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Abstract. Let C be a genus 2 curve defined over a field K, charK = p �
0, and Jac(C, ◆) its Jacobian, where ◆ is the principal polarization of Jac(C)
attached to C. Assume that Jac(C) is (n, n)- geometrically reducible with

E1 and E2 its elliptic components. We prove that there are only finitely

many curves C (up to isomorphism) defined over K such that E1 and E2 are

N -isogenous for n = 2 and N = 2, 3, 5, 7 with Aut (Jac C)⇠=V4 or n = 2,

N = 3, 5, 7 with Aut (Jac C)⇠=D4. The same holds if n = 3 and N = 5.

Furthermore, we determine the Kummer and the Shioda-Inose surfaces for the

above Jac C and show how such results in positive characteristic p > 2 suggest

nice applications in cryptography.

1. Introduction

An Abelian variety A, defined over a field k, is simple if it has no proper non-
zero Abelian subvariety over k. A is called reducible (or decomposable) if it is
isogenous to a direct product of Abelian varieties. We call A geometrically simple
(or absolutely simple) if it is simple over the algebraic closure of k, analogously
A is geometrically reducible when it is reduced over the algebraic closure of k. A
2-dimensional Jacobian variety is geometrically reducible if and only if it is (n, n)-
decomposable for some n > 1. Reducible Jacobian varieties have been studied
extensively since the XIX-century, most notably by Friecke, Clebch, and Bolza. In
the late XX-century they became the focus of many mathematicians through the
work of Frey [7, 8], Shaska and Völklein [17, 24, 27], Kumar [13] and many others.
If A/k is a 2-dimensional reducible Jacobian variety defined over a field k, then
there is a degree n

2 isogeny to a product A⇠=E1 ⇥ E2, where Ei, i = 1, 2 are 1-
dimensional. The main focus of this paper is to investigate when E1 and E2 are
isogenous to each other and how often does this occurs for a fixed n?

The question has received attention lately for di↵erent reasons. In [14] the au-
thors were able to determine the rank of the Mordell-Weil rank of elliptic fibrations
F

(i), for i = 1, . . . , 6; when E1 and E2 were isogenous and show that in this case
both F

5 and F
6 have rank 18. In recent developments in supersingular isogeny

based cryptography (SIDH) Costello [4] focuses on the (2, 2) reducible Jacobians,
where the addition is done via the Kummer surface. More importantly, it seems as
the most interesting case is exactly the case when E1 is isogenous to E2. In this case,
since the decomposition of the Abelian varieties is determined up to isogeny, the
2-dimensional Jacobian is isogenous to E

2. There are several interesting questions
that arise when we consider such Jacobians over the finite field Fp.

The focus of this paper is to investigate when the two elliptic components of the
(n, n) reducible 2-dimensional Jacobians are isogenous to each other. The space
of genus 2 curves with (n, n) reducible Jacobians, for n = 2 or n is odd is a 2-
dimensional irreducible locus Ln in the moduli space of curves M2. For n = 2

1



2 L. BESHAJ, A. ELEZI, AND T. SHASKA

this is the well known locus of curves with extra involutions [19, 20, 27], for n odd
such spaces were computed for the first time in [22], [24], [17]. If E1 and E2 are
N -isogenous then their j-invariants j1 and j2 satisfy the equation of the modular
curve X0(N), say SN := �N (j1, j2) = 0. Such curve can be embedded in M2. So
we want to study the intersection between Ln and SN for given n and N . More
precisely, for any number field K we want to determine the number of K-rational
points of this intersection.

Our approach is computational. We will focus on the cases when n = 2, 3
and N = 2, 3, 5, 7. We prove that for n = 2 and N = 2, 3, 5, 7 there are only
finitely many curves C defined over K such that E1 and E2 are N -isogenous, unless
Aut (C) is isomorphic to the dihedral group D4 (resp. D6) in which case there is
a 1-dimensional family such that E1 and E2 are 2-isogenous (resp. 3-isogenous),
and for n = 3 and N = 3, 5, 7 there are only finitely many curves C defined over K
such that E1, E2 are N -isogenous. Our proof makes repeated use of the Falting’s
theorem [6].

Our paper is organized as follows. In Section 2 we give a brief account of the basic
definitions of Abelian varieties and their isogenies. In Section 3 we first prove that
for n = 2 there are finitely many genus 2 curves C defined over a number fieldK with
Aut (C)⇠=V4 whose elliptic components are N -isogenous for N = 2, 3, 5, 7. Also, for
n = 2 and N = 3, 5, 7, there are only finitely many such C (up to isomorphism) with
Aut (C) = D4. That C is defined over K follows from the important fact that the
invariants u and v are in the field of moduli of the curve C and that for every curve
in L2, the field of moduli is a field of definition; see [19]. This is not necessarily
true for curves in Ln, when n > 2. However, a proof of the above result it is still
possible using the computational approach by using invariants r1, r2 of two cubics
in [24]. These invariants are denoted by � and  here.

Then we study with the n = 3 case. The equation of L3 was computed by the
third author in his thesis [22] and summarized in [24]. A birational parametrization
of L3 exists in terms of the invariants � and  . We are able to compute the j-
invariants of E1 and E2 in terms of � and  and find the conditions that � and  
must satisfy. Since ordered pairs (�, ) are on a one to one correspondence with
genus two curves with (3, 3)-split Jacobians, then we determine pairs (�, ) such
that the corresponding j-invariants j1 and j2 satisfy the equation of the modular
curve X0(N). This case is di↵erent from n = 2 in that a rational ordered pair
(�, ) does not necessarily correspond to a genus two defined over K. However, a
genus two curve defined over K gives rise to rational invariants �, 2 K. Hence,
it is enough to count the rational ordered pairs (�, ) that satisfy the equation
�N (j1, j2) = 0 of the modular curve X0(N). We are able to prove that for N = 5
there are only finitely many genus two curves C such that they have (3, 3)-split
Jacobian and E1 and E2 are 5-isogenous. We could not prove such result for N =
2, 3, and 7 since the corresponding curve �N (j1, j2) = 0 has genus zero components
in such cases. It remains open to further investigation if there is any theoretical
interpretation of such surprising phenomena.

In the last section we consider the Kummer and Shioda-Inose surfaces of (n, n)-
reducible Jacobians. We classify such surfaces when n = 2, 3 (cf. Prop. 10 and
Cor. 2).
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2. Preliminaries

An Abelian variety defined over k is an absolutely irreducible projective variety
defined over k which is a group scheme. We will denote an Abelian variety defined
over a field k by Ak or simply A when there is no confusion. A morphism from the
Abelian variety A1 to the Abelian variety A2 is a homomorphism if and only if it
maps the identity element of A1 to the identity element of A2.

An abelian variety over a field k is called simple if it has no proper non-zero
Abelian subvariety over k, it is called absolutely simple (or geometrically simple) if
it is simple over the algebraic closure of k. An Abelian variety of dimension 1 is
called an elliptic curve.

A homomorphism f : A ! B is called an isogeny if Img f = B and ker f is a
finite group scheme. If an isogeny A ! B exists we say that A and B are isogenous.
This relation is symmetric. The degree of an isogeny f : A ! B is the degree of
the function field extension deg f := [k(A) : f?k(B)]. It is equal to the order of the
group scheme ker(f), which is, by definition, the scheme theoretical inverse image
f
�1({0A}).
The group of k̄-rational points has order #(ker f)(k̄) = [k(A) : f

?
k(B)]sep,

where [k(A) : f
?
k(B)]sep is the degree of the maximally separable extension in

k(A)/f?k(B). We say that f is a separable isogeny if and only if # ker f(k̄) = deg f .
For any Abelian variety A/k there is a one to one correspondence between the

finite subgroup schemes H  A and isogenies f : A ! B, where B is determined up
to isomorphism. Moreover, H = ker f and B = A/H. f is separable if and only if
K is étale, and then deg f = #H(k̄). The following is often called the fundamental
theorem of Abelian varieties. Let A be an Abelian variety. Then A is isogenous to

An1
1 ⇥An2

2 ⇥ · · ·⇥Anr
r
,

where (up to permutation of the factors) Ai , for i = 1, . . . , r are simple, non-
isogenous, Abelian varieties. Moreover, up to permutations, the factors Ani

i
are

uniquely determined up to isogenies.
When k = k̄, then let f be a nonzero isogeny of A. Its kernel ker f is a subgroup

scheme of A. It contains 0A and so its connected component, which is, by definition,
an Abelian variety.

