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On Isogenies Among Certain Abelian Surfaces

Adrian Clingher, Andreas Malmendier, & Tony Shaska

Abstract. We construct a three-parameter family of nonhyperelliptic
and bielliptic plane genus-three curves whose associated Prym vari-
ety is two-isogenous to the Jacobian variety of a general hyperelliptic
genus-two curve. Our construction is based on the existence of special
elliptic fibrations with the section on the associated Kummer surfaces
that provide a simple geometric interpretation for the rational double
cover induced by the two-isogeny between the Abelian surfaces.

1. Introduction

A smooth projective curve is called hyperelliptic if it admits a map of degree two
onto a curve of genus zero. Within the (coarse) moduli space of irreducible pro-
jective curves of genus-three M3, we denote the hyperelliptic locus by Mh

3 and
the isomorphism class of such hyperelliptic curve H by [H] ∈ Mh

3 . It is known
that Mh

3 is an irreducible five-dimensional subvariety of M3 (the hyperelliptic in-
volution on an irreducible smooth projective curve of genus g is unique if g ≥ 2).
Within the moduli space M3, we also define the bielliptic locus

Mb
3 = {[D] ∈M3|D is bielliptic},

where bielliptic means that irreducible projective curve D of genus three admits a
degree-two morphism πD

E : D → E onto an elliptic curve E . We denote by [D] ∈
M3 the isomorphism class of D and by τ the involution, that is, the element of
Aut(D) that interchanges the sheets of πD

E so that E ∼= D/〈τ 〉. For such a bielliptic
genus-three curve D with a bielliptic involution τ , the Prym variety Prym(D,πD

E )

is defined as the connected component of the kernel of the induced norm map
πD
E,�

.

We recall from [11] that Mb
3 is an irreducible four-dimensional subvariety of

M3, and it is the unique component of maximal dimension of the singular locus
of M3. (By the Castelnuovo–Severi inequality it follows that bielliptic curves of
genus g ≥ 6 admit precisely one bielliptic structure and that bielliptic curves of
genus g ≥ 4 cannot be hyperelliptic.) The following proposition was proven in
[3].

Proposition 1.1. (1) [H] ∈ Mb
3 ∩ Mh

3 iff H is a double cover of a genus-two
curve C.

(2) Mb
3 ∩Mh

3 is an irreducible three-dimensional rational subvariety of Mb
3.
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On the other hand, among the smooth genus-three curves, there are the ones that
are given as plane quartics in P2. However, smooth plane quartics are never
hyperelliptic. We can ask whether the following Abelian surfaces are related
by isogeny: (1) the Jacobian variety Jac(C) associated with a hyperelliptic and
bielliptic curve H in Mb

3 ∩ Mh
3 covering a smooth genus-two curve C and

(2) the Prym variety Prym(D,πD
E ) associated with a bielliptic plane genus-three

curve D in Mb
3. That is, we ask for what curves H and D, there is an isogeny

� : Prym(D,πD
E ) → Jac(C) where curves are embedded as divisors representing

the respective polarization.
Barth [4] studied Abelian surfaces A with (1,2)-polarization line bundle L and

proved their close connection with Prym varieties of smooth bielliptic genus-three
curves. An excellent summary of Barth’s construction was given by Garbagnati
[16; 17; 18]. Abelian surfaces with (1,2)-polarization were also discussed in [29;
30; 5]. Bielliptic genus-three curves and Abelian surfaces with (1,2)-polarization
have also appeared as spectral curves of Lax representations of certain algebraic
integrable systems, most importantly (for us) the Kovalevskaya top [1; 2; 19; 14].
On the other hand, Kovalevskaya presented in her celebrated paper [24] a sepa-
ration of variables of the corresponding integrable system using a certain (hyper-
elliptic) genus-two curve, nowadays commonly referred to as Kowalewski curve,
whose Jacobian is associated with the integrals of motion of the Kovalevskaya
top.

Barth’s seminal work proved that the linear system |L| is a pencil on A of
bielliptic genus-three curves. Horozov and van Moerbeke [19] wrote down a spe-
cific Lefschetz pencil of bielliptic genus-three curves Dλ over P1 	 λ, generi-
cally smooth and with twelve double points. However, the members of the pencil
are generically not plane genus-three curves. The construction of the pencil is
based on Barth’s elegant geometric description for Prym varieties of bielliptic
genus-three curves as intersection of quadrics in a projective space [4; 9]. How-
ever, less attention has been given in this context to the elliptic fibrations with
section that the associated Kummer surfaces admit. The first two authors stud-
ied several elliptic fibrations on the Kummer surface associated with an Abelian
surface with (1,2)-polarization in [7], using the results of Mehran [30; 29;
31] and Garbagnati [16]. Among these fibrations is a particular elliptic fibration
with twelve singular fibers, which is directly induced by the linear system |L|
on A.

In this paper, we construct a three-parameter nonhyperelliptic and bielliptic
genus-three curve whose associated Prym variety is two-isogenous to the Jacobian
variety of the general three-parameter hyperelliptic genus-two curve. We consider
the genus-two curve C to be in Rosenhain form

C : Y 2 = X(X − 1)(X − λ1)(X − λ2)(X − λ3) (1.1)

with parameters λ1, λ2, λ3. We define the subgroup �2(2n) = {M ∈ �2|M ≡
I mod 2n} and Igusa’s congruence subgroups �2(2n,4n) = {M ∈ �2(2n)|
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diag(B) = diag(C) ≡ I mod 4n} of the Siegel modular group �2 = {M =(
A B
C D

) ∈ Sp4(Z)} such that

�2/�2(2) ∼= S6, �2(2)/�2(2,4) ∼= (Z/2Z)4,

�2(2,4)/�2(4,8) ∼= (Z/2Z)9,
(1.2)

where S6 is the permutation group of six elements. Then λ1, λ2, λ3 are modular
with respect to �2(2). We define a modular form l such that l2 = λ1λ2λ3 and three
modular forms m(i,j,k) such that (m(i,j,k))2 = (λi − λj )(λi − λk)/[(1 − λj )(1 −
λk)] with {i, j, k} = {1,2,3}. Then l is modular with respect to �2(2,4), and
m(i,j,k) are modular with respect to �2(4,8).

The main result of this paper is the following:

Theorem 1.2. Consider the plane bielliptic genus-three curves D[s∗
0 :s∗

1 ] given by(
w2 − u2 − C(s∗

0 , s∗
1 )

E(s∗
0 , s∗

1 )
uv − D(s∗

0 , s∗
1 )

E(s∗
0 , s∗

1 )
v2

)2

= u4 + B(s∗
0 , s∗

1 )u2v2 + A2(s∗
0 , s∗

1 )v4, (1.3)

where [u : v : w] ∈ P2, A, B , C, D, E are polynomials in [s0 : s1] ∈ P1 with
coefficients in Z[l, λ1, λ2, λ3] defined in the Appendix, and [s∗

0 : s∗
1 ] ∈ P1 is one of

the six special points given by

[s∗
0 : s∗

1 ] = [(1 + λi − λj − λk)l : (λi − λjλk) ± m(i,j,k)(1 − λj )(λ0 − λk)] (1.4)

with {i, j, k} = {1,2,3} such that E(s∗
0 , s∗

1 ) �= 0.
Then the curves D[s∗

0 :s∗
1 ] are smooth and irreducible and admit a degree-two

covering πD
E : D[s∗

0 :s∗
1 ] → E[s∗

0 :s∗
1 ] onto a smooth elliptic curve E[s∗

0 :s∗
1 ] ∼= D∗/〈τ 〉,

where τ is the bielliptic involution. Moreover, the Prym variety Prym(D[s∗
0 :s∗

1 ],πD
E )

is an Abelian surface that admits a (1,2)-isogeny

� : Prym(D[s∗
0 :s∗

1 ],πD
E ) → Jac(C)

onto the principally polarized Abelian surface Jac(C) of C in Equation (1.1).

The geometry underlying Theorem 1.2 is the following: if we choose 6 points in
P1, partitioned into 2 and 4, then we obtain three double covers of P1 branched
respectively at the marked sets of 2, 4, and all 6 points. We label them R, E , C
with genus 0, 1, and 2, respectively. These three curves have a common double
cover H, which can be obtained as the fiber product over P1 of any two of the
three. This is a Galois cover of P1 with group Z/2Z × Z/2Z and the three inter-
mediate curves R, E , H are the quotients by the three Z/2Z subgroups. The curve
H is hyperelliptic via the map to R and bielliptic via the map to E . Its Jacobian
decomposes as JacH ∼= JacC × E . On the other hand, Recillas’ famous trigonal
construction [38] relates to such a tower {R,E,H} a nonhyperelliptic and biellip-
tic genus-three curve D such that the Prym of the latter is two-isogenous to JacC;
see [13].
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It is amazing that we can use two special elliptic fibrations with section on
the Kummer surfaces associated with JacC and Prym(D,πD

E ) to provide a simple
geometric interpretation for the rational double cover induced by the two-isogeny
between the Abelian surfaces. We then work backward and obtain explicit expres-
sions for the coefficients of suitable normal forms for D and C in terms of Siegel
modular forms. This is the content of Theorem 1.2. Applications of isogenies of
Pryms to hyperelliptic Jacobians are of central importance in cryptography; see
[15, Section 9] for further details.

The paper is structured as follows: in Section 2, we consider an Abelian surface
A with polarization of type (1,2). On the Kummer surface Kum(A), we identify
a special elliptic fibration, alongside with a set of generators for the Mordell–
Weil group and symplectic automorphisms in Theorem 2.8, which turn out to be
crucial for the proof of Theorem 1.2. In Section 3, we determine a convenient
normal form for a hyperelliptic and bielliptic genus-three curve that is the double
cover of a general genus-two curve. We then generalize this construction to pen-
cils and establish a connection to the aforementioned elliptic pencil on Kum(A),
providing explicit formulas for the coefficients of all normal forms in terms of
suitable modular forms. In Section 4, we give a geometric description of plane
bielliptic genus-three curves and determine a criterion for the quotient (elliptic)
curves to have a rational level-two structure and branch locus. In Section 5, we
carry out the proof of Theorem 1.2: using the results of Section 2, we identify six
special members of the fibration induced by the pencil |L| on A, where the elliptic
fiber satisfies the conditions of Proposition 4.8, and its double cover is a smooth
bielliptic plane quartic curve. Using the results of Section 3 the plane bielliptic
genus-three curve can then be related back to the Rosenhain normal form of a
general genus-two curve to prove our theorem.

2. Abelian and Kummer Surfaces

Polarizations on an Abelian surface A ∼= C2/� are known to correspond to posi-
tive definite Hermitian forms H on C2 satisfying E = ImH(�,�) ⊂ Z. In turn,
such a Hermitian form determines a line bundle L in the Néron–Severi group
NS(A). Then we may always choose a basis of � such that E is given by a matrix(

0 D−D 0

)
with D = (

d1 0
0 d2

)
where d1, d2 ∈ N, d1, d2 ≥ 0, and d1 divides d2. The

pair (d1, d2) gives the type of the polarization.
If A = Jac(C) is the Jacobian of a smooth curve C of genus two, then the Her-

mitian form associated with the divisor class [C] is a polarization of type (1,1), a
principal polarization. Conversely, a principally polarized Abelian surface is ei-
ther the Jacobian of a smooth curve of genus two or the product of two complex
elliptic curves with product polarization.

Let A an Abelian surface defined over C and −I be the minus identity invo-
lution on A. The quotient A/〈−I〉 has 16 ordinary double points, and its mini-
mum resolution, denoted Kum(A), is known as the Kummer surface of A. Thus
there is an even set of 16 disjoint rational curves Ki for 0 ≤ i ≤ 15 such that
Ki ◦ Kj = −2δij . The double points are the images of the order-two points
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{P0, . . . ,P15} on A, that is, elements of A[2], and the disjoint rational curves
{K0, . . . ,K15} are the exceptional divisors introduced in the blowup process.
The minimal primitive sublattice that contains all these curves is called the Kum-
mer lattice. In particular, they form an even set in the Néron–Severi lattice. We
recall that an even set of rational curves is a set of disjoint (−2)-rational smooth
curves {K0, . . . ,K15} such that there exists a divisor δ in the Néron–Severi lattice
with K0 + · · · + K15 ∼ 2δ, where ∼ denotes linear equivalence. Since they form
an even set, the class K̂ = 1

2 (K0 + · · · + K15) is an element of this lattice with

K̂2 = −8. However, the classes Ki and K̂ do not generate, over Z, the minimal
primitive lattice containing these curves. The Néron–Severi lattice NS(KumA) is
generated over Q by the classes Ki and one additional class H with H 2 = 8 and
H ◦ Ki = 0 for 0 ≤ i ≤ 15.

2.1. Abelian Surfaces with (1,2)-Polarization

Let us now consider the generic Abelian surface A with a (1,2)-polarization. Let
this polarization of type (d1, d2) = (1,2) be given by an ample symmetric line
bundle L such that L2 = 4. We also assume that the Picard number ρ(A) = 1 such
that the Néron–Severi group of A is generated by L [6]. The line bundle L defines
an associated rational map φ = φL : A → Pd1d2−1 = P1. Since h0(A,L) = 2, the
linear system |L| is a pencil on A, and the map φL is a rational map φL :A → P1.
As L2 = 4, each curve in |L| has self-intersection equal to 4. Since we assumed
that ρ(A) = 1, the Abelian surface A cannot be a product of two elliptic curves or
isogenous to a product of two elliptic curves.

It was proven in [6, Prop. 4.1.6, Lemma 10.1.2] that the linear system |L|
has exactly four base points if (d1, d2) = (1,2). To characterize these four base
points, Barth [4] proved that the base points form the translation group T (L) =
{P ∈ A | t∗PL = L} where elements of A act by translation tp(x) = x + P . More-
over, he proved that T (L) ∼= (Z/2Z)2 and that the base points all have order two
on the Abelian surface A, and we denote them by {P0,P1,P2,P3}. A curve in
the pencil |L| is never singular at any of the base points {P0,P1,P2,P3}; see [5,
Lemma 3.2]. Barth’s seminal duality theorem in [4] can then be stated as fol-
lows.

Theorem 2.1 (Barth). In the situation above, let D ∈ |L| be a smooth genus-three
curve in the pencil |L|. There exists a bielliptic involution τ on D with degree-two
quotient map πD

E : D → E = D/〈τ 〉 such that A is naturally isomorphic to the

Prym variety Prym(D,πD
E ) and the involution −I restricts to τ .

