, it is central in G = N .

If n � 3 is a prime integer and s � 3 is the number of fixed points of τ , then
H is known to be the unique n-Sylow subgroup of G if either (i) 2n < s [5] or (ii)
n � 5s − 7 [9]. So, in this case, N = G; but it might be that τ is non-central.

If n � 3, not necessarily prime, such that: (i) every fixed point of a non-trivial
power of τ is also a fixed point of τ , and (ii) the rotation number of τ at each of its
fixed points is the same (some authors call τ a superelliptic automorphism and X a
superelliptic surface), then τ is central in N (see Corollary 1), but in general N �= G.
In this case, under the extra condition that g > (n − 1)2, it is known that N = G
[15] (as a consequence of results in [1]). The computation of G has been done in [19].
Superelliptic Riemann surfaces have been studied in [4, 16, 17] and those with many
conformal automorphisms and with CM structures have been considered in [18].

If τ is central in G (respectively, central in N ), then we call it a superelliptic
automorphism of level n (respectively, generalized superelliptic automorphism of
level n); we also say that H = 〈τ 〉 is a superelliptic group of level n (respectively,
generalized superelliptic group of level n), and that X is a superelliptic curve
of level n (respectively, generalized superelliptic curve of level n). A superelliptic
automorphism of level n is automatically a generalized one; the converse is in general
false (but generically true). Also, as previously noted, a superelliptic automorphism
of order n is a generalized superelliptic automorphism of level n (but it might not be
a superelliptic automorphism of level n).

In this paper, (i) we provide necessary and sufficient conditions for an n-gonal
automorphism to be a generalized superelliptic automorphism of level n (Theorem 1)
and (ii) we provide conditions for a superelliptic curve of level n to have a unique
superelliptic group of level n (Theorem 2 and Corollary 2).

Before stating the above two results, let us recall some facts on n-gonal automor-
phisms. Let us consider a pair (X , τ ), where τ is an n-gonal automorphism of X , and
set H = 〈τ 〉 ∼= Cn . Let π : X → ̂C be a Galois branched covering, whose deck
covering group is H , and let p1, . . . , ps ∈ ̂C be its branch values. Then there are
integers l1, . . . , ls ∈ {1, . . . , n − 1} satisfying that l1 + · · · + ls is a multiple of n and
gcd(n, l1, . . . , ls) = 1, such thatX can be described by an affine irreducible algebraic
curve (which might have singularities) of the following form (called a cyclic n-gonal
curve)

yn = ∏s
j=1(x − p j )

l j . (1)

If one of the branch values is∞, say ps = ∞, then we need to delete the factor (x−
ps)ls from the above equation. In this algebraic model, τ and π are given respectively
by τ(x, y) = (x, ωn y), where ωn = e2π i/n , and π(x, y) = x .

Theorem 1 Let X be a cyclic n-gonal Riemann surface, described by the cyclic n-
gonal curve (1), and N be the normalizer of H = 〈τ(x, y) = (x, ωn y)〉 in Aut (X ).
Let θ : N → N = N/H be the canonical projection homomorphism. Then τ is a
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generalized superelliptic automorphism of level n if and only if for all p j and pi in
the same θ(N )-orbit it holds that l j = li .

Corollary 1 Let X be a cyclic n-gonal Riemann surface, described by the cyclic n-
gonal curve (1). If l j = l, for every j , where gcd(n, l) = 1, then τ(x, y) = (x, ωn y) ∈
Aut (X ) is a generalized superelliptic automorphism of level n.

Remark 1 The above corollary states that a superelliptic automorphism is always a
generalized superelliptic automorphism of level n (but not necessarily a superelliptic
automorphism of level n as the normalizer N might be smaller than the full group of
automorphisms).

