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Abstract. We investigate local and global weighted heights a-la Weil for

weighted projective spaces via Cartier and Weil divisors and extend the

definition of weighted heights on weighted projective spaces from [5] to

weighted varieties and closed subvarieties. We prove that any line bundle

on a weighted variety admits a locally bounded weighted M -metric. Using

this fact, we define local and global weighted heights for weighted varieties

in weighted projective spaces and their closed subschemes, and show their

fundamental properties.

1. Introduction

Let q = (q0, · · · , qn) be a tuple of weights and Pnq,k the weighted projective

space over a field k. In [5] was introduced a new height on Pnq,k, called weighted

height, and proved that such height satisfies basic properties of projective heights.

This definition of weighted heights was motivated not only by its computational

advantages, but also because such heights are more natural since they are defined

on Pnq,k and not on some projective space Pnk via the Veronese embedding. Such

heights have been used in several computations in the moduli space of curves,

rational functions; see [6,8,16] and are a very useful tool in using machine learning

techniques in algebraic and arithmetic geometry. However, no complete theory

of such heights exists. For example, weighted heights in [5] were not defined

analytically via Cartier divisors, local weighted heights via line bundles, global
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weighted heights for closed subschemes. To the knowledge of authors this has not

been done before.

The goal of this paper is to introduce and develop the theory of weighted

heights, inspired by Weil’s approach. We achieve this by providing all the nec-

essary tools for understanding and introducing weighted heights, which have not

been extensively covered in the literature. To accomplish this, we focus on de-

veloping the theory of Cartier divisors on weighted projective varieties, exploring

the analytic structure of weighted varieties, investigating weighted blow-ups, and

introducing both local and global weighted heights an showing their fundamental

properties. In our other work [19], we state some different versions of Vojta’s

conjecture for weighted varieties in terms of weighted local and global heights,

and give an application to the greatest common divisor problem.

This paper is organized as follows. In Sec. 2 we recall some of the basic setup

for Weil height machinery on projective spaces and varieties. In Thm. 2.2 we

summarize all properties of local Weil heights and in Thm. 2.3 the properties of

global Weil heights for such varieties. Such setup will be important later in the

paper to draw an analogy between Weil heights and weighted heights.

In Sec. 3 we establish notation for weighted projective varieties and define

Zariski topology, Veronese embedding, and singular locus of weighted projective

varieties. Moreover, we introduce weighted blow-ups and exceptional divisors on

weighted projective varieties.

In Sec. 4 we develop the theory of weighted heights a-la Weil. We introduce

Cartier divisors on weighted projective varieties and show that results carry over

easily to weighted projective varieties. Moreover, we show that any line bundle

on a weighted variety X admits a locally bounded weighted M -metric. Given

ν ∈ Mk, the local weighted height ζD̂(−, ν) with respect to D̂ on weighted

variety X is defined as

ζD̂(x, ν) = − log ‖gD(x)‖v,

for x ∈ X\ Supp(D), where v ∈M such that ν = v|k. Properties of local weighted

heights are proved in Thm. 4.4 as they are similar to properties of projective

heights. The global weighted height sL̂(x) with respect to L̂ is defined by

sL̂(x) :=
∑
u∈MK

ζL̂g (x, u),

where ζL̂g (x, u) = − log ‖g(x)‖u, and its properties are described in Thm. 4.5.

In Sec. 4.5 we introduce weighted local and global heights associated to closed

subschemes of weighted projective varieties.
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Notation: Since our goal is to provide all the technical details of the theory of

weighted heights, in analogy to that of projective heights there is a real possibility

of mixing up notation between different heights. Below we give a list of notation

of Weil heights and weighted heights. Throughout the paper, the projective space

(resp. weighted projective space) over a field k is denoted by Pnk (resp. Pnq,k).

Terminology in projective space Pnk Pnq,k

multiplicative height over k Hk Sk
logarithmic height over k hk sk

absolute multiplicative height H S
absolute logarithmic height h s

local Weil height with respect to the divisor D̂ λD̂(x, ν) ζD̂(x, ν)

global Weil height with respect to the line bundle L̂ hL̂(x) sL̂(x)

local height associated to exceptional divisor of Y λY(x, ν) ζY(x, ν)

global height associated to exceptional divisor of Y hY(x) sY(x)

absolute logarithmic height on X wrt divisor D hX ,D sX ,D

absolute logarithmic local height on X wrt divisor D λX ,D ζX ,D

Singular locus of Pnq,k Sing(Pnq,k)

Acknowledgments: We want to thank Min Ru for helpful discussions during

the period that the last version of this paper was written.

2. Preliminaries on Weil projective heights

In this section, we review Weil heights on varieties in usual projective spaces.

One can find more details on the subjects in [7].

Let k be an algebraic number field of degree m = [k : Q] and k̄ be an alge-

braically closed field containing k. We denote by Ok the ring of algebraic integers

in k. Let X be a variety over k, i.e. an integral separated scheme of finite type

over Spec(k) and OX the ring sheaf of regular functions on X . We will use X to

mean X (k̄) and X (k) for the set of k-rational points on X .

Denote by Mk the set of all places of k, i.e. the equivalent classes of absolute

values on k. It is a disjoint union of M0
k , the set of all non-archimedian places,

and M∞k , the set of all Archimedean places of k. More precisely, if ν ∈M0
k , then

ν = νp for some prime ideal p ⊂ Ok over a prime number p such that νp|Q is the

p-adic absolute value. If ν ∈ M∞k , then ν = ν∞ and ν∞|Q is the usual absolute
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value | · |∞ on Q. The local degree nν at ν ∈ Mk is defined by nν = [kν : Qν ],

where kν and Qν are the completions with respect to ν. For each ν ∈Mk, we let

| · |ν be a representative of the equivalence class which is the nν-th power of the

one that extends a normalized absolute value over Q. Since k is a number field,

then for every x ∈ k∗ we have the product formula
∏
ν∈Mk

|x|ν = 1. Given a

finite field extension K/k, we denote by MK the set of places v on K such that

v |k= ν, for some ν ∈Mk. Then, we have the degree formula as∑
v∈MK , v|k=ν

[Kv : kν ] = [K : k].

2.1. Heights. For x ∈ k∗, the multiplicative and logarithmic height are

defined by

(1) Hk(x) =
∏
ν∈Mk

max{1, |x|ν} and hk(x) = logHk(x) =
∑
ν∈Mk

log |x|ν .

For x̃ = (x0, · · · , xn) ∈ kn+1 and v ∈Mk, we let

|x̃|ν := max{|xi|ν : 0 ≤ i ≤ n}.

One extends such definitions to the projective space Pn(k) by defining the mul-

tiplicative and logarithmic height of x = [x0 : · · · : xn] ∈ Pn(k) by

(2)

Hk(x) =
∏
ν∈Mk

max
0≤i≤n

{|xi|ν}, and hk(x) = logHk(x) =
∑
ν∈Mk

max
0≤i≤n

{log |xi|ν}.

They are independent of the choice of the coordinates and therefore well defined.

For any finite extension K of k and v ∈MK , we normalize the absolute value

| · |v such that its restriction | · |ν on k satisfies | · |ν = | · |[Kν :kν ]
v . Using the degree

formula, for x ∈ k∗ we have

(3) Hk(x) = HK(x)1/[K:k], and hk(x) =
1

[K : k]
hK(x),

and hence for all x ∈ Pn(k),

(4) Hk(x) = HK(x)1/[K:k], and hk(x) =
1

[K : k]
hK(x).

The field of definition of x ∈ Pn(k̄) is k(x) := k
(
x0

xi
, . . . , xnxi

)
, for any i such that

xi 6= 0. The absolute multiplicative and logarithmic global Weil heights

of x ∈ k̄∗ are defined by

H(x) = HK(x)1/[K:k] and h(x) =
1

[K : k]
hK(x),
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and for x ∈ Pn(k̄) by

(5) H(x) = HK(x)1/[K:k], and h(x) =
1

[K : k]
hK(x),

where K is a number field containing k(x). The absolute height is independent

of the choice of K. We call h(x) the global Weil height on Pn(k̄).

2.2. M-bounded sets, functions, and M-metrized line bundles. Let M =

Mk̄ be the set of places on k̄ extending those of Mk, i.e., if v ∈ M then ν = v|k
the restriction of v over k belongs to Mk.

A function γ : Mk → R is called Mk-constant if γ(ν) = 0 for all but finitely

many ν ∈ Mk. We extend each Mk-constant γ to a function γ : M → R by

setting γ(v) = γ(v|k). Given any variety X , by an Mk-function on X we mean

a map λ : X ×M → R such that λ(x, v) is Mk-constant or λ(x, v) = ∞ for all

x ∈ X and v ∈M . Two Mk-functions λ1 and λ2 on X are called equivalent, and

denoted by λ1 ∼ λ2, if there is an Mk-constant function γ such that

|λ1(x, v)− λ2(x, v)| ≤ γ(v) for all (x, v) ∈ X ×M.

We say that an Mk-function λ is Mk-bounded if λ ∼ 0.