Conversely, if D is a smooth bielliptic genus-three curve with degree-two quo-
tient map πD

E :D → E = D/〈τ 〉, then D is embedded in Prym(D,πD
E ) as a curve

of self-intersection four. The Prym variety Prym(D,πD
E ) is an Abelian surface

with a polarization of type (1,2).
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2.2. An Elliptic Fibration on (1,2)-Polarized Kummer Surfaces

We denote the exceptional curves associated with the base points on Kum(A)

by {K0,K1,K2,K3}. The map φL : A → P1 induces an elliptic fibration π :
Kum(A) → P1 with section O as follows: first, a fibration is obtained by blow-
ing up the base points of the pencil |L|. The fibers of this fibration are the strict
transform of the curves D ∈ |L|, and so the general fiber is a smooth genus-three
curve. The involution τ lifts to an involution on this fibration whose fixed points
are the exceptional curves over {P0,P1,P2,P3}. We then take as the general fiber
of π the quotient of the general fiber of φL by the bielliptic involution. Since a
curve in the pencil |L| is never singular at any of the base points {P0,P1,P2,P3},
we can take as zero-section O the exceptional curve over P0 such that the divisor
class of the section is [O] = K0. Garbagnati [16; 17; 18] proved the following:

Proposition 2.2 (Garbagnati). The fibration π has twelve singular fibers of
Kodaira type I2 and no other singular fibers. The Mordell Weil group satisfies
MW(π,O)tor = (Z/2Z)2 and rank MW(π,O) = 3. The smooth fiber class F with
F 2 = 0 and F ◦ K0 = 1 is given by

F = H − K0 − K1 − K2 − K3

2
.

The twelve nonneutral components of the reducible fibers of Kodaira type A1

represent the classes K4, . . . ,K15 of the Kummer lattice and are not intersected
by the class of the zero section given by K0. The remaining four classes Ki with
0 ≤ i ≤ 3 satisfy F ◦Ki = 1 and Kj ◦Ki = 0 with 4 ≤ j ≤ 15. Thus they represent
sections of the elliptic fibration with section (π,O), which we still denote by Ki ,
and intersect only neutral components of the reducible fibers given by the divisor
classes F − Kj with 1 ≤ i ≤ 3 and 4 ≤ j ≤ 15.

In [8; 7] the authors introduced explicit normal forms for the elliptic fibration
with section (π,O), given as the affine Weierstrass model

Y 2 = X(X2 − 2B(s)X + (B(s)2 − 4A(s)2)), (2.1)

where A(s) and B(s) are certain even polynomials of degree four in s – we will
determine them in Corollary 3.12 and Equation (3.28) – such that there are no
singular fibers over s = 0,∞, and

A(s) = s4A(1/s), B(s) = s4B(1/s),

and the discriminant of the elliptic fiber given by � = 16A(s)2(B(s)2 − 4A(s)2)2

has twelve roots of order two. Moreover, the elliptic fibration is invariant under the
action of the hyperelliptic involution (s,X,Y ) �→ (s,X,−Y), which we denote
by p �→ −p for a point p ∈ F in a fiber F given by Equation (2.1), and three
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additional involutions given by

j1 : (s,X,Y ) �→ (s′ = −s,X,Y ),

j2 : (s,X,Y ) �→
(

s′′ = 1

s
,
X

s4
,

Y

s6

)
,

j3 : (s,X,Y ) �→
(

s′′′ = −1

s
,
X

s4
,− Y

s6

)
.

(2.2)

The involutions s �→ −s and s �→ 1/s and their composition map singular fibers
of Equation (2.1) to singular fibers and smooth fibers to smooth fibers. The zero
section O, given as the point at infinity in each fiber, and the two-torsion sections
T1, T2, T3, given by

T1 : (X,Y ) = (0,0), T2 : (X,Y ) = (B − 2A,0),

T3 : (X,Y ) = (B + 2A,0),
(2.3)

are invariant under the involutions j1, j2, j3 and the hyperelliptic involution. The
two-torsion sections intersect the nonneutral components of eight reducible fibers
of type A1 each (which we represent as sets Wk = {Ki | i ∈ Ik} for index sets Ik

such that |Wk| = 8 for k = 1,2,3) partitioning the twelve rational curves Kj with
4 ≤ j ≤ 15 into three sets of eight curves with pairwise intersections consisting
of four curves, that is, |Wj ∩Wk| = 4 and W1 ∩W2 ∩W3 = ∅. None of the twelve
reducible fibers is invariant under the action of the involutions j1, j2. However, the
sets Wk and Wj ∩ Wk for 1 ≤ j, k ≤ 3 are invariant under j1, j2. We may define
the divisors K̄Wk

= 1
2

∑
n∈Ik

Kn with 1 ≤ k ≤ 3, which are known to be elements

of the Kummer lattice [16; 17; 18] with K̄Wj
◦ K̄Wk

= −2 − 2δjk for 1 ≤ j, k ≤ 3.

We also define the divisors K̄Wj ∩Wk
= 1

2

∑
n∈Ij ∩Ik

Kn with K̄2
Wj ∩Wk

= −2. By

construction the elements K̄Wk
and K̄Wj ∩Wk

for 1 ≤ j, k ≤ 3 are invariant under
the action of the involutions j1, j2. The twelve singular fibers of fibration (2.1)
arise when two-torsion sections collide. This happens as follows in Table 1.

We have the following:

Corollary 2.3. The divisor classes of the two-torsion sections Tk are given by

[Tk] = 2F + K0 − K̄Wk
for 1 ≤ k ≤ 3. (2.4)

Proof. The proof follows from [Tk] ◦ F = 1, [Tk] ◦ K0 = 0, [Tk] ◦ Kj = 1 for
j ∈ Ik and [Tk] ◦ Kj = 0 for j /∈ Ik , and [Tk] ◦ Kl = 2 for 1 ≤ l ≤ 3. �

Table 1 Collision of torsion sections.

colliding sections equation # of points fiber components
T1 = T2 B − 2A = 0 4 W1 ∩ W2
T1 = T3 B + 2A = 0 4 W1 ∩ W3
T2 = T3 A = 0 4 W2 ∩ W3
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In [8; 7], three nontorsion sections S1, S2, S3 of the elliptic fibration (π,O) of
minimal height were constructed explicitly. We will review an explicit construc-
tion of these sections in Section 3.4. For two arbitrary sections S′ and S′′ of the
elliptic fibration, we define the height pairing using the formula

〈S′, S′′〉 = χhol + O ◦ S′ + O ◦ S′′ − S′ ◦ S′′ −
∑

{s|�=0}
C−1

s (S′, S′′), (2.5)

where the holomorphic Euler characteristic is χhol = 2, and the inverse Cartan
matrix C−1

s of a fiber of type A1 located over point s of the discriminant locus
� = 0 contributes ( 1

2 ) if and only if both S′ and S′′ intersect the nonneutral com-
ponent. It turns out that the sections S1 and S2 do not intersect the zero section O
and intersect the nonneutral components of six reducible fibers of type A1 each
(which we represent as complementary sets Vk = {Ki | i ∈ Jk} for index sets Jk

such that |Vk| = 6 for k = 1,2) partitioning the twelve rational curves Kj with
4 ≤ j ≤ 15 into two disjoint sets of six curves. We also set W ′

1 = V1 ∪ {K0,K1},
I ′

1 = J1 ∪ {0,1} and W ′
2 = V2 ∪ {K2,K3}, I ′

2 = J2 ∪ {2,3} and define the divisors
K̄W ′

k
= 1

2

∑
n∈I ′

k
Kn with 1 ≤ k ≤ 2. The sets V1 and V2 are invariant under the

action of the involution j1 and interchanged under the action of j2. The section S3

intersects the nonneutral components of all reducible fibers and the zero section
such that S3 ◦ O = 2.

We have the following:

Proposition 2.4. The sections {O,T1,T2,T3,S1,S2,S3} form a basis of the
Mordell–Weil group of sections. In particular, we have

MW(π,O) = (Z/2Z)2 ⊕ 〈1〉⊕2 ⊕ 〈2〉. (2.6)

Proof. Given an explicit form of the sections {O,T1,T2,T3,S1,S2,S3}, we com-
puted the intersection pairings for their divisor classes. The results are part of
Table 2. The height pairings of the corresponding sections of the elliptic fibration
(π,O) are given in Table 2. We observe from Table 2 that the pairwise orthogonal
sections S1, S2, S3 of height less than or equal to two generate a rank-three sub-
lattice of the Mordell–Weil group of sections. It was proved in [16, Prop. 2.2.4]
that the transcendental lattice of the Kummer surface Kum(A) is isometric to
H(2)⊕H(2)⊕〈−8〉 such that the determinant of the discriminant form equals 27.
This is in numerical agreement with the determinant of the discriminant form for
the Néron–Severi lattice obtained from an elliptic fibration with section, twelve
singular fibers of Kodaira type I2, and a Mordell–Weil group of sections given by
Equation (2.6). �

We recall that an automorphism of finite order on a complex K3 surface is called
symplectic if it acts trivially on the holomorphic two-form of the K3 surface, and
it is called antisymplectic if it acts as multiplication by (−1). These notions were
introduced by Nikulin in [36]. We have the following:
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Table 2 Intersection and height pairings.

◦ F O T1 T2 T3 S′
1 S′

2 S′
3 S1 S2 S3

F 0 1 1 1 1 1 1 1 1 1 1
O 1 −2 0 0 0 0 0 0 0 0 2
T1 1 0 −2 0 0 2 2 2 0 0 0
T2 1 0 0 −2 0 2 2 2 0 0 0
T3 1 0 0 0 −2 2 2 2 0 0 0
S′

1 1 0 2 2 2 −2 0 0 0 2 4
S′

2 1 0 2 2 2 0 −2 0 1 1 2
S′

3 1 0 2 2 2 0 0 −2 1 3 2
S1 1 0 0 0 0 0 1 1 −2 2 1
S2 1 0 0 0 0 2 1 3 2 −2 1
S3 1 2 0 0 0 4 2 2 1 1 −2

〈•,•〉 O T1 T2 T3 S′
1 S′

2 S′
3 S1 S2 S3

O 0 0 0 0 0 0 0 0 0 0
T1 0 0 0 0 0 0 0 0 0 0
T2 0 0 0 0 0 0 0 0 0 0
T3 0 0 0 0 0 0 0 0 0 0
S′

1 0 0 0 0 4 2 2 2 0 0
S′

2 0 0 0 0 2 4 2 1 1 2
S′

3 0 0 0 0 2 2 4 1 −1 2
S1 0 0 0 0 2 1 1 1 0 0
S2 0 0 0 0 0 1 −1 0 1 0
S3 0 0 0 0 0 2 2 0 0 2

Table 3 Action of involutions torsion and non-torsion sections.

O T1 T2 T3 S1 S2 S3

j1 O T1 T2 T3 S1 S2 −S3
j2 O T1 T2 T3 S2 S1 S3
j3 O T1 T2 T3 −S2 −S1 S3

Lemma 2.5. The involutions j1, j2, j3 are three commuting antisymplectic involu-
tions of the elliptic fibration with section (π,O) with j3 = −j1j2. The involutions
jl for 1 ≤ l ≤ 3 act on the sections {O,T1,T2,T3,S1,S2,S3} as follows in Table 3.
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Proof. We check that the involutions are antisymplectic by using an explicit rep-
resentative of the holomorphic two-form for the affine Weierstrass model in Equa-
tion (2.1) given by ds ∧ dX/Y . The rest of the statement follows by explicit com-
putation. �

We should emphasize that the operations + and −, when used with sections of
a Jacobian elliptic fibration, are operations with respect to the group law in the
Mordell–Weil group MW(π,O), that is, the fiberwise application of the elliptic
curve group law. In contrast, before the symbols were used in the context of divi-
sors in the Néron–Severi group. We have the following:

Proposition 2.6. There are four possible choices for sections {S′
1,S′

2,S′
3} of

the elliptic fibration with section (π,O) (up to permutation and the action of the
hyperelliptic involution) such that the divisor classes K0, K1, K2, K3 are repre-
sented as

K0 = [O], K1 = [S′
1], K2 = [S′

2], K3 = [S′
3]. (2.7)

The sections are obtained as linear combinations of the nontorsion sections S1,
S2, S3 generating MW(π,O) using the elliptic-curve group law in each fiber F

given by Equation (2.1) as follows in Table 4.

Proof. We explicitly compute 2S1, S1 + S2 + S3, S1 − S2 + S3 using the elliptic-
curve group law. Since these are sections of the elliptic fibration, we find that the
intersection pairing with the smooth fiber F always equals one. We then check
that the three sections intersect only neutral components of the reducible fiber,
that is, the components F − Kj for 4 ≤ j ≤ 15. We finally check that the three
sections do not mutually intersect nor intersect the zero section O. For S′

1 = 2S1,
S′

2 = S1 + S2 + S3, S′
3 = S1 − S2 + S3, the intersection pairings of all aforemen-

tioned divisor classes and height pairings of the corresponding sections are given
in Table 2. The sections of the table are then obtained by acting with involutions
j1, . . . , j3 and the hyperelliptic involution. Using the height pairing, we check that
these are the only possibilities. �

Remark 2.7. The different choices in Proposition 2.6 are permuted by automor-
phisms that fix the ample class; see Theorem 2.8.

Table 4 Action of involutions on the sections of (π : E → P1,O).

# action S′
1 S′

2 S′
3

∑3
i=1 S′

i

1 ± id ±2S1 ±(S1 + S2 + S3) ±(S1 − S2 + S3) ±2(2S1 + S3)

2 ±j1 ±2S1 ±(S1 + S2 − S3) ±(S1 − S2 − S3) ±2(2S1 − S3)

3 ±j2 ±2S2 ±(S1 + S2 + S3) ±(−S1 + S2 + S3) ±2(2S2 + S3)

4 ∓j3 ±2S2 ±(S1 + S2 − S3) ±(−S1 + S2 − S3) ±2(2S2 − S3)
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Using the elliptic-curve group law on each fiber Fs 	 (s,X,Y ) given by Equation
(2.1), the three involutions in Equation (2.2), and a choice of sections {S′

1,S′
2,S′

3}
in Proposition 2.4, we define involutions of the elliptic fibration with section
(π,O) mapping smooth or singular fibers to smooth or singular fibers, respec-
tively:

ı1 : (s,X,Y ) �→ (s′,X′, Y ′) = −j1(s,X,Y ) + S′
1|Fs′ ,

ı2 : (s,X,Y ) �→ (s′′,X′′, Y ′′) = −j2(s,X,Y ) + S′
2|Fs′′ ,

ı3 : (s,X,Y ) �→ (s′′′,X′′′, Y ′′′) = −j3(s,X,Y ) + S′
3|Fs′′′ .

(2.8)

By a slight abuse of notation, we also denote the involutions more intuitively by
p �→ ıl(p) := −jl(p) + Kl for p ∈ F and 1 ≤ l ≤ 3. We have the following:

Theorem 2.8. The involutions ı1, ı2, ı3 are three commuting symplectic involu-
tions of the elliptic fibration with section (π,O) on Kum(A) such that ı3 = ı1 ◦ ı2.
The involutions act on the divisor classes {F,K0,K1,K2,K3} as follows in Ta-
ble 5.