Theorem 2 Let X be a cyclic n-gonal Riemann surface, admitting two superelliptic
automorphisms τ and η, both of level n, such that 〈τ 〉 �= 〈η〉. Then
(I) Aut(X )/〈τ 〉 is either a non-trivial cyclic group of even order or a dihedral group

of order a multiple of four;
(II) there is an integer d � 2 such that n = 2d and X can be represented by a cyclic

n-gonal curve of the form

X : y2d = x2
(

x2 − 1
)l1 (

x2 − a22
)l2 ∏L

j=3

(

x2 − a2j

)2̂l j
, (2)

where l1, l2, 2̂l3, . . . , 2̂lL ∈ {1, . . . , 2d − 1}, l1 is odd, and either one of the two
conditions (a) or (b) below holds for l2.

(a) If l2 = 2̂l2, then gcd
(

d, l1,̂l2, . . . ,̂lL
) = 1.

(b) If l2 is odd, then gcd
(

d, l1, l2,̂l3, . . . ,̂lL
) = 1.

In these cases, τ(x, y) = (x, ω2d y), η(x, y) = (−x, ω2d y) (so τ 2 = η2) and
〈τ, η〉 = 〈τ, η : τ 2d = 1, τ 2 = η2, τη = ητ 〉 ∼= C2d × C2.

Those superelliptic Riemann surfaces of level n = 2d, described by the cyclic
2d-gonal curves in Theorem 2, will be called exceptionals.

Remark 2 The cyclic 2d-gonal curvesX , defined by Eq. 2, are cyclic 2d-gonal curves
X admitting two commuting cyclic 2d-gonal automorphisms, τ and η, such that 〈τ 〉 �=
〈η〉. We should note that not all of them need to be superelliptic of level n; the theorem
only asserts that the exceptional ones are some of them. For instance, in the case (b)
with d = 2, l1 = 1 and l2 = 3, the genus five curve X : y4 = x2(x2 − 1)(x2 + 1)3

admits the automorphism ρ(x, y) =
(

i x,
√
i y3

x(x2+1)2

)

, for which ρτρ−1 = τ 3, where

τ(x, y) = (x, iy).

Corollary 2 Let X be a Riemann surface admitting a superelliptic group H of level n.
Then H is the unique superelliptic group of level n of X if either: (1) n = 2, or (2)
n � 3 is odd , or (3) n � 4 is even and X /H has no cone point of order n/2.

Finally, in the last section, we provide some discussion on the field of moduli of
these superelliptic Riemann surfaces (see Theorem 5).

Notation We denote by Cn the cyclic group of order n, by Dn the dihedral group of
order 2n, by An the alternating group, and by Sn the symmetric group.
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2 Preliminaries

2.1 The Finite Groups of Möbius Transformations

Up to PSL2(C)-conjugation, the finite subgroups of the group PSL2(C) of Möbius
transformations are given by (see, for instance, [3])

Cm := 〈

a(x) = ωmx
〉

, Dm :=
〈

a(x) = ωmx, b(x) = 1
x

〉

,

A4 :=
〈

a(x) = −x, b(x) = i−x
i+x

〉

, S4 :=
〈

a(x) = i x, b(x) = i−x
i+x

〉

,

A5 :=
〈

a(x) = ω5x, b(x) = (1−ω4
5)x+(ω4

5−ω5)

(ω5−ω3
5)x+(ω2

5−ω3
5)

〉

,

(3)

where ωm is a primitive m-th root of unity. For each of the above finite groups A, a
Galois branched covering f A : ̂C → ̂C, with deck group A, is given as follows

fCm (x) = xm; branching: (m,m).

fDm (x) = xm + x−m; branching: (2, 2,m).

f A4(x) = (x4 − 2i
√
3x2 + 1)3

−12i
√
3x2(x4 − 1)2

; branching: (2, 3, 3).

fS4(x) = (x8 + 14x4 + 1)3

108x4(x4 − 1)4
; branching: (2, 3, 4).

f A5(x) = (−x20 + 228x15 − 494x10 − 228x5 − 1)3

1728x5(x10 + 11x5 − 1)5
; branching: (2, 3, 5),

see [11]. In the above, the branching corresponds to the tuple of branch orders of the
cone points of the orbifold ̂C/A.

