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Abstract. In this paper, we explore the inflectionary behavior of linear series on superelliptic curves
X over fields of arbitrary characteristic. Here we give a precise description of the inflection of linear

series over the ramification locus of the superelliptic projection; and we initiate a study of those
inflectionary varieties that parameterize the inflection points of linear series on X supported away

from the superelliptic ramification locus that is predicated on the behavior of their Newton polytopes.

1. Beyond arithmetic inflection of hyperelliptic curves

In the study of linear series on complex algebraic curves, a foundational role is played by Plücker’s
formula, which expresses the global inflection of a linear series grd in terms of the projective invariants
(d, r) and the genus g of the underlying curve X. It is natural to ask for analogues of Plücker’s formula
over base fields F other than C. Inflection, both local and global, then depends on information that
refines the numerical data (d, g, r); for example, when F = R, the number of real inflection points of
a (real) linear series on a (real) curve X depends on the topology of the real locus X(R).

In the papers [3, 5, 6, 7], we studied F -rational inflectionary loci for certain linear series on hyperel-
liptic curves X defined over F . Whenever char(F ) 6= 2 and a hyperelliptic curve X has an F -rational
ramification point ∞X , X admits an affine model y2 = f(x) in ambient coordinates x and y with
respect to which the complete series |`∞X | has a distinguished basis of monomials in x and y. The
inflection of |`∞X | and those subseries corresponding to truncations of the distinguished monomial
basis comprise determinantal loci cut out by the determinants of Wronskian matrices whose entries are
Hasse derivatives. Somewhat surprisingly, Hasse Wronskians helped clarify both the column-reduction
of Wronskian matrices in calculating the inflection of linear series over the hyperelliptic ramification
locus, and the structure of inflection polynomials whose roots parameterize the x-coordinates of F -
inflection points of linear series over the complement of the superelliptic ramification locus.

The aim of this paper is to extend our local analysis of inflection in the hyperelliptic setting to
superelliptic curves. These are cyclic covers of P1; whenever the degree of the cyclic cover shares no
nontrivial factors with char(F ), such a cover is defined by an affine equation yn = f(x) with n ≥ 2.
Superelliptic curves retain many of the salient features that make the projective geometry of hyper-
elliptic curves accessible. Crucially, complete linear series determined by multiples of a superelliptic
F -rational ramification point have a basis of monomials in x and y that naturally generalizes the
monomial basis operative in the hyperelliptic context. Over the superelliptic ramification locus Rπ,
we use this basis to generalize [5, Thm 3.9].

Away from Rπ, on the other hand, the inflection of subseries of |`∞X | is controlled by superelliptic
inflection polynomials, whose roots parameterize the x-coordinates of F -inflection points exactly as in
the hyperelliptic case. Here we explore the geometry of the inflectionary varieties they define when
either i) the underlying family of superelliptic curves is a superelliptic analogue of a Legendre or
Weierstrass pencil (in a very precise sense) of elliptic curves, or ii) the underlying family of curves is
the two-dimensional family of bielliptic curves in genus two or a special subpencil thereof.

More precisely, we focus on atomic inflection polynomials P `m(x), whose zeroes are those of the m-
th Hasse derivative with respect to x of y`. Inflection polynomials in general, including those derived
from complete linear series in particular, are determinants in atomic inflection polynomials. The
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latter, on the other hand, satisfy a characteristic recursion, which shows crucially that they depend
on the quotient u = `

n . We exploit the recursive structure of atomic inflection polynomials to study
the singularities of Legendre and Weierstrass pencils of elliptic curves, as well as those of D4 and D6

pencils of bielliptic curves in genus two; and we pay special attention to those cases in which u = 1
2 .

We conjecture on the basis of experimental evidence that whenever the characteristic of the base
field is either zero or sufficiently positive, the singularities of inflectionary curves cut out by (atomic)
inflectionary polynomials are essentially supported along the singularities of the fibers of the underlying
pencils. We also compute the (local) Newton polygons of inflectionary curves in these distinguished
points, which enable us to produce precise conjectural estimates for the geometric genera of atomic
inflectionary curves arising from Legendre, Weierstrass, and special bielliptic pencils; see, in particular
Theorems 4.8 and 4.9, Proposition 5.3, and Conjecture 5.8.

1.1. Roadmap. The material following this introduction is organized as follows. In Section 2, we
introduce superelliptic curves and their linear series. Lemma 2.1 characterizes the monomial basis for
the complete series associated with an arbitrary sufficiently large multiple of a superelliptic ramification
point. In Section 3, we begin our quantitative study of inflection of linear series on superelliptic curves
in earnest. Theorem 3.1 establishes that whenever appropriate numerological conditions are satisfied1,
a well-defined A1-inflection class exists in the Grothendieck–Witt group of the base field F . Just as in
the hyperelliptic case worked out in [5], the global A1-class of the inflectionary locus of a linear series
on a superelliptic curve is less interesting than its individual local inflectionary indices.

In the present paper, we have not carried out the full calculation of local inflectionary indices in
A1-homotopy theory. We have, however, deepened the local analysis of inflectionary indices in other
ways. In Section 3.2, we prove Theorem 3.2, which characterizes the lowest-ordest terms of those Hasse
Wronskians associated to complete linear series |`∞X | in superelliptic ramification points. We compute
these lowest-order terms in two distinct ways, and in so doing we establish a connection between lowest-
order terms of the Wronskian determinant that calculates the inflection of a ramification point and
paths in the Plücker posets of certain Grassmannians related to the linear series. In Remark 3.6
we explain how our analysis leads to seemingly novel combinatorial identities involving partitions.
Section 3.3 introduces Hasse inflection polynomials, which parameterize the inflection of subseries
of |`∞X | away from the superelliptic ramification locus. The characteristic recursion that atomic
inflection polynomials satisfy is spelled out in Proposition 3.7. Closely-related polynomials have been
studied before, notably by Towse [24], who used their analogues constructed using usual derivatives
to study the inflection of superelliptic canonical series. The main novelty in our approach is to put
these to use in studying the variation of inflection points in families of marked superelliptic curves.
For families of index-n superelliptic curves defined over a ring R, our Hasse inflection polynomials are
defined over R[ 1

n ]; see Remark 3.8.

Section 4 is a close study of the (atomic) inflectionary curves cut out by superelliptic analogues of
Legendre and Weierstrass pencils of elliptic curves. In general, the singularities of fibers of a family
will contribute “extra” inflection; so it is natural to expect that these manifest as singularities in
the corresponding inflectionary varieties. Legendre inflectionary pencils derived from presentations
yn = xa(x− 1)b(x− λ)c with a, b, c ∈ N are the focus of Section 4.1. These were previously studied by
the first four authors when n = 2 and a = b = c = 1; here we extend the earlier analysis in a couple of
distinct directions. Theorem 4.1 establishes that Legendre inflectionary curves inherit automorphisms
from their underlying pencils whenever a = b = c. Turning to singularities of Legendre inflectionary
curves C`m inherited from the underlying pencils, we then prove Theorem 4.3, which gives a generic
expectation for the Newton polygon New(C`m) of the m-th Legendre inflectionary curve with respect to
coordinates centered in the origin where C`m is singular. Whenever char(F ) is either zero or sufficiently
large, Theorem 4.6 establishes that the generic expectation is met whenever the parameter u is itself
“generic” (and in particular, whenever u is sufficiently large relative to a, b, and c); while Theorem 4.8

1These are the conditions that ensure that the jet bundle that computes inflection is relatively orientable.
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describes New(C`m) when u = 1
2 , which is a value of particular significance insofar as it includes the

(unique) hyperelliptic case in which ` = 1 and n = 2.

Our explicit identification of Newton polygons of singularities of atomic inflectionary curves is
predicated on the recursive structure of the associated atomic inflection polynomials. In particular,
the coefficients of these in terms corresponding to vertices of Newton polygons tend to split u-linearly
over F . We push this principle further in Section 4.2, in which we study Weierstrass inflectionary
curves derived from presentations yn = x3 + λx + 2. Here we assume for simplicity that u = 1

2 ,

though a number of our arguments are nonspecific to this case. Viewed as an affine curve C`m ⊂
A2
x,λ, each Weierstrass inflectionary curve comes equipped with a cyclic µ3-action, which permutes

its distinguished singularities in (ζj ,−3ζ−j), j = 0, 1, 2 inherited from the underlying pencil; see
Theorem 4.15. In Theorem 4.9 we compute the Newton polygon of C`m in coordinates adapted to the
singular point (1, 3); while in Conjecture 4.10 we predict the exact normal form of the corresponding
singularity. This, in turn, leads to Conjecture 4.14, which predicts that each of these singularities
is Newton non-degenerate, and we present some experimental evidence in favor of this. Newton non-
degeneracy would imply, in particular, that C`m has multiple-point singularities with smooth branches in
(ζj ,−3ζ−j) whenever m ≥ 3. Our Newton polygon calculation also immediately (and unconditionally)
yields the δ-invariant of each of the three distinguished singularities; assuming C`m has no further
singularities and is irreducible, this in turn leads to an explicit expectation for the geometric genus
of C`m; see Conjectures 4.17 and 4.19, respectively. It is natural to wonder what shapes our results
(and in particular, Newton polygons) for C`m might take when char(F ) is positive and small relative
to m. Remark 4.16 addresses the p-adic valuations of (some of) the hypergeometric functions that
arise as coefficients of inflectionary Newton polygons; while Propositions 4.20 and 4.21 together give a
complete topological description of the µ3-quotient of C`3 in arbitrary odd characteristic.

In Section 5, we investigate superelliptic inflectionary varieties derived from bielliptic curves inM2,
especially curves with automorphism groups isomorphic to either of the dihedral groups D4 or D6.
Over a perfect field F not of characteristic 2 or 3, any such curve is F -isomorphic to a curve with
affine equation y2 = x5 + x3 + sx or y2 = x6 + x3 + z, where s and z are the respective modular
parameters; and by replacing y2 by yn we obtain superelliptic analogues in either case. In the D4 case,
the inflectionary curves Cm = C`m ⊂ A2

x,s always has a singularity in the origin, and in Proposition 5.3

we compute the corresponding Newton polygons, assuming that u is not a multiple of either 1
3 or 1

5 .

We then specialize to the case in which u = 1
2 , and char(F ) is either zero or sufficiently positive. The

x-discriminant of the D4 pencil vanishes in s = 0 and s = 1
4 , and the special value s = 1

4 is associated

with singularities of Cm supported in (±
√
−1
2 ,

1
4 ); these are permuted by a cyclic µ3-automorphism of

C`m itself. Conjecture 5.4 predicts that Cm is smooth away from the four distinguished singularities
inherited from the D4 pencil; while Conjecture 5.5 gives our expectation for the Newton polygons of

Cm adapted to either of the singularities in (±
√
−1
2 ,

1
4 ) whenever m ≥ 3.2 These, in turn, lead to

Conjecture 5.6, which gives an explicit prediction for the geometric genus of Cm whenever m ≥ 3.

In Proposition 5.7, on the other hand, we show that the (renormalized Hasse–Weil deviations of)
Fp-rational points counts on C2 as p varies over all primes are equidistributed with respect the Sato–
Tate distribution of an elliptic curve without complex multiplication obtained by desingularizing C2.
In Conjecture 5.8, we make a precise (and rather involved) prediction regarding the singularities and
geometric genera of D6 inflectionary curves; while the final Section 5.2 is a preliminary exploration
of the structure of the (reduced) inflectionary discriminant curves whose points parameterize those
points over which the projection of a bielliptic inflectionary surface y2 = x6 − s1x

4 + s2x
2 − 1 to

the underlying parameter space A2
s1,s2 fails to be étale. This will take place above singular curves;

so the discriminant ∆ of the inflectionary surface always comprises a component of the inflectionary

2We nevertheless anticipate that the proof of Conjecture 5.5 will be straightforward via induction, once the terms

of the D4 inflection polynomials corresponding to the vertices of the putative Newton polygons have been explicitly

identified.
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discriminant. We show that the reduced structure ∆∗ on ∆ is an irreducible rational curve, whose
parameterization we compute explicitly. We also describe the “extra” components of the inflectionary
discriminant ∆`

m when m ∈ {3, 4, 5}. Throughout this paper, Mathematica, Macaulay2, and Sage have
played a vital role in both developing our conjectures and proving our theorems.

1.2. Acknowledgements. The first author would like to thank Vlad Matei for helpful conversations
in the early stages of this project. The third author was funded by CONACYT project no. 299261.
The fourth author was supported by the Research and Training Group in Algebra, Algebraic Geometry,
and Number Theory, at the University of Georgia (DMS-1344994), funded by the National Science
Foundation.

2. Superelliptic curves

Superelliptic curves are abelian covers of the projective line with cyclic automorphism groups;
see [15] for a comprehensive discussion of these. We will always assume that our covers are tame.
Explicitly, assuming the branch points of a given cover π : X → P1 comprise pairwise-distinct points
a1, . . . , ar ∈ P1, the superelliptic curve X is a compactification of an affine irreducible algebraic curve
with presentation

(1) yn =

r∏
j=1

(x− aj)lj

in which l1, . . . , lr ∈ {1, . . . , n− 1} and gcd(n, l1, . . . , lr) = 1. The point at infinity is a branch point of
π if and only if l1 + · · ·+ lr is not congruent to zero modulo n.

2.1. Linear series on superelliptic curves with reduced branch loci. In this subsection, we
assume that every branching index lj , j = 1, . . . , r singled out by the affine presentation (1) is equal
to one. Let ai, i = 1, . . . , d denote the d distinct roots of f(x), and for each i, let bi = (ai, 0) denote
the corresponding affine branch point of π : X → P1. For any non-branch point c ∈ P1, let P c1 , . . . , P

c
n

denote its preimages in X. Let r = gcd(n, d), where d = deg(f). Our curve X : yn = f(x) is smooth
everywhere except possibly at the point at infinity, which is singular whenever d > n + 1. On the
normalization of X, we distinguish divisors

div(x− c) =

n∑
j=1

P cj −
n

r

r∑
m=1

P∞m ;

div(x− ai) = nbi −
n

r

r∑
m=1

P∞m ;

div(y) =

d∑
j=1

bj −
d

r

r∑
m=1

P∞m ; and

div(dx) = (n− 1)

d∑
j=1

bj −
(n
r

+ 1
) r∑
m=1

P∞m

where P∞1 , . . . , P∞r denote the preimages of the point at infinity. Since div(dx) is a canonical divisor,
it has degree 2g− 2, and therefore 2g− 2 = nd− n− d− r. Hereafter we will assume that r = 1; then

g = (d−1)(n−1)
2 . The following lemma will play a crucial role in the sequel.

Lemma 2.1. Let n, and d be as above, and assume that gcd(n, d) = 1. For every nonnegative integer
`, a basis of global sections for O(`∞) over F is given by

B`;n,d :=
{
xiyj |0 ≤ i, 0 ≤ j ≤ n− 1, and ni+ dj ≤ `

}
.

Proof. The pole orders of x and y at infinity are n and d, respectively, so by additivity the pole order
at infinity of any given monomial xiyj is ord∞x

iyj = ni + dj. Because gcd(n, d) = 1, values of these
linear combinations are pairwise distinct. �
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Remark 2.2. Whenever `∞ is linearly equivalent to the pullback of a divisor D on an ambient smooth
toric surface S containing X, inflection of the linear series |O(`∞)| on X may be re-interpreted purely
in terms of the geometry of S. Indeed, geometrically p ∈ X is an inflection point of |O(`∞)| if and
only if the unique osculating hyperplane has contact order at least s + 1, where s is the projective
rank of |O(`∞)|. But whenever the morphism ϕ defined by |O(`∞)| factors through S, the osculating
hyperplane in the target of ϕ pulls back to an extactic curve on S in the sense of Cayley. In this
situation, p ∈ X is an inflection point of |O(`∞)| whenever there is a curve of class D that intersects
X with contact order at least s+ 1 in p.

3. Global and local superelliptic inflection formulae

3.1. A global inflection formula. We begin by giving a superelliptic analogue of the global A1-
Plücker formula for arbitrary multiples of a g1

2 on a hyperelliptic curve [5, Thm. 3.1].