Proof. Each involution ıl is a composition of the involution jl , an inversion given
by the hyperelliptic involution, and a shift on the fiber. Since jl is antisymplectic
by Lemma 2.5, the involution ıl is symplectic. We check by explicit computation
that the involutions ıl commute and satisfy ı3 = ı1 ◦ ı2. The rest of the statement
follows using the explicit representation of each class Kl for 1 ≤ l ≤ 3 in Equation
(2.7). �

We have the following consequence.

Corollary 2.9. For the Abelian surface A with polarization of type (1,2) given
by a line bundle L, the translation group T (L) = {P ∈ A | t∗PL = L} ∼= (Z/2Z)2

induces the group of symplectic involutions {id, ı1, ı2, ı3} given by Equation (2.8)
on the elliptic fibration with section (π,O) on the Kummer surface Kum(A).

Proof. Denote the four base points of the linear system |L| by {P0,P1,P2,P3}
and identify P0 = 0 and the action by translation as follows in Table 6.

The action of tPi
on the Abelian surface descends to a symplectic automor-

phism of Kum(A). Since Pi ∈ T (L), the action of tPi
on the Abelian surface de-

scends to an automorphism that preserves the elliptic fibration with section (π,O)

and maps the zero section O to the section representing the image of the base

Table 5 Action of translations on divisor classes.

F K0 K1 K2 K3

ı1 F K1 K0 K3 K2
ı2 F K2 K3 K0 K1
ı3 F K3 K2 K1 K0
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Table 6 Action of translations on the base points of the linear system |L|.

0 P1 P2 P3

tP1 P1 0 P3 P2
tP2 P2 P3 0 P1
tP3 P3 P2 P1 0

point Pi on Kum(A). By Theorem 2.8 this is the group of symplectic involutions
{id, ı1, ı2, ı3} given by Equation (2.8). �

3. Bielliptic and Hyperelliptic Genus-Three Curves

In this section, we construct a bidouble cover of P1 introducing the curves H, C,
and E ∼= Q, which are used in the construction of the bielliptic curve D and in
Section 5 to show that the Prym variety of D is two-isogenous to the Jacobian
variety of C.

The intersection Mh
3 ∩ Mb

3 is exactly the locus of curves with automor-
phism group V4 (the Klein 4-group) inside the hyperelliptic locus. Such curves
are usually called hyperelliptic curves with extra involutions. In [39] the locus
Mb

3 ∩ Mh
3 was explicitly described in terms of invariants. We will construct a

curve H ∈ Mb
3 ∩ Mh

3 by choosing four out of the six Weierstrass points of C to
be the images of four pairs of points on the curve H such that all eight Weierstrass
points of H in the preimage are fixed under the hyperelliptic involution, and each
pair is kept fixed by the bielliptic involution. For a genus-two curve C given as
sextic Y 2 = f6(X,Z), a class in M2(2), that is, the moduli space of genus-two
curves with level-two structure, is given by the ordered tuple (λ1, λ2, λ3) after we
sent the three remaining roots to 0, ∞, 1. We then choose the points (1, λ1, λ2, λ3)

to be the images of the eight ramification points of H.

3.1. A Normal Form

We assume that the smooth genus-two curve C in Proposition 1.1 is in Rosenhain
normal form, that is, for [X : Z : Y ] ∈ P(1,1,3), the curve is given by

Y 2 = XZ

3∏
i=0

(X − λiZ) (3.1)

with the hyperelliptic map πC : C → P1 given by [X : Z : Y ] �→ [X : Z]. The
hyperelliptic involution on C has six fixed points pi = [λi : 1 : 0] for i = 0, . . . ,3,
p4 = [0 : 1 : 0], and p5 = [1 : 0 : 0]. To simplify our discussion in the situation
of pencils, we will use λ0 rather than choosing λ0 = 1. Since C is smooth, we
will assume that λi �= 0 and λi �= λj for 0 ≤ i < j ≤ 3. The lambdas are ratios of
squares of even theta functions θ2

i = θ2
i (0, τ ) with zero elliptic argument, modular

argument τ ∈ H2/�2(2), and 1 ≤ i ≤ 10, where we are using the same standard
notation for even theta functions as in [21; 20; 9]. We have a choice of 6! = 720
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such expressions. In each case, there is a ratio of squares of theta functions such
that l2 = λ0λ1λ3λ3. In the following, we use the convention from [37].

Lemma 3.1. If C is a genus-two curve with period matrix τ and nonvanishing
discriminant, then C is equivalent to the curve in Equation (3.1) with Rosenhain
parameters λ0, λ1, λ2, λ3 given by

λ0 = 1, λ1 = θ2
1 θ2

3

θ2
2 θ2

4

, λ2 = θ2
3 θ2

8

θ2
4 θ2

10

, λ3 = θ2
1 θ2

8

θ2
2 θ2

10

. (3.2)

Conversely, given three distinct complex numbers (λ1, λ2, λ3) different from 0, 1,
∞, the complex Abelian surface Jac(C) has the period matrix [I2|τ ] where C is
the genus-two curve with period matrix τ .

Remark 3.2. We define

l = θ2
1 θ2

3 θ2
8

θ2
2 θ2

4 θ2
10

, m(1,2,3) = θ1θ3θ
2
6

θ2θ4θ
2
5

,

m(2,1,3) = i
θ3θ8θ

2
6

θ4θ10θ
2
7

, m(3,1,2) = θ1θ8θ
2
6

θ2θ10θ
2
9

,

(3.3)

so that l2 = λ0λ1λ3λ3 and (m(i,j,k))2 = (λi − λj )(λi − λk)/[(λ0 − λi)(λ0 − λj )]
with {i, j, k} = {1,2,3}. The latter identities follow from the well-known Frobe-
nius identities for theta functions; see [27; 28].

We define the subgroup �2(2n) = {M ∈ �2|M ≡ I mod 2n} and Igusa’s congru-
ence subgroups �2(2n,4n) = {M ∈ �2(2n)|diag(B) = diag(C) ≡ I mod 4n} of
the Siegel modular group �2 = {M = (

A B
C D

) ∈ Sp4(Z)} such that

�2/�2(2) ∼= S6, �2(2)/�2(2,4) ∼= (Z/2Z)4,

�2(2,4)/�2(4,8) ∼= (Z/2Z)9,
(3.4)

where S6 is the permutation group of six elements. The following lemma was
proven in [9].

Lemma 3.3. λ1, λ2, λ3 are modular with respect to �2(2), l is a modular with
respect to �2(2,4), and m(i,j,k) is modular with respect to �2(4,8) for {i, j, k} =
{1,2,3}.
By Proposition 1.1 a hyperelliptic and bielliptic genus-three curve H in the preim-
age of the curve C defined in Equation (3.1), that is, the parameters λi in Equations
(3.2) under the map Mb

3 ∩Mh
3 →M2, is given by the equation

y2 =
3∏

i=0

(x2 − λiz
2) (3.5)

with [x : z : y] ∈ P(1,1,4). On H, there are two involutions, the hyperelliptic
involution ıH : [x : z : y] �→ [x : z : −y] and the bielliptic involution τH : [x : z :
y] �→ [−x : z : y].



240 A. Clingher, A. Malmendier, & T. Shaska

H

πH
Q

πH
C

C

πC

Q

πQ

P1

P1

Figure 1 Quotients of bielliptic, hyperelliptic curve H.

It is easy to check that the composition τH ◦ ıH is fixed-point-free. An unram-
ified double cover πH

C :H → C is given by

πH
C : [x : z : y] �→ [X : Z : Y ] = [x2 : z2 : xyz]. (3.6)

The images of the four pairs of hyperelliptic fixed points and the two pairs of biel-
liptic fixed points under πH

C are exactly the Weierstrass points of the genus-two
curve C. It is easily proved that every unramified double cover of a hyperelliptic
genus two curve is obtained in this way [19, p. 387]; in particular, the cover is
always hyperelliptic.

The quotient genus-one curve Q = H/〈τH〉 obtained from the bielliptic invo-
lution is the quartic curve

y2 =
3∏

i=0

(X − λiZ) (3.7)

with [X : Z : y] ∈ P(1,1,2), and the double cover πH
Q :H →Q is given by

πH
Q : [x : ±z : y] = [−x : ∓z : y] �→ [X : Z : y] = [x2 : z2 : y].

The four branch points of πH
Q are precisely the images of the bielliptic fixed

points. The situation is summarized in Figure 1. Here the map P1 → P1 is given
by [x : z] �→ [X : Z] = [x2 : z2]. Moreover, in the introduction the genus-one
curve in the bidouble cover is denoted E . Here it is called Q, and we prove in
Section 5 that it is isomorphic to a curve E with a certain given equation.

We have the following:

Proposition 3.4. The quotient Q = H/〈τH〉 in Equation (3.7) of the hyperellip-
tic and bielliptic genus-three curve in Equation (3.5) is isomorphic to the elliptic
curve

E : ρ2η = ξ(ξ2 − 2bξη + (b2 − 4a2)η2) (3.8)

with [ξ : η : ρ] ∈ P2 and coefficients

a = (λ0 − λ1)(λ2 − λ3),

b = 4λ0λ1 + 4λ2λ3 − 2λ0λ2 − 2λ0λ3 − 2λ1λ2 − 2λ1λ3.
(3.9)

The elliptic curve (3.8) has two-torsion points [ξ : η : ρ] = [0 : 1 : 0], [b ± 2a : 1 :
0] and the neutral element [0 : 0 : 1].
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Proof. The proof follows by an explicit computation. �

Later, we will also use the existence of certain rational points on E in Equation
(3.8), that stems from the fact that E is isomorphic to the genus-one curve Q =
H/〈τH〉 with four bielliptic branch points. We have the following:

Lemma 3.5. On the elliptic curve E in Proposition 3.4, there are the rational
points p1 with coordinates given by

[ξ : η : ρ] = [4(λ0 − λ2)(λ0 − λ3) : 1 : 8(λ0 − λ1)(λ0 − λ2)(λ0 − λ3)] (3.10)

and p2 with

[ξ : η : ρ]
= [4λ0λ1(λ0 − λ2)(λ0 − λ3) : λ2

0 : 8l(λ0 − λ1)(λ0 − λ2)(λ0 − λ3)]. (3.11)

Using the group law on E , we obtain the rational points 2p1 with coordinates

ξ = (λ0 + λ1 − λ2 − λ3)
2, η = 1,

ρ = (λ0 + λ1 − λ2 − λ3)(λ0 − λ1 − λ2 + λ3)(λ0 − λ1 + λ2 − λ3),
(3.12)

and rational points p1 ± p2 with coordinates

ξ = 4(λ0λ1 + λ2λ3 ∓ 2l), η = 1,

ρ = 8(±l(λ0 + λ1 + λ2 + λ3) − λ0λ1λ2 − λ0λ1λ3 − λ0λ2λ3 − λ1λ2λ3).
(3.13)

Proof. The points ±p1 and ±p2 are the images of the four branch points of πH
Q ,

namely [X : Z : y] = [1 : 0 : ±1] and [0 : 1 : ±l] on the genus-one curve in Equa-
tion (3.7), respectively. The rest of the proof follows by explicit computation. �

Moreover, we have the following:

Proposition 3.6. Given a smooth genus-two curve C, the hyperelliptic and biel-
liptic genus-three curve H in Equation (3.5) and the elliptic curve E in Equation
(3.8) satisfy

Jac(H) ∼= Prym(H,πH
E ) × E, Prym(H,πH

E ) ∼= Jac(C),

where Prym(H,πH
E ) is the Prym variety associated with πH

E .

Proof. The involution τH extends to the Jacobian variety Jac(H). Therefore it
contains two Abelian subvarieties, the elliptic curve E , and the two-dimensional
Prym-variety Prym(H,πH

E ), which is antisymmetric with respect to the extended
involution. On the other hand, the étale double cover πH

C : H → C satisfies πH
C ◦

τH = ıC , that is, it is equivariant with respect to the bielliptic involution on H and
the hyperelliptic involution on C. The claim follows. �
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3.2. Göpel Groups and Double Covers

We denote the space of two-torsion points on an Abelian variety A by A[2]. In
the case of the Jacobian of a genus-two curve, every nontrivial two-torsion point
can be expressed using differences of Weierstrass points of C. Concretely, the
sixteen order-two points of Jac(C)[2] are obtained using the embedding of the
curve into the connected component of the identity in the Picard group, that is,
C ↪→ Jac(C) ∼= Pic0(C) with p �→ [p− p5]. We obtain 15 elements Pij ∈ Jac(C)[2]
with 0 ≤ i < j ≤ 5 as

Pi5 = [pi − p5] for 0 ≤ i < 5,

Pij = [pi + pj − 2p5] for 0 ≤ i < j ≤ 4,
(3.14)

and set P0 = P55 = [0]. For {i, j, k, l,m,n} = {0, . . . ,5}, the group law on
Jac(C)[2] is given by the relations

P0 + Pij = Pij , Pij + Pij = P0,

Pij + Pkl = Pmn, Pij + Pjk = Pik.
(3.15)

The space A[2] of two-torsion points on an Abelian variety A admits a sym-
plectic bilinear form, called the Weil pairing. The Weil pairing is induced by the
pairing

〈[pi − pj ], [pk − pl]〉 = #{pi ,pj } ∩ {pk,pl} mod 2.

We call a two-dimensional maximal isotropic subspace of A[2] with respect to
the Weil pairing, that is, a subspace such that the symplectic form vanishes on it,
a Göpel group in A[2]. Such a maximal subgroup is isomorphic to (Z/2Z)2.

We give the following characterization of the choices involved in our construc-
tion of the curves H and E in Figure 1.

Proposition 3.7. For a smooth genus-two curve C, there are 15 inequivalent
hyperelliptic and bielliptic genus-three curves Hij for 0 ≤ i < j ≤ 5 that are
unramified double covers of C. The double covers Hij → C are in one-to-one
correspondence with nontrivial elements of Pij ∈ Jac(C)[2]. Moreover, isomor-
phisms Qij

∼= E , understood as isomorphisms between genus-one curves with
marked Weierstrass points, are in one-to-one correspondence with Göpel groups
G ⊂ Jac(C)[2] such that Pij ∈ G.