2.2 Fuchsian Groups

A Fuchsian group is a discrete subgroup � of PSL2(R), the group orientation-
preserving isometries of the hyperbolic planeH. It is called co-compact if the quotient
orbifold H/� is compact; its signature is the tuple (g; n1, . . . , ns), where g is the
genus of the quotient orbifold H/�, s is the number of its cone points they having
branch orders n1, . . . , ns . The group � has a presentation as follows:

	 = 〈a1, b1, . . . , ag, bg, c1, . . . , cs : cn11 = · · · = cnss = 1, c1 · · · cs [a1, b1] · · · [ag, bg] = 1〉,
(4)

where [a, b] = aba−1b−1.
If a co-compact Fuchsian group 	 has no torsion, then X = H/	 is a closed

Riemann surface of genus g � 2 and its signature is (g;−). Conversely, by the uni-
formization theorem, every closed Riemann surface of genus g � 2 can be represented
as above. In this case, by Riemann’s existence theorem, a finite groupG acts faithfully
as a group of conformal automorphisms of X if and only if there is a co-compact
Fuchsian group � and a surjective homomorphism θ : � → G whose kernel is 	.
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2.3 Cyclic n-gonal Riemann Surfaces

LetX be a cyclic n-gonal Riemann surface of genus g � 2, τ ∈ Aut (X ) be an n-gonal
automorphism and π : X → ̂C be a Galois branched cover whose deck group is the
n-gonal group H = 〈τ 〉 ∼= Cn . Let p1, . . . , ps ∈ ̂C be the branch values of π and let
us denote by n j � 2 (which is a divisor of n) the branch order of π at p j .

Let� be a Fuchsian group such that (up to biholomorphisms)H/� = X /〈τ 〉. Then
� has signature (0; n1, . . . , ns) and a presentation

� = 〈c1, . . . , cs : cn11 = · · · = cnss = 1, c1 · · · cs = 1〉. (5)

The branched Galois covering π is determined by a surjective homomorphism ρ :
� → Cn = 〈τ 〉with a torsion-free kernel	 such thatX = H/	. (The homomorphism
ρ is uniquely determined up to post-composition by automorphisms of Cn and pre-
composition by an automorphism of �.) Let ρ(c j ) = τ l j , where c j is as in Eq. 4, for
l1, . . . , ls ∈ {1, . . . , n − 1}. As a consequence of Harvey’s criterion [8],
(a) n = lcm(n1, . . . , n j−1, n j+1, . . . , ns) for all j ;
(b) if n is even, then #{ j ∈ {1, . . . , s} : n/n j is odd} is even.
The equality c1 · · · cs = 1 is equivalent to have l1 + · · · + ls ≡ 0 mod(n), and the

condition for 	 = ker(ρ) to be torsion-free is equivalent to have gcd(n, l j ) = n/n j ,
for j = 1, . . . , s. The surjectivity of ρ is equivalent to have gcd(n, l1, . . . , ls) = 1,
which in our case is equivalent to condition (a). Condition (b) is equivalent to saying
that for n even the number of l j ’s being odd is even,which trivially holds. Summarizing
all the above,

(1) l1, . . . , ls ∈ {1, . . . , n − 1}, (3) gcd(n, l j ) = n/n j , for all j ,
(2) l1 + · · · + ls ≡ 0 mod(n), (4) gcd(n, l1, . . . , ls) = 1.
The Riemann surface X can be described by the affine curve

X : yn = ∏s
j=1(x − p j )

l j , (6)

where, if one of the branched values is infinity, say ps = ∞, then we need to delete
the factor (x − ps)ls in the above equation.

