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Abstract. We study the family of K3 surfaces of Picard rank sixteen associated
with the double cover of the projective plane branched along the union of six lines,
and the family of its Van Geemen-Sarti partners, i.e., K3 surfaces with special
Nikulin involutions, such that quotienting by the involution and blowing up re-
covers the former. We prove that the family of Van Geemen-Sarti partners is a
four-parameter family of K3 surfaces with H ⊕ E7(−1) ⊕ E7(−1) lattice polariza-
tion. We describe explicit Weierstrass models on both families using even modular
forms on the bounded symmetric domain of type IV . We also show that our con-
struction provides a geometric interpretation, called geometric two-isogeny, for the
F-theory/heterotic string duality in eight dimensions. As a result, we obtain novel
F-theory models, dual to non-geometric heterotic string compactifications in eight
dimensions with two non-vanishing Wilson line parameters.

1. Introduction

In this article, we consider configurations of six lines in general position on the pro-
jective plane. The double cover of the plane branched along their union is a K3 surface
after resolving only ordinary double points. The moduli space of such K3 surfaces
was described in [51]. Kloosterman classified all possible types of elliptic fibrations
with a section on them in [36]. In [17], the authors consider K3 surfaces which are
double covers of a blow-up of P2, branched along rational curves. They classified the
elliptic fibrations on such surfaces and their van Geemen-Sarti involutions.

The assumption that the six lines are in general position implies that the Picard
rank of the resulting K3 surface is sixteen. In the special case when the six lines
are tangent to a conic, the Picard rank is, generically, seventeen and one obtains
as K3 surface a Kummer surface Kum(Jac C) of the Jacobian Jac(C) of a generic
genus-two curve C. There is then, as shown in [11, 12, 38, 46], a closely related K3
surface, called the Shioda-Inose surface SI(Jac C), which carries a Nikulin involution,
i.e., an automorphism of order two preserving the holomorphic two-form, such that
quotienting by this involution and blowing up the fixed points recovers the Kummer
surface. The Shioda-Inose surface SI(Jac C) carries a canonical lattice polarization of
type H ⊕ E8(−1)⊕ E7(−1) and is part of a geometric two-isogeny :

(1.1) Kum(Jac C) 11 SI(Jac C)pp
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establishing a one-to-one correspondence between two different types of surfaces with
the same Hodge-theoretic data: principally polarized abelian surfaces and algebraic
K3 surfaces polarized the special lattice H ⊕ E8(−1) ⊕ E7(−1). The key geometric
ingredient in this construction is a normal form equation for an elliptically fibered K3
surface whose periods determine a point τ in the Siegel upper-half space H2, with the
coefficients in the equation being Siegel modular forms. The normal form equation,
as well as the two-isogeny construction, are due in different forms to Kumar [38] and
to Clingher and Doran [12].

Compactifications of the type IIB string in which the axio-dilaton field varies over
a base are generically referred to as F-theory. Eight-dimensional compactifications
correspond to Jacobian elliptic fibrations on K3 surfaces. It is well-known that the
moduli space of these F-theory models is isomorphic to the moduli space of the
heterotic string compactified on an elliptic curve together with a principal G-bundle
where G is the gauge group of the heterotic string with gauge algebra either g = e8⊕e8

or so(32) [56, 65]. This is the basic form of the so called F-theory/heterotic string
duality in eight dimensions. Geometric two-isogeny provides a more refined and
geometric understanding for this string duality on a natural sub-space of the full
eighteen dimensional moduli space [10, 46, 53]: by taking the K3 surface to be the
Shioda-Inose surface SI(Jac C), the F-theory/heterotic string duality is manifested
as the aforementioned geometric two-isogeny. In fact, the period lattice of Jac(C)
describes a model dual to the e8⊕ e8 heterotic string, with an unbroken gauge algebra
of e8 ⊕ e7 ensuring that a single Wilson line expectation value is non-zero; a similar
result was established for the so(32) heterotic string as well. By a result of Vinberg
[68] and its interpretation in string theory in [46], the function field of the Narain
moduli space of the heterotic compactifications turns out to be the ring of Siegel
modular forms of even weight.

In this article, we extend the notion of geometric two-isogeny and its application
to F-theory/heterotic string duality with K3 Picard rank sixteen. In this context,
Kummer surfaces are replaced by what we shall refer to as double sextic surfaces - K3
surfaces Y obtained as minimal resolutions of double covers of the projective plane
branched along a configuration of six distinct lines. The Shioda-Inose surfaces from
above are then replaced, as shown by Clingher and Doran in [11] by K3 surfaces X
polarized by the rank-sixteen lattice H ⊕E7(−1)⊕E7(−1). Similarly to the Shioda-
Inose case, each of these K3 surfaces X carries a special Nikulin involution, X called
Van Geemen-Sarti involution. When quotienting by the involution X and blowing up
the fixed locus, one recovers the corresponding double-sextic surface Y together with
a rational double cover map Φ: X 99K Y . However, the VanGeemen-Sarti involutions
X no longer determine Shioda-Inose structures. Instead, they appear as fiber-wise
translation by two-torsion in a suitable Jacobian elliptic fibration πXalt. The geometric
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two-isogeny picture is then given by the diagram below:

(1.2) XX
((

πX
alt   

Φ̂

33 Y Y
ww

πY
alt��

Φ
ss

P1

We shall refer to the K3 surfaces X as the Van Geemen-Sarti partners of the double
sextic surface Y . From a physics point of view, the period lattice of the VanGeemen-
Sarti partners describes a model dual to the e8⊕e8 heterotic string, with an unbroken
gauge algebra e7 ⊕ e7 ensuring that two Wilson line expectation values are non-zero.
A similar result holds for the so(32) heterotic string with an unbroken gauge algebra
so(24) ⊕ su(2)⊕2. The function field of the Narain moduli space of these heterotic
theories turns out to be the ring of modular forms of even characteristic on the
bounded symmetric domain of type IV introduced by Matsumoto et al. [48].

This article is structured as follows: in Section 2 we review the work of Dolgachev
and Ortland [18] and the moduli space associated with six-line configurations in the
projective plane. We define new invariants of six-line configurations that generalize
the Igusa invariants of binary sextics. We construct the function field of the moduli
space explicitly, by determining a complete set of generators for the ring of modular
forms of even characteristic. In Section 3 we construct explicit Weierstrass models
for three Jacobian elliptic fibrations on the family of double-sextic surfaces Y . One of
them, which we call the alternate fibration, is of particular importance: the coefficients
in its Weierstrass equation are the generators of the ring of modular forms derived
before. In Section 4 we construct the family of Van Geemen-Sarti partners X of the
double-sextic surfaces Y polarized by the lattice H ⊕ E7(−1) ⊕ E7(−1). There are
four non-isomorphic elliptic fibrations on X ; three will be important for the consider-
ations in this article, and Weierstrass models will be constructed for them. Using the
Van Geemen-Sarti involution, we will determine the coefficients of these Weierstrass
models in terms of the modular forms found in Section 2. In Section 5 we discuss the
specialization of six-line configurations tangent to a common conic and the associated
K3 surfaces. We find perfect agreement in this case with the results in [11, 43, 46].
In Section 6 we discuss the construction of F-theory models, dual to the heterotic
string with two non-vanishing Wilson line parameters that naturally follows from our
geometric construction. We determine the function field of the Narain moduli space
of these heterotic theories explicitly in terms of the modular forms on the bounded
symmetric domain of type IV of even characteristic.

2. Invariants of six-line configurations in the projective plane

The Plücker embedding algebraically embeds the Grassmannian Gr(k, n;C) of all
k-dimensional sub-spaces of an n-dimensional complex vector space V as a sub-variety
of the projective space P(∧kV ). The homogeneous coordinates of the image under
the Plücker embedding, with respect to the natural basis of the exterior space ∧kV
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relative to a chosen basis in V , are called Plücker coordinates. The image of the
Plücker embedding is an intersection of a number of quadrics defined by the so called
Plücker relations.

We consider the situation k = 3 and n = 6 with dim Gr(k, n;C) = 9. We start
with the geometric setup of an ordered configuration of six lines in general position
in the projective plane P2. We write each line in the form `i : aiz1 + biz2 + ciz3 = 0
for i = 1, . . . , 6 with [z1 : z2 : z3] ∈ P2. The coefficients of the lines are assembled in
vectors vi = 〈ai, bi, ci〉t and form a matrix A ∈ Mat(3, 6;C) given by A = [v1| · · · |v6].
Let Aijk = [vi|vj|vk] and Dijk = det Aijk be the Plücker coordinates derived from
A ∈ Mat(3, 6;C) considered as an element of the Grassmannian Gr(3, 6;C).

We consider the following cases of configurations of six lines in P2:

Definition 2.1. We consider configurations of six lines in P2 that

(0) contain six lines in general position,
(1) are tangent to a common conic,
(2) contain three lines which are coincident in one point,
(3) contain one line which is coincident with two different pairs of lines in two

different points,
(4) contain three lines pairwise coincident in three different points, and each of

the three remaining lines is coincident in one intersection point,
(5) are combinations of case (1) and cases (2) through (4),

(6a) contain four lines which intersect in one point,
(6b) contain one double line.

Configurations that include cases (0) through (6a) and (6b) are called semi-stable
configurations. On configurations of six lines we have a right action of (C∗)6 given
by rescaling each line separately, and the obvious left action of GL3(C) by acting
on [z1 : z2 : z3] ∈ P2. Next, we want to describe the isomorphism classes of such
configurations of six lines. We define the so called degree-one Dolgachev-Ortland
coordinates [18] for configurations of six lines in P2 to be given by

(2.1)

t1 = D135D246, t2 = D145D236,
t3 = D146D235, t4 = D136D245,
t5 = D125D346, t6 = D126D345,
t7 = D134D256, t8 = D124D356,
t9 = D156D234, t10 = D123D456.

We have the following:

Lemma 2.2. The degree-one coordinates t1, . . . , t10 satisfy the relations

(2.2)

t1 − t2 − t5 − t9, t1 − t2 − t6 − t7, t1 − t3 − t5 − t10,
t1 − t3 − t6 − t8, t1 − t4 − t7 − t10, t1 − t4 − t8 − t9,
t2 − t3 + t7 − t8, t2 − t3 + t9 − t10, t2 − t4 + t5 − t8,
t2 − t4 + t6 − t10, t3 − t4 + t5 − t7, t3 − t4 + t6 − t9,
t5 − t6 − t7 + t9, t5 − t6 − t8 + t10, t7 − t8 − t9 + t10.
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In particular, only five relations among the fifteen relations are linearly independent.

Proof. The proof follows by explicit computation for any matrix A ∈ Mat(3, 6;C). �

One also introduces the degree-two Dolgachev-Ortland coordinate given by

(2.3) R = D123D145D246D356 −D124D135D236D456.

We have the following:

Lemma 2.3. The degree-two coordinate R satisfies

(2.4) R2 =
1

12

(( 10∑
i=1

t2i

)2

− 4
10∑
i=1

t4i

)
.

Proof. The proof follows by explicit computation for any matrix A ∈ Mat(3, 6;C). �

The different strata in the moduli space can now be characterized as follows:

Lemma 2.4. In Definition 2.1 we have the following:

(0) ⇔ no element of (ti)
10
i=1 vanishes and R 6= 0,

(1) ⇔ no element of (ti)
10
i=1 vanishes and R = 0,

(2) ⇔ exactly one element of (ti)
10
i=1 vanishes,

(3) ⇔ exactly two elements of (ti)
10
i=1 vanish,

(4) ⇔ exactly three elements of (ti)
10
i=1 vanish,

(5) ⇔ up to three elements of (ti)
10
i=1 vanish and R = 0,

(6) ⇔ exactly four elements of (ti)
10
i=1 vanish and R = 0.

Proof. Configurations of six lines no three of which are concurrent have four homo-
geneous moduli which we denote by a, b, c, d. A general matrix A ∈ Mat(3, 6;C) is
written in terms of only a, b, c, d using a GL3(C) transformation. The lines are then
in the form of Equations (3.2). We discuss the details in Section 3.1. Equations (3.4)
determine the Dolgachev-Ortland coordinates in terms of these moduli. We can easily
check necessary and sufficient conditions for cases (1) through (6). It follows from
Equation (3.4) and [14, Prop. 5.13] that R = 0 in Equation (2.3) if and only if the
six lines in general position are tangent to a common conic. �

We have the following:

Lemma 2.5. For a configuration of six lines in P2 the point

(2.5) [t1 : · · · : t10 : R] ∈ P(1, . . . , 1, 2)

in complex weighted projective space, is well-defined and invariant under the right
action of (C∗)6 and the left action of GL3(C) on A.

Proof. The point in weighted projective space is well-defined because of Lemma 2.4.
The invariance under the right action of (C∗)6 on A is immediate. The invariance
under the left action of GL3(C) follows from a computation showing that the coordi-
nates ti for 1 ≤ i ≤ 10 and R rescale by the determinant with weight two and four,
respectively, and the point in weighted projective space remains invariant. �
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For more details we refer to [18,66]. The following is a corollary of Lemma 2.5:

Corollary 2.6 ([18]). The moduli space of configurations of six lines in P2 is isomor-
phic to the algebraic variety in P(1, . . . , 1, 2) with the coordinates [t1 : · · · : t10 : R]
given by Equations (2.2) and (2.4), and R 6= 0 and ti 6= 0 for all i ∈ {1, . . . , 10}.

We define the moduli space M(2)+ to be the moduli space of ordered configurations
of six lines in P2 that fall into cases (0) through (5) in Definition 2.1, i.e.,

(2.6) M(2)+ =

{[
t1 : · · · : t10 : R]

∣∣∣ ti = 0 for at most three i ∈ {1, . . . , 10},
Eqns. (2.2) and (2.4) hold.

}
.

The notation M(2)+ indicates (i) the existence of a level-two structure obtained by
splitting up six indices into two pairs of three, and (ii) the fact that we include all
cases (1) through (5) in Definition 2.1 in addition to case (0).

For a given ordered configuration of lines {`1, . . . , `6} in general position, let us fix
six out of fifteen points of intersection, namely the points

p1 = `2 ∩ `3, p2 = `1 ∩ `3, p3 = `1 ∩ `2,

p4 = `5 ∩ `6, p5 = `4 ∩ `6, p6 = `4 ∩ `5.
(2.7)

Given any non-singular conic C ⊂ P2, we define the dual of a point pi 6∈ C to be the
line `′i that joins the two points of C on the two tangent lines of C passing through
pi; if pi ∈ C we define `′i to be the tangent line of C at pi. Changing the conic
C to another non-singular conic C ′ in this construction simply transforms the lines
`′i by a projective automorphism of P2. We then say that the two configurations
{`′1, . . . , `′6} and {`1, . . . , `6} are in association. It was proved in [66] that {`′1, . . . , `′6}
and {`1, . . . , `6} are associated if and only if their respective matrices A′ and A satisfy
A′ ·D ·At = 0 for some diagonal matrix D with detD 6= 0.

Mapping an ordered configuration of six lines to an associated ordered configuration
defines an involution ı on M+(2) with a fixed point set that consists of configurations
of six lines tangent to a common conic, and in terms of the Dolgachev-Ortland coor-
dinates it is given by

(2.8) ı : [ t1 : · · · : t10 : R ]→ [ t1 : · · · : t10 : −R ].

We define a four-dimensional sub-space M(2) of P9 by setting

(2.9) M(2) =

{[
t1 : · · · : t10] ∈ P9

∣∣∣ ti = 0 for at most three i ∈ {1, . . . , 10},
and Eqns. (2.2) hold.

}
.

We also set

(2.10) M(2) =
{[
t1 : · · · : t10] ∈ P9

∣∣∣ Eqns. (2.2) hold.
}
.

Notice that, apart from the six-line configurations listed in Definition 2.1, there are
more degenerate configurations: there are configurations such that exactly six ele-
ments of (ti)

10
i=1 vanish; there are also configurations such that exactly four elements
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of (ti)
10
i=1 vanish, R 6= 0, and all non-vanishing ti’s equal ±1. Since M(2) is a four-

dimensional linear sub-space of P9, it is easy to show [48, Sec. 3.2] that M(2) is in
fact isomorphic to P4.

We take the map pr to be the projection from P(1, . . . , 1, 2)\{[0 : · · · : 0 : 1]} → P9

given by [t1 : · · · : t10 : R] 7→ [t1 : · · · : t10]. We have the following:

Lemma 2.7. We have pr = pr ◦ ı : M(2)+ →M(2) and pr(M(2)+) ∼= M(2).

2.1. The modular description. The moduli spaces M(2) and M(2)+ have modular
descriptions based on the seminal work in [48]. By H2 we denote the set of all complex
two-by-two matrices $ over C such that the hermitian matrix ($−$†)/(2i) is positive
definite, i.e.,

(2.11) H2 =

{(
τ1 z1

z2 τ2

)
∈ Mat(2, 2;C)

∣∣∣ 4 Imτ1 Imτ2 > |z1 − z̄2|2, Imτ2 > 0

}
,

and the modular group Γ ⊂ U(2, 2) given by

(2.12) Γ =

{
G ∈ GL4

(
Z[i]
) ∣∣∣G† · ( 0 I2

−I2 0

)
·G =

(
0 I2

−I2 0

)}
.

The modular group acts on $ ∈ H2 by

∀G =

(
A B
C D

)
∈ Γ : G ·$ = (A ·$ +B)(C ·$ +D)−1.

It was shown in [48, Prop. 1.5.1] that Γ is generated by the five elements G1, G2, G3,
G4, G5 given by

(2.13)


i

1
i

1

 ,


1 1
0 1

1 0
−1 1

 ,


0 1
1 0

0 1
1 0

 ,


1 0 1 0
0 1 0 0

1
1

 ,


1

1
−1

−1

 ,

with determinants det (G1) = −1 and det (Gk) = 1 for k = 2, . . . , 5. We also introduce
the principal modular sub-group of complex level 1 + i (over the Gaussian integers)
given by

(2.14) Γ(1 + i) =
{
G ∈ Γ

∣∣∣G ≡ I4 mod 1 + i
}
.

