ORIGINAL PAPER

Generalized Superelliptic Riemann Surfaces

Rubén A. Hidalgo¹ · Saúl Quispe¹ · Tony Shaska²

Received: 30 July 2024 / Accepted: 21 March 2025 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025

Abstract

A conformal automorphism τ , of order $n \ge 2$, of a closed Riemann surface \mathcal{X} , of genus $g \ge 2$, which is central in Aut(\mathcal{X}) and such that $\mathcal{X}/\langle \tau \rangle$ has genus zero, is called a superelliptic automorphism of level n. If n = 2, then τ is the hyperelliptic involution and it is known to be unique. In this paper, for the case $n \ge 3$, we investigate the uniqueness of the cyclic group $\langle \tau \rangle$. Let τ_1 and τ_2 be two superelliptic automorphisms of level n of \mathcal{X} . If $n \ge 3$ is odd, then $\langle \tau_1 \rangle = \langle \tau_2 \rangle$. If $n \ge 2$ is even, the same uniqueness result holds, up to some explicit exceptional cases. We also provide conditions for these surfaces to be definable over their field of moduli.

Keywords Generalized superelliptic curves \cdot Cyclic gonal curves \cdot Automorphisms \cdot Riemann surfaces

Mathematics Subject Classification (2010) 14H37 · 14H45 · 30F10

1 Introduction

Let \mathcal{X} be a closed Riemann surface of genus $g \ge 2$ and let $G = \operatorname{Aut}(\mathcal{X})$ be its group of conformal automorphisms. It is well known that $\operatorname{Aut}(\mathcal{X})$ is finite [20] of order at most 84(g - 1) [13], and that the order of any conformal automorphism is bounded above by 4g + 2. This paper considers certain cyclic subgroups of $\operatorname{Aut}(\mathcal{X})$ which behave similarly to the cyclic subgroup generated by the hyperelliptic involution.

Saúl Quispe saul.quispe@ufrontera.cl

Tony Shaska tanush@umich.edu

The first and second authors were partially supported by Fondecyt ANID Regular Grants 1230001, 1220261.

Rubén A. Hidalgo ruben.hidalgo@ufrontera.cl

¹ Departamento de Matemática y Estadística, Universidad de La Frontera, Temuco, Chile

² Department of Mathematics and Statistics, Oakland University, Rochester, MI 48386, USA

Let $\tau \in G$ be an *n*-gonal automorphism, that is, it has order $n \ge 2$ and $\mathcal{X}/\langle \tau \rangle$ has genus zero. In this case, $H = \langle \tau \rangle \cong C_n$ is called an *n*-gonal group and \mathcal{X} a cyclic *n*-gonal Riemann surface. Let N be the normalizer of $\langle \tau \rangle$ in G. It follows from the results in [7, 22], that generically N = G.

If n = 2, then τ is the hyperelliptic involution and it is known to be unique and central in G; in particular, it is central in G = N.

If $n \ge 3$ is a prime integer and $s \ge 3$ is the number of fixed points of τ , then *H* is known to be the unique *n*-Sylow subgroup of *G* if either (i) 2n < s [5] or (ii) $n \ge 5s - 7$ [9]. So, in this case, N = G; but it might be that τ is non-central.

If $n \ge 3$, not necessarily prime, such that: (i) every fixed point of a non-trivial power of τ is also a fixed point of τ , and (ii) the rotation number of τ at each of its fixed points is the same (some authors call τ a **superelliptic automorphism** and \mathcal{X} a **superelliptic surface**), then τ is central in N (see Corollary 1), but in general $N \neq G$. In this case, under the extra condition that $g > (n - 1)^2$, it is known that N = G[15] (as a consequence of results in [1]). The computation of G has been done in [19]. Superelliptic Riemann surfaces have been studied in [4, 16, 17] and those with many conformal automorphisms and with CM structures have been considered in [18].

If τ is central in *G* (respectively, central in *N*), then we call it a **superelliptic automorphism of level n** (respectively, **generalized superelliptic automorphism of level n**); we also say that $H = \langle \tau \rangle$ is a **superelliptic group of level n** (respectively, **generalized superelliptic group of level n**), and that \mathcal{X} is a **superelliptic curve of level n** (respectively, **generalized superelliptic curve of level n**). A superelliptic automorphism of level *n* is automatically a generalized one; the converse is in general false (but generically true). Also, as previously noted, a superelliptic automorphism of order *n* is a generalized superelliptic automorphism of level *n* (but it might not be a superelliptic automorphism of level *n*).

In this paper, (i) we provide necessary and sufficient conditions for an *n*-gonal automorphism to be a generalized superelliptic automorphism of level *n* (Theorem 1) and (ii) we provide conditions for a superelliptic curve of level *n* to have a unique superelliptic group of level *n* (Theorem 2 and Corollary 2).

Before stating the above two results, let us recall some facts on *n*-gonal automorphisms. Let us consider a pair (\mathcal{X}, τ) , where τ is an *n*-gonal automorphism of \mathcal{X} , and set $H = \langle \tau \rangle \cong C_n$. Let $\pi : \mathcal{X} \to \widehat{\mathbb{C}}$ be a Galois branched covering, whose deck covering group is H, and let $p_1, \ldots, p_s \in \widehat{\mathbb{C}}$ be its branch values. Then there are integers $l_1, \ldots, l_s \in \{1, \ldots, n-1\}$ satisfying that $l_1 + \cdots + l_s$ is a multiple of n and gcd $(n, l_1, \ldots, l_s) = 1$, such that \mathcal{X} can be described by an affine irreducible algebraic curve (which might have singularities) of the following form (called a **cyclic** *n*-**gonal curve**)

$$y^{n} = \prod_{j=1}^{s} (x - p_{j})^{l_{j}}.$$
 (1)

If one of the branch values is ∞ , say $p_s = \infty$, then we need to delete the factor $(x - p_s)^{l_s}$ from the above equation. In this algebraic model, τ and π are given respectively by $\tau(x, y) = (x, \omega_n y)$, where $\omega_n = e^{2\pi i/n}$, and $\pi(x, y) = x$.