Proof. We constructed the curve H ∈ Mb
3 ∩Mh

3 by choosing four out of the six
Weierstrass points of C to be the images of four pairs of points on the curve H
such that all eight Weierstrass points of H in the preimage are fixed under the
hyperelliptic involution, and each pair is kept fixed by the bielliptic involution.
That is, the construction of H was determined by {p4,p5}. The unordered pair
represents a divisor class [p4 − p5] with 2[p4 − p5] ≡ 0. Therefore [p4 − p5] ∈
Jac(C)[2]. We check that the resulting curve for any two different Weierstrass
points also has a different j -invariant. It is easy to see that the elliptic curve E ,
together with the set of two-torsion points {[0 : 1 : 0], [B ± 2A : 1 : 0]}, depends
on the partition of Weierstrass points of E or, equivalently, on a partition of the
Weierstrass points of C. From every partition of Weierstrass points, we obtain
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three elements Pij ,Pkl,Pmn ∈ Jac(C)[2] with {i, j, k, l,m,n} = {0, . . . ,5}, each
generating a (Z/2Z) subgroup. Because the only relation between these classes
is given by Pij + Pkl + Pmn = 0, the classes generate a subgroup in Jac(C)[2]
isomorphic to (Z/2Z)2. Because the pairs of Weierstrass points are all disjoint,
the associated subgroup is in fact isotropic with respect to the Weil pairing. �

Remark 3.8. For the smooth genus-two curve C in Equation (3.1), the hyperel-
liptic and bielliptic genus-three curve H in Figure 1 corresponds to the divisor
P45 ∈ Jac(C)[2].

3.3. Pencils of Hyperelliptic Curves

We start with the hyperelliptic and bielliptic genus-three curve H in the preimage
of Mb

3 ∩ Mh
3 → M2 given by Equation (3.5). The automorphism ıH × ıH of

H×H induces an automorphism on the symmetric square Sym2(H), which by a
slight abuse of notation we will denote by ıH× ıH as well. We have the following:

Lemma 3.9. On the variety H = Sym2(H)/〈ıH × ıH〉, there is a pencil over
P1 	 [s0 : s1] of hyperelliptic and bielliptic genus-three curves H[s0:s1] given by

H[s0:s1] : y2 =
3∏

i=0

(
x2 − (s0 + λis1)

2

λi

z2
)

(3.16)

with [x : z : y] ∈ P(1,1,4). In particular, the central fiber over [s0 : s1] = [0 : 1]
is isomorphic to H.

Proof. If we set y = y(1)y(2)/ l, x = x(1)z(2) + x(2)z(1), s0z = x(1)x(2), and s1z =
z(1)z(2), Equation (3.16) becomes the product of two copies of Equation (3.5).
Since the variables are invariant under the product of the hyperelliptic involutions
on each copy of H, the statements follows. �

We make the following:

Remark 3.10. The bielliptic and hyperelliptic involution on the curve in Equation
(3.5) both lift to involutions on the fibers of the pencil (3.16).

We define two pencils Q[s0:s1] and C[s0:s1] of genus-one and genus-two curves
over P1 	 [s0 : s1], respectively as follows:

Q[s0:s1] : y2 =
3∏

i=0

(
X − (s0 + λis1)

2

λi

Z

)
,

C[s0:s1] : Y 2 = XZ

3∏
i=0

(
X − (s0 + λis1)

2

λi

Z

)
,

(3.17)

with [X : Z : y] ∈ P(1,1,2) and [X : Z : Y ] ∈ P(1,1,3). The pencils are con-
structed such that the diagram of Figure 1 holds for every fiber over [s0 : s1], and
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central fibers over [s0 : s1] = [0 : 1] are exactly the curves H, C, and Q, respec-
tively. That is, we have

Q[0:1] = Q, C[0:1] = C, H[0:1] = H.

We define another pencil Q′[t0:t1] of genus-one curves over P1 	 [t0 : t1] by

Q′[t0:t1] : Y 2 = t0t1

3∏
i=0

(
x − t0 + λ2

i t1

λi

z

)
(3.18)

with [x : z : Y ] ∈ P(1,1,2), and a two-to-one map Q → Q′ by setting

([s0 : s1], [X : Z : y]) �→ ([t0 : t1], [x : z : Y ])
= ([s2

0 : s2
1 ], [X − 2s0s1Z : Z : s0s1y]). (3.19)

From these pencils we obtain the total spaces of fibrations (without multiple
fibers)

C =
∐

[s0:s1]∈P1

C[s0:s1], Q =
∐

[s0:s1]∈P1

Q[s0:s1], Q′ =
∐

[t0:t1]∈P1

Q′[t0:t1].

In the next section, we show that the total spaces Q and Q′ are in fact singular
models for certain Kummer surfaces. Singular fibers for pencils of genus-two
curves were classified by Namikawa and Ueno [33; 34; 35; 42]. We have the
following immediate:

Proposition 3.11. The pencil C → P1 has twelve singular fiber of Namikawa–
Ueno type I2−0−0 and four singular fibers of type I4−0−0 with modulus point(

τ1 ∗∗ ∞
)
.

Comparing Equation (3.17) with Equation (3.7), we introduce the functions

�i(s0, s1) = (s0 + λis1)
2

λi

, L(s0, s1) =
∏3

i=0(s0 + λis1)

l
(3.20)

for 0 ≤ i ≤ 3 such that L2 = �0�1�2�3. Using Proposition 3.4, we immediately
have the following:

Corollary 3.12. The pencil Q is isomorphic to the elliptic fibration π : E →
P1,

E[s0:s1] : ρ2η = ξ(ξ2 − 2B(s0, s1)ξη + (B2(s0, s1) − 4A2(s0, s1))η
2), (3.21)

with section O : [ξ : η : ρ] = [0 : 0 : 1] and

A(s0, s1) = (�0(s0, s1) − �1(s0, s1))(�2(s0, s1) − �3(s0, s1)),

B(s0, s1) = 4�0(s0, s1)�1(s0, s1) + 4�2(s0, s1)�3(s0, s1)

− 2�0(s0, s1)�2(s0, s1) − 2�0(s0, s1)�3(s0, s1)

− 2�1(s0, s1)�2(s0, s1) − 2�1(s0, s1)�3(s0, s1).

(3.22)
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In particular, A and B are even polynomials of degree four such that there are no
singular fibers over [s0 : s1] = [0 : 1], [1 : 0], and

l2A(s0, s1) = A(ls1, s0), l2B(s0, s1) = B(ls1, s0).

Similarly, we obtain the following:

Corollary 3.13. The pencil Q′ is isomorphic to the elliptic fibration π ′ : E ′ →
P1,

E ′[t0:t1] : ρ′2η′ = ξ ′(ξ ′2 − 2B ′(t0, t1)ξ ′η′

+ (B ′2(t0, t1) − 4A′2(t0, t1))η′2),
(3.23)

with section O′ : [ξ ′ : η′ : ρ′] = [0 : 0 : 1] and polynomials

A′(t0, t1) = t0t1A
(√

t0,
√

t1
)
, B ′(t0, t1) = t0t1B

(√
t0,

√
t1

)
,

which are well-defined polynomials because of Corollary 3.12. Moreover, the two-
to-one map in Equation (3.19) extends to a double cover ψ : E → E ′ given by

ψ : ([s0 : s1], [ξ : η : ρ]) �→ ([t0 : t1], [ξ ′ : η′ : ρ′])
= ([s2

0 : s2
1 ], [s2

0s2
1ξ : η : s3

0s3
1ρ]). (3.24)

Proof. Making the point [x : z : Y ] = [t0 + λ2
0t1 : λ0 : 0] the neutral element of an

elliptic curve and the point [x : z : Y ] = [t0 + λ2
1t1 : λ1 : 0] a two-torsion point, we

can bring Equation (3.18) into the normal form in Equation (3.23). �

3.4. Relation Between Elliptic Pencils and Kummer Surfaces

Corollary 3.12 proves that the elliptic fibration with section (π : E → P1,O) is
equivalent to the pencil Q given by

Q[s0:s1] : y2 =
3∏

i=0

(X − �i(s0, s1)Z). (3.25)

Therefore Proposition 3.4 and Lemma 3.5 can be applied in each fiber by re-
placing λi �→ �i(s0, s1) for 0 ≤ i ≤ 3 and l �→ L(s0, s1). Three two-torsion sec-
tions for the elliptic fibration (π,O) are given by T1,T2,T3 : [ξ : η : ρ] = [0 : 1 :
0], [B ±2A : 1 : 0]. Two nontorsion sections, which by slight abuse of notation we
still denote by p1, p2, are obtained by assigning the points p1 and p2 in Lemma 3.5
in each fiber. The existence of a third nontorsion section p3 in the pencil is easily
verified by assigning the point [X : Z : y] = [4s0s1 : 1 : L(−s0, s1)] in each fiber
Q[s0:s1] and then converting to coordinates [ξ : η : ρ].

We also define the sections {S1,S2,S3} as follows in Table 7.

Proposition 3.14. For the elliptic fibration with section (π : E → P1,O) in
Equation (3.21) and in Proposition 2.2, the sections {O,T1,T2,T3,S1,S2,S3}
are generators of the Mordell–Weil group MW(π,O) ∼= (Z/2Z)2 ⊕ 〈1〉⊕2 ⊕ 〈2〉.
In particular, we have

p1 = S1, p2 = −S2 + S3, p3 = S2 + S3. (3.26)
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Table 7 Sections of the fibration (π : E → P1,O).

sec. [ξ : η : ρ]
S1 [4λ0λ1

∏3
i=2(λi − λ0)(s

2
0 − λ0λis

2
1) : 8

∏3
i=1(λi − λ0)(s

2
0 − λ0λis

2
1) : λ2

0l
2]

S2 [4l
∏3

i=2(λi − λ1)(s
2
0 − λiλ1s

2
1):

8
∏3

i=1(λ0 − λi)
∏

1≤j<k≤3(s
2
0 − λjλks

2
1) : l3]

S3 [4ls0s1
∏1

i=0
∏3

j=2(s
2
0 − λiλj s

2
1):

−8
∏3

i=1(s
2
0 − λ0λis

2
1)

∏
1≤j<k≤3(s

2
0 − λjλks

2
1) : l3s3

0s3
1 ]

Proof. Using our previous definitions and results in Lemma 3.1, we set

μ = θ1θ3θ8

θ2θ4θ10
, (3.27)

so that μ4 = λ0λ1λ2λ3. If we use the affine chart given by s0 = 1, s1 = s/μ,
ξ = X, η = 1, ρ = Y in Corollary 3.12, then we obtain the Weierstrass model
(2.1) and two involutions s �→ −s and s �→ 1/s; see Equations (2.2). In fact, the
coefficients in Equation (2.1) are obtained from Corollary 3.12 by setting

A(s) := A

(
s0 = 1, s1 = s

μ

)
, B(s) := B

(
s0 = 1, s1 = s

μ

)
. (3.28)

A straightforward computation shows that the sections {O,T1,T2,T3,S1,S2,S3}
have exactly the intersection and height pairings given by Table 2 and form a basis
of the Mordell–Weil group MW(π,O). Using the elliptic-curve group law in each
fiber, we find that the sections {S1,S2,S3} satisfy relations (3.26). �

We turn to the symmetric square Sym2(C) associated with a smooth genus-two
curve C. The automorphism ıC × ıC of C × C again induces an automorphism on
the symmetric square Sym2(C), which by a slight abuse of notation we denote by
ıC × ıC as well. The variety Sym2(C)/〈ıC × ıC〉 admits a birational model, which
can be easily derived: in terms of the variables z1 = Z(1)Z(2), z2 = X(1)Z(2) +
X(2)Z(1), z3 = X(1)X(2), and z4 = Y (1)Y (2) with [z1 : z2 : z3 : z4] ∈ P(1,1,1,3),
it is given by the equation

z2
4 = z1z3

3∏
i=0

(λ2
i z1 − λiz2 + z3). (3.29)

Definition 3.15. The hypersurface in P(1,1,1,3) given by Equation (3.29) is
called the Shioda sextic and was described in [41].

We easily check the following:

Lemma 3.16. The Shioda sextic in Equation (3.29) is birational to the Kummer
surface Kum(JacC) associated with the Jacobian Jac(C) of a genus-two curve C
in Rosenhain normal form (3.1).
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K = 0

Figure 2 Double cover branched along reducible sextic.

Remark 3.17. Equation (3.29) defines a double cover of P2 	 [z1 : z2 : z3]
branched along six lines given by

λ2
i z1 − λiz2 + z3 = 0 with 0 ≤ i ≤ 3, z1 = 0, z3 = 0, (3.30)

The six lines are tangent to the common conic K : z2
2 − 4z1z3 = 0. Conversely,

any six lines tangent to a common conic can always be brought into the form of
Equations (3.30). A picture is provided in Figure 2.

Equation (3.29) is birationally equivalent to Equation (3.18), as can be seen by
setting

[z1 : z2 : z3 : z4] = [t1z : x : t0z : lzY ],
and is in turn is equivalent to the elliptic fibration with section (π ′ : E ′ → P1,O′)
in Corollary 3.13. We make the following:

Remark 3.18. The elliptic fibration with section (π ′ : E ′ → P1,O′) has six sin-
gular fibers of Kodaira type I2, two singular fibers of type I ∗

0 (over [t0 : t1] = [0 :
1], [1 : 0]), and a Mordell–Weil group MW(π ′,O′) ∼= (Z/2Z)2 ⊕ 〈1〉. The elliptic
fibration is induced by a pencil of lines in P2 passing through one of intersection
point between two lines in Figure 2. This is precisely the fibration on Kum(JacC)

described in [41].

We have established that E ′ defines a pencil on Sym2(C)/〈ıC × ıC〉. The minimal
resolution of E ′ is the Kummer surface Kum(JacC) associated with the Jacobian
Jac(C) of a smooth genus-two curve C. The involution −I on Jac(C) restricts to the
hyperelliptic involution on each factor of C in Sym2(C). The Weierstrass model
in Remark 3.18 with two singular fibers of Kodaira type I ∗

0 over [t0 : t1] = [0 : 1]
and [t0 : t1] = [1 : 0] extends to an elliptic fibration with section on the Kummer
surface and two reducible fibers of type D4. We then have the following:

Lemma 3.19. The map ψ : E → E ′ in Equation (3.24) extends to rational dou-
ble cover between the minimal resolutions ψ̂ : Ê ��� Ê ′ ∼= Kum(JacC) that is
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branched along the eight noncentral components of the two reducible fibers of
type D4.