For an affine variety X , a set E ⊂ X ×M is called an affine Mk-bounded set

if there are coordinate function x1, · · · , xn on X and an Mk-bounded constant

function γ such that

|xi(x)|v ≤ eγ(v) for all 0 ≤ i ≤ n, and (x, v) ∈ E .

The set E is bounded by a finite set of absolute values and it is integral with

respect to the rest of absolute values. This definition is independent of choice of

the coordinates xi on X . By definition, any finite union of affine M -bounded sets

is again an affine M -bounded.

For an arbitrary variety X , we say that E ⊂ X ×M is a Mk-bounded set if

there exists a finite cover {Ui} of affine open subsets of X and Mk-bounded sets

Ei ⊂ Ui ×M such that E =
⋃
Ei.

A function λ : X × M → R is called locally Mk-bounded above if for

every Mk bounded subset E ⊂ X ×M, there exists an Mk-constant γ such that

λ(x, v) ≤ γ(v) holds for (x, v) ∈ E. The locally Mk-bounded below and

locally Mk-bounded functions are defined similarly.

Recall that a line bundle L on a variety X defined over k, is a covering map

π : L → X such that for each x ∈ X , the fiber Lx := π−1(x) is a 1-dimensional

vector space over k. An M-metric on a line bundle L is a norm ‖ · ‖ = (‖ · ‖v)
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such that for each v ∈M , and each fiber Lx assigns a function

‖ · ‖v : Lx → R≥0,

which is not identically zero and satisfies:

(i) ‖λ · ξ‖v = |λ|v · ‖ξ‖v for λ ∈ k̄ and ξ ∈ Lx.

(ii) If v1, v2 ∈M agree on k(x), then ‖ · ‖v1
= ‖ · ‖v2

on Lx(k(x)).

An M -metric ‖ · ‖ = (‖ · ‖v) on L is called locally M-bounded if for any regular

function g ∈ OX (U) on an open set U ⊆ X , the function (x, v) 7→ log ‖g(x)‖v on

U ×M is locally Mk-bounded.

We say that L is an M-metrized line bundle on X if L is equipped with an

M -metric. The following result shows that there exist an M -metric on any line

bundle on a variety in projective spaces; see [7, Prop. 2.7.5].

Lemma 2.1. Any line bundle L on a variety X ⊆ Pn
k̄

defined over k admits a

locally bounded M -metric ‖ · ‖.

Denote by L̂ the pair (L, ‖ · ‖). Given two pairs L̂1 = (L1, ‖ · ‖1) and L̂2 =

(L2, ‖ · ‖2), we define L̂1 ⊗ L̂2 := (L1 ⊗ L2, ‖ · ‖), where

‖f ⊗ g‖ = ‖f‖1 · ‖g‖2, for f ∈ L1,x, g ∈ L2,x, and x ∈ X .

We say that L̂1 and L̂2 are isometric if there is an isomorphism between L1 and

L2 which is fiber-wise an isometry.

Let P̂ic(X ) denote the group of the isometric classes of pairs L̂ = (L, ‖ · ‖)
where L ∈ Pic(X ). Then, the identity element of P̂ic(X ) is OX with trivial

metric ‖1‖v = |1|v and L̂−1 = (L−1, 1/‖ · ‖) is the inverse of L̂ ∈ P̂ic(X ). Given

any morphisms φ : X ′ → X of varieties over k, and L̂ = (L, ‖ · ‖) ∈ P̂ic(X ), the

pull-back of L̂ by φ is defined as φ̂∗(L) := (φ∗(L), (‖ · ‖′v)), such that for x ∈ X ′,
any open subset U of X containing φ(x), and g ∈ OX (U) we have

‖φ∗(g)(x)‖′v = ‖g(φ(x))‖v.

The pull-back induces a group homomorphism between P̂ic(X ) and P̂ic(X ′). Un-

der this homomorphism, any locally bounded M -metrized line bundles remain

locally bounded.

2.3. Local Weil heights. We assume that the reader is familiar with Cartier

divisors for varieties in projective spaces. Given any effective Cartier divisor

D = {(Ui, fi)} on X , let LD = OX (D) be the line bundle of regular functions

on D. It can be constructed by gluing OX (D)|Ui = f−1
i OX (Ui) and the constant

section 1 becomes a canonical invertible regular section on LD, which we denote
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it by gD. We equip LD with a locally bounded M -metric ‖ · ‖, which is possible

by Thm. 2.1, and denote it by D̂ = (LD, ‖ · ‖). Given ν ∈ Mk, the local Weil

height λD̂(·, ν) with respect to D̂ on X is defined to be

(6) λD̂(x, ν) = − log ‖gD(x)‖v, for x ∈ X\ Supp(D),

where v ∈M such that v|k = ν.

The following lemma provides a summary of all properties of local heights,

which can be found in [7, Prop. 2.7.10 and 2.7.11] or [15, Chap. 10].

Lemma 2.2 (Local Weil heights). For each of ν ∈ Mk, let v ∈ M such that

ν = v|k. Let X ⊆ Pnk be a variety defined over k, and D̂, D̂1, D̂2 ∈ P̂ic(X ). Then,

we have:

(i) For x 6∈ Supp(D1) ∪ Supp(D2), we have

λ
D̂1+D2

(x, ν) = λD̂1
(x, ν) + λD̂2

(x, ν).

(ii) If φ : X ′ → X is a morphism over k such that φ(X ′) ∩ Supp(D) = ∅, then

λφ∗(D̂)(x
′, ν) = λD̂(φ(x′), ν), for x′ ∈ X ′\φ−1(Supp(D)).

(iii) If D is effective and X is Mk-bounded (e.g X is projective), then there exists

an Mk-constant function γ such that λD̂(x, ν) ≥ γ(ν), for x ∈ X\ Supp(D).

(iv) If D = div(f) for some nonzero rational function on X , then

λD̂(x, ν) = − log
|f(x)|v
|x|v

, for x ∈ X\ Supp(D),

by giving the trivial metric ‖1‖v = |1|v on OX (D) ∼= OX .

(v) If X is Mk-bounded, ‖ · ‖′ is another Mk-bounded metric on OX (D) and λ′
D̂

is the resulting local Weil height, then λD̂ = λ′
D̂

+O(1).

(vi) If K|k is a finite field extension and u ∈MK over some ν ∈Mk, then

λD̂(x, ν) =
1

[K : k]
λD̂(x, u), for x ∈ X\ Supp(D).

(vii) There are m,n ∈ Z≥0, and nonzero rational functions fi,j on X for i =

0, · · · , n1, j = 0, · · · , n2 such that

λD̂(x, ν) = max
0≤i≤n1

min
0≤j≤n2

log |fij(x)|ν .
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2.4. Global Weil heights. Let X ⊂ Pn
k̄

be a variety defined over k and L any

line bundle on X . Consider the pair L̂ = (L, (‖ · ‖v)) ∈ P̂ic(X ), a given x ∈ X ,

and K a finite extension of k containing k(x). For each u ∈ MK , we choose a

place v ∈M over u and define

‖ · ‖u := ‖ · ‖1/[K:k]
v

on Lx(k(x)). By the second condition of a M -metric, one can see that it is

independent of the choice of v ∈M . We let g be an invertible rational function of

L with x 6∈ Supp(Dg) where Dg = div(g). Note that such function exists because

there is an open dense trivialization in a neighborhood of x. Then, OX (Dg) is

a locally MK-bounded with respect to MK-metric given above. We denote by

L̂g := (OX (Dg), (‖ · ‖u)). The global Weil height hL̂(x) of x ∈ X with respect

to L̂ is defined by

(7) hL̂(x) :=
∑
u∈MK

λL̂g (x, u),

where we have λL̂g (x, u) = − log ‖g(x)‖u, assuming v|k = u. These definitions

are independent of the choice of K and g. For the following see [7, Prop. 2.7.18].

Lemma 2.3 (Global Weil height machinery). Let X be a variety and L̂, L̂1, and

L̂2 ∈ P̂ic(X ). Then:

(i) hL̂ depends only on the isometry class of L̂, i.e, if L̂1and L̂2 are isometric

pairs, then hL̂1
= hL̂2

.

(ii) If X is a complete variety or generally M -bounded, then hL̂ does not depends

on the choice of the locally bounded M -metrics up to a locally M -bounded

constant function.

(iii) For any x ∈ X , we have hL̂1⊗L̂2
(x) = hL̂1

(x) + hL̂2
(x).

(iv) If φ : X ′ → X is a morphism over k, then hφ∗(L̂)(x) = hL̂(φ(x)), for x ∈ X ′.
(v) If X = Pn

k̄
and L = OX (1), then h(x) = hL̂(x) +O(1).

3. Weighted projective varieties

Let k be a field and for any integer n ≥ 1 denote by Ank (resp. Pnk ) the affine

(resp. projective) space over k. When k is an algebraically closed field, we will

drop the subscript. For any integer ` ≥ 1, let µ` denote the group of `-th roots

of unity generated by ξm, which is assumed to be contained in k.