Let C be a curve of genus 2 defined over a perfect field k such that char k 6= 2 and
J = Jac(C) its Jacobian. Fix a prime ` � 3 and let S be a maximal `-Weil isotropic
subgroup of J[n], then we have S⇠=(Z/`Z)2. Let J0 := J /S be the quotient variety
and Y a genus 2 curve such that Jac(Y) = J0. Hence, the classical isogeny problem
becomes to compute Y when given C and S.

If ` = 2 this problem is done with the Richelot construction. Over finite fields this
is done by Lubicz and Robert in [16] using theta-functions. In general, if � : J(C) !
J(Y) is the isogeny and ⇥C , ⇥Y the corresponding theta divisors, then �(⇥C) is
in |`⇥Y |. Thus, the image of �(⇥C) in the Kummer surface KY = J(Y)/h±1i is a
degree 2` genus zero curve in P3 of arithmetic genus 1

2 (`
2 � 1). This curve can be

computed without knowing �; see [5] or [9] for details.
For C given by y

2 = f(x), we have the divisor at infinity

D1 := (1 :
p
f(x) : 0) + (1 : �

p
f(x) : 0)

The Weierstrass points of C are the projective roots of f(x), namely wi := (xi, zi),
for i = 1, . . . , 6 and the Weierstrass divisorWC isWC :=

P6
i=1(xi, 0, zi). A canonical
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divisor on C is KC = WC � 2D1. Let D 2 Jac C, be a divisor expressed as D =
P + Q � D1. The e↵ective divisor P + Q is determined by an ideal of the form
(a(x), b(x) such that a(x) = y � b(x)), where b(x) is a cubic and a(x) a monic
polynomial of degree d  2.

We can define the `-tuple embedding ⇢2` : P2 ! P2` by

(x, y, z) ! (z2`, . . . , xi
z
2`�i

, x
2`)

and denote the image of this map byR2`. It is a rational normal curve of degree 2` in
P2`. Hence, any 2`+ 1 distinct points on R2` are linearly independent. Therefore,
the images under ⇢2` of the Weierstrass points of C are linearly independent for
` � 3. Thus, the subspace W := h⇢2`(WC)i ⇢ P2` is 5-dimensional. For any pair of
points P,Q in C, the secant line LP,Q is defined to be the line in P2` intersecting
R2` in ⇢2`(P ) + ⇢2`(Q). In other words,

LP,Q =

(
h⇢2`(P ), ⇢2`(Q)i if P 62 {Q, ⌧(Q)}
T⇢2`(P )(R2`) otherwise .

The most classical example of an isogeny is the scalar multiplication by n map
[n] : A ! A. The kernel of [n] is a group scheme of order n2 dimA. Denote by A[n]
the group ker[n](k̄). The elements in A[n] are called n-torsion points of A. Let
f : A ! B be a degree n isogeny. Then there exists an isogeny f̂ : B ! A such that

f � f̂ = f̂ � f = [n].

Next we consider the case when char k = p. Let A/k be an Abelian variety, p =
char k, and dimA = g.

i) If p - n, then [n] is separable, #A[n] = n
2g and A[n]⇠=(Z/nZ)2g.

ii) If p | n, then [n] is inseparable. Moreover, there is an integer 0  i  g

such that
A[pm]⇠=(Z/pmZ)i, for all m � 1.

If i = g then A is called ordinary. If A[ps](k̄) = Z/ptsZ then the abelian variety
has p-rank t. If dimA = 1 (elliptic curve) then it is called supersingular if it
has p-rank 0. An abelian variety A is called supersingular if it is isogenous to a
product of supersingular elliptic curves. If dimA  2 and A has p-rank 0 then A
is supersingular. This is not true for dimA � 3.

2.1. Jacobian varieties. Let C be a curve of positive genus and assume that there
exists a k-rational point P0 2 C(k) with attached prime divisor p0. There exists an
abelian variety Jack(C) defined over k and a uniquely determined embedding

�P0 : C ! Jack(C) with �P0(P0) = 0Jack(C)

such that

(1) for all extension fields L of k we get JacL C = Pic0CL
(L) where this equality

is given in a functorial way and
(2) if A is an Abelian variety and ⌘ : C ! A is a morphism sending P0 to 0A

then there exists a uniquely determined homomorphism  : Jac(C) ! A
with  � �P0 = ⌘.

Jac(C) is uniquely determined by these conditions and is called the Jacobian variety

of C. The map �P0 is given by sending a prime divisor p of degree 1 of CL to the
class of p� p0 in Pic0CL

(L).
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Let L/k be a finite algebraic extension. Then the Jacobian variety JacL C of CL
is the scalar extension of Jac C with L, hence a fiber product with projection p to
Jac C. The norm map is p⇤, and the conorm map is p

⇤. By universality we get
that if f : C ! D is a surjective morphism of curves sending P0 to Q0, then there
is a uniquely determined surjective homomorphism f⇤ : Jac C ! JacD, such that
f⇤ ��P0 = �Q0 . A useful observation is that if Jac C is a simple abelian variety, and
that ⌘ : C ! D is a separable cover of degree > 1, then D is the projective line.
For more details on the general setup see [9] among many other authors.

2.2. Jacobian surfaces. Abelian varieties of dimension 2 are often called Abelian
(algebraic) surfaces. We focus on Abelian surfaces which are Jacobian varieties.
Let C be a genus 2 curve defined over a field k. Then its gonality is �C = 2.
Hence, genus 2 curves are hyperelliptic and we denote the hyperelliptic projection
by ⇡ : C ! P1. By the Hurwitz’s formula this covering has r = 6 branch points
which are images of the Weierstrass points of C. The moduli space has dimension
r � 3 = 3.

The arithmetic of the moduli space of genus two curves was studied by Igusa in
his seminal paper [11] expanding on the work of Clebsch, Bolza, and others. Arith-
metic invariants by J2, J4, J6, J8, J10 determine uniquely the isomorphism class of a
genus two curve. Two genus two curves C and C0 are isomorphic over k̄ if and only
if there exists l 2 k̄

? such that J2i(C) = l
2i
J2i(C0), for i = 1, . . . , 5. If char k 6= 2

then the invariant J8 is not needed.
From now on we assume char k 6= 2. Then C has an a�ne Weierstrass equation

(1) y
2 = f(x) = a6x

6 + · · ·+ a1x+ a0,

over k̄, with discriminant �f = J10 6= 0. The moduli space M2 of genus 2 curves,
via the Torelli morphism, can be identified with the moduli space of the princi-
pally polarized abelian surfaces A2 which are not products of elliptic curves. Its
compactification A?2 is the weighted projective space WP3

(2,4,6,10)(k) via the Igusa
invariants J2, J4, J6, J10. Hence,

A2
⇠=WP3

(2,4,6,10)(k) \ {J10 = 0}.

Given a moduli point p 2 M2, we can recover the equation of the corresponding
curve over a minimal field of definition following [19].

It is well known that a map of algebraic curves f : X ! Y induces maps between
their Jacobians f

⇤ : JacY ! JacX and f⇤ : JacX ! JacY . When f is maximal
then f

⇤ is injective and ker(f⇤) is connected, see [21] for more details.
Let C be a genus 2 curve and  1 : C �! E1 be a degree n maximal covering

from C to an elliptic curve E1. Then  ⇤
1 : E1 ! Jac(C) is injective and the kernel

of  1,⇤ : Jac(C) ! E1 is an elliptic curve which we denote by E2. For a fixed
Weierstrass point P 2 C, we can embed C to its Jacobian via

iP : C �! Jac(C)
x ! [(x)� (P )]

(2)

Let g : E2 ! Jac(C) be the natural embedding of E2 in Jac(C), then there exists
g
⇤ : Jac(C) ! E2. Define  2 = g

⇤ � iP : C ! E2. So we have the following exact
sequence

(3) 0 ! E2
g�! Jac(C)  1,⇤�! E1 ! 0.
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The dual sequence is also exact

0 ! E1
 

⇤
1�! Jac(C) g

⇤

�! E2 ! 0.