Proof. The proof is straightforward since the rational map is explicitly given. �

Mehran [30] proved that there are 15 distinct isomorphism classes of rational
double covers of Kum(JacC) and computed the 15 even eights (up to taking com-
plements) on the Kummer surface Kum(JacC), which give rise to all distinct 15
isomorphism classes of rational double covers [30, Prop. 4.2]. An even eight is an
even set (as defined in Section 2) of eight exceptional curves. Each even eight is
enumerated by points Pij ∈ Jac(C)[2] with 0 ≤ i < j ≤ 5 and given as a sum

�ij = K0i + · · · + K̂ij + · · · + Ki5 + K0j + · · · + K̂ij + · · · + Kj5,

where K00 = 0, and Kij are the exceptional divisors obtained by resolving the
nodes pij , that is, the images of the points Pij , and the hat indicates divisors that
are not part of the even eight. Moreover, Mehran proved that every rational map
ψ� : Kum(A) ��� Kum(JacC) from a (1,2)-polarized to a principally polarized
Kummer surface is induced by an isogeny �� : A → Jac(C) of Abelian surfaces
of degree two [30] and that all inequivalent (1,2)-polarized Abelian surfaces A

are obtained in this way. We have the following:

Proposition 3.20. There exists an Abelian surface A with a polarization of type
(1,2) such that the variety E is birational to the Kummer surface Kum(A). In
particular, the map ψ is induced by an isogeny � :A → Jac(C) of degree two.

Proof. It was shown in [8; 7] that the eight noncentral components of the two
reducible fibers of type D4 form an even eight on Kum(JacC). In fact, the sum of
the components in the even eight labeled by p45 that forms the ramification locus
of ψ̂ is given by

�45 = K04 + K14 + K24 + K34 + K05 + K15 + K25 + K35.

The result then follows from Lemma 3.19 and [30, Prop. 5.1]. �

Remark 3.21. The construction in Proposition 3.20 was based on a double cover
branched along the even eight �45 labeled by the point P45 ∈ Jac(C)[2]. This
is in agreement with the construction of the hyperelliptic and bielliptic genus-
three curves H in Figure 1, which was based on the divisor P45 ∈ Jac(C)[2]; see
Remark 3.8.

We make the following crucial remark.

Remark 3.22. The involution −I on the Abelian surface A with (1,2)-
polarization does not restrict to the bielliptic involution on each factor of H in
H . Therefore the generic Prym variety associated with the bielliptic quotient
map H[s0:s1] → Q[s0:s1] of a general fiber is not isomorphic to A. Instead, it
is isomorphic to Jac(C) by Proposition 3.6 and is only two-isogenous to A by
Proposition 3.20.
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4. Plane Bielliptic Curves

In this section, we provide a geometric characterization of plane bielliptic genus-
three curves D and their bielliptic quotients. The precise characterization of the
associated branch loci turns out to be critical to relate the bielliptic genus-three
curve D to a genus-two curve C such that the Prym variety of the former is isoge-
nous to the Jacobian variety of the latter.

Let D be a bielliptic curve. Then there is an involution τ ∈ Aut(D) such that
D/〈τ 〉 is a genus one curve. For g = 3, there are two loci in the moduli space
M3 such that the automorphism group has precisely order two, namely the hy-
perelliptic locus Mh

3 and the Mb
3 of dimensions five and four, respectively. In

[3] a normal form for bielliptic genus-three curves was determined. From [26, Ta-
ble 1] we see that a generic curve [D] ∈ Mb

3 has a degree-two cover πD : D → P1

ramified at four points. The curve has the equation

w4 + w2(u2 + av2) + bu4 + cu3v + du2v2 + euv3 + gv4 = 0, (4.1)

where e = 1 or g = 1.
Precise equations, in terms of invariants of binary sextics, describing the locus

Mh
3 ∩Mb

3 can be easily obtained; see [39]. The same cannot be said for the locus
Mb

3; see [40]. However, there is a geometric description of the locus Mb
3, which

seems to have been known from the XIX century, and it was pointed out to us by
I. Dolgachev.

4.1. Characterization of Plane Bielliptic Curves

Let D be a canonical curve of genus three over C with a bielliptic involution
τ : D → D. In its canonical plane model given in [3], τ is induced by a projective
involution τ̃ whose set of fixed points consists of a point u0 ∈ P2 and a line �0.
The intersection �0 ∩D is the fixed points of τ on D, namely the branch points of
the degree-two cover πD : D → P1. The following characterization is originally
due to Kowalevskaya; see Dolgachev [12].

Theorem 4.1 (Kowalevskaya). The point u0 is the intersection point of four dis-
tinct bitangents of D. Conversely, if a plane quartic has four bitangents intersect-
ing at a point u0, then there exists a bielliptic involution τ of D such that the
projective involution τ̃ has u0 as its isolated fixed point.

We give another characterization of bielliptic quartic curves.

Theorem 4.2. D is bielliptic if and only if the following conditions are satisfied:

(i) There exists a line �0 intersecting D at four distinct points p1, . . . , p4 with
tangent lines �i at the points pi that intersect at one point u0.

(ii) Let Pu0(D) be the cubic polar of D with respect to the point u0, and let Q

be the conic component of Pu0(D) (note that the line �0 from above is a line
component of Pu0(D)). Then �0 is the polar line of D with respect to u0.
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Proof. Suppose D is bielliptic so that its equation f (u, v,w) = 0 can be written
in the form

f (u, v,w) = w4 − 2a2(u, v)w2 + a4(u, v)

= (w2 − a2(u, v))2 + (a4(u, v) − a2(u, v)2) = 0. (4.2)

We check that for the curve in Equation (4.2), the involution τ : [u : v : w] �→
[u : v : −w] is induced by a projective involution τ̃ whose set of fixed points
consists of the point u0 = [0 : 0 : 1] ∈ P2 and the line �0 = V (w). The polar cubic
Pu0(D) has the equation q = w(w2 − a2(u, v)) = 0. It is the union of the line
�0 and the conic Q = V (w2 − a2(u, v)). The line �0 intersects D at the points
pi : [βi : αi : 0], where a4(βi, αi) − a2(u, v)2 = 0. The tangent lines at the points
pi are �i = V (αiu − βiv). By the main property of polars, Pu0(D) intersects D
at the points p such that the tangent line of D at p contains the point u0. Thus
the tangent lines �i at pi ∈ D all pass through the point u0, which, given the
normalization of the curve D in Equation (4.2), is u0 = [0 : 0 : 1]. Thus part (i) is
verified.

Using Equation (4.2), we compute the line polar Pu3
0
(D) = V (∂3(F )/∂w3) of

D. It coincides with the line �0. On other hand,

Pu3
0
(D) = Pu2

0
(Pu0(D)) = Pu2

0
(qw) = Pu0(q + Pu0(q)w)

= 2Pu0(q) + Pu2
0
(q)w = w,

where we identify the polar curves with the corresponding partial derivatives. This
implies that V (Pu0(q)) = V (w) = �0. This checks property (ii).

Let us prove the converse. Choose coordinates to assume that �0 = V (w) and
the intersection point of the four tangent lines to is u0 = [0 : 0 : 1]. The cubic polar
Pu0(D) must contain the line component equal to �0. Write the equation of D in
the form

a0w
4 + a1(u, v)w3 + a2(u, v)w2 + a3(u, v)w + a4(u, v) = 0.

Then we get

Pu0(D) = V (4a0w
3 + 3a1(u, v)w2 + a2(u, v)w + a3(u, v)),

Pu2
0
(D) = V (12a0w

2 + 6a1(u, v)w + a2(u, v)),

Pu3
0
(D) = 24a0w + 6a1(u, v).

Since w divides the equation of the polar cubic, we obtain a3(u, v) = 0. If a0 = 0,
then u0 ∈D, and the line polar Pu3

0
(D) vanishes at u0. But this polar is the tangent

line of D at u0. This implies that D is singular at u0. So, we may assume that
a0 �= 0. Thus the first condition implies that D can be written in the form

w4 + a1(u, v)w3 + a2(u, v)w2 + a4(u, v) = 0.

As in the first part of the proof, we obtain that a1(u, v) = 0 if and only if condition
(ii) is satisfied. Thus D can be written in the form (4.2) and hence is bielliptic. �
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For any general line �, let �1, . . . , �4 be the tangents of D at the points a1 + · · · +
a4 = D ∩ � with �i ∩D = 2ai + ci + di . Adding up, we see that∑

(ci + di) ∼ 4KD − 2
∑

ai ∼ 4KD − 2KD = 2KD,

where KD is a canonical divisor. This shows that there exists a conic S(�) that
cuts out on D the divisor

∑
(ci + di) of degree eight. This conic is called the

satellite conic of � (see [10]). The map

S : P2 −→ P5,

� �→ S(�),
(4.3)

is given by polynomials of degree 10 whose coefficients are polynomials in coef-
ficients of D of degree seven. Since 2� + S(�) and T = �1 + · · · + �4 cut out on
D the same divisor, we obtain that the equation of D can be written in the form

F = l1 · · · l4 + l2q = 0,

where �i = V (li), � = V (l), and S(�) = V (q).
Using an automorphism of P2, we can assume that the line � is given by � =

V (w). For a general quartic, given by

ax4 + by4 + cz4 + 6fy2z2 + 6gx2z2 + 6hx2y2 + 12lx2yz + 12mxy2z

+ 12nxyz2 + 4x3ya1 + 4x3za2 + 4xy3b0 + 4xz3c0 + 4y3zb2 + 4yz3c1 = 0,

an expression of the satellite conic is

S = x2(9af 2 − 16ab2c1) + 2xy(18a1f
2 − 32a1b2c1)

+ 2xz(18a2f
2 − 32a2b2c1) + y2(54f 2h − 96b2c1h)

+ 2xy(54f 2l − 108f mn − 96b2c1l + 72c1m
2 + 72b2n

2)

+ z2(54fg2 − 96b2c1g).

For the bielliptic curve in (4.1), this satellite conic is

S = −u2ace + 1

4
u2ad2 − v2ce + 1

4
v2d2 − w2cea + 1

4
w2da2.

A line � is called a bielliptic line if the four tangents �i intersect at a common
point u0. Choose the coordinates such that u0 = [0 : 0 : 1] and l = w. Then the
equation of D is of the form

F = w2(a0w
2 + a1(u, v)w + a2(u, v)) + a4(u, v) = 0.

It is a bielliptic curve if and only if a1(u, v) = 0. This is equivalent to Pu0(S(�)) =
�. Thus we have obtained the following:

Theorem 4.3. Suppose � is a bielliptic line. Then D is bielliptic if and only if the
polar line of the satellite conic S(�) with respect to the point u0 coincides with �.

Let � be a bielliptic line. The polar cubic of Pu0(D) passes through D ∩ �, and
hence it contains � as an irreducible component. In particular, Pu0(D) is singular.
Recall that the locus of points u ∈ P2 such that Pu(D) is a singular cubic is the
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Steinerian curve St(D). If D is general enough, then the degree of St(D) is equal
to 12, and it has 24 cusps and 21 nodes. The cusps correspond to points such that
the polar cubic is cuspidal, and the nodes correspond to points such that the polar
cubic is reducible. The line components define the set of 21 bielliptic lines. In
[10] the 21 lines are described as singular points of multiplicity 4 of the curve of
degree 24 in the dual plane parameterizing lines so that the tangents to D at three
intersection points of D and � are concurrent.

According to [10, p. 327], the equation of the satellite conic S(�) is equal to

S = D7,2,10 + � ·D7,1,9 + �2 ·D7,0,8 = 0,

where Da,b,c ∈ Sa(S4(V ∗)∗) ⊗ Sb(V ) ⊗ Sc(V ∗) is a comitant of degree a

in coefficients of D, of degree b in coordinates of the plane P(V ∗) (we use
Grothendieck’s notation), and of degree c in coordinates of the dual plane. Thus
the vanishing of a1(u, v) from above is equivalent to the vanishing of the comitant
D7,1,9. Cohen [10] gives an explicit equation of D7,1,9.

Theorem 4.4. D is bielliptic if and only if D7,1,9, considered as a map P(V ) −→
P(V ∗), has one of the 21 lines corresponding to the nodes of St(D) as its inde-
terminacy point. The rational map is given by polynomials of degree nine with
polynomial coefficients in coefficients of D of degree seven.

This gives equations of the locus of bielliptic curves in M3. It is unknown to us
if this locus has ever been explicitly determined in terms of the invariants of the
ternary quartics.

4.2. Ramification Locus

In this section, we determine explicit equations for plane bielliptic genus-three
curves based on their characterization in Theorem 4.2. All computations in this
section are carried out over an arbitrary field K . We start with the plane bielliptic
genus-three curve D given in Equation (4.2), that is,

D : w4 − 2a2(u, v)w2 + a4(u, v) = 0 (4.4)

with [u : v : w] ∈ P2 and general homogeneous polynomials a2 and a4 of de-
gree two and four, respectively, and the bielliptic involution τ : [u : v : w] �→ [u :
v : −w]. It follows from [3, Corollary 2.2] that any such smooth curve D is the
canonical model of a bielliptic nonhyperelliptic curve of genus three. The biellip-
tic quotient D/〈τ 〉 is the genus-one curve Q given by

Q : W 2 = a2(u, v)2 −a4(u, v) = c4u
4 +c3u

3v+c2u
2v2 +c1uv3 +c0v

4 (4.5)

with W = w2 − a2(u, v) and [u,v,W ] ∈ P(1,1,2). Using a standard technique,
as explained, for example, in [25, App. A], we convert this genus-one curve to the
Weierstrass form given any K-rational point on the curve. We have the following:
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Lemma 4.5. Given a K-rational point, the bielliptic quotient D/〈τ 〉 is isomorphic
to the elliptic curve E given by

E : ρ2η = ξ3 + f ξ2η + gξη2 + hη3 (4.6)

with [ξ : η : ρ] ∈ P2 and

f = 3c2
1 − 8c0c2, h = (c3

1 − 4c0c1c2 + 8c2
0c3)

2,

g = 3c4
1 − 16c0c

2
1c2 + 16c2

0(c
2
2 + c1c3) − 64c3

0c4.

Proof. By a change of coordinates we can assume that the K-rational point is
given by [u,v,W ] = [0 : 1 : α], that is, c0 = α2. Using the transformation

u = −4c0ξηv

ρ̃
, w = αv2 ρ̃2 − 2c1ξηρ̃ − 2ξ3η − 2(c2

1 − 4c0c2)ξ
2η2

ρ̃2
,

followed by the transformation

ρ̃ = ρη + c1ξη + (c3
1 − 4c0c1c2 + 8c2

0c3)η
2,

proves the lemma. �

Remark 4.6. The elliptic curve (4.6) remains well defined, independently of the
existence of a K-rational point. However, in general, there is only an isomorphism

Jac(D/〈τ 〉) ∼= E .

The existence of a K-rational point is required for an isomorphism D/〈τ 〉 ∼= E .
The Jacobian was first found by Hermite as the determinant of a symmetric matrix
that defines a conic bundle which degenerates over E ; see [32].

The following lemma is easily verified.