A fixed tuple of positive integers q = (q0, . . . , qn) is called weights. Let Vnk :=

Ank \ {(0, · · · , 0)} and consider the action of k∗ = k \ {0} on Vn+1
k given by

(8) λ ? (x0, . . . , xn) = (λq0x0, . . . , λ
qnxn) , for λ ∈ k∗.
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Define the weighted projective space Pnq,k to be the quotient space Vn+1
k /k∗

of this action, which is a geometric quotient since k∗ is a reductive group. An

element x ∈ Pnq,k is denoted by x = [x0 : · · · : xn] and its i-th coordinate by xi(x).

For each i = 0, . . . , n, we define affine pieces of Pnq,k by

Ui = {x ∈ Pnq,k : xi(x) 6= 0}.

Hence, Pnq,k = ∪ni=0Ui. We assume that the field k contains a qi-th root of

unity ξqi for every i = 0, · · · , n. Then, for each i = 0, . . . , n, the affine piece

Ui is isomorphic to Vnk/µqi , the quotient space of the action of µqi on Vnk with

coordinates z0, · · · , ẑi, · · · , zn, given by

(9) ξi · (z0, · · · , ẑi, · · · , zn) 7→ (ξq0i z0, · · · , ẑi, · · · , ξqni zn).

Here, for all 0 ≤ j 6= i ≤ n, we have zj =
xj

x
qj/qi
i

, which is similar to the case of

usual projective space Pnk .

Weighted projective space can also be defined as a finite quotient of usual

projective space. For weights q = (q0, . . . , qn), we let Gq := µq0 ×· · ·×µqn , which

is a finite group of order |Gq| = q with q :=
∏n
i=0 qi. Then, there is an action of

Gq on Pnk given by

(10) (ξ0, · · · , ξn) • [x0 : · · · : xn] = [ξ0x0 : · · · : ξnxn] .

Note that Gq
∼= µm if and only if m = lcm(q0, . . . , qn), that is, all of qi’s are

pairwise coprime. In this case, action of Gm on Pnk can be expressed as

(11) ξα · [x0 : · · · : xn] =
[
ξα/q0x0 : · · · : ξα/qnxn

]
,

for 0 ≤ α ≤ m − 1, where ξ ∈ Gm is a m-th root of unity. The morphism

π0 : Vn+1
k −→ Vn+1

k given by

(x0, · · · , xn) 7→ (xq00 , . . . , x
qn
n )

induces the following diagram

(12) Vn+1
k

π0 //

pq

��

Vn+1
k

pq

��
Pnk

πq //

pq

##

Pnq,k

Pnk/Gq

∼=

;;
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where pq is the canonical quotient map and πq : Pnk −→ Pnq,k is given by

[x0 : · · · : xn] 7→ [xq00 : · · · : xqnn ] .

The morphism πq is surjective, finite, and its fibers are orbits of the action of Gq

on Pnk , see [12, Chap. V, Props. 1.3 and 1.8].

Pnq,k(k) will denote the set of k-rational points of Pnq,k. When k is algebraically

closed and there is no room for confusion sometimes Pnq is used instead of Pnq,k.

3.1. Zariski topology on weighted projective spaces. Consider the ring of

polynomials k[x0, . . . , xn] and assign to every variable xi the weight wt(xi) = qi,

for all i = 0, . . . , n. Every polynomial is a sum of monomials xd =
∏
xdii with

wt(xd) =
∑
diqi.

Let f ∈ k[x0, . . . , xn], where wt(xi) = qi, for i = 0, . . . , n. Then, f is called a

weighted homogeneous1 polynomial of degree d if each monomial in f is

weighted of degree d, i.e.

f(x0, . . . , xn) =

t∑
i=1

ai

n∏
j=0

x
dj
j , for ai ∈ k and t ∈ N

and for all 0 ≤ i ≤ n, we have that
∑n
i=1 qidj = d. For every λ ∈ k∗ and any

weighted homogeneous polynomial f , we have

f(λq0x0, λ
q1x1, . . . , λ

qnxn) = λdf(x0, . . . , xn),

We denote by kq[x0, . . . , xn] the set of weighted homogeneous polynomials

over k. It is a subring of k[x0, . . . , xn] and therefore a Noetherian ring. By

kq[x0, . . . , xn]d we mean the additive group of all weighted homogeneous

polynomials of degree d.

Let α = [α0 : · · · : αn] ∈ Pnq,k and f ∈ kq[x0, . . . , xn]d. Then, for any λ ∈ k∗,
we have α = [λq0α0 : · · · : λqnαn]. Since

f (λq0α0, . . . , λ
qnαn) = λd f(α0, . . . , αn) = 0,

then α being a zero of f is well-defined for all α ∈ Pnq,k.

A weighted hyperplane in Pq,k is a weighted homogeneous polynomial of

degree m. Hence, it is the set of points x = [x0 : . . . : xn] ∈ Pq,k satisfying a

polynomial of the form

(13) `(x) = a0x
m/q0
0 + a1x

m/q1
1 + · · ·+ anx

m/qn
n =

n∑
i=0

aix
m
qi
i

1In some papers on weighted projective spaces, a weighted homogeneous polynomial is also

called quasihomogeneous polynomial.
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Notice that if q = (1, . . . , 1) all definitions agree with those of Pn.

An ideal I ⊂ kq[x0, . . . , xn] is called a weighted homogeneous ideal if every

element of f ∈ I can be written as f =
∑d
i=0 fi where fi ∈ kq[x0, . . . , xn]i∩I with

deg(fi) = i. The sum of two weighted homogeneous ideals I and J , is denoted

by I + J and is defined to be

I + J = {f + g|f ∈ I, g ∈ J.}

If I and J are weighted homogeneous ideals in kq[x0, . . . , xn], then I + J is also

an weighted homogeneous ideal in kq[x0, . . . , xn]. The product of two weighted

homogeneous ideals I and J is denoted by IJ and is defined to be the ideal

IJ = 〈{fg | f ∈ I, g ∈ J}〉.

For any given weighted homogeneous ideal I, we define weighted projective

variety of I by

(14) V (I) =
{

x ∈ Pnq,k
∣∣∣ f(x) = 0 for all f ∈ I

}
Let I and J be weighted homogeneous ideals. Then the following hold:

(i) V (I) ∩ V (J) = V (I + J)

(ii) V (I) ∪ V (J) = V (IJ)

(iii) Pnq,k = V (0)

Conversely, given any V ⊂ Pnq,k the weighted homogeneous ideal associated

to V is given by

I(V ) =
{
f ∈ kq[x0, . . . , xn]

∣∣∣ f(x) = 0 for all x ∈ V
}

A weighted homogeneous ideal I is called a radical weighted homogeneous

ideal if f ∈ kq[x0, . . . , xn] such that fr ∈ I for an integer r ≥ 1 then f ∈ I.

Lemma 3.1. Let V ⊂ Pnq,k be a weighted projective variety. Then, weighted

homogeneous ideal I(V ) associated to V is a radical weighted homogeneous ideal.

Proof. Let f and g be two polynomials in I(V ). Then, f(P ) = g(P ) = 0 for all

points P ∈ V , i.e. they both vanish at all points P in the variety V then so does

f + g and fh where h is any polynomial in I(V ). Therefore, I(V ) is a weighted

homogeneous ideal.

Since, kq[x0, . . . , xn] is Noetherian, then I(V ) is finitely generated, say I(V ) =

〈f1, . . . , fn〉. However, fi ∈ kq[x0, . . . , xn] for all i and therefore every fi is

weighted homogeneous polynomial. Hence I(V ) is weighted homogeneous ideal

since it is generated by finitely many weighted homogeneous polynomials.
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Finally let us prove that I(V ) is radical. Let fr ∈ I(V ). Then, for all points

P ∈ V we have that fr(P ) = 0. But since f ∈ kq[x0, . . . , xn], which is an

integral domain, then fr(P ) = (f(P ))
r

= 0 implies that f(P ) = 0 for all P ∈ V .

Therefore, I(V ) is radical. This completes the proof. �

For weighted projective varieties V and W then we say that V is a weighted

subvariety of W if V ⊂ W . It can be shown that any finite union of weighted

projective varieties is a weighted projective variety. Furthermore, an arbitrary

intersection of weighted projective varieties is a weighted projective variety. A

weighted projective variety is said to be irreducible if it has no non-trivial de-

composition into subvarieties. We notice that any weighted projective varieties are

projective varieties too. Hence, we can define the Zariski topology for weighted

projective varieties. Zariski topology on a weighted projective space Pnq,k is

given by defining closed sets of Pnq,k to be those of the form V (I) for some weighted

homogeneous ideal I ⊂ kq[x0, . . . , xn].

Definition 1. Zariski closure of a subset S of a weighted projective space Pnq,k
is the smallest weighted projective variety that contains S.

Remark 1. Let S ⊂ Pnq,k. Then, V (I(S)) is the Zariski closure of S. The proof

is similar to the case of projective varieties.

Example 1. Let q = (q0, q1, q2) and f ∈ kq[x, y, z]d. Then, V (f) ⊂ P2
q,k is a

degree d-plane curve in P2
q,k.

The following gives the third equivalent definition of weighted projective space

in language of schemes, see [11, Subsection 1.2.2] or [4, Theorem 3A.1].