Theorem 3.1. (Generalization of [5, Thm. 3.1]) Let X denote a cyclic n-fold cover of P1 defined over
a field F of characteristic relatively prime to n, n ≥ 2. Assume that the superelliptic curve X has an
F -rational point ∞X , over which the associated superelliptic projection π : X → P1 is ramified. For
every positive integer `, the complete linear series |`∞X | has a well-defined arithmetic A1-inflection
class in GW(F ) given by γC

2 H whenever either ` or the dimension of |`∞X | as a vector space is even.
Here γC denotes the C-inflectionary degree computed by Plücker’s formula, and H = 〈1〉+〈−1〉 denotes
the hyperbolic class.

Proof. Exactly as in [5], the existence of the A1-inflection class is guaranteed provided the line bundle

L⊗(r+1)⊗K⊗(r+1
2 )

X is of even degree, where L and r denote the line bundle and the projective dimension
of the complete linear series |`∞X |, respectively. �

3.2. Arithmetic inflection of linear series on superelliptic curves. Just as in [5], local inflection
formulae are significantly more interesting than their global aggregates. Local inflection indices are
computed by Wronskian determinants; for an elementary account of how this works over C, see [20,
§4]. Since we work in arbitrary characteristic, our Wronskians are Hasse Wronskians built out of Hasse
derivatives. A basic principle that holds in arbitrary characteristic is that ramification points of the
superelliptic projection π : X → P1 are nontrivially inflected for linear series on X. In this subsection,
we will produce an explicit description of the lowest-order terms of Hasse Wronskian determinants over
the ramification locus Rπ.

To state the main result of this section, which generalizes [5, Thm. 3.9] to the superelliptic context,
we will make use of Plücker posets. Given a Grassmannian G = G(k, n), the Plücker poset of G is the
partially ordered set of partitions that fit inside a k × (n− k) rectangle. A path in a Plücker poset is
any sequence of partitions, ordered from smallest to largest, such that the weights increase one by one.
Paths in Plücker posets form the basis of a convenient indexing scheme for lowest-order monomials in
Hasse Wronskian determinants.

Accordingly, assume that ` ≥ 2g+n−1, ` = nα and d = nβ+1, where α and β are positive integers
for which α

β > n − 1; and assume that (γ, 0) is a ramification point of the superelliptic projection

not lying over ∞. As in [5, Thm. 3.9], there is an inflectionary basis of generalized monomials
(x− γ)iyj adapted to (γ, 0) (and as in [5, proof of Thm. 3.9], the corresponding Hasse Wronskians are
independent of γ), so without loss of generality we may (and shall hereafter) suppose that γ = 0; then
y is a uniformizer of OX,(γ,0). We now order the elements of B according to their y-adic valuations

vy. Given 0 ≤ i0 ≤ α, let B(i0) ⊂ B denote the subset comprising monomials of the form xi0yj for

some j. Clearly, B =
⊔α
i0=0 B(i0), and moreover we have B(i0) < B(j0) whenever i0 < j0, by which we

mean that the y-adic valuation of any element of B(i0) is less than the y-adic valuation of any element
of B(j0). On the other hand, the fact that vy(xi0yj) < vy(xi0yk) whenever j < k describes the y-adic

total order on B(i0). Let µi := vy(bi), i = 0, . . . , ` − g denote the inflectionary orders of the elements
bi of the monomial basis B, ordered y-adically as above.



6 ETHAN COTTERILL, IGNACIO DARAGO, CRISTHIAN GARAY LÓPEZ, CHANGHO HAN, AND TONY SHASKA

Theorem 3.2. (Generalization of [5, Thm. 3.9]) Assume that ` ≥ 2g+n− 1, ` = nα and d = nβ+ 1,
where α and β are positive integers for which α

β > n − 1. For any field F of characteristic that is

either zero or sufficiently large, the lowest y-adically valued term of the Hasse Wronskian determinant
w(B) associated to the inflectionary basis B = B`;n,d = {bi}0≤i≤`−g of Lemma 2.1 in a superelliptic
ramification point (γ, 0) ∈ Rπ \ {∞} has the following properties:

(1) The lowest y-adically valued term of w(B) is equal to (
∏
Dµi
y bi)|(γ,0) · detN(n, g, `) · yµ(B),

where µi = vy(bi), N(n, g, `) = (
(
µj
i

)
)0≤i,j≤`−g, and

µ(B) =
(n− 1)n2(n+ 1)

24
β2 +

(n− 1)n(5− n)

12
β.

(2) The lowest y-adically valued term of w(B) is equal to that of

(Dn
y (x− γ))n(α−(n−1)β

2 )
∑
p∈P∗

detM(p)

where P∗ is the product of Plücker posets corresponding to the columns of the Hasse Wronskian
matrix W (B), and M(p) is a matrix of monomials in the derivatives Dn

y (x− γ), with suitably-
renormalized multinomial coefficients, canonically specified by p ∈ P∗.

Remark 3.3. To prove Theorem 3.2, we use two distinct decompositions of the Hasse Wronskian
matrix W (B). Decomposing each column vector as a linear combination of column vectors of Hasse
derivatives of monomial powers of y yields item 1; while decomposing each column vector of W (B) as
a linear combination of column vectors of Hasse derivatives of elements of the distinguished basis B
and column-reducing using the Faà di Bruno formula yields item 2.

Comparing the lowest-order terms of the power series expansions of w(B) in y that result from
each of these two decompositions, we obtain a seemingly novel decomposition of a Vandermonde
determinant as a linear combination of determinants of matrices M(p) (with evaluating monomials
in Hasse derivatives by suitable numbers, see Remark 3.8) coming from a particular product P∗ of
Plücker posets. This is particularly interesting given that the M(p) are generalizations of Gessel-
Viennot matrices. Indeed, when n = 2, [5, Rmk. 3.10] establishes that when replacing all monomials
in Hasse derivatives by one, M(p) is a Gessel-Viennot matrix; see example 3.4 below.

Proof. With the exception of the explicit identification of the inflectionary multiplicity µ(B), the proof
of the first item is a standard adaptation of the argument given in the proof of [9, Lem. 1.2] using
usual derivatives; see also [23, eq. (2.6)] for an argument using Hasse derivatives. Nevertheless, for
the sake of completeness we give a proof.

Indeed, one way to calculate the lowest y-adically valued term of w(B) involves first writing each
basis element in B as a power series bi =

∑∞
k=0D

k
ybi|(0,0) · yk in y near the superelliptic ramification

point (0, 0); and decomposing each as the sum of its leading term plus higher-order terms. Via
multilinearity of the determinant, these power series decompositions induce a decomposition of w(B);
and accordingly it suffices to show that

w({yµi}0≤i≤`−g) = det

((
µj
i

))
0≤i,j≤`−g

· y
∑

(µi−i) and N(n, g, `) 6= 0

and to compute
∑

(µi − i) = µ(B) explicitly. Note, however, that the determinantal formula in the
preceding line follows immediately from [23, eq. (2.6)]; while the fact that N(n, g, `) 6= 0 in F follows
from our hypotheses on the characteristic of F and the more general fact that the coefficient of w({yµi})
is a nonzero scalar multiple of a Vandermonde determinant [9, Lem. 1.2]. We defer the computation
of µ(B) to the proof of the second item.

Much as in [5, proof of Thm. 3.9], the proof of the second item follows from a careful column-
reduction of a Wronskian matrix of Hasse y-derivatives of the distinguished monomial basis B after
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each of these have been expanded using the Leibniz and Faà di Bruno (chain) rules for Hasse derivatives.
More precisely, the latter rules imply that

(2) Dk
y(xjyi) =

i∑
`=0

Dk−`
y (xj) ·

(
i

`

)
yi−`

and

(3) Dk
yx

j =
∑

∑k
i=1 ici=k

ci≥0 for all i

(
c1 + · · ·+ ck
c1, . . . , ck

)(
j

c1 + · · ·+ ck

)
xj−(c1+···+ck) ·

k∏
i=1

(Di
yx)ci

for all nonnegative integers i, j, and k.

As in loc. cit., assume without loss of generality that γ = 0, and let W (B) denote the Wronskian
matrix of Hasse y-derivatives of elements of the y-adically ordered set B; this is an (`−g+1)×(`−g+1)
matrix whose (i, j)-th entry of W (B) is equal to the i-th derivative of the j-th element of B with respect
to its y-adic total order. For every i0 = 0, . . . , α, let W (B(i0)) denote the submatrix of W (B) consisting
of those columns indexed by B(i0). We now column-reduce every W (B(i0)) using (2); in doing so, we
replace every entry of the form Dk

y(xi0yj) by Dk−j
y (xi0). Next, we column-reduce each resulting matrix

(i.e., each reduction of W (B(i0))) using (3); the k-th entry of the column of (the reduced version of)
W (B(i0)) indexed by xi0yj becomes

(4)
∑

∑k−j
m=1mcm=k−j∑k−j
m=1 cm=i0

(
i0

c1, . . . , ck−j

) k−j∏
m=1

(Dm
y x)cm .

Note that each nonzero product

k−j∏
m=1

(Dm
y x)cm in (4) is indexed by a partition of k − j with i0

parts, namely λ = ((k− j)ck−j , . . . , 1c1), and that the corresponding coefficient
(

i0
c1,...,ck−j

)
is a function

of λ. Here we allow for the possibility that some exponents cm may be zero. Note, moreover, that
vy(Dm

y x) = max(n−m, 0) whenever m ≤ n, as (0, 0) ∈ Rπ. On the other hand, clearly x is an infinite
a formal power series in y has infinite degree, which implies that whenever m > n, vy(Dm

y x) ≥ 0 =
max(n−m, 0). It follows that

(5) vy

( k−j∏
m=1

(Dm
y x)cm

)
=

k−j∑
m=1

cmvy(Dm
y x) ≥

k−j∑
m=1

cm max(n−m, 0)

and that the middle sum in (5) is also a function of the underlying partition λ.

To go further, we will apply the numerological hypotheses on ` and d we imposed at the outset to
give a more explicit presentation for each of the subsets B(i0), 0 ≤ i0 ≤ α. The point here is that our
basic pole-order condition ni0 + dj ≤ ` reduces to i0 ≤ α−βj− j

n . As 0 ≤ j ≤ n− 1, this is equivalent
to requiring that

(6) i0 ≤ α− βj − 1 whenever j 6= 0.

The upshot of (6), in turn, is that

B(i0) = {xi0 , xi0y, . . . , xi0yj} ⇐⇒ α− β(j + 1) ≤ i0 ≤ α− βj − 1

for every j = 1, . . . , n − 2, and that B(i0) = {xi0 , xi0y, . . . , xi0yn−1} whenever i0 ≤ α − (n − 1)β − 1.
As a consequence, we have B(i0) = {xi0} if and only if i0 ≥ α− β.

Abusively, we will continue to use W (B) (resp., W (B(i0))) to denote its reduced version. Note that
the submatrix of W (B) spanned by the first n(α − (n − 1)β) rows and columns, which comprises all
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W (B(i0)) with 1 ≤ i0 ≤ α− (n− 1)β − 1, contributes a (unit multiplier) factor of (Dn
yx)n(α−(n−1)β

2 ) to
the lowest y-adically valued term of the Wronskian determinant w(B). Indeed, it is easy to see that
every diagonal entry of W (B) in this range that belongs to W (B(i0)) is (Dn

yx)i0 , and that every entry
above the diagonal in this range is zero modulo Du

yx’s for u = 0, . . . , n− 1 (and vy(Du
yx) > 0 for such

u’s). Note that W (B(0)) itself contributes a trivial multiplicative factor of 1.

Using (5), it is easy to identify the tropical y-adic image W trop
∗ (B) of the submatrix W∗(B) of W (B)

determined by the remaining rows and columns; removing columns in sets Bi0 , each of cardinality n,
for i0 = 0, . . . , α− (n− 1)β − 1, the number of remaining columns (same for rows) are:

(`− g + 1)− n(α− (n− 1)β) = `− g + 1− `+ 2g = g + 1

since Riemann-Hurwitz formula for the superelliptic projection π : X → P1 gives

2g − 2 = n(−2) + (n− 1)(d+ 1) = −2n+ (n− 1)(nβ + 2) = n2β − nβ − 2.

So W trop
∗ (B) is a (g+1)×(g+1) matrix whose columns are stratified by the y-adic images W trop

∗ (B(i0))
of the corresponding reduced submatrices W∗(B(i0)) of W (B(i0)), where α− (n−1)β ≤ i0 ≤ α. Indeed,

the top row V of W trop
∗ (B) is the concatenation V = (V (i0))α−(n−1)β≤i0≤α of sequences

V (i0) = ((i0 − α+ (n− 1)β)n, . . . , (i0 − α+ (n− 1)β)n+ j)

where j = j(i0) is either the unique positive integer such that α − β(j + 1) ≤ i0 ≤ α − βj − 1 (when

i0 < α) or zero (when α − β ≤ i0 ≤ α). In any given column, entries of W trop
∗ (B) decrease by a unit

for each successive row visited until they stabilize at zero.

Note, moreover, that whenever detN(n, g, `) is nonzero, the (tropical) permanent of W trop
∗ (B) is pre-

cisely the local inflectionary multiplicity µ(B). It is also straightforward to write down the permanent

explicitly. Indeed, it is precisely the sum of the diagonal entries of W trop
∗ (B), namely

µ(B) =

n−2∑
j=1

(n− j)
[((

j

2

)
β

)
+

((
j

2

)
β + j

)
+

((
j

2

)
β + 2j

)
+ · · · +

((
j

2

)
β + j(β − 1)

)]

+

((
n− 1

2

)
β

)
+

((
n− 1

2

)
β + (n− 1)

)
+

((
n− 1

2

)
β + 2(n− 1)

)
+ · · · +

((
n− 1

2

)
β + (n− 1)β

)

=

n−1∑
j=1

(n− j)
[(
j

2

)
β
2
+ j

(
β

2

)]
+

((
n− 1

2

)
β + (n− 1)β

)

=
−3(n− 1)2n2 + 2(n + 1)(n− 1)n(2n− 1)− 6(n− 1)n2 − 2(n− 1)n(2n− 1) + 6(n− 1)n2

24
β
2

+
−3n2(n− 1) + (n− 1)n(2n− 1) + 6(n− 1)(n− 2) + 12(n− 1)

12
β

=
(n− 1)n2(n + 1)

24
β
2
+

(n− 1)n(5− n)
12

β.

Unlike in the hyperelliptic case, however, the partition λ whose valuation (5) realizes the minimum

value recorded by the corresponding entry of W trop
∗ (B) is not unique in general when n > 2, and as a

result the local Wronskian determinant w(B) does not single out a unique y-adically minimal monomial
in the y-derivatives of x.

To distinguish y-adically minimal monomials in the y-derivatives of x, we use W trop
∗ (B) as a blue-

print. More precisely, as in [5, Proof of Thm. 3.9], we replace W trop
∗ (B) by W trop

∗ (B)′ in which the top

row remains the same, but whose entries in each column decrease one by one; W trop
∗ (B) and W trop

∗ (B)′

are analogous to M and M ′ in loc.cit. respectively. To compensate for the nonuniqueness of minimally
y-adically valued partitions, we are forced to make certain choices. More precisely, for every index
α− (n− 1)β ≤ i0 ≤ α and for every index k = 0, . . . , j(i0), we introduce a directed graph PPG(i0, n)
whose set of vertices is the Plücker poset of a Grassmannian G(i0, n+ i0), and for which the vertices
indexed by partitions λ1, λ2 are linked by a unique directed edge λ1 → λ2 if and only if λ1 ≤ λ2

and wt(λ2) = wt(λ1) + 1. We further define the Plücker graph PG(i0, k) to be the full subgraph of
PPG(i0, n) whose vertices are (indexed by) partitions of weight at least n(α − (n − 1)β) − k with i0
parts; we let P(i0, k) denote the set of maximal paths in PG(i0, k); and we set P∗ := Πi0,kP(i0, k).
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For every vertex λ ∈ PG(i0, k), there is an associated occurrence weight ow(λ) equal to the number of
paths in P(i0, k) containing λ.