In such an algebraicmodel, τ(x, y) = (x, ωn y), whereωn = e2π i/n , andπ(x, y) =
x . The branch order of π at p j is n j = n/ gcd(n, l j ) and, by the Riemann-Hurwitz
formula, the genus g of X is given by

g = 1 + 1
2

(

(s − 2)n − ∑s
j=1 gcd(n, l j )

)

. (7)

3 Proof of Theorem 1

Let X be a curve given by Eq. 1, π(x, y) = x , and τ ∈ G = Aut (X ). Let N be the
normalizer of H = 〈τ 〉 in G. There is a short exact sequence

1 → H = 〈τ 〉 → N
θ→ N = N/H → 1, (8)
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where θ(η) ◦ π = π ◦ η, for every η ∈ N .
The reduced group of automorphisms N = N/H < PSL2(C) is a finite group

keeping invariant the set {p1, . . . , ps}.
3.1 The following describes the form of those elements of N .

Lemma 1 Let η ∈ N and l ∈ {1, . . . , n − 1} (necessarily relatively prime to n) such
that ητη−1 = τ l . If b = θ(η), then η(x, y) = (b(x), yl Q(x)), where Q(x) is a
suitable rational map.

Proof Let us note that η(x, y) = (b(x), L(x, y)), where L(x, y) is a suitable ratio-
nal map. As η(τ(x, y)) = η(x, ωn y) = (b(x), L(x, ωn y)) and τ l(η(x, y)) =
τ l(b(x), L(x, y)) = (b(x), ωl

n L(x, y)), the condition ητη−1 = τ l holds if and only
if L(x, ωn y) = ωl

n L(x, y), that is, L(x, y) = Q(x)yl , for a suitable rational map
Q(x) ∈ C(x). �

Remark 3 (1) Lemma 1 asserts that those η ∈ N commuting with τ have the form
η(x, y) = (b(x), Q(x)y). (2) If t ∈ PSL2(C), then replacingπ by t◦π only exchanges
the set of branch points {p1, . . . , ps} for {t(p1), . . . , t(ps)} but keeps invariant the set
of exponents l1, . . . , ls .

3.2 Let η ∈ N and assume θ(η) has order m � 2. As there is a suitable t ∈ PSL2(C)

such that tθ(η)t−1(x) = ωmx , we may assume (by post-composing π with t) that
θ(η)(x) = ωmx . So the cyclic n-gonal curve Eq. 6 can be written as

yn = xα
∏L

j=1(x − q j )
l j,1(x − ωmq j )

l j,2 · · · (x − ωm−1
m q j )

l j,m , (9)

where

(a) the factor xα only appears if one of the branch values t(p j ) is equal to zero, and
(b) there is the following equality of sets of exponents in Eqs. 9 and 6 (where α needs

to be deleted if none of the t(p j )’s is equal to zero)

{α, l1,1, . . . , l1,m, l2,1, . . . , l2,m, . . . , lL,1, . . . , lL,m} = {l1, . . . , ls}.

In this model, τ(x, y) = (x, ωn y) and, by Lemma 1, η(x, y) = (ωmx, Q(x)yl),
for a suitable rational map Q(x) ∈ C(x).

If R(x) denotes the right side of Eq. 9, then Q(x)n yln = R(ωmx) on X , where

R(ωmx) = ωα
mx

α
∏L

j=1
ω
r j
m (x−q j )

l j,1 (x−ωmq j )
l j,2 ···(x−ωm−1

m q j )
l j,m

(x−q j )
l j,1−l j,2 (x−ωmq j )

l j,2−l j,3 ···(x−ωm−1
m q j )

l j,m−l j,1

= ω
(α+∑L

j=1 r j )
m yn

∏L
j=1(x−q j )

l j,1−l j,2 (x−ωmq j )
l j,2−l j,3 ···(x−ωm−1

m q j )
l j,m−l j,1

,

(10)

and r j = l j,1 + · · · + l j,m , that is,

Q(x)n yln = ω
(α+∑L

j=1 r j )
m yn

∏L
j=1(x−q j )

l j,1−l j,2 (x−ωmq j )
l j,2−l j,3 ···(x−ωm−1

m q j )
l j,m−l j,1

. (11)
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In particular,

Q(x)n y(l−1)n = ω
(α+∑L

j=1 r j )
m

∏L
j=1(x−q j )

l j,1−l j,2 (x−ωmq j )
l j,2−l j,3 ···(x−ωm−1

m q j )
l j,m−l j,1

. (12)