Lemma 4.7. The elliptic curve E with full K-rational two-torsion given by

E : ρ2η = ξ(ξ2 − 2bξη + (b2 − 4a2)η2) (4.7)

with [ξ : η : ρ] ∈ P2 is isomorphic to the genus-one curve

Q : W 2 = u4 + bu2v2 + a2v4, (4.8)

where [u : v : W ] ∈ P(1,1,2). An isomorphism ϕ : E ∼=−→ Q is given by

[ξ : η : ρ] �→ [u : v : W ] = [ρη : −2ξη : (ρ2η + 2bξ2η − 2ξ3)η] (4.9)

and by mapping points T1 : [ξ : η : ρ] = [0 : 1 : 0] and O : [0 : 0 : 1] to [u : v :
W ] = [1 : 0 : 1] and [1 : 0 : −1], respectively.

For the elliptic curve E in Equation (4.7), the flex-point is the point at infinity
[ξ : η : ρ] = [0 : 0 : 1], which is also the base point O for the elliptic-curve group
law. The point T1 : [ξ : η : ρ] = [0 : 1 : 0] is a nontrivial two-torsion point. We
have the following:
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Proposition 4.8. The plane bielliptic genus-three curve

D : (w2 − a2(u, v))2 = u4 + bu2v2 + a2v4, (4.10)

where [u : v : w] ∈ P2, a2 is a homogeneous polynomial of degree two, and a, b

are K-rational numbers such that a(b2 −4a2) �= 0, admits the bielliptic involution
τ : [u : v : w] �→ [u : v : −w] and a degree-two cover given by

πD
Q : D → Q, [u : v : w] �→ [u : v : W = w2 − a2(u, v)] (4.11)

onto the genus-one curve Q in Equation (4.8). The branch locus of the bielliptic
involution τ is isomorphic via ϕ to a collection of points {pt1,pt2,pt3,pt4} ⊂ E in
Equation (4.9) satisfying

ξ3 − a2(ρ,−2ξ)η − (b2 − 4a2)ξη2 = 0. (4.12)

In particular, we have
∑4

i=1 pti = O. Conversely, the elliptic curve E in Equation
(4.9) and {pt1,pt2,pt3,pt4} ⊂ E with

∑4
i=1 pti = O determine Equation (4.10)

uniquely.

Proof. The first part follows by explicit computation using Lemma 4.7 and the
group law on E . Conversely, the elliptic curve in Equation (4.6) is isomorphic to
the general genus-one quotient curve given by Lemma 4.5 iff we impose h = 0.
The condition h = 0 allows us to express the coefficients c2α

2, c3α
4, and c4α

6

with c0 = α2 as simple rational functions of A, B , c1. The general isomorphism
ϕ : E → Q is given by

[ξ : η : ρ] �→ [u : v : W ] = [(2c1ξ + ρ)η : −2ξη : (ρ2η + 2bξ2η − 2ξ3)η] (4.13)

such that

Q : W 2 = u4 + bu2v2 + a2v4

+ c1(2u + c1v)(2u2 + 2c1uv + (c2
1 + b)v2)v, (4.14)

where [u : v : W ] ∈ P(1,1,2), and c1 ∈ K is an arbitrary coefficient.
The branch locus on E in Equation (4.6) uniquely defines a conic. This conic

is given by

K : (1 − γ )ξ2 + 4βγρη + 4αξη − (1 + γ )(b2 − 4a2)η2 = 0 (4.15)

with α,β, γ ∈ K . If a plane curve of degree n intersects an elliptic curve in 3n

points, then these points always sum up using the group law of the elliptic curve
E in Equation (4.9). In our case, we expect six points pt1, . . . ,pt6 ∈ E such that
[pt1 +· · ·+ pt6 − 6O] = 0 ∈ Pic0(E) as it is the divisor class of Div(K/L6) where
L : η = 0 is the flex-line. However, the conic and the elliptic curve intersect at
η = 0; we check this computing the resultant of K and the defining equation of
E . From Equation (4.15) we check that the intersection at η = 0 has order two,
whence pt5 = pt6 = O. Therefore the remaining four points pt1, . . . ,pt4 satisfy
[pt1 + · · · + pt4 − 4O] = 0. We set a2(u, v) = γ (u + (β + c1)v)2 − (α + β2γ −
γ b/2)v2, and then the branching locus satisfies

ξ3 − (b2 − 4a2)ξη2 = a2(2c1ξ + ρ,−2ξ)η. (4.16)



On Isogenies Among Abelian Surfaces 255

In turn, the plane genus-three curve is given by setting

w2 = W + a2(u, v)

= −(ξ3 − (b2 − 4a2)ξη2)η + a2(2c1ξ + ρ,−2ξ)η2. (4.17)

Since �E = �Q = 16a2(b2 − 4a2)2, we can set c1 = 0 without loss of generality.
�

We have the following:

Remark 4.9. The point O is a branch point if and only if a2(u,0) = u2. We then
write a2(u, v) = (u + βv)2 − (α + β2 − b/2)v2 with α,β ∈ K . The remaining
points of the branch locus lie on the intersection of E with the line 2αξ + 2βρ −
(b2 − 4a2)η = 0. If the point O is in the branch locus of πD

Q , then the remaining

points {pt1, pt2, pt3} satisfy
∑3

i=1 pti = O on E .

On E , we have different involutions acting on points p ∈ E : (1) the hyperelliptic
involution ıE : p �→ −p given by [ξ : η : ρ] �→ [ξ : η : −ρ]; (2) the involution
ıET1

: p �→ p + T1 obtained by translation by two-torsion T1 and given by

ıET1
: [ξ : η : ρ] �→ [(b2 − 4a2)ξη : ξ2 : −(b2 − 4a2)ρη]; (4.18)

and (3) the composition ıE ◦ ıET1
= ıET1

◦ ıE : p �→ −p+T1. We have the following:

Lemma 4.10. The involutions act on Q as follows:

ϕ ◦ ıE : [u : v : W ] �→ [−u : v : W ] = [u : −v : W ],
ϕ ◦ ıET1

: [u : v : W ] �→ [−u : v : −W ] = [u : −v : −W ],
ϕ ◦ (ıE ◦ ıET1

) : [u : v : W ] �→ [u : v : −W ].
(4.19)

Proof. The proof follows by computation. �

4.3. Biquadratic Quotients

We discuss the case in Proposition 4.8 for a branch locus on E in Equation (4.7),
which consists of the points O : [ξ : η : ρ] = [0 : 0 : 1] and pt1, pt2, pt3 with∑3

i=1 pti = O. We have the following:

Lemma 4.11. Given two K-rational points q1, q2 ∈ E such that [u : v : W ] = [Ri :
1 : Si] = ϕ(qi) for 1 ≤ i ≤ 2 with R2

1 �= R2
2 , the point q3 = −q1 − q2 ∈ E is a K-

rational point with [R3 : 1 : S3] = ϕ(q3), and we have for a, b in Equation (4.7)
the relations

a2 = R2
1R2

2 + R2
1S2

2 − R2
2S2

1

R2
1 − R2

2

, b = −R4
1 − R4

2 − S2
1 + S2

2

R2
1 − R2

2

, (4.20)
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and

R3 = R2S1 − R1S2

R2
1 − R2

2

,

S3 = −R1R2 + (R1S1 − R2S2)(R2S1 − R1S2)

R2
1 − R2

2

.

(4.21)

Proof. Given two different K-rational points pt1, pt2 on the elliptic curve E in
Equation (4.7) such that [R1 : 1 : S1] = ϕ(q1) and [R2 : 1 : S2] = ϕ(q2) with R2

1 �=
R2

2 , the point q3 = −q1 − q2 is K-rational. Since the coordinates [Ri : 1 : Si]
for 1 ≤ i ≤ 3 label points on Q satisfying Equation (4.8), we can easily derive
Equation (4.20). We compute the coordinates for all points on E and check using
the elliptic-curve group law that q1 + q2 + q3 = O. �

For ε1, ε2, ε3 ∈ {±1} and ε = (ε1, ε2, ε3) and two distinct K-rational points
q1, q2 ∈ E such that [u : v : W ] = [Ri : 1 : Si] = ϕ(qi) for 1 ≤ i ≤ 2 with R2

1 �= R2
2 ,

we define the plane bielliptic genus-three curves Dε given by

w4 − 2w2
(

u2 −
(

ε1R1 + ε2R2 + ε3
ε2S1 − ε1S2

ε1R1 − ε2R2

)
uv

+
(

ε1ε2R1R2 − ε3
R1S2 − R2S1

ε1R1 − ε2R2

)
v2

)

− 2

(
ε1R1 + ε2R2 + ε3

ε2S1 − ε1S2

ε1R1 − ε2R2

)
(u − ε1R1v)(u − ε2R2v)

×
(

u − ε3
R2S1 − R1S2

R2
1 − R2

2

v

)
v = 0 (4.22)

with [u : v : W ] ∈ P(1,1,2). We have the following:

Lemma 4.12. Given two K-rational points q1, q2 ∈ E such that [Ri : 1 : Si] =
ϕ(qi) for 1 ≤ i ≤ 2 with R2

1 �= R2
2 , we set q3 = −q1 − q2 ∈ E with [R3 : 1 : S3] =

ϕ(q3). Then we have:

(1) For all ε1, ε2, ε3 ∈ {±1}, the plane genus-three curves Dε in Equation (4.22)
admit the bielliptic involution ıDb : [u : v : w] �→ [u : v : −w] and the degree-
two quotient map πDε

Q given by

πDε

Q : w �→ W = w2 − u2 +
(

ε1R1 + ε2R2 + ε3
ε2S1 − ε1S2

ε1R1 − ε2R2

)
uv

−
(

ε1ε2R1R2 − ε3
R1S2 − R2S1

ε1R1 − ε2R2

)
v2 (4.23)

onto the curve Q in Equation (4.8), isomorphic to E in Equation (3.8).
(2) The branch points pti ∈ E with 1 ≤ i ≤ 4 of πDε

Q are given by Table 8.

(3) With respect to the elliptic-curve group law, we have
∑3

i=1 pti = O.
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Table 8 Possible branch loci on Q.

# ε1 ε2 ε3 pt1 pt2 pt3 pt4
1 1 1 1 q1 q2 q3 O
2 −1 −1 −1 −q1 −q2 −q3 O
3 1 −1 −1 q1 T1 + q2 T1 + q3 O
4 −1 1 1 −q1 T1 − q2 T1 − q3 O
5 −1 −1 1 T1 + q1 T1 + q2 q3 O
6 1 1 −1 T1 − q1 T1 − q2 −q3 O
7 −1 1 −1 T1 + q1 q2 T1 + q3 O
8 1 −1 1 T1 − q1 −q2 T1 − q3 O

Proof. Using Equations (4.20) and (4.21), Q in Equation (4.8) can be written as

Q : W 2 = 2

(
R1 + R2 + S1 − S2

R1 − R2

)
(u − R1v)(u − R2v)(u − R3v)v

+
(

u2 −
(

R1 + R2 + S1 − S2

R1 − R2

)
uv

+
(

R1R2 − R1S2 − R2S1

R1 − R2

)
v2

)2

. (4.24)

Regardless of what signs ε1, ε2, ε3 are chosen in Equation (4.22), the bielliptic
quotient is always the same; namely, it coincides with the curve Q in Equation
(4.24). Then (1) is immediate; for (2), we check that the branch points of the
map πDε

Q in Equation (4.23) are the points with coordinates [ε1R1 : 1 : ε2ε3S1],
[ε2R2 : 1 : ε1ε3S2], [ε3R3 : 1 : ε1ε2S3], and O. Lemma 4.10 provides a geometric
interpretation for these branch points; (3) follows from Lemma 4.11. �
We consider the plane bielliptic curve D given by

D : (e(w2 − u2) − cuv − dv2)2 = e2(u4 + bu2v2 + a2v4) (4.25)

with [u : v : w] ∈ P2 and a, b, c, d, e ∈ K . We discuss the singular locus of Equa-
tion (4.25). We have the following:

Lemma 4.13. The plane genus-three curve in Equation (4.25) is irreducible and
nonsingular if and only if �E�D �= 0, where

�E = 16a2(b2 − 4a2)2,

�D = −((c2 − be2 − 4de)2 − 12de2(be + d))3

+ (54ac2e4 − c6 + 3(be + 4d)c4e

− 3(b2e2 + 2bde + 10d2)c2e2 + (be − 2d)3e3)2.

(4.26)

Proof. For e = 0, Equation (4.25) is singular, and �D = 0. We assume that e �= 0.
Then we can set e = 1 since rescaling c �→ ce and d �→ de eliminates e from
the equation. We check that for b2 − 4a2 = 0, Equation (4.25) factors and the
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curve is reducible. We assume that b2 − 4a2 = 0 �= 0. We check that the curve in
Equation (4.25) has a singular point with w = 0 iff �D = 0. �D is the iterated
(reduced) discriminant of Equation (4.25) with respect to w and u (or v). For
w �= 0 and u = 0, the curve in Equation (4.25) has a singular point if a = 0. We
assume that �E �= 0. Then there are no singular points with w �= 0, v �= 0, and
�E�D �= 0. �

Remark 4.14. If c = 0 or e = 0, then �D = 0 in Equation (4.26).

The genus-one curve Q in Equation (4.8) is isomorphic via ϕ in Equation (4.9) to
the elliptic curve E in Equation (4.7). We now make the latter coincide with the
elliptic curve in Proposition 3.4 to obtain the following:

Proposition 4.15. Let D be the plane bielliptic curve given by

D :
(

w2 − u2 − c

e
uv − d

e
v2

)2

= u4 + bu2v2 + a2v4 (4.27)

with [u : v : w] ∈ P2, a, b given in Equation (3.9), and the coefficients

c = c(λ0, λ1, λ2, λ3, l), d = d(λ0, λ1, λ2, λ3, l),

e = e(λ0, λ1, λ2, λ3, l),
(4.28)

with polynomials c, d , e given in the Appendix such that �E�D �= 0. Then the
curve D is smooth and irreducible and admits the involution τ : [u : v : w] �→ [u :
v : −w] and the degree-two cover

πD
Q : D → Q, [u : v : w] �→

[
u : v : W = w2 −u2 − c

e
uv− d

e
v2

]
, (4.29)

onto Q ∼= E with branch points {O,2p1,p1 + p2,−3p1 − p2} ⊂ E , where E is the
smooth elliptic curve given in Equation (4.7) with �E �= 0 and the K-rational
points p1, p2 in Lemma 3.5.

Proof. It follows from Lemma 4.13 that D is smooth and irreducible, and from
Remark 4.14 that Equation (4.29) is well defined. We apply Lemma 4.12 to the
situation encountered in Proposition 3.4 with q1 = 2p1, q2 = p1 + p2, where
the K-rational points p1, p2 were given in Lemma 3.5. Using the isomorphism
ϕ : E → Q, we compute the coordinates [u : v : W ] = [Ri : 1 : Si] = ϕ(qi) for
1 ≤ i ≤ 2. We then use Equations (4.20) and (4.21) to obtain formulas for the
coefficients c, d , e. �

Remark 4.16. Replacing l �→ −l is equivalent to p2 �→ −p2 due to Lemma 3.5.
Thus Proposition 4.15 generalizes to branch points {O,2p1,p1 + ε2p2,−3p1 −
ε2p2} ⊂ E with ε2 ∈ {±1} when replacing l �→ ε2l in Equations (4.28).