Using the combinatorial data from the Plücker graphs and posets introduced in the preceding
paragraph, we now associate a matrix W p

∗ (B) to each p ∈ P∗ as follows. Viewing p as a tuple of paths
in sets P(i0, k) as above, we let p(i0, k) be the corresponding maximal path in P(i0, k); and for each
u = 0, . . . , g we let p(i0, k)(u) denote the partition in p(i0, k) of weight n(α− (n− 1)β)− k+ u.3 More
generally, given a Plücker path p′ ∈ P(i0, k), we define p′(u) in analogy to p(i0, k)(u). We define the

column vector W p′

∗ (B) so that each entry of W p′

∗ (B) indexed by u = 0, . . . , g is either

(7)
1

ow(p(i0, k)(u))

(
i0

c1, . . . , cn

) n∏
m=1

(Dm
y x)cm

whenever p′(u) = (1c1 , 2c2 , . . . , ncn), or else 0 when p′(u) = ∅. Note that when p′(u) 6= ∅, (7) ex-
actly reproduces the corresponding monomial of the corresponding entry of W∗(B) except for the
renormalization factor 1

ow(p(i0,k)(u)) .4 The renormalization is specifically chosen to ensure that∑
p′∈P(i0,k)

W p′

∗ (B) ∼ (i0, k)th column of W∗(B)

in which ∼ means that the y-adic valuation vector of the difference of the two sides is larger (in every

coordinate) than the corresponding value of W trop
∗ (B)′.

We now define W p
∗ (B) to be the (g + 1) × (g + 1) matrix given by concatenating column vectors

W
p(i0,k)
∗ (B) according to the lexicographic order on the set of pairs (i0, k). Similar to [5, Proof of Thm.

3.9], the lowest y-adically valued terms of the two sides of the following equation are equivalent:

(8) detW∗(B) ∼
∑
p∈P∗

detW p
∗ (B).

Setting M(p) := W p
∗ (B), the proof of the second item follows. �

Example 3.4. Let n = 2, so X is a hyperelliptic curve. In the notation of Theorem 3.2, we have
` = 2α and d = 2β + 1, g = β, and α > β. In this case every basis element b ∈ B is of the form xiyj

with j ∈ {0, 1}, and D
vy(b)
y b|(0,0) = (D2

yx|(0,0))
i. Since B has elements xi for 0 ≤ i ≤ α and xiy for

0 ≤ i < α− β, it follows that Πi(D
µi
y bi)|(0,0) is a power of D2

yx|(0,0) with exponent

α−β−1∑
i=0

i+
α∑
i=0

i =
(α− β)(α− β − 1) + (α+ 1)α

2
=

2α(α− β) + β(β + 1)

2
= α(α− β) +

(
β + 1

2

)
.

Further, we have

µ(B) =
(n− 1)n2(n+ 1)

24
β2 +

(n− 1)n(5− n)

12
β =

(
g + 1

2

)
.

On the other hand, the Vandermonde matrix N(2, β, 2α) is of the form(
A B
0 C

)
in which A is an upper triangular matrix with all diagonal equal to one, and C is a (β + 1)× (β + 1)

matrix with Ci,j =
(

2(α−β)+2j
2(α−β)+i

)
for all 0 ≤ i, j ≤ β. Therefore, whenever char(F ) is either zero or

3As a matter of convention, we decree p(i0, k)(u) to be the empty set ∅ whenever u is at least the length of p(i0, k).
4Our hypothesis that char(F ) is either zero or sufficiently large ensures that our renormalization is well-defined.
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sufficiently large, the lowest y-adic term of w(B) is equal to

(D2
yx|(0,0))

α(α−β)+(β+1
2 ) · detN(2, β, 2α) · y(g+1

2 )

= (D2
yx|(0,0))

α(α−β)+(β+1
2 ) · det

((
2(α− β) + 2j

2(α− β) + i

))
0≤i,j≤β

· y(g+1
2 )

(9)

which is in agreement with the first item of Theorem 3.2.

It is also instructive to see how the second item of Theorem 3.2 translates in this particular case.
For every i0 ∈ [α − β = α − (n − 1)β, α], we have j(i0) = 0, so the corresponding columns of W∗(B)
are indexed by (i0, 0). Moreover, for every such index i0 and every u = 0, . . . , g = β, the pigeonhole
principle implies that there is at most one partition of weight n(α− (n− 1)β)− k + u = 2(α− β) + u
with i0 parts that fits into a i0 × 2 rectangle. (Indeed, whenever i0 ≤ 2(α − β) + u ≤ 2i0, it is
(12(i0−α+β)−u, 22(α−β)+u−i0).) Therefore, the Plücker graph PG(i0, 0) is a single path given by such
partitions, so P(i0, 0) is a singleton; and every occurrence weight is equal to one. As a result, P∗ is
also a singleton {p}, so we merely replace W∗(B) by the matrix W p

∗ (B) defined by

(W p
∗ (B))i0,u =

(
i0

2(i0 − α+ β)− u

)
(D1

yx)2(i0−α+β)−u(D2
yx)2(α−β)+u−i0

for every pair of indices α − β ≤ i0 ≤ α and 0 ≤ u ≤ β. It is not hard to see that for any per-
mutation of (g + 1) numbers, the corresponding term of detW p

∗ (B) is equal to a scalar multiple of

(D1
yx)(

g+1
2 )(D2

yx)(α−β)(β+1). The scalar coefficients of W p
∗ (B), in turn, comprise the Gessel-Viennot

matrix M(α, β) of [5, Thm. 3.9, Rmk. 3.10] with entries M(α, β)w,v =
(
α−β+v
2v−w

)
for 0 ≤ w, v ≤ β,

where v = i0−α+β and w = u. The upshot is that the lowest y-adically valued term of w(B) is equal
to that of

(10) (D2
yx)2(α−β2 )(detM(α, β))(D1

yx)(
g+1
2 )(D2

yx)(α−β)(β+1) = (detM(α, β))(D1
yx)(

g+1
2 )(D2

yx)α(α−β)

which agrees with [5, Thm. 3.9].5

To compare equations (9) and (10), we start by decomposing x as a power series x = cy2 +
(higher-order terms in y). The lowest y-adically valued terms of D1

yx and D2
yx are then 2cy and c

respectively. Applying linearity properties of the determinant, we obtain the following comparison
identity for Vandermonde and Gessel–Viennot determinants:

(11) detN(2, β, 2α) = det

((
2(α− β) + 2j

2(α− β) + i

))
0≤i,j≤β

= 2(g+1
2 ) detM(α, β).

Example 3.5. When n = 3, d = 4, and ` = 9, we have α = 3, β = 1, and g = 3 in the notation
of Theorem 3.2. The first item of Theorem 3.2 establishes that for every b ∈ B, b is of the form xiyj

with j = 0, 1, 2; thus D
vy(b)
y b|0,0 = (D3

yx|(0,0)). Much as in Example 3.4, we see that Πi(D
µi
y bi)|(0,0) is

a power of D3
yx|(0,0) with exponent

∑α−2β−1
i=0 i+

∑α−β−1
i=0 i+

∑α
i=0 i = 7, while

µ(B) =
(n− 1)n2(n+ 1)

24
β2 +

(n− 1)n(5− n)

12
β = 4.

Meanwhile, the Vandermonde matrix N(3, 3, 9) is of the form

(
A B
0 C

)
, in which A is an upper

triangular matrix with every diagonal entry equal to one, and

(12) C =


(

3
3

) (
4
3

) (
6
3

) (
9
3

)
0

(
4
4

) (
6
4

) (
9
4

)
0 0

(
6
5

) (
9
5

)
0 0

(
6
6

) (
9
6

)
 .

5Note that ` (resp., g) in loc.cit. plays the role of α (resp., β) here.
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Figure 1. Plücker graphs PG(i0, k) for (i0, k) = (1, 0), (1, 1), (2, 0), (3, 0)

Therefore, whenever char(F ) is greater than 7 or zero, the lowest y-adically-valued term of w(B) is

(13) (D3
yx|(0,0))

7 · detN(3, 3, 9) · y4 = (D3
yx|(0,0))

7 · detC · y4 = 378(D3
yx|(0,0))

7y4.

On the other hand, the second item of Theorem 3.2 establishes that whenever char(F ) 6= 2, 3, the
y-adically lowest-order term of w(B) is equal to that of

∑
p∈P∗ detM(p). In this case, the columns

of W∗(B) are indexed by (i0, k) = (1, 0), (1, 1), (2, 0), (3, 0), and Figure 1 illustrates the corresponding
Plücker graphs PG(i0, k). This, in turn, allows us to compute the set P∗ of products of Plücker paths,
along with the corresponding matrices M(p) for every p ∈ P∗. Summing their determinants, we deduce
that the y-adically lowest-order term of w(B) is equal to that of

(14) 9D1
yx(D2

yx)2(D3
yx)4 + 2(D2

yx)4(D3
yx)3 − 3(D1

yx)2(D3
yx).

The lowest order terms of D1
yx and D2

yx are 3D3
yx|(0,0) · y2 and 3D3

yx|(0,0) · y, respectively; it follows
that equations (13) and (14) are equivalent.

Remark 3.6. Examples 3.4 and 3.5 lead to interesting identities involving Vandermonde determi-
nants; see, e.g., equation (11). Indeed, every entry of M(p) := W p

∗ (B) is defined purely combinatorially

by equation (7). Now let M̃(p) denote the matrix obtained from M(p) by systematically replacing
every monomial Πi(D

i
yx)ci in Hasse derivatives of x by the corresponding monomial Πit

ci
i in formal

variables ti. The “universal” matrix M̃(p) depends exclusively on n, α, β with α
β > n− 1 (and not on

the choice of the underlying superelliptic curve, once those parameters are fixed) and specializes to a

matrix M̃(p)(~t) of numbers under specializations of the formal vector ~t := (t0, t1, . . . ). The universal

matrices M̃(p) are generalized Gessel-Viennot matrices, inasmuch as when n = 2, the specialization

M̃(p)(1, 1, 1, . . . ) recovers the Gessel-Viennot matrix of [5, Thm 3.9 and Rmk 3.10].

Note that according to the second item of Theorem 3.2, the scalar coefficient of the lowest y-adic
term of w(B) may be rewritten as

(15) (Dn
yx)n(α−(n−1)β

2 )
∑
p∈P∗

det M̃(p)

((
n

0

)
(Dn

yx)|(0,0)y
n,

(
n

1

)
(Dn

yx)|(0,0)y
n−1, . . . ,

(
n

n

)
(Dn

yx)|(0,0)

)
since the lowest y-adic term of Di

yx is
(
n
i

)
(Dn

yx)|(0,0)y
n−i (and the formal variables ti in M̃(p) select

for instances of the differential monomials Di
yx). The argument used in the proof of Theorem 3.2

implies that (15) is equal to

(16) (Dn
yx)n(α−(n−1)β

2 )
∑
p∈P∗

det M̃(p)

((
n

0

)
(Dn

yx)|(0,0),

(
n

1

)
(Dn

yx)|(0,0), . . . ,

(
n

n

)
(Dn

yx)|(0,0)

)
· yµ(B)
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Comparing (16) against the first item of Theorem 3.2 and substituting ones for instances of Dn
yx|(0,0),

we now obtain

(17) detN(n, g, `) =
∑
p∈P∗

det M̃(p)

((
n

0

)
,

(
n

1

)
, . . . ,

(
n

n

))
which in turn generalizes the Vandermonde determinant identities of Examples 3.4 and 3.5.

3.3. Hasse inflection polynomials. As before, assume X is a superelliptic curve affinely presented
by yn = f(x). Given positive integers ` and m, we define the (`,m)-th atomic Hasse inflection
polynomial P `m(x) according to

(18) Dmy` = f−my` · P `m(x)

where D = Dx denotes Hasse differentiation with respect to x. Here we view equation (18) as an
equality of rational functions on X. The characteristic property of P `m is that its zeroes parameterize
the x-coordinates of zeroes of Dmy`, or equivalently the F -rational inflection points of any linear series
on X with basis {1, x, . . . , xm−1; y`}, supported away from the superelliptic ramification locus Rπ.

Proposition 3.7. (Generalization of [5, Prop. 3.17]) Assume that char(F ) does not divide n. For
each fixed value of positive integer ` = 1, . . . , n− 1, the atomic Hasse inflection polynomials P `m(x) are
specified recursively by

P `m+1 =
1

m+ 1
(D1P `m · f + P `m ·D1f · (−m+ u))

where u = `
n and m ≥ 1, subject to the seed datum P `1 = u ·D1f .

Proof. Differentiating the affine presentation yn = f(x) for X yields D1y = 1
nf
−1yD1f and conse-

quently

D1y` = `y`−1 ·D1y = u ·D1f · f−1y`

which justifies our definition of P `1 . Note that whenever char(F ) 6= 0, the fact that we may meaningfully
“divide” by n follows from the same “spreading out” argument used in the proof of [5, Prop. 3.17].
On the other hand, differentiating the defining equation (18) for Hasse inflection polynomials yields

D1Dmy` = (D1P `m)f−my` + P `m · (−mf−(m+1)D1f · y` + f−m · `y`−1 ·D1y)

= (D1P `m)f−my` + P `m ·
(
−mf−(m+1)D1f · y` + f−m · `y`−1 · 1

n
f−1yD1f

)
= f−(m+1)y`(D1P `m · f + P `m ·D1f · (−m+ u)).

The desired recursion now follows from the fact that D1Dm = (m+ 1)Dm+1. �

Remark 3.8. The same argument deployed in the proof of [5, Prop. 3.17] shows that Proposition 3.7
may be extended to families of superelliptic curves; but the most general statement along these lines
requires replacing the coefficients of f(x) by sections of certain line bundles (for example, see [10] when
char(F ) = 0 and n = 2). For families parameterized by rings, however, it is easy to be more explicit.
Namely, whenever X : yn = f(x) is a superelliptic curve defined over a ring R, the corresponding
Hasse inflection polynomials are elements of R[ 1

n ][x]. For example, whenever X : yn = f(x) is defined

over Z, its Hasse inflection polynomials are all defined over Z[ 1
n ]. This is optimal, as Z[ 1

n ] is a natural

“ring of definition” for X itself as a separable degree n cover of P1. Hereafter, we assume that char(F )
never divides n.

3.4. Inflectionary varieties from superelliptic families. Given a flat family of superelliptic curves
X(λi) : yn = f(λi)(x) in a finite number of parameters {λi}, we refer to the hypersurface in the affine

space with coordinates x and (λi) cut out by the atomic inflection polynomial P `m of the preceding
subsection as the (`,m)-th atomic inflectionary variety associated to the family X(λi).
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3.5. A determinantal formula. Inflection points of the complete series |O(`∞X)| on X supported

on the complement R{
π of the superelliptic ramification locus are computed by local Wronskians of

partial derivatives with respect to x of the monomial basis B of Lemma 2.1. Just as in [7, Lem. 2.1],
these local Wronskians are naturally related to explicit determinants in the atomic Hasse inflection
polynomials introduced above. In order to make this precise, we will keep the same numerological
hypotheses as in Theorem 3.2. Applying equation (6) in the proof of that result, we see that for every
fixed choice of nonzero y-exponent j0, there are precisely α−βj0 monomials xiyj0 in B, which comprise
a distinguished subset B(j0). We now order the elements of B according to increasing y-exponent,
starting with the powers of x that belong to B(0); and within each block B(j0), we order elements
according to increasing x-exponent. With respect to this ordering, the (partial x-derivatives of the)
elements of B(0) contribute an identity submatrix I to the local Wronskian W (B), and correspondingly
the local Wronskian determinant is equal to that of the complement W∗(B) of I. Moreover, column-
reducing as in the proof of Theorem 3.2, we may systematically replace every entry of W∗(B) of the

form Dk(xiyj0) by Dk−i(yj0), or equivalently, by f−(k−i)yj0 ·P j0k−i(x). The determinant of the resulting
matrix is equal to, up to an irrelevant nonzero rational function of f and y, the determinant of the

matrix W̃∗(B) obtained from W∗(B) by systematically replacing every Dk(xiyj0) by P j0k−i(x).