Theorem 1 Let \mathcal{X} be a cyclic n-gonal Riemann surface, described by the cyclic ngonal curve (1), and N be the normalizer of $H = \langle \tau(x, y) = (x, \omega_n y) \rangle$ in Aut (\mathcal{X}). Let $\theta : N \to \overline{N} = N/H$ be the canonical projection homomorphism. Then τ is a generalized superelliptic automorphism of level n if and only if for all p_j and p_i in the same $\theta(N)$ -orbit it holds that $l_j = l_i$.

Corollary 1 Let \mathcal{X} be a cyclic n-gonal Riemann surface, described by the cyclic ngonal curve (1). If $l_j = l$, for every j, where gcd(n, l) = 1, then $\tau(x, y) = (x, \omega_n y) \in$ Aut (\mathcal{X}) is a generalized superelliptic automorphism of level n.

Remark 1 The above corollary states that a superelliptic automorphism is always a generalized superelliptic automorphism of level n (but not necessarily a superelliptic automorphism of level n as the normalizer N might be smaller than the full group of automorphisms).

Theorem 2 Let \mathcal{X} be a cyclic n-gonal Riemann surface, admitting two superelliptic automorphisms τ and η , both of level n, such that $\langle \tau \rangle \neq \langle \eta \rangle$. Then

- (I) Aut $(\mathcal{X})/\langle \tau \rangle$ is either a non-trivial cyclic group of even order or a dihedral group of order a multiple of four;
- (II) there is an integer $d \ge 2$ such that n = 2d and \mathcal{X} can be represented by a cyclic *n*-gonal curve of the form

$$\mathcal{X}: \quad y^{2d} = x^2 \left(x^2 - 1\right)^{l_1} \left(x^2 - a_2^2\right)^{l_2} \prod_{j=3}^{L} \left(x^2 - a_j^2\right)^{2l_j}, \tag{2}$$

where $l_1, l_2, 2\hat{l_3}, \ldots, 2\hat{l_L} \in \{1, \ldots, 2d - 1\}$, l_1 is odd, and either one of the two conditions (a) or (b) below holds for l_2 .

(a) If $l_2 = 2\hat{l}_2$, then $gcd(d, l_1, \hat{l}_2, ..., \hat{l}_L) = 1$. (b) If l_2 is odd, then $gcd(d, l_1, l_2, \hat{l}_3, ..., \hat{l}_L) = 1$.

In these cases, $\tau(x, y) = (x, \omega_{2d}y)$, $\eta(x, y) = (-x, \omega_{2d}y)$ (so $\tau^2 = \eta^2$) and $\langle \tau, \eta \rangle = \langle \tau, \eta : \tau^{2d} = 1, \tau^2 = \eta^2, \tau\eta = \eta\tau \rangle \cong C_{2d} \times C_2$.

Those superelliptic Riemann surfaces of level n = 2d, described by the cyclic 2*d*-gonal curves in Theorem 2, will be called **exceptionals**.

Remark 2 The cyclic 2*d*-gonal curves \mathcal{X} , defined by Eq. 2, are cyclic 2*d*-gonal curves \mathcal{X} admitting two commuting cyclic 2*d*-gonal automorphisms, τ and η , such that $\langle \tau \rangle \neq \langle \eta \rangle$. We should note that not all of them need to be superelliptic of level *n*; the theorem only asserts that the exceptional ones are some of them. For instance, in the case (b) with d = 2, $l_1 = 1$ and $l_2 = 3$, the genus five curve \mathcal{X} : $y^4 = x^2(x^2 - 1)(x^2 + 1)^3$ admits the automorphism $\rho(x, y) = \left(ix, \frac{\sqrt{i}y^3}{x(x^2+1)^2}\right)$, for which $\rho \tau \rho^{-1} = \tau^3$, where $\tau(x, y) = (x, iy)$.

Corollary 2 Let X be a Riemann surface admitting a superelliptic group H of level n. Then H is the unique superelliptic group of level n of X if either: (1) n = 2, or (2) $n \ge 3$ is odd, or (3) $n \ge 4$ is even and X/H has no cone point of order n/2.

Finally, in the last section, we provide some discussion on the field of moduli of these superelliptic Riemann surfaces (see Theorem 5).

Notation We denote by C_n the cyclic group of order n, by D_n the dihedral group of order 2n, by A_n the alternating group, and by S_n the symmetric group.

2 Preliminaries

2.1 The Finite Groups of Möbius Transformations

Up to $PSL_2(\mathbb{C})$ -conjugation, the finite subgroups of the group $PSL_2(\mathbb{C})$ of Möbius transformations are given by (see, for instance, [3])

$$C_m := \langle a(x) = \omega_m x \rangle, \ D_m := \langle a(x) = \omega_m x, b(x) = \frac{1}{x} \rangle, A_4 := \langle a(x) = -x, b(x) = \frac{i-x}{i+x} \rangle, \ S_4 := \langle a(x) = ix, b(x) = \frac{i-x}{i+x} \rangle, A_5 := \langle a(x) = \omega_5 x, b(x) = \frac{(1-\omega_5^4)x + (\omega_5^4 - \omega_5)}{(\omega_5 - \omega_5^3)x + (\omega_5^2 - \omega_5^3)} \rangle,$$
(3)

where ω_m is a primitive *m*-th root of unity. For each of the above finite groups *A*, a Galois branched covering $f_A : \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$, with deck group *A*, is given as follows

$$\begin{split} f_{C_m}(x) &= x^m; & \text{branching: } (m, m). \\ f_{D_m}(x) &= x^m + x^{-m}; & \text{branching: } (2, 2, m). \\ f_{A_4}(x) &= \frac{(x^4 - 2i\sqrt{3}x^2 + 1)^3}{-12i\sqrt{3}x^2(x^4 - 1)^2}; & \text{branching: } (2, 3, 3). \\ f_{S_4}(x) &= \frac{(x^8 + 14x^4 + 1)^3}{108x^4(x^4 - 1)^4}; & \text{branching: } (2, 3, 4). \\ f_{A_5}(x) &= \frac{(-x^{20} + 228x^{15} - 494x^{10} - 228x^5 - 1)^3}{1728x^5(x^{10} + 11x^5 - 1)^5}; & \text{branching: } (2, 3, 5), \end{split}$$

see [11]. In the above, the branching corresponds to the tuple of branch orders of the cone points of the orbifold $\widehat{\mathbb{C}}/A$.