There is an additional involution T acting on elements of H2 by transposition, i.e.,
$ 7→ T ·$ = $t, yielding extended groups obtained from the semi-direct products

(2.15) ΓT = Γ o 〈T 〉, ΓT (1 + i) = Γ(1 + i) o 〈T 〉,

where 〈T 〉 is the sub-group generated by T . We will always write elements g ∈ ΓT
in the form g = G T n with G ∈ Γ and n ∈ {0, 1}. A modular form f of weight
2k relative to a finite-index sub-group Γ′ ⊂ ΓT with character χf is a holomorphic
function on H2 such that

(2.16) ∀$ ∈ H2, ∀ g = GT n ∈ Γ′ : f
(
g ·$

)
= χf (g) det(C$ +D)2k f($).
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There is a well-known isomorphism Γ/Γ(1 + i) ∼= S6 – since both groups are in fact
isomorphic to Sp4(Z/2Z) – where S6 is the permutation group of six elements. By
SG we denote the image of G ∈ Γ under the natural quotient map Γ → S6 and by
sign(SG) the sign of this permutation SG. The following was proven in [48]:

Theorem 2.8 (Props. 3.1.1, 3.1.3, 3.1.5 in [48]).

(1) There are ten theta functions θ2
i ($) for 1 ≤ i ≤ 10 which are non-zero modular

forms of weight two relative to ΓT (1 + i) and for each g = G T n ∈ ΓT (1 + i)
with n ∈ {0, 1} the modular forms θ2

i ($) transform with χθi(g) = det (G).
(2) Any five of the ten functions θ2

i ($) for 1 ≤ i ≤ 10 generate the ring of modular
forms of level 1 + i and character χ(g) = det (G) for all g ∈ ΓT (1 + i).

(3) There is a unique function Θ($) which is a non-zero modular form of weight
four relative to ΓT such that for each g = GT n ∈ ΓT with n ∈ {0, 1} the mod-
ular form Θ($) transforms with character χΘ(g) = (−1)n det (G) sign (SG)
and satisfies

(2.17) Θ($)2 = 2−6 · 35 · 52

(
10∑
i=1

θi($)2 − 4
10∑
i=1

θi($)4

)
.

In the interest of keeping this section short, we do not give explicit formulas for
θ2
i ($) with 1 ≤ i ≤ 10. However, just as there are simple sum formulas for theta

functions of even and odd characteristic in genus two and genus one, the same holds
for the theta functions θ2

i ($) in Theorem 2.8: they are simply theta functions of
complex characteristic. All quadratic relations among the even theta functions θ2

i ($)
for 1 ≤ i ≤ 10 can then be derived explicitly. We refer to [48, Sec. 2] for details.

Remark 2.9. The space H2 is a generalization of the Siegel upper-half space H2. In
fact, elements invariant under the involution T are precisely the two-by-two symmetric
matrices over C whose imaginary part is positive definite, i.e.,

(2.18) H2 =
{
$ ∈ H2

∣∣∣$t = $
}
.

It was proven in [48, Lemma 2.1.1(vi)] that for $ = τ ∈ H2 we have θi($) = ϑi(τ)2

where ϑi(τ) for 1 ≤ i ≤ 10 are the even theta functions of genus two. We provide a
geometric cross-check for (the squares of) these reduction formulas in Proposition 5.6.

The following describes the action of the full modular group on the theta functions:

Lemma 2.10. The action of the generators T , G1, . . . , G5 ∈ ΓT in Equation (2.13)
on θi($) with 1 ≤ i ≤ 10 and ρ = − det ($) is given in the following table:

(2.19)

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10

T θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10

G±1
1 θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 −θ10

G±1
2 θ1 θ4 θ3 θ2 θ8 θ10 θ7 θ5 θ9 θ6

G±1
3 θ1 θ2 θ4 θ3 θ7 θ9 θ5 θ8 θ6 θ10

G±1
4 θ3 θ4 θ1 θ2 ±i θ5 ±i θ6 θ9 ±i θ8 θ7 ±i θ10

G±1
5 ρ±1θ1 ρ±1θ8 ρ±1θ5 ρ±1θ7 ρ±1θ3 ρ±1θ9 ρ±1θ4 ρ±1θ2 ρ±1θ6 ρ±1θ10
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Proof. The proof follows from an explicit computation applying the formulas in Lem-
mas 2.1.1(ii) and Lemma 2.1.2(viii)-(x) in [48]. �

Lemma 2.11. Under the action $ 7→ T ·$ = $t we have

(2.20)
(
θ1($), . . . , θ10($),Θ($)

)
7→

(
θ1($), . . . , θ10($),−Θ($)

)
.

Proof. The transformation for Θ($) was proven in [48, Cor. 3.1.4]. �

Lemma 2.12. Under the action $ 7→Mi ·G1 ·M−1
i ·$ we have

(2.21)
[
θ1($) : · · · : θ10($)

]
7→
[
(−1)δi,1θ1($) : · · · : (−1)δi,10θ10($)

]
,

where Mi ∈ Γ with det (Mi) = 1 and 1 ≤ i ≤ 10, δµ,ν is the Kronecker delta function,
and the matrices Mi are given in the following table:

(2.22)

i Mi [(−1)δi,1 , . . . , (−1)δi,10 ]
1 G4G3G5G4G3G2 [ −1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
2 G2G5G4G3G2 [ 1, −1, 1, 1, 1, 1, 1, 1, 1, 1]
3 G3G5G4G3G2 [ 1, 1, −1, 1, 1, 1, 1, 1, 1, 1]
4 G5G4G3G2 [ 1, 1, 1, −1, 1, 1, 1, 1, 1, 1]
5 G3G4G3G2 [ 1, 1, 1, 1, −1, 1, 1, 1, 1, 1]
6 G2 [ 1, 1, 1, 1, 1, −1, 1, 1, 1, 1]
7 G4G3G2 [ 1, 1, 1, 1, 1, 1, −1, 1, 1, 1]
8 G2G3G4G3G2 [ 1, 1, 1, 1, 1, 1, 1, −1, 1, 1]
9 G3G2 [ 1, 1, 1, 1, 1, 1, 1, 1, −1, 1]

10 I2 [ 1, 1, 1, 1, 1, 1, 1, 1, 1, −1]

In particular, θi($) has simple zeros exactly on the ΓT (1 + i)-orbit of the fixed locus
of Mi ·G1 ·M−1

i for 1 ≤ i ≤ 10.

Proof. The first part of the proof follows from Lemma 2.10. The fact that it is a
simple zero must only be proven for one theta function, say θ10. This was done in
[48, Lemma 2.3.1]. �

The groups ΓT and ΓT (1 + i) have the index-two subgroups given by

Γ+
T =

{
g = G T n ∈ ΓT

∣∣∣ n ∈ {0, 1}, (−1)n detG = 1
}
,

Γ+
T (1 + i) = Γ+

T ∩ ΓT (1 + i).
(2.23)

Obviously, we have the following:

Lemma 2.13. The group Γ+
T is generated by elements G1T and G2, . . . , G5 where Gk

for k = 1, . . . , 5 were given in Equation (2.13).

We now consider the quotient spaces H2/ΓT (1 + i) and H2/Γ
+
T (1 + i), and the

Satake compactification

(2.24) H2/ΓT (1 + i) .
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For details on the construction of the Satake-Baily-Borel compactification we refer to
[6, 62]. We define a holomorphic map

(2.25) F ′ : H2 → P9, $ 7→
[
θ2

1($) : · · · : θ2
10($)

]
.

It follows immediately from Theorem 2.8 that the map F ′ descends to a holomorphic
map on the quotient space H2/ΓT (1 + i). Equations (2.2) coincide with the quadratic
relations between the even theta functions in Theorem 2.8 under the identification
given by the map F ′. An analysis of the simple zeros of the theta functions in
[51, Lemma2.3.1] shows that the image is in fact contained in M(2). Thus, we obtain
a holomorphic map

F : H2/ΓT (1 + i) −→ M(2) ⊂ P9,

$ 7→
[
t1 : · · · : t10

]
=
[
θ2

1($) : · · · : θ2
10($)

]
.

(2.26)

We have the following:

Theorem 2.14 ([48, Thm. 3.2.1]). The map F in Equation (2.26) extends to an

isomorphism between the Satake compactification of H2/ΓT (1 + i) and M(2) given by

F : H2/ΓT (1 + i)
∼=−→ M(2) ⊂ P9.

We also define a holomorphic map

(2.27) G ′ : H2 → P(1, . . . , 1, 2), $ 7→
[
θ2

1($) : · · · : θ2
10($) : 223−35−2Θ($)

]
.

We have the following:

Proposition 2.15. The map G ′ descends to a holomorphic map

G : H2/Γ
+
T (1 + i) −→ M(2)+ ⊂ P(1, . . . , 1, 2),

$ 7→
[
t1 : · · · : t10 : R

]
=
[
θ2

1($) : · · · : θ2
10($) : 223−35−2Θ($)

]
.

(2.28)

Moreover, the following diagram commutes:

(2.29) H2/Γ
+
T (1 + i)

G
//

����

M(2)+

pr
����

H2/ΓT (1 + i)
F
//M(2)

with G ◦ T = ı ◦ G and pr ◦ ı = pr and Γ+
T (1 + i) the index-two sub-group of ΓT (1 + i)

defined in Equation (2.23).

Proof. For elements g = G T n ∈ Γ+
T (1 + i) we have by definition (−1)n detG = 1

and sign(SG) = 1. It then follows from Theorem 2.8 that the map G ′ descends to a
holomorphic map on the quotient space H2/Γ

+
T (1 + i). Combined with the results in

Theorem 2.14 this shows that the image is contained in M(2)+. The branching locus
of the covering H2/Γ

+
T (1 + i) → H2/ΓT (1 + i) is given by the simple zeros of the
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modular form Θ($) of weight four which is unique up to constant; see Theorem 2.8.
Moreover, the ratio of the right hand sides of Equation (2.17) and Equation (2.4) yields
Θ($)2/R2 = 2−4 · 36 · 52 under the identification given by the holomorphic map F .
Thus, the branching locus is identical. The equivariance follows from Equation (2.8)
and Equation (2.20) and the fact that their branching locus is identical. �

2.2. The Satake sextic and ring of modular forms. We introduce the following
linear combinations of the degree-one invariants ti which we call the generalized level-
two Satake coordinate functions x1, . . . , x6. We set x1 + · · ·+ x6 = 0. Choosing three
Satake roots out of the five roots x1, . . . , x5, we want to obtain all invariants t1, . . . , t10

by setting

(2.30)

−3 t9 = x1 +x2 +x3,
3 t8 = x1 +x2 +x4,
−3 t6 = x1 +x2 +x5,

3 t5 = x1 +x3 +x4,
−3 t10 = x1 +x3 +x5,

3 t7 = x1 +x4 +x5,
−3 t3 = +x2 +x3 +x4,
−3 t1 = +x2 +x3 +x5,
−3 t4 = +x2 +x4 +x5,
−3 t2 = +x3 +x4 +x5.

The j-th power sums sj are defined by sj =
∑6

k=1 x
j
k for j = 1, . . . , 6. It can be

easily checked using Equation (2.30) that s1 =
∑

k xk = 0. We combine the level-two
Satake functions in a sextic curve, called the Satake sextic, given by

S(x) =
6∏

k=1

(x− xk) .

The coefficients of the Satake sextic are polynomials in Z
[

1
2
, 1

3
, s2, s3, s4, s5, s6

]
. In

fact, we obtain

S(x) = x6 +
6∑

k=1

(−1)k

k!
bk x

6−k

where bk is the k-th Bell polynomials in the variables {s1,−s2, 2!s3,−3!s4, 4!s5,−5!s6}.
The following holds:
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Lemma 2.16. The generalized level-two Satake coordinate functions x1, . . . , x6 are
the roots of the Satake sextic S ∈ Z

[
1
2
, 1

3
, s2, s3, s4, s5, s6

]
[x] given by

S(x) = B(x)2 − 4A(x),

with B(x) = x3 − s2

4
x− s3

6
,

A(x) =
4s4 − s2

2

64
x2 − 5s2s3 − 12s5

240
x+

3s3
2 − 4s2

3 − 18s2s4 + 24s6

576
.

(2.31)

Proof. The proof follows from the explicit computation of the Bell polynomials using
the relation s1 = 0. �

We define new quantities J2, J3, J4, J5, J6 by setting

J2 =
s2

12
, J3 =

s3

12
, J4 =

4s4 − s2
2

64

J5 =
5s2s3 − 20s5

240
, s6 =

3s3
2 − 4s2

3 − 18s2s4 + 24s6

576
,

(2.32)

such that

s2 = 12 J2, s3 = 12 J3, s4 = 36 J2
2 + 16 J4,

s5 = 60 J2J3 − 20 J5, s6 = 108 J3
2 + 144 J2J4 + 24 J2

3 + 24 J6.
(2.33)

We have the following:

Lemma 2.17. J2, J3, J4, J5, J6 are polynomials over Q in ti for 1 ≤ i ≤ 10 that are
invariant under the action of the permutation group S6 on the variables ti induced by
permuting the lines of a six-line configuration.

Proof. Using Equations (2.2) we can solve for x1, . . . , x6 using any five of the then ti’s
and obtain

(2.34)

x1 = 2 t1 +2 t5 −3 t6 −t7 −t8,
x2 = −t1 −t5 −t7 +2 t8,
x3 = −t1 +2 t5 −t7 −t8,
x4 = −t1 −t5 +3 t6 +2 t7 +2 t8,
x5 = −t1 −t5 +2 t7 −t8,
x6 = 2t1 −t5 −t7 −t8.

Plugging Equations (2.34) into the j-th power sums sj and, in turn, into Equa-
tions (2.32) proves that Jk for 2 ≤ k ≤ 6 are polynomials in ti with 1 ≤ i ≤ 10 and
rational coefficients. One checks that for a set of generators of the permutation group
of six elements S6, acting on the variables ti with 1 ≤ i ≤ 10 as defined by permuting
lines in Equations (2.1), the polynomials Jk for 2 ≤ k ≤ 6 remain invariant. �

Notice that there are many notations in the literature for invariants of binary equa-
tions. We will show in Section 5 how our invariants Jk for 2 ≤ k ≤ 6, when restricted
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to a six-line configuration tangent to a common conic, are related to the Igusa in-
variants of a binary sextic which we denote by I2, I4, I6, I10; see Equation (5.10). We
have the following:

Lemma 2.18. The moduli space M(2)+ of six lines in P2 embeds into the variety in
P(1, 1, 1, 1, 1, 1, 2) with coordinates [x1 : · · · : x6 : X] given by the equations s1 = 0
and X2 = 4s4 − s2

2.

Proof. Given a point in the image, setting x6 = −(x1 + · · ·+x5), Equations (2.30) for
t1, t5, t6, t7, t8 constitute the inverse transformation to Equations (2.34). Moreover,
one checks that 4s4 − s2

2 = (18R)2 in Equation (2.3). �

Remark 2.19. The sub-variety defined by X = 0 comprises an algebraic variety in
P4 given by s1 = 0 and s2

2 = 4s4 known as Igusa’s quartic. It corresponds to the
moduli space of configurations of six-lines tangent to a conic and is closely related to
the moduli space of genus-two curves with level-two structure. We will discuss the
details in Section 5.

In terms of the invariants Jk with 2 ≤ k ≤ 6, the Satake sextic is given by

(2.35)
S(x) = B(x)2 − 4A(x),

with B(x) = x3 − 3 J2x− 2 J3, A(x) = J4 x
2 − J5 x+ J6.

One also checks that the square of the degree-two Dolgachev-Ortland invariant in
Equation (2.4) is given by J4, i.e.,

(2.36) R2 = 243−4J4 .

We introduce three more invariants: the discriminants of the Satake sextic S(x) and
the quadratic polynomial A(x) which have degrees 30 and 10, respectively, as well as
the resultant of the polynomials A(x) and B(x) which has degree 18. By construction,
they are all homogeneous polynomials in the invariants Jk for 2 ≤ k ≤ 6 with integer
coefficients. One checks that

Disc(A) = J2
5 − 4 J4J6 = 2−4310

10∏
i=1

ti,

Res(A,B) = 9 J2
2J

2
4J6 + 6 J2 J3 J

2
4J5 + 4 J2

3J
3
4 + 6 J2 J4 J

2
6

− 3 J2 J
2
5 J6 + 6 J3 J4 J5 J6 − 2 J3 J

3
5 + J3

6 .

(2.37)

For the discriminant of the Satake sextic, i.e., S(x) =
∏

i<j(xi − xj)2, we suppress
the lengthy polynomial expression in terms of the Jk for k = 2, . . . , 6. We rather give
the following formula in terms of modular forms on M(2), namely

(2.38)
Disc(S) = 330

∏10
j=2(t1 − tj)2

×(t2 − t3)2(t3 − t4)2(t4 − t5)2(t5 − t6)2(t2 − t4)2(t4 − t6)2.

We have the following:
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Corollary 2.20. A configuration of six lines in P2 falls into cases (0) through (5) in
Definition 2.1 if and only if the invariants in Equation (2.32) satisfy

(2.39) (J3, J4, J5) 6= (0, 0, 0).

For cases (1) through (5) in Definition 2.1, we find the following equivalences (where
all invariants not specified remain generic):

(1) ⇔ J4 = 0,
(2) ⇔ Disc(A) = 0,

(3, 4) ⇔ Disc(A) = Res(A,B) = 0,
(5) ⇔ J4 = J5 = 0,

For cases (6a) and (6b), we find (J3, J4, J5) = (0, 0, 0).

Proof. One first checks that Disc(A) = Res(A,B) = 0 implies Disc(S) = 0. The
proof follows the same strategy as the one applied in the proof of Lemma 2.4. We
explicitly compute the invariants J3, J4, J5 in terms of the moduli a, b, c, d and then
restrict to cases (1) through (5) in Definition 2.1. Moreover, (J3, J4, J5) = (0, 0, 0)
implies Disc(A) = Disc(S) = Res(A,B) = 0. �

In light of Lemma 2.17 and Corollary 2.20 we can now define a moduli space of
unordered configurations of six lines in P2. We define M to be the four-dimensional
open complex variety given by

(2.40) M =
{

[J2 : J3 : J4 : J5 : J6] ∈ P(2, 3, 4, 5, 6)
∣∣∣ (J3, J4, J5) 6= (0, 0, 0)

}
,

and we also set M = P(2, 3, 4, 5, 6).
By construction, the points in projective space P9 arising as image of the map
F ′ : H2 → P9 in Equation (2.25), i.e., the points given by

(2.41) F ′ : H2 → P9, $ 7→
[
θ2

1($) : · · · : θ2
10($)

]
,

are invariant under the action of the sub-group Γ(1+i) of level (1+i); see Theorem 2.8.
As explained, there is a natural action of the permutation group of six elements S6

on the variables ti with 1 ≤ i ≤ 10 induced by permuting the six lines. This action
coincides with the action of Γ/Γ(1 + i).