Proposition 3.2. Pnq,k is isomorphic to Proj (kq[x0, . . . , xn]).

For the rest of this paper, by a weighted variety we mean an integral, sepa-

rated subscheme of finite type in Proj(kq[x0, · · · , xn]). In other words, X ⊆ Pnq,k
is a weighetd variety if there are f1, · · · , ft ∈ kq[x0, . . . , xn] such that X is iso-

morphic to the k-scheme Proj
(
kq[x0,...,xn]
〈f1,··· ,ft〉

)
.

A weighted space Pnq,k is called reduced if gcd(q0, · · · , qn) = 1. It is called

normalized or well-formed if

gcd(q0, . . . , q̂i, . . . , qn) = 1, for each i = 0, . . . , n.

3.2. Veronese map. Let R be a graded ring and d ≥ 1 be an integer. Its d-th

truncated ring is the subring R[d] ⊆ R defined by

R[d] :=
⊕
d|n

Rn =
⊕
i≥0

Rdi.
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Clearly we have the embedding R[d] ↪→ R, which is called the d-th Veronese

embedding, implying that Proj(R[d]) ∼= Proj(R) by [13, Prop. 2.4.7]. Moreover,

the sheaf O(1) on Proj(R[d]) corresponds via the isomorphism to O(d) on Proj(R).

Proposition 3.3. Given any tuple of weights q = (q0, . . . , qn), the following hold:

(i) Any weighted projective space Pnq,k is isomorphic to Pnq′,k, where q′ is a

reduced tuple of weights.

(ii) If Pnq,k is reduced and di = gcd(q0, · · · , q̂i, · · · , qn) for 0 ≤ i ≤ n, then

Pnq,k ∼= Pnq′,k with q′ =
(
q0
di
, . . . , qi−1

di
, qi,

qi+1

di
, . . . , qndi

)
.

(iii) Any Pnq,k is isomorphic to a reduced and well-formed one.

(iv) If q is reduced and all of m/qi are co-prime, where m = lcm (q0, · · · , qi) ,
then Pnq,k is isomorphic to Pnk by φm : Pnq,k −→ Pnk defined as

(15) φm([x0, . . . , xn]) = [x
m/q0
0 , x

m/q1
1 , . . . , xm/qnn ].

Proof. Let d = gcd(q0, . . . , qn), R = kq[x0, . . . , xn], and R[d] be the d-th trun-

cated subring of R. Then, R[d] = kq[xd0, . . . , x
d
n] and by Thm. 3.2 we have

Pnq,k = Proj(R) ∼= Proj(R[d]) = Pnq′,k, with q′ =
(q0

d
, . . . ,

qn
d

)
,

under the isomorphism

(16) [x0 : · · · : xn]→ [y0 : · · · : yn] := [xd0 : xd1 : · · · : xdn].

This shows that Pnq,k is isomorphic to a reduced weighted projective space Pnq′,k,

i.e., with q′ = (q′0, · · · , q′n) such that gcd(q′0, · · · , q′n) = 1. This completes the

proof of part (i).

Now, we assume that gcd(q0, . . . , qn) = 1 and let di = gcd(q0, · · · , q̂i, · · · , qn),

for 0 ≤ i ≤ n. Then, gcd(di, qj) = 1, for all 0 ≤ i 6= j ≤ n. If xp0

0 · · ·xpnn is a

monomial of degree pdi for an integer p ≥ 1, then

p0q0 + · · ·+ pnqn = pdi,

and so di divides piqi, and hence di|pi. This implies that xi only appears in R[di]

as xdii . Thus, we have R[di] = k[x0, . . . , xi−1, x
di
i , xi+1, . . . , xn] and hence

(17) Pnq,k = Proj(R) ∼= Proj(R[di]) = Pnq′,k,

with q′ =
(
q0
di
, . . . , qi−1

di
, qi,

qi+1

di
, . . . , qndi

)
under the isomorphism

[x0 : · · · : xn]→ [y0 : · · · : yn] := [x0 : · · · : xdii : · · · : xn],

see [5, Prop. 3] for more details. Thus, the part (ii) is proved.
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One can conclude part (iii) by repeatedly using (ii). Indeed, by defining

di = gcd(q0, · · · , q̂i, · · · , qn), ai = lcm(d0, · · · , d̂i, · · · , dn), a = lcm(d0, · · · , dn),

for all 0 ≤ i ≤ n, one can easily check the following:

(1) ai|qi, gcd(ai, di) = 1 and aidi = a for 0 ≤ i ≤ n;

(2) gcd(dj , di) = 1, and dj |qi, for 0 ≤ i 6= j ≤ n.
Then, denoting by R[d] := kq[xd0

0 , · · · , xdnn ], we have

Pnq,k = Proj(R) ∼= Proj(R[d]) = Pnq′,k with q′ = (q′0, . . . , q
′
n).

where q′i = qi/ai for all 0 ≤ i ≤ n, under the morphism

(18) [x0 : · · · : xn]→ [y0 : · · · : yn] := [xd0
0 : · · · : xdnn ].

Since gcd(q′0, · · · , q̂′i, · · · , q′n) = 1 for all 0 ≤ i ≤ n, then Pnq′,k is a well-formed

weighted projective space; see [2, Prop. 2.3] for more details. This completes the

proof of part (iii).

If ai = qi for all 0 ≤ i ≤ n in the above discussion, then Pnq,k ∼= Pnk . This holds

if m/qi are all co-primes, where m = lcm(q0, · · · , qn) The isomorphism is given

by Eq. (15). �
We call the isomorphism φm given in Eq. (15) the Veronese map.

Example 2 (The space M2). Consider the weighted projective moduli space of

genus 2 curves, say P3
q,k for q = (2, 4, 6, 10).

Let d0 := gcd(4, 6, 10) = 2, d1 = gcd(2, 6, 10) = 2, d2 = gcd(2, 4, 10) = 2,

d3 := gcd(2, 4, 6) = 2 and a0 = lcm(2, 2, 2) = 2 = a1 = a2 = a3, and a =

lcm(2, 2, 2, 2) = 2. The new set of weights is q′i = qi
ai

. Hence q′ = (1, 2, 3, 5).

Thus, the morphism P3
(2,4,6,10),k → P3

(1,2,3,5),k, given by

(19) [x0 : x1 : x2 : x3]→ [y0 : y1 : y2 : y3] =
[
x2

0 : x2
1 : x2

2 : x2
3

]
is an isomorphism, from Eq. (18). Then q = 2 · 3 · 5 = 30 and the Veronese

embedding is

[J2 : J4 : J6 : J10] −→
[
J30

2 : J15
4 : J10

6 : J6
10

]
.

Since J10 is the discriminant then J10 6= 0, then[
J30

2 : J15
4 : J10

6 : J6
10

]
=

[
J30

2

J6
10

:
J15

4

J6
10

:
J10

6

J6
10

: 1

]
Thus, two genus curves are isomorphic if and only if they have the same i1 :=

J30
2

J6
10

,

i2 :=
J15

4

J6
10

, and i3 :=
J10

6

J6
10

invariants. Such invariants i1, i2, i3 are GL2(k)-

invariants and sometimes are called absolute invariants. To avoid invariants with
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such high degrees sometimes different invariants have been used, where i1 = J4

J2
2

,

i2 = J2J4−J6

J3
2

, and i3 = J10

J5
2

, but then we have to define new invariants for the

locus J2 = 0; see [6], and many other authors.

Example above shows the benefits of weighted projective spaces from a com-

putational point of view, since it is much easier to compute with [J2 : J4 : J6 : J10]

because the coordinates have much smaller degrees instead of
[
J30

2 : J15
4 : J10

6 : J6
10

]
.

It was exactly this fact and computational efforts in [6] which led to the defini-

tion of the weighted general common divisors and weighted heights in [16] and

[5]; as we will see in detail in Sec. 4. M2 is a very nice example of doing explicit

computations, however GIT guarantees that the theory works in every genus.

3.3. Singular locus of weighted projective varieties. Singularities of Pq,k

are classified in the following proposition, see [11] or [4] for its proof.

Proposition 3.4. Pnq,k is an irreducible, normal and Cohen-Macaulay variety

having only cyclic quotients singularities. Moreover, if Pnq,k is non-singular, then

it is isomorphic to Pnk .

We let d = gcd(q0, . . . , qn) and denote by Sing(Pnq,k) the singular locus of

Pnq,k. Then, following the proof of [10, Prop. 7], one can show that

Sing(Pnq,k) =

{
x ∈ Pnq,k : gcd

i∈J(x)

(qi) > d

}
For x ∈ Pnq,k denote by J(x) := {j : xj(x) 6= 0}), the set of indexes where x has

non-zero coordinates. Let m = lcm(q0, · · · , qn), p a prime dividing m, and

Sq(p) =
{
x ∈ Pnq,k : dp | qi for all i ∈ J(x)

}
.

The singular locus decomposes into irreducible components as

Sing(Pnq,k) =
⋃

primes p|m,

Sq(p),

where only the maximal sets are considered in the union. The proof can be easily

extended from that of [9] see remark below.