3.3 Let us assume η commutes with τ , that is, l = 1. We proceed to prove that the
exponents l j,i are the same for every i = 1, . . . ,m. As θ(η)m = 1, it follows that
ηm ∈ 〈τ 〉, from which we must have that

(

∏m−1
j=0 Q(ω

j
mx)

)n = 1. (13)

Claim 1 Equation 13 asserts that Q(x) is either an nm-root of unity or it has the form

Q(x) = λ
∏A

u=1
x−αu

x−ω
qu
m αu

,

where λnm = 1 and qu ∈ {1, . . . ,m − 1}.
Proof If we write

Q(x) = λ

∏A
u=1(x−αu)

∏B
v=1(x−βv)

,

then
∏m−1

j=0 Q(ω
j
mx) = λm

∏m−1
j=0 ω

(A−B) j
m

∏A
u=1(x−ω

m− j
m αu)

∏B
v=1(x−ω

m− j
m βv)

=

= λmω
(A−B)m(m−1)/2
m

∏A
u=1(x

m−αm
u )

∏B
v=1(x

m−βm
v )

.

Equation 13 asserts that

A = B,
∏B

v=1(x
m − βm

v ) = λnm
∏A

u=1(x
m − αm

u ).

So, λnm = 1 and, up to a permutation of indices, we may assume αm
u = βm

u , for
u = 1, . . . , A. �


ByClaim 1, either l j,i −l j,i+1 = 0 orωi−1
m q j must be either a zero or a pole of order

n of the left side of Eq. 12, that is, each l j,i −l j,i+1 ∈ {0,±n}. As l j,i ∈ {1, . . . , n−1},
it follows that l j,1 = · · · = l j,m .

3.4 In the other direction, let us assume that l j,1 = · · · = l j,m = l j , for every
j = 1, . . . , L . In this case, X has equation

yn = xα
∏L

j=1(x
m − qmj )l j . (14)

A lifting of θ(η) under π(x, y) = x is of the form η̂(x, y) = (ωmx, ω
α/n
m y). This

asserts that η = η̂τ k , for some k ∈ {0, . . . , n − 1}, i.e., η(x, y) = (ωmx, ωk
nω

α/n
m y),

that is l = 1.
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3.1 A Consequence

The above permits us to observe that, if τ is a generalized superelliptic automorphism
of level n, and the reduced group N admits an element of order m, then X can be
represented by a cyclic n-gonal curve of the form

X : yn = xl0(xm − 1)l1
∏L

j=2(x
m − amj )l j , (15)

where any one of the following Harvey’s conditions is satisfied:

1. if l0 = 0, then m(l1 + · · · + lL) ≡ 0 mod(n) and gcd(n, l1, . . . , lL) = 1; or
2. if l0 �= 0, then gcd(n, l0, l1, . . . , lL) = 1.

Note that, in (2) above, either: (2.1) l0 +m(l1 +· · ·+ lL) ≡ 0 mod(n) in case ∞ is
not a branch value, or (2.2) l0 + m(l1 + · · · + lL) �≡ 0 mod(n) in case ∞ is a branch
value.

4 Proof of Theorem 2 and Corollary 2

Let us assume X admits two superelliptic automorphisms τ and η, both of level n,
that is, each one being central in G = Aut (X ). Let H = 〈τ 〉 and the reduced group
G = G/H . We proceed to investigate when it is possible to have that η /∈ H .