Equation (2.38) provides a geometric characterization of the locus Disc(S) = 0 in
M(2). It turns out that the fifteen components of the vanishing locus are in one-to one
correspondence with permutations of the from σα = (ij)(kl)(mn) where (ij) = i↔ j
is the permutation of the i-th and j-th line. We have the following:

Lemma 2.21. The vanishing locus Disc(S) = 0 is the union of the ΓT (1 + i)-orbits
of the fixed loci of $ 7→ Sj · G2T · S−1

j · $ in M(2) where Sj ∈ Γ with det (Sj) = 1
and 1 ≤ j ≤ 15. The fixed loci, the elements Sj, and corresponding permutations σj



SIX LINE CONFIGURATIONS 15

are given in the following table:

(2.42)

j Sj σj fixed locus
1 G5G4G5G3G5G2G5G4 (15)(26)(34) t1 = t2, t5 = − t9, t6 = − t7
2 G5G2G5G4 (12)(35)(46) t1 = t3, t5 = − t10, t6 = − t8
3 G5G4G3G5G2G5G4 (13)(24)(56) t1 = t4, t7 = − t10, t8 = − t9
4 G3G5G2G5G4 (15)(23)(46) t1 = t5, t2 = − t9, t3 = − t10

5 G4G2G5G4 (14)(26)(35) t1 = t6, t2 = − t7, t3 = − t8
6 G5G3G5G2G5G4 (13)(26)(45) t1 = t7, t2 = − t6, t4 = − t10

7 G4G3G5G2G5G4 (16)(24)(35) t1 = t8, t3 = − t6, t4 = − t9
8 G4G5G4G5G4 (15)(24)(36) t1 = t9, t2 = − t5, t4 = − t8
9 G4G5G4 (13)(25)(46) t1 = t10, t3 = − t5, t4 = − t7

10 G2G5G4 (14)(23)(56) t2 = t3, t7 = t8, t9 = t10

11 G5G4G5G4 (12)(36)(45) t2 = t4, t5 = t8, t6 = t10

12 G4 (14)(25)(36) t2 = t8, t3 = t7, t4 = t5
13 G4G5G3G5G2G5G4 (16)(23)(45) t2 = t10, t3 = t9, t4 = t6
14 G5G4 (16)(25)(34) t3 = t4, t5 = t7, t6 = t9
15 I4 (12)(34)(56) t5 = t6, t7 = t9, t8 = t10

Proof. The relation between the components of vanishing locus and the fixed loci of
the transformations $ 7→ Sj ·G2T ·S−1

j ·$ with 1 ≤ j ≤ 15 follow from Equation (2.38)
and Lemma 2.19. The relation between permutations acting on ti with 1 ≤ i ≤ 10
and the listed fixed loci is checked directly using Equations (2.1) �

We denote the six-line configuration discussed in Lemma 2.21 by (2b), adding to cases
(0) through (5) in Definition 2.1. Equation (2.42) provides the explicit from of the
isomorphism Γ/Γ(1 + i) ∼= S6. We have the following:

Corollary 2.22. The following vanishing loci are fixed loci of elements in ΓT \Γ+
T :

(1) The locus J4 = 0 is the fixed locus of T ∈ ΓT .
(2) The locus Disc(A) = 0 is the union of the fixed loci of Mi ·G1 ·M−1

i ∈ ΓT with
Mi ∈ Γ+

T and 1 ≤ i ≤ 10 given in Lemma 2.12.
(2b) The locus Disc(S) = 0 is the union of the fixed loci of Sj · G2T · S−1

j ∈ ΓT
with Sj ∈ Γ+

T and 1 ≤ j ≤ 15 given in Lemma 2.21.

Proof. Parts (1), (2) follow from Equations (2.36) and (2.37) when using Lemma 2.11
and Lemma 2.12. Part (3) follows from Lemma 2.21. �

If we plug into the expressions for Jk in Equation (2.32) for k = 2, 3, 4, 5, 6, the
theta functions ti = θ2

i ($) for 1 ≤ i ≤ 10 of Theorem 2.8, we obtain modular forms
which we will denote by J2($), J3($), J4($), J5($), J6($). We have the following:

Lemma 2.23. The functions Jk($) are modular forms relative to ΓT of even char-

acteristic, i.e., with character χ2k(g) = det (G)k for all g ∈ ΓT in weight 2k.

Proof. It follows from Lemma 2.17 that Jk($) are homogeneous polynomials of degree
k in ti = θ2

i ($) for 1 ≤ i ≤ 10. Using Theorem 2.8, we conclude that Jk($) are

modular forms of weight 2k relative to ΓT (1 + i) with character χ2k(g) = det (G)k.



16 A. CLINGHER, A. MALMENDIER, AND T. SHASKA

The isomorphism Γ/Γ(1+i) ∼= Sp4(Z/2Z) extends the group homomorphism obtained
from the projection

(2.43) Z[i] 7→ Z[i]/(1 + i)Z[i] ∼= Z/2Z.
On the other hand, there is a group isomorphism Sp4(Z/2Z) ∼= S6. We showed in
Lemma 2.10 that this action coincides with the natural action of the permutation
group of six elements S6 on the variables ti with 1 ≤ i ≤ 10 due to Equations (2.1).
Since the invariants Jk are polynomials in the symmetric polynomials sk with 2 ≤
k ≤ 6 given in Equation (2.32), hence invariant under the action of S6, Jk($) are
modular forms of weight 2k relative to the full modular group ΓT . �

We have the following:

Theorem 2.24. The graded ring of modular forms relative to ΓT of even character-
istic is generated over C by the five algebraically independent modular forms Jk($)
of weight 2k with k = 2, . . . , 6.

Proof. It follows from [67, Thm. 1] and Section 6.2 that the ring of modular forms
relative to ΓT is generated by five modular forms of weights 4, 6, 8, 10, 12. For argu-
ments $ = τ invariant under T , the functions Jk($) for k = 2, 3, 4, 5, 6 descend to
Siegel modular forms of even weight. In fact, we will check in Equation (5.10) that
under the restriction from H2/ΓT to H2/ Sp4(Z), we obtain
(2.44)[

J2($) : J3($) : J4($) : J5($) : J6($)
]

=
[
ψ4(τ) : ψ6(τ) : 0 : 21235χ10(τ) : 21236χ12(τ)

]
.

Here, ψ4, ψ6, χ10, χ12 are Siegel modular forms of respective weights 4, 6, 10, 12 that,
as Igusa proved in [30, 31], generate the ring of Siegel modular forms of even weight.
Thus, the forms Jk($) for k = 2, 3, 5, 6 must be independent. After looking at
some Fourier coefficients to ensure that J4 is not identically zero, we adjoin J4 as a
fifth form to the ring generated by Jk for k = 2, 3, 5, 6. The fundamental theorem
of symmetric polynomials establishes the power sums as an algebraic basis for the
space of symmetric polynomials. Therefore, Jk for k = 2, 3, 4, 5, 6 are algebraically
independent. Moreover, we check that J4($) = (Θ($)/15)2 using Theorem 2.8. Θ
does not have the character χ(g) = det(G) for all g ∈ ΓT . It follows that J4 cannot
be decomposed further as a modular form relative to ΓT with even characteristic. �

We define the holomorphic map

(2.45) H′ : H2 → P9, $ 7→
[
J2($) : J3($) : J4($) : J5($) : J6($)

]
.

We have the following:

Corollary 2.25. The map H′ descends to a holomorphic map

H : H2/ΓT −→ M ⊂ P(2, 3, 4, 5, 6),

$ 7→
[
J2($) : J3($) : J4($) : J5($) : J6($)

]
.

(2.46)
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The map H in Equation (2.46) extends to an isomorphism between the Satake com-
pactification of H2/ΓT and M given by

H : H2/ΓT
∼=−→ M ⊂ P(2, 3, 4, 5, 6).

Proof. Using Theorem 2.24 and Corollary 2.20 it follows that H′ descends to the
holomorphic mapH as stated. By construction the Satake compactification of H2/ΓT
is given by

(2.47) ProjC
[
J2, J3, J4, J5, J6

]
∼= P(2, 3, 4, 5, 6).

�

3. K3 surfaces associated with double covers of six lines

In this section, we discuss several Jacobian elliptic fibrations on the K3 surface
associated with configurations of six lines `i in P2 with i = 1, . . . , 6, no three of which
are concurrent. The double cover branched along six lines `i with i = 1, . . . , 6 given
in terms of variables z1, z2, z3 of P2 is the solution of

(3.1) z2
4 = `1`2`3`4`5`6

with [z1 : z2 : z3 : z4] ∈ P(1, 1, 1, 3). It is well known that the minimal resolution is a
K3 surface of Picard-rank 16 which we will always denote by Y . In [36] Kloosterman
classified all Jacobian elliptic fibrations on Y , i.e., elliptic fibrations πY : Y → P1

together with a section σ : P1 → Y such that πY ◦ σ = 1. We will construct
explicit Weierstrass models for three of these Jacobian elliptic fibrations which we call
the natural fibration, the base-fiber-dual of the natural fibration, and the alternate
fibration.

3.1. The natural fibration. Configurations of six lines no three of which are concur-
rent have four homogeneous moduli which we will denote by a, b, c, d. These moduli
can be constructed as follows: the six lines `i for 1 ≤ i ≤ 6 can always be brought
into the form

(3.2) `1 = z1, `2 = z2, `3 = z3, `4 = z1 +z2 +z3, `5 = z1 +az2 +bz3, `6 = z1 +cz2 +dz3.

The matrix A defined in Section 2 for this six-line configuration is

(3.3) A =

 1 0 0 1 1 1
0 1 0 1 a c
0 0 1 1 b d

 ,

with Dolgachev-Ortland coordinates given by

(3.4)

t1 = a(d− 1), t2 = b− a, t3 = d− c, t4 = c(b− 1), t5 = b(c− 1),

t6 = d(a− 1), t7 = d− b, t8 = c− a, t9 = ad− bc, t10 = ad− bc− a+ b+ c− d,
R = −abc+ abd+ acd− bcd− ad+ bc.
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The six lines intersect as follows:
(3.5)

`1 `2 `3 `4 `5 `6

`1 − [0 : 0 : 1] [0 : 1 : 0] [0 : 1 : −1] [0 : b : −a] [0 : d : −c]
`2 [0 : 0 : 1] − [1 : 0 : 0] [1 : 0 : −1] [−b : 0 : 1] [−d : 0 : 1]

`3 [0 : 1 : 0] [1 : 0 : 0] − [1 : −1 : 0] [−a : 1 : 0] [−c : 1 : 0]

`4 [0 : 1 : −1] [1 : 0 : −1] [1 : −1 : 0] − [a− b : b− 1 : 1− a] [c− d : d− 1 : 1− c]
`5 [0 : b : −a] [−b : 0 : 1] [−a : 1 : 0] [a− b : b− 1 : 1− a] − [ad− bc : b− d : c− a]

`6 [0 : d : −c] [−d : 0 : 1] [−c : 1 : 0] [c− d : d− 1 : 1− c] [ad− bc : b− d : c− a] −

Setting

(3.6) z1 =
u(u+ 1)(au+ b)(cu+ d)

X − u(au+ b)(cu+ d)
, z2 = u, z3 = 1

in Equation (3.1), it is transformed into the Weierstrass equation

(3.7) Y 2 = X
(
X − 2u

(
µ(u)− ν(u)

))(
X − 2u

(
µ(u) + ν(u)

))
,

with discriminant

(3.8) ∆Y(u) = 28u6µ(u)2
(
µ(u)2 − ν(u)2

)2

and

2(µ− ν) =
(
au+ b

)(
(c− 1)u+ (d− 1)

)
,

2(µ+ ν) =
(
cu+ d

)(
(a− 1)u+ (b− 1)

)
.

(3.9)

In this way, the K3 surfaces associated with the double cover of P2 branched along
the union of six lines, no three of which are concurrent, are equipped with an elliptical
fibration πYnat : Y → P1 with section σ given by the point at infinity and with a fiber
Yu given by the minimal Weierstrass equation (3.7). We call this fibration the natural
fibration. Three two-torsion sections are obvious from the explicit Weierstrass points
in Equation (3.7). The following is immediate:

Lemma 3.1. Equation (3.7) defines a Jacobian elliptic fibration πYnat : Y → P1 with
six singular fibers of type I2, two singular fibers of type I∗0 , and the Mordell-Weil group
of sections MW(πYnat) = (Z/2Z)2.

One checks that the Weierstrass model in Equation (3.7) is minimal if and only if
the configuration of six lines falls into cases (0) through (5) in Definition 2.1, but not
into case (6). In the latter case, the singularities of Equation (3.7) are not canonical
singularities. The following proposition was given in [28]:

Proposition 3.2 ([28]). For generic parameters a, b, c, d, the K3 surface Y has the
transcendental lattice TY ∼= H(2)⊕H(2)⊕ 〈−2〉⊕2.
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Remark 3.3. We choose z1 = 1 as an affine chart for Equation (3.1) with lines given
by Equations (3.2), and the holomorphic two-form dz2∧dz3/z4. After relabelling vari-
ables, the period of the holomorphic two-form for the family of K3 surfaces Y(a, b, c, d)
over a transcendental two-cycle Σ ∈ TY is given by

(3.10)

∫∫
Σ

dz1√
z1

dz2√
z2

1√
(1 + z1 + z2)(1 + az1 + bz2)(1 + cz1 + dz2)

.

We set

α = (α1, α2, α3) =

(
−1

2
,−1

2
,−1

2

)
, β = (β1, β2) =

(
−1

2
,−1

2

)
(3.11)

and

(3.12) P1 = 1 + z1 + z2, P2 = 1 + az1 + bz2, P3 = 1 + cz1 + dz2.

We observe that ∀ i : αi 6∈ Z, ∀ j : βj 6∈ Z, and
∑

i αi +
∑

j βj 6∈ Z, and write the
periods in the form

(3.13) FΣ

(
α, β, {Pi}

∣∣∣ a, b, c, d) =

∫∫
Σ

dz1

z−β11

dz2

z−β22

3∏
i=1

Pαi
i .

This identifies the periods as so called A-hypergeometric functions that satisfy a sys-
tem of linear differential equations known as non-resonant GKZ system [24]. The
particular GKZ system satisfied by the periods in Equation (3.10) is a system of
differential equations of rank six in four variables known as Aomoto-Gel’fand Hyper-
geometric System of Type (3, 6). It was studied in great detail in [48–52].

A basis of the solutions F1, . . . F6 defines a map from the Grassmanian Gr(3, 6;C)
into the projective space P5, more precisely into the domain in P5 cut out by the
Hodge-Riemann relations. The period map is equivariant with respect to the action of
ΓT (1 + i) on the domain and the monodromy group on the image. In fact, the map
[F1 : · · · : F6] ∈ P5 is a multi-valued vector function from the moduli space M(2) to
the period domain acted upon by a monodromy group moving the branching locus of
six lines around. The map F in Equation (2.26) is the inverse of this period mapping.

We obtain a new map by quotienting further by the permutation group S6. The
monodromy group is then generated by reflections and transformations caused by per-
muting the lines in a six-line configuration. The resulting map is the period map for
a family of K3 surfaces X closely related to the K3 surfaces Y discussed in Section 4.

We have the following:

Corollary 3.4. Switching the roles of base and fiber in Equation (3.7) defines a
second Jacobian elliptic fibration π̌Ynat : Y → P1 with 12 singular fibers of type I1, a
fiber of type I4, a fiber of type I8, and MW(π̌Ynat)tor = {I} and rk MW(π̌Ynat) = 4 and
det discr MW(π̌Ynat) = 1/2.

The elliptic fibration appears in the list of all Jacobian elliptic fibrations in [36]. We
call this fibration the base-fiber-dual of the natural fibration.
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Proof. In [14] it was proved that a Weierstrass model of the form given by Equa-
tion (3.7) is equivalent to the genus-one fibration

(3.14) η2 = ν(u)2ξ4 + 2uµ(u) ξ2 + u2,

with one apparent rational point. Since µ, ν are given as polynomials in u in Equa-
tion (3.9), the equation can be rewritten as

(3.15) η2 = A(ξ)u4 +B(ξ)u3 + C(ξ)u2 +D(ξ)u+ E(ξ)2,

where A,B,C,D,E are polynomials in ξ. Because there always is the rational point
(u, η) = (0, E(ξ)), it can be brought into the Weierstrass form

(3.16) y2 = 4x3 − g2(ξ)x− g3(ξ),

with

g2 =
16

3
C(ξ)2 + 64A(ξ)E(ξ)2 − 16B(ξ)D(ξ),

g3 = −64

27
C(ξ)3 +

256

3
A(ξ)C(ξ)E(ξ)2 +

32

3
B(ξ)C(ξ)D(ξ)

− 32 A(ξ)D(ξ)2 − 32B(ξ)2E(ξ)2.

(3.17)

This is a Weierstrass model with 12 singular fibers of type I1, a fiber of type I4,
a fiber of type I8, and MW(π̌Ynat)tor = {I}. In Proposition 3.2 we showed that the
transcendental lattice of the K3 surfaces Y has rank six and is given by

TY ∼= H(2)⊕H(2)⊕ 〈−2〉⊕2.(3.18)

Therefore, the determinant of the discriminant group for the rank-six lattice TY is
det(discrTY) = 26. The root lattice associated with the singular fibers in Equa-
tion (3.16) has rank ten and determinant 25. The claim follows. �

3.2. The alternate fibration. In the list of all possible fibrations on the K3 surface
Y associated with the double cover branched along the union of six lines given in [36]
we find the following fibration which we call the alternate fibration:

Corollary 3.5 ([36]). On the K3 surface Y there is a Jacobian elliptic fibration
πYalt : Y → P1 with six singular fibers of type I2, two singular fibers of type I1, one
singular fiber of type I∗4 , and the Mordell-Weil group of sections MW(πYalt) = Z/2Z.