Theorem 3.9. (Generalization of [7, Lem. 2.1]) Assume that ` ≥ 2g+n− 1, ` = nα and d = nβ + 1,
where α and β are positive integers for which α

β > n − 1. There exists a homogeneous polynomial

Qα,β ∈ Z[ti,j : 1 ≤ j ≤ n − 1, βj + 1 ≤ i ≤ ` − g] of degree ` − g − α = (n−1)(2α−nβ)
2 for which the

zeroes of Qα,β |ti,j=P ji (x) are the x-coordinates of the F -inflection points of |O(`∞X)| supported along

R{
π. Explicitly, Qα,β |ti,j=P ji (x) is the determinant of the matrix W̃∗(B) described above.

Proof. The proof follows easily from the discussion above; the salient points here are that 1) the degree
of Qα,β is equal to the width of W∗(B), and 2) equation (6) yields i ≥ α+ 1− (α− βj − 1) = βj + 2
for every index j = 1, . . . , n− 1. �

Example 3.10. When n = 3, d = 4, and ` = 9, Theorem 3.9 establishes that the x-coordinates of
those F -inflection points of |O(9∞X)| supported along R{

π comprise the zeroes of the determinant of

P 1
4 P 1

3 P 2
4

P 1
5 P 1

4 P 2
5

P 1
6 P 1

5 P 2
6

 .

4. Inflectionary curves from superelliptic Legendre and Weierstrass pencils

In [5, 6, 7], we studied F -rationality phenomena for inflectionary curves Cm defined by atomic
inflection polynomials Pm built out of one-parameter Legendre and Weierstrass pencils of elliptic
curves, with a focus on those cases in which F = R or F = Fp for an odd prime p. In this setting,
Cm is naturally a singular plane curve defined over Z, or else its reduction modulo p. Moreover, the
birational geometry of inflectionary curves Cm varies depending upon whether the underlying pencil of
elliptic curves is of Legendre or Weierstrass type. In particular, the inflectionary curves Cm, 2 ≤ m ≤ 5
derived from the Legendre pencil have rational desingularizations, whereas the Weierstrass inflectionary
curve C2 is elliptic, with complex multiplication over Q(

√
−3); see [5, Prop. 4.2]. The following table

summarizes our conjectures to date regarding the salient features of atomic inflectionary curves Cm,
m ≥ 2 associated to Legendre and Weierstrass pencils over a field F whose characteristic is either zero
or sufficiently positive. Singularities refer to those of the base extension of Cm to F .
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Elliptic pencil type Geometrically irre-
ducible?

Number of singu-
larities

Singularity types Geometric genus pg

Legendre yes, unless m = 3;
C3 is the union of 3
conics

3 for every m ≥ 2 Each is the trans-
verse union of (m−
2) smooth branches
and a cusp of type
y2 = xn+1

pg = max(0,
(

2m−1
2

)
−

3b (m−1)2

2 c−3m+3)

Weierstrass yes 1 if m = 2; 3 for
every m ≥ 3, when
Cm is compactified
inside of P(1, 2, 1)

See Conjecture 4.10
and accompanying
discussion

pg(C2) = 1;

d (m−1)2

4 e if m ≥ 3

In this section, we further develop this conjectural picture to include atomic inflectionary curves
associated to superelliptic Legendre and Weierstrass pencils with affine presentations yn = xa(x −
1)b(x − λ)c and yn = x3 + λx + 2, respectively. The geometry of superelliptic Legendre pencils is
closely linked to algebraic differential equations and hypergeometric series; see, e.g., [12, 17]. The
conjectural number of singularities (3) of Weierstrass inflectionary curves appears in blue as it is not
stated explicitly in our earlier papers [3, 6, 7, 5]. However iterating the characteristic recursion for
atomic inflection polynomials leads to the expectation (formalized in Conjecture 4.17 below) that the
corresponding inflectionary curves Cm with m ≥ 3 are always singular exactly in the points qj = [ζ−j :
−3ζj : 1], j = 0, 1, 2 in the weighted projective plane P(1, 2, 1)6, where ζ is a cube root of unity. We
will have more to say about this later, including an explicit characterization of singularity types (see
Conjecture 4.10) and geometric genera (see Conjecture 4.19).

4.1. Symmetries and singularities of superelliptic Legendre inflectionary curves. We begin
by proving a generalization of [6, Lem. 4.1], which describes the symmetries of certain Legendre
inflectionary curves.

Theorem 4.1. Given positive integers `,m, n with n ≥ 2 and a ∈ N>0, the atomic inflection poly-
nomial P `m = P `m(x, λ) derived from the superelliptic Legendre pencil yn = xa(x − 1)a(x − λ)a has
symmetries

(19) P `m(x, λ) = P `m(x, z) and P `m(x+ 1, λ+ 1) = (−1)amP `m(−x,−λ).

Here by P `m(x, z) we mean the polynomial obtained from P `m(x, λ) by first homogenizing with respect
to z, and then dehomogenizing with respect to λ.

Proof. The proof of [6, Lem. 4.1] in fact carries over verbatim, but for completeness we give the
argument. Accordingly, let f(x, λ) := xa(x− 1)a(x− λ)a; note that f(x, λ) becomes f(x, z) when λ is
replaced by z. The first symmetry now holds by induction using Proposition 3.7, as it is preserved by
differentiation with respect to x. Similarly, the second symmetry follows from induction on m using
Proposition 3.7, together with the facts that 1) Dxf and consequently (−m+u) ·Dxf , has the second
symmetry (with respect to m = 1); and 2) DxP

`
m · f also has the second symmetry (with respect to

m+ 1 instead). �

One immediate consequence of Theorem 4.1 is that when a = b = c and our base field is F = Q, the
projective closure C`m ⊂ P2

x,λ,z of the curve defined by P `m is singular in p1 = [0 : 0 : 1], p2 = [0 : 1 : 0],

and p3 = [1 : 1 : 1], and that all three singularities are isomorphic over Q. Proposition 3.7 together
with induction also shows that the inflectionary curve C`m derived from the superelliptic pencil yn =
xa(x− 1)b(x− λ)c is always singular in p1, p2, and p3; but the corresponding singularity types are in
general distinct.

6Here the weights are those of the coordinates x, λ, and z, respectively.
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Conjecture 4.2. (Generalization of [6, Conj. 4.3]) Suppose that char(F ) is either zero or sufficiently
positive. For all ` and m, the inflectionary curve C`m derived from the pencil yn = xa(x− 1)b(x− λ)c

is nonsingular away from p1, p2, and p3.

The Newton polygons of the atomic inflection polynomials P `m are also significant, insofar as they
yield critical information about the arithmetic genus and singularities (and correspondingly, the geo-
metric genus) of C`m. Proposition 3.7 leads naturally to the following result, which gives a prediction
for the Newton polygon of inflection polynomials under suitable genericity hypotheses.

Theorem 4.3. Given positive integers a, b, c, ` and n, suppose that for every positive integer m, the
atomic inflection polynomial P `m derived from the superelliptic Legendre pencil yn = xa(x−1)b(x−λ)c

has generic support. Then for every m, the associated Newton polygon is

New(P `m) = Conv((ma+mc−m, 0), (ma+mb+mc−m, 0), (ma−m,mc), (ma+mb−m,mc)).

Proof. Letting f := xa(x−1)b(x−λ)c as before, and letting ⊕M denote the Minkowski sum of polygons,
the Newton polygon of f is given explicitly by

New(f) = (a, 0)⊕M Conv((0, 0), (b, 0))⊕M Conv((0, c), (c, 0))

= Conv((a+ c, 0), (a+ b+ c, 0), (a, c), (a+ b, c)).
(20)

It follows from (20) that

New(P `1 ) = New(D1
xf) = Conv((a+ c− 1, 0), (a+ b+ c− 1, 0), (a− 1, c), (a+ b− 1, c)).

In particular, Theorem 4.3 holds whenever m = 1. Now suppose that m > 1, and that Theorem 4.3
holds for New(P `m−1). We then have

New(P `m−1) = Conv(((m− 1)a+ (m− 1)c−m+ 1, 0), ((m− 1)a+ (m− 1)b+ (m− 1)c−m+ 1, 0),

((m− 1)a−m+ 1, (m− 1)c), ((m− 1)a+ (m− 1)b−m+ 1, (m− 1)c)).

Genericity of support now implies that

New(P `m) = Conv(Conv((m− 1)a+ (m− 1)c−m, 0), ((m− 1)a+ (m− 1)b+ (m− 1)c−m, 0), ((m− 1)a−m, (m− 1)c),

((m− 1)a+ (m− 1)b−m, (m− 1)c))⊕M Conv((a+ c, 0), (a+ b+ c, 0), (a, c), (a+ b, c))⋃
Conv(((m− 1)a+ (m− 1)c−m+ 1, 0), ((m− 1)a+ (m− 1)b+ (m− 1)c−m+ 1, 0), ((m− 1)a−m+ 1, (m− 1)c),

((m− 1)a+ (m− 1)b−m+ 1, (m− 1)c))⊕M Conv((a+ c− 1, 0), (a+ b+ c− 1, 0), (a− 1, c), (a+ b− 1, c)))

and the desired result follows. �

Remark 4.4. Whenever min(a, b, c) > 1, the superelliptic curve X : yn = xa(x − 1)b(x − λ)c is

singular; however, X is birational to a smooth curve X̃ obtained via blow-ups along the superelliptic
ramification locus. As a result, the local coordinates x and y unambiguously specify local coordinates

on X̃ along the preimage U of R{
π, and the inflection polynomials P `m(x) compute the inflection of

linear series with bases {1, x, . . . , xm−1; y`} on X̃ along the open locus U .

The inflection polynomial P `m derived from a given superelliptic family may fail to have generic
support. Indeed, Proposition 3.7 implies that generically the coefficient of each monomial in x and λ
in the expansion of P `m is a polynomial of degree m in u(`, n) = `

n , which may vanish for special values
of u. Indeed, in practice it will often be the case that the coefficients of those monomials (corresponding
to lattice points) that lie along the outer edges of New(P `m) will split F -linearly in u; and the (roots
of the) linear factors single out special values of u where the behavior of New(P `m) deviates from the
generic behavior predicted by Minkowski sums. In writing down these coefficients explicitly, we will
make frequent use of the following combinatorial devices.

Definition 4.5. Given k ∈ N, (w)k := w(w−1) · · · (w−k+1) (resp., (w)k := w(w−1) · · · (w−k+1))
denotes the k-th falling (resp., rising) factorial of w. Similarly, ((w))k := w(w − 2) · · · (w − 2k + 2)
(resp., ((w))k := w(w− 2) · · · (w− 2k+ 2)) denotes the k-th double falling (resp., rising) factorial of w.
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Our next result establishes that the Newton polygon New(P `m) is generic whenever the underlying
superelliptic family is of Legendre type and u is sufficiently small, i.e., when n is large relative to `.

Theorem 4.6. Suppose that char(F ) is either zero or sufficiently positive. Given positive integers a, b,
c, ` and n as above, the Newton polygon of the inflection polynomial P `m derived from the superelliptic
Legendre family yn = xa(x− 1)b(x− λ)c is

New(P `m) = Conv((ma+mc−m, 0), (ma+mb+mc−m, 0), (ma−m,mc), (ma+mb−m,mc))

whenever n > (a+ b+ c)`.

Proof. We will prove a stronger statement by induction: that the coefficients in P `m of the critical

monomials xma+mc−m, xma+mb+mc−m, xma−mλmc and xma+mb−mλmc are (−1)bm

m! ((a+c)u)m, 1
m! ((a+

b + c)u)m, (−1)(b+c)m

m! (au)m, and (−1)cm

m! ((a + b)u)m, respectively. This will imply, in particular, that
each of these critical monomials is nonvanishing whenever n > (a+ b+ c)`.

For notational convenience, we let

v1
m = (ma+mc−m, 0), v2

m = (ma+mb+mc−m, 0), v3
m = (ma−m,mc) and v4

m = (ma+mb−m,mc)

and further let vim,− := vim − (1, 0) and vim,+ := vim + (1, 0) for every positive integer m. We will use

[vim]P as a shorthand for the coefficient of the term in the expansion of P = P (x, λ) associated with
the monomial indexed by vim. Proposition (3.7) now implies that

(21) [vim+1]P `m+1 =
1

m+ 1
([vim,−]D1P `m · [vi1,+]f + [vim]P `m · [vi1]D1f · (u−m))

for every i = 1, 2, 3, 4. It now suffices to argue inductively case by case for each value of i using (21).

In the interest of space (and because the other cases are analogous), we give the argument when
i = 1 and leave the remaining cases to the reader. We have [v1

1,+]f = (−1)b and [v1
1 ]D1f = (−1)b(a+c);

as P `1 = uD1f , it follows that [v1
1 ]P `1 = (−1)b(a + c)u, and the claim in this case holds when m = 1.

Now assume the claim holds for m; we then have [v1
m]P `m = (−1)mb

m! ((a + c)u)m and [v1
m,−]D1P `m =

m(a+ c− 1) · (−1)mb

m! ((a+ c)u)m, and applying (21) we deduce that

[v1
m+1]P `m+1 =

1

m+ 1

(
m(a+ c− 1) · (−1)(m+1)b

m!
((a+ c)u)m +

(−1)(m+1)b

m!
((a+ c)u)m · (a+ c) · (u−m)

)
=

(−1)(m+1)b

(m+ 1)!
((a+ c)u)m · (m(a+ c− 1) + (a+ c)(u−m))

=
(−1)(m+1)b

(m+ 1)!
((a+ c)u)m · ((a+ c)u−m)

as desired. �

Remark 4.7. We suspect that a stronger version of Theorem 4.6 holds: namely, that whenever
n > (a+ b+c)`, the support of P `m is itself generic. This would be substantially more difficult to prove,
as the coefficients of monomials xiλj corresponding to interior points of New(P `m) do not split into
u-linear factors over Q in general; moreover, there is no obvious analogue of the inductive coefficient
relation (21), which depends upon the vim lying along the boundary of New(P `m).

We next compute New(P `m) whenever n = 2` and (a, b, c) = (1, 1, 1). When ` = 1, this case is the
focus of [7, Conj. 2.4].

Theorem 4.8. Suppose that char(F ) is either zero or sufficiently positive. For every positive integer
m ≥ 2, the Newton polygon of the inflection polynomial P `m derived from yn = x(x− 1)(x− λ) is

NP `m := Conv((0,m), (m− 2,m), (m− 2, 2), (2m− 1, 1), (2m− 1, 0), (2m, 0))

whenever n = 2`.
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Proof. Much as in the proof of Theorem 4.6, we will explicitly identify the coefficients of those mono-
mials xiλj in the expansion of P `m corresponding to the vertices of the putative Newton polygon;
however, we will also need to prove additional vanishing statements for coefficients that arise because
u = 1

2 . According to Theorem 4.6, we have [λm]P `m = 1
m! (u)m and [x2m]P `m = 1

m! (3u)m for every m.

For every integer m ≥ 2, let v1
m = (m−2,m), v2

m = (m−2, 2), v3
m = (2m−1, 0), and v4

m = (2m−1, 1).
Using u = 1

2 , we claim that moreover

[v1
m]P `m = [v2

m]P `m = −1

8
if m ≥ 2

[v3
m]P `m = [v4

m]P `m = − 2

(m− 1)!
u(3u− 1)m−1 if m ≥ 2

(22)

and that [xiλj ]P `m = 0 for all (i, j) /∈ Conv((0,m), v1
m, v

2
m, v

3
m, v

4
m, (2m, 0)). Now let v5

m = (2m− 2, 1),
and define L`m to be the union of two rays L`,1m and L`,2m emanating from v5

m with slopes −1 and 0
respectively. We then claim that furthermore

(23) [v5
m]P `m =

1

(m− 1)!
((4m− 1)u−m)u · (3u− 2)m−2 if m ≥ 2

and that [xiλj ]P `m = 0 for every (i, j) ∈ L`m \ {v5
m} (here we use the fact that u = 1

2 ).