4.1 Proof of Theorem 2

As the case n = 2 corresponds to the hyperelliptic situation, and the hyperelliptic
involution is unique, necessarily n � 3.

Proposition 1 If G is either trivial, a dihedral group of order not divisible by 4 or A4
or S4 or A5, then η ∈ H.

Proof Assume, to the contrary, that η /∈ H . Then η induces a non-trivial central
element of the reduced group G. As the Platonic groups and the dihedral groups of
order not divisible by 4, have no nontrivial central element, this is a contradiction.

�

Let us assume that η /∈ H . So, by the above, n � 3 and G is either a non-trivial

cyclic group or a dihedral group of order a multiple of 4. Let us consider, as before,
the canonical quotient homomorphism θ : G → G, and let π : X → ̂C be a Galois
branched cover with deck group H . As τ is central, K = 〈τ, η〉 < G is an abelian
group and K = K/H = 〈θ(η)〉 ∼= Cm , where n = md and m � 2. Since θ(η) has
order m, ηm ∈ H and it has order d. So, replacing τ by a suitable power (still being a
generator of H ) we may assume that ηm = τm . Now, as noted in Section 3.1, we may
assume X to be represented by a cyclic n-gonal curve of the form

X : yn = xl0(xm − 1)l1
∏L

j=2(x
m − amj )l j , (16)

where one of the following Harvey’s conditions is satisfied:
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(C1) l0 = 0, m(l1 + · · · + lL) ≡ 0 mod (n) and gcd(n, l1, . . . , lL) = 1; or
(C2) l0 �= 0 and gcd(n, l0, l1, . . . , lL) = 1.

In this algebraic model, τ(x, y) = (x, ωn y), π(x, y) = x and θ(η)(x) = ωmx
(where ωt = e2π i/t ). In this way, η(x, y) = (ωmx, ω

l0/n
m y). Since ηm = τm and η has

order n, we may assume the following

{

if l0 �= 0 : η(x, y) = (ωmx, ωn y) and l0 = m,

if l0 = 0 : η(x, y) = (ωmx, y) and n = m.
(17)

i):Case l0 = m. In this case, η(x, y) = (ωmx, ωn y) andwe are in case (C2) above. The
η-invariant algebraC[x, y]〈η〉 is generated by themonomials u = xm, v = yn together
with those of the form xa yb, where a ∈ {0, 1, . . . ,m − 1} and b ∈ {0, 1, . . . , n − 1}
(where the case a = b = 0 is not considered) satisfy that a + b/d ≡ 0 mod (m). In
particular, b = dr for r ∈ {0, 1, . . . , [(n − 1)/d]} so that a + r ≡ 0 mod (m). As
0 � a + r � (m − 1) + [(n − 1)/d] � (m − 1) + [(md − 1)/d] < 2m, it follows that
a+r ∈ {0,m}. As the case a+r = 0 asserts that a = b = 0, which is not considered,
we must have a + r = m, from which we see that the other generators are given by
t1, . . . , tm−1, where t j = xm− j yd j . As consequence of invariant theory, the quotient
curve X /〈η〉 corresponds to the algebraic curve

Y :

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

tm1 = um−1v,

tm2 = um−2v2,
...

tmm−1 = uvm−1,

v = u(u − 1)l1
∏L

j=2(u − amj )l j .