Remark 4.17. It follows from Lemma 4.10 that the inversion q �→ −q on the
elliptic curve is equivalent to u �→ −u. Moreover, for [Ri : 1 : Si] �→ [−Ri : 1 :
Si] = ϕ(−qi) with 1 ≤ i ≤ 2, we have [R3 : 1 : S3] �→ [−R3 : 1 : S3] in Equations
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(4.21). Therefore a bielliptic plane quartic with branch points {O,−2p1,−p1 −
ε2p2,3p1 + ε2p2} is obtained by setting c �→ −c in Equation (4.25).

We also briefly discuss the existence of an additional involution for the plane
genus-three curve D in Equation (4.25). We have the following:

Lemma 4.18. The bielliptic plane genus-three curve D in Proposition 4.15 admits
an additional involution of the form

[u : v : w] �→ [α2v : u : αw]
iff a = ±d/e and α2 = d/e. In particular, such an involution exists for D if λ0λ2 =
λ1λ3 or λ0λ3 = λ1λ2.

Proof. The first statement is immediate. The second follows by computing e2a −
d2 in terms of λ0, . . . , λ3, l. �

Remark 4.19. For λ0λ1 = λ2λ3, we find �D = 0 in Equation (4.26), and the
curve D is singular. This is easily understood when observing that the construction
of D in Proposition 4.15 depends on two Weierstrass points corresponding to λ0
and λ1.

5. Proof of Theorem 1.2

Until now, we constructed a bidouble cover of P1 introducing the curves H, C,
and E ∼= Q of genus three, two, and one in Section 3 and provided a precise
geometric characterization of plane bielliptic genus-three curves D, their bielliptic
quotients, and the associated branch loci in Section 4. We now combine the results
of the previous sections to prove our main theorem. In this section, we prove
Corollary 5.3, which implies that, under certain conditions, the bielliptic genus-
three curve D is smooth and irreducible. Moreover, we prove in Theorem 5.4 the
existence of the (1,2)-isogeny between the Prym variety of D and the Jacobian
variety of a smooth genus-two curve C by using Theorem 2.1 and Propositions 2.6,
3.14, 3.20, 4.8, and 4.15.

We first determine on which fibers of the elliptic fibration with section (π,O)

given by Equation (2.1) on the Abelian surfaces A with (1,2)-polarization line
bundle L, the branch locus with respect to the action induced by −I on A con-
sists of four points {pt1,pt2,pt3,pt4} ⊂ E such that

∑4
i=1 pti = O. A normal form

for the elliptic fibration and the generators {O,S1,S2,S3} of the Mordell–Weil
group was provided in Corollary 3.12 and Section 3.4. As explained in Sec-
tion 2.1, Barth’s Theorem 2.1 asserts that A is naturally isomorphic to the Prym
variety Prym(D,πD

E ) of a smooth genus-three curve D ∈ |L| with bielliptic in-
volution τ such that −I restrict to τ , and the linear pencil |L| has precisely
T (L) = {P0,P1,P2,P3} as base points. The blowup in the base points is equiva-
lent to the elliptic fibration with section (π,O) with sections {O,S′

1,S′
2,S′

3} such
that the divisor classes {K0,K1,K2,K3} given by

K0 = [O], K1 = [S′
1], K2 = [S′

2], K3 = [S′
3] (5.1)
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Table 9 Special fibers in the elliptic fibration (π,O) on Kum(A).

# O = T0 T1 T2 T3 {O,S′
1,S′

2,S′
3}

1
relation:

constraint:

2S1 + S3 = O,

p4(s0, s1) = 0

2S1 + S3 = T1,

p
(1,2,3)
2 (s0, s1) = 0

2S1 + S3 = T2,

p
(2,1,3)
2 (s0, s1) = 0

2S1 + S3 = T3,

p
(3,1,2)
2 (s0, s1) = 0

±{O,−S1 + S2 + Ti ,−S1 − S2 + Ti ,2S1}

2
relation:

constraint:

2S1 − S3 = O,

p4(s0,−s1) = 0

2S1 − S3 = T1,

p
(1,2,3)
2 (s0,−s1) = 0

2S1 − S3 = T2,

p
(2,1,3)
2 (s0,−s1) = 0

2S1 − S3 = T3,

p
(3,1,2)
2 (s0,−s1) = 0

±{O,−S1 + S2 + Ti ,−S1 − S2 + Ti ,2S1}

3
relation:

constraint:

2S2 + S3 = O,

p4(ls1, s0) = 0

2S2 + S3 = T1,

p
(1,2,3)
2 (ls1, s0) = 0

2S2 + S3 = T2,

p
(2,1,3)
2 (ls1, s0) = 0

2S2 + S3 = T3,

p
(3,1,2)
2 (ls1, s0) = 0

±{O,−S2 + S1 + Ti ,−S2 − S1 + Ti ,2S2}

4
relation:

constraint:

2S2 − S3 = O,

p4(ls1,−s0) = 0

2S2 − S3 = T1,

p
(1,2,3)
2 (ls1,−s0) = 0

2S2 − S3 = T2,

p
(2,1,3)
2 (ls1,−s0) = 0

2S2 − S3 = T3,

p
(3,1,2)
2 (ls1,−s0) = 0

±{O,−S2 + S1 + Ti ,−S2 − S1 + Ti ,2S2}

are the four exceptional curves of the blowup; see Proposition 2.6. To that end,
the sum of the sections {S′

1,S′
2,S′

3} representing the divisor classes K1, K2, K3

in Proposition 2.4 has to vanish. This will happen in certain smooth and certain
singular fibers of the elliptic fibration, and we are interested in the former. We
have the following:

Proposition 5.1. Table 9 lists all points in the base curve of the elliptic fibration
with section (π,O) on Kum(A) where the sum of sections {S′

1,S′
2,S′

3} repre-
senting divisor classes K1, K2, K3 vanishes. Table 9 is based on the four pos-
sible choices for {S′

1,S′
2,S′

3} determined by Proposition 2.4. The polynomials

p4(s0, s1) and p
(1,2,3)
2 (s0, s1) are the polynomials of degree 4 and 2, respectively,

given by

p4(s0, s1) = 2λ0λ1λ2λ3ls
4
1 − λ0λ1λ2λ3(λ0 + λ1 + λ2 + λ3)s

3
1s0

+ (λ0λ1λ2λ3 + λ0λ1λ2 + λ0λ1λ3 + λ0λ2λ3)s1s
3
0 − 2ls4

0 ,

p
(1,2,3)
2 (s0, s1) = λ0λ1λ2λ3(λ0 + λ1 − λ2 − λ3)s

2
1 − 2l(λ0λ1 − λ2λ3)s0s1

+ λ0λ1(λ2 + λ3) − λ2λ3(λ0 + λ1),

(5.2)

and p
(2,1,3)
2 and p

(3,1,2)
2 are obtained by interchanging λ1 ↔ λ2 and λ1 ↔ λ3, re-

spectively, in p
(1,2,3)
2 . The parameters λ0, λ1, λ2, λ3, l are the moduli of a general

genus-two curve given in Lemma 3.1. (We remind the reader that we write λ0 and
l2 = λ0λ1λ3λ3 rather than substituting λ0 = 1.)

Proof. The conditions 2S1 ±S3 = Ti and 2S2 ±S3 = Ti for 0 ≤ i ≤ 3 result from
making the last column in the table in Proposition 2.6 vanish. Staying away from
singular fibers of the elliptic fibration described in Section 2.2, the rest of the
statement follows from explicit computation using the group law on the smooth
elliptic fibers. �

The marked cells in Table 9 determine points in the base curve of the elliptic fi-
bration with section (π : E → P1,O) where the sum of sections {O,S′

1,S′
2,S′

3}
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vanishes. In particular, these points can be explicitly expressed in terms of modu-
lar forms and the sections in terms of the rational points p1, p2 in Lemma 3.5. We
have the following:

Corollary 5.2. For the six points in P1 given by

[s∗
0 : s∗

1 ]
= [(λ0 + λi − λj − λk)l : λ0λi − λjλk ± m(i,j,k)(λ0 − λj )(λ0 − λk)], (5.3)

the sections {O,S′
1,S′

2,S′
3} coincide with the points {O,2p1,p1 + p2,−3p1 − p2}

in fibers E[s∗
0 :s∗

1 ] given by Equation (3.21). Here m(i,j,k) satisfy

(m(i,j,k))2 = (λi − λj )(λi − λk)

(λ0 − λi)(λ0 − λj )

for {i, j, k} = {1,2,3}, the point 2p1 has the coordinates

ξ = (�0 + �1 − �2 − �3)
2, η = 1,

ρ = (�0 + �1 − �2 − �3)(�0 − �1 − �2 + �3)

× (�0 − �1 + �2 + �3),

(5.4)

and p1 + p2 has the coordinates

ξ = 4(�0�1 + �2�3 − 2L), η = 1,

ρ = 8(L(�0 + �1 + �2 + �3) − �0�1�2

− �0�1�3 − �0�2�3 − �1�2�3),

(5.5)

where �i = �i(s
∗
0 , s∗

1 ) for 0 ≤ i ≤ 3 and L = L(s∗
0 , s∗

1 ) are given in Equation
(3.20).

Proof. We check that the points in Equation (5.3) satisfy p
(1,2,3)
2 (s∗

0 , s∗
1 ) = 0 in

Proposition 5.1. The relation between the generators of the Mordell–Weil group
MW(π,O) and the points p1 and p2 is given in Equation (3.26). Using Proposi-
tion 2.6, it follows

S′
1 = 2S1 = 2p1, S′

2 = S1 + S2 + S3 = p1 + p3,

S′
3 = S1 − S2 + S3 = p1 + p2.

Then the condition 2S1 + S3 = Ti with 1 ≤ i ≤ 3 in Proposition 5.1 implies∑
S′

i = 2Ti = O. Because p
(2,1,3)
2 and p

(3,1,2)
2 are obtained by interchanging

λ1 ↔ λ2 and λ1 ↔ λ3, the statements follow for the other points in the base curve
as well. �

By replacing λi �→ �i(s0, s1) for 0 ≤ i ≤ 3 and l �→ L(s0, s1) in Proposition 4.15
we obtain the coefficients A, B , C, D, E from a, b, c, d , e; A, B are given by
Equation (3.22) and

C(s0, s1) = c(�0(s0, s1),�1(s0, s1),�2(s0, s1),�3(s0, s1),L(s0, s1)),

D(s0, s1) = d(�0(s0, s1),�1(s0, s1),�2(s0, s1),�3(s0, s1),L(s0, s1)),

E(s0, s1) = e(�0(s0, s1),�1(s0, s1),�2(s0, s1),�3(s0, s1),L(s0, s1)).

(5.6)
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Then a pencil D of plane bielliptic genus-three curves D[s0:s1] is given by

(E(s0, s1)(w
2 − u2) − C(s0, s1)uv − D(s0, s1)v

2)2

= E(s0, s1)
2(u4 + B(s0, s1)u

2v2 + A2(s0, s1)v
4) (5.7)

with [u : v : w] ∈ P2 and [s0 : s1] ∈ P1. We immediately have the following:

Corollary 5.3. The plane genus-three curves D[s0:s1] in Equation (5.7) are ir-
reducible and nonsingular for all [s0 : s1] ∈ P1 with �E (s0, s1)�D (s0, s1) �= 0,
where

�E (s0, s1) = 16A2(B2 − 4A2)2,

�D (s0, s1) = −((C2 − BE2 − 4DE)2 − 12DE2(BE + D))3

+ (54AC2E4 − C6 + 3(BE + 4D)C4E

− 3(B2E2 + 2BDE + 10D2)C2E2 + (BE − 2D)3E3)2,

(5.8)

and A = A(s0, s1), B = B(s0, s1), and so on. In particular, then we have
E(s0, s1) �= 0.

Proof. The proof follows from Lemma 4.13 by replacing a �→ A(s0, s1), b �→
B(s0, s1), and so on. �

Then each smooth and irreducible curve D[s0:s1] in the pencil D admits the biel-
liptic involution τ : [u : v : w] ∈ P2 �→ [u : v : −w] interchanging the sheets of the
degree-two cover

πD
E : D[s0:s1] → E[s0:s1]

[u : v : w] �→
[
u : v : W = w2 − u2 − C(s0, s1)

E(s0, s1)
uv − D(s0, s1)

E(s0, s1)
v2

] (5.9)

onto the elliptic curve E[s0:s1] ∼= D[s0:s1]/〈τ 〉 in Equation (3.21). It follows from
Barth’s Theorem 2.1 that the Prym varieties for the bielliptic curves D[s0:s1] are
Abelian surfaces with polarization of type (1,2). We have the following:

Theorem 5.4. The Prym varieties of the smooth plane bielliptic genus-three
curves D[s∗

0 :s∗
1 ] obtained as fibers of the pencil in Equation (5.7) over [s∗

0 : s∗
1 ] ∈ P1

in Equation (5.3) with �E (s∗
0 , s∗

1 )�D (s∗
0 , s∗

1 ) �= 0 admit a (1,2)-isogeny

� : Prym(D[s∗
0 :s∗

1 ],πD
E ) → Jac(C)

onto the principally polarized Abelian surface Jac(C) for C in Equation (3.1).