The alternate fibration on the K3 surface Y can be obtained explicitly from Equa-
tion (3.1). In fact, we obtained the Weierstrass model for this fibration using a
2-neighbor-step procedure applied twice, a method explained in [39], starting with
the natural fibration. The details of this computation will be published in another
forthcoming article [13]. We have the following:

Theorem 3.6. On the K3 surface Y associated with the double cover branched along
six lines, the Jacobian elliptic fibration πYalt : Y → P1 has the Weierstrass equation

(3.19) Y 2 = X
(
X2 − 2B(t)X + B(t)2 − 4A(t)

)
,
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with discriminant

(3.20) ∆Y(t) = 16A(t)
(
B(t)2 − 4A(t)

)2

,

and

B(t) = t3 − 3 J2 t− 2 J3, A(t) = J4 t
2 − J5 t+ J6,(3.21)

where Jk for k = 2, . . . , 6 are the invariants of the configuration of six lines defined
in Equations (2.33).

Proof. The invariants J2, J3, J4, J5, J6 defined by Equations (2.33) are determined by
the symmetric polynomials in terms of the five degree-one invariants t1, t5, t6, t7, t8
which in turn are given in terms of the affine moduli a, b, c, d using Equations (3.4).
These affine moduli a, b, c, d were defined by arranging the six lines to be in the form
of Equation (3.2). On the other hand, the 2-neighbor-step procedure, when applied
twice, gives the Weierstrass model in Equation (3.19) with

(3.22) B(t) = t3 − 3 J ′2 t− 2 J ′3, A(t) = J ′4 t
2 − J ′5 t+ J ′6.

We computed the coefficients J ′i following the same procedure as the one outlined in
[39] for a general Kummer surface using a computer algebra system. At the end of
the computation, the coefficients J ′i for 2 ≤ 6 are obtained directly in terms of the
affine moduli a, b, c, d. The resulting expressions for the coefficients are then given in
Equations (A.2). One easily checks that Ji = J ′i for 2 ≤ i ≤ 6. �

4. The Van Geemen-Sarti partner

To extend the notion of geometric two-isogeny to Picard rank 16, we replaced the
Kummer surfaces by the K3 surface Y associated with the double cover branched
along the union of six lines discussed in Section 3. The Shioda-Inose surface is now
replaced by a K3 surface X introduced by Clingher and Doran in [11]. The K3 surface
occurs as the general member of a six-parameter family of K3 surfaces polarized by
the lattice H ⊕ E7(−1) ⊕ E7(−1). Each K3 surface in the family carries a special
Nikulin involution, called Van Geemen-Sarti involution, such that quotienting by this
involution and blowing up fixed points recovers a double-sextic surface.

4.1. A Six-Parameter Family of K3 Surfaces. Let (α, β, γ, δ, ε, ζ) ∈ C6. We
consider the projective quartic surface Q(α, β, γ, δ, ε, ζ) ⊂ P3(x, y, z, w) defined by
the homogeneous equation:

(4.1) Y2ZW − 4X3Z + 3αXZW2 + βZW3 + γXZ2W − 1
2

(δZ2W2 + ζW4) + εXW3 = 0.

The family in Equation (4.1) was first introduced by Clingher and Doran in [11] as a
generalization of the Inose quartic introduced in [32]. We denote by X (α, β, γ, δ, ε, ζ)
the smooth complex surface obtained as the minimal resolution of Q(α, β, γ, δ, ε, ζ).
We have the following:
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Theorem 4.1. Assume that (γ, δ) 6= (0, 0) and (ε, ζ) 6= (0, 0). Then, the surface
X (α, β, γ, δ, ε, ζ) obtained as the minimal resolution of Q(α, β, γ, δ, ε, ζ) is a K3 sur-
face endowed with a canonical H ⊕ E7(−1)⊕ E7(−1) lattice polarization.

Proof. The conditions imposed on the pairs (γ, δ) and (ε, ζ) ensure that singularities
of Q(α, β, γ, δ, ε, ζ) are rational double points. This fact, in connection with the degree
of Equation (4.1) being four, guarantees that the minimal resolution X (α, β, γ, δ, ε, ζ)
is a K3 surface.

Note that the quartic Q(α, β, γ, δ, ε, ζ) has two special singularities at the following
points:

P1 = [0, 1, 0, 0], P2 = [0, 0, 1, 0].

One verifies that the singularity at P1 is a rational double point of type A9 if ε 6= 0,
and of type A11 if ε = 0. The singularity at P2 is of type A5 if γ 6= 0, and of type
E6 if γ = 0. For a generic sextuple (α, β, γ, δ, ε, ζ), the points P1 and P2 are the only
singularities of Equation (4.1).

As a first step in uncovering the claimed lattice polarization, we introduce the
following three special lines, denoted L1, L2, L3:

X = W = 0, Z = W = 0, 2εX− ζW = Z = 0 .

Note that L1, L2, L3 lie on the quartic in Equation (4.1).
Assume the case γε 6= 0. Then L1, L2, L3 are distinct and concurrent, meeting at

P1. When taking the minimal resolution X (α, β, γ, δ, ε, ζ), one obtains a configuration
of smooth rational curves intersecting according to the dual diagram below.

(4.2)
L3•

a1•
a2•

a3•
a4•

a5•
a6•

a7•
a8•

a9•
L1•

b2•
b3•

b4•

L2•
b1•

b5•

The two sets a1, a2, . . . , a9 and b1, b2, . . . , b5 denote the curves appearing from resolving
the rational double point singularities at P1 and P2, respectively. In the context of
diagram (4.2), the lattice polarization H ⊕ E7(−1)⊕ E7(−1) is generated by:

H = 〈a7, L3 + 2a1 + 3a2 + 4a3 + 2L2 + 3a4 + 2a5 + a6〉
E7 = 〈 L3, a1, a2, a3, L2, a4, a5 〉
E7 = 〈 b5, b4, b3, b2, b1, L1, a9 〉 .



SIX LINE CONFIGURATIONS 23

In the case γ = 0, ε 6= 0, the diagram (4.2) changes to:

(4.3) L3•

a1•
a2•

a3•
a4•

a5•
a6•

a7•
a8•

a9•
L1•

b1•
b2•

b3•
b5•

b6•

L2•
b4•

One obtains an enhanced lattice polarization of type H ⊕ E8(−1)⊕ E7(−1) with:

H = 〈a7, L3 + 2a1 + 3a2 + 4a3 + 2L2 + 3a4 + 2a5 + a6〉
E7 = 〈 L3, a1, a2, a3, L2, a4, a5 〉
E8 = 〈 b6, b5, b4, b3, b2, b1, L1, a9 〉 .

In the case γ 6= 0, ε = 0, the lines L2 and L3 coincide but the rational double point
type at P1 changes from A9 to A11. One obtains rational curves on X (α, β, γ, δ, ε, ζ)
as follows:
(4.4)

a1•
a2•

a3•
a4•

a5•
a6•

a7•
a8•

a9•
a10•

a11•
L1•

b2•
b3•

b4•

L2•
b1•

b5•

This provides a H ⊕ E8(−1)⊕ E7(−1) polarization as follows:

H = 〈a9, 2a1 + 4a2 + 6a3 + 3L2 + 5a4 + 4a5 + 3a6 + 2a7 + a8〉
E8 = 〈 a1, a2, a3, L2, a4, a5, a6, a7 〉
E7 = 〈 b5, b4, b3, b2, b1, L1, a11 〉 .

Finally, in the case γ = ε = 0, the lines L2, L3 coincide and the rational double
point types at P1 and P2 are A11 and E6, respectively. This determines the following
diagram of smooth rational curves on the resolution X (α, β, γ, δ, ε, ζ).
(4.5)

a1•
a2•

a3•
a4•

a5•
a6•

a7•
a8•

a9•
a10•

a11•
L1•

b1•
b2•

b3•
b5•

b6•

L2•
b4•

This determines a lattice polarization of type H ⊕ E8(−1)⊕ E8(−1) polarization as
follows:

H = 〈a9, 2a1 + 4a2 + 6a3 + 3L2 + 5a4 + 4a5 + 3a6 + 2a7 + a8〉
E8 = 〈 a1, a2, a3, L2, a4, a5, a6, a7 〉
E8 = 〈 b6, b5, b4, b3, b2, b1, L1, a11 〉 .
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�

Remark 4.2. The degree-four polarization determined on X(α, β, γ, δ, ε, ζ) by its
quartic definition is described explicitly in the context of diagrams (4.2)-(4.5). For
instance, assuming the case γε 6= 0, one can write a polarizing divisor as:

(4.6) L = L2 + (a1 + 2a2 + 3a3 + 3a4 + 3a5 + · · · 3a9) + 3L1 + (2b1 + 4b2 + 3b3 + 2b4 + b5)

Similar formulas hold in the other three cases.

Diagrams (4.2), (4.3) and (4.4) from the above proof can be nicely augmented. Con-
sider the following complete intersections:

2εX− ζW =
(
3αε2ζ + 2βε3 − ζ3

)
W2 − ε2 (δε− γζ) ZW + 2ε3Y2 = 0

2γX− δW =
(
3αγ2δ + 2βγ3 − δ3

)
ZW2 − γ2 (γζ − δε) W3 + 2γ3Y2Z = 0 .

Assuming appropriate generic conditions, the above equations determine two projec-
tive curves R1, R2, of degrees two and three, respectively. The conic R1 is a (generi-
cally smooth) rational curve tangent to L1 at P2. The cubic R2 has a double point at
P2, passes through P1 and is generically irreducible. When resolving the quartic sur-
face (4.1), these two curves lift to smooth rational curves on X(α, β, γ, δ, ε, ζ), which
by a slight abuse of notation we shall denote by the same symbol. One obtains the
following dual diagrams of rational curves.

Case γ 6= 0, ε 6= 0:

(4.7) L3•
R1•

a1•
a2•

a3•
a4•

a5•
a6•

a7•
a8•

a9•
L1•

b2•
b3•

b4•

L2•
b1•

R2•
b5•

Case γ = 0, ε 6= 0:

(4.8) L3•
R1•

a1•
a2•

a3•
a4•

a5•
a6•

a7•
a8•

a9•
L1•

b1•
b2•

b3•
b5•

b6•

L2•
b4•
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Case γ 6= 0, ε = 0:
(4.9)

a1•
a2•

a3•
a4•

a5•
a6•

a7•
a8•

a9•
a10•

a11•
L1•

b2•
b3•

b4•

L2•
b1•

R2•
b5•

Note that diagrams (4.8) and (4.9) are similar in nature. This is not a fortuitous fact,
as we shall see next.

Proposition 4.3. Let (α, β, γ, δ, ε, ζ) ∈ C6 with (γ, δ) 6= (0, 0) and (ε, ζ) 6= (0, 0).
Then, one has the following isomorphisms of H ⊕ E7(−1)⊕ E7(−1) lattice polarized
K3 surfaces:

(a) X (α, β, γ, δ, ε, ζ) ' X (t2α, t3β, t5γ, t6δ, t−1ε, ζ), for any t ∈ C∗.
(b) X (α, β, γ, δ, ε, ζ) ' X (α, β, ε, ζ, γ, δ).

Proof. Let q be a square root of t. Then, the projective automorphism given by

(4.10) P3 −→ P3, [X : Y : Z : W] 7→ [ q8X : q9Y : Z : q6W ]

extends to an isomorphism X (α, β, γ, δ, ε, ζ) ' X (t2α, t3β, t5γ, t6δ, t−1ε, ζ) preserving
the lattice polarization. Similarly, the birational involution:

(4.11) P3 99K P3, [X : Y : Z : W] 7→ [ XZ : YZ,W2, ZW ] .

extends to an isomorphism between X (α, β, γ, δ, ε, ζ) and X (α, β, γ, δ, ζ, ε). �

4.2. Elliptic Fibrations on X . By the nature of the H ⊕E7(−1)⊕E7(−1) lattice
polarizations, K3 surfaces X (α, β, γ, δ, ε, ζ) carry interesting elliptic fibrations with
sections. As discussed in [11], there are four non-isomorphic elliptic fibrations with
section; three will be important for the considerations of this article.

4.2.1. The standard fibration. The first elliptic fibration with section is canonically
associated with the lattice polarization, as the classes of its fiber and section span
the hyperbolic factor in H ⊕E7(−1)⊕E7(−1). Following the terminology of [10], we
shall refer to this elliptic fibration as standard and denote it by

πXstd : X (α, β, γ, δ, ε, ζ)→ P1 .

One obtains the fibers of πXstd by considering the pencil of planes in P3 that con-
tain the line L1, where L is the degree-four canonical hyperplane polarization of
X (α, β, γ, δ, ε, ζ).

It is obtained from residual intersections with the pencil of planes containing the
line Z = W = 0. Setting

(4.12) X = sx, Y = y, W = 4 s3, Z = 4 s4,

in Equation (4.1), we obtain the Weierstrass equation

(4.13) Xs : y2 = x3 + f(s)x+ g(s),
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with discriminant

(4.14) ∆X (s) = 4 f(s)3 + 27 g(s)2 = −64 s9P (s)

and

(4.15) f(s) = 4 s3
(
γ s2 − 3α s+ ε

)
, g(s) = −8 s5

(
δ s2 + 2 β s+ ζ

)
,

and

(4.16)

P (s) = 4 γ3s6 − 9 (4αγ2 − 3 δ2) s5 + 12 (9α2γ + 9 βδ + γ2ε) s4

− 18 (6α3 + 4αγε− 6 β2 − 3 δζ) s3 + 12 (9α2ε+ 9 βζ + γε2) s2

− 9 (4αε2 − 3 ζ2) s+ 4 ε3.

In this way, we obtain an elliptically fibered K3 surface πXstd : X (α, β, γ, δ, ε, ζ) → P1

with section given by the point at infinity in each fiber Xs and minimal Weierstrass
equation (4.13). The fibration has singularities of Kodaira type III∗ over s = 0 and
s =∞. The following lemma is immediate:

Lemma 4.4. Equation (4.13) is a Jacobian elliptic fibration πXstd : X (α, β, γ, δ, ε, ζ)→
P1 with six singular fibers of type I1, two singular fibers of type III∗, and the Mordell-
Weil group of sections MW(πXstd) = {I}.

Application of Tate’s algorithm shows immediately:

Lemma 4.5. We have the following:

• If ε 6= 0, there is a singular fiber of Kodaira type III∗ at s = 0. Otherwise, it
is a singular fiber of Kodaira type II∗.
• If γ 6= 0, there is a singular fiber of Kodaira type III∗ at s =∞. Otherwise,

it is a singular fiber of Kodaira type II∗.

4.2.2. The alternate fibration. Another elliptic fibration with section is obtained from
residual intersections with the pencil of planes containing the line X = W = 0.
Setting

(4.17) X = t x3, Y =
√

2x2y, W = 2x3, Z = 2x2(−εt+ ζ),

in Equation (4.1), determines a second Jacobian elliptic fibration πXalt : X → P1 with
fiber Xt given by the Weierstrass equation

(4.18) Xt : y2 = x
(
x2 +B(t)x+ A(t)

)
,

with discriminant

(4.19) ∆X (t) = A(t)2
(
B(t)2 − 4A(t)

)
and

A(t) = (γt− δ)(εt− ζ) = γεt2 − (γζ + δε)t+ δζ,

B(t) = t3 − 3αt− 2β.
(4.20)
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Thus, we obtain an elliptically fibered K3 surface πXalt : X (α, β, γ, δ, ε, ζ)→ P1 which
we call the alternate fibration, with section given by the point at infinity in each fiber
Xt and minimal Weierstrass equation (4.18). It has a two-torsion section (x, y) =
(0, 0), two singularities of Kodaira type I2 over A(t) = 0, and a singularity of Kodaira
type I∗8 over t =∞. Therefore, the following is immediate:

Lemma 4.6. Equation (4.18) defines a Jacobian elliptic fibration πXalt : X → P1 with
six singular fibers of type I1, two singular fibers of type I2, one singular fibers of type
I∗8 , and the Mordell-Weil group of sections MW(πXalt) = Z/2Z.

Setting

(4.21) x = T, y =
Y

T 2
, t =

X − 1
3
γεT

T 2
,

in Equation (4.18) determines another Jacobian elliptic fibration π̌Xalt : X → P1 with
fiber XT given by the minimal Weierstrass equation

(4.22) XT : Y 2 = X3 + f̌(T )X + ǧ(T ),

with discriminant

(4.23) ∆X (T ) = 4 f̌(T )3 + 27 ǧ(T )2

and

f̌(T ) =− 1

3
T 2
(

9αT 2 + 3(γζ + δε)T + (γε)2
)
,

ǧ(T ) =
1

27
T 3
(

27T 4 − 54 β T 3 + 27 (αγε+ δζ)T 2

+ 9 γε (δε+ γζ)T + 2(γε)3
)
.

Thus, we obtain a Jacobian elliptic fibration π̌Xalt : X (α, β, γ, δ, ε, ζ) → P1 which we
call the base-fiber-dual of the alternate fibration. We have the following:

Lemma 4.7. Equation (4.22) defines a Jacobian elliptic fibration π̌Xalt : X → P1 with
6 singular fibers of Kodaira type I1, a singular fibers of Kodaira type I∗2 , and a singular
fiber of Kodaira type II∗, and the Mordell-Weil group of sections MW(π̌Xalt) = {I}.

4.3. Van Geemen-Sarti involutions and moduli. Equation (4.18) is a minimal
Weierstrass model for the Jacobian elliptic fibration πXalt : X → P1 with fiber Xt given
by

(4.24) Xt : y2 = x
(
x2 +B(t)x+ A(t)

)
.

The singular fibers of X are located over the support of ∆X = A(t)2(B(t)2 − 4A(t)).
A smooth section σ is given by the point at infinity in each fiber. A two-torsion
section τ is given by τ : t 7→ (x, y) = (0, 0) such that 2τ = σ. Thus, we have
Z/2Z ⊂ MW(πXalt). The holomorphic two-form is given by ωX = dt ∧ dx/y.
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A Nikulin involution on a K3 surface X is a symplectic involution X : X → X , i.e.,
an involution with ∗X (ω) = ω. If a Nikulin involution exists on a K3 surface X , then it
necessarily has eight fixed points, and the minimal resolution of the quotient surface

is another K3 surface Y = ̂X/{1, X} [59]. Special Nikulin involution are obtained in
our situation: the fiberwise translation by the two-torsion section acting by p 7→ p+τ
for all p ∈ Xt extends to a Nikulin involution X on X , called Van Geemen-Sarti
involution. A computation shows that the involution is, on each fiber Xt, given by

(4.25) Xt : (x, y) 7→ (x, y) + (0, 0) =

(
A(t)

x
,−A(t) y

x2

)
for p 6∈ {σ, τ} and interchanges σ and τ . It is also easy to check that X leaves the
holomorphic two-form ωX invariant. Using the smooth two-isogeneous elliptic curve
Xt/{σ, τ} for each smooth fiber, we obtain the new K3 surface Y equipped with an
elliptic fibration πYalt : Y → P1 with section Σ as the Weierstrass model with fiber Yt
given by

(4.26) Yt : Y 2 = X
(
X2 − 2B(t)X +B(t)2 − 4A(t)

)
.