If deg( 1) = 2 or it is an odd number then the maximal covering  2 : C ! E2 is
unique (up to isomorphism of elliptic curves). The Hurwitz space H� of such covers
is embedded as a subvariety of the moduli space of genus two curves M2; see [24]
for details. It is a 2-dimensional subvariety of M2 which we denote it by Ln. An
explicit equation for Ln, in terms of the arithmetic invariants of genus 2 curves, can
be found in [27] or [19] for n = 2, in [24] for n = 3, and in [17] for n = 5. From now
on, we will say that a genus 2 curve C has an (n, n)-decomposable Jacobian if C is
as above and the elliptic curves Ei, i = 1, 2 are called the components of Jac(C).

For every D := J10 > 0 there is a Humbert hypersurface HD in M2 which
parametrizes curves C whose Jacobians admit an optimal action on OD; see [10].
Points on Hn2 parametrize curves whose Jacobian admits an (n, n)-isogeny to a
product of two elliptic curves. Such curves are the main focus of our study. We
have the following result; see [15, Prop. 2.14].

Proposition 1. Jac(C) is a geometrically simple Abelian variety if and only if it

is not (n, n)-decomposable for some n > 1.

A point lying on the intersection of two Humbert surfaces Hm2\Hn2 with n 6= m

corresponds either to a simple abelian surface with quaternionic multiplication by
an (automatically indefinite) quaternion algebra over Q, or to the square of an
elliptic curve. This is in particular true for points lying on Shimura curves.

We study pairs (E1, E2) elliptic components and try to determine their number
(up to isomorphism over k̄) when they are isogenous of degree N , for an integer
N � 2. We denote by �N (x, y) the N -th modular polynomial. Two elliptic curves
with j-invariants j1 and j2 are N -isogenous if and only if �N (j1, j2) = 0. The
equation �N (x, y) = 0 is the canonical equation of the modular curve X0(N). The
equations of X0(N) are well known.

2.3. Kummer surface and Shioda-Inose surface. To the Jacobian variety
Jac(C) one can naturally attach two K3 surfaces, the Kummer surface and a double
cover of it called the Shioda-Inose surface. Let i be the involution automorphism on
the Jacobian given by i : p ! �p. The quotient Jac(C)/{I, i}, is a singular surface
with sixteen ordinary double points. Its minimal resolution is called the Kummer

surface and denoted by Kum(Jac(C)). We refer to [18, 19] for further details.
The Inose surface, denoted by Y := SI(Jac(C)), was originally constructed as

a double cover of the Kummer surface. Shioda and Inose then showed that the
following diagram of rational maps, called a Shioda-Inose structure, induces an
isomorphism of integral Hodge structures on the transcendental latices of Jac(C)
and Y, see [28] for more details.

Jac(C) Y

Kum(Jac(C))

⇡0
⇡1

A K3 surface Y has Shioda-Inose structure if it admits an involution fixing
the holomorphic two-form, such that the quotient is the Kummer surface Kum(A)
of a principally polarized abelian surface and the rational quotient map p : Y !
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Kum(A) of degree two induces a hodge isometry between the transcendental latices
T (Y)(2)3 and T (Kum(A)), see [19] for more details.

An elliptic surface E(k(t)) fibered over P1 with section can be described by a
Weierstrass equation of the form

y
2 + a1(t)xy + a3(t)y = x

2 + a2(t)x
2 + a4(t)x+ a6(t)

and ai(t) rational functions. If we assume that the elliptic fibration has at least one
singular fiber then the following question is fundamental in arithmetic geometry.
Find generators for the Mordell-Weil group of this elliptic surface fibered over P1.

A theorem of Shioda and Tate connects the Mordel-Weil group E(k(t) with the
Picard group of the Néron-Severi group of E . Therefore, determining the Mordell-
Weil group it is equivalent to finding the Picard group of the Néron-Severi lattice
of K3 surface.

A surface is called an elliptic fibration if it is a minimal elliptic surface over
P1 with a distinguished section S0. The complete list of possible singular fibers
has been given by Kodaira [12]. To each elliptic fibration ⇡ : C ! P1 there is
an associated Weierstrass model ⇡ : C ! P1 with a corresponding distinguished
section S0 obtained by contracting all fibers not meeting S0. The fibers of C are all
irreducible whose singularities are all rational double points, and C is the minimal
desingularization. If we choose some t 2 C as a local a�ne coordinate on P1, we
can present C in the Weierstrass normal form

Y
2 = 4X3 � g2(t)X � g3(t),

where g2(t) and g3(t) are polynomials of degree respectively 4 and 6 in t.

3. (n, n) reducible Jacobians surfaces

Genus 2 curves with (n, n)-decomposable Jacobians are the most studied type
of genus 2 curves due to work of Jacobi, Hermite, et al. They provide examples
of genus two curves with large Mordell-Weil rank of the Jacobian, many rational
points, nice examples of descent [23], etc. Such curves have received new atten-
tion lately due to interest on their use on cryptographic applications and their
suggested use on post-quantum crypto-systems and random self-reducibility of dis-
crete logarithm problem; see [4]. A detailed account of applications of such curves
in cryptography is provided in [9].

Let C be a genus 2 curve defined over an algebraically closed field k, char k = 0,
K the function field of C, and  1 : C �! E1 a degree n covering from C to an
elliptic curve E; see [21] for the basic definitions. The covering  1 : C �! E is
called a maximal covering if it does not factor through a nontrivial isogeny. We call
E a degree n elliptic subcover of C. Degree n elliptic subcovers occur in pairs, say
(E1, E2). It is well known that there is an isogeny of degree n2 between the Jacobian
Jac(C) and the product E1 ⇥E2. Such curve C is said to have (n, n)-decomposable
(or (n, n)-split) Jacobian. The focus of this paper is on isogenies among the elliptic
curves E1 and E2.

The locus of genus 2 curves C with (n, n)-decomposable Jacobian it is denoted
by Ln. When n = 2 or n an odd integer, Ln is a 2-dimensional algebraic subvariety
of the moduli space M2 of genus two curves; see [21] for details. Hence, we can get
an explicit equation of Ln in terms of the Igusa invariants J2, J4, J6, J10; see [27]
for L2, [24] for L3, and [17] for L5. There is a more recent paper on the subject
[13] where results of [17, 24] are confirmed and equations for n > 5 are studied.
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3.1. (2, 2) reducible Jacobians surfaces. Let C/k as above and F = k(C) its
function field. We assume that k is algebraically closed and char k 6= 2. Since
degree 2 coverings correspond to Galois extensions of function fields, the elliptic
subcover is fixed by an involution in Aut (F/k). There is a group theoretic aspect
of the n = 2 case which was discussed in detail in [27]. The number of elliptic
subcovers in this case correspond to the number of non-hyperelliptic involutions in
Aut (F/k), which are called elliptic involutions. The equation of C is given by

Y
2 = X

6 � s1X
4 + s2X

2 � 1

and in [1,2] it was shown that when defined over F this equation is minimal. Hence,
for (s1, s2) 2 k

2, such that the corresponding discriminant is nonzero, we have a
genus 2 curve C(s1,s2) and two corresponding elliptic subcovers. Two such curves
(C(s1,s2), "s1,s2) and (C(s01,s02), "s01,s02) are isomorphic if and only if their dihedral in-
variants u and v are the same; [27]. Thus, the points (s1, s2) 2 k

2 correspond
to elliptic involutions of Aut C while the points (u, v) 2 k

2 correspond to elliptic
involutions of the reduced automorphism group Aut C.