Indeed, the required conditions clearly hold when m ∈ {2, 3, 4}. Arguing inductively, assume that
m ≥ 3; that [xiλj ]P `m = 0 for all (i, j) /∈ Conv((0,m), v1

m, v
2
m, v

3
m, v

4
m, (2m, 0)) and (i, j) ∈ L`m \ {v5

m};
and that the explicit coefficient formulas (22) and (23) are operative. It follows, in particular, that
NP `m = New(P `m). Proposition 3.7 now implies that New(P `m+1) lies inside

NP `,out
m+1 :=Conv(New(D1P `m)⊕M New(f)

⋃
New(P `m)⊕M New(D1f))

=Conv((0,m+ 1), (m− 1,m+ 1), (m− 1, 2), (2m, 2), (2m− 1, 0), (2m+ 2, 0)).

See Figure 2 for a comparison of NP `m+1 and NP `,out
m+1 when m = 3. To prove New(P `m+1) = NP `m+1,

it suffices to show that New(P `m+1) ⊃ NP `m+1 and [xiλj ]P `m+1 = 0 for all (i, j) ∈ NP `,out
m+1 \NP `m+1.

Figure 2. The polygon NP `,out
m+1 contains NP `m+1 (in solid grey); their difference is

the union of two triangles (hatched). The white lattice point inside NP `m+1 is v5
m+1.

To establish that New(P `m+1) contains DP `m+1, we verify the explicit coefficient formulae (22); to
do this, we exploit Proposition 3.7 as in the proof of Theorem 4.6, with slight modifications. The
fact that [v1

m]P `m is merely piecewise polynomial, for example, reflects the fact that in this case the
inductive coefficient relation (21) applies for m ≥ 3, while for m ∈ {1, 2} only the second summand on
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the right-hand side of (21) is operative. Similarly, Proposition 3.7 implies that

[x2m+1]P `m+1 =
1

m+ 1
([x2m−2]D1P `m · [x3]f + [x2m−1]D1P `m · [x2]f

+ ([x2m−1]P `m · [x2]D1f + [x2m]P `m · [x]D1f) · (u−m)

=
1

m+ 1
([x2m−1]P `m · (3u−m− 1)− [x2m]P `m · 2u)

=
3u−m− 1

m+ 1
· [x2m−1]P `m −

2u(3u)m
(m+ 1)!

for every m ≥ 1, and the desired characterization of [v3
m]P `m now follows easily by induction.

We now argue that [(i, j)]P `m+1 = 0 for every (i, j) ∈ NP `,out
m+1 \NP `m+1 as follows. The integral lattice

points (i, j) ∈ NP `,out
m+1 \NP `m+1 include three distinguished points v6

m+1 := (2m, 2), v7
m+1 := (2m, 0),

v8
m+1 := (2m− 1, 0) that are present for every m ≥ 1. Additionally, NP `,out

m+1 \NP `m+1 contains lattice

points ( 3m−1
2 , m+3

2 ) and ( 3m−2
2 , 1) whenever m is odd or even respectively, and there is a further

interior lattice point (3m−1
2 , 1) of NP `,out

m+1 \NP `m+1 whenever m is odd. It is not much harder to see

that these are in fact the only lattice points in NP `,out
m+1 \NP `m+1. For example, the edge v1

m+1v
6
m+1 of

NP `,out
m contains no interior lattice points unless m is odd, in which case the midpoint ( 3m−1

2 , m+3
2 )

is the unique such point. Now NP `,out
m+1 \NP `m+1 is the union of the triangles Conv(v1

m+1, v
6
m+1, v

4
m+1)

and Conv(v2
m+1, v

3
m+1, v

8
m+1), and its edges meeting NP `m+1 have interior lattice points ( 3m

2 , m+2
2 ) and

( 3m
2 , 1) precisely when m is even. It follows from Pick’s formula that Conv(v1

m+1, v
6
m+1, v

4
m+1) has no

interior lattice points for any m ≥ 1 and that Conv(v2
m+1, v

3
m+1, v

8
m+1) has 0 (resp., 1) interior lattice

points when m is even (resp., odd); whenever m is odd the point in question must then be ( 3m−1
2 , 1)

as before.

Now say that (i, j) ∈ {v6
m+1, v

7
m+1, v

8
m+1}. Proposition 3.7 together with our induction hypothesis

implies that

[v6
m+1]P `m+1 =

1

m+ 1
([x2m−2λ]D1P `m · [x2λ]f + [x2m−1λ]P `m · [xλ]D1f · (u−m))

=
1

m+ 1
([x2m−1λ]P `m · (1− 2u))

which vanishes as u = 1
2 . Completely analogously, we have

[v7
m+1]P `m+1 =

1

m+ 1
([x2m−2]D1P `m · [x2]f + [x2m−1]P `m · [x]D1f · (u−m))

=
1

m+ 1
[x2m−1]P `m · ((2m− 1)(−1)− 2(u−m))

which vanishes as u = 1
2 , and

[v8
m+1]P `m+1 =

1

m+ 1
([x2m−3]D1P `m · [x2]f + [x2m−2]P `m · [x]D1f · (u−m)) = 0

as [x2m−2]P `m = 0 by induction.

Notice that the other lattice points in NP `,out
m+1 \ NP `m+1 lie inside the union L`m+1 of lines L`,1m+1

and L`,2m+1 of slope −1 and 0, respectively. The fact that the corresponding monomials lie outside the

support of P `m+1 will follow from (23) and the fact that [xiλj ]P `m = 0 when (i, j) ∈ L`m \ {v5
m} for
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every m ≥ 2. Indeed, given any lattice point (i, j) ∈ L`,1m+1 with j > 2, we have the following:7

[xiλj ]P `m+1 =
1

m+ 1
([xi−2λj ]D1P `m · [x2]f + [xi−3λj ]D1P `m · [x3]f

+ [xi−1λj−1]D1P `m · [xλ]f + [xi−2λj−1]D1P `m · [x2λ]f)

+
u−m
m+ 1

([xi−1λj ]P `m · [x]D1f + [xi−2λj ]P `m · [x2]D1f

+ [xiλj−1]P `m · [λ]D1f + [xi−1λj−1]P `m · [xλ]D1f

=
1

m+ 1

(
[xi−1λj ]P `m · (1− i− 2u+ 2m) + [xi−2λj ]P `m · (i− 2 + 3u− 3m)

+[xiλj−1]P `m · (i+ u−m) + [xi−1λj−1]P `m · (1− i− 2u+ 2m)
)
.

(24)

As (i−2, j) and (i−1, j−1) both belong to L`,1m \{v5
m}, it follows that [xi−2λj ]P `m = [xi−1λj−1]P `m = 0

by induction. Furthermore, [xi−1λj ]P `m = [xiλj−1]P `m = 0 as j > 2 and (i− 1, j), (i, j − 1) lie outside
NP `m (indeed, they lie in a ray of slope −1 whose source is v4

m, and whose intersection with NP `m is

precisely {v4
m}). Given (2m− 1, 2) ∈ L`,1m+1, we have

[x2m−1λ2]P `m+1 =
1

m+ 1

(
[x2m−3λ2]P `m · (3u−m− 3) + [x2m−1λ1]P `m · (u+m− 1)

+[x2m−2λ1]P `m · (2− 2u)
)

by (24). As (2m− 3, 2) ∈ L`,1m , (2m− 1, 1) = v4
m and (2m− 2, 1) = v5

m, induction in tandem with (22)
and (23) now yields

[x2m−1λ2]P `m+1 =
1

m+ 1

(
− 2

(m− 1)!
u(3u− 1)m−1 · (u+m− 1)

+
1

(m− 1)!
((4m− 1)u−m)u · (3u− 2)m−2 · (2− 2u)

)
=

u(3u− 2)m−2

(m+ 1) · (m− 1)!
· (((4m− 1)u−m)(2− 2u)− 2(3u− 1)(u+m− 1))

which is zero when u = 1
2 . Similar arguments to the above show that [xiλ]P `m+1 = 0 for every

(i, 1) ∈ L`,2m+1 \ {v5
m}. It follows by induction that New(P `m+1) ⊂ NP `m+1.

7In fact, this equation holds for any lattice point (i, j).
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It remains to prove the formula for [v5
m+1]P `m+1 given in (23). To wit, by appealing to (24), we obtain

[v5
m+1]P `m+1 =

1

m+ 1

(
[x2m−1λ]P `m · (1− 2u) + [x2m−2λ]P `m · (3u−m− 2)

+[x2m]P `m · (m+ u) + [x2m−1]P `m · (1− 2u)
)

=
1

m+ 1

(
2 · −2

(m− 1)!
u(3u− 1)m−1 · (1− 2u) +

1

m!
(3u)m · (m+ u)

+
1

(m− 1)!
((4m− 1)u−m)u · (3u− 2)m−2 · (3u−m− 2)

)
=
u(3u− 2)m−2

(m+ 1)!
(−4m(3u− 1)(1− 2u) +m((4m− 1)u−m)(3u−m− 2)

+ 3(3u− 1)(m+ u))

=
u(3u− 2)m−2

(m+ 1) ·m!
((m+ 1)((4m+ 3)u−m− 1)(3u−m))

=
1

m!
((4(m+ 1)− 1)u− (m+ 1))u · (3u− 2)(m+1)−2

which proves (23). �

4.2. Singularities and genera of superelliptic Weierstrass inflectionary curves. To close this
section, we characterize the Newton polygons of atomic inflectionary curves derived from the superel-
liptic Weierstrass family yn = x3 +λx+2 when u = 1

2 . We first characterize those polygons associated

with the linear change of variables (x 7→ x + 1, λ 7→ λ − 3) that translates the origin (0, 0) ∈ A2
x,λ to

the singular point (1,−3).

Theorem 4.9. Suppose that n = 2` and that char(F ) is either zero or sufficiently positive. For every
positive integer m ≥ 3, the Newton polygon of the inflection polynomial P `m derived from yn = x3+λx+2
with respect to affine coordinates centered in (x = 1, λ = −3) is

New(P `m) = Conv((0, dm/2e), (0,m), δ2|(m−1)(1, (m− 1)/2), (m− 2, 1), (2m− 1, 0), (2m, 0))

in which δ2|(m−1) indicates that this vertex is only operative when m is odd.

Proof. We adopt the same basic strategy used in the proof of Theorem 4.8. We let P `,∗m = P `,∗m (x, λ)
denote the polynomial obtained from P `m upon substituting (x 7→ x+1, λ 7→ λ−3); equivalently, this is
the (`,m)-th atomic inflection polynomial associated to the polynomial f∗ = x3 +3x2 +λx+λ obtained
from f = x3 + λx + 2 via the same change of coordinates. Set v1

m = (0, dm/2e), v2
m = (0,m), v3

m =
(1, m−1

2 ), v4
m = (m− 2, 1), v5

m = (2m− 1, 0), and v6
m = (2m, 0). We claim that

[v1
m]P `,∗m =

(
31+δ2|m

2

)δm>3

(3u−m+ 1)δ2|(m−1) · (u)bm/2c, [v
2
m]P `,∗m =

1

m!
(u)m,

[v3
m]P `,∗m =

2 · 3m+1
2

(m−1
2 )!

· (u)m+1
2
, [v4

m]P `,∗m =
3m−1 · 2δ2|(m−1)

(bm/2c − 1)!((3))bm/2c−1
((2u− 3))bm/2c−1(u)dm/2e,

[v5
m]P `,∗m =

1

(3)m−3
(3u)m, and [v6

m]P `,∗m =
1

m!
(3u)m

(25)

for every integer m ≥ 3 and every u ∈ (0, 1); and that [(i, j)]P `,∗m = 0 for every (i, j) /∈ Conv({vkm}6k=1).
Here δ is Kronecker’s delta. It is easy to check that our claims hold when m = 3 and m = 4;
arguing inductively, assume they hold for (every index less than or equal to) some m ≥ 4. Now
say m is even. Applying Proposition 3.7 in tandem with our inductive hypothesis, we then have
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New(P `,∗m+1) ⊂ NP`,∗;out
m+1 , where

NP`,∗;out
m+1 := Conv(New(D1P `,∗m )⊕M New(f∗)

⋃
New(P `,∗m )⊕M New(D1f∗))

= Conv((0,m/2 + 1), (0,m+ 1), (1,m/2), (m− 1, 1), (2m, 0), (2m+ 2, 0)).

The difference between NP`,∗;out
m+1 and the polygon that we claim is New(P `,∗m+1) is the lattice triangle

∆ = Conv((m− 1, 1), (2m, 0), (2m+ 1, 0)).

Here ∆ is of area 1
2 ; it follows from Pick’s theorem that ∆ has no interior lattice points, and that

its only boundary lattice points are its vertices. Among these, only (2m, 0) lies outside the we claim

is New(P `,∗m+1). But Proposition 3.7 together with our inductive hypothesis and the fact that u = 1
2

imply that

[(2m, 0)]P `,∗m+1 =
1

m+ 1
([(2m− 2, 0)]D1P `,∗m · [(2, 0)]f∗ + [(2m− 1, 0)]P `,∗m · [(1, 0)]D1f∗ · (u−m))

=
1

m+ 1
((2m− 1) + 2(u−m)) · [(2m− 1, 0)]P `,∗m · [(2, 0)]f∗

= 0.

A nearly-identical argument works when m is odd. Namely, setting

NP`,∗;out
m+1 := Conv(New(D1P `,∗m )⊕M New(f∗)

⋃
New(P `,∗m )⊕M New(D1f∗))

as before, the difference between NP`,∗;out
m+1 and the polygon that we claim is New(P `,∗m+1) is precisely

∆ = Conv((m− 1, 1), (2m, 0), (2m+ 1, 0)).

We leave the slightly tedious, but straightforward inductive verification of our explicit formulae (25)
for vim[P `,∗m ], i = 1, . . . , 6 to the reader. �

As we will now explain, the topological type of the singularity of C`m in (1,−3) is in fact determined
by its associated local Newton polygon; that is, by the lower hull of the Newton polygon in Theorem 4.9.
Whenever m is greater than 5, this local Newton polygon consists of two (resp., three) segments when
m is even (resp., odd), one of which contains lattice points other than its vertices. Specifically, when
m is even (resp., odd), the edge linking v1

m (resp., v3
m) and v4

m contains lattice points (2j, m2 − j),
j = 1, . . . , m2 − 2 (resp., (1 + 2j, m−1

2 − j), j = 1, . . . , m−1
2 − 2)); see Figure 3 below.

m=2k+1, k=2,3,4,5

m=2k, k=2,3,4,5

(0,k+1)v  =1
m

(0,k)v  =1
m

(4k-1,0)v  =5
m

(4k+1,0)v  =5
m(2k-1,1)v  =4

m

(2k-2,1)v  =4
m

(1,k)v  =3
m

…

…

Figure 3. Local Newton polygons of the plane curve singularity in (1,−3) of C`m

The corresponding coefficients of P `,∗m appear to always split into explicitly identifiable u-linear factors.

Conjecture 4.10. Suppose n = 2` and that char(F ) is either zero or sufficiently positive. For every
even positive integer m = 2k with k ≥ 3 the atomic inflection polynomial P `,∗m derived from yn =
x3 + λx+ 2 (and adapted to coordinates centered in (1,−3)) satisfies

[(2j, k − j)]P `,∗m = cj,k · (u)k((2u− 2k + 1))j
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for every j = 1, . . . , k − 2, where cj,k = 3j+k(2j+1)

(k−j)!
∏j
i=1 i(2i+1)

. Similarly, for every odd positive integer

m = 2k + 1 with k ≥ 3, we have

[(2j + 1, k − j)]P `,∗m = dj,k · (u)k+1((2u− 2k + 1))j

for every j = 1, . . . , k − 2, where dj,k = 2·3j+k+1

(k−j)!
∏j
i=1 i(2i+1)

.

Conjecture 4.10 predicts that whenever k ≥ 2 and u = 1
2 , the inflectionary curve C`2k (resp., C`2k+1)

has a singularity at (1,−3) with local normal form x4k−1 +
∑k−1
j=0 αjx

2jλk−j = 0 (resp., x4k+1 +∑k−1
j=0 αjx

2j+1λk−j +βλk+1 = 0), where the αj , j = 1, . . . , k−1 and β are nonzero scalars. In order to
derive their topological types, we will make use of the following two notions from singularity theory.