The singular fibers of Y are located over the support of ∆Y = 16A(t) (B(t)2−4A(t))2.
The holomorphic two-form on Y is ωY = dt ∧ dX/Y . The fiberwise isogeny given by

(4.27) Φ̂|Xt : (x, y) 7→ (X, Y ) =

(
y2

x2
,
(x2 − A(t))y

x2

)
extends to a degree-two rational map Φ̂ : X 99K Y . We observe that the K3 surface
Y satisfies Z/2Z ⊂ MW(πYalt) with a two-torsion section T given by T : t 7→ (X, Y ) =
(0, 0). Therefore, the surface Y is itself equipped with a VanGeemen-Sarti involution
Y , namely

(4.28) Yt : (X, Y ) 7→ (X, Y ) + (0, 0) =

(
B(t)2 − 4A(t)

X
,−(B(t)2 − 4A(t))Y

X2

)
.

The involution Y leaves the holomorphic two-form ωY invariant and covers the map
Φ extending the fiberwise dual isogeny P 7→ P + T for all P ∈ Yt given by

(4.29) Φ|Yt : (X, Y ) 7→ (x, y) =

(
Y 2

4X2
,
Y (X2 −B(t)2 + 4A(t))

8X2

)
.

The situation is summarized in the following diagram:

(4.30) XX
((

πX
alt   

Φ̂

33 Y Y
ww

πY
alt��

Φ
ss

P1

We refer to such K3 surfaces X and Y as Van Geemen-Sarti partners. Therefore,
the family of K3 surfaces Y associated with the double cover of the projective plane
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branched along the union of six lines equipped with the alternate fibration in Equa-
tion (3.19) and the Clingher-Doran family of K3 surfaces equipped with the alternate
fibration in Equation (4.18) constitute such Van Geemen-Sarti partners; see [14, 15].
The notion of Van Geemen-Sarti partners is more general than the one of a Shioda-
Inose structure. We make the following:

Remark 4.8. In Picard rank 17, X carries a Shioda-Inose structure [10, 11]. The

quotient map Φ̂ : X 99K Y = Kum(A) induces a Hodge isometry TX (2) ∼= TKum(A). In

Picard rank 16, the map Φ̂ : X 99K Y in Equation (4.30) does NOT induce a Hodge
isometry. In Proposition 3.2 the transcendental lattice TY of the family of K3 surfaces
Y, and in Proposition 4.3 the lattice polarization of the family of K3 surfaces X were
determined. For generic parameters, we have

TX = H ⊕H ⊕ 〈−2〉⊕2,

TY = H(2)⊕H(2)⊕ 〈−2〉⊕2.
(4.31)

Hence, it is no longer the case that TX (2) ∼= TY .

In the context of the above results, we have the following:

Lemma 4.9. Any H ⊕ E7(−1) ⊕ E7(−1)-polarized K3 surface X given by Equa-
tion (4.1) is the Van Geemen-Sarti partner of a K3 surface Y given in Theorem 3.6
associated with a six-line configuration in P2 with invariants Jk for k = 2, . . . , 6. In
particular, we have

(4.32) [J2 : J3 : J4 : J5 : J6] = [α : β : γ · ε : γ · ζ + δ · ε : δ · ζ]

as points in the four-dimensional weighted projective space P(2, 3, 4, 5, 6).

Proof. The proof follows directly by comparing Equation (4.26) – obtained by fiber-
wise two-isogeny from Equation (4.18) – with Equation (3.19). It then follows that
A(t) = A(t) and B(t) = B(t), and the claim follows. �

We also have the following:

Lemma 4.10. The isomorphism classes in the family of K3 surfaces X (α, β, γ, δ, ε, ζ)
in Equation (4.1) are parametrized by the four-dimensional open complex variety M
defined in Equation (2.40).

Proof. As a consequence of Theorem 4.1, one has an isomorphism of polarized K3
surfaces

(4.33) X (α, β, γ, δ, ε, ζ) ' X (α, β, tγ, tδ, t−1ε, t−1ζ)

for any t ∈ C∗. The conditions imposed on the pairs (J3, J4, J5) 6= (0, 0, 0) ensure
that singularities of Q(α, β, γ, δ, ε, ζ) are rational double points. �

Combing the results of Lemma 4.9 and Lemma 4.10 we obtain the following:

Corollary 4.11. The moduli space M in Equation (2.40) is the coarse moduli space
of K3 surfaces endowed with H ⊕ E7(−1)⊕ E7(−1) lattice polarization.
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We have the immediate consequence:

Corollary 4.12. The loci of the singular fibers in the alternate fibration on the K3
surface X are determined by the Satake sextic in Section 2.2. That is, if $ ∈ M is
the point in the moduli space associated with the six-line configuration defining Y and
X , the loci of the fibers of Kodaira type I1 and I2 are given by S = B2 − 4A = 0 and
A = 0, respectively, with

B = t3 − 3 J2($) t− 2 J3($), A = J4($) t2 − J5($) t+ J6($),(4.34)

where Jk($) are the modular forms of weights 2k for k = 2, . . . , 6 in Theorem 2.24
generating the ring of modular forms relative to ΓT .

Next, we describe what confluences of singular fibers appear in the three Jacobian
elliptic fibrations determined above. We discuss several cases for each fibration where
the labelling corresponds to the one used to characterize six-line configurations in
Definition 2.1, Lemma 2.20, and Corollary 2.22. We have the following:

Lemma 4.13. The Weierstrass model in Equation (4.18) associated with a six-line
configuration in P2 with invariants Jk for k = 2, . . . , 6 satisfies the following:

(0) In the generic case, there are singular fibers I∗8 + 2 I2 + 6 I1.
(0b) If Res(A,B) = 0, one I1 and one I2 fiber coalesce to a III fiber.
(1) If J4 = 0, one I2 and the I∗8 fiber coalesce to an I∗10 fiber.
(2) If Disc(A) = 0, two I2 fibers coalesce to an I4 fiber.

(2b) If Disc(S) = 0, two I1 fibers coalesce to an I2 fiber.
(3+4) If Disc(A) = Res(A,B) = 0, two I1 and two I2 fibers coalesce to an I∗0 fiber.

(5) If J4 = J5 = 0, two I2 fibers and the I∗8 fiber coalesce to an I∗12 fiber.

Proof. The coefficients of the Weierstrass model in Equation (4.18) can be written
in terms of modular forms; this is Equation (6.17). The proof follows from the
application of Tate’s algorithm. Notice that J4 = Disc(A) = 0 is equivalent to
J4 = J5 = 0; and Disc(A) = Res(A,B) = 0 implies Disc(S) = 0. �

We also have the following:

Lemma 4.14. The Weierstrass model in Equation (4.22) associated with a six-line
configuration in P2 with invariants Jk for k = 2, . . . , 6 satisfies the following:

(0) In the generic case, there are singular fibers II∗ + 6 I1 + I∗2 .
(0b) If Res(f̌ T−2, ǧ T−3) = 0, two I1 fibers coalesce to a II fiber.
(1) If J4 = 0, one I1 and the I∗2 fiber coalesce to a III∗ fiber.
(2) If Disc(A) = 0, one I1 and the I∗2 fiber coalesce to an I∗3 fiber.

(2b) If Disc(S) = 0, two I1 fibers coalesce to an I2 fiber.
(3+4) If Disc(A) = Res(A,B) = 0, two I1 and the I∗2 fiber coalesce to an I∗4 fiber.

(5) If J4 = J5 = 0, two I1 fibers and the I∗2 fiber coalesce to a II∗ fiber.
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Proof. The coefficients of the Weierstrass model in Equation (4.22) can be written
in terms of modular forms; this is Equation (6.8). The proof then follows from the
application of Tate’s algorithm. �

Similarly, one proves the following:

Lemma 4.15. The Weierstrass model in Equation (4.13) associated with a six-line
configuration in P2 with invariants Jk for k = 2, . . . , 6 satisfies the following:

(0) In the generic case, there are singular fibers III∗ + 6 I1 + III∗.
(0b) If Res(fs−2, gs−5) = 0, two I1 fibers coalesce to a II fiber.
(1) If J4 = 0, one I1 and one III∗ fiber coalesce to a II∗ fiber.

(2b) If Disc(S) = 0, two I1 fibers coalesce to an I2 fiber.
(5) If J4 = J5 = 0, two pairs of I1 and III∗ fiber coalesce each to a II∗ fiber.

Notice that cases in which two I1’s coalesce to form a fiber of type II or one I1

fiber and one I2 fiber coalesce to a fiber of type III – a case we labelled (0b), adding
to cases (0) through (5) in Definition 2.1 – do not affect the lattice polarization. An
immediate consequence is the following:

Corollary 4.16. The family of K3 surfaces in Equation (4.1) satisfies the following:

(0) For a generic point in M, there is a H ⊕ E7(−1)⊕ E7(−1) polarization.
(1) If J4 = 0, the polarization extends to H ⊕ E8(−1)⊕ E7(−1).
(2) if Disc(A) = 0, the polarization extends to H ⊕ E8(−1)⊕D7(−1).

(2b) If Disc(S) = 0, the polarization extends to H ⊕ E7(−1)⊕ E7(−1)⊕ 〈−2〉.
(3+4) If Disc(A) = Res(A,B) = 0, the polarization extends to H⊕E8(−1)⊕D8(−1).

(5) If J4 = J5 = 0, the polarization extends to H ⊕ E8(−1)⊕ E8(−1).

Proof. The presence of a singular fiber of Kodaira type II∗ in the fibration given by
Equation (4.22) implies that we have, in all cases, a Mordell-Weil group of sections
MW(π̌Xalt) = {I} [63, Lemma 7.3]. Therefore, the lattice polarization coincides with
the trivial lattice generated by the singular fibers extended by H generated by the
classes of the smooth fiber and the section of the elliptic fibration. �

5. Specialization to six lines tangent to a conic

In this section we consider the specialization of the generic six-line configuration
when the six lines are tangent to a common conic. Such a configuration has three
moduli which we will denote by λ1, λ2, λ3. It follows from [14, Prop. 5.13] that the
lines can be brought into the form

(5.1)

`1 : z1 = 0,
`2 : z2 = 0,
`3 : z1 + z2 − z3 = 0,
`4 : λ2

1 z1 + z2 − λ1z3 = 0,
`5 : λ2

2 z1 + z2 − λ2z3 = 0,
`6 : λ2

3 z1 + z2 − λ3z3 = 0,
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where λi 6= 0, 1,∞ and λi 6= λj for all i 6= j. We have the following:

Lemma 5.1. The six lines in Equation (5.1) are tangent to C : z2
3 − 4z1z2 = 0.

Proof. It is easy to prove that the intersection of the conic C : z2
3 − 4z1z2 with any of

the six lines `i for 1 ≤ i ≤ 6 in Equation (5.1) yields a root of order two, that is, a
point of tangency. �

The following lemma is immediate:

Lemma 5.2. For a configuration of six lines tangent to a conic, the K3 surface Y
satisfies the following:

(1) Equation (3.7) is a Jacobian elliptic fibration πYnat : Y → P1 with 6 singular
fibers of type I2, two singular fibers of type I∗0 , and the Mordell-Weil group of
sections MW(πYnat) = (Z/2Z)2 + 〈1〉.

(2) Equation (3.19) is a Jacobian elliptic fibration πYalt : Y → P1 with 6 singular
fibers of type I2, one fiber of type I∗5 , one fiber of type I1, and a Mordell-Weil
group of sections MW(πYalt) = Z/2Z.

Proof. The proof of (1) was given in [14, Prop. 5.13]. The proof of (2) was given in
[43, Prop. 9]. �

Lemma 5.3. For a configuration of six lines tangent to a conic, the K3 surface Y is
the Kummer surface Kum(Jac C) of the principally polarized abelian surface Jac(C),
i.e., the Jacobian variety of a generic genus-two curve C. In particular, the curve C
is given in Rosenhain normal form as

(5.2) C : Y 2 = F (X) = X(X − 1)(X − λ1)(X − λ2)(X − λ3).

Proof. All inequivalent elliptic fibrations on a generic Kummer surface where deter-
mined explicitly by Kumar in [39]. In fact, Kumar computed elliptic parameters
and Weierstrass equations for all twenty five different fibrations that appear, and
analyzed the reducible fibers and Mordell-Weil lattices. Equation (3.7) is the Weier-
strass model of the elliptic fibration (7) in the list of all possible elliptic fibrations
in [39, Thm. 2]. �

The ordered tuple (λ1, λ2, λ3) determines a point in the moduli space of genus-
two curves together with a level-two structure, and, in turn, a level-two structure on
the corresponding Jacobian variety, i.e., a point in the moduli space of principally
polarized abelian surfaces with level-two structure

(5.3) A2(2) = H2/Γ2(2),

where Γ2(2) is the principal congruence sub-group of level two of the Siegel modular
group Γ2 = Sp4(Z). In turn, the Rosenhain invariants generate the function field
C(λ1, λ2, λ3) of A2(2). For a Jacobian variety with level-two structure corresponding
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to τ ∈ A2(2), we have six odd theta characteristics and ten even theta characteristics;
see [8, 61] for details. We denote the even theta characteristics by

ϑ1 =

[
0 0

0 0

]
, ϑ2 =

[
0 0
1
2

1
2

]
, ϑ3 =

[
0 0
1
2 0

]
, ϑ4 =

[
0 0

0 1
2

]
, ϑ5 =

[
1
2 0

0 0

]
,

ϑ6 =

[
1
2 0

0 1
2

]
, ϑ7 =

[
0 1

2

0 0

]
, ϑ8 =

[
1
2

1
2

0 0

]
, ϑ9 =

[
0 1

2
1
2 0

]
, ϑ10 =

[
1
2

1
2

1
2

1
2

]
.

and write

(5.4) ϑi(τ) instead of ϑ

[
a(i)

b(i)

]
(τ) with i = 1, . . . , 10,

and ϑi = ϑi(0). Fourth powers of theta constants are modular forms of A2(2) and
define the Satake compactification of A2(2) given by Proj[ϑ4

1 : · · · : ϑ4
10].

The three λ-parameters in the Rosenhain normal (5.2) can be expressed as ratios of
even theta constants by Picard’s lemma. There are 720 choices for such expressions
since the forgetful map, i.e., forgetting the level-two structure, is a Galois covering of
degree 720 = |S6| since S6 acts on the roots of C by permutations. Any of the 720
choices may be used, we chose the one from [29]:

Lemma 5.4. If C is a non-singular genus-two curve with period matrix τ for Jac(C),
then C is equivalent to the curve (5.2) with Rosenhain parameters λ1, λ2, λ3 given by

(5.5) λ1 =
ϑ2

1ϑ
2
4

ϑ2
2ϑ

2
3

, λ2 =
ϑ2

4ϑ
2
7

ϑ2
2ϑ

2
9

, λ3 =
ϑ2

1ϑ
2
7

ϑ2
3ϑ

2
9

.

Conversely, given three distinct complex numbers (λ1, λ2, λ3) different from 0, 1,∞
there is complex abelian surface A with period matrix [I2|τ ] such that A = Jac(C)
where C is the genus-two curve with period matrix τ .

Proof. A proof can be found in [61, Lemma 8]. �

We also have the following:

Lemma 5.5. The following equations relate theta functions and branch points:

(5.6)

ϑ4
1 = κλ1λ3(λ2 − 1)(λ3 − λ1) ϑ4

2 = κλ3(λ2 − λ1)(λ3 − 1)

ϑ4
3 = κλ2(λ2 − 1)(λ3 − λ1) ϑ4

4 = κλ1λ2(λ2 − λ1)(λ3 − 1)

ϑ4
5 = κλ2(λ1 − 1)(λ3 − λ1)(λ3 − 1) ϑ4

6 = κλ3(λ1 − 1)(λ2 − 1)(λ2 − λ1)

ϑ4
7 = κλ2λ3(λ1 − 1)(λ3 − λ2) ϑ4

8 = κλ1(λ2 − 1)(λ3 − 1)(λ3 − λ2)

ϑ4
9 = κλ1(λ1 − 1)(λ3 − λ2), ϑ4

10 = κ (λ2 − λ1)(λ3 − λ1)(λ3 − λ2),

where κ 6= 0 is a non-zero constant.

Proof. The proof follows immediately using Thomae’s formula. �

We can now express the invariants ti in terms of theta functions:



34 A. CLINGHER, A. MALMENDIER, AND T. SHASKA

Proposition 5.6. For a configuration of six lines tangent to a conic associated with
a genus-two curve C with level-two structure, the period matrix τ ∈ A2(2) determines
a point $ ∈ H2/ΓT (1 + i) such that

(5.7)
[
t1($) : · · · : t10($)

]
=
[
ϑ4

1(τ) : ϑ4
2(τ) : · · · : ϑ4

10(τ)
]
∈ P9, R = 0.

Proof. For the lines in Equations (5.1) we compute the period matrix τ for Jac(C)
using Lemma (5.4). Setting $ = τ yields a T -invariant point in H2/ΓT (1 + i). By
construction, the modular forms θ2

i ($) equal ti for 1 ≤ i ≤ 10 and can be computed
directly from Equations (2.1) for the lines in Equations (5.1). On the other hand, we
can also compute the fourth powers of theta functions directly using Equations (5.6)
to confirm Equation (5.7). �

Remark 5.7. Proposition 5.6 is a special case of a statement in [48, Lemma 2.1.1(vi)]
where it was shown that under the restriction to H2/Γ2(2) we have θi($) = ϑ2

i (τ).

