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Abstract. In this paper we introduce a reduction theory based on the hy-

perbolic center of mass, which is di↵erent from the reduction introduced by

Julia (1917). We show that the zero map via the Julia quadratic is di↵erent

than the hyperbolic center of mass. Moreover, we discover some interesting

formulas for computing the hyperbolic centroid.

1. Introduction

During the XIX-century, the mathematical community invested much e↵orts in
developing a reduction theory of binary forms similar to that of quadratic forms,
especially since invariant theory was at the forefront of mathematics. The idea
of reduction on a set A with a right SL2(Z)-action is to associate to any element
a 2 A a covariant point ⇠(a) in the upper half-plane H2, i.e to construct an SL2(Z)-
equivariant map ⇠ : A ! H2. The modular group SL2(Z) acts on binary forms
F (X,Z) via a linear change of variables and on the upper half-plane via Möbius
transformations. A practical motivation for the reduction in this setting is: given a
real binary form, can we find an SL2(Z)-equivalent with minimal coe�cients? This
question has a positive answer for quadratics but it is still not very well understood
for higher degree forms.

In his thesis [6] of 1917, G. Julia introduced a reduction theory for binary forms
with real coe�cients (although explicit and complete answers were provided only
in degrees three and four). To every binary form F (X,Z) with real coe�cients,
Julia associated a positive definite quadratic JF which is called the Julia quadratic.
Cremona [4] showed that the coe�cients of JF are polynomial values of of the
coe�cients of F and this does not happen for higher degree forms. Since positive
definite quadratics parametrize H2, one obtains a well defined map ⇠ from real
binary forms to the upper half-plane. It is called the zero map and it is SL2(Z)-
equivariant. If F is a real binary form, then ⇠(F ) is a point in the hyperbolic convex
hull of the roots of F with non-negative imaginary part. A binary form is called
reduced if its image via the zero map is in the fundamental domain F of SL2(Z).

In [8] Cremona and Stoll developed a reduction theory in a unified setting for
binary forms with real or complex coe�cients. A unique positive definite Hermitian
quadratic JF is associated to every binary complex form F (X,Z). Since positive
definite Hermitian forms parametrize the upper half-space H3, an extension of the
zero map ⇠ from binary complex forms to H3 is obtained. The upper half-plane H2

is contained in H3 as a vertical cross section (see the following section). When the
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form F (X,Z) has real coe�cients, compatibility with complex conjugation forces
⇠(JF ) 2 H2 (see Remark (1)). It is in this sense that working in H3 unifies the
theory of real and complex binary forms. A degree n complex binary form F (X,Z)
is called reduced when its zero map value ⇠(JF ) is in the fundamental domain of
the action of the modular group SL2(C) on H3.

In the works cited above, the term reduced binary form means reduced in the
SL2(Z) orbit. It is expected that the reduced forms have smallest size coe�cients
in such orbit. In [7] the concept of height was defined for forms defined over any
ring of integers OK , for any number field K, and the notion of minimal absolute
height was introduced. In [3], the author suggests an algorithm for determining the
minimal absolute height for binary forms. Continuing with this idea, a database of
binary sextics of minimal absolute height h  10 together with many computational
aspects of binary sextics are included in [2].

The genesis of this paper comes from our e↵orts to understand/explore the geom-
etry behind the reductions of binary forms. In this process, we discovered and are
presenting here an alternative reduction method. For real cubics and quartics, Julia
([6]) uses geometric constructions to establish the barycentric coordinates t1, . . . , tn
of ⇠(F ) of ⇠(F ) in the hyperbolic convex hull of the roots of F . Geometric argu-
ments are also used in [8] for the reduction of binary complex forms. Our reduction
is based solely on a very special geometric point ⇠C(F ) inside the hyperbolic convex
hull of the roots of F , namely the hyperbolic centroid of these roots. We will discuss
whether such reduction has any benefits compared to the previous ones.

In section 2, we describe in detail the reduction relevant features of the hyper-
bolic geometry of the upper half plane H2 and upper half-space H3. These spaces
are shown to parameterize respectively the positive definite quadratics and the pos-
itive definite Hermitian forms. We prove that these parameterizations respect the
corresponding structures: for any n points w1, . . . , wn 2 H3, the hyperbolic convex
hull of these points parametrizes the positive linear combinations

P
n

i=1 �iHwi(x),
where Hwi(x) is the positive definite Hermitian form corresponding to wi.