Let C be a genus 2 curve, Aut (C) its automorphism group, �0 the hyperellip-
tic involution, and Aut (C) := Aut (C)/h�0i the reduced automorphism group. If
Aut (C) has another involution �1, then the quotient space C/h�1i has genus one.
We call such involution an elliptic involution. There is another elliptic involution
�2 := �0 �1. So the elliptic involutions come naturally in pairs. The correspond-
ing coverings  i : C ! C/h�ii, i = 1, 2, are the maximal covers as above and
Ei := C/h�ii the elliptic subcovers of C of degree 2. Also the corresponding Hur-
witz space of such coverings is an irreducible algebraic variety which is embedded
into M2. We denote its image in M2 by L2. The following was proved in [27].

Lemma 1. Let C be a genus 2 curve and �0 its hyperelliptic involution. If �1 is

an elliptic involution of C, then so is �2 = �1�0. Moreover, C is isomorphic to a

curve with a�ne equation

(4) Y
2 = X

6 � s1X
4 + s2X

2 � 1

for some s1, s2 2 k and � := 27� 18s1s2 � s
2
1s

2
2 +4s31 +4s32 6= 0. The equations for

the elliptic subcovers Ei = C/h�ii, for i = 1, 2, are given by

E1 : y
2 = x

3 � s1x
2 + s2x� 1, and E2 : y2 = x (x3 � s1x

2 + s2x� 1)

In [27] it was shown that C is determined up to a coordinate change by the
subgroup H ⇠=D3 of SL2(k) generated by ⌧1 : X ! "6X and ⌧2 : X ! 1

X
, where

"6 is a primitive 6-th root of unity. Let "3 := "
2
6. The coordinate change by ⌧1

replaces s1 by "3s2 and s2 by "23s2. The coordinate change by ⌧2 switches s1 and
s2. Invariants of this H-action are:

(5) u := s1s2, v := s
3
1 + s

3
2

which are known in the literature as dihedral invariants. The map

(s1, s2) 7! (u, v),

is a branched Galois covering with group S3 of the set {(u, v) 2 k
2 : �(u, v) 6= 0}

by the corresponding open subset of (s1, s2)-space if char(k) 6= 3. In any case, it is
true that if s1, s2 and s

0
1, s

0
2 have the same u, v-invariants then they are conjugate

under h⌧1, ⌧2i.
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If char(k) = 3 then u = u
0 and v = v

0 implies s31s
3
2 = s

03
1 s

03
2 and s

3
1+s

3
2 = s

03
1 +s

03
2 ,

hence (s31, s
3
2) = (s031 , s

03
2 ) or (s

3
1, s

3
2) = (s032 , s

03
1 ). But this implies (s1, s2) = (s01, s

0
2)

or (s1, s2) = (s02, s
0
1).

For (s1, s2) 2 k
2 with � 6= 0, equation Eq. (4) defines a genus 2 field Fs1,s2 =

k(X,Y ). Its reduced automorphism group contains the elliptic involution "s1,s2 :
X 7! �X. Two such pairs (Fs1,s2 , "s1,s2) and (Fs

0
1,s

0
2
, "s01,s

0
2
) are isomorphic if and

only if u = u
0 and v = v

0 (where u, v and u
0
, v

0 are associated with s1, s2 and s
0
1, s

0
2,

respectively, by Eq. (5)). However, the ordered pairs (u, v) classify the isomorphism
classes of such elliptic subfields as it can be seen from the following theorem proved
in [27].

Proposition 2. i) The (u, v) 2 k
2
with � 6= 0 bijectively parameterize the isomor-

phism classes of pairs (F, ") where F is a genus 2 field and " an elliptic involution

of Aut (F).
ii) The (u, v) satisfying additionally

(6) (v2 � 4u3)(4v � u
2 + 110u� 1125) 6= 0

bijectively parameterize the isomorphism classes of genus 2 fields with Aut (F)⇠=V4;

equivalently, genus 2 fields having exactly 2 elliptic subfields of degree 2.

Our goal is to investigate when the pairs of elliptic subfields Fs1,s2 (respectively
isomorphism classes (F, ")) are isogenous. We want to find if that happens when C
is defined over a number field K. Hence, the following result is crucial.

Proposition 3. Let K be a number field and C/K be a genus 2 curve with (2, 2)
geometrically reducible Jacobian and Ei, i = 1, 2 its elliptic components. Then

its dihedral invariants u, v 2 K and C is isomorphic (over K̄) to a twist whose

polynomials are given as polynomials in u and v. Moreover, Ei, for i = 1, 2 are

defined over K if and only if

S2(u, v) :=v
4 � 18(u+ 9)v3 � (4u3 � 297u2 � 1458u� 729)v2

� 216u2(7u+ 27)v + 4u3(2u3 � 27u2 + 972u+ 729)
(7)

is a complete square in K.

Proof. Let j1 and j2 denote the j-invariants of the elliptic components E1 and E2

from Lem. 1. The j-invariants j1 and j2 of the elliptic components are given in
terms of the coe�cients s1, s2 by the following

j1 = �256

�
s1

2 � 3 s2
�3

�s1
2s2

2 + 4 s13 + 4 s23 � 18 s1 s2 + 27

j2 = 256

�
�s2

2 + 3 s1
�3

�s1
2s2

2 + 4 s13 + 4 s23 � 18 s1 s2 + 27

It is shown in [27] that they satisfy the quadratic

(8) j
2 �

✓
256

v
2 � 2u3 + 54u2 � 9uv � 27v

�

◆
j + 65536

u
2 + 9u� 3v

�2
= 0

where � = �(u, v) = u
2 � 4v + 18u � 27. The discriminant of this quadratic is

S(u, v) as claimed. When S(u, v) is a complete square in K, then j1 and j2 have
values in K. Since for elliptic curves the field of moduli is a field of definition,
elliptic curves E1 and E2 are defined over K. ⇤
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See [25] for details, where an explicit equation of C is provided with coe�cients
as rational functions in u and v, or [19] for a more general setup. Hence, we have
the following.

Lemma 2. Let C be a genus 2 curve with (2, 2) geometrically reducible Jacobian

and Ei, i = 1, 2 its elliptic components and K its field of moduli. Then Jac(C) is

(2, 2) reducible over K if and only if S2(u, v) is a complete square in K.

Proof. The elliptic components E1 and E2 are defined overK when their j-invariants
are in K. This happens when the discriminant of the above quadratic is a complete
square. The discriminant of the quadratic is exactly S(u, v) as above. ⇤

We define the following surface

(9) S2 : y
2 = S2(u, v),

where S2(u, v) is as Eq. (7). Coe�cients of Eq. (8) can be expressed in terms of the
Siegel modular forms or equivalently in terms of the Igusa arithmetic invariants;
see [22] or [27]. They were discovered independently in [3], where they are called
modular invariants. There is a degree 2 covering � : S2 ! L2, where (u, v,±y) !
(u, v). Then we have the following.

Proposition 4. Let K be a number field. There is a 2:1 correspondence between

the set of K-rational points on the elliptic surface E and the set of Jacobians Jac(C)
which are (2, 2) reducible over K.

Proof. Every pair of K-rational points (u, v,±y) in E gives the dihedral invariants
(u, v) 2 K

2 which determine the field of moduli of the genus 2 curve C. Since C has
extra involutions then C is defined over the field of moduli. Hence, C is defined over
K. The fact that (u, v,±y) is K rational means that the j-invariants j1 and j2 of
elliptic components take values ±y. Hence, j1, j2 2 K and E1 and E2 are defined
over K.

The (2, 2) isogeny

Jac C ! E1 ⇥ E2

is defined by D ! ( 1,?(D), 2,?(D)) where  i : C ! Ei, i = 1, 2 are as in Eq. (3).
Since  i are defined over K, then the (2, 2) isogeny is defined over K. ⇤

Next we turn our attention to isogenies between E1 and E2.

Proposition 5. Let C be a genus 2 curve with (2, 2)-decomposable Jacobian and

Ei, i = 1, 2 its elliptic components. There is a one to one correspondence between

genus 2 curves C defined over K such that there is a degree N isogeny E1 ! E2

and K-rational points on the modular curve X0(N) given in terms of u and v.

Proof. If C is defined over K then the corresponding (u, v) 2 K
2 since they are in

the field of moduli of C, which is contained in K. Conversely, if u and v satisfy the
equation of X0(N) then we can determine the equation of C in terms of u and v as
in [25]. ⇤

Let us now explicitly check whether elliptic components of A are isogenous to
each other. First we focus on the d-dimensional loci, for d � 1.