2.2 Fuchsian Groups

A *Fuchsian group* is a discrete subgroup Δ of PSL₂(\mathbb{R}), the group orientationpreserving isometries of the hyperbolic plane \mathbb{H} . It is called co-compact if the quotient orbifold \mathbb{H}/Δ is compact; its signature is the tuple $(g; n_1, \ldots, n_s)$, where g is the genus of the quotient orbifold \mathbb{H}/Δ , s is the number of its cone points they having branch orders n_1, \ldots, n_s . The group Δ has a presentation as follows:

$$\Gamma = \langle a_1, b_1, \dots, a_g, b_g, c_1, \dots, c_s : c_1^{n_1} = \dots = c_s^{n_s} = 1, c_1 \cdots c_s[a_1, b_1] \cdots [a_g, b_g] = 1 \rangle,$$
(4)

where $[a, b] = aba^{-1}b^{-1}$.

If a co-compact Fuchsian group Γ has no torsion, then $\mathcal{X} = \mathbb{H}/\Gamma$ is a closed Riemann surface of genus $g \ge 2$ and its signature is (g; -). Conversely, by the uniformization theorem, every closed Riemann surface of genus $g \ge 2$ can be represented as above. In this case, by Riemann's existence theorem, a finite group *G* acts faithfully as a group of conformal automorphisms of \mathcal{X} if and only if there is a co-compact Fuchsian group Δ and a surjective homomorphism $\theta : \Delta \to G$ whose kernel is Γ .

2.3 Cyclic n-gonal Riemann Surfaces

Let \mathcal{X} be a cyclic *n*-gonal Riemann surface of genus $g \ge 2, \tau \in \text{Aut}(\mathcal{X})$ be an *n*-gonal automorphism and $\pi : \mathcal{X} \to \widehat{\mathbb{C}}$ be a Galois branched cover whose deck group is the *n*-gonal group $H = \langle \tau \rangle \cong C_n$. Let $p_1, \ldots, p_s \in \widehat{\mathbb{C}}$ be the branch values of π and let us denote by $n_i \ge 2$ (which is a divisor of *n*) the branch order of π at p_i .

Let Δ be a Fuchsian group such that (up to biholomorphisms) $\mathbb{H}/\Delta = \mathcal{X}/\langle \tau \rangle$. Then Δ has signature $(0; n_1, \ldots, n_s)$ and a presentation

$$\Delta = \langle c_1, \dots, c_s : c_1^{n_1} = \dots = c_s^{n_s} = 1, c_1 \cdots c_s = 1 \rangle.$$
(5)

The branched Galois covering π is determined by a surjective homomorphism ρ : $\Delta \to C_n = \langle \tau \rangle$ with a torsion-free kernel Γ such that $\mathcal{X} = \mathbb{H}/\Gamma$. (The homomorphism ρ is uniquely determined up to post-composition by automorphisms of C_n and precomposition by an automorphism of Δ .) Let $\rho(c_j) = \tau^{l_j}$, where c_j is as in Eq. 4, for $l_1, \ldots, l_s \in \{1, \ldots, n-1\}$. As a consequence of Harvey's criterion [8],

(a) $n = \text{lcm}(n_1, ..., n_{j-1}, n_{j+1}, ..., n_s)$ for all *j*;

(b) if *n* is even, then $\#\{j \in \{1, \ldots, s\} : n/n_j \text{ is odd}\}$ is even.

The equality $c_1 \cdots c_s = 1$ is equivalent to have $l_1 + \cdots + l_s \equiv 0 \mod(n)$, and the condition for $\Gamma = \ker(\rho)$ to be torsion-free is equivalent to have $\gcd(n, l_j) = n/n_j$, for $j = 1, \ldots, s$. The surjectivity of ρ is equivalent to have $\gcd(n, l_1, \ldots, l_s) = 1$, which in our case is equivalent to condition (a). Condition (b) is equivalent to saying that for *n* even the number of l_j 's being odd is even, which trivially holds. Summarizing all the above,

(1) $l_1, \ldots, l_s \in \{1, \ldots, n-1\},$ (3) $gcd(n, l_j) = n/n_j$, for all j, (2) $l_1 + \cdots + l_s \equiv 0 \mod(n),$ (4) $gcd(n, l_1, \ldots, l_s) = 1.$

The Riemann surface \mathcal{X} can be described by the affine curve

$$\mathcal{X}: \quad y^n = \prod_{j=1}^s (x - p_j)^{l_j}, \tag{6}$$

where, if one of the branched values is infinity, say $p_s = \infty$, then we need to delete the factor $(x - p_s)^{l_s}$ in the above equation.

In such an algebraic model, $\tau(x, y) = (x, \omega_n y)$, where $\omega_n = e^{2\pi i/n}$, and $\pi(x, y) = x$. The branch order of π at p_j is $n_j = n/\gcd(n, l_j)$ and, by the Riemann-Hurwitz formula, the genus g of \mathcal{X} is given by

$$g = 1 + \frac{1}{2} \left((s - 2)n - \sum_{j=1}^{s} \gcd(n, l_j) \right).$$
(7)

3 Proof of Theorem 1

Let \mathcal{X} be a curve given by Eq. 1, $\pi(x, y) = x$, and $\tau \in G = \text{Aut}(\mathcal{X})$. Let N be the normalizer of $H = \langle \tau \rangle$ in G. There is a short exact sequence

$$1 \to H = \langle \tau \rangle \to N \xrightarrow{\theta} \overline{N} = N/H \to 1, \tag{8}$$

🕅 Birkhäuser

where $\theta(\eta) \circ \pi = \pi \circ \eta$, for every $\eta \in N$.