In section 3, we summarize the reduction theory developed in [6] and [8]. We
focus especially on the geometrical aspects of the zero map and the reduction, as
these are of special interest to us.

In section 4 we define the hyperbolic centroid of a collection. For a finite subset
{w1, ...wn} ⇢ H2, it is the unique point x inside their hyperbolic convex hull which
minimizes

P
n

i=1 cosh(dH(x, wi) (here dH is the hyperbolic distance). To each real
binary form F (X,Z) with no real roots, our alternative zero map associates the
hyperbolic centroid of its roots. We show that this map is SL2(R) equivariant and
di↵erent from Julia’s, hence it defines a new reduction algorithm. We also provide
examples of reductions of binary forms with no real roots (see also [3] for totally
complex forms). Although zero maps are di↵erent, it seems that the e↵ects of
both reductions in decreasing the height are similar. Naturally, one would like to
determine how di↵erent the zero map are, or whether one can get examples where
the reductions give di↵erent results. Since the zero maps of a binary form F are
points in the convex hull of the roots of F , a natural example would be one where
these roots are far so that their convex hull is relatively large.
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2. The hyperbolic geometry of positive definite binary forms

In this section we present some features of hyperbolic geometry that are not only
relevant for the reduction theory of binary forms, but are also interesting on their
own. We also establish a correspondence between hyperbolic spaces and positive
definite quadratic forms.

2.1. The hyperbolic plane H2. The upperhalf-plane equipped with the Riema-
nian metric

ds
2 =

dx
2 + dy

2

y2

is one of the models of the two dimensional hyperbolic space. It is denoted by H2.
The geodesics of the Riemaniann manifold H2, i.e the hyperbolic equivalents of
Euclidean straight lines, are either semicircles Ca,b with diameter from A(a, 0) to
B(b, 0) on the real axis, or the vertical rays Ca with origin at x = a. In the standard
literature, the points A(a, 0), B(b, 0) are called the ideal points of the geodesic Ca,b,
likewise A(a, 0) and 1 are the ideal points of Ca. They live in the boundary of H2.

The hyperbolic distance between two points z = x + iy and w = u + iv is
computed as follows. Let z1, w1 be the ideal points of the geodesic through z, w,
where z1 is the one closer to z.

The hyperbolic distance is defined in terms of the cross-ratio or Euclidean dis-
tances

dH(z, w) = log[z, w,w1, z1] = log

✓
z � w1

w � w1

w � z1

z � z1

◆
= ln

✓
|z � w1|
|w � w1|

|w � z1|
|z � z1|

◆
.

Notice that for x = u and y < v, the geodesic is the vertical ray Cx. In this case
z1 = (x, 0), w1 = 1 and

dH(z, w) = ln

✓
v

y

◆
.

For A(a, 0) and z = x+ iy 2 H2, define

dH(A, z) := ln

✓
(x� a)2 + y

2

y

◆
.

An additive property of this distance is claimed and used in [8]. To make the
paper self-contained and for the benefit of the reader, we state and prove it below.

Proposition 1. Let A be one of the ideal points of a geodesic that passes through
z = x+ yi, w = u+ vi 2 H2. Then dH(z, w) = |dH(A, z)� dH(A,w)|.

Proof. Assume first that x 6= u, i.e. the geodesic through z and w is a semicircle.
Without loss of generality, assume that A(0, 0). Let (x � r)2 + y

2 = r
2 be the

equation of the geodesic and B(2r, 0) the other ideal point. If z(x, y), w(u, v), then
x
2 + y

2 = 2rx, u
2 + v

2 = 2ru, v
2 = u(2r � u), y

2 = x(2r � x). Now

|dH(A, z)� dH(A,w)| =
����ln
✓
x
2 + y

2

y

◆
� ln

✓
u
2 + v

2

v

◆����

=

����ln
✓
2rx

y

◆
� ln

✓
2ru

v

◆���� =
����ln

xv

yu

����
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On the other hand,

dH(z, w) =

����ln
✓
|z||w �B|
|w||z �B|

◆���� =

�����ln
 p

x2 + y2
p
(2r � u)2 + v2p

(2r � x)2 + y2
p
u2 + v2

!�����

=

�����ln
 p

2rx
p
4r2 � 2rup

4r2 � 2rx
p
2ru

!����� =

�����ln

s
x(2r � u)

u(2r � x)

����� =

�����ln

s
x2v2

y2u2

����� =
����ln

xv

yu

���� .