Proposition 6. For N = 2, 3, 5, 7 there are only finitely many curves C defined over

K with (2, 2)-decomposable Jacobian and Aut (C)⇠=V4 such that E1 is N -isogenous

to E2.
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Proof. Let us now check if elliptic components are isogenous for N = 2, 3, 5, 7. By
replacing j1, j2 in the modular curve we get a curve F (s1, s2) = 0. This curve is
symmetric in s1 and s2 and fixed by the H-action described in the preliminaries.
Therefore, such curve can be written in terms of the u and v, GN (u, v) = 0. We
display all the computations below.

Let N = 2. G2(u, v) is

G2(u, v) = f1(u, v) · f2(u, v)
where f1 and f2 are

f1 = �16v3 � 81216v2 � 892296v � 2460375 + 3312uv2 + 707616vu+ 3805380u+

18360vu2 � 1296162u2 � 1744u3v � 140076u3 + 801u4 + 256u5
(10)

f2 = 4096u7 + 256016u6 � 45824u5v + 4736016u5 � 2126736vu4 + 23158143u4

� 25451712u3v � 119745540u3 + 5291136v2u2 � 48166488vu2 � 2390500350u2

� 179712uv3 + 35831808uv2 + 1113270480vu+ 9300217500u� 4036608v3

� 1791153000v � 8303765625� 1024v4 + 163840u3v2 � 122250384v2 + 256u2v3

(11)

Notice that each one of these components has genus g � 2. From Falting’s theorem
[6] there are only finitely many K-rational points.

Let N = 3. Then, from equation Eq. (6) and �3(j1, j2) = 0 we have:

(12) (4v � u
2 + 110u� 1125) · g1(u, v) · g2(u, v) = 0

where g1 and g2 are

g1 = �27008u6 + 256u7 � 2432u5v + v4 + 7296u3v2 � 6692v3u� 1755067500u

+ 2419308v3 � 34553439u4 + 127753092vu2 + 16274844vu3 � 1720730u2v2

� 1941120u5 + 381631500v + 1018668150u2 � 116158860u3 + 52621974v2

+ 387712u4v � 483963660vu� 33416676v2u+ 922640625

(13)

g2 = 291350448u6 � v4u2 � 998848u6v � 3456u7v + 4749840u4v2 + 17032u5v2

+ 4v5 + 80368u8 + 256u9 + 6848224u7 � 10535040v3u2 � 35872v3u3 + 26478v4u

� 77908736u5v + 9516699v4 + 307234984u3v2 � 419583744v3u� 826436736v3

+ 27502903296u4 + 28808773632vu2 � 23429955456vu3 + 5455334016u2v2

� 41278242816v + 82556485632u2 � 108737593344u3 � 12123095040v2

+ 41278242816vu+ 3503554560v2u+ 5341019904u5 � 2454612480u4v

(14)

Thus, there is a isogeny of degree 3 between E1 and E2 if and only if u and v

satisfy equation Eq. (12). The vanishing of the first factor is equivalent to G⇠=D6.
So, if Aut(C)⇠=D6 then E1 and E2 are isogenous of degree 3. The other factors are
curves of genus g � 2 and from [6] have only finitely many K-rational points.

For cases N = 5, 7 we only get one irreducible component, which in both cases
is a curve of genus g � 2. We don’t display those equations here. Using [6] we
conclude the proof. ⇤

Next we consider the case when |Aut (C)| > 4. First notice that the invariants
j1 and j2 are roots of the quadratic Eq. (8). If G⇠=D4, then �1 and �2 are in the
same conjugacy class. There are again two conjugacy classes of elliptic involutions
in G. Thus, there are two degree 2 elliptic subfields (up to isomorphism) of K. One
of them is determined by double root j of the Eq. (8), for v2 � 4u3 = 0. Next, we
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determine the j-invariant j0 of the other degree 2 elliptic subfield and see how it is
related to j.

If v2 � 4u3 = 0 then G⇠=V4 and the set of Weierstrass points

W = {±1,±
p
a,±

p
b}.

Then, s1 = a + 1
a
+ 1 = s2. Involutions of C are ⌧1 : X ! �X, ⌧2 : X ! 1

X
,

⌧3 : X ! � 1
X
. Since ⌧1 and ⌧3 fix no points of W the they lift to involutions in

G. They each determine a pair of isomorphic elliptic subfields. The j-invariant of
elliptic subfield fixed by ⌧1 is the double root of Eq. (8), namely

(15) j = 256
v
3

v + 1
.

To find the j-invariant of the elliptic subfields fixed by ⌧3 we look at the degree 2
covering � : P1 ! P1, such that �(±1) = 0, �(a) = �(� 1

a
) = 1, �(�a) = �( 1

a
) =

�1, and �(0) = �(1) = 1. This covering is, �(X) =
p
a

a�1
X

2�1
X

. The branch points

of � are qi = ± 2i
p
ap

a�1
. From Lem. 1 the elliptic subfields E0

1 and E
0
2 have 2-torsion

points {0, 1,�1, qi}. The j-invariants of E0
1 and E

0
2 are

(16) j
0 = �16

(v � 15)3

(v + 1)2
.

Then, we have the following result.

Proposition 7. Let C be a genus 2 curve with Aut (C)⇠=D4 and Ei, E
0
i
, i = 1, 2,

as above. Then Ei is 2-isogenous with E
0
i
and there are only finitely many genus 2

curves C defined over K such that Ei is N -isogenous to E
0
i
for N = 3, 5, 7.

Proof. By substituting j and j
0 into the �N (x, y) = 0 we get that

�2(j, j
0) = 0

�3(j, j
0) = (v2 + 138v + 153)(v + 5)2(v2 � 70v � 55)2 (256v4 + 240v3 + 191745v2

+ 371250v + 245025)(4096v6 � 17920v5 + 55909200v4 � 188595375v3

� 4518125v2 + 769621875v + 546390625)

We don’t display the �5(j, j0) and �7(j, j0), but they are high genus curves. This
completes the proof. ⇤

3.2. (3, 3) reducible Jacobian surfaces. In this section we focus on genus 2
curves with (3, 3)-split Jacobians. This case was studied in detail in[24], where it
was proved that if F is a genus 2 field over k and e3(F) the number of Aut (F/k)-
classes of elliptic subfields of F of degree 3, then

i) e3(F) = 0, 1, 2, or 4
ii) e3(F) � 1 if and only if the classical invariants of F satisfy the irreducible

equation f(J2, J4, J6, J10) = 0 displayed in [24, Appendix A].
There are exactly two genus 2 curves (up to isomorphism) with e3(F) = 4. The

case e3(F) = 1 (resp., 2) occurs for a 1-dimensional (resp., 2-dimensional) family
of genus 2 curves. We are interested on the 2-dimensional family, since the case
e3(F) = 1 is the singular locus of the case e3(F) = 2.

We let C be a genus 2 curve define over k = k̄, char k 6= 2, 3, and F := k(C) its
function field.
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Definition 1. A non-degenerate pair (resp., degenerate pair) is a pair (C, E)
such that C is a genus 2 curve with a degree 3 elliptic subcover E where  : C ! E
is ramified in two (resp., one) places. Two such pairs (C, E) and (C0

, E 0) are called

isomorphic if there is a k-isomorphism C ! C0
mapping E ! E 0

.