The reduced group of automorphisms $\overline{N} = N/H < PSL_2(\mathbb{C})$ is a finite group keeping invariant the set $\{p_1, \ldots, p_s\}$.

3.1 The following describes the form of those elements of N.

Lemma 1 Let $\eta \in N$ and $l \in \{1, ..., n-1\}$ (necessarily relatively prime to n) such that $\eta \tau \eta^{-1} = \tau^l$. If $b = \theta(\eta)$, then $\eta(x, y) = (b(x), y^l Q(x))$, where Q(x) is a suitable rational map.

Proof Let us note that $\eta(x, y) = (b(x), L(x, y))$, where L(x, y) is a suitable rational map. As $\eta(\tau(x, y)) = \eta(x, \omega_n y) = (b(x), L(x, \omega_n y))$ and $\tau^l(\eta(x, y)) =$ $\tau^l(b(x), L(x, y)) = (b(x), \omega_n^l L(x, y))$, the condition $\eta \tau \eta^{-1} = \tau^l$ holds if and only if $L(x, \omega_n y) = \omega_n^l L(x, y)$, that is, $L(x, y) = Q(x)y^l$, for a suitable rational map $Q(x) \in \mathbb{C}(x)$.

Remark 3 (1) Lemma 1 asserts that those $\eta \in N$ commuting with τ have the form $\eta(x, y) = (b(x), Q(x)y)$. (2) If $t \in PSL_2(\mathbb{C})$, then replacing π by $t \circ \pi$ only exchanges the set of branch points $\{p_1, \ldots, p_s\}$ for $\{t(p_1), \ldots, t(p_s)\}$ but keeps invariant the set of exponents l_1, \ldots, l_s .

3.2 Let $\eta \in N$ and assume $\theta(\eta)$ has order $m \ge 2$. As there is a suitable $t \in PSL_2(\mathbb{C})$ such that $t\theta(\eta)t^{-1}(x) = \omega_m x$, we may assume (by post-composing π with t) that $\theta(\eta)(x) = \omega_m x$. So the cyclic *n*-gonal curve Eq. 6 can be written as

$$y^{n} = x^{\alpha} \prod_{j=1}^{L} (x - q_{j})^{l_{j,1}} (x - \omega_{m} q_{j})^{l_{j,2}} \cdots (x - \omega_{m}^{m-1} q_{j})^{l_{j,m}},$$
(9)

where

(a) the factor x^{α} only appears if one of the branch values $t(p_i)$ is equal to zero, and

(b) there is the following equality of sets of exponents in Eqs. 9 and 6 (where α needs

to be deleted if none of the $t(p_i)$'s is equal to zero)

$$\{\alpha, l_{1,1}, \ldots, l_{1,m}, l_{2,1}, \ldots, l_{2,m}, \ldots, l_{L,1}, \ldots, l_{L,m}\} = \{l_1, \ldots, l_s\}.$$

In this model, $\tau(x, y) = (x, \omega_n y)$ and, by Lemma 1, $\eta(x, y) = (\omega_m x, Q(x)y^l)$, for a suitable rational map $Q(x) \in \mathbb{C}(x)$.

If R(x) denotes the right side of Eq. 9, then $Q(x)^n y^{ln} = R(\omega_m x)$ on \mathcal{X} , where

$$R(\omega_m x) = \omega_m^{\alpha} x^{\alpha} \prod_{j=1}^{L} \frac{\omega_m^{r_j} (x-q_j)^{l_{j,1}} (x-\omega_m q_j)^{l_{j,2}} \dots (x-\omega_m^{m-1} q_j)^{l_{j,m}}}{(x-q_j)^{l_{j,1}-l_{j,2}} (x-\omega_m q_j)^{l_{j,2}-l_{j,3}} \dots (x-\omega_m^{m-1} q_j)^{l_{j,m}-l_{j,1}}}$$

$$= \frac{\omega_m^{(\alpha+\sum_{j=1}^{L} r_j)} y^n}{\prod_{j=1}^{L} (x-q_j)^{l_{j,1}-l_{j,2}} (x-\omega_m q_j)^{l_{j,2}-l_{j,3}} \dots (x-\omega_m^{m-1} q_j)^{l_{j,m}-l_{j,1}}},$$
(10)

and $r_j = l_{j,1} + \cdots + l_{j,m}$, that is,

$$Q(x)^{n} y^{ln} = \frac{\omega_{m}^{(\alpha + \sum_{j=1}^{L} r_{j})} y^{n}}{\prod_{j=1}^{L} (x-q_{j})^{l_{j,1}-l_{j,2}} (x-\omega_{m}q_{j})^{l_{j,2}-l_{j,3}} \dots (x-\omega_{m}^{m-1}q_{j})^{l_{j,m}-l_{j,1}}}.$$
 (11)

In particular,

$$Q(x)^{n} y^{(l-1)n} = \frac{\omega_{m}^{(\alpha+\sum_{j=1}^{L}r_{j})}}{\prod_{j=1}^{L} (x-q_{j})^{l_{j,1}-l_{j,2}} (x-\omega_{m}q_{j})^{l_{j,2}-l_{j,3}} \dots (x-\omega_{m}^{m-1}q_{j})^{l_{j,m}-l_{j,1}}}.$$
 (12)

3.3 Let us assume η commutes with τ , that is, l = 1. We proceed to prove that the exponents $l_{j,i}$ are the same for every i = 1, ..., m. As $\theta(\eta)^m = 1$, it follows that $\eta^m \in \langle \tau \rangle$, from which we must have that

$$\left(\prod_{j=0}^{m-1} \mathcal{Q}(\omega_m^j x)\right)^n = 1.$$
(13)

Claim 1 Equation 13 asserts that Q(x) is either an *nm*-root of unity or it has the form

$$Q(x) = \lambda \prod_{u=1}^{A} \frac{x - \alpha_u}{x - \omega_m^{q_u} \alpha_u},$$

where $\lambda^{nm} = 1$ and $q_u \in \{1, ..., m - 1\}$.