Remark 2. In most papers the weighted projective space is assumed well formed.

This is not really a restriction since every weighted projective space is isomorphic

to a well-formed space. Then

(20) Sq(p) =
{
x ∈ Pnq,k : p | qi for all i ∈ J(x)

}
.



16 SALAMI/SHASKA

and the singular locus is

Sing(Pnq,k) =

{
x ∈ Pnq,k : gcd

i∈J(x)

(qi) > 1

}
see [10, Prop. 7]. Since Pnq,k is well-formed then x ∈ Sing(Pnq,k) implies that

xi(x) = 0 for at least one index i ∈ {0, . . . , n}.

Example 3 (M2 again). Let us consider again Exa. 2.

Consider P3
q for q = (2, 4, 6, 10). Then m = lcm(2, 4, 6, 10) = 60. The only

primes dividing m = 60 are p = 2, 3, 5. Then

Sq(2) = {[0 : t : 0 : 0] ∈ P3
q},

Sq(3) = {[0 : 0 : t : 0] ∈ P3
q},

Sq(5) = {[0 : 0 : 0 : t] ∈ P3
q}

Hence, SingP3
q,Q = Sq(2) ∪ Sq(3) ∪ Sq(5).

One can take q′ = (1, 2, 3, 5) and P3
q′,Q. Then m = lcm(1, 2, 3, 5) = 30. Only

primes p = 2, 3, 5 divide m. Then,

Sq′(2) = {[0 : t : 0 : 0] ∈ P3
q},

Sq′(3) = {[0 : 0 : t : 0] ∈ P3
q},

Sq′(5) = {[0 : 0 : 0 : t] ∈ P3
q}.

Hence, SingP3
q′,Q = S′q(2) ∪ S′q(3) ∪ S′q(5). �

For a fixed prime p such that p - m, then Sq(p) = ∅. If p | m then denote

J(p) = {j | such that p | qj}, and np = #J(p).

Then Sq(p) 6= ∅ is isomorphic to the weighted projective space Pnpq′,k, where q′ =

(qi1 , · · · , qinp ) with i` ∈ J(p) for 1 ≤ ` ≤ np. Moreover, as a consequence of the

normality of Pnq,k, we have CodimPnq,k(Sing(Pnq,k)) ≥ 2. This means that Pnq,k is

regular in codimension one. In particular, if qi’s are mutually coprime and qi > 1,

then

Sing(Pnq,k) = {xi = [0 : · · · : 1 : · · · : 0] : 0 ≤ i ≤ n}.
Next we consider the canonical quotient map pq : Vn+1

k → Pnq,k, which induces

the surjective morphism πq : Pnk → Pnq,k. Let X be a weighted subvariety of Pnq,k.

The punctured affine cone over X is C∗X = p−1
q (X ). The affine cone CX over

X is the closure of C∗X in An+1
k . The origin point 0 = (0, · · · , 0) refers to the

vertex of C∗X . We note that k∗ acts on the punctured affine cone C∗X = p−1
q (X ) to

result X = C∗X /k∗. Moreover, C∗X has no isolated singularities.
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A weighted subvariety X of Pnq,k is called quasi-smooth of dimension m if

its affine cone CX is smooth variety of dimension m + 1 outside its vertex. The

singularities of a quasi-smooth variety X are due to the k∗-action and hence

are cyclic quotients singularities. Furthermore, by [4, Cor. 5.9], if X ⊂ Pnq,k is

subvariety such that X ∩ Sing(Pnq,k) = ∅, then X is non-singular if and only if X
is quasi-smooth.

A weighted subvariety X of Pnq,k of codimension c is called well-formed if

Pnq,k itself is well-formed and X contains no codimension c + 1 singular stratum

of Pnq,k. Hence, any codimension 1 stratum of a well-formed variety X is either

nonsingular on Pnq,k or it is equal to X ∩ Y, where Y is a codimension 1 stratum

of Pnq,k. This means that CodimX (X ∩ Pnq,k) ≥ 2.

Given a weighted polynomial f ∈ kq[x0, · · · , xn] of degree d, let Xd denotes

the hypersurfaces defined by f . It is called a linear cone if d = qi for some

0 ≤ i ≤ n, i.e, it is defined by xi + g with g ∈ k. A linear cone is well-formed if

and only if it is isomorphic to Pn−1
(q0,··· ,q̂i,··· ,qn),k. In the case of hypersurfaces, Xd

is well-formed if and only if the following hold:

(i) gcd(q0, · · · , q̂i, · · · , qn) = 1 for all 0 ≤ i ≤ n;

(i) gcd(q0, · · · , q̂i, · · · , q̂j , · · · , qn) divides d for 0 ≤ i 6= j ≤ n.

For more on well formed subvarieties of Pnq,k of codimension ≥ 2, see [14].

3.4. Analytic structure of weighted projective spaces. As regular projec-

tive spaces, the weighted complex projective spaces can also be equipped with an

analytic structure. We consider the decomposition of

Pnq,C = U0 ∪ . . . ∪ Un,

where

Ui = {x ∈ Pnq,C : xi(x) 6= 0} ⊂ Pnq,C,

for each 0 ≤ i ≤ n. Then, the map ψ̃i : Cn → Ui,

(x0, . . . , xi−1, xi+1 . . . , xn)→ [x0 : . . . : xi−1 : 1 : xi+1 : . . . : xn]q(21)

is a surjective analytic map, but not a chart since it is not injective. However, it

induces the isomorphism ψi : X (qi : q0, . . . , q̂i, . . . qn)→ Ui, such as

[(x0, . . . , xi−1, xi+1, . . . , xn)]→ [x0 : . . . : xi−1 : 1 : xi+1 : . . . : xn]q,

where X (qi : q0, . . . , q̂i, . . . qn) is the cyclic quotient space of the action of µqi on
Cn given by µqi × Cn → Cn such as

(22) (ξi, (x0, . . . , xi−1, xi+1, . . . , xn)) → (ξq0
i x0, . . . , ξ

qi−1

i xi−1, ξ
qi+1xi+1, . . . , ξ

qn
i xn),
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where ξi ∈ µqi . Since the changes of charts are analytic, then Pnq,C is an analytic

space with cyclic quotient singularities; see [2, 3] for details.

3.5. Weighted Blow-ups. Consider Ĉn+1
q :=

{
(x, [u]q) ∈ Cn+1 × Pnq,C |x ∈ [u]q

}
,

where [u]q denote the Zariski closure of [u]q and x ∈ [u]q means that there exists

t ∈ C satisfying xi = tqi · ui for each 0 ≤ i ≤ n. The natural projection map

(23) πq : Ĉn+1
q → Cn+1

is an isomorphism over Ĉn+1
q \π−1

q (0) and the exceptional divisor E := π−1
q (0)

is identified with Pnq,C. The space Ĉn+1
q = Û0∪ . . .∪Ûn can be covered with (n+1)

charts, where

Ûi = {(x, [u]q) ∈ Cn+1 × Pnq,C : ui 6= 0} ⊂ Ĉn+1(q).

However, φi : Cn+1 → Ûi,

x→ (xq00 , x
q1
0 x1, . . . , x

qn
0 xn), [x1 : . . . , xi−1 : 1 : xi+1 : . . . : xn]) ,

are surjective, but not injective. Indeed, we have that φi(x) = φi(y) is and only

if there exists ξ ∈ µqi such that yi = ξ−1xi and yj = ξqjxj for j 6= i. Hence, the

map φi induces an isomorphism X (qi : q0, . . . , qi−1,−1, qi+1, . . . , qn)→ Ûi.

These charts are compatible with the ones of Pnq,C. In Ûi the exceptional divisor

is {xi = 0} and the i-th chart of Pnq,C is the quotient space

X (qi : q0, . . . , qi−1,−1, qi+1, . . . , qn).

Example 4 (Case n = 2). Let q = (q0, q1, q2) be a tuple of reduced weights, i.e.,

gcd(q0, q1, q2) = 1 and πq : Ĉ3
q → C3, be the weighted blow-up at the origin with

respect to q. Then Ĉ3 ∼= Û0 ∪ Û1 ∪ Û2, where

Û0
∼= X(q0 : −1, q1, q2), Û1

∼= X(q1 : q0,−1, q2), Û2
∼= X(q2 : q0, q1,−1),

and the charts are given by

ψ0 : X(q0 : −1, q1, q2)→ U0, [(x0 : x1 : x2)] 7→ ((xq00 , x
q1
0 x1, x

q2
0 x2), [1 : x1 : x2])

ψ1 : X(q1 : q0,−1, q2)→ U1, [(x0 : x1 : x2)] 7→ ((xq11 x0, x
q1
1 , x

q2
1 x2), [x0 : 1 : x2])

ψ2 : X(q1 : q0, q1,−1)→ U2, [(x0 : x1 : x2)] 7→ ((xq22 x0, x
q2
2 x1, x

q2
2 ), [x0 : x1 : 1]) .