(18)

The curve Y admits the automorphisms T1, . . . , Tm−1, where Tj is just an amplifi-
cation of the t j -coordinate by ωm and acts as the identity on all the other coordinates.
The group generated by all of these automorphisms is

U = 〈T1, . . . , Tm−1〉 ∼= Cm−1
m . (19)

The Galois branched cover map πU : Y → ̂C : (u, v, t1, . . . , tm−1) �→ u has U as its
deck group. Let us observe that the values 0, am1 , . . . , amL belong to the branch set of
πU . Since Y = X /〈η〉 has genus zero and the finite abelian groups of automorphisms
of the Riemann sphere are either the trivial group, a cyclic group or V4 = C2

2 , the
group U is one of these three types. Asm � 2, the group U cannot be the trivial group
nor can it be isomorphic to the Klein group V4 = C2

2 . It follows that U is a cyclic
group; so m = 2 and, in particular, n = 2d, where d � 2, and

X : y2d = x2(x2 − 1)l1
∏L

j=2(x
2 − a2j )

l j . (20)

Harvey’s condition (a) is equivalent to have gcd(2d, 2, l1, . . . , lL) = 1, which is
satisfied if some of the exponents l j is odd. Without loss of generality, we may assume
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that l1 is odd. In this case, the curve Y is given by

Y :
{

t21 = uv,

v = u(u − 1)l1
∏L

j=2(u − a2j )
l j ,

(21)

which is isomorphic to the curve

w2 = (u − 1)l1
∏L

j=2(u − a2j )
l j . (22)

As this curve must have genus zero, and l1 is odd, the number of indices j ∈
{2, . . . , L} for which l j is odd must be at most one.

(i) If l1 is the only odd exponent and l j = 2̂l j , for j = 2, . . . , L , then the condition
gcd(2d, 2, l1, 2̂l2, . . . , 2̂lL) = 1 is equivalent to gcd(d, l1,̂l2, . . . ,̂lL) = 1.

(ii) If there are exactly two of the exponents being odd, then we may assume,
without loss of generality, that l1 and l2 are the only odd exponents. This means
that the curve in Eq. 22 is isomorphic to ŵ2 = (u − 1)l1(u − a22)

l2 , where ŵ =
w/

∏L
j=3(u−a j )

l j /2. If we write l j = 2̂l j , for j = 3, . . . , L , then the condition

gcd(2d, 2, l1, l2, 2̂l3, . . . , 2̂lL) = 1 is equivalent to gcd(d, l1, l2,̂l3, . . . ,̂lL) =
1.

ii): Case l0 = 0. In this case, m = n, η(x, y) = (ωnx, y) and we are in case (C1)
above. The η-invariants algebraC[x, y]〈η〉 is generated by themonomials u = xn, v =
y. As a consequence of the invariant theory, the quotient curve X /〈η〉 corresponds to
one of the following algebraic curves

Y1 : vn = (u − 1)l1 , (23)

or
Y2 : vn = (u − 1)l1

∏L
j=2(u − anj )

l j . (24)

As Y must have genus zero and n � 3, we should have either Y1 or Y2 with L = 2
and l1 + l2 ≡ 0 mod (n). In particular, we have one of the two cases below for X :

(1) X : yn = (xn − 1)l1 .
(2) X : yn = (xn − 1)l1(xn − an2 )

l2 , l1 + l2 ≡ 0 mod (n).
(25)

Note that, for situation (1) above, wemay assume l1 = 1 (this is the classical Fermat
curve of degree n). As the group of automorphisms of the classical Fermat curve of
degree n is C2

n � S3, we may see that τ is not central; that is, it is not a generalized
superelliptic Riemann surface of level n. In case (2), Harvey’s conditions hold exactly
when gcd(n, l1, l2) = 1. As l1 + l2 ≡ 0 mod (n) and l1, l2 ∈ {1, . . . , n−1}, we have
that l1 + l2 = n. If we write l2 = n − l1, then

(

xn−1
xn−an2

)l1 = yn

(xn−an2 )n
, (26)
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and by writing l1 = n − l2 we also have that

(

xn−an2
xn−1

)l2 = yn

(xn−1)n . (27)

Then the Möbius transformation M(x) = a2/x induces the automorphism

α(x, y) =
(

ωn
a2
x ,

−a
l2
2 (xn−1)(xn−an2 )

xn y

)

, (28)

which does not commute with η(x, y) = (ωnx, y) since n � 3, a contradiction.