Proof If we write

$$Q(x) = \lambda \frac{\prod_{u=1}^{A} (x - \alpha_u)}{\prod_{v=1}^{B} (x - \beta_v)},$$

then

$$\prod_{j=0}^{m-1} \mathcal{Q}(\omega_m^j x) = \lambda^m \prod_{j=0}^{m-1} \omega_m^{(A-B)j} \frac{\prod_{u=1}^A (x - \omega_m^{m-j} \alpha_u)}{\prod_{v=1}^B (x - \omega_m^{m-j} \beta_v)} = \lambda^m \omega_m^{(A-B)m(m-1)/2} \frac{\prod_{u=1}^A (x^m - \alpha_u^m)}{\prod_{v=1}^B (x^m - \beta_v^m)}.$$

Equation 13 asserts that

$$A = B, \quad \prod_{v=1}^{B} (x^m - \beta_v^m) = \lambda^{nm} \prod_{u=1}^{A} (x^m - \alpha_u^m).$$

So, $\lambda^{nm} = 1$ and, up to a permutation of indices, we may assume $\alpha_u^m = \beta_u^m$, for u = 1, ..., A.

By Claim 1, either $l_{j,i} - l_{j,i+1} = 0$ or $\omega_m^{i-1}q_j$ must be either a zero or a pole of order n of the left side of Eq. 12, that is, each $l_{j,i} - l_{j,i+1} \in \{0, \pm n\}$. As $l_{j,i} \in \{1, \ldots, n-1\}$, it follows that $l_{j,1} = \cdots = l_{j,m}$.

3.4 In the other direction, let us assume that $l_{j,1} = \cdots = l_{j,m} = l_j$, for every $j = 1, \ldots, L$. In this case, \mathcal{X} has equation

$$y^{n} = x^{\alpha} \prod_{j=1}^{L} (x^{m} - q_{j}^{m})^{l_{j}}.$$
 (14)

A lifting of $\theta(\eta)$ under $\pi(x, y) = x$ is of the form $\hat{\eta}(x, y) = (\omega_m x, \omega_m^{\alpha/n} y)$. This asserts that $\eta = \hat{\eta}\tau^k$, for some $k \in \{0, ..., n-1\}$, i.e., $\eta(x, y) = (\omega_m x, \omega_n^k \omega_m^{\alpha/n} y)$, that is l = 1.

3.1 A Consequence

The above permits us to observe that, if τ is a generalized superelliptic automorphism of level *n*, and the reduced group \overline{N} admits an element of order *m*, then \mathcal{X} can be represented by a cyclic *n*-gonal curve of the form

$$\mathcal{X}: \quad y^n = x^{l_0} (x^m - 1)^{l_1} \prod_{j=2}^L (x^m - a_j^m)^{l_j}, \tag{15}$$

where any one of the following Harvey's conditions is satisfied:

1. if $l_0 = 0$, then $m(l_1 + \dots + l_L) \equiv 0 \mod(n)$ and $gcd(n, l_1, \dots, l_L) = 1$; or 2. if $l_0 \neq 0$, then $gcd(n, l_0, l_1, \dots, l_L) = 1$.

Note that, in (2) above, either: (2.1) $l_0 + m(l_1 + \dots + l_L) \equiv 0 \mod(n)$ in case ∞ is not a branch value, or (2.2) $l_0 + m(l_1 + \dots + l_L) \neq 0 \mod(n)$ in case ∞ is a branch value.

4 Proof of Theorem 2 and Corollary 2

Let us assume \mathcal{X} admits two superelliptic automorphisms τ and η , both of level n, that is, each one being central in $G = \operatorname{Aut}(\mathcal{X})$. Let $H = \langle \tau \rangle$ and the reduced group $\overline{G} = G/H$. We proceed to investigate when it is possible to have that $\eta \notin H$.

4.1 Proof of Theorem 2

As the case n = 2 corresponds to the hyperelliptic situation, and the hyperelliptic involution is unique, necessarily $n \ge 3$.

Proposition 1 If \overline{G} is either trivial, a dihedral group of order not divisible by 4 or A_4 or S_4 or A_5 , then $\eta \in H$.

Proof Assume, to the contrary, that $\eta \notin H$. Then η induces a non-trivial central element of the reduced group \overline{G} . As the Platonic groups and the dihedral groups of order not divisible by 4, have no nontrivial central element, this is a contradiction.

Let us assume that $\eta \notin H$. So, by the above, $n \ge 3$ and \overline{G} is either a non-trivial cyclic group or a dihedral group of order a multiple of 4. Let us consider, as before, the canonical quotient homomorphism $\theta : G \to \overline{G}$, and let $\pi : \mathcal{X} \to \widehat{\mathbb{C}}$ be a Galois branched cover with deck group H. As τ is central, $K = \langle \tau, \eta \rangle < G$ is an abelian group and $\overline{K} = K/H = \langle \theta(\eta) \rangle \cong C_m$, where n = md and $m \ge 2$. Since $\theta(\eta)$ has order $m, \eta^m \in H$ and it has order d. So, replacing τ by a suitable power (still being a generator of H) we may assume that $\eta^m = \tau^m$. Now, as noted in Section 3.1, we may assume \mathcal{X} to be represented by a cyclic n-gonal curve of the form

$$\mathcal{X}: \quad y^n = x^{l_0} (x^m - 1)^{l_1} \prod_{j=2}^L (x^m - a_j^m)^{l_j}, \tag{16}$$

where one of the following Harvey's conditions is satisfied:

(C1) $l_0 = 0, m(l_1 + \dots + l_L) \equiv 0 \mod (n)$ and $gcd(n, l_1, \dots, l_L) = 1$; or (C2) $l_0 \neq 0$ and $gcd(n, l_0, l_1, \dots, l_L) = 1$.