The exceptional divisor π−1
q ((0, 0, 0)) is isomorphic to P2

q,C, which can be simplified

by isomorphism P2
q,C
∼= P2

q′,C given by

[x0 : x1 : x2] 7→
[
x

gcd(q1,q2)
0 : x

gcd(q0,q2)
1 : x

gcd(q0,q1)
2

]
,
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where

q′ =

(
q0

gcd(q0, q1) · gcd(q0, q2)
,

q1

gcd(q0, q1) · gcd(q1, q2)
,

q2

gcd(q0, q2) · gcd(q1, q2)

)
.

4. Weighted heights

In [5] a height function was defined for weighted projective spaces Pnq,k, called

weighted height. We briefly describe basic definitions here. To avoid confusion

with projective heights we will use different notation than that of [5]. We will

follow the parallelism with Weil heights by using S, s instead of H, h. Pnq (k)

denotes the set of k-rational points of Pnq,k.

4.1. Weighted heights on Pnq,k. Given any x ∈ Pnq (k), the multiplicative

weighted height over k is defined as

(24) Sk(x) :=
∏
ν∈Mk

max

{
|x0|

1
q0
ν , . . . , |xn|

1
qn
ν

}
and its logarithmic weighted height (over k) as

(25) sk(x) := logSk(x) =
∑
ν∈Mk

max
0≤j≤n

{
1

qj
· log |xj |ν

}
.

In [5, Prop. 1] it is shown that height functions Sk(x) and hence sk(x) are

independent of the choice of coordinates of the point x. Moreover, in [5, Prop. 5-

ii], it is proved that for any finite extension K|k we have

Sk(x)[K:k] = SK(x), and hence [K : k] · sk(x) = sK(x).

Weighted heights can be interpreted in terms of Weil height on projective va-

rieties using Veronese map defined by Eq. (15). Assume that q = (q0, · · · , qn)

is reduced, well-formed and satisfies gcd(m/q0, · · · ,m/qn) = 1, where m =

lcm(q0, q1 · · · , qn). Proof of the following can be found in [5].

Lemma 4.1. Weighted height Sk is given in terms of projective height Hk via

(26) Sk(x) = Hk (φm(x))
1
m and sk(x) =

1

m
· hk (φm(x)) ,

for all x ∈ Pnq (k), where φm is the Veronese map given in Eq. (15).

The absolute weighted height on Pnq (k̄) is defined as

S : Pnq (k̄)→ [0,∞],

x 7→ S(x) := SK(x)1/[K:k],
(27)
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and the absolute logarithmic weighted height on Pnq (k̄) is given by

s : Pnq (k̄)→ [0,∞],

x 7→ s(x) :=
1

[K : k]
logSK(x),

(28)

for which K ⊂ k̄ is a finite extension of k containing k(x), the field of definition

of x defined by

k(x) := k

(
x

1/q0
0

x
1/qi
i

, · · · , 1, · · · , x
1/qn
n

x
1/qi
i

)
,

for some xi 6= 0. Notice that both of these height functions are independent of

the choice of the field K; see [5]. For simplicity, we call s(x) the global weighted

height on Pnq (k̄).

By Eq. (26), for a field K ⊂ k̄ containing and k(x), we have:

Lemma 4.2. For all x ∈ Pnq (k̄), we have

(29) S(x) = H (φm(x))
1
m , and s(x) =

1

m
· h (φm(x)) ,

where φm is as in Eq. (15), H(·), h(·) as in Eq. (5), and S(·), s(·) as in Eq. (27).

4.2. Cartier and Weil divisors on weighted varieties. Let X be a weighted

variety in Pnq,k over the field k. The group of Weil divisors on X is a free Abelian

group generated by weighted closed subvarieties of codimension one on X . This

group is denoted by WeDivq(X ). The support of the divisor D =
∑
Y nY · Y is

the union of all codimension one weighted subvarieties Y such that nY 6= 0, which

is denoted by Supp(D). A divisor is said to be effective if every nY ≥ 0 for all

codimension one subvarieties Y ⊂ X . We define ordY : OX ,Y \ {0} → Z to be

ordY(f) = lengthOX ,Y

(
OX ,Y
〈f〉

)
,

which is well defined since OX ,Y is a local ring. Then, one can extend ordY to

the fraction field kq(X )∗ in the usual way. The order function ordY : kq(X )∗ → Z
has the following properties:

(1) ordY(f · g) = ordY(f) + ordY(g)

(2) For a fixed f ∈ kq(X )∗ there are only finitely many Y such that ordY 6= 0.

(3) Let f ∈ kq(X )∗. Then, f ∈ OX ,Y if and only if ordY(f) ≥ 0. Similarly,

f ∈ O∗X ,Y if and only if ordY(f) = 0.

(4) If X is weighted projective variety and f ∈ kq(X )∗, then f ∈ k∗ if and

only if ordY(f) ≥ 0 for all Y; if and only if ordY(f) = 0 for all Y.
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The divisor of any f ∈ kq(X )∗ is defined as

div(f) =
∑
Y⊂X

ordY(f) · Y

which is called a principal divisor. Two divisors D and D′ are said to be

linearly equivalent if their difference is a principal divisor. The divisor of zeros

and divisor of poles of f , denoted by (f)0 and (f)∞ respectively, are

(f)0 =
∑

ordY(f)>0

ordY(f) · Y, (f)∞ = −
∑

ordY<0

ordY(f) · Y

The divisor class group of X is the group of divisor classes modulo linear

equivalence. This group is denoted by Clq(X ), and Cl(Pnq,k) for X = Pnq,k.

A Cartier divisor on a weighted variety X is an equivalence class of collection

of pairs (Ui, fi)i∈I satisfying the following conditions:

(i) The Ui are affine weighted open sets that cover X .

(ii) The fi are non zero rational functions, fi ∈ kq(Ui)
∗ = kq(X )∗.

(iii) fi
fj
∈ OX (Ui ∩ Uj)∗, so fi

fj
has no poles or zeros on Ui ∩ Uj .

Two Cartier divisors {(Ui, fi)|i ∈ I} and {(Vj , gj)|j ∈ J} are equivalent if for all

i ∈ I and j ∈ J we have

fi
gj
∈ OX (Ui ∩ Vj)∗.

The sum of two Cartier divisors is

{(Ui, fi)|i ∈ I}+ {Vj , gj)|j ∈ J} = {(Ui ∩ Vj , fi gj)|(i, j) ∈ I × J}.

The Cartier divisors with this operation on a weighted variety X form a group

that we denote it by CaDivq(X ). The support of a Cartier divisor is the set of

zeros and poles of fi, which is denoted by Supp(D). A Cartier divisor is said to be

effective or positive if it can be defined by a collection {(Ui, fi)|i ∈ I} such that

every fi ∈ OX (Ui). For a given f ∈ kq(X )∗, the divisor div(f) = {(X , f)} is called

a principal Cartier divisor. Two Cartier divisors are linearly equivalent if

their difference is a principal divisor. The group of Cartier divisors classes modulo

linear equivalence is called Picard group of a weighted variety X and is denoted

by Picq(X ). In the case X = Pnq,k, we write Pic(Pnq,k). A Cartier divisor D on a

weighted variety X is said to be ample or big if the corresponding line bundle

O(D) is ample or big, respectively.
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For X = Pnq,k with reduced weights q, in [1, Sections 5, 6], it is proved that the

following maps

Z→ Cl(X ),

1 7→ OX (1),

Z→ Pic(X ),

1 7→ OX (m), m = lcm(q0, · · · , qn),
(30)

induce the following isomorphism Cl(X ) ∼= Z, and Pic(X ) ∼= Z, respectively.

Furthermore, OX (a) is not necessarily an invertible sheaf for any given integer

a ∈ Z. However, by [17, Lem. 1.3], the sheaf OX (m) with m = lcm(q0, · · · , qn) is

ample and invertible, and for a, b ∈ Z we have

OX (a)⊗OX (m)⊗b ∼= OX (a+ bm).

In [4, Thm. 4B. 7], it is proved that OPnq,k(m) is ample and there is c ∈ Z such

that OPnq,k(cm) is very ample. Furthermore, the sheaf OPnq,k(a) is coherent and

Cohen-Macaulay for any a ∈ Z. If OPnq,k(a) 6= 0, then it is reflexive of rank 1 by

[4, Cor. 5.8].

Following [17], we define the weak projective space over any field k as follows:

Definition 2. The complement of Sing(Pnq,k) in X = Pnq,k is called the weak

projective space over k, which is a smooth weighted subvariety, denoted by

(31) WPnq,k := Pnq,k \ Sing(Pnq,k).

By [17, Prop. 1.1], the sheaf OX (1) is locally free on WPnq,k. Hence, defining

OWPnq,k(1) := OPnq,k(1)|WPnq,k ,

one can see that WPnq,k is the largest open set U ⊂ Pnq,k such that OPnq,k(1)|U is

an invertible sheaf on U and(
OPnq,k(1)|U

)⊗a ∼= OPnq,k(a)|U

for any a ∈ Z by [17, Thm. 1.7]. Furthermore, we have Picq(WPnq,k) ∼= Z and it

is generated by OWPnq,k(1).