Definition 4.11. A polynomial f in two variables is quasi-homogeneous whenever its Newton polygon
New(f) is a segment; the affine curve V (f) ⊂ (C∗)2 it defines is a quasi-line whenever New(f) is a
segment of lattice length 1.

Definition 4.12. Given a quasi-homogeneous polynomial f with Newton polygon of lattice length `,
we say that f is Newton non-degenerate whenever V (f) ⊂ (C∗)2 consists of ` distinct quasi-lines.

According to [22, p. 226], a quasi-homogeneous polynomial f is Newton non-degenerate whenever it
contains no repeated irreducible factors. In our case, this means that the singularity of C`m in (1,−3) is
Newton non-degenerate provided the restriction P `,∗m |[v1m,v4m] when m is even (resp., P `,∗m |[v3m,v4m] when
m is odd) contains no repeated irreducible factors. This, in turn, is equivalent to the specializations
of each of these polynomials in x = 1 being separable, viewed as polynomials in λ.

Remark 4.13. Given positive integers k ≥ 2 and 1 ≤ j ≤ k − 1, let

γj,k(u) =
2j · 3j

(k − j)!
∏j
i=1 i(2i+ 1)

j∏
i=1

(u− (k − i+ 1
2 )).

Theorem 4.9 and Conjecture 4.10 together predict the following.

• For every m = 2k + 1, the polynomial 1

[v3m]P `,∗m
λ−1x−1P `,∗m |[v3m,v4m] has coefficients {k!γj,k(u) :

j = 1, . . . , k − 1}; and its irreducible factors correspond to those of

Qk,odd(λ) := λk−1 + k!

k−1∑
j=1

γj,k(u)λk−1−j .

• For every m = 2k, the polynomial 1

[v1m]P `,∗m
λ−1P `,∗m |[v1m,v4m] has coefficients {2 · 3k−2(2j +

1)γj,k(u) : j = 1, . . . , k − 2} ∪ {2 · 3k−2γk−1,k(u)}; and its irreducible factors correspond
to those of

Qk,even(λ) := λk−1 + 3k−2 · 2
(k−2∑
j=1

(2j + 1)γj,k(u)λk−1−j + γk−1,k(u)

)
.

Newton non-degenerate singularities have embedded toric resolutions that depend only on their
underlying Newton polygons. To spell out a resolution explicitly, we first fix a regular refinement Σm
of the Newton fan of the local Newton polygon. According to [22, Prop. 5.1], there is a neighborhood U
of the origin in A2 for which the strict transform of Xm∩U under the toric map π(Σm) : Tor(Σ)→ A2

is non-singular (and transversal in each chart with respect to the strata of the canonical stratification).

In our case, the Newton fans are as in Figure 4a and 4b for odd m ≥ 5 and even m ≥ 6, respectively;
and Σm is the fan determined by the collections of vectors {βi = (1, i) : i = 0, . . . ,m+ 1} ∪ {βm+2 =
(0, 1)}. Note that det(βi, βi+1) = 1 for every i = 0, . . . ,m+ 1.

Conjecture 4.14. Suppose n = 2` and that char(F ) is either zero or sufficiently positive. The
restrictions P `,∗m |[v1m,v4m] when m is even (respectively P `,∗m |[v3m,v4m] when m is odd) are Newton non-
degenerate for every positive integer m ≥ 6.
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)
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+
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…

m

Figure 4. The Newton fan of the curve germ Xm for a) odd indices m ≥ 5 and b)
even indices m ≥ 4; and c) the regular refinement Σm.

The upshot of Conjecture 4.14, assuming it holds, is that the Weierstrass inflectionary curve C`m has
Newton non-degenerate singularities in (1,−3) and its images under the µ3-action whenever m ≥ 3 and
u = 1

2 . Taken together with Theorem 4.9, which shows that the quasi-lines indexing the components of

the singularity in (1,−3) have normal forms λ+αxβ with α ∈ F and β ∈ N and are therefore smooth, we
conclude that the singularity in (1,−3) is topologically a planar multiple point. Non-degeneracy may be
decided by computing the resultants resλ(Qk,even(λ), DλQk,even(λ)) and resλ(Qk,odd(λ), DλQk,odd(λ))

with k = bm2 c, the first few of which we list below. All are nonzero in u = 1
2 , which confirms non-

degeneracy in these cases.

m Resultant

6 (2u− 5)(82u− 213)

7 (2u− 5)(2u− 13)

8 (8648u3 − 99644u2 + 366558u− 433225)(2u− 5)(2u− 7)2

9 (1544u3 − 4124u2 − 68050u+ 261375)(2u− 5)(2u− 7)2

10 (2628587072u6 − 119949472448u5 + 2150917889200u4 − 19208897405344u3 + 88953911319420u2 − 202718213505900u +

178829173396125)(2u− 5)(2u− 7)2(2u− 9)3

11 (73280u6 − 1800896u5 + 17586352u4 − 79585696u3 + 105411708u2 + 385941780u− 1128308643)(2u− 5)(2u− 7)2(2u− 9)3

12 (122191605826942938112u10 − 5137275780237419929600u9 + 95483958308251060967680u8 −−1028332887864338872274944u7 +

7059380175502383351849856u6 − 31945737444679130293915648u5 + +94800566724756623412919584u4 −

175771544931032155005282048u3 + 177787778371141570008211548u2 − −638533704751862399285280u −

27254076392882562131835675)(2u− 5)(2u− 7)2(2u− 9)3(2u− 11)4

13 (578660864u9 − 24160546560u8 + 442054845440u7 − 4661843030528u6 + 31203235602752u5 − −135392606249696u4 +

356010098185728u3−390059717289536u2−495186636360654u+1452343719158325)(2u−5)(2u−7)2(2u−9)3(2u−11)4(2u−25)

14 (517054051760584040013824u15 − 34606335211379129061806080u14 + 1074564038131661482964643840u13 −

−20553014285527963635148863488u12 + 271168279767820327841178212864u11 − 2618660106209969893672606463744u10 +

+19159417066255333643901464918528u9−108348468080864190587659844395520u8 +477991778387823949401622023180192u7−

−1643879633811405905416224201435376u6 + 4355137706111155294069745610578032u5 −

8656637453479899643766490173287192u4 + +12306388582199883590702872639926470u3 −

11486088155884566051550904286897225u2 + 5933971159136931086501205617667000u −

−1070586531538239512727665046860625)(2u− 5)(2u− 7)2(2u− 9)3(2u− 11)4(2u− 13)5

15 (3582640383754240u15 − 10728692298111500288u14 + 875818844352211918848u13 − −33076720356213968580608u12 +

759534115415560817821696u11 − 11819438460454402630634496u10 + +131714774285747089485097472u9 −

1083553404957176512706490112u8 + 6684602789076604465188623232u7 − −31057766997114205392258042688u6 +

107656638625140000720091457888u5 − 268810265560488302494068274704u4 + +436139961317292156103910305944u3 −

300075462388081764565510962564u2 − 324321675886222418719532454930u++645480864299668165786600310475)(2u− 5)(2u−

7)2(2u− 9)3(2u− 11)4(2u− 13)5

Theorem 4.15. Suppose that n = 2`. For every positive integer m ≥ 3, the inflectionary curve C`m
derived from yn = x3 + λx + 2 is equipped with a µ3-symmetry given by (x 7→ gx, λ 7→ g−1λ), where
g ∈ µ3 ⊂ Gm is an element of µ3.
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Proof. We have P `3 = 2 − 5
2x

3 − 1
16x

6 + 1
2xλ −

5
16x

4λ + 5
16x

2λ2 + 1
16λ

3, so the desired result clearly

holds when m = 3. Likewise f(x) = x3 +λx+ 2 is left invariant by the µ3-action, while g ∈ µ3 acts on
D1
xf = 3x2 + λ by multiplying by g−1. We now argue inductively, and assume that P `m is multiplied

by gj for some j ∈ {0, 1, 2} by the µ3-action. In view of Proposition 3.7, it suffices to show that D1
xP

`
m

is multiplied by gj−1; but this is clear. �

Remark 4.16. It is natural to wonder about the dependence of the Newton polygons of superelliptic
inflection polynomials P `m (in distinguished choices of local coordinates) on the dependence of the
characteristic of the underlying base field F when F is positive yet arbitrary. Remark 3.8, coupled

with the proof of Theorem 4.6, implies that the expression (au)n
n! is well-defined in Fp whenever (au)n

is nonvanishing, for otherwise arbitrary choices of positive integers a and n, u ∈ Q ∩ (0, 1), and
every prime integer p relatively prime to the degree of the underlying superelliptic covers. The p-adic

valuation valp(
(au)n
n! ), in turn, affects the structure of the Newton polygons New(P `m) that arise from

the specializations of Legendre and Weierstrass pencils over Z to Fp. In particular, when u = 1
2 and

(au)n is nonvanishing, we have

valp

(
(au)n
n!

)
= valp((a/2)n)− valp(n!) = valp(((a))n)− valp(n!)

for every odd prime p. A classical theorem of Legendre establishes, moreover, that valp(n!) =
∑∞
i=1b

n
pi c

for every n. Now suppose that a > 2n− 2; then either a is even, in which case Legendre implies that

valp(((a))n) = valp(a/2)n =

∞∑
i=1

ba/2
pi
c −

∞∑
i=1

b (a/2− n)

pi
c;

or else a is odd, in which case Legendre yields

valp(((a))n) = valp(a!)− valp((a− 2n+ 1)!)− valp(((a− 1))n−1)

=

∞∑
i=1

b a
pi
c −

∞∑
i=1

b (a− 2n+ 1)

pi
c −

∞∑
i=1

b (a− 1)/2

pi
c+

∞∑
i=1

b (a− 1)/2− n+ 1

pi
c.

Similarly, if u = 1
2 and a < 2n− 2, then nonvanishing of (au)n means that a is necessarily odd, and

valp(((a))n) =

∞∑
i=1

b a
pi
c −

∞∑
i=1

b (a− 1)/2

pi
c+

∞∑
i=1

b (2n− 2− a)

pi
c −

∞∑
i=1

b (n− 1− a/2)

pi
c.

Note that when char(F ) 6= 3, µ3
∼= Z/3Z generated by a primitive cube root ζ of unity, and the

action on C`m ⊂ A2
x,λ extends to a linear action on a weighted projective space P(1, 2, 1) given by

ζ · [x : λ : z] = [ζx : ζ−1λ : z]. An upshot of Theorem 4.15 is that for every m ≥ 3, C`m has isomorphic
singularities in (ζ−j ,−3ζj), j ∈ {0, 1, 2}. Moreover, an easy inductive argument using Proposition 3.7
shows that the “usual” Newton polygon of P `m in coordinates x, λ lies inside the lattice simplex with
vertices (0, 0), (2m, 0), and (0,m), and always includes (2m, 0) and (0,m). It follows that C`m may be
compactified inside P(1, 2, 1), and doing so introduces no additional singularities at torus-fixed points
of the line at infinity (z = 0), while compactifying C`m inside P2 introduces a singularity at [0 : 1 : 0],
which is a torus fixed point.

On the other hand, when char(F ) = 3, we have µ3
∼= F [t]/(t3 − 1) ∼= F [t]/(t − 1)3, a non-reduced

group scheme.8 Since the Weierstrass family yn = x3 + λx + 2 is defined over F3, the same is true
of C`m for every m; and correspondingly C`m over F is obtained from C`m over F3 via the base change
induced by the natural map Spec F → Spec F3. So assume that F ∼= F3. Theorem 4.15 then implies
that for every m ≥ 3, C`m has a singularity at (1, 0), and admits a compactification inside P(1, 2, 1).

8In this case, n cannot be divisible by 3 by assumption.
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However “extra” singularities appear when m > 3. Indeed, over Z[ 1
2 ] we have

P `3 =2− 5

2
x3 − 1

16
x6 +

1

2
xλ− 5

16
x4λ+

5

16
x2λ2 +

1

16
λ3,

P `4 =− 15

2
x2 +

21

8
x5 +

3

128
x8 − λ− 7

4
x3λ+

7

32
x6λ+

1

8
xλ2 − 35

64
x4λ2 − 5

32
x2λ3 − 5

128
λ4, and

P `5 =− 6x+ 18x4 − 45

16
x7 − 3

256
x10 +

9

4
x2λ+

63

16
x5λ− 45

256
x8λ+

3

4
λ2 − 15

16
x3λ2 +

105

128
x6λ2

− 3

16
xλ3 +

27

128
x4λ3 +

33

256
x2λ4 +

7

256
λ5.

Reducing coefficients modulo 3, we see that C`4 is reducible, while C`5 is non-reduced.

Conjecture 4.17. Suppose that n = 2` and that char(F ) is either zero or sufficiently positive (so that
it is not three). For every positive integer m ≥ 3, the inflectionary curve C`m ⊂ P(1, 2, 1) derived from
yn = x3 + λx + 2 is nonsingular away from (ζ−j ,−3ζj , 1), j ∈ {0, 1, 2}, where ζ is a primitive cube
root of unity.

The fact that the points [ζ−j : −3ζj : 1], j ∈ {0, 1, 2} appear as (supports of) singularities of the
Weierstrass inflectionary curves C`m is unsurprising. Namely, the λ-coordinates −3ζj comprise the roots
of the x-discriminant −4(27+λ3) of f(x, λ) = x3 +λx+2, and as such index the three singular fibers of
the Weierstrass pencil; the x-coordinates ζ−j are the x-coordinates of the corresponding singularities.
It is natural to expect that this phenomenon persists more generally, and we will return to this point
in the following section. On the other hand, the delta-invariants of singularities of any complete curve
embedded in a toric surface are determined by the corresponding Newton polygons. The following
result is the key operative ingredient.

Theorem 4.18. Let ι : X ↪→ Y denote the embedding of an irreducible projective curve embedded in a
normal projective toric surface Y = Tor(∆) over a field F , and assume that ι(X) ∩ Sing(Y ) = ∅. The
arithmetic genus of X is equal to the number of interior lattice points in the Newton polygon associated
to ι.

Proof. When Y is smooth, this follows immediately from [13, Lem. 3.4]; their argument shows that
the interior lattice points in the Newton polygon of ι index a basis of H0(Y,KY + X). In our case,
since ι(X) ∩ Sing(Y ) = ∅, ι extends to an embedding ι : X ↪→ Y with ι(X) ∩ Sing(Y ) = ∅, where
Y → Y is a toric resolution of singularities. Replacing Y by Y , we now conclude by applying loc. cit.
once more. �

Conjecture 4.19. Suppose that n = 2` and that char(F ) is either zero or sufficiently positive. For
every positive integer m ≥ 3, the inflectionary curve C`m ⊂ P(1, 2, 1) derived from yn = x3 + λx+ 2 is

geometrically irreducible, and of geometric genus d (m−1)2

4 e.

Indeed, according to Theorem 4.18, the arithmetic genus of C`m ⊂ P(1, 2, 1) is equal to the number
of interior lattice points of the lattice simplex with side lengths m, m, and 2m; and this is precisely
(m − 1)2. On the other hand, the delta-invariant of each of the three isomorphic singularities of
C`m ⊂ P(1, 2, 1) described in Theorem 4.9 is equal to (m−1

2 )2 (resp., m
2 (m2 − 1)) when m is odd (resp.,

even), as this is precisely the number of interior lattice points “excluded” by the lower hull of the
corresponding Newton polygon.

It is worth noting here that conjectures 4.17 and 4.19 (along with the other conjectures in this paper)
are true whenever m is small. In particular, C`3 has an elliptic normalization whenever n = 2` (here,
we will abusely use C`3 to denote the compactification of the affine inflectionary curve in P(1, 2, 1)).
Likewise, given that C`3 admits a µ3-action, it is natural to try identifying its µ3-quotient Q`3.