If (C, E) is a non-degenerate pair, then C can be parameterized as follows

(17) Y
2 = (v2X3 + uvX2 + vX + 1) (4v2X3 + v2X2 + 2vX + 1),

where u, v 2 k and the discriminant

� = �16 v17 (v� 27) (27v+ 4v2 � u2v+ 4u3 � 18uv)3

of the sextic is nonzero. We let R := (27v + 4v2 � u2v + 4u3 � 18uv) 6= 0. For
4u � v � 9 6= 0 the degree 3 coverings are given by �1(X,Y ) ! (U1, V1) and
�2(X,Y ) ! (U2, V2) where

U1 =
vX2

v2X3 + uvX2 + vX + 1
,

U2 =
(vX + 3)2 (v(4u� v� 9)X + 3u� v)

v (4u� v� 9)(4v2X3 + v2X2 + 2vX + 1)
,

V1 = Y
v2X3 � vX � 2

v2X3 + uvX2 + vX + 1
,

V2 = (27� v)
3
2 Y

v2(v� 4u+ 8)X3 + v(v� 4u)X2 � vX + 1
(4v2X3 + v2X2 + 2vX + 1)2

(18)

and the elliptic curves have equations:

E1 : V 2
1 = RU3

1 � (12u2 � 2uv� 18v)U2
1 + (12u� v)U1 � 4

E2 : V 2
2 = c3U

3
2 + c2U

2
2 + c1U2 + c0

(19)

where
c0 = �(9u� 2v� 27)3

c1 = (4u� v� 9) (729u2 + 54u2v� 972uv� 18uv2 + 189v2 + 729v+ v3)

c2 = �v (4u� v� 9)2 (54u+ uv� 27v)

c3 = v2 (4u� v� 9)3

(20)

The mapping k
2 \ {� = 0} ! L3 such that (u, v) ! (i1, i2, i3), has degree 2.

We define the following invariants of two cubic polynomials. For F (X) = a3X
3+

a2X
2 + a1X + a0 and G(X) = b3X

3 + b2X
2 + b1X + b0 define

H(F,G) := a3b0 �
1

3
a2b1 +

1

3
a1b2 � a0b3

We denote by R(F,G) the resultant of F and G and by D(F ) the discriminant of

F . Also, r1(F,G) = H(F,G)3

R(F,G) , r2(F,G) = H(F,G)4

D(F )D(G) , and r3 = H(F,G)2

J2(F G) . Invariants
r1, r2, and r3 form a complete system of invariants for unordered pairs of cubics.
For F = v2X3 + uvX2 + vX + 1 and G = 4v2X3 + v2X2 + 2vX + 1 as in Eq. (17)
we have

� := r1 = 33 · v(v� 9� 2u)3

4v2 � 18uv+ 27v� u2v+ 4u3

 := r2 = �24 · 34 v(v� 9� 2u)4

(v� 27)(4v2 � 18uv+ 27v� u2v+ 4u3)
,

It was shown in [24] that the function field of the locus L3, genus 2 curves with
(3, 3) reducible Jacobians, is exactly k(�, ).
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Lemma 3. k(L3) = k(�, ).

By eliminating u and v we have rational expressions of absolute invariants i1, i2, i3
in terms of � and  as in [24, Eq. (19)]. We can take

[J2 : J4 : J6 : J10] =


1 :

1

144
i1 :

✓
1

5184
i2 +

1

432
i1

◆
:

1

486
i3

�

Hence, we have

J2 =�
�
�2 + 96� � 1152 2�

J4 =
�
26

�
�5 + 192�4 + 13824�3 2 + 442368�2 3 + 5308416� 4

+786432� 3 + 9437184 4�

J6 =
�
29

�
3�8 + 864�7 + 94464�6 2 + 4866048�5 3 + 111476736�4 4

+ 509607936�3 5 � 12230590464�2 6 + 1310720�4 3 + 155713536�3 4

�1358954496�2 5 � 18119393280� 6 + 4831838208 6�

J10 =� 230�3 9

It would be an interesting problem to determine for what values of � and  the
curve C is defined over the field of moduli.

3.2.1. Elliptic components. We express the j-invariants ji of the elliptic components
Ei of A, from Eq. (19), in terms of u and v as follows:

j1 = 16v
(vu2 + 216u2 � 126vu� 972u+ 12v2 + 405v)3

(v� 27)3(4v2 + 27v+ 4u3 � 18vu� vu2)2

j2 = �256
(u2 � 3v)3

v(4v2 + 27v+ 4u3 � 18vu� vu2)

(21)

where v 6= 0, 27. Moreover, we can express s = j1 + j2 and t = j1j2 in terms of the
� and  invariants as follows:

Lemma 4. The j-invariants of the elliptic components satisfy the following qua-

dratic equations over k(�, );

(22) j
2 � s j + t = 0

where

s =
1

16777216 3�8

�
1712282664960 3�6 + 1528823808 4�6 + 49941577728 4�5

� 38928384 5�5 � 258048 6�4 + 12386304 6�3 + 901736973729792 �10

+ 966131712 5�4 + 16231265527136256�10 + 480 8�+ 101376 7�2

+ 479047767293952 �8 + 7827577896960 2�9 + 2705210921189376�9

+ 21641687369515008�12 + 32462531054272512�11 +  9

+ 619683250176 3�7 + 1408964021452800 �9 + 45595641249792 2�8

+ 7247757312 3�8 + 37572373905408 2�7)

t =� 1
68719476736�12 3

(84934656�5 + 1179648�4 � 5308416�4

�442368�3 � 13824�2 2 � 192� 3 �  4�3

(23)

Proof. Substitute j1 and j2 as in Eq. (21) in equation Eq. (22). ⇤
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Remark 1. The computation of the above equation is rather involved; see [24] or
[26] for details. Notice that if C is defined over a field K then �, 2 K. The

converse is not necessarily true.

Invariants s and t are modular invariants similar to the n = 2 case and can be
expressed in terms of the Siegel modular forms or equivalently in terms of the Igusa
arithmetic invariants.

Let K be the field of moduli of C. The discriminant of the quadratic in Eq. (22)
is given by

�(�, ) =
1

248 �16 6

�
48922361856�8 + 48922361856�7 + 2293235712 �6

+ 31850496 2�5 + 110592 3�4 + 12230590464�6 + 1528823808 �5

+79626240 2�4 + 2211840 3�3 + 34560 4�2 + 288 5�+  6�2
�
195689447424�8 + 195689447424�7 � 2038431744 �6 + 48922361856�6

� 113246208 2�5 + 5096079360 �5 � 753664 3�4 + 217645056 2�4

+4866048 3�3 + 59904 4�2 + 384 5�+  6�

(24)

Notice that this is a perfect square if and only if the second factor is a perfect
square in K. Similarly with the case n = 2 we define the following;

(25) S3 : y
2 = S3(�, ),

where

S3(�, ) :=228 · 36�8 + 228 · 36�7 � 223 · 35( � 24)�6 � 222 · 33 ( � 45)�5

� 215 2(23 � 6642)�4 + 214 · 33 · 11 3
�
3 + 29 · 32 · 13 4

�
2

+ 27 · 3 5
�+  

6

(26)

is the second factor in the discriminant �(�, ). Even in this case there is a degree
2 covering

� : S3 7! L3

(�, ,±y) ! (�, )

from S3 to the space of genus 2 curves with (3, 3)-reducible Jacobians.

Lemma 5. Let C be a genus 2 curve with (3, 3) reducible Jacobian. The elliptic

components of Jac(C) are defined over the field of moduli K of C only when S3(�, )
is a complete square in K or equivalently when the surface y

2 = S3(�, ), has K-

rational point.

Proof. The proof is similar to that of the case n = 2. Invariants �, are in the
field of moduli K of C; see [24]. When the surface y

2 = S3(�, ), has K-rational
point that means that j1, j2 2 K and therefore E1 and E2 are defined over K. ⇤

Notice that in this case the curve C is not necessarily defined over its field of
moduli K. In [19] we determine exact conditions when this happens.

3.2.2. Isogenies between the elliptic components. Now let us consider the case when
n = 3. In an analogous way with the case n = 2 we will study the locus �N (x, y) = 0
which represents the modular curveX0(N). ForN prime, two elliptic curves E1, E2

are N -isogenous if and only if �N (j(E1), j(E2)) = 0. We will consider the case when
N = 2, 3, 5, and 7. We will omit part of the formulas since they are big to display.
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Proposition 8. Let C be a genus 2 curve with (3, 3)-split Jacobian and E1, E2 its

elliptic subcovers. There are only finitely many genus 2 curves C defined over K
such that E1 is 5-isogenous to E2.