For any (weighted) projective variety X of dimension dim(X ) = d over k, we

denote by ΩiX the sheaf of i-th regular differential forms on X , and ωX = ΩdX the

canonical sheaf of X . By [17, Prop. 2.3], the canonical sheaf of WPnq,k is

ωWPnq,k
∼= OWPnq,k(−q̃),

where q̃ = q0 + q1 + · · ·+ qn, by [17, Prop. 2.3].

We also denote by ω0
X the dualizing sheaf of X . If X is a nonsingular or

more generally normal (weighted) projective variety, then ω0
X = ωX . Otherwise,
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we letW = X\ Sing(X ) and consider the canonical embedding j :W → X . Then,

if CodimX (X −W) ≥ 2, then

ω0
X = j∗ ω

0
W = j∗ ωW .

In the case X = Pnq,k, since it is normal and Cohen-Macaualy and W = WPnq,k,

so by [4, Cor. 6B.8] one has ω0
Pnq,k
∼= OPnq,k(−q̃).

4.3. Local weighted heights. We assume that X is a weighted variety defined

over k in Pn
q,k̄

, where k ⊂ k̄ and q = (q0, · · · , qn). If X is a weighted affine variety

with coordinates x0, x1, · · · , xn, then a set E ⊂ X × M is called a weighted

affine Mk-bounded set if there is an Mk-bounded constant function γ such

that

|xi(x)|
m
qi
v ≤ eγ(v), 0 ≤ i ≤ n and (x, v) ∈ E.

We note that this definition is independent of choice of the coordinates xi’s on X .

Moreover, any finite union of weighted affine M -bounded sets is again a weighted

affine M -bounded.

For an arbitrary variety X , we say that E ⊂ X × M is a weighted Mk-

bounded set if there exists a finite cover U ′is of weighted affine open subsets

of X and the weighted Mk-bounded sets Ei ⊂ Ui ×M such that E =
⋃
Ei. A

function

λ : X ×M → R
is called a locally weighted Mk-bounded above if for every weighted Mk

bounded subset E ⊂ X ×M, there exists an Mk-constant γ such that λ(x, v) ≥
γ(v) holds for (x, v) ∈ E. The locally weighted Mk-bounded below and

locally weighted Mk-bounded functions are defined similarly.

Example 5. For example, let X = Pn
q,k̄

and consider the finite cover of affine

open sets {(Ui, xi)} and γ ≡ 0. Moreover, for 0 ≤ i ≤ n, the following sets are

weighted Mk-bounded:

(32) Ẽi =

(x, v) ∈ X ×M : and

∣∣∣∣∣x
m
q0
0

x
m
qi
i

∣∣∣∣∣
v

≤ 1, · · · ,

∣∣∣∣∣x
m
qn
n

x
m
qi
i

∣∣∣∣∣
v

≤ 1

 .

Thus X = Pn
q,k̄

is a weighted Mk-bounded set, since it is covered by Ẽ′is.

Let L be a line bundle on a weighted variety X defined over k. A weighted

M-metric on L is a norm ‖ · ‖ = (‖ · ‖v) such that for each v ∈ M , extending

v|k ∈Mk, and each fiber Lx with x ∈ X assigns a function ‖ · ‖v : Lx → R≥0, not

identically equal to zero, satisfying the following:
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• ‖λ · ξ‖v = |λ|v · ‖ξ‖v for λ ∈ k̄ and ξ ∈ Lx.

• If w1, w2 ∈ M agree on the residue field k(x), then ‖ · ‖w1 = ‖ · ‖w2 on

Lx(k(x)).

A weighted M -metric on L is called locally weighted M-bounded if for

section g ∈ OX (U) on an open set U ⊆ X , the function

(x, v) 7→ log ‖g(x)‖v
on U ×M is locally weighted Mk-bounded. We say that L is a weighted M-

metrized line bundle on X if L is equipped with a weighted M -metric ‖ · ‖ =

(‖ · ‖v) .
Next we show that there exist a locally bounded weighted M -metric on any

line bundle on the weighted variety X .

Proposition 4.3. Any line bundle L on a weighted variety X ⊆ Pn
q,k̄

defined over

k admits a locally bounded weighted M -metric.2

Proof. First we assume that X = Pn
q,k̄

and L = OX (m), wherem = lcm(q0, q1, · · · , qn).

Then, one can define an M -metric by letting

(33) ‖`(x)‖v =
|`(x)|v

maxi |xi|
m
qi
v

,

for each v ∈M , x ∈ X and a global section ` ∈ OX (m) given by

` = a0x
m
q0
0 + a1x

m
q1
1 + · · ·+ a1x

m
q1
1 .

It is well-defined on L, and on the set Ui = {xi 6= 0} we have

∥∥∥xmqii (x)
∥∥∥
v

=

∣∣∣xmqii (x)
∣∣∣
v

maxi |xi|
m
qi
v

≤ 1.

Moreover, the functions

∣∣∣∣xm/qjj

x
m/qi
i

∣∣∣∣
v

are bounded by an Mk-constant on the bounded

sets Ẽi defined by Eq. (32). Thus, log
∥∥∥xmqii (x)

∥∥∥
v

are bounded below for all indexes,

and hence Eq. (33) gives the desired locally bounded weighted M -metric.

Next, we assume that X ⊆ Pn
q,k̄

is a weighted projective variety and L =

OX (D), where D is an effective Cartier divisor on X both defined over k. In this

case, L can be written as L = M1 ⊗M−1
2 , where M1 and M2 are base point

free line bundles on X . Now, we choose generating global functions s1, · · · , sn1 of

2We thank Min Ru for clarifying some details in the proof of Thm. 4.3 by indicating [18,

B2.2.10 and B2.2.11].
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M1, and t1, · · · , tn2
of M2. Then, for x 6∈ Supp(D), the desired locally bounded

weighted M -metric on L is given by

(34) ‖gD(x)‖v = max
1≤i≤n1

min
1≤j≤n2

∥∥∥∥sigDtj (x)

∥∥∥∥
v

,

where v ∈ Mk and gD is a section of L = OX (D) with D = div(gD). One can

show this metric is uniquely determined and independent of choicesM1,M2, and

their generating sections as [18, B2.2.10 and B2.2.11]. We notice that if X = Pn
q,k̄

and L = OX (m), then Eq. (34) will be same as Eq. (33) by considering M1 = L
and M2 trivial line bundle and ti = x

m/qi
i for 0 ≤ i ≤ n and gD ∈ OX (m).

Finally, for an arbitrary weighted variety X , first we cover it by finitely many

open affine sets Ui such that on each Ui the line bundle L is trivialized with a

non-vanishing section gi. Letting pj,t be the coordinates on Uj with pj0 = 1, one

can find constants C and γ (not depending on i and j) such that∣∣∣∣ gi(x)

gj(x)

∣∣∣∣
v

≤ C ·max
t
|pjt|γv ,

and hence for x ∈ Ui ∩ Uj we have

|gji(x)|v =

∣∣∣∣gj(x)

gi(x)

∣∣∣∣
v

≥ 1

C ·maxt |pjt|
γ
v
.

Thus, for x ∈ Ui, defining

(35) ‖gi(x)‖v = max
t

min
{j: x∈Uj}

|pjt|γv ·
∣∣∣∣ gi(x)

gj(x)

∣∣∣∣
v

we obtain the desired locally bounded weighted M -metric of L on Ui, which is

independent of the choice of transition functions gji = gj/gi over Ui ∩ Uj . Using

the cocycle rule gej = geigij , for every x ∈ Ue ∩ Ui, we have

‖ge(x)‖v = |gei(x)|v · ‖gi(x)‖v .

Therefore, Eq. (35) provides a well-defined M -metric of L on X . By a similar

argument as in the end of proof of [7, Prop. 2.7.5] or [18, B2.2.10], one can see

that this is a locally bounded weightd metric. �

We denote by ̂Picq(X ) the group of isometric classes of pairs L̃ = (L, ‖ · ‖).
As in the usual case, given any morphisms φ : X ′ → X of weighted varieties

over k, and L̂ = (L, ‖ · ‖) ∈ ̂Picq(X ), the pull-back of L̂ by φ is defined as

φ̂∗(L) = (φ∗(L), ‖ · ‖′), such that

(36) ‖φ∗(g)(x)‖′ = ‖g(φ(x))‖ (x ∈ X ′),

for any open subset U of X containing φ(x) and g ∈ OX (U).
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The pull-back induces a group homomorphism between ̂Picq(X ) and ̂Picq(X ′).
Under this homomorphism, any locally bounded weighted M -metrized line bun-

dles remain locally bounded weightedM -metrized. Now we can define the weighted

local Weil heights on a variety X in Pn
q,k̄

as follows: Given any Cartier divisor

D = {(Ui, fi)} on X , we let LD = OX (D) be the line bundle of regular functions

on D. It can be constructed by gluing

OX (D)|Ui = f−1
i OX (Ui)

and 1 becomes a canonical invertible meromorphic section of LD, which is denoted

by gD. Thus, by Thm. 4.3, we can equip LD with a weighted locally bounded

M -metric ‖ · ‖, determined by the max-min method in proof of Thm. 4.3, and

denote it by D̂ = (LD, ‖ · ‖) .