For the Siegel three-fold A2 = H2/Γ2, i.e., the set of isomorphism classes of prin-
cipally polarized abelian surfaces, the even Siegel modular forms of A2 form a poly-
nomial ring in four free generators of degrees 4, 6, 10 and 12 usually denoted by
ψ4, ψ6, χ10 and χ12, respectively. Igusa showed in [30] that for the full ring of modular
forms, one needs an additional generator χ35 which is algebraically dependent on the
others. In fact, its square is a polynomial in the even generators given in [30, p. 849].

Let I2, I4, I6, I10 denote Igusa invariants of the binary sextic Y 2 = F (X) as defined
in [47, Sec. 2.3]. Igusa [30, p.848] proved that the relation between the Igusa invariants
of a binary sextic Y 2 = F (X) defining a genus-two curve C with period matrix τ for
Jac(C) and the even Siegel modular forms are as follows:

I2(F ) = −23 · 3 χ12(τ)

χ10(τ)
,

I4(F ) = 22 ψ4(τ) ,

I6(F ) = −23

3
ψ6(τ)− 25 ψ4(τ)χ12(τ)

χ10(τ)
,

I10(F ) = −214 χ10(τ) .

(5.8)

Conversely, the point [I2 : I4 : I6 : I10] ∈ P(2, 4, 6, 10) in weighted projective space
equals

(5.9)
[
2332χ12 : 2232ψ4χ

2
10 : 2332

(
12ψ4χ12 + ψ6χ10

)
χ2

10 : 22χ6
10

]
.

We have the following:

Proposition 5.8. For a configuration of six lines tangent to a conic associated with
the binary sextic Y 2 = F (X) defining a genus-two curve C, the period matrix τ



SIX LINE CONFIGURATIONS 35

determines a point $ ∈ H2/ΓT such that
(5.10)[

J2($) : J3($) : J4($) : J5($) : J6($)
]

=
[
ψ4(τ) : ψ6(τ) : 0 : 21235χ10(τ) : 21236χ12(τ)

]
=
[

1
4
I4(F ) : 1

8
(I2I4 − 3I6)(F ) : 0 : −243

4
I10(F ) : 243

32
I2I10(F )

]
as points in P(2, 3, 4, 5, 6). The discriminant of the Satake sextic restricts to

(5.11) Disc(S) = 264330χ
2
35(τ)

χ10(τ)
.

Proof. For the lines in Equations (5.1) we compute the period matrix τ for Jac(C)
using Lemma (5.4). Setting $ = τ and forgetting the level-two structure, yields a
T -invariant point in H2/ΓT . By construction, the modular forms Jk($) equal Jk
for 2 ≤ k ≤ 6 and can be computed directly from Equations (2.32) for the lines in
Equations (5.1). On the other hand, we can compute the Igusa invariants I2, I4, I6, I10

of the binary sextic Y 2 = F (X) as defined in [47, Sec. 2.3] for the genus-two curve (5.2)
to confirm Equation (5.10). We then use Equation (5.9) to convert to expressions in
terms of ψ4, ψ6, χ10 and χ12. �

To summarize, when the six lines are tangent to a conic, the K3 surface Y becomes
the Kummer surface Kum(Jac C) of the Jacobian variety Jac(C) of a generic genus-
two curve C. In [11, 12] it was proved that the K3 surface X in turn is the Shioda-
Inose surface SI(Jac C), i.e., a K3 surface which carries a Nikulin involution such that
quotienting by this involution and blowing up the fixed points, recovers the Kummer
surface Y and the rational quotient map of degree two induces a Hodge isometry1

between the transcendental lattices TX (2)2 and TKum(Jac C). In particular, the Shioda-
Inose surface X and the Kummer surface Kum(Jac C) have Picard rank greater or
equal to 17. Proposition 5.8 then has the following corollary:

Corollary 5.9. Configurations of six lines tangent to a conic give rise to a three-
parameter family of Kummer surfaces Kum(Jac C) of the Jacobian varieties Jac(C)
of generic genus-two curves C. Moreover, the corresponding three-parameter family
of Shioda-Inose surfaces SI(Jac C) associated with Kum(Jac C) is obtained by setting
ε = 0 and ζ = 1 in Equation (4.1).

We also have the following:

Corollary 5.10. Along the locus J4 = 0, the lattice polarization of the K3 surfaces
X (α, β, γ, δ, ε = 0, ζ = 1) extends to a canonical H ⊕ E8(−1)⊕ E7(−1) lattice polar-
ization.

1A Hodge isometry between two transcendental lattices is an isometry preserving the Hodge
structure.

2The notation TX (2) indicates that the bilinear pairing on the transcendental lattice TX is mul-
tiplied by 2.
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Proof. It was proved in [11] that the family in Equation (4.1) with ε = 0, ζ = 1
is endowed with a canonical H ⊕ E8(−1) ⊕ E7(−1) lattice polarization. They also
found the parameters (α, β, γ, δ) in terms of the standard even Siegel modular forms
ψ4, ψ6, χ10, χ12 (cf. [29]) given by

(5.12) (α, β, γ, δ) =
(
ψ4, ψ6, 2

1235 χ10, 2
1236 χ12

)
,

which agrees with Equation (5.10) and Equation (4.32). �

The different Jacobian elliptic fibrations, the Satake sextic, and further confluences
of singular fibers were investigated in [43,47].

6. Relation to string theory

Using the results from Section 2 through Section 4, the goal for the remainder of
this article is to determine the duality map (and thus the quantum-exact effective
interactions) between a particular dual F-theory/heterotic string pair in eight space-
time dimensions after restriction to a natural four-dimensional sub-space in the full
eighteen dimensional moduli space. In fact, we will be restricting to the sub-space,
which describes the partial higgsing of the gauge algebra g = e8 ⊕ e8 to e7 ⊕ e7

3 of
the associated low energy effective eight-dimensional supergravity theory, and then
establish the F-theory/heterotic string correspondence explicitly.

We let L2,4 be the lattice of signature (2, 4) which is the orthogonal complement
of E7(−1)⊕E7(−1) in the unique integral even unimodular lattice Λ2,18 of signature
(2, 18), which is

(6.1) Λ2,18 = H ⊕H ⊕ E8(−1)⊕ E8(−1) .

By insisting that the Wilson lines values associated to the E7(−1) ⊕ E7(−1) sub-
lattice are trivial, we restrict to heterotic vacua parameterized by the quotient of the
symmetric space4 for O(2, 4) by the automorphism group O(L2,4), i.e., the space

(6.3) D2,4/O(L2,4).

The space D2,4 is also known as bounded symmetric domain of type IV . An eight-
dimensional effective theory for the heterotic string compactified on T2 has a complex
scalar field which then takes values in the Narain space (6.3); see [56]. In the large
volume limit, the space (6.3) decomposes as a product of spaces parameterizing the
Kähler and complex structures on T2 as well as two complex Wilson line expec-
tation values around the two generators of π1(T2); see [57] for details. However,
the decomposition is not preserved when the moduli vary arbitrarily. Families of

3As we shall see our methods also works for the heterotic string with gauge algebra g = so(32)
restricted to so(24)⊕ su(2)⊕2

4By Dp,q we denote the symmetric space for O(p, q), i.e.,

(6.2) Dp,q = (O(p)×O(q))\O(p, q).
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heterotic models employing the full O(L2,4) symmetry are therefore considered non-
geometric compactifications, because the Kähler and complex structures on T2, and
the Wilson line values, are not distinguished under the O(L2,4)-equivalences but in-
stead are mingled together. We further restrict to a certain index-two sub-group
O+(L2,4) ⊂ O(L2,4) in the construction above with the corresponding degree-two
cover given by

(6.4) D2,4/O
+(L2,4).

The group O+(L2,4) is the maximal sub-group whose action preserves the complex
structure on the symmetric space, and thus is the maximal sub-group for which
modular forms are holomorphic. Therefore, the space (6.4 ) is the natural sub-space
of the moduli space of non-geometric heterotic models whose quantum-exact effective
heterotic description is geometrically captured by the ring of holomorphic modular
forms on the bounded symmetric domain of type IV . These heterotic theories on a
torus T2 have two complex moduli and two non-vanishing complex Wilson lines.

On the side of F-theory, the above restriction to the moduli space in Equation (6.4)
should correspond to the K3 surfaces admitting a H ⊕ E7(−1) ⊕ E7(−1) lattice po-
larization. The H summand in the lattice polarization is generated by the classes of
the smooth fiber and the section of the elliptic fibration and contains a pseudo-ample
class. The universal family of such K3 surfaces is the Clingher-Doran family of K3
surfaces in Equation (4.1). We determined equations for three important elliptic fi-
brations with sections on these K3 surfaces in Theorem 4.1 and Lemmas 4.4, 4.6, 4.7.
We also identified the coarse moduli space M of the Clingher-Doran family to be the
quotient space of H2 by the modular group ΓT ; see Theorem 2.24 and Corollary 4.11.
As we will show, the ring of modular forms of even characteristic relative to ΓT coin-
cides with the ring of modular forms on the bounded symmetric domain of type IV .
Therefore, we will have established a particular dual F-theory/heterotic string pair.

We will carry out the following steps: (1) we will prove in Section 6.2 that the
function field of the Narain moduli space of quantum-exact heterotic string compact-
ifications with two non-vanishing Wilson lines coincides with the ring of modular
forms relative to ΓT of even characteristic constructed in Theorem 2.24; (2) we will
then provide Weierstrass models, given in Equation (6.8) and Equation (6.17), that
define two elliptic fibrations with section on K3 surfaces with H ⊕E7(−1)⊕E7(−1)
lattice polarization, with the coefficients in the equation being modular forms relative
to ΓT of even characteristic (in Section 6.2 and Section 6.5). These two Weierstrass
equations are the F-theory models dual to non-geometric vacua of the e8 ⊕ e8 and
so(32) heterotic string, respectively. The unbroken gauge algebra is either e7 ⊕ e7 or
so(24) ⊕ su(2)⊕2 ensuring that two Wilson line expectation values are non-zero. (3)
In Section 6.3 we will prove that our F-theory models can be used to construct su-
persymmetric families of non-geometric heterotic compactifications. This is of great
importance for building new non-geometric compactifications of the heterotic string
by further compatifying to lower space-time dimensions. (4) In Section 6.4 we derive
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a condition for the F-theory models dual to the e7 ⊕ e7 heterotic string to consis-
tently admit the simpler (but naively expected) elliptic fibration with two fibers of
Kodaira type III∗ and a trivial Mordell-Weil group. We find that conditions similar
to equations governing global and local anomaly cancellation ensure that pointlike
instantons are avoided and the elliptic fibration extends across (a double cover of)
the parameter space. (5) Finally, in Section 6.6 we elaborate on the impact of these
applications.

6.1. F-theory and F-theory/heterotic string duality. F-theory [54,55,65] pro-
vides a general and non-perturbative approach to constructing vacua of string theory.
In a standard compactification of the type IIB string, the axio-dilaton field τ is con-
stant and no D7-branes are present. Vafa’s idea in proposing F-theory [65] was to
allow a variable axio-dilaton field τ and D7-brane sources, defining at a new class of
models in which the string coupling is never weak. These compactifications of the
type IIB string in which the axio-dilaton field varies over a base are referred to as
F-theory models. They depend on the following key ingredients [54, 55]: an SL2(Z)
symmetry of the physical theory, a complex scalar field τ with positive imaginary part
on which SL2(Z) acts by fractional linear transformations, and D7-branes serving as
the source for the multi-valuedness of τ . In this way, F-theory models correspond
to torus fibrations over some compact base manifold. A well-known duality in string
theory asserts that compactifying M-theory on a torus T2 with complex structure
parameter τ and area A is dual to the type IIB string compactified on a circle of
radius A−3/4 with axio-dilaton field τ [2,64]. In turn, this gives a connection between
F-theory models and geometric compactifications of M-theory: after compactifying an
F-theory model further on S1 without breaking supersymmetry, one obtains a model
which is dual to M-theory compactified on the total space of the torus fibration. The
geometric M-theory model preserves supersymmetry exactly when the total space of
the family is a Calabi–Yau manifold. In this way, we recover the familiar condition for
supersymmetric F-theory models in eight dimensions: the total space of the fibration
is a K3 surface.

Most of the literature has been focused on a subclass of such torus fibrations that
are simpler to analyze, i.e., the class of genus-one fibration with a section or Jacobian
elliptic fibrations. As pointed out by Witten [69], this subclass of models is physically
simpler to treat, because the existence of a section implies the absence of NS-NS and
R-R fluxes in F-theory. Geometrically, the restriction to fibrations with a section
facilitated model building with various non-Abelian gauge symmetries using the Tate
algorithm [33, 40]. In particular, insertions of seven-branes in an F-theory model
correspond to singular fibers in the M-theory model. Through work of Kodaira [37]
and Néron [58], all possible singular fibers in one-parameter families of elliptic curves
have been classified. When interpreted from a physics point of view, this classification
gives a catalog of the different types of seven-branes which must be inserted; see [46].
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More recently, the geometry and physics of F-theory compactifications on genus-
one fibrations without section has also been investigated using methods of toric hy-
persurfaces [9] and birational geometry [34, 35], and by describing their M-theory
dual descriptions [1]. The set of genus-one fibrations with the same τ function and
SL2(Z) representation, known as the Tate-Shafarevich group, supplies an important
additional degree of freedom in the construction of general F-theory models. The
construction of a normal form for a certain class of K3 surfaces that admit a genus-
one fibration without section, but no elliptic fibration and are closely connected to
the so called CHL string was carried out in [14]. The CHL string is obtained from the
heterotic string with gauge algebra e8⊕e8 on a torus T 2 as a certain Z/2Z quotient. A
detailed discussion of the CHL string and the dual eight-dimensional F-theory models
can be found in [7, 41,71].

However, there is another part within the analysis of F-theory models that is
greatly aided by the existence of a fibration with a section, namely the investigation
of F-theory/heterotic string duality: this duality particularly predicts that F-theory
compactified on an elliptically fibered K3 surface agrees on the quantum level with
heterotic string theory compactified on an elliptic curve [16, 22]. Since there is no
microscopic description of such an F-theory, the F-theory/heterotic string duality
provides new insights into the physics of F-theory compactifications. Most impor-
tantly, the spectral cover construction [22] has shed light on the relationship between
non-Abelian gauge groups in F-theory and the heterotic string using geometrically
engineering of supersymmetric gauge theories [20]. As a result the correspondence
between F- theory compactifications and the low energy effective gauge theory par-
ticle spectra is well understood. On the heterotic side, the F-theory/heterotic string
duality has shed light on important non-perturbative aspects of the heterotic string,
for example NS5-branes states and small instantons [60, 70], that admit a geometric
description in the dual F-theory.

While F-theory/heterotic string duality is well established for particle spectra [70],
it has been less explored on the level of moduli spaces for (quantum-exact) effective
interactions. This is due to the fact that the F-theory/heterotic string duality is often
formulated in a certain limit, the so called stable degeneration limit of the F-theory
geometry and a large fiber limit of the heterotic compactification space [3, 5], which
describes the duality only at the boundary of the moduli spaces of the dual theories.
Beyond the matching of dimensions of the moduli spaces, an exact correspondence
between the two moduli spaces is only known in the large volume limit on the heterotic
side, which corresponds to the stable degeneration limit on the F-theory side [5,19,22].
In fact it was proven in [16] that corresponding regions of the two moduli spaces can be
identified by means of classical geometric data when quantum corrections are small.
Clingher and Doran [10] and McOrist et al. [53] gave an explicit description of the
duality when all the Wilson lines are turned off. Clingher and Doran [11, 12] and
Malmendier and Morrison [46] extended this result to one non-vanishing Wilson line
in the heterotic theory. Upon further compatifying to lower space-time dimensions,
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these geometric F-theory scenarios give rise to non-geometric compactifications of the
heterotic string as argued in [26,46,53]. Further F-theory model building was carried
out in [21,23].

6.2. The e7 ⊕ e7-string. In this section, we prove that the ring of modular forms
relative to ΓT of even characteristic constructed in Theorem 2.24 is exactly the holo-
morphic function field of the Narain moduli space of heterotic string compactifications
with two non-vanishing Wilson lines. We also determine the F-theory model dual to
the e8 ⊕ e8 heterotic theory on T2 with two non-vanishing Wilson lines that has the
unbroken gauge group e7 ⊕ e7.

In Section 2.1, we introduced the space H2 of complex two-by-two matrices $
over C such that the hermitian matrix ($ − $†)/(2i) is positive definite; see Equa-
tion (2.11). On these elements, the modular group ΓT introduced in Equation (2.15)
acts by matrix multiplication for elements in U(2, 2) and as matrix transposition,
generated by the additional element T · $ = $t. In [48, Prop. 1.5.1] it was proved
that there is an isomorphism ΓT ∼= O+(L2,4) that induces an isomorphism

(6.5) H2
∼= D2,4.

Generally, O+(L2,n) is the index-two sub-group given by the condition that the upper
left minor of order two is positive; see [67] for details. The group O+(L2,4) contains
the special orthogonal sub-group SO+(L2,4) of all elements of determinant one. In our
situation, this group SO+(L2,4) is precisely the index-two sub-group Γ+

T introduced in
Equation (2.23): an isomorphism SO+(L2,4) ∼= Γ+

T is given by mapping the generators
of Γ+

T to generators of SO+(L2,4). In fact, we map the generators G1T and G2, . . . , G5

in Lemma 2.13 to the generators explicitly given in [48, p. 393] and denote the latter
by Gk ∈ SO+(L2,4) for k = 1, . . . , 5.5 Moreover, the elements G1 and T are mapped
to reflections RG1 and RT in O+(L2,4) associated with roots of square −2 and −4,
respectively, such that G1 = RG1 · RT . We also find G3 = RG3 · RT for another
reflection RG3 .

6 Note that reflections belong to O+(L2,4), but not to SO+(L2,4).
In fact, the generators RG1 ,RT ∈ O+(L2,4) together with Gk ∈ SO+(L2,4) for k =
1, . . . , 5 determine the full isomorphism ΓT ∼= O+(L2,4).

The element T acts trivially on the five modular forms Jk of weights 2k for k =
2, . . . , 6. Thus, they all have even characteristic with respect to the action of T . We
proved in Theorem 2.24 that they freely generate the ring of modular forms relative
to ΓT with character χ2k(g) = det(G)k for all g = G T n ∈ ΓT . By a result of
Vinberg [67], the ring of modular forms relative to O+(L2,4) turns out to be exactly
this ring of modular forms relative to ΓT of even characteristic.