When x = u the geodesic through z, w is the ray Cx with an ideal point at A(x, 0).
Then, dH(A, z) = ln y and dH(A,w) = ln v. Hence,

dH(z, w) =

����ln
v

y

���� = | ln v � ln y| = |dH(A,w)� dH(A, z)|.

This completes the proof. ⇤

The group SL2(R) acts on the right on H2: if M 2 SL2(R) and M
�1 =

✓
a b

c d

◆

then

z ·M := M
�1

z =
az + b

cz + d

2.2. The upper half-plane H2 as a parameter space for positive definite
quadratics. Let

Q(X,Z) = aX
2 � 2bXZ + cZ

2

be a binary quadratic form with real coe�cients and homogeneous variables [X,Z] 2
RP1. Let � = ac� b

2 be its discriminant. Then

Q(X,Z) = a[X � (b/a)Z]2 + (�/a)Z2
.

For both � > 0 and a > 0, Q(X,Z) is always positive (note that (X,Z) 6= (0, 0)
since [X,Z] 2 RP1). Such a quadratic form Q is called positive definite. It has two
complex roots [!, 1], [!̄, 1] where ! = b/a + (

p
�/a)i 2 H2. Let V

+
2,R be the space

of positive definite real quadratic forms. To each Q(X,Z) 2 V
+
2,R, we associate the

complex number ! in H2.

Definition 1. The map
⇠ : V +

2,R ! H2

which sends a positive definite quadratic to its root in H2 is called the zero map.

The hyperbolic plane H2 is a parameter space for positive definite quadratic
forms (up to a constant factor) via the inverse

⇠
�1(!) = Q! := (X � !Z)(X � !̄Z).

The group SL2(R) acts on V
+
2,R via the linear change of variables: for a matrix

M =

✓
a b

c d

◆
,

(M ·Q)(X,Z) = Q
M (X,Z) := Q(aX + bZ, cX + dZ).

Note that the SL2(R) action does not change the discriminant. One can easily
verify the following

Proposition 2. The zero map ⇠ : V +
2,R ! H2 is SL2(R)-equivariant, i.e.

⇠(M ·Q) = M
�1
⇠(Q).
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When � = 0, the quadratic form Q(X,Z) = a[X � (b/a)Z]2 has a real, double
root [b/a, 1]. If a is a real number, we let Qa = (X � aZ)2 be the quadratic with
a double root at [a, 1]. We also let Q1 = Z

2 be the quadratic form with a double
root at 1. It has thus been established that the boundary RP1 = R [ 1 of H2

parametrizes quadratic forms (up to a constant factor) with discriminant � = 0.
To recap: the hyperbolic plane H2 parametrizes binary quadratic forms with

discriminant � > 0 and a > 0, while its boundary parametrizes those with discrim-
inant � = 0.

It has been claimed and used in [6] and [8] that this parametrization is not just
a bijection between sets; the hyperbolic geometry of H2 represents faithfully the
algebra of quadratic forms. This was probably known even before. In any case,
here is the appropriate statement and a proof of it.

Proposition 3. Let H2 = H2 [ @H2 = H2 [RP1 and !1,!2 2 H2. The quadratics
of the form

sQ!1 + tQ!2 , s � 0, t � 0, s+ t = 1

parametrize the hyperbolic segment that joins !1 and !2.

Proof. We will show only the case when the hyperbolic segment is part of a semi-
circle. The vertical geodesic is similar. Let a < b be two real numbers such that
A(a, 0), B(b, 0) are the ideal points of the geodesic Ca,b that passes through !1,!2.
We first show that Ca,b parametrizes quadratics of the form

�Qa + µQb,� � 0, µ � 0,�+ µ = 1,

i.e. ⇠(�Qa + µQb) 2 Ca,b. The center of Ca,b is on the real axis at
a+ b

2
and its

radius is
b� a

2
. Let � � 0, µ � 0,�+ µ = 1. Then

�Qa + µQb = �(x� a)2 + µ(x� b)2 = x
2 � 2(�a+ µb)x+ �a

2 + µb
2
.

The root of �Qa + µQb in H2 is

(�a+ µb) + i(b� a)
p
�µ,

and its distance from ((a+ b)/2, 0) is easily computed to be (b� a)/2.
The proposition now follows easily. Let

Q!1 = �1Qa + µ1Qb and Q!2 = �2Qa + µ2Qb with �i + µi = 1, for i = 1, 2.