Proof. Let �5(x, y) be the modular polynomial of level 5. As in the previous section,
we let s = x + y and t = xy. Then, �5(x, y) can be written in terms of s, t. We
replace s and t by expressions in Eq. (23). We get a curve in �,  of genus 169.
From Faltings theorem there are only finitely many K-rational points (�, ). Since,
K(�, ) is the field of moduli of C, then C can not be defined over K if �, are not
in K. This completes the proof. ⇤

Let us now consider the other cases. If N = 2, then the curve �2(s, t) can be
expressed in terms of the invariants �, and computations show that the locus
�2(�, ) becomes

g1(�, ) · g2(�, ) = 0,
where g1(�, ) = 0 is a genus zero component given by

 9 + 10820843684757504�12 + 16231265527136256�11 + 4057816381784064�10 

+2348273369088�8 3 + 8115632763568128�10 + 253613523861504�9 

�1834588569600�7 3 � 45864714240�6 4 � 525533184�5 5 � 2322432�4 6

+1352605460594688�9 + 253613523861504�8 + 21134460321792�7 2

+32105299968�5 4 + 668860416�4 5 + 9289728�3 6 + 82944�2 7 + 432� 8

+190210142896128�9 2 � 26418075402240�8 2 + 1027369598976�6 3 = 0,

(27)

while the other component has genus g = 29. To conclude about the number of
2-isogenies between E1 and E2 we have to check for rational points in the conic
g1(�, ) = 0.

The computations for the case N = 3 shows similar results. The locus �3(�, )
becomes

g1(�, ) · g2(�, ) = 0,

where g1(�, ) = 0 is a genus zero component and g2(�, ) = 0 is a curve with
singularities.

Also the case N = 7 show that the curve �7(�, ) becomes

g1(�, ) · g2(�, ) = 0,

where g1(�, ) = 0 is a genus zero component and g2(�, ) = 0 is a genus one
curve. Summarizing we have the following remark.

Proposition 9. Let C be a genus 2 curve with (3, 3)-split Jacobian and E1, E2 its

elliptic subcovers. There are possibly infinite families of genus 2 curves C defined

over K such that E1 is N -isogenous to E2, when N = 2, 3, 7.

As a final remark we would like to mention that we can perform similar compu-
tations for n = 5 by using the equation of L5 as computed in [17]. One can possibly
even investigate cases for n > 5 by using results of [13]. However, the computations
will be much more complicated.

We summarize our results in the following theorem.

Theorem 1. Let C be e genus 2 curve, defined over a number field K, and A :=
Jac(C) with canonical principal polarization ◆, such that A is geometrically (n, n)
reducible to E1 ⇥ E2. Then the following hold:
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i): If n = 2 and Aut (A, ◆)⇠=V4 then there are finitely many elliptic compo-

nents E1, E2 defined over K and N = 2, 3, 5, 7-isogenous to each other

ii): If n = 2 and Aut (A, ◆)⇠=D4 then

a) there are infinitely many elliptic components E1, E2 defined over K

and N = 2-isogenous to each other

b) there are finitely many elliptic components E1, E2 defined over K

and N = 3, 5, 7-isogenous to each other

iii): If n = 3 then

a) there are finitely many elliptic components E1, E2 defined over K

and N = 5-isogenous to each other

b) there are possible infinitely many elliptic components E1, E2 defined

over K and N = 2, 3, 7-isogenous to each other

Proof. From [9, Thm. 32] or [29] we have that Aut (C)⇠= Aut (A, ◆). Consider
now the case when n = 2 and Aut (C)⇠=V4. From Prop. 6 we have the result. If
Aut (A, ◆)⇠=D4 then from Prop. 7 we have the result ii).

Part iii) a) follows from Prop. 8 and part iii) b) from Prop. 9. ⇤
Corollary 1. Let A be a 2-dimensional Jacobian variety, defined over a number

field K, and (3, 3) isogenous to the product of elliptic curves E1 ⇥ E2. Then there

are infinitely many curves E1, E2 defined over K and N = 2, 3, 7-isogenous to each

other.

Proof. We computationally check that the corresponding conic has a K-rational
point. ⇤

As a final remark we would like to add that we are not aware of any other
methods, other than computational ones, to determine for which pairs (n,N) we
have many K-rational elliptic components.

4. Kummer and Shioda-Inose surfaces of reducible Jacobians

Consider C a genus two curve with (n, n)-decomposable Jacobian and E1, E2

its elliptic components. We continue our discussion of Kummer Kum(Jac(C)) and
Shioda-Inose SI(Jac(C)) surfaces of Jac C started in Section 2.3.

Malmendier and Shaska in [18] proved that as a genus two curve C varies the
Shioda-Inose K3 surface SI(Jac(C)) fits into the following forur parameter family
in P3 given in terms of the variables [W : X : Y : Z] 2 P3 by the equation

(28) Y
2
ZW � 4X3

Z + 3↵XZW
2 + � ZW

3 + �XZ
2
W � 1

2
(� Z2

W
2 +W

4) = 0,

where the parameters (↵,�, �, �) can be given in terms of the Igusa-Clebsch invari-
ants by

(29) (↵,�, �, �) =

✓
1

4
I4,

1

8
I2I4 �

3

8
I6,�

243

4
I10,

243

32
I2I10

◆

Denote by S the moduli space of the Shioda-Inose surfaces given in Eq. (29) and
Ln the locus in M2 of (n, n)-reducible genus 2 curves. Then there is a map

�n : Ln ! S

such that every curve [C] 2 Ln goes to the corresponding SI(Jac(C)). Then we have
the following:
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Proposition 10. For n = 2, 3 the map �n is given as follows:

i) If n = 2 then the Shioda-Inose surface is given by Eq. (28) for

↵ = u
2 � 126u+ 12 v + 405

� = �u
3 � 729u2 + 36uv � 4131u+ 1404 v + 3645

� = �3888
�
u
2 + 18u� 4 v � 27

�2

� = 7776 (15 + u)
�
u
2 + 18u� 4 v � 27

�2

(30)

ii) if n = 3 then the Shioda-Inose surface is given by Eq. (28) for

↵ =
1

256
· � ·

�
�5 + 192�4 + 13824�3 2 + 442368�2 3 + 5308416� 4+

+786432� 3 + 9437184 4�

� =
1

512
· �2 ·

�
�2 + 96� � 1152 2� ·

�
�5 + 192�4 + 13824�3 2+

+442368�2 3 + 5308416� 4 + 786432� 3 + 9437184 4�

� =� 3
4096

� ·
�
3�8 + 864�7 + 94464�6 2 + 4866048�5 3 + 111476736�4 4+

+ 509607936�3 5 � 12230590464�2 6 + 1310720�4 3 + 155713536�3 4�

�1358954496�2 5 � 18119393280� 6 + 4831838208 6�

� =� 225 35 �4 ��2 + 96� � 1152 2� 9

(31)

Proof. Case i) is a direct substitution of J2, . . . , J10, given in terms of u and v in
[27], in Eq. (29). To prove case ii) we first express the Igusa invariants J2, . . . , J10
in terms of � and  . Then using Eq. (29) we have the desired result. ⇤
Remark 2. It was shown in [27] (resp. [24]) that invariants u and v (resp. � and

 ) are modular invariants given explicitly in terms of the genus 2 Siegel modular

forms.

Corollary 2. Let C be e genus 2 curve, defined over a number field K, with canon-

ical principal polarization ◆, such that Jac(C) is geometrically (n, n) reducible to

E1 ⇥ E2 and E1 is N -isogenous to E2. There are only finitely many SI(Jac(C)
surfaces defined over K such that

i): n = 2, Aut (Jac(C), ◆)⇠=V4, and N = 2, 3, 5, 7.
ii): n = 2, Aut (Jac(C), ◆)⇠=D4, and N = 3, 5, 7.
iii): n = 3 and N = 5

Proof. The Eq. (28) of the surface SI(Jac(C) is defined over k when u and v (resp.
� and  ) are defined over k. From Thm. 1 we know that there are only finitely
many k-rational ordered pairs (u, v) (resp. (�, )). ⇤

If the elliptic curves are defined by the equations

E1 : y
2 = x

3 + ax+ b, E2 : y
2 = x

3 + cx+ d

then an a�ne singular model of the Kum(Jac(C)) is given as follows

(32) x
3
2 + cx2 + d = t

2
2(x

3
1 + ax1 + b).