Definition 3. Given ν ∈ Mk, we define the local weighted height ζD̂(−, ν)

with respect to D̂ on the weighted variety X as

(37) ζD̂(x, ν) := − log ‖gD(x)‖v

for x ∈ X\ Supp(D), where v ∈M such that ν = v|k.

We note that the local weighted height ζD̂(−, ν) is well defined because the

norm ‖ · ‖ is well-defined by its construction as it explained in proof of Thm. 4.3.

Here, we have the fundamental properties of the local weighted heights.

Theorem 4.4 (Weighted local Weil height machinery). For each of ν ∈Mk, fix

v ∈ M such that ν = v|k. Suppose that X is a weighted variety defined over k

and D̂, D̂1, D̂2 ∈ ̂Picq(X ). Then:

(i) Additivity: For x 6∈ Supp(D1) ∪ Supp(D2), we have

ζ
D̂1+D2

(x, ν) = ζD̂1
(x, ν) + ζD̂2

(x, ν).

(ii) Functoriality: If φ : X ′ → X is a morphism of weighted varieties defined

over k such that φ(X ′) ∩ Supp(D) =, then

ζφ∗(D̂)(x
′, ν) = ζD̂(φ(x′), ν) for x′ ∈ X ′\φ∗(D).

(iii) Boundedness from below: If D is effective and X is weighted Mk-

bounded projective variety, then there exists an Mk-constant function γ

such that

ζD̂(x, ν) ≥ γ(ν) for x ∈ X\ Supp(D).

(iv) Normalization: If X = Pn
q,k̄

and D is a hyperplane defined by ` ∈
OX (m), with m = lcm(q0, q1, · · · , qn), then
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(38) ζD̂(x, ν) = − log
|`(x)|v

maxi |xi|
m
qi
v

for x ∈ X\ Supp(D).

(v) Principal divisor: If D = div(f) for some nonzero f ∈ OX (D) with

deg(f) = d, then

(39) ζD̂(x, ν) = − log
|f(x)|v

maxi |xi|
d
qi
v

, for x ∈ X\ Supp(D),

by letting ‖1‖v = |1|v on OX (D) for v ∈M over ν ∈Mk.

(vi) Uniqueness: If X is weighted Mk-bounded, ‖ · ‖′v is another weighted

Mk-bounded metric on LD and ζ ′
D̂

is the resulting local weighted Weil

height respect to (LD, ‖ · ‖′), then

ζD̂(x, ν) = ζ ′
D̂

(x, ν) +O(1).

(vii) Base change: If K|k is a finite field extension and u ∈ MK over some

v ∈Mk, then

ζD̂(x, ν) =
1

[Ku : kν ]
ζ
D̂′

(x′, u), for x′ ∈ X ′\ Supp(D′),

where X ′ = X⊗kK and x′ ∈ X ′ corresponds to x ∈ X (k), and D′ CaDiv(X ′)
correspond to D.

(viii) Max-Min: There are positive integers n1 and n2, and nonzero rational

functions fij on X for i = 0, · · · , n1 and j = 0, · · · , n2 such that

ζD̂(x, ν) = max
0≤i≤n1

min
0≤j≤n2

log |fij(x)|ν .

Proof. The proofs are almost straightforward and similar to proof of the Weil

local heights on projective heights.

(i) Using the product of weighted M -metrics from OX (D1) and OX (D2) on

OX (D1 +D2), and gD1+D2 = gD1 ⊗ gD2 , we have

‖gD1+D2
‖ν = ‖gD1

⊗ gD2
‖ν = ‖gD1

‖ν · ‖gD2
‖ν ,

which implies the desired equality by taking logarithm from both sides.

(ii) The functoriality is a direct consequence of the functoriality of the weighted

M -metrics ‖ · ‖ = (‖ · ‖v), i.e., ‖φ∗(gD)(x)‖ = ‖gD(φ(x))‖ for all v ∈M .

(iii) Note that the rational function gD is defined everywhere for any effec-

tive divisor D. Then, on bounded sets inside an affine open set U of X
where OX (D) is trivial and so all global sections can be identified non-

canonically as regular functions, |gD(x)|v and is bounded above by an
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Mk-constant. This implies that ζD(x, ν) is bounded below by an Mk-

constant.

(iv) A locally Mk-bounded metric on OX (D) ∼= OPn
q,k̄

(m) is given by Eq. (33)

and hence gD = ` is defined away from the hyperplane D. Given any

ν ∈ Mk and fixing v ∈ M such that ν = v|k, one can get (38) by taking

logarithm.

(v) For a divisor D = div(f) with deg(f) = d, we have OX (D) = f−1OX and

gD = f whenever f is defined. Hence, for any v over ν, we have

‖f(x)‖v = − |f(x)|v

maxi |xi|
d
qi
v

,

By taking logarithm, this implies Eq. (39) as desired,

(vi) Using (i) with D̂ = D̂ + (0) where D̂ on the left hand side is endowed

with ‖ · ‖′, then

ζD̂(x, ν)− ζ ′
D̂

(x, ν)

is the logarithm of norm of 1 with the locally bounded metric ‖ · ‖v/‖ · ‖′v
on O(X ). Since 1 is a global nowhere-vanishing section, by the definition,

we have ζD̂(x, ν) = ζ ′
D̂

(x, ν) +O(1).

(vii) Since | · |v = | · |1/[Ku:kv]
u for u ∈MK over v ∈Mk, so ‖ · ‖ν = ‖ · ‖1/[Ku:kv ]

u

and hence the desired equality.

(viii) By linearity of the both sides of equality,

ζD̂(x, ν) = max
0≤i≤n1

min
0≤j≤n2

log |fij(x)|ν

and the proof of Thm. 4.3, it is enough to consider D̂ such that OX (D) ∼=
OX (m). In this case, the existence of fij ’s is clear by the proof of Eq. (33).

�

4.4. Global weighted heights. Now, we assume X ⊆ Pnq (k̄) is a weighted vari-

ety and consider L̂ = (L, ‖·‖) ∈ ̂Picq(X ). Given x ∈ X , let K be a finite extension

of k containing k(x). For each u ∈ MK , we choose a place v ∈ M over u and

define ‖ · ‖u := ‖ · ‖1/[K:k]
v on Lx(k(x)). By the second condition of a weighted

M -metric, one can see that it is independent of the choice of v ∈ M . We let

g be an invertible regular function of L with x 6∈ Supp(Lg) where Lg = div(g).

Note that such function exists because there is an open dense trivialization in a

neighborhood of the point x. Then, we have the weighted M -metrized line bundle

L̂g = (OX (Lg), (‖ · ‖u)) ∈ ̂Picq(X ).
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The global weighted height sL̂(x) with respect to L̂ is defined by

(40) sL̂(x) :=
∑
u∈MK

ζL̂g (x, u),

where ζL̂g (x, u) = − log ‖g(x)‖u assuming v|k = u. It is easy to check that these

definitions are independent of the choice of field K and regular function g.

Example 6. Let X = Pn
q,k̄

, D = div(x
1/qi
0 ), and L = O(D). Then, one has

s(x) = sL̂(x), where s(x) is the global weighted height on Pn
q,k̄

given by Eq. (27).

Indeed, if K = k(x) and u ∈MK over ν ∈Mk, Eq. (38) becomes

(41) ζD̂(x, u) = − log

∣∣∣∣x 1
q0
0

∣∣∣∣
u

maxi

∣∣∣∣x 1
qi
i

∣∣∣∣
u

, for x ∈ X\ Supp(D).

Since ζL̂x0
(x, u) and ζD̂(x, u) are same local height, we have

sL̂(x) =
∑
u∈MK

ζL̂x0
(x, u) =

∑
u∈MK

− log

∣∣∣∣x 1
q0
0

∣∣∣∣
u

maxi

∣∣∣∣x 1
qi
i

∣∣∣∣
u

=
∑
u∈MK

1

qi
log max

i
|xi|u −

1

q0

∑
u∈MK

log |x0|u .

The last term vanishes by product formula and using Thm. 4.4 (vi), we have

sL̂(x) =
∑
u∈MK

1

qi
log max

i
|xi|v =

∑
v∈Mk u|v

1

[Ku : kv]qi
log max

i
|xi|v

=
1

[K : k]
·
∑
v∈Mk

max
i

{
1

qi
· log |xi|v

}
= s(x).

The above example shows the normalization property of the weighted global

Weil height function, and their other essential properties are given by the following

theorem.

Theorem 4.5 (Global weighted height machinery). Let X be a weighted variety

and consider L̂, L̂1, and L̂2 ∈ P̂ic(X ).

(i) Independence (a): sL̂ depends only on the isometry class of L̂, i.e, if

L̂1and L̂2 are isometric pairs, then sL̂1
= sL̂2

.
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(ii) Independence (b): If X is a complete weighted variety or generally

M -bounded, then sL̂ does not depend on the choice of weighted locally

bounded M -metrics up to a locally M -bounded constant function.

(iii) Additivity: For any x ∈ X , we have sL