Then, for s � 0, t � 0, s+ t = 1 we have

sQ!1 + tQ!2 = (s�1 + t�2)Qa + (sµ1 + tµ2)Qb, with (s�1 + t�2) + (sµ1 + tµ2) = 1,

hence ⇠(sQ!1 + tQ!2) 2 Ca,b. It is obvious that ⇠(sQ!1 + tQ!2) lives in fact in the
hyperbolic segment that joins !1 and !2. ⇤

This proposition can be generalized by induction as follows.

Proposition 4. Let !1,!2, ...,!n 2 H2 such that for all i, !i is not in the hyperbolic
convex hull of !1,!2, ...,!i�1. Then the convex hull of !1,!2, . . . ,!n parametrizes
the linear combinations

P
n

i=1 �iQ!i with �i � 0 and
P

n

i=1 �i = 1.
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Proof. We proceed by induction. For n = 2 the statement is true due to the
previous proposition. Consider

P
n

i=1 �iQ!i with �i � 0 and
P

n

i=1 �i = 1. Then

nX

i=1

�iQ!i =

 
n�1X

i=1

�i

!
n�1X

i=1

 
�iP
n�1
i=1 �i

!
Q!i + �nQ!n .

By induction hypothesis, there exists !0 in the convex hull of !1,!2, ...,!n�1 such
that

n�1X

i=1

 
�iP
n�1
i=1 �i

!
Q!i = Q!0

It follows that
nX

i=1

�iQ!i =

 
n�1X

i=0

�i

!
Q!0 + �nQ!n

represents a point ! in the hyperbolic segment that joins !0 and !n. Clearly ! is
also in the convex hull of ↵1,↵2, ...,↵n.

⇤

2.3. The hyperbolic three dimensional space H3. As a set, H3 = C ⇥ R+.
Points of H3 will be written in the form z + tj where z 2 C and t > 0. The
equation t = 0 represents the floor C of H3. The hyperbolic space H3 is foliated
via horospheres

Ht := {z + tj : z 2 C}
which are centered at1 and indexed by the height t above @H3 = CP1. The algebra
of H3 is not commutative. The following identities are essential to computations:

j2 = �1, ij = �ji, jz = z̄j (see the lemma below for a proof of this).

The notion of complex modulus extends toH3: |z+tj| = |z|2+t
2. There is a natural

isometrical inclusion map H2 ! H3 via x + it ! x + jt, the upper half-plane H2

thus, sits as a vertical cross-section inside H3. The invariant elements of H3 under
the partial conjugation

z + jt 7! z̄ + jt

are precisely the elements of H2. The hyperbolic metric of H3 is

ds
2 =

|dz|2 + dt
2

t2
.

The geodesics are either semicircles centered on the floor C and perpendicular to
C, or rays {z0 + jt} perpendicular to C.

For ! = z + tj 2 H3 and w + 0j 2 C on the floor, define

(1) dH(!, w) :=
|z � w|2 + t

2

y
.

The following proposition and its proof are straightforward generalizations from
H2.

Proposition 5. If one of the ideal points of the geodesic through !1,!2 is at w,
then

dH(!1,!2) = |dH(!1, w)� dH(!2, w)|.
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There is a right action of SL2(C) on H3. If M 2 SL2(C) and M
�1 =

✓
a b

c d

◆
,

its action is described as follows

(z + jt) ·M = M
�1(z + jt) = [a(z + jt) + b][(c(z + jt) + d]�1

,

where the inverse indicates the right inverse in the non commutative structure of
H3. Note that for t = 0 we get the standard SL2(C)-action on the boundary CP1

of H3.

Lemma 1. The action of SL2(C) on H3 can be written in the form

(z + jt) ·M =
(az + b)(cz + d) + ac̄t

2 + jt

|cz + d|2 + |c|2t2 .

Proof. First, with z = x+ yi we have

jz̄ = j(x� yi) = xj� yji = xj+ yij = (x+ yi)j = zj.

Using this identity, it is straightforward to show that

[c(z + tj) + d]
⇥
(z̄ � tj)c̄+ d̄

⇤
= |cz + d|2 + t

2|c|2.

Real numbers commute with both i and j in H3, hence they have a well-defined
inverse. We obtain the right inverse as follows:

[c(z + tj) + d]�1 =
(z̄ � tj)c+ d̄

|cz + d|2 + t2|c|2 .