Proof. It follows from Proposition 3.14 that the elliptic fibration π : E → P1 in
Equation (3.21) is the special elliptic fibration π : Kum(A) → P1 with section
O in Proposition 2.2 on the Kummer surface of the Abelian surface A with a
polarization of type (1,2). By Barth’s Theorem 2.1 the elliptic fibration is induced
by a pencil of bielliptic genus-three curves. The bielliptic involution τ has fixed
points {P0,P1,P2,P3}. We proved in Proposition 2.6 that the branch points of the
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bielliptic involution are given by the sections {O,S′
1,S′

2,S′
3} that represent divisor

classes

K0 = [O], K1 = [S′
1], K2 = [S′

2], K3 = [S′
3]. (5.10)

The double points are the images of the order-two points {P0, . . . ,P15} on A, that
is, elements of A[2], and the disjoint rational curves {K0, . . . ,K15} are the excep-
tional divisors introduced in the blowup process. We proved in Corollary 5.2 that
over the points [s∗

0 : s∗
1 ] ∈ P1 in Equation (5.3) the sections add up to zero with

respect to the elliptic-curve group law and coincide with {O,2p1,p1 +p2,−3p1 −
p2} in fibers E[s∗

0 :s∗
1 ]. It follows from Proposition 4.15 that a plane bielliptic genus-

three curve covering E[s∗
0 :s∗

1 ] with the same branch locus is obtained from Equation
(4.25) by replacing λi �→ �i(s

∗
0 , s∗

1 ) for 0 ≤ i ≤ 3 and l �→ L(s∗
0 , s∗

1 ) in Proposi-
tion 4.15. By Proposition 4.8 this model is unique. Moreover, it follows from [3,
Corollary 2.2] that any such smooth curve is the canonical model of a biellip-
tic nonhyperelliptic curve of genus three. It follows from Proposition 3.20 that
the polarization of type (1,2) on the Abelian surface A is induced by an isogeny
� : A → Jac(C) onto the principally polarized Abelian surface Jac(C) for the
genus-two curve in Equation (3.1). �

A tedious computation gives the following:

Corollary 5.5. The coefficients A, B , C, D, E of the bielliptic genus-three
curves D[s∗

0 :s∗
1 ] are polynomials in Z[λ0, λ1, λ2, λ3, l, l

−1,m(i,j,k)].
We determine some symmetries of these functions. We have the following:

Lemma 5.6. For {i, j, k} = {1,2,3},
[s∗

0 : s∗
1 ] = [(λ0 + λi − λj − λk)l :

λ0λi − λjλk ± m(i,j,k)(λ0 − λj )(λ0 − λk)], (5.11)

and λ0λi = λjλk , we have C = D = E = 0 in Equation (5.7).

Corollary 5.7. For {i, j, k} = {1,2,3},
[s∗

0 : s∗
1 ] = [(λ0 + λi − λj − λk)l :

λ0λi − λjλk ± m(i,j,k)(λ0 − λj )(λ0 − λk)], (5.12)

and one of the additional relations given in Table 10, the smooth and irreducible
bielliptic plane genus-three curve D[s∗

0 :s∗
1 ] in Theorem 5.4 admits an additional

involution of the form

[u : v : w] �→ [α2v : u : αw],
with α2 = D(s∗

0 , s∗
1 )/E(s∗

0 , s∗
1 ). In particular, the Jacobian variety of the smooth

genus-two curve C is two-isogenous to a product of two elliptic curves, that is,
Jac(C) ∼2 E1 × E2.



264 A. Clingher, A. Malmendier, & T. Shaska

Table 10 Additional relations between Rosenhain roots.

(i, j, k) relation
(1,2,3) λ0λ2 = λ1λ3 or λ0λ3 = λ1λ2
(2,1,3) λ0λ1 = λ2λ3
(3,1,2) λ0λ1 = λ2λ3

Proof. The first part follows from Lemma 4.18 and a tedious computation af-
ter replacing a �→ A(s∗

0 , s∗
1 ), b �→ B(s∗

0 , s∗
1 ), and so on. For the second part,

we compute the Igusa–Clebsch invariants of C, denoted by [I2 : I4 : I6 : I10] ∈
P(2,4,6,10), using the same normalization as in [27; 28]. Then we can ask what
the Igusa invariants of a genus-two curve C defined by a sextic curve are in terms
of τ such that (τ , I2) ∈ Mat(2,4;C) is the period matrix of the principally polar-
ized Abelian surface Jac(C). This allows us to compute the Siegel modular forms
ψ4, ψ6, χ10, χ12 for Jac(C), as introduced by Igusa in [22]. Igusa [23] also proved
that the ring of Siegel modular forms is generated by ψ4, ψ6, χ10, χ12 and by
one more cusp form χ35 of odd weight 35 whose square is the following poly-
nomial [22, p. 849]. We check that the additional relation implies χ35(C)2 = 0.
On the other hand, it is well known that for any smooth genus-two curve C with
χ35(C) = 0, its Jacobian is two-isogenous to a product of two elliptic curves, that
is, Jac(C) ∼2 E1 × E2; see [22]. �

Proof of Main Theorem 1.2. Corollary 5.3 proves that for �E (s∗
0 , s∗

1 )�D (s∗
0 ,

s∗
1 ) �= 0, the curves D[s∗

0 :s∗
1 ] are smooth and irreducible. Theorem 5.4 proves the

existence of a (1,2)-isogeny. Lemma 3.1 and Remark 3.2 provide explicit formu-
las for λ0, λ1, λ2, λ3, l, m(i,j,k) in terms of theta functions. �

Appendix: Coefficients of Plane Bielliptic Genus-Three Curves

The plane bielliptic genus-three curve D in Proposition 4.15 is given by(
w2 − u2 − c

e
uv − d

e
v2

)2

= u4 + bu2v2 + a2v4 (A.1)

with [u : v : w] ∈ P2 and the coefficients

a = (λ0 − λ1)(λ2 − λ3),
(A.2)

b = 4λ0λ1 + 4λ2λ3 − 2λ0λ2 − 2λ0λ3 − 2λ1λ2 − 2λ1λ3,

c = c(λ0, λ1, λ2, λ3, l)

= −4
1∏

i=0

2∏
j=1

(λi − λj )

( 3∑
i=0

λ2
i − 2

∑
0≤i<j≤3

λiλj + 8l

)
, (A.3)

d = d(λ0, λ1, λ2, λ3, l)

= −λ5
0λ1λ2 − λ5

0λ1λ3 + 2λ5
0λ2λ3 − 4λ4

0λ
2
1λ2 − 4λ4

0λ
2
1λ3 + 5λ4

0λ1λ
2
2
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+ 5λ4
0λ1λ

2
3 − λ4

0λ
2
2λ3 − λ4

0λ2λ
2
3 + 10λ3

0λ
3
1λ2 + 10λ3

0λ
3
1λ3 − 5λ3

0λ
2
1λ

2
2

− 2λ3
0λ

2
1λ2λ3 − 5λ3

0λ
2
1λ

2
3 − 5λ3

0λ1λ
3
2 + λ3

0λ1λ
2
2λ3 + λ3

0λ1λ2λ
2
3

− 5λ3
0λ1λ

3
3 − 5λ3

0λ
3
2λ3 + 10λ3

0λ
2
2λ

2
3 − 5λ3

0λ2λ
3
3 − 4λ2

0λ
4
1λ2 − 4λ2

0λ
4
1λ3

− 5λ2
0λ

3
1λ

2
2 − 2λ2

0λ
3
1λ2λ3 − 5λ2

0λ
3
1λ

2
3 + 10λ2

0λ
2
1λ

3
2 + 10λ2

0λ
2
1λ

3
3

− λ2
0λ1λ

4
2 + λ2

0λ1λ
3
2λ3 + λ2

0λ1λ2λ
3
3 − λ2

0λ1λ
4
3 + 5λ2

0λ
4
2λ3 − 5λ2

0λ
3
2λ

2
3

− 5λ2
0λ

2
2λ

3
3 + 5λ2

0λ2λ
4
3 − λ0λ

5
1λ2 − λ0λ

5
1λ3 + 5λ0λ

4
1λ

2
2 + 5λ0λ

4
1λ

2
3

− 5λ0λ
3
1λ

3
2 + λ0λ

3
1λ

2
2λ3 + λ0λ

3
1λ2λ

2
3 − 5λ0λ

3
1λ

3
3 − λ0λ

2
1λ

4
2 + λ0λ

2
1λ

3
2λ3

+ λ0λ
2
1λ2λ

3
3 − λ0λ

2
1λ

4
3 + 2λ0λ1λ

5
2 − 2λ0λ1λ

3
2λ

2
3 − 2λ0λ1λ

2
2λ

3
3

+ 2λ0λ1λ
5
3 − λ0λ

5
2λ3 − 4λ0λ

4
2λ

2
3 + 10λ0λ

3
2λ

3
3 − 4λ0λ

2
2λ

4
3 − λ0λ2λ

5
3

+ 2λ5
1λ2λ3 − λ4

1λ
2
2λ3 − λ4

1λ2λ
2
3 − 5λ3

1λ
3
2λ3 + 10λ3

1λ
2
2λ

2
3 − 5λ3

1λ2λ
3
3

+ 5λ2
1λ

4
2λ3 − 5λ2

1λ
3
2λ

2
3 − 5λ2

1λ
2
2λ

3
3 + 5λ2

1λ2λ
4
3 − λ1λ

5
2λ3 − 4λ1λ

4
2λ

2
3

+ 10λ1λ
3
2λ

3
3 − 4λ1λ

2
2λ

4
3 − λ1λ2λ

5
3

+ (8λ4
0λ1 − 4λ4

0λ2 − 4λ4
0λ3 − 8λ3

0λ
2
1 + 4λ3

0λ
2
2 + 4λ3

0λ
2
3 − 8λ2

0λ
3
1

+ 8λ2
0λ

2
1λ2 + 8λ2

0λ
2
1λ3 − 4λ2

0λ1λ
2
2 − 4λ2

0λ1λ
2
3 + 4λ2

0λ
3
2 − 4λ2

0λ
2
2λ3

− 4λ2
0λ2λ

2
3 + 4λ2

0λ
3
3 + 8λ0λ

4
1 − 4λ0λ

2
1λ

2
2 − 4λ0λ

2
1λ

2
3 − 4λ0λ

4
2

+ 8λ0λ
2
2λ

2
3 − 4λ0λ

4
3 − 4λ4

1λ2 − 4λ4
1λ3 + 4λ3

1λ
2
2 + 4λ3

1λ
2
3 + 4λ2

1λ
3
2

− 4λ2
1λ

2
2λ3 − 4λ2

1λ2λ
2
3 + 4λ2

1λ
3
3 − 4λ1λ

4
2 + 8λ1λ

2
2λ

2
3 − 4λ1λ

4
3

+ 8λ4
2λ3 − 8λ3

2λ
2
3 − 8λ2

2λ
3
3 + 8λ2λ

4
3)l, (A.4)

and

e = e(λ0, λ1, λ2, λ3, l)

= (λ0 + λ1 − λ2 − λ3)(2λ2
0λ

2
1 − λ3

0λ1 − 2λ2
0λ1λ2

− 3λ2
0λ2λ3 − λ0λ

3
1 − 2λ0λ

2
1λ2 − 2λ0λ

2
1λ3 + 3λ0λ1λ

2
2 + 3λ0λ1λ

2
3

+ 2λ0λ
2
2λ3 + 2λ0λ2λ

2
3 − 3λ2

1λ2λ3 + 2λ1λ
2
2λ3 + 2λ1λ2λ

2
3 + λ3

2λ3

− 2λ2
0λ1λ3 − 2λ2

2λ
2
3 + λ2λ

3
3 + 4(λ2

0 + λ2
1 − λ2

2 − λ2
3)l). (A.5)

Here we assumed that the curve D is irreducible and smooth such that �E�D �= 0
(and e �= 0 in particular), where

�E = 16a2(b2 − 4a2)2,

�D = −((c2 − be2 − 4de)2 − 12de2(be + d))3

+ (54ac2e4 − c6 + 3(be + 4d)c4e

− 3(b2e2 + 2bde + 10d2)c2e2 + (be − 2d)3e3)2.

(A.6)
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The plane bielliptic genus-three curves D[s∗
0 :s∗

1 ] in Theorem 1.2 are given by

(
w2 − u2 − C(s∗

0 , s∗
1 )

E(s∗
0 , s∗

1 )
uv − D(s∗

0 , s∗
1 )

E(s∗
0 , s∗

1 )
v2

)2

= u4 + B(s∗
0 , s∗

1 )u2v2 + A2(s∗
0 , s∗

1 )v4 (A.7)

with [u : v : w] ∈ P2, [s0 : s1] ∈ P1, and the coefficients

A(s0, s1) = (�0(s0, s1) − �1(s0, s1))(�2(s0, s1) − �3(s0, s1)),

B(s0, s1) = 4�0(s0, s1)�1(s0, s1) + 4�2(s0, s1)�3(s0, s1)

− 2�0(s0, s1)�2(s0, s1) − 2�0(s0, s1)�3(s0, s1)

− 2�1(s0, s1)�2(s0, s1) − 2�1(s0, s1)�3(s0, s1),

(A.8)

and

C(s0, s1) = c(�0(s0, s1),�1(s0, s1),�2(s0, s1),�3(s0, s1),L(s0, s1)),

D(s0, s1) = d(�0(s0, s1),�1(s0, s1),�2(s0, s1),�3(s0, s1),L(s0, s1)),

E(s0, s1) = e(�0(s0, s1),�1(s0, s1),�2(s0, s1),�3(s0, s1),L(s0, s1)),

(A.9)

where the functions c, d , e are given in Equations (A.3)–(A.5) with λ0, λ1, λ2,
λ3, l replaced by �0, �1, �2, �3, L with

�i(s0, s1) = (s0 + λis1)
2

λi

, 0 ≤ i ≤ 3,

L(s0, s1) =
∏3

i=0(s0 + λis1)

l
.

(A.10)

Moreover, the special point [s0 : s1] = [s∗
0 : s∗

1 ] to be used in Equation (A.7) is
given by

[s∗
0 : s∗

1 ] = [(λ0 + λi − λj − λk)l :
(λ0λi − λjλk) ± m(i,j,k)(λ0 − λj )(λ0 − λk)] (A.11)

for all {i, j, k} = {1,2,3}, where

λ0 = 1, λ1 = θ2
1 θ2

3

θ2
2 θ2

4

, λ2 = θ2
3 θ2

8

θ2
4 θ2

10

,

λ3 = θ2
1 θ2

8

θ2
2 θ2

10

, l = θ2
1 θ2

3 θ2
8

θ2
2 θ2

4 θ2
10

, m(1,2,3) = θ1θ3θ
2
6

θ2θ4θ
2
5

,

m(2,1,3) = i
θ3θ8θ

2
6

θ4θ10θ
2
7

, m(3,1,2) = θ1θ8θ
2
6

θ2θ10θ
2
9

,

(A.12)

and the ten even theta functions θ2
i = θ2

i (0, τ ) with zero elliptic argument, modu-
lar argument τ ∈H2/�2(2), and 1 ≤ i ≤ 10 follow the same standard notation for
even theta functions as that used in [21; 20; 27; 28; 9]. Since the curves D[s∗

0 :s∗
1 ]
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are assumed to be irreducible and smooth, we have �E (s∗
0 , s∗

1 )�D (s∗
0 , s∗

1 ) �= 0,
where

�E (s0, s1) = 16A2(B2 − 4A2)2,

�D (s0, s1) = −((C2 − BE2 − 4DE)2 − 12DE2(BE + D))3

+ (54AC2E4 − C6 + 3(BE + 4D)C4E

− 3(B2E2 + 2BDE + 10D2)C2E2 + (BE − 2D)3E3)2,

(A.13)

and A = A(s0, s1), B = B(s0, s1), and so on.
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