In this algebraic model, $\tau(x, y) = (x, \omega_n y)$, $\pi(x, y) = x$ and $\theta(\eta)(x) = \omega_m x$ (where $\omega_t = e^{2\pi i/t}$). In this way, $\eta(x, y) = (\omega_m x, \omega_m^{l_0/n} y)$. Since $\eta^m = \tau^m$ and η has order *n*, we may assume the following

$$\begin{cases} \text{if } l_0 \neq 0 : \eta(x, y) = (\omega_m x, \omega_n y) \text{ and } l_0 = m, \\ \text{if } l_0 = 0 : \eta(x, y) = (\omega_m x, y) \quad \text{and } n = m. \end{cases}$$
(17)

i): Case $l_0 = m$. In this case, $\eta(x, y) = (\omega_m x, \omega_n y)$ and we are in case (C2) above. The η -invariant algebra $\mathbb{C}[x, y]^{(\eta)}$ is generated by the monomials $u = x^m$, $v = y^n$ together with those of the form $x^a y^b$, where $a \in \{0, 1, \ldots, m-1\}$ and $b \in \{0, 1, \ldots, n-1\}$ (where the case a = b = 0 is not considered) satisfy that $a + b/d \equiv 0 \mod (m)$. In particular, b = dr for $r \in \{0, 1, \ldots, [(n-1)/d]\}$ so that $a + r \equiv 0 \mod (m)$. As $0 \leq a + r \leq (m-1) + [(n-1)/d] \leq (m-1) + [(md-1)/d] < 2m$, it follows that $a + r \in \{0, m\}$. As the case a + r = 0 asserts that a = b = 0, which is not considered, we must have a + r = m, from which we see that the other generators are given by t_1, \ldots, t_{m-1} , where $t_j = x^{m-j} y^{dj}$. As consequence of invariant theory, the quotient curve $\mathcal{X}/\langle \eta \rangle$ corresponds to the algebraic curve

$$\mathcal{Y}: \begin{cases} t_1^m = u^{m-1}v, \\ t_2^m = u^{m-2}v^2, \\ \vdots \\ t_{m-1}^m = uv^{m-1}, \\ v = u(u-1)^{l_1}\prod_{j=2}^L (u-a_j^m)^{l_j}. \end{cases}$$
(18)

The curve \mathcal{Y} admits the automorphisms T_1, \ldots, T_{m-1} , where T_j is just an amplification of the t_j -coordinate by ω_m and acts as the identity on all the other coordinates. The group generated by all of these automorphisms is

$$\mathcal{U} = \langle T_1, \dots, T_{m-1} \rangle \cong C_m^{m-1}.$$
(19)

The Galois branched cover map $\pi_{\mathcal{U}} : \mathcal{Y} \to \widehat{\mathbb{C}} : (u, v, t_1, \ldots, t_{m-1}) \mapsto u$ has \mathcal{U} as its deck group. Let us observe that the values $0, a_1^m, \ldots, a_L^m$ belong to the branch set of $\pi_{\mathcal{U}}$. Since $\mathcal{Y} = \mathcal{X}/\langle \eta \rangle$ has genus zero and the finite abelian groups of automorphisms of the Riemann sphere are either the trivial group, a cyclic group or $V_4 = C_2^2$, the group \mathcal{U} is one of these three types. As $m \ge 2$, the group \mathcal{U} cannot be the trivial group nor can it be isomorphic to the Klein group $V_4 = C_2^2$. It follows that \mathcal{U} is a cyclic group; so m = 2 and, in particular, n = 2d, where $d \ge 2$, and

$$\mathcal{X}: \quad y^{2d} = x^2 (x^2 - 1)^{l_1} \prod_{j=2}^{L} (x^2 - a_j^2)^{l_j}. \tag{20}$$

Harvey's condition (a) is equivalent to have $gcd(2d, 2, l_1, ..., l_L) = 1$, which is satisfied if some of the exponents l_j is odd. Without loss of generality, we may assume

that l_1 is odd. In this case, the curve \mathcal{Y} is given by

$$\mathcal{Y}: \begin{cases} t_1^2 = uv, \\ v = u(u-1)^{l_1} \prod_{j=2}^L (u-a_j^2)^{l_j}, \end{cases}$$
(21)

which is isomorphic to the curve

$$w^{2} = (u-1)^{l_{1}} \prod_{j=2}^{L} (u-a_{j}^{2})^{l_{j}}.$$
(22)

As this curve must have genus zero, and l_1 is odd, the number of indices $j \in \{2, ..., L\}$ for which l_j is odd must be at most one.

- (i) If l_1 is the only odd exponent and $l_j = 2\hat{l}_j$, for j = 2, ..., L, then the condition $gcd(2d, 2, l_1, 2\hat{l}_2, ..., 2\hat{l}_L) = 1$ is equivalent to $gcd(d, l_1, \hat{l}_2, ..., \hat{l}_L) = 1$.
- (ii) If there are exactly two of the exponents being odd, then we may assume, without loss of generality, that l_1 and l_2 are the only odd exponents. This means that the curve in Eq. 22 is isomorphic to $\widehat{w}^2 = (u-1)^{l_1}(u-a_2^2)^{l_2}$, where $\widehat{w} = w/\prod_{j=3}^{L}(u-a_j)^{l_j/2}$. If we write $l_j = 2\widehat{l}_j$, for $j = 3, \ldots, L$, then the condition $\gcd(2d, 2, l_1, l_2, 2\widehat{l}_3, \ldots, 2\widehat{l}_L) = 1$ is equivalent to $\gcd(d, l_1, l_2, \widehat{l}_3, \ldots, \widehat{l}_L) = 1$.