The lemma follows from the straightforward calculation

[a(z + jt) + b][(z̄ � tj) + d̄] = (az + b)(cz + d) + ac̄t
2 + tj.

⇤

2.4. The upper half-space H3 as a parameter space for positive definite
Hermitian quadratics. Let

H(X,Z) = a|X|2 � bXZ̄ � b̄X̄Z + c|Z|2, a, c 2 R

be a Hermitian quadratic form with homogeneous variables [X,Z] 2 CP1. Notice
that the values of H(X,Z) are always real. Let � = ac � |b|2 be its discriminant.
Then

H(X,Z) = a
��X � (b̄/a)Z

��2 + (�/a)Z2
,

hence H(X,Z) > 0 for all (X,Z) when � > 0, a > 0. Such a form is called positive
definite. Denote the set of all positive definite Hermitian forms by V

+
2,C. There is

an SL2(C) action on V
+
2,C similar to the real case. The natural SL2(R) equivariant

inclusion  : V +
2,R ! V

+
2,C via

 (aX2 � 2bXZ + cZ
2) = a|X|2 � bXZ̄ � b̄X̄Z + c|Z|2,

gives rise to an extension of the zero map.

Definition 2. The zero map ⇠ : V +
2,C ! H3 is defined via

(2) ⇠(a|X|2 � bXZ̄ � b̄X̄Z + c|Z|2) = b̄

a
+ j

p
�

a

Proposition 6. The map ⇠ is SL2(C) equivariant.
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Proof. The generators of SL2(C) are matrices of the form

✓
0 a

0 1

◆
, for a 2 C and

✓
0 �1
1 0

◆
. It is easy to show that for any generator matrix M :

⇠(HM ) = M
�1
⇠(H).

⇤

The hyperbolic space H3 is a parameter space for positive definite (� > 0, a > 0)
Hermitian forms via the inverse map

⇠
�1(!) = ⇠

�1(z + jt) = |X|2 � z̄X̄Z � zXZ̄ + (|z|2 + t
2)|Z|2 = H!.

The boundary CP1 = C [ 1 of H3 is a parameter space for the decomposable
(� = 0) Hermitian forms

H� = (X � �̄Z)(X̄ � �Z̄) = |X � �Z|2 for � 2 C, H1 = |Z|2,

Just as in the case of the upper half-plane H2, we have the following proposition:

Proposition 7. Let H3 = H3 [ @H3 = H3 [ CP1. The hyperbolic convex hull
of !1,!2, ...,!n 2 H3 parametrizes Hermitian forms

P
n

i=1 �iH!i with �i � 0 for
i = 1, 2, ..., n and

P
n

i=1 �i = 1.

The equivariant connection between the geometry of hyperbolic spaces and the
algebra of positive definite forms, which extends to the boundary as well, can be
expressed in the following equivariant commutative diagram:

V
+
2,R

✏✏

⇠ // H2

✏✏
V

+
2,C

⇠ // H3

Next, we will see how to use the equivariance of the zero map to construct a
reduction method.

3. Reduction of binary forms via the Julia quadratic

In this section we summarize the reduction of binary forms via the zero map
obtained in [6] and [8]. We will focus especially on the geometric features of the
theory which are of particular interest to us.

Let Vn(C) denote the space of complex binary forms of degree n. If F 2 Vn(C)
then

F (X,Z) = a0

nY

i=1

(X � ↵iZ)

for some complex numbers ↵j and a0 6= 0. For t1, t2, ..., tn � 0 define

QF (t1, t2, ..., tn) =
nX

i=1

ti|X � ↵iZ|2 =
nX

i=1

tiH↵i(X,Z).
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From Prop. 7, the positive definite Hermitian forms QF (t1, t2, ..., tn) parametrize
the hyperbolic convex hull of ↵1,↵2, ...,↵n 2 H3. Let (t01, t

0
2, ..., t

0
n
) be the values

that minimize

✓0 :=
a
2
0(disc(QF ))n/2

nnt1t2...tn
.

Definition 3. The form JF := QF (t01, t
0
2, ..., t

0
n
) 2 V

+
2,C is called the Julia quadratic

of F . The zero map extends to ⇠ : Vn(C) ! H3 via ⇠(F ) = ⇠(JF ) 2 H3, a point in
the hyperbolic convex hull of the roots of F . The form F is called reduced if ⇠(F )
is in the fundamental domain F of SL2(C).