4.2 Proof of Corollary 2

LetX be a cyclic n-gonal Riemann surface admitting two superelliptic automorphisms
τ and η, both of level n, such that 〈τ 〉 �= 〈η〉. By Theorem 2, X has an equation of the
form as in Eq. 20, where n = 2d � 4. The factor x2 in such an equation asserts that
0 is a branch value of order d = n/2.

5 A Remark on the Field of Moduli of Superelliptic Curves

5.1 Field of Definitions and the Field of Moduli

As a consequence of the Riemann-Roch theorem, every closed Riemann surfaceX can
be described as a complex projective irreducible algebraic curve, say defined as the
common zeros of the homogeneous polynomials P1, . . . , Pr . If σ ∈ Gal(C), the group
of field automorphisms of C, then Xσ will denote the curve defined as the common
zeros of the polynomials Pσ

1 , . . . , Pσ
r , where Pσ

j is obtained from Pj by applying σ to
its coefficients. The new algebraic curve X σ is again a closed Riemann surface of the
same genus. Let us observe that, if σ, τ ∈ Gal(C), then Xστ = (Xσ )τ (we multiply
the permutations from left to right). A subfield L of C is called a field of definition
of X if there is a curve Y , defined over L, which is isomorphic to X over C. Weil’s
descent theorem [23] provides sufficient conditions for a given subfield of C to be a
field of definition of X . These conditions hold if X has no non-trivial automorphisms
(a generic situation for g � 3).

If GX is the subgroup of Gal(C) consisting of those σ so that X σ is isomorphic
to X , then the fixed field MX of GX is called the field of moduli of X . The notion of
the field of moduli was originally introduced by Shimura [21] for the case of abelian
varieties and later extended to more general algebraic varieties by Koizumi [14]. In
that same paper, Koizumi observed that: (i) MX is the intersection of all the fields of
definition of X , and (ii) X has a field of definition being a finite extension of MX .

There are examples for which the field of moduli is not a field of definition [6, 21].
In [10], the following sufficient condition for a surface to be definable over its field of
moduli was obtained.
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Theorem 3 Let X be a Riemann surface of genus g � 2 admitting a subgroup L <

Aut (X ) so that X /L has genus zero. If L is unique inAut (X ) and the reduced group
Aut (X )/L is different from trivial or cyclic, thenX is definable over its field of moduli.

If X is hyperelliptic and L is the cyclic group generated by the hyperelliptic invo-
lution, then the above result is due to Huggins [12].

Another sufficient condition on a curve X to be definable over its field of moduli,
which in particular contains the case of quasiplatonic curves, was provided in [2]. We
say that X has odd signature if X /Aut (X ) has genus zero and in its signature one of
the cone orders appears an odd number of times.

Theorem 4 Let X be a Riemann surface of genus g � 2. If X has an odd signature,
then it can be defined over its field of moduli.

5.2 Minimal Fields of Definition of Superelliptic Curves

Let X be a superelliptic curve of level n and H = 〈τ 〉 � Aut (X ) be a superelliptic
group of level n. If X is non-exceptional, then H is unique (Corollary 2). So, if
Aut (X )/H is different from trivial or cyclic, then X is definable over its field of
moduli by Theorem 3. By Theorem 4, the same result holds if X has odd signature.

At the level of the exceptional ones, we have seen that H is not unique. But, if η is
another superelliptic automorphism of level n, then there is a power of η inside H . In
this case, we have seen that the quotient of X by the abelian group K = 〈τ, η〉 has an
odd signature. If Aut (X ) = K , then again X is definable over its field of moduli.

Theorem 5 Let H ∼= Cn be a superelliptic group of a superelliptic curve X . Then X
is definable over its field of moduli if X is non-exceptional with either (i) Aut(X )/H
different from trivial or cyclic or (ii) Aut(X )/H either trivial or cyclic and X has an
odd signature.
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