ii): Case $l_0 = 0$. In this case, m = n, $\eta(x, y) = (\omega_n x, y)$ and we are in case (C1) above. The η -invariants algebra $\mathbb{C}[x, y]^{\langle \eta \rangle}$ is generated by the monomials $u = x^n$, v = y. As a consequence of the invariant theory, the quotient curve $\mathcal{X}/\langle \eta \rangle$ corresponds to one of the following algebraic curves

$$\mathcal{Y}_1: \quad v^n = (u-1)^{l_1},$$
 (23)

or

$$\mathcal{Y}_2: \quad v^n = (u-1)^{l_1} \prod_{j=2}^L (u-a_j^n)^{l_j}.$$
 (24)

As \mathcal{Y} must have genus zero and $n \ge 3$, we should have either \mathcal{Y}_1 or \mathcal{Y}_2 with L = 2and $l_1 + l_2 \equiv 0 \mod (n)$. In particular, we have one of the two cases below for \mathcal{X} :

(1)
$$\mathcal{X}$$
: $y^n = (x^n - 1)^{l_1}$.
(2) \mathcal{X} : $y^n = (x^n - 1)^{l_1} (x^n - a_2^n)^{l_2}$, $l_1 + l_2 \equiv 0 \mod (n)$.
(25)

Note that, for situation (1) above, we may assume $l_1 = 1$ (this is the classical Fermat curve of degree *n*). As the group of automorphisms of the classical Fermat curve of degree *n* is $C_n^2 \rtimes S_3$, we may see that τ is not central; that is, it is not a generalized superelliptic Riemann surface of level *n*. In case (2), Harvey's conditions hold exactly when gcd $(n, l_1, l_2) = 1$. As $l_1 + l_2 \equiv 0 \mod (n)$ and $l_1, l_2 \in \{1, \ldots, n-1\}$, we have that $l_1 + l_2 = n$. If we write $l_2 = n - l_1$, then

$$\left(\frac{x^n - 1}{x^n - a_2^n}\right)^{l_1} = \frac{y^n}{(x^n - a_2^n)^n},\tag{26}$$

and by writing $l_1 = n - l_2$ we also have that

$$\left(\frac{x^n - a_2^n}{x^n - 1}\right)^{l_2} = \frac{y^n}{(x^n - 1)^n}.$$
(27)

Then the Möbius transformation $M(x) = a_2/x$ induces the automorphism

$$\alpha(x, y) = \left(\omega_n \frac{a_2}{x}, \frac{-a_2^{l_2}(x^n - 1)(x^n - a_2^n)}{x^n y}\right),$$
(28)

which does not commute with $\eta(x, y) = (\omega_n x, y)$ since $n \ge 3$, a contradiction.

4.2 Proof of Corollary 2

Let \mathcal{X} be a cyclic *n*-gonal Riemann surface admitting two superelliptic automorphisms τ and η , both of level *n*, such that $\langle \tau \rangle \neq \langle \eta \rangle$. By Theorem 2, \mathcal{X} has an equation of the form as in Eq. 20, where $n = 2d \ge 4$. The factor x^2 in such an equation asserts that 0 is a branch value of order d = n/2.

5 A Remark on the Field of Moduli of Superelliptic Curves

5.1 Field of Definitions and the Field of Moduli

As a consequence of the Riemann-Roch theorem, every closed Riemann surface \mathcal{X} can be described as a complex projective irreducible algebraic curve, say defined as the common zeros of the homogeneous polynomials P_1, \ldots, P_r . If $\sigma \in \text{Gal}(\mathbb{C})$, the group of field automorphisms of \mathbb{C} , then X^{σ} will denote the curve defined as the common zeros of the polynomials $P_1^{\sigma}, \ldots, P_r^{\sigma}$, where P_j^{σ} is obtained from P_j by applying σ to its coefficients. The new algebraic curve \mathcal{X}^{σ} is again a closed Riemann surface of the same genus. Let us observe that, if $\sigma, \tau \in \text{Gal}(\mathbb{C})$, then $X^{\sigma\tau} = (X^{\sigma})^{\tau}$ (we multiply the permutations from left to right). A subfield \mathbb{L} of \mathbb{C} is called a *field of definition* of \mathcal{X} if there is a curve \mathcal{Y} , defined over \mathbb{L} , which is isomorphic to \mathcal{X} over \mathbb{C} . Weil's descent theorem [23] provides sufficient conditions for a given subfield of \mathbb{C} to be a field of definition of \mathcal{X} . These conditions hold if \mathcal{X} has no non-trivial automorphisms (a generic situation for $g \ge 3$).

If $G_{\mathcal{X}}$ is the subgroup of Gal(\mathbb{C}) consisting of those σ so that \mathcal{X}^{σ} is isomorphic to \mathcal{X} , then the fixed field $M_{\mathcal{X}}$ of $G_{\mathcal{X}}$ is called *the field of moduli* of \mathcal{X} . The notion of the field of moduli was originally introduced by Shimura [21] for the case of abelian varieties and later extended to more general algebraic varieties by Koizumi [14]. In that same paper, Koizumi observed that: (i) $M_{\mathcal{X}}$ is the intersection of all the fields of definition of \mathcal{X} , and (ii) \mathcal{X} has a field of definition being a finite extension of $M_{\mathcal{X}}$.

There are examples for which the field of moduli is not a field of definition [6, 21]. In [10], the following sufficient condition for a surface to be definable over its field of moduli was obtained.

Theorem 3 Let \mathcal{X} be a Riemann surface of genus $g \ge 2$ admitting a subgroup $L < \operatorname{Aut}(\mathcal{X})$ so that \mathcal{X}/L has genus zero. If L is unique in $\operatorname{Aut}(\mathcal{X})$ and the reduced group $\operatorname{Aut}(\mathcal{X})/L$ is different from trivial or cyclic, then \mathcal{X} is definable over its field of moduli.

If \mathcal{X} is hyperelliptic and L is the cyclic group generated by the hyperelliptic involution, then the above result is due to Huggins [12].