To reduce a real binary form F (X,Z), we first compute its zero map value
⇠(F ) in H2. If ⇠(F ) is in the fundamental domain F of SL2(R), then F (X,Z)
is already reduced. If not, choose M 2 SL2(R) such that M

�1
⇠(F ) 2 F . The

form F (X,Z) reduces to F
M (X,Z), which is expected to have smaller coe�cients.

Similar procedure holds for complex binary forms in H3.
In [8], the authors provide a geometric construction of the zero map. The roots

↵i, i = 1, 2, ..., n of F (X,Z) are placed in the floor t = 0 of H3.

Proposition 8. (Proposition 5.3 in [8]) Let dH be as in Eqn.(1). The zero map
value ⇠(F ) is the unique point w0 2 H3 that minimizes the sum of distances

F̃ (w) :=
nX

i=1

dH(w,↵i).

Remark 1. This minimizing solution w0 is SL2(C)-invariant. Furthermore, when
F (X,Z) has real coe�cients, w0 is also invariant with respect to the partial conju-
gation w0 = z0 + t0j 7! z̄0 + t0j. Hence, z0 is real number, i.e. w0 2 H2.

4. The reduction of real forms via the hyperbolic centroid

In this section we introduce an alternative zero map for binary forms with real
coe�cients and no real roots. It is based on the notion of hyperbolic centroid in
hyperbolic spaces. We focus in H2 which is the case of interest for us, but the
general case is straightforward. Our treatment follows closely that of [5].

4.1. The centroid via the hyperboloid model of the hyperbolic plane. Let
M be the Minkowski pairing in R3: for x = (x1, x2, x3),y = (y1, y2, y3)

M(x,y) = �x1y1 � x2y2 + x3y3.

It comes with a corresponding norm: ||x||2 = M(x,x) = �x
2
1 � x

2
2 + x

2
3. Let H be

the upper sheet of the hyperboloid

H := {x : ||x|| = 1, x3 > 0}.
Its equation is �x

2
1 � x

2
2 + x

2
3 = 1 and its metric is given by ds

2 = dx
2
1 + dx

2
2 � dx

2
3.

If x,y 2 H, the hyperbolic distance dH(x,y) in this model can be found via

cosh dH(x,y) = M(x,y).

Definition 4. The centroid of xj 2 H, j = 1, 2, ..., r is defined as

C = CH(x1, x2, ..., xr) :=

P
r

j=1 xj

||
P

r

j=1 xj ||
.
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Notice that
rX

i=1

cosh(dH(C,xi)) =
rX

i=1

M(C,xi) = M(C,
rX

i=1

xi) = ||
rX

i=1

xi||M(C, C) = ||
rX

i=1

xi||

Proposition 9. The centroid CH(x1, x2, ..., xr) is SL2(R) invariant. It is the unique
point x 2 H that minimizes

P
r

j=1 cosh(dH(x,xj)).

Proof. Recall that SL2(R) action on H preserves hyperbolic distances, hence the
center of mass is SL2(R) invariant. The proof of the second part follows easily by
solving the minimizing problem

minimize M(x,
rX

j=1

xj), subject to x 2 H

using the Lagrange Multipliers method and the inequality ||
P

r

j=1 xj || > 1.
⇤

We use the minimizing property to transfer the notion of centroid in H2. There
is an isometry H2 ! H given by

u+ iv !
✓
1� u

2 � v
2

2u
,
u

v
,
1 + u

2 + v
2

2v

◆
.

The following identity holds in H2:

cosh dH(z1, z2) = 1 +
|z1 � z2|2
2y1y2

for z1 = x1 + iy1 2 H2, z2 = x2 + iy2 2 H2. It follows that if ↵j = xj + iyj 2
H2, j = 1, 2, ..., n, their centroid is the complex number t+ iu 2 H2 such that

nX

j=1


1 +

(t� xj)2 + (u� yj)2

2uyj

�

is minimal. By excluding the constant summands, we obtain the following:

Definition 5. The hyperbolic centroid, or simply centroid, CH(↵1,↵2, ...,↵n) of the
collection {↵j 2 H2 |j = 1, 2, ..., n} is the unique point t+ iu 2 H2 that minimizes

nX

j=1

(t� xj)2 + (u� yj)2

uyj
.

Setting the partials equal to zero, we obtain a system of equations for t and u:

(3)

8
>>>>><

>>>>>:

nX

j=1

t� xj

yj
= 0

nX

j=1

u
2 � (t2 � 2xjt+ |↵j |2)

yj
= 0.