Proposition 4.20. Whenever n = 2`, F is perfect, and char(F ) /∈ {2, 3}, the µ3-quotient Q`3 of C`3 is
then F -isomorphic to a nodal plane cubic curve with an F -rational smooth point.
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Proof. We first claim thatQ`3 has geometric genus zero. To prove the claim, we will apply the Riemann-
Hurwitz formula to the natural (µ3-quotient) map from the normalization of C`3 to that of Q`3. More
precisely, we start from the following commutative diagram over F , where the horizontal morphisms
are normalizations and vertical morphisms are µ3-quotients:

C`,ν3 C`3

Q`,ν3 Q`3

Note that as char(F ) = 0 or char(F ) > 3, the µ3-action is separable. Further, since C`3 is irreducible in

P(1, 2, 1), C`,ν3 must be a smooth curve of genus equal to the geometric genus of C`3. The µ3-action on

C`3 induces a natural µ3-action on C`,ν3 as well, and the µ3-fixed points of C`,ν3 are preimages of those
of C`3. To locate the µ3-fixed points of C`3, note that the action is in fact induced by the µ3-action on
the ambient P(1, 2, 1), and the µ3-fixed points of P(1, 2, 1) consist of [0 : 0 : 1] and the line at infinity
(z = 0). Thus the µ3-fixed points of C`3 all lie along (z = 0), and homogenizing P `3 with respect to z
(as a degree 1 variable) and substituting z = 0 yields

− 1

16
x6 − 5

16
x4λ+

5

16
x2λ2 +

1

16
λ3 =

1

16
(λ− x2)(λ2 + 6x2λ+ x4)

which has three distinct roots in (z = 0) ∼= P(1, 2). These include [0 : 1 : 0], which is an F -rational

µ3-fixed point of C`3. It follows that C`,ν3 has three distinct µ3-fixed points as well, and applying the

Riemann-Hurwitz formula over F [18, Thm. 1.10] to the µ3-quotient C`,ν3 → Q`,ν3 over F , we deduce
that

3(2g(Q`,ν3 )− 2) + 3(3− 1) = 2g(C`,ν3 )− 2.

Substituting g(C`,ν3 ) = 1 and solving for g(Q`,ν3 ), we see that Q`,ν3 is a smooth rational curve over F .

Moreover, the existence of an F -rational point of Q`,ν3 induced by [0 : 1 : 0] ∈ C`3 implies that Q`,ν3
∼= P1

F

over F by [11, Theorem A.4.3.1]. Indeed, since the only singular points of C`3 are three distinct nodes
that form a single µ3-orbit, the quotient Q`3 is F -isomorphic to a nodal plane cubic with an F -rational
smooth point. �

Proposition 4.21. Whenever n = 2` and F is perfect of characteristic 3, the µ3-quotient Q`3 of C`3 is
F -isomorphic to a union of two P1

F ’s glued tacnodally at a single common F -rational point, i.e., such
that the tangent lines of the two components at the common F -rational point are identified.

Proof. Since F is perfect, we may assume F ∼= F3 as above, and P `3 = −x6+x4λ−x2λ2−x3+λ3−xλ−1.
The corresponding curve is indeed smooth away from the point [1 : 0 : 1] ∈ P(1, 2, 1), and is transverse
to the line (z = 0) at infinity. Since µ3 is a nonreduced multiplicative group scheme, this situation
requires a separate analysis, as surveyed in [16, § 2.2] and [25, § 3]. To do so, we work locally in affine
charts. Accordingly, let Spec A := Spec F3[x, λ]/P `3 . The µ3-action on Spec A is dual to a coaction
morphism Φ : F3[x, λ]/P `3 → F3[x, λ, t]/(P `3 , t

3 − 1) of F3-algebras, given by

x 7→ tx and λ 7→ t−1λ = t2λ.

Furthermore, Φ is uniquely determined by a derivation D on Spec A with D3 = D, and for every
f ∈ A, we have Df = mf if and only if Φ(f) = tmf ; in our particular case, D(xiλj) = (i + 2j)xiλj ,
so Dx = x, Dλ = −λ, and DP `3 = 0. It follows that the µ3-quotient of SpecA is SpecAD, where

AD := {a ∈ A |Da = 0} ∼= F3[x3, xλ, λ3]/P `3
∼= F3[α, β, γ]/(αγ − β3,−α2 + αβ − β2 − α+ γ − β − 1);

note that SpecAD is indeed an affine open subscheme of Q`3 := C`3/µ3. A similar analysis shows that
Q`3 is singular precisely in the point (α, β, γ) = (1, 0, 0) of SpecAD.

We now turn to the singular point of Q`3. Working along the affine locus SpecAD, we make a linear

change of variables (α 7→ α+1, β 7→ β, γ 7→ γ), and then let γ = β3

α+1 . Clearing denominators, SpecAD
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becomes (presented by) SpecF3[α, β]/(−α3−α2 +α2β+αβ−β2 +β3), which is singular at the origin
(α, β) = (0, 0). To understand the singularity type at the origin, we linearly change coordinates via
u = β − α and v = α + β. The affine part of Q`3 at (0, 0) ∈ A2

u,v is cut out by an affine plane cubic

(v(−v+u2 +uv− v2) = 0), which is a tacnodal union of (v = 0) and (−v+u2 +uv− v2 = 0) at (0, 0).
Moreover, each of these components has at least one F3-rational point; so each is isomorphic to P1

F3

by [11, Theorem A.4.3.1]. Since Q`3 has only one singularity, these components do not intersect away
from (0, 0) ∈ A2

u,v; so Q`3 is isomorphic to a union of two copies of P1
F3

glued tacnodally at a common
F3-rational point. �

5. Inflectionary curves and surfaces from bielliptic curves of genus two

Given a curve X of genus 2 defined over a field F with char(F ) 6= 2, let τ denote the hyperelliptic
involution of X, let G := Aut(X) denote the automorphism group of X over the algebraic closure F
by G := Aut(X), and let Ḡ := G/〈τ〉 denote the reduced automorphism group. We say that X is
bielliptic whenever it has a non-hyperelliptic involution. In this case, the canonical projection to X/G
realizes X as a double cover of an elliptic curve.

Now assume X is bielliptic, and let σ ∈ G (resp., σ̄) be a non-hyperelliptic involution of X (resp.,
its image in Ḡ). Then σ̄ acts faithfully on the set W of Weierstrass points of X. Given an affine
model y2 = f(x) for X, we may further assume that σ̄(x) = −x and that 1 ∈ W , by replacing x by
cx for a suitably chosen unit c ∈ F ∗. The set of Weierstrass points is W = {±1,±α,±β} for some
α, β ∈ P1 \ {0,∞,±1}, and correspondingly the affine equation of X becomes

(26) y2 = (x2 − 1)(x2 − α2)(x2 − β2).

If we do not fix x = 1 as a Weierstrass point, we may assume that W = {±α,±β,±γ} for some
α, β, γ ∈ F ∗ and that X has equation y2 = (x2 − α2)(x2 − β2)(x2 − γ2). We may further replace x by
a suitable scalar multiple λx so that α2β2γ2 = 1. It then follows that

(27) y2 = x6 − s1x
4 + s2x

2 − 1

where s1 = α2+β2+γ2 and s2 = α2β2+α2γ2+β2γ2. The x-discriminant of f(x) = x6−s1x
4+s2x

2−1
is

(28) ∆x(s1, s2) = 64(−s2
1s

2
2 + 4s3

1 + 4s3
2 − 18s1s2 + 27)2.

We now turn to inflectionary varieties associated to families of bielliptic curves. The following result
is elementary.

Lemma 5.1. The inflection polynomial P 1
m(x, s1, s2) associated to the two-dimensional family (27) is

divisible by x whenever m > 1 is odd. Accordingly, we set

Qm(x, s1, s2) :=

{
P 1
m(x, s1, s2) if m is even; and

1
x · P

1
m(x, s1, s2) if m is odd.

Then Qm(x, s1, s2) is a polynomial in x2.

Proof. Lemma 5.1 clearly holds when m = 1 or m = 2. Arguing by induction, assume it holds for some
particular value of m. To show that it holds for m + 1, it suffices to apply the defining recursion for
the inflection polynomials P 1

m. Clearly each of the products D1P 1
m · f and P 1

m ·D1f has the required
divisibility and polynomiality properties; so any linear combination of these does as well. �

Lemma 5.1 implies, in particular, that the inflectionary surface Xm defined by Qm is naturally a double
cover of an auxiliary surface Ym in coordinates y, r, s obtained by setting y = x2.

Remark 5.2. The complexity of the equation of a genus 2 curve is minimized by the presentation using
the coordinates (s1, s2); however the ordered pair (s1, s2) does not uniquely single out the isomorphism
class of a genus 2 curve. Uniqueness up to isomorphism may be achieved by instead parameterizing
using the invariants v = s3

1 + s3
2 and w = s1s2; see [21].
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5.1. Inflectionary curves from special pencils of bielliptic curves. In what follows, Dn denotes
the dihedral group of order 2n. We assume that our base field F is perfect, with char(F ) /∈ {2, 3}.
Cardona and Quer [4] classified curves of genus 2 with automorphism groups isomorphic to D4 or D6

up to F -isomorphism.

5.1.1. Genus 2 curves with Aut(X) ∼= D4. A genus 2 curve has automorphism group isomorphic to D4

if and only if w2 − 4v3 = 0. Up to F -isomorphism, such a curve is given by

(29) y2 = x5 + x3 + sx.

Somewhat abusively, we will refer to a D4 pencil as any pencil of superelliptic curves cut out by
yn = x5 +x3 +sx where n ≥ 2 and s ∈ F is an affine parameter. The Newton polygons of the inflection
polynomials P `m(x, s) derived from the corresponding D4 pencils are characterized as follows.

Proposition 5.3. Suppose that u = `
n is neither an integer multiple of 1

3 nor of 1
5 , and that char(F )

is either zero or sufficiently positive. Given a positive integer m ≥ 2, let C`m = (P `m(x, s) = 0) denote
the m-th inflectionary curve associated to the D4 pencil. Its Newton polygon New(C`m) is the lattice
simplex with vertices (0,m), (2m, 0) and (4m, 0).

Proof. We adopt the same strategy used in proving Theorems 4.6 and 4.8 in the preceding section,
predicated on identifying critical coefficients of the universal inflection polynomial P `m = P `m(x, s, u)
derived from the D4 pencil. The desired result follows from the facts that

(30) [(0,m)]P `m =
1

m!
(u)m, [(2m, 0)]P `m =

1

m!
(5u)m, and [(4m, 0)]P `m =

1

m!
(3u)m

for every m ≥ 2; and that [(i, j)]P `m = 0 for every (i, j) /∈ Conv((0,m), (2m, 0), (4m, 0)). Both
statements follow easily by induction using the recursion of Proposition 3.7, starting with the base
case m = 2. Indeed, the fact that [(i, j)]P `m = 0 for every (i, j) /∈ Conv((0,m), (2m, 0), (4m, 0)) clear
when m = 3; arguing inductively and assuming the analogous statement holds for some m ≥ 2, we see
that

Conv(New(D1P `m)⊕M New(f)
⋃

New(P `m)⊕M New(D1f)) = Conv((0,m+1), (2m+2, 0), (4m+4, 0))

so the required vanishing of coefficients also holds for m + 1. We leave the similarly easy inductive
verification of the formulae (30) to the reader. �

Figure 5. Newton polygons of the D4-inflectionary curves C`m for m = 4 (l) and
m = 5 (r).

Note that Proposition 5.3 singles out the weighted projective plane P(1, 4, 1) as a natural choice of
ambient toric surface in which to compactify C`m9. Now assume n = 2`. Exactly as in our analysis
of Weierstrass inflectionary curves in Section 4, we anticipate the singularities of C`m to be supported
in precisely those points corresponding to singular points of the total space of the D4 pencil; i.e.,
those points whose s-coordinates (resp., x-coordinates) index singular fibers of the pencil (resp., the
x-coordinates of their singularities). More precisely, we expect the following to be true.

9Here the weights 1, 4, and 1 refer to x, s, and a compactifying variable z, respectively.
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Conjecture 5.4. Assume that n = 2`, and that char(F ) is either zero or sufficiently positive; and
let Cm = C`m denote the m-th inflectionary curve derived from the D4 pencil, compactified to a pro-
jective curve in P(1, 4, 1). Whenever m ≥ 3, Cm is geometrically irreducible, and has precisely three

singularities, whose coordinates in the open affine xs-plane are (0, 0) and (±
√
−1
2 ,

1
4 ). The latter two

singularities are permuted by an involution of Cm; in particular, they are isomorphic.

In light of Conjecture 5.4, it is natural to wonder about the (local) Newton polygons associated to

Cm in (coordinates centered in) (
√
−1
2 ,

1
4 ).

Conjecture 5.5. Assume that n = 2`, and that char(F ) is either zero or sufficiently positive; and let
Cm denote the m-th inflectionary curve derived from the D4 pencil yn = x5 + x3 + sx. The Newton

polygons Newp(Cm) of Cm in p = (±
√
−1
2 ,

1
4 ) satisfy

Newp(C3) = Conv((0, 3), (0, 2), (2, 1), (5, 0), (12, 0));

Newp(C4) = Conv((0, 4), (0, 2), (2, 1), (8, 0), (16, 0));

Newp(C5) = Conv((0, 5), (0, 3), (1, 2), (3, 1), (9, 0), (20, 0)); and

Newp(Cm) = Conv((0,m), (dm/2e, δ2|(m−1)(1, (m− 1)/2), (m− 2, 1), (2m− 1, 0))

whenever m ≥ 6.

Taken together along with Proposition 5.3, Conjectures 5.4 and 5.5 allow us to produce (a natural
expectation for) the geometric genus of Cm for every m ≥ 3.

Conjecture 5.6. Assume that n = 2`, and that char(F ) is either zero or sufficiently positive. The
m-th inflectionary curve Cm derived from the D4 pencil yn = x5 +x3 + sx has geometric genus 0 when

m = 3, and dm
2

2 −m+ 1e whenever m ≥ 4.

Indeed, the arithmetic genus of Cm ⊂ P(1, 4, 1) is computed by the number of interior lattice points

of the lattice simplex with side lengths m, m, and 4m, which is
∑m−2
i=0 (4i + 3) = (2m − 1)(m − 1).

Assuming Cm is irreducible (and reduced), its geometric genus is equal to its arithmetic genus minus
the sum of the delta-invariants of its singularities. On the other hand, according to Conjecture 5.4,
every singularity of Cm lies in the open torus of P(1, 4, 1); so its delta-invariant is equal to the number of
interior lattice points “excluded” by the lower hull of the corresponding Newton polygon. It follows that
the delta-invariant of the singularity of Cm described by Proposition 5.3 is equal to m(m−1). Likewise,
the delta-invariant of each of the two isomorphic singularities of Cm described by Conjecture 5.5 is

equal to 2 when m = 3; and to (m−1)2

4 (resp., m
2 (m2 − 1)) when m is odd (resp., even) and m ≥ 4.

Now let em,q denote the error term

em,q = #Cm(Fq)− (q + 1)

and let ẽm,q =
em,q
2g
√
q denote its renormalized analogue, where g is the geometric genus of Cm. It is easy

to check that g(C2) = 1, i.e., that the desingularization of C2 is an elliptic curve. Indeed, as a curve in
A2
x,s, C2 has defining equation 3x4 + 22x6 + 15x8 + 6x2s+ 30x4s− s2 = 0 whose homogenized version

in P2
x,s,y has singular points [0 : 1 : 0] and [0 : 0 : 1]. We determine the resolution of such curve in two

steps. Namely, let C̃2 denote the plane curve cut out by 15x4 +30x2sy+22x2y2−s2y2 +6sy3 +3y4 = 0.

The assignment [x : s : y] 7→
[
x3 : sy2 : x2y

]
defines a birational map C̃2 → C2, and C̃2 is only singular in

[0 : 0 : 1]. Now the auxilliary variable t = x2

y realizes the desingularization Cν2 of C̃2 as the intersection

of quadrics Q1 : ty − x2 = 0 and Q2 : 15t2 + 30t + 22x2 + 3y2 + 6y − 1 = 0. We now argue as in the
proof of [5, Prop. 4.2], and identify Q1 and Q2 with the 4× 4 matrices defining the bilinear forms to
which they correspond. This exhibits Cν2 as an elliptic curve; moreover, it is easy to check that Cν2 is
an elliptic curve without complex multiplication.