The space H2 is a generalization of the Siegel upper-half space H2. In fact, elements
invariant under transposition T are precisely the two-by-two symmetric matrices over
C whose imaginary part is positive definite, i.e., elements of the Siegel upper-half plane

5In [48] G1 was mapped to G1 which is not compatible with the identification SO+(L2,4) ∼= Γ+
T .

6In [48] the roots associated with RG1
, RT , and RG3

were denoted by α(1, 2, 3), β1, and β6.
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H2
∼= D2,3, on which the modular group Sp4(Z) ∼= SO+(L2,3) acts. For the sub-space

(6.6) D2,3/O
+(L2,3) ↪→ D2,4/O

+(L2,4),

another result of Vinberg [68] proves that the ring of O+(L2,3)-modular forms corre-
sponds to the ring of Siegel modular forms of even weight. Igusa [29] showed that
this ring of even modular forms is generated by the Siegel modular forms ψ4, ψ6, χ10,
χ12 of respective weights 4, 6, 10, 12.

Matrix transposition T acts as −1 on the ΓT -modular forms of odd characteristic,
and the fixed locus of T must be contained in the vanishing locus of any ΓT -modular
form of odd characteristic. Modular forms of odd characteristic are generated by
the unique (up to scaling) modular form Θ($) of odd characteristic introduced in
Theorem 2.8. In Theorem 2.24 we found the relation J4($) = (Θ($)/25)2. Therefore,
the fixed locus of T coincides with the vanishing locus of J4($). In fact, we showed
in Proposition 5.8 that in the case $ = τ ∈ H2 we obtain
(6.7)[

J2($) : J3($) : J4($) : J5($) : J6($)
]

=
[
ψ4(τ) : ψ6(τ) : 0 : 21235χ10(τ) : 21236χ12(τ)

]
,

that is, J4 = (Θ($)/25)2 vanishes and the other ΓT -modular forms restrict to the
generators of the ring of Siegel modular forms.

Going back to the moduli space in Equation (6.4), the key geometric fact for the
construction of F-theory models is that Equation (4.22) defines an elliptically fibered
K3 surface X with section whose periods determine a point $ ∈ H2, with the co-
efficients in the equation being modular forms relative to ΓT of even characteristic.
In Remark 3.3 we outlined the construction and some analytic aspects of the period
map. Re-writing Equation (4.22) in terms of the generators Jk with k = 2, . . . , 6 of
the ring of modular forms yields

Y 2 = X3 − T 2

(
3 J2($)T 2 + J5($)T +

1

3
J4($)2

)
X

+ T 3

(
T 4 − 2 J3($)T 3 +

(
J2J4 + J6

)
($)T 2 +

1

3
J4J5($)T +

2

27
J4($)3

)
.

(6.8)

Under the restriction given by Equation (6.7) and a simple rescaling of variables, one
obtains

(6.9) Y 2 = X3−T 3

(
1

48
ψ4(τ)T + 4χ10(τ)

)
X + T 5

(
T 2 − 1

864
ψ6(τ)T + χ12(τ)

)
.

The latter equation was exactly the equation upon which the analysis of non-geometric
heterotic string vacua with one Wilson line parameter was based in [46].

The explicit form of the F-theory/heterotic string duality on the moduli space in
Equation (6.4) has two parts: starting from $ ∈ H2, we always obtain the equation
of a Jacobian elliptic fibration on K3 surface given by Equation (6.8). Conversely, we
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can start with any Jacobian elliptic fibration on a K3 surface X given by the equation

Y 2 = X3 + a T 2X + b T 3 + c T 3X + c d T 4

+ e T 4X + (d e+ f)T 5 + g T 6 + T 7.
(6.10)

We can then determine a point in D2,4 by calculating the periods of the holomorphic
two-form ωX = dT∧dX/Y over a basis of the lattice H⊕E7(−1)⊕E7(−1) in H2(X ,Z)
which in turn determines a point $ ∈ H2 using the isomorphism in Equation (6.5).
For some non-vanishing scale factor λ, we obtain

c = −λ10J5($), d = −λ
8

3
J4($), e = −3λ4J2($),

f =λ12J6($), g = −2λ6J3($),
(6.11)

and a = −3 d2, b = −2 d3. The Weierstrass equation (6.10) is therefore the F-theory
model dual to the heterotic theory with two non-vanishing Wilson lines that has the
unbroken gauge group e7 ⊕ e7.

6.3. Condition for five-branes and supersymmetry. In this section, we describe
how our results from the previous section are used to construct families of non-
geometric heterotic compactifications that are supersymmetric.

We start with a compact manifold Z as parameter space and a line bundle Λ →
Z. Choose sections c(z), d(z), e(z), f(z), and g(z) of the bundles Λ⊗10, Λ⊗8, Λ⊗4,
Λ⊗12, and Λ⊗6, respectively; then, for each point z ∈ Z, there is a non-geometric
heterotic compactification given by Equation (6.10) with c = c(z), d = d(z), etc., and
a = −3 d(z)2, b = −2 d(z)3 and moduli $ ∈ H2 and O+(L2,4) symmetry such that
Equations (6.11) hold.

Accordingly, for the corresponding heterotic models the gauge algebra is enhanced
to e7 ⊕ e7. Appropriate five-branes must still be inserted on Z as dictated by the
geometry of the corresponding family of K3 surfaces. The change in the singularities
and the lattice polarization for the fibration (6.8) was determined in Lemma 4.14 and
occur along three loci of co-dimension one. In Corollary 4.16 we proved that each locus
is the vanishing locus of a polynomial in the modular forms Jk’s, i.e., Disc(S) = 0,
J4 = 0, and Disc(A) = 0, respectively. We proved in Corollary 2.22 that each locus
is the fixed locus of elements in ΓT \Γ+

T . Using the isomorphism ΓT ∼= O+(L2,4)
it is trivial to write down the reflections in O+(L2,4)\SO+(L2,4) corresponding to
Disc(S) = 0, J4 = 0, and Disc(A) = 0 explicitly: they are RT and orthogonal
conjugates of RG1 and RG3 defined in Section 6.2.

From the point of view of K3 geometry, given as a reflection in a lattice element
δ of square −2 we have the following: if the periods are preserved by the reflection
in δ, then δ must belong to the Néron-Severi lattice of the K3 surface. That is, the
Néron-Severi lattice is enlarged by adjoining δ. In Corollary 4.16 we proved that there
are three ways an enlargement can happen: the lattice H ⊕E7(−1)⊕E7(−1) of rank
sixteen can be extended to H ⊕E7(−1)⊕E7(−1)⊕ 〈−2〉, H ⊕E8(−1)⊕E7(−1), or
H ⊕ E8(−1)⊕D7(−1), each of rank seventeen.
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From the heterotic side, these five-brane solitons are easy to see: when Disc(S) = 0,
we have a gauge symmetry enhancement from e7 ⊕ e7 to include an additional su(2),
and the parameters of the theory include a Coulomb branch for that gauge theory
on which the Weyl group Wsu(2) = Z2 acts. Thus, there is a five-brane solution
in which the field has a Z2 ambiguity encircling the location in the moduli space
of enhanced gauge symmetry. When J4 = 0, we have an enhancement to e8 ⊕ e7

gauge symmetry, and, when Disc(A) = 0 an enhancement to e8 ⊕ so(14). Further
enhancements to e8 ⊕ e8 gauge symmetry or e8 ⊕ so(16) occur along J4 = J5 = 0 or
Disc(A) = Res(A,B) = 0, respectively.

To understand when such families of compactifications are supersymmetric, we
mirror the discussion in [46]. A heterotic compactification on T2 with parameters
given by $ ∈ H2 is dual to the F-theory compactification on the elliptically fibered
K3 surface X ($) defined by Equation (6.8). For sections c(z), d(z), e(z), f(z), and
g(z) of line bundles over Z, we have a criterion for when F-theory compactified on
the elliptically fibered manifold (6.10) is supersymmetric: this is the case if and only
if the total space defined by Equation (6.10) – now considered as an elliptic fibration
over a base space locally given by variables T and z – is itself a Calabi–Yau manifold.
The base space of the elliptic fibration is a P1-bundle π : W → Z which takes the
form W = P(O ⊕M) where M→ Z is the normal bundle of Σ0 := {T = 0} in W.
Monomials of the form T n are then considered sections of the line bundlesM⊗n. We
also set Σ∞ := {T =∞} such that −KW = Σ0 + Σ∞ + π−1(−KZ).

When the elliptic fibration (6.10) is written in Weierstrass form, the coefficients of
X1 and X0 must again be sections of L⊗4 and L⊗6, respectively, for a line bundle
L →W. The condition for supersymmetry of the total space is that the line bundle
L is the anti-canonical bundle of the base, L = OW(−KW). Restricting the various
terms in Equation (6.10) to Σ0, we find relations

(L|Σ0)
⊗4 = Λ⊗4 ⊗M⊗4 = Λ⊗10 ⊗M⊗3 = Λ⊗16 ⊗M⊗2,

(L|Σ0)
⊗6 =M⊗7 = Λ⊗6 ⊗M⊗6

= Λ⊗12 ⊗M⊗5 = Λ⊗18 ⊗M⊗4 = Λ⊗24 ⊗M⊗3

(6.12)

Thus, it follows that M = Λ⊗6 and L|Σ0 = Λ⊗7 (up to torsion) and the P1-bundle
takes the form W = P(O ⊕ Λ⊗6). Since Σ0 and Σ∞ are disjoint, the condition for
supersymmetry is equivalent to Λ = OZ(−KZ).

Therefore, we derived that supersymmetric families of non-geometric heterotic com-
pactifications are obtained from Equation (6.10) when promoting c(z), d(z), e(z),
f(z), and g(z) to sections of the bundles Λ⊗10, Λ⊗8, Λ⊗4, Λ⊗12, and Λ⊗6, respectively,
over the parameter space Z, and the bundle Λ satisfies Λ = OZ(−KZ). The loca-
tion of the five-brane solitons are then controlled by the classical geometric invariants
Disc(S) = 0, J4 = 0, and Disc(A) = 0 introduced before.

6.4. Double covers and pointlike instantons. To a reader familiar with elliptic
fibrations, it might come as a surprise that the Weierstrass model we considered in
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Equation (6.10) did not simply have two fibers of Kodaira type III∗ and a trivial
Mordell-Weil group. On each K3 surface endowed with a H⊕E7(−1)⊕E7(−1) lattice
polarization in Corollary 4.11, such a fibration exists: we constructed it in Lemma 4.4.
However, it is not guaranteed that the fibration extends across any parameter space.

To see this, assume J6 6= 0 and that there is an a such that Disc(A) = J2
5−4 J4J6 =

a2. Then, Equation (4.13) can be brought into the form

(6.13) y2 = x3 − s3

(
J5 − a

2 J6

s2 + 3 J2 s+
J5 + a

2

)
x+ s5

(
s2 − 2 J3 s+ J6

)
.

For J4 = 0 it follows J2
5 = a2, and the choice of square root a = ±J5 determines

whether either the III∗ fiber over s = 0 or the one over s =∞ is extended to a fiber
of Kodaira type II∗; see Lemma 4.5. The situation is very different for the elliptic
fibration with section used for the family construction in Section 6.3: it follows from
our results in Lemma 4.7 and Corollary 4.11 that the previously used elliptic fibration
with section which has one fiber of Kodaira type I∗2 or worse and another fiber of type
precisely II∗. Because of the presence of a II∗ fiber, the Mordell-Weil group is always
trivial, including all cases with gauge symmetry enhancement. From a physics point of
view as argued in [46], assuming that one fiber is fixed and of Kodaira type II∗ avoids
“pointlike instantons” on the heterotic dual after compactification to dimension six
or below, at least for general moduli.

For the fibration in Equation (6.13) to have the same property, we have to be
able to choose a square root a = ±J5 consistently throughout the parameter space.
For J4 = 0 and a = J5 (and similarly for a = −J5 after mapping s 7→ 1/s), the
restriction given by Equation (6.7) and a simple rescaling of variables then yield the
same equation that describes non-geometric heterotic string vacua with one Wilson
line parameter already encountered before, i.e.,

(6.14) y2 = x3 − s3

(
1

48
ψ4(τ) s+ 4χ10(τ)

)
x+ s5

(
s2 − 1

864
ψ6(τ) s+ χ12(τ)

)
.

If we vary non-geometric heterotic vacua given by Equation (6.13) over a parameter
space Z as in Section 6.3, the functions Jk are again sections of line bundles Λ⊗2k → Z.
For the coefficient of s5x in Equation (6.13) to be well defined, a necessary condition
is J6 6= 0 over Z which implies that J6 is a trivializing section for the bundle Λ⊗12; in
particular, we have Λ⊗12 ∼= OZ.

In Equation (2.37) we obtained

(6.15) a2 = Disc(A) = J5($)2 − 4 J4J6($) = 2−4310

10∏
i=1

θ2
i ($),

where θ2
i ($) are the ten theta functions of weight two relative to ΓT (1 + i). In our

situation, they combine to form a section a2 of the line bundle Λ⊗20. We want to take
the square root of the line bundle Λ⊗20, that is, construct a line bundle Λ′ → Z with
(Λ′)⊗2 = Λ⊗20 such that a becomes a section of the new line bundle. The square root
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of a line bundle (if it exists) is not unique in general, and any two of them will differ
by a two-torsion line bundle. If the Picard group of Z is torsion free, then there is at
most one square root. We already know that one square root exists, namely the line
bundle Λ⊗10 → Z. Therefore, setting H2(Z,Z2) = 0 guarantees that the square root
is isomorphic to Λ⊗10.

If we further assume that the line bundle is effective, i.e., Λ⊗10 ∼= OZ(D) for some
effective divisor D – which is equivalent to dimH0(Z,Λ⊗10) > 0 – then the existence
of the square root of Λ⊗20 is equivalent to the existence of a double cover Y → Z
branched along the zero locus of the holomorphic section given by J5 − a = 0. The
vanishing locus corresponds exactly to heterotic models where the gauge algebra is
enhanced to e8 ⊕ e7.

Using the condition for supersymmetry already established in Section 6.3, we will
assume that

(6.16)
(1) H2(Z,Z2) = 0, (2) Λ = OZ(−KZ),

(3) dimH0(Z,Λ⊗10) > 0, (4) Λ⊗12 ∼= OZ.

Therefore, we obtain a consistent and supersymmetric family of non-geometric het-
erotic vacua given by Equation (6.13) over the parameter space Y which is a double
cover of Z branched along J5 − a = 0. The conditions derived in Equation (6.16) are
similar to equations governing global and local anomaly cancellation [44,45].

6.5. The so(32)-string. Here, we describe the so(32) heterotic theory on T2 with
two non-vanishing Wilson lines that has the unbroken gauge group so(24)⊕ su(2)⊕2

and its dual F-theory model.
We proved in Lemma 4.6 that a K3 surface X with lattice polarization H⊕E7(−1)⊕

E7(−1) also admits an alternate elliptic fibration related to the so(32) heterotic string.
We now establish the explicit form of the F-theory/heterotic string duality on the
moduli space in Equation (6.4) for the so(32) string: Equation (4.18) defines an
elliptically fibered K3 surface X whose periods determine a point $ ∈ H2, with the
coefficients in the equation being modular forms of even characteristic. Re-writing
Equation (4.18) in terms of the generators of the ring of these modular forms yields

y2 = x3 +
(
t3 − 3 J2($) t− 2 J3($)

)
x2 +

(
J4($) t2 − J5($) t− J6($)

)
x.(6.17)

Under the restriction given by Equation (6.7) and a simple rescaling of variables, one
obtains again

(6.18) y2 = x3 +
(
t3 − 1

48
ψ4(τ) t− 1

864
ψ6(τ)

)
x2 −

(
4χ10(τ) t− χ12(τ)

)
x.

Conversely, we can start with any Jacobian elliptic fibration given by the equation

y2 = x3 +
(
t3 + e t+ g

)
x2 +

(
− 3 d t2 + c t+ f

)
x.(6.19)

We then determine a point in D2,4 by calculating the periods of the holomorphic
two-form ωX = dt ∧ dx/y over a basis of the period lattice H ⊕ E7(−1)⊕ E7(−1) in
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H2(X ,Z). The discriminant is ∆X (t) = A(t)2
(
B(t)2 − 4A(t)

)
with

S(t) = B(t)2 − 4A(t),

B(t) = t3 − 3 J2($) t− 2 J3($), A(t) = J4($) t2 − J5($) t+ J6($).
(6.20)

The fiber over t = ∞ is of Kodaira type I∗8 . In addition, there are two fibers of
Kodaira type I2 over A(t) = 0. The gauge algebra is enhanced to so(24) ⊕ su(2)⊕2.
For generic coefficients, the other factor in the discriminant contributes six fibers of
type I1. The loci of the I1 fibers form the ramification locus of the Satake sextic in
Equation (6.20). Moreover, the section x = y = 0 defines an element of order two in
the Mordell-Weil group. It follows as in [4, 5] that the gauge group of this model is
(Spin(24)× SU(2)× SU(2))/Z2.

Further lattice enhancements were discussed in Lemma 4.13 and Corollary 4.16.
For Disc(S) = 0, we have a gauge symmetry enhancement to include an additional
su(2). When Disc(A) = 0 the gauge algebra is enhanced to so(24) ⊕ su(4). For
J4 = 0, the gauge algebra is enhanced to so(28) ⊕ su(2). For J4 = J5 = 0 the
gauge group is enhanced to Spin(32)/Z2. For Disc(A) = Res(A,B) = 0 the gauge
algebra is enhanced to so(24) ⊕ so(8). The intrinsic property of elliptically fibered
K3 surfaces which leads to Equation (6.19) is the requirement that there be a two-
torsion element in the Mordell–Weil group, and that one fiber in the fibration be of
type I∗n for some n ≥ 8. Under these assumptions, following the same argument as
in [53] we can always choose coordinates so that the Weierstrass equations is of the
form (6.19). The Weierstrass equation is therefore the F-theory model dual to the
heterotic theory with two non-vanishing Wilson lines that has the unbroken gauge
group so(24)⊕ su(2)⊕2.