Let the (n� 1)-st elementary symmetric polynomial be

sn�1(y1, y2, ..., yn) =
nX

i=1

y1y2 · · · yi�1yi+1 · · · yn.

Straightforward algebraic computations yield the solution to the system (3).
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Proposition 10. The centroid CH = t+ iu 2 H2 of ↵1,↵2, ...,↵n satisfies

t=
nX

i=1

✓
y1y2 · · · yi�1yi+1 · · · yn
sn�1(y1, y2, ..., yn)

◆
xi

|CH|2 =
nX

i=1

✓
y1y2 · · · yi�1yi+1 · · · yn
sn�1(y1, y2, ..., yn)

◆
|↵i|2

QCH
(X,Z) =

nX

i=1

✓
y1y2 · · · yi�1yi+1 · · · yn
sn�1(y1, y2, ..., yn)

◆
Q↵i(X,Z).

(4)

Remark 2. All equations in Eq. (4) are described in terms of the function  :
Rn ⇥ Rn

>0 7! R defined by

 ((x1, . . . , xn) , (y1, . . . , yn)) =
nX

i=1

✓
y1y2 · · · yi�1yi+1 · · · yn
sn�1(y1, y2, ..., yn)

◆
xi.(5)

The function  has symmetries and is a convex linear combination of xi’s with
weights that depend only on y1, ..., yn. It is probably a well-known and standard
function in areas where symmetries and group actions are relevant.

4.2. Reduction based on the notion of centroid. Let V
+
2n,R(0, n) denote bi-

nary forms of degree 2n with real coe�cients and no real roots. Every F (X,Z) 2
V

+
2n,R(0, n) can be factored

F (X,Z) =
nY

j=1

Q↵j (X,Z)

where
↵j = xj + iyj , Q↵j (X,Z) = (X � ↵jZ)(X � ↵jZ)

Definition 6. The centroid zero map ⇠C : V +
2n,R(0, n) ! H2 is defined via

⇠C(F ) := CH = CH(↵1,↵2, ...,↵n).

The form

J C

F
:= (X � CHZ)(X � CHZ) =

nX

j=1

✓
y1y2 · · · yj�1yj+1 · · · yn
sn�1(y1, y2, ..., yn)

◆
Q↵j (X,Z)

is called the centroid quadratic of F .

Remark 3. The reduction theory based on the centroid proceeds as before. Let
F (X,Z) be a real binary form with no real roots. If ⇠C(F ) 2 F then F is reduced.
Otherwise, let M 2 SL2(R) such that M

�1
⇠C(F ) 2 F . The form F reduces to

F
M (X,Z).

Here is a comparison between the reduction of [6] [8] and the one via the hyper-
bolic centroid.

Example 1. Let F (X,Z) be the binary sextic with roots ↵1 = 2+ 3i, ↵2 = 6+ 4i,
↵3 = 4 + 7i and their conjugates. Then

F (X,Z) = (X2 � 4XZ + 13Z2)(X2 � 12XZ + 52Z2)(X2 � 8XZ + 65Z2).

Consider the genus 2 curve

Y
2 = F (X, 1) = X

6 � 24X5 + 306X4 � 2308X3 + 10933X2 � 29068X + 43940
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with height h = 43940. Reducing it via [8] yields a curve C
0 with equation

Y
2 + (X3 +X)Y = 16X4 + 7X3 + 273X2 + 343X + 3185

which is isomorphic to

Y
2 = (X3 +X)2 + 4

�
16X4 + 7X3 + 273X2 + 343X + 3185

�

X
6 + 66X4 + 28X3 + 1093X2 + 1372X + 12740.

This last curve has height h = 12740, which is smaller than the original height.
The reduction via the centroid is as follows. The centroid zero map ⇠C(F ) is

⇠C(F ) =
230

61
+ i

14

61

p
2 · 3 · 71 ⇡ 3.77 + i 4.73

To bring this point to the fundamental domain we have to shift it to the left by 4
units. Hence, we must compute

f(X + 4) = F (X + 4, 1) = X
6 + 66X4 + 28X3 + 1093X2 + 1372X + 12740.

which has height h = 12740, the same as in the Julia case.

We generalize the case of totally complex sextics. Recall that a binary form is
totally complex when all its roots are non-real (complex) numbers.