Proposition 5.7. The values of the renormalized errors ẽ2,p are equidistributed with respect to the
Sato-Tate measure on an elliptic curve without complex multiplication.
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Figure 6. Distribution of renormalized errors for the D4 inflectionary curve C2 for
primes p ≤ 10000.

Proof. We argue as in the proof of [5, Prop. 4.2]. We need only to look at the fibers over the singular

points in the resolution. In particular, letting F̃ denote the fiber of the map Cν2 → C̃2 above [0 : 0 : 1],

and F the fiber of the map C̃2 → C2 above [0 : 1 : 0], we have

Cν2 (Fp) = #C̃2(Fp) + #F̃ (Fp), and

#C̃2(Fp) = #C2(Fp) + #F (Fp).

The fiber F̃ consists of those points [x : s : y : t] that map to [0 : 0 : 1], which correspond to solutions
of the equation 15t2 + 30t+ 5 = 0 over Fp. When p /∈ {2, 3}, it follows that

#F̃ (Fp) =

(
6

p

)
+ 1.

On the other hand, the fiber F consists of those points [x : s : y] for which
[
x3 : sy2 : x2y

]
= [0 : 1 : 0].

Any such solutions satisfy x = 0 and s, y 6= 0. They also must satisfy the defining equation for C̃2,
which forces 6sy3 − s2y2 + 3y4 = 0. Since s 6= 0, we may assume that s = 1, and as y 6= 0 the last
equation is equivalent to 3y2 + 6y+ 1 = 0 (notice that this is precisely the same quadratic equation as
above). Consequently, just as before, we have

#F (Fp) =

(
6

p

)
+ 1

which yields

#C2(Fp) = #Cν2 (Fp)− 2

(
6

p

)
− 2.

The desired conclusion follows as Cν2 is an elliptic curve without complex multiplication, and passing
to the error terms the difference becomes negligible. �

5.1.2. Genus 2 curves with Aut(X) ∼= D6. A genus 2 curve has automorphism group isomorphic to D6

if and only if 4w − v2 + 110v − 1125 = 0. Up to F -isomorphism, such a curve is given by

(31) y2 = x6 + x3 + z.
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We will refer to a D6 pencil as any pencil of superelliptic curves cut out by yn = x6 + x3 + z
where n ≥ 2 and z ∈ F is an affine parameter. The dependency on m of those Newton polygons
New(P `m) derived from D6 pencils is more subtle than that of those derived from D4 pencils. Moreover,
when u = 1

2 , those inflectionary curves C`m that arise from the D6 pencil are always singular in four

distinguished points in the xz-plane, namely (0, 0) and (− 1
21/3 ζ

j , 1
4 ), j = 0, 1, 2, whose z-coordinates

(resp., x-coordinates) are roots of the x-discriminant −729z2(−1 + 4z)3 of x6 + x3 + z (resp., the
x-coordinates of the corresponding singular fibers of the pencil (31)). Here ζ denotes a primitive
cube root of unity. On the other hand, it is easy using Proposition 3.7 to see that for every m ≥ 3,
(x 7→ ζx, z 7→ z) defines a cyclic automorphism of C`m that permutes the three singularities supported
in the points (− 1

21/3 ζ
j , 1

4 ). Accordingly, it is natural to examine the Newton polygons of inflection

polynomials that arise from the D6 pencil in coordinates centered in either the origin or (− 1
21/3 ,

1
4 ).

Conjecture 5.8. Suppose that n = 2`, and that char(F ) is either zero or sufficiently positive. Let
Cm denote the m-th inflectionary curve associated to the D6-pencil, and given a point p ∈ A2

x,z, let
Newp(Cm) denote the Newton polygon of Cm associated with affine coordinates centered in p. The curve
C3 ⊂ A2

x,z is geometrically irreducible, and singular precisely in p1 = (0, 0) and p2+j = (− 1
21/3 ζ

j , 1
4 ),

j = 0, 1, 2. Moreover

Newp1(C3) = Conv((0, 2), (3, 2), (6, 0), (15, 0)) and Newpj (C3) = Conv((0, 2), (2, 2), (1, 1), (5, 0), (15, 0))

and C3 has geometric genus 2. When m = 4, the D6 inflection polynomial factors as P `4 = x2(4z −
1)P `4,∗, where P `4,∗ defines a curve C4,∗ ⊂ A2

x,z singular precisely in p1, with

Newp1(C4,∗) = Conv((0, 2), (6, 0), (12, 0))

and of geometric genus 2.10 For every m ≥ 5, the inflection polynomial P `m factors as P `m =
x(−m) mod 3 · (4z− 1)P `m,∗, where Cm,∗ ⊂ A2

x,z cut out by P `m,∗ is irreducible. The affine curve Cm,∗ has
associated Newton polygons

Newp1(Cm,∗) = Conv(v1, v2, v3, δm mod 6∈{1,2,3}v4, v5) and

Newpj (Cm,∗) = Conv(v2, v3, δm mod 6∈{1,2,3}v4, v6, v7, δ2|(m−1)v8)

where v1 = (2m − (2m mod 3), 0), v2 = (4m + 6bm−4
6 c + ϕ1((m − 4) mod 6, 0), v3 = (0, ϕ2(m)),

v4 = (3, ϕ2(m)), v5 = (0, b 2m
3 c), v6 = (0, bm−1

2 c), v7 = (m − 2, 0), and v8 = (1, m−3
2 ). Here ϕ1(0) =

−4, ϕ1(1) = −2, ϕ1(2) = 0, ϕ1(3) = −1, ϕ1(4) = 1, and ϕ1(5) = 3; while ϕ2(3) = 2, ϕ2(4) = 2,
ϕ2(5) = 3, ϕ2(6) = 4, and ϕ2(m) = 4 + bm−7

6 c · 5 + (m− 1) mod 6 for every m ≥ 7. In particular, the

delta-invariants νm,∗j of Cm,∗ in the singularities pj are given by

νm,∗1 =
3b2/3mc · (b2/3mc − 1)

2
and νm,∗j = b (m− 3)2

4
c, j ≥ 2

and Cm,∗ is of geometric genus

g(Cm,∗) = 3(ϕ2(m))2 − 3ϕ2(m)− 1− νm,∗1 − 3νm,∗2 + 3δm mod 6∈{1,2,3}(ϕ2(m)− 1)

whenever m ≥ 5.

Remark 5.9. Conjecture 5.8, along with our results for Legendre, Weierstrass, and D4 pencils, sug-
gests that over fields of characteristic zero, there is a tight relationship between singularities of the
total space of a pencil of superelliptic curves and singularities of the associated inflectionary curve. The
singularities of the total space of a pencil depend, in turn, on the singularity types that arise in fibers.
In the case of Legendre and Weierstrass pencils of hyperelliptic curves, any fiber has at-worst a single
node and is (geometrically) irreducible; while D4 and D6 bielliptic families include fibers with multiple
nodes or simple cusps, and may be reducible. In the final section below we initiate an investigation of
inflectionary varieties derived from the full two-dimensional family (27) of bielliptic curves, in which

10When m = 4, the reducible curve C4 is in fact singular in pj , j = 2, 3, 4; however, those points represent intersections

between C4,∗ and the other (geometrically irrelevant) components.
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case the interaction between the singular loci of the family and of the associated inflectionary surfaces
is more subtle.

5.2. Inflectionary surfaces from bielliptic curves. As explained in [2], Jung’s method for desin-
gularizing a surface X is in two steps, the first of which is to realize X as a branched cover of a
plane Y and compute the embedded desingularization of the discriminant curve of the associated pro-
jection π : X → Y .11 While computing desingularizations of the inflectionary surfaces derived from
the superelliptic analogues yn = x6 − s1x

4 + s2x
2 − 1 of the bielliptic surface (27) is itself a natural

problem, we will not attack the desingularization problem in full here.12 Rather, we will focus on the
structure of the discriminant curves ∆`

m associated with the projection of the inflectionary surfaces
(P `m = 0) derived from (27) to the (s1, s2)-plane. Note that ∆`

m always contains the discriminant ∆
of the bielliptic surface (27).

We begin by describing the stratification of the (reduced scheme associated with the) discriminant
of (27) according to the singularity configurations along the curves it parameterizes. According to
equation (28), the reduced discriminant is a quartic curve ∆∗ ⊂ A2

s1,s2 . In fact, it is easy to see that

∆∗ has nodes in the points (3ζj , 3ζ−j), where ζ is a cube root of unity, and that these nodes are
permuted by a cyclic µ3-automorphism of ∆∗. In particular, ∆∗ is of geometric genus zero. We now
apply a classical algorithm of Max Noether using adjoint curves (see, e.g., [19, Ch. 4]), to compute
a parameterization for ∆∗. More precisely, we single out adjoint conics through the singularities
(3ζj , 3ζ−j) and the smooth point (−1,−1) of ∆∗; there is a pencil of these, parameterized by

at(s1, s2, z) = ts2
1 + s1s2 + (3t− 6)s1z − (t− 2)s2

2 − 3ts2z − 9z2

where t ∈ P1. Solving the system of equations

ress1(at,∆∗) = ress2(at,∆∗) = resz(at,∆∗) = 0

in which “res” denotes the resultant, we deduce that the closure of ∆∗ in P2
s1,s2,z is parameterized by

(32) [s1(t) : s2(t) : z(t))] = [(t− 2)(3t3 − 6t2 + 12t− 8) : t(3t3 − 12t2 + 24t− 16) : t2(t− 2)2].

From (32), in turn, it is easy to identify those points of ∆∗ corresponding to curves with singularities
locally over F of the form yn = xm with m ≥ 3; indeed, these are precisely the solutions of

(33) f(t, x) = Dxf(t, x) = D2
xf(t, x) = 0

where f(t, x) = x6− s1(t)
z(t) x

4 + s2(t)
z(t) x

2−1. The system (33) has eight solutions, divided into two groups

of four each for t = 1 ±
√
−1
3 . It is furthermore clear from the presentation (26) that these are the

only special configurations possible.

5.2.1. Further components of the inflectionary discriminant. To conclude, we describe the components
of ∆`

m for small values of m.

Case: m = 3. In this case, the reduced subscheme of the inflectionary discriminant decomposes as
∆`

3 = ∆∗ ∪∆`
3,1 ∪∆`

3,2, where ∆`
3,1 and ∆`

3,2 have defining equations 4s1 − s2
2 = 0 and

−78125−118125s3
1 +756s6

1 +318750s1s2−31050s4
1s2 +204375s2

1s
2
2−189s5

1s
2
2−337500s3

2 +500s3
1s

3
2 = 0

respectively. Clearly ∆`
3,1 is a smooth rational curve. On the other hand, the Newton polygon of ∆`

3,2

has 10 interior lattice points, while the closure of ∆`
3,2 in the toric surface whose underlying polygon

is New(∆∗) is singular in precisely 9 points, all of which lie in the dense open lous A2
s1,s2 . Closer

inspection shows that each of these is a node; so ∆`
3,2 is of geometric genus 1.

11In the second step, X is replaced by its blown-up analogue X̃ with smooth discriminant; the singularities of X̃ are

then isolated, and may be resolved via a deterministic combinatorial procedure.
12Kulikov [14] has solved the analogue of this problem for two-dimensional families of plane curves subject to a

genericity hypothesis.
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Case: m = 4. The (reduced) inflectionary discriminant decomposes as ∆`
4 = ∆∗∪∆`

4,1∪∆`
4,2∪∆`

4,3∪
∆`

4,4, where ∆`
4,1 and ∆`

4,2 are smooth rational curves defined by s2
1 − 4s2 = 0 and s2

2 − 4s1 = 0, while

∆`
4,3 and ∆`

4,4 are defined by

− 1125 + 4s3
1 + 110s1s2 − s2

1s
2
2 + 4s3

2 = 0 and

20796875 + 3429000s3
1 + 52272s6

1 − 13942500s1s2 − 235440s4
1s2 − 571350s2

1s
2
2 + 1512s5

1s
2
2 + 3429000s3

2

+ 6220s3
1s

3
2 − 235440s1s

4
2 − 3645s4

1s
4
2 + 1512s2

1s
5
2 + 52272s6

2 = 0

respectively. Remarkably, ∆∗ and ∆`
4,3 share the same Newton polygon, namely

New(∆`
4,3) = New(∆∗) = Conv((0, 0), (3, 0), (2, 2), (0, 3)).

In particular, ∆`
4,3 is of arithmetic genus 3. On the other hand, closer inspection shows that ∆`

4,3

is singular in the points (−5ζ,−5ζ−1) ∈ A2
s1,s2 , which are permuted by a cyclic µ3-automorphism of

∆`
4,3; in particular, ∆`

4,3 is itself a singular rational curve. Likewise, we have New(∆`
4,4) = 2New(∆∗);

as New(∆`
4,4) contains 17 interior lattice points, it follows that the arithmetic genus of the closure of

∆`
4,4 in Tor(∆∗) is 17. On the other hand, (the closure of) ∆`

4,4 is singular in 15 points of A2
s1,s2 , each

of which is a node; so ∆`
4,4 is of geometric genus 2.

Case: m = 5. The (reduced) inflectionary discriminant decomposes as ∆`
5 = ∆∗ ∪∆`

5,1 ∪∆`
5,2 ∪∆`

5,3,

where ∆`
5,1 = ∆`

4,1 and ∆`
5,2 is the smooth rational curve defined by −8 + 4s1s2 − s3

2 = 0, while ∆`
5,3

is defined by

− 47148698016885339− 1856430918636308s
3
1 + 913227582180384s

6
1 + 23648174414208s

9
1 + 140560353536s

12
1 + 711244800s

15
1

+ 33089373317849562s1s2 − 4358733253684512s
4
1s2 − 300895277832256s

7
1s2 − 4020413538816s

10
1 s2 − 3180234240s

13
1 s2

+ 209782436304845s
2
1s

2
2 + 619503583440656s

5
1s

2
2 + 23057043202656s

8
1s

2
2 + 118060510464s

11
1 s

2
2 − 265317120s

14
1 s

2
2 − 5091695995399316s

3
2

+ 1335207549416408s
3
1s

3
2 + 15852912617504s

6
1s

3
2 − 519443690880s

9
1s

3
2 + 1139913216s

12
1 s

3
2 − 1226356470049056s1s

4
2

− 237101028007542s
4
1s

4
2 − 2958769613112s

7
1s

4
2 − 12989609248s

10
1 s

4
2 + 17200512s

13
1 s

4
2 + 55678112275728s

2
1s

5
2 + 16933654916732s

5
1s

5
2

+ 147246610976s
8
1s

5
2 − 65461824s

1
11s

5
2 + 241313946391584s

6
2 − 23675574320096s

3
1s

6
2 − 579913339582s

6
1s

6
2 − 2298341488s

9
1s

6
2 − 3304800s

12
1 s

6
2

+ 2280390203328s1s
7
2 + 688503977416s

4
1s

7
2 + 33223815960s

7
1s

7
2 − 3479328s

10
1 s

7
2 + 3980066847328s

2
1s

8
2 − 89661598176s

5
1s

8
2 − 881911439s

8
1s

8
2

+ 1118124s
11
1 s

8
2 − 4300540393088s

9
2 − 196377843072s

3
1s

9
2 + 3550852496s

6
1s

9
2 − 425286s

9
1s

9
2 + 286292024832s1s

10
2 + 6808519392s

4
1s

10
2

− 30020384s
7
1s

10
2 + 81s

10
1 s

10
2 − 30735987456s

2
1s

11
2 − 11464256s

5
1s

11
2 − 468s

8
1s

11
2 + 29621700864s

12
2 + 210366976s

3
1s

12
2 − 1376s

6
1s

12
2

+ 227179008s1s
13
2 + 9600s

4
1s

13
2 + 5376s

2
1s

14
2 − 50176s

15
2 = 0.

Here New(∆`
5,3) = 5New(∆∗), and as New(∆`

5,3) contains 131 interior lattice points, it follows that the

arithmetic genus of the closure of ∆`
5,3 in Tor(∆∗) is 131. On the other hand, (the closure of) ∆`

5,3 is

singular in 105 points of A2
s1,s2 , each of which is a node; so ∆`

5,3 is of geometric genus 26.
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