The map Kum(Jac(C)) ! P1, such that (x1, x2, t2) ! t2, is an elliptic fibration,
which in the literature it is known as Kummer pencil. This elliptic fibration has
geometric sections that are defined only over the extension k(E1[2], E2[2])/k.
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Take a parameter t6 such that t2 = t
3
6 and consider Eq. (32) as a family of cubic

curves in P2 over the field k(t6). This family has a rational point (1 : t26 : 0) and
using this rational point we can get the Weierstrass form of the Eq. (32) as follows

Y
2 = X

3 � 3acX +
1

64

✓
�E1t

6
6 + 864bd+

�E2

t
6
6

◆

where �E1 and �E2 are respectively the discriminant of the elliptic curves E1 and
E2. Note that if we choose other equations of E1 and E2 then we get an isomorphic
equation for the Kummer surface. Setting t1 = t

6
6 in the above equation we get an

elliptic curve which will be denoted with F
(1)
E1,E2

and the Néron-Severi model of this
elliptic curve over k(t1) is called the Inose surface associated with E1 and E2, see
[14] for more details.

Definition 2. For s = 1, . . . , 6 let ts be a parameter satisfying t
s

s
= t1. Define the

elliptic curve F
(s)
E1,E2

over k(ts) by

(33) F
(s)
E1,E2

: Y 2 = X
3 � 3acX +

1

64

✓
�E1t

s

s
+ 864bd+

�E2

ts
s

◆

Note that the Kodaira-Néron model of F (s)
E1,E2

is a K3 surface for s = 1, . . . , 6
but not for s � 7. The following proposition is a direct consequence of [14, Prop.
2.9] and Thm. 1.

Lemma 6. Let A := Jac C be an (n, n)-decomposable Jacobian and E1, E2 its

elliptic components. For n = 2, 3 there are infinitely many values for t5 and t6 such

that the Mordell-Weil groups F
(5)
E1,E2

(k̄(t5)) and F
(6)
E1,E2

(k̄(t6)) have rank 18.

Proof. From Thm. 1 we know that for n = 2, 3 there are infinitely many curves E1

that are isogenous to E2. From [14, Prop. 2.9] we have that if E1 is isogenous to
E2 and they have complex multiplication, then the rank of F (5) and F

(6) is 18. ⇤
Corollary 3. The field of definition of the Mordell-Weil group of F

s

E1,E2
(k̄(t)) is

contained in k(E1[s]⇥ E2[s]), for almost all t.

Proof. From Thm. 1 we know that for almost all (n, n)-Jacobians, n = 2, 3, E1 is
not isogenous to E2. The result follows as a consequence of [14, Thm.2.10 (i)]. ⇤

4.1. Kummer surfaces in positive characteristic and applications to cryp-

tography. Supersingular isogeny based cryptography currently uses elliptic curves
that are defined over a quadratic extension field L of a non-binary field K and
such that its entire 2-torsion is L-rational. More specifically implementations of
supersingular isogeny Di�e Hellman (SIDH) fix a large prime field K = Fp with
p = 2i3j�1 for i > j > 100, construct L = Fp2 and work with supersingular isogeny
elliptic curves over Fp2 whose group structures are all isomorphic to Zp+1 ⇥ Zp+1.
Hence, all such elliptic curves have full rational 2-torsion and can be written in
Montgomery form.

What is the relation between the Abelian surfaces Jac(C) defined over Fp when
the elliptic components are supersingular Montgomery curves defined over Fp2?
This is relevant in supersingular isogeny based cryptography since computing iso-
genies in the Kummer surface associated to supersingular Jacobians is much more
e�cient than computing isogenies in the full Jacobian group.
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In [4] are studied (2, 2)-reducible Jacobians and it is pointed out that most of the
literature on the topic studies the splitting of Jac(C) over the algebraic closure K̄.
However, form our Lem. 2 we get necessary and su�cient conditions when Jac(C)
splits over K. From [27] we know that for a curve C 2 L2, we can choose the curve
to have equation

y
2 = (x2 � �1)(x

2 � �2)

✓
x
2 � 1

�1�2

◆

and its elliptic subcovers have equations y
2 = (x � �1)(x � �2)

⇣
x
2 � 1

�1�2

⌘
and

y
2 = x(x� �1)(x� �2)

⇣
x
2 � 1

�1�2

⌘
.

We can reverse the above construction as follows. Let p ⌘ 3 mod 4 and Fp2 =
Fp(i) for i2 = �1. Consider the following supersingular Montgomery curve

(34) E↵ : y2 = x(x� ↵)

✓
x� 1

↵

◆
,

for ↵ /2 Fp and ↵ 2 Fp2 such that ↵ = ↵0 + ↵1i, for some ↵0,↵1 2 Fp. Then by
lifting to a genus 2 curve we get a genus two curve C given as follows

C : y2 = f1(x) f2(x) f3(x).

where

f1(x) = x
2 +

2↵0

↵1
x� 1

f2(x) = x
2 � 2↵0

↵1
x� 1

f3(x) = x
2 � 2↵0(↵2

0 + ↵
2
1 � 1)

↵1(↵2
0 + ↵

2
1 + 1)

x� 1

(35)

Then, Thus, Jac C is (2, 2)-reducible with elliptic components the above curves.
The Weil restriction of the 1-dimensional variety E↵(Fp2) is the the variety

W↵ := Res
Fp2

Fp
(E↵) = V (W0(x0, x1, y0, y1),W1(x0, x1, y0, y1)

where

W0 =(↵2
0 + ↵

2
1)(↵0(x

2
0 � x

2
1)� 2↵1x0x1 + �0(y

2
0 � y

2
1)� 2�1y0y1

� x0(x
2
0 � 3x2

1 + 1)) + ↵0(x
2
0 � x

2
1) + 2↵1x0x1

W1 =(↵2
0 + ↵

2
1)(↵1(x

2
0 � x

2
1)� 2↵0x0x1 + �1(y

2
0 � y

2
1)� 2�0y0y1

� x0(x
2
0 � 3x2

1 + 1)) + ↵1(x
2
0 � x

2
1) + 2↵0x0x1

are obtained by putting x = x0+x1i, y = y0+y1i, � = �0+�1i, and xi, yi,↵i, �i 2 Fp

for i = 0, 1. In [4] it was proved the following:

Lemma 7. Let E↵ and C be as defined above. Then, the Weil restriction of E↵(Fp2)
is (2, 2)-isogenous to the Jacobian JacFp(C) i.e.

JacFp(C)⇠=Res
F

2
p

Fp
(E↵)

Moreover, since E↵ is supersingular then Jac(C) is supersingular.

From our results in the previous section we have that

Corollary 4. Let C be defined over Fp. Then, Jac(C) is (2, 2) reducible over Fp if

and only if S2(u, v) is a complete square in Fp or equivalently S2 has Fp points.
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Proof. Since the equation of both elliptic components is defined over their field of
moduli that means that their minimal field of definition is determined by their j-
invariants. Such invariants are defined over Fp if and only if when S(u, v) in Eq. (7)
is a complete square in Fp. ⇤

What about (3, 3)-reducible Jacobians? The situation is slightly di↵erent. The
main reason is that a curve C 2 L3 is not necessarily defined over its field of moduli.
However, if we start with a curve C 2 L3 defined over Fp, then from Lem. 5 we
can determine precisely when Jac(C) splits over Fp. The above construction via the
Weils restriction is a bit more complicated for curves in L3.

The case for the Kummer approach in supersingular isogeny-based cryptography
would be much stronger if it were able to be applied e�ciently for both parties.
There has been some explicit work done in the case of (3, 3) [24] and (5, 5)-isogenies
[17], but those situations are much more complicated than the case of Richelot
isogenies.

As pointed out by Costello in the last paragraph of [4]: One hope in this direction

is the possibility of pushing odd degree l-isogeny maps from the elliptic curve setting

to the Kummer setting. This was di�cult in the case of 2-isogenies because the

maps themselves are (2, 2)- isogenies, but in the case of odd degree isogenies there

is nothing obvious preventing this approach.
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