Proposition 11. Let F (X,Z) 2 Z[X,Z] be a totally complex sextic factored over
R as

F (X,Z) = (X2 + a1XZ + b1Z
2)(X2 + a2XZ + b2Z

2)(X2 + a3XZ + b3Z
2).

Let dj =
q
4bj � a

2
j
, d = (d1, d2, d3), a = (a1, a2, a3), b = (b1, b2, b3). The centroid

zero map ⇠C(F ) = t+ iu 2 H2 of F is determined by

t = �1

2

✓
d2d3

s2(d1, d2, d3)
a1 +

d1d3

s2(d1, d2, d3)
a2 +

d1d2

s2(d1, d2, d3)
a3

◆
= �1

2
 (d,a),

|⇠C(F )|2 =
d2d3

s2(d1, d2, d3)
b1 +

d1d3

s2(d1, d� 2, d3)
b2 +

d1d2

s2(d1, d2, d3)
b3 =  (d,b).

The centroid quadratic of F is given by

d2d3(X2 + a1XZ + b1Z
2) + d1d3(X2 + a2XZ + b2Z

2) + d1d2(X2 + a3XZ + b3Z
2)

s2(d1, d2, d3)
.

The reduction is defined over Q(d1, d2, d3).

Proof. Let ↵j = xj+ iyj , i = 1, 2, 3 be the roots of F (X,Z). The lemma follows af-

ter substituting xj = �aj

2
, yj =

1

2
dj and Q↵j = X

2+ajXZ+bj into the equations

of Prop. 10.
⇤

Example 2. We consider a totally complex sextic treated in [1]. Let

F (X,Z) = X
6 � 12X5

Z + 96X4
Z

2 � 458X3
Z

3 + 1489X2
Z

4 � 3014XZ
5 + 3770Z6

whose roots in H2 are ↵1 = 1 + 3i,↵2 = 2 + 5i,↵3 = 3 + 2i. Hence

F (X,Z) = (X2 � 2XZ + 10Z2)(X2 � 4XZ + 29Z2)(X2 � 6XZ + 13Z2).

Numerical computations lead to the following Julia zero map:

⇠(F ) = 2.12067657 + 3.26692991i.
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The formulas for the centroid zero map on the other yield

Re(⇠C(F )) = 67/31 ⇡ 2.16129032, |⇠C(F )|2 = 202/13.

It is clear that the zero maps ⇠ and ⇠C are di↵erent. Neither of them is in the fun-
damental domain F of SL2(Z), a left horizontal shift by 2 is needed in either case.
The polynomial

f(x) = F (x, 1) = x
6 � 12x5 + 96x4 � 458x3 + 1489x2 � 3014x+ 3770

with height h = 3770 reduces to

f(x+ 2) = x
6 + 36x4 � 10x3 + 325x2 � 250x+ 1250

with a smaller height h = 1250. We should mention however, that in [1], the author
finds another form with much smaller height which it is not in the same SL2(Z)-
orbit.

It is straightforward to generalize and prove these results to any degree.

Proposition 12. Let F (X,Z) be a totally complex form factored over R as below

F (X,Z) =
nY

i=1

(X2 + aiXZ + biZ
2)

Denote by di =
p
4bi � a

2
i
, for i = 1, . . . , n the discriminants for each factor of

F (X,Z). Let sn�1 =
P

r

i=1 d1 · · · di�1d̂idi+1 · · · dr where x̂ denote a missing x, and

a = (a1, ..., an), b = (b1, ..., bn), d = (d1, ..., dn).

The centroid quadratic of F (X,Z) is given by

J C

F
=

nX

i=1

✓
d1d2 · · · di�1di+1 · · · dn

sn�1

◆
(X2 + aiXZ + biZ

2).

The centroid zero map ⇠C(F ) = t+ iu 2 H2 is given by

t = �1

2

nX

i=1

d1 · · · di�1di+1 · · · dn
sn�1

ai =  (d,a) ,

u
2 =

1

4s2
n�1

nY

i=1

di

 
sn�1

nX

i=1

di +
nX

i

d1 · · · d̂i · · · d̂j · · · dn (ai � aj)
2

!

|⇠C(F )|2 =
nX

i=1

d1 · · · di�1di+1 · · · dn
sn�1

bi =  (d,b) .

(6)

The reduction is defined over Q(d1, d2, ..., dn)

It would be interesting to express ⇠C(F ) in terms of invariants of F or symmetries
of the roots of F , and as a more overarching goal, to incorporate the real roots of
the binary form F in this approach. We will continue to explore these issues.
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