Another sufficient condition on a curve \mathcal{X} to be definable over its field of moduli, which in particular contains the case of quasiplatonic curves, was provided in [2]. We say that \mathcal{X} has *odd signature* if \mathcal{X} / Aut (\mathcal{X}) has genus zero and in its signature one of the cone orders appears an odd number of times.

Theorem 4 Let \mathcal{X} be a Riemann surface of genus $g \ge 2$. If \mathcal{X} has an odd signature, then it can be defined over its field of moduli.

5.2 Minimal Fields of Definition of Superelliptic Curves

Let \mathcal{X} be a superelliptic curve of level *n* and $H = \langle \tau \rangle \leq \text{Aut}(\mathcal{X})$ be a superelliptic group of level *n*. If \mathcal{X} is non-exceptional, then *H* is unique (Corollary 2). So, if Aut $(\mathcal{X})/H$ is different from trivial or cyclic, then \mathcal{X} is definable over its field of moduli by Theorem 3. By Theorem 4, the same result holds if \mathcal{X} has odd signature.

At the level of the exceptional ones, we have seen that *H* is not unique. But, if η is another superelliptic automorphism of level *n*, then there is a power of η inside *H*. In this case, we have seen that the quotient of \mathcal{X} by the abelian group $K = \langle \tau, \eta \rangle$ has an odd signature. If Aut $(\mathcal{X}) = K$, then again \mathcal{X} is definable over its field of moduli.

Theorem 5 Let $H \cong C_n$ be a superelliptic group of a superelliptic curve \mathcal{X} . Then \mathcal{X} is definable over its field of moduli if \mathcal{X} is non-exceptional with either (i) Aut $(\mathcal{X})/H$ different from trivial or cyclic or (ii) Aut $(\mathcal{X})/H$ either trivial or cyclic and \mathcal{X} has an odd signature.

Acknowledgements The authors would like to thank the referees for their effort to review this paper and for the provided suggestions, comments, and corrections.

Data Availability Statements Not Applicable.

Declarations

Conflicts of interest The authors have no conflict of interest to declare that are relevant to this article.

References

- Accola, R.D.M.: Strongly branched coverings of closed Riemann surfaces. Proc. Amer. Math. Soc. 26, 315–322 (1970). MR0262485
- Artebani, M., Quispe, S.: Fields of moduli and fields of definition of odd signature curves. Arch. Math. (Basel) 99(4), 333–344 (2012). MR2990152
- Beardon, A.F.: The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York (1995). Corrected reprint of the 1983 original. MR1393195
- Beshaj, L., Hoxha, V., Shaska, T.: On superelliptic curves of level n and their quotients, I. Albanian J. Math. 5(3), 115–137 (2011). MR2846162

- Castelnuovo, G.: Sulle serie algebriche di gruppi di punti appartenenti ad una curve algebraica. Rendiconti della Reale Accademia dei Lincei XV (1906), no. Serie 5, 337–344
- Earle, C.J.: On the moduli of closed Riemann surfaces with symmetries. Advances in the Theory of Riemann Surfaces, pp. 119–130 (1971). MR0296282
- 7. Greenberg, L.: Maximal Fuchsian groups. Bull. Amer. Math. Soc. 69, 569–573 (1963). MR0148620
- Harvey, W.J.: Cyclic groups of automorphisms of a compact Riemann surface. Quart. J. Math. Oxford Ser. (2) 17, 86–97 (1966). MR0201629
- Hidalgo, R.A.: p-Groups acting on Riemann surfaces. J. Pure Appl. Algebra 222(12), 4173–4188 (2018). MR3818299
- Hidalgo, R.A., Quispe, S.: Fields of moduli of some special curves. J. Pure Appl. Algebra 220(1), 55–60 (2016). MR3393450
- Horiuchi, R.: Normal coverings of hyperelliptic Riemann surfaces. J. Math. Kyoto Univ. 19(3), 497– 523 (1979). MR553229
- Huggins, B.: Fields of moduli of hyperelliptic curves. Math. Res. Lett. 14(2), 249–262 (2007). MR2318623
- Hurwitz, A.: Über algebraische Gebilde mit eindeutigen Transformationen in sich. Math. Ann. 41(3), 403–442 (1892)
- Koizumi, S.: The fields of moduli for polarized abelian varieties and for curves. Nagoya Math. J. 48, 37–55 (1972). MR0352095
- Kontogeorgis, A.: The group of automorphisms of cyclic extensions of rational function fields. J. Algebra 216(2), 665–706 (1999). MR1692965
- Malmendier, A., Shaska, T.: From hyperelliptic to superelliptic curves. Albanian J. Math. 13(1), 107– 200 (2019). MR3978315
- Muço, R., Pjero, N., Ruci, E., Zhupa, E.: Classifying families of superelliptic curves. Albanian J. Math. 8(1), 23–35 (2014). MR3270074
- Obus, A., Shaska, T.: Superelliptic curves with many automorphisms and CM Jacobians. Math. Comp. 90(332), 2951–2975 (2021). MR4305376
- Sanjeewa, R.: Automorphism groups of cyclic curves defined over finite fields of any characteristics. Albanian J. Math. 3(4), 131–160 (2009). MR2578064
- Schwartz, H.A.: Ueber diejenigen algebraischen Gleichungen zwischen zwei veränderlichen Grössen, welche eine Schaar rationaler eindeutig umkehrbarer Transformationen in sich selbst zulassen. J. Reine Angew. Math. 87, 139–145 (1879). MR1579787
- Shimura, G.: On the field of rationality for an abelian variety. Nagoya Math. J. 45, 167–178 (1972). MR0306215
- Singerman, D.: Finitely maximal Fuchsian groups. J. London Math. Soc. (2) 6, 29–38 (1972). MR0322165
- 23. Weil, A.: The field of definition of a variety. Amer. J. Math. 78, 509-524 (1956). MR0082726

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.