6.6. Conclusions. The results of Sections 6.2 through Section 6.5 establish the F-
theory/heterotic string correspondence on the natural sub-space on the full moduli
space where the non-geometric heterotic description has two non-vanishing Wilson
lines. Using the same methods as were used in [26] for the case of one Wilson line,
our results thus allow to establish the F-theory/heterotic string duality in the entire
non-geometric phase adiabatically fibered over a P1 with a precise limit to the semi-
classical heterotic string in both eight and lower space-time dimensions. Crucial for
such an extension is also the perfect match that we established in Section 5 between
our results and the results in [46] when there is only one Wilson line parameter.
In particular, our results imply that F-theory descriptions remain geometric over
the entire moduli space dual to the heterotic string moduli space that continuously
interpolates between the non-geometric quantum phase and the semi-classical phase
with two non-vanishing Wilson lines.

To make further progress in analyzing the discussed class of non-geometric het-
erotic string compactifications in four and six dimensions, it would be interesting to
study also global features of the six-line configurations underlying our description of
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F-theory models. The geometry of double planes branched in six lines is interest-
ing, and there already is a well established canon of mathematical literature on the
subject; see [17, 36, 42]. With the lines in general position, such double planes are
precisely the K3 surfaces identified in this article as F-theory models whose dual het-
erotic models we identified by the image under the inverse period map. However, the
divisors parametrizing special line configurations also have a moduli interpretation,
namely as a principally polarized abelian four-fold as established by Hermann in [27].
Interestingly, this abelian four-fold also coincides with the so called Kuga-Satake va-
riety associated with the K3 surfaces up to isogeny. Therefore, it seems only prudent
to ask for a detailed physical interpretation of this abelian four-fold itself in terms of
non-geometric heterotic string vacua.

While the studied F-theory/heterotic quantum duality is based on the special class
of F-theory/heterotic string models with two non-vanishing Wilson lines, it provides a
rich and explicit testing ground for non-geometric string compactifications in general.
Our technique of looking at the moduli space of elliptically fibered K3 surfaces ob-
tained as double cover of the projective plane ramified along a sextic may also opens
up a new method to arrive at more general non-geometric heterotic string theories
beyond two Wilson line moduli. For example, it is natural to also analyze the K3
surfaces in the context of F-theory/heterotic string duality that are obtained as dou-
ble cover of the plane ramified along a sextic which is made up of two lines and two
conics, but not necessary tangent to some other curves. Generically, such K3 surfaces
will have Picard number 14, and we expect them to describe F-theory models dual
to heterotic models with four Wilson lines.
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[29] Jun-Ichi Igusa, On Siegel modular forms of genus two, Amer. J. Math. 84 (1962), 175–200.
MR0141643

[30] , Modular forms and projective invariants, Amer. J. Math. 89 (1967), 817–855.
MR0229643

[31] , On the ring of modular forms of degree two over Z, Amer. J. Math. 101 (1979), no. 1,
149–183. MR527830

http://www.ams.org/mathscinet-getitem?mr=3256108
http://www.ams.org/mathscinet-getitem?mr=2369941
http://www.ams.org/mathscinet-getitem?mr=2824841
http://www.ams.org/mathscinet-getitem?mr=2935386
1805.10242
1704.04884
http://www.ams.org/mathscinet-getitem?mr=2126482
http://www.ams.org/mathscinet-getitem?mr=3201823
http://www.ams.org/mathscinet-getitem?mr=1007155
http://www.ams.org/mathscinet-getitem?mr=1697279
http://www.ams.org/mathscinet-getitem?mr=2989833
http://www.ams.org/mathscinet-getitem?mr=3564211
http://www.ams.org/mathscinet-getitem?mr=1468319
http://www.ams.org/mathscinet-getitem?mr=3657651
http://www.ams.org/mathscinet-getitem?mr=1080980
http://www.ams.org/mathscinet-getitem?mr=2336040
http://www.ams.org/mathscinet-getitem?mr=3417046
http://www.ams.org/mathscinet-getitem?mr=1336603
http://www.ams.org/mathscinet-getitem?mr=1877757
http://www.ams.org/mathscinet-getitem?mr=0141643
http://www.ams.org/mathscinet-getitem?mr=0229643
http://www.ams.org/mathscinet-getitem?mr=527830


SIX LINE CONFIGURATIONS 49

[32] Hiroshi Inose, Defining equations of singular K3 surfaces and a notion of isogeny, Proceedings
of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977), 1978,
pp. 495–502. MR578868

[33] Sheldon Katz, David R. Morrison, Sakura Schäfer-Nameki, and James Sully, Tate’s algorithm
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[42] G. Lombardo, C. Peters, and M. Schütt, Abelian fourfolds of Weil type and certain K3 double
planes, Rend. Semin. Mat. Univ. Politec. Torino 71 (2013), no. 3-4, 339–383. MR3506391

[43] A. Malmendier and T. Shaska, The Satake sextic in F-theory, J. Geom. Phys. 120 (2017), 290–
305. MR3712162

[44] Andreas Malmendier, The signature of the Seiberg-Witten surface, Surveys in differential geom-
etry. Volume XV. Perspectives in mathematics and physics, 2011, pp. 255–277. MR2815730

[45] , Kummer surfaces associated with Seiberg-Witten curves, J. Geom. Phys. 62 (2012),
no. 1, 107–123. MR2854198

[46] Andreas Malmendier and David R. Morrison, K3 surfaces, modular forms, and non-geometric
heterotic compactifications, Lett. Math. Phys. 105 (2015), no. 8, 1085–1118. MR3366121

[47] Andreas Malmendier and Tony Shaska, A universal genus-two curve from Siegel modular
forms, SIGMA Symmetry Integrability Geom. Methods Appl. 13 (2017), Paper No. 089, 17.
MR3731039

[48] Keiji Matsumoto, Theta functions on the bounded symmetric domain of type I2,2 and the pe-
riod map of a 4-parameter family of K3 surfaces, Math. Ann. 295 (1993), no. 3, 383–409.
MR1204828

[49] Keiji Matsumoto, Takeshi Sasaki, Nobuki Takayama, and Masaaki Yoshida, Monodromy of the
hypergeometric differential equation of type (3, 6). I, Duke Math. J. 71 (1993), no. 2, 403–426.
MR1233442

[50] , Monodromy of the hypergeometric differential equation of type (3, 6). II. The unitary
reflection group of order 29 · 37 · 5 · 7, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 20 (1993), no. 4,
617–631. MR1267602

[51] Keiji Matsumoto, Takeshi Sasaki, and Masaaki Yoshida, The monodromy of the period map of
a 4-parameter family of K3 surfaces and the hypergeometric function of type (3, 6), Internat. J.
Math. 3 (1992), no. 1, 164. MR1136204

[52] , Monodromy of the hypergeometric differential equation of type (3, 6) III, Kumamoto J.
Math. 23 (2010), 37–47. MR2683512

http://www.ams.org/mathscinet-getitem?mr=578868
http://www.ams.org/mathscinet-getitem?mr=2876044
http://www.ams.org/mathscinet-getitem?mr=3650100
http://www.ams.org/mathscinet-getitem?mr=3783839
http://www.ams.org/mathscinet-getitem?mr=2254405
http://www.ams.org/mathscinet-getitem?mr=0184257
http://www.ams.org/mathscinet-getitem?mr=2427457
http://www.ams.org/mathscinet-getitem?mr=3263663
http://www.ams.org/mathscinet-getitem?mr=3065908
http://www.ams.org/mathscinet-getitem?mr=1621170
http://www.ams.org/mathscinet-getitem?mr=3506391
http://www.ams.org/mathscinet-getitem?mr=3712162
http://www.ams.org/mathscinet-getitem?mr=2815730
http://www.ams.org/mathscinet-getitem?mr=2854198
http://www.ams.org/mathscinet-getitem?mr=3366121
http://www.ams.org/mathscinet-getitem?mr=3731039
http://www.ams.org/mathscinet-getitem?mr=1204828
http://www.ams.org/mathscinet-getitem?mr=1233442
http://www.ams.org/mathscinet-getitem?mr=1267602
http://www.ams.org/mathscinet-getitem?mr=1136204
http://www.ams.org/mathscinet-getitem?mr=2683512


50 A. CLINGHER, A. MALMENDIER, AND T. SHASKA

[53] Jock McOrist, David R. Morrison, and Savdeep Sethi, Geometries, non-geometries, and fluxes,
Adv. Theor. Math. Phys. 14 (2010), no. 5, 1515–1583. MR2826187

[54] David R. Morrison and Cumrun Vafa, Compactifications of F -theory on Calabi-Yau threefolds.
I, Nuclear Phys. B 473 (1996), no. 1-2, 74–92. MR1409284

[55] , Compactifications of F -theory on Calabi-Yau threefolds. II, Nuclear Phys. B 476
(1996), no. 3, 437–469. MR1412112

[56] K. S. Narain, New heterotic string theories in uncompactified dimensions < 10, Phys. Lett. B
169 (1986), no. 1, 41–46. MR834338

[57] K. S. Narain, M. H. Sarmadi, and E. Witten, A note on toroidal compactification of heterotic
string theory, Nuclear Phys. B 279 (1987), no. 3-4, 369–379. MR867240
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Appendix A. Invariants of the quintic pencils

Using a 2-neighbor-step procedure twice starting with the natural fibration in Equa-
tion (3.7), we constructed on the K3 surface Y associated with the double cover
branched along the six lines given by Equations (3.2) the following Weierstrass model:

(A.1) Y 2 = X
(
X2 − 2B(t)X + B(t)2 − 4A(t)

)
,

where B(t) = t3 − J ′2 t− J ′3 and A(t) = J ′4t
2 − J ′5t+ J ′6, and

(A.2)

2J ′2 = 2 a2d2 − 2 abcd+ 2 b2c2 − 2 a2d+ bca+ adb+ adc− 2 ad2 − 2 b2c− 2 bc2 + bcd+ 2 a2

−2 ba− 2 ca+ ad+ 2 b2 + bc− 2 db+ 2 c2 − 2 cd+ 2 d2,
−4J ′3 = −4 a3d3 + 6 a2bcd2 + 6 ab2c2d− 4 b3c3 + 6 a3d2 − 6 a2bcd− 3 a2bd2

−3 a2cd2 + 6 a2d3 − 3 ab2c2 − 6 ab2cd− 6 abc2d− 6 abcd2 + 6 b3c2 + 6 b2c3

−3 b2c2d+ 6 a3d− 3 a2bc− 6 a2bd− 6 a2cd− 6 a2d2 − 6 ab2c− 3 ab2d− 6 abc2 + 60 abcd
−6 abd2 − 3 ac2d− 6 acd2 + 6 ad3 + 6 b3c− 6 b2c2 − 6 b2cd+ 6 bc3 − 6 bc2d− 3 bcd2 − 4 a3

+6 a2b+ 6 a2c− 3 a2d+ 6 ab2 − 6 bca− 6 adb+ 6 ac2 − 6 adc− 3 ad2 − 4 b3 − 3 b2c
+6 b2d− 3 bc2 − 6 bcd+ 6 bd2 − 4 c3 + 6 c2d+ 6 cd2 − 4 d3,

16 J ′4 = 81 (bca− adb− adc+ bcd+ ad− bc)2 ,
− 8

81
J ′5 = −2 b2c2da3 + b2cd2a3 + b2d3a3 + bc2d2a3 − 4 bcd3a3 + c2d3a3 + b3c3a2 + b3c2da2

−2 b3cd2a2 + b2c3da2 + 4 b2c2d2a2 + b2cd3a2 − 2 bc3d2a2 + bc2d3a2 − 4 b3c3da
+b3c2d2a+ b2c3d2a− 2 b2c2d3a+ b3c3d2 + b2c2a3 + b2cda3 − 2 b2d2a3 + bc2da3

+4 bcd2a3 + bd3a3 − 2 c2d2a3 + cd3a3 − 2 b3c2a2 + b3cda2 + b3d2a2 − 2 b2c3a2

−4 b2c2da2 − 4 b2cd2a2 − 2 b2d3a2 + bc3da2 − 4 bc2d2a2 + 4 bcd3a2 + c3d2a2

−2 c2d3a2 + b3c3a+ 4 b3c2da+ b3cd2a+ 4 b2c3da− 4 b2c2d2a+ b2cd3a+ bc3d2a
+bc2d3a+ b3c3d− 2 b3c2d2 − 2 b2c3d2 + b2c2d3 − 4 bcda3 + bd2a3 + cd2a3 − 2 a3d3

+b2c2a2 + 4 b2cda2 + b2d2a2 + 4 bc2da2 − 4 a2bcd2 + bd3a2 + c2d2a2 + cd3a2 + b3c2a
−4 b3cda+ b2c3a− 4 ab2c2d+ 4 b2cd2a− 4 bc3da+ 4 bc2d2a− 4 bcd3a− 2 b3c3 + b3c2d
+b2c3d+ b2c2d2 + a3d2 + a2bcd− 2 a2bd2 − 2 a2cd2 + a2d3 − 2 ab2c2 + ab2cd
+abc2d+ abcd2 + b3c2 + b2c3 − 2 b2c2d,

16
81
J ′6 = −4 b2c2da4 + 4 bc2da4 + 4 b2cda4 − 10 bcda4 + 4 bc2d4a3 − 22 bc2d3a3 − 4 b3cd3a3

−22 b2cd3a3 − 10 b2c3d2a3 + 16 bc3d2a3 − 10 b3c2d2a3 + 4 b2c2d2a3 + 16 b3cd2a3 − 4 b3c3da3

+16 b2c3da3 − 10 bc3da3 + 16 b3c2da3 − 10 b3cda3 + 4 b2c2d4a2 − 10 bc2d4a2 − 10 b2cd4a2

+4 b2cd4a3 + 12 bcd4a3 − 4 bc3d3a3 + 12 b2c2d3a3 + 12 bcd4a2 − 10 b2c3d3a2 + 16 bc3d3a2

−10 b3c2d3a2 + 4 b4cd2a− 10 b4c4da+ 12 b3c4da+ 12 b2c4da− 10 bc4da+ 12 b4c3da+ 12 b4c2da
−10 b4cda+ 4 b2c2d3a2 + 16 b3cd3a2 + 4 b2c4d2a2 − 4 bc4d2a2 + 12 b3c3d2a2 + 4 b2c3d2a2

+4 b4c2d2a2 + 4 b3c2d2a2 − 4 b4cd2a2 + 4 b3c4da2 − 10 b2c4da2 + 4 bc4da2 + 4 b4c3da2

−22 b3c3da2 − 10 b4c2da2 + 4 b4cda2 − 4 b2c2d4a+ 4 bc2d4a+ 4 b2cd4a− 10 bcd4a− 4 b3c3d3a
+16 b2c3d3a− 10 bc3d3a+ 16 b3c2d3a− 10 b3cd3a+ 4 b3c4d2a− 10 b2c4d2a+ 4 bc4d2a+ 4 b4c3d2a
−22 b3c3d2a− 10 b4c2d2a− 10 bcd4a4 + 4 bc2d3a4 + 4 b2cd3a4 + 12 bcd3a4 + 4 b2c2d2a4

−10 bc2d2a4 − 10 b2cd2a4 + 12 bcd2a4 + 4 b2cd2a3 + 12 bc2da3 + 12 b2cda3 + 4 bc2d3a2 + 4 b2cd3a2

+4 b2c3da2 + 12 bc3da2 + 4 b3c2da2 + 12 b3cda2 + 12 bc2d3a+ 12 b2cd3a+ 4 b2c3d2a+ 12 bc3d2a
+4 b3c2d2a+ 12 b3cd2a+ 4 bcd3a3 − 22 bcd2a3 − 22 b2c2da3 + 4 bcda3 − 22 bcd3a2

−22 bc3d2a2 + 12 b2c2d2a2 + 4 bc2d2a2 − 22 b3cd2a2 + 4 b2cd2a2 + 4 b2c2da2 − 10 bc2da2

−10 b2cda2 − 22 b2c2d3a+ 4 bcd3a+ 4 b2c2d2a− 10 bc2d2a− 10 b2cd2a+ 4 b3c3da− 22 b2c3da
+16 a2bcd2 + 16 ab2c2d+ 4 bc3da− 22 b3c2da+ 4 b3cda+ 4 bc2d2a3 − 4 b3c2a− 4 b2c3d
+4 c3d2a2 − 10 b2d3a2 + 4 b2c2a3 + 4 b2d2a2 − 10 b3c2d2 + 4 b2c2a2 + 16 b3c3a+ 4 c2d2a2

−10 b2c3d2 − 4 bd3a2 + 4 b3d2a2 + 16 cd3a3 − 10 b3c2a2 + 16 bd3a3 − 4 cd2a3 + 16 b2d3a3

−4 cd3a2 − 10 b2c3a2 + 4 b2c2d3 − 10 c2d3a2 + 16 b3c3d− 10 c2d2a3 + 16 b3c3d2 − 4 b3c2d
+4 b2c2d2− 4 bd2a3 − 4 b2c3a+ 16 b3c3a2 − 10 b2d2a3 + 16 c2d3a3 + b4c2 + 4 b4c4 − 4 b3c4

−4 b4c3 + d2a4 + d4a2 + 4 d4a4 − 4 d3a4 − 4 d4a3 + b2c4 + 2a3d3 + 2b3c3 + 4 b4c2d
+2b3c3a3 + b4c4d2 − 10 bd3a4 − 4 b3d2a3 + 4b3d3a3 + b2c2a4 + 4 b2c4a+ 4 bd4a4

−10 cd3a4 − 4 c3d3a2 + 4 b2d4a2 + b4d2a2 − 10 b3c4a− 4 b3c4a2 + 4 bd2a4 + 4 b2d2a4

+2b3c3d3 − 10 cd4a3 − 4 b3c2a3 + 4 c2d4a2 + 4 cd4a2 − 4 b4c3a2 − 10 b3c4d+ 4 cd4a4 − 10 bd4a3

+4 bd4a2 + 2 c3d3a3 + 4 b2c4d+ 4 cd2a4 − 4 b3d3a2 + 4 b4c2a− 10 b4c3d− 4 c2d4a3 + b4c4a2

−4 b3c4d2 − 4 b2c3d3 + 4 b4c2a2 − 4 b2c3a3 + 4 b4c2d2 − 4 b3c2d3 + 4 b4c4a− 10 b4c3a+ 4 b2c4d2

+2 c4d2a2 − 4 b4c3d2 − 4 b2d3a4 − 4 b2d4a3 − 4 c2d3a4 + 4 c2d2a4

+b2d4a4 + b2c2d4 + 4 b4c4d− 4 c3d2a3 + c2d4a4 + 4 b2c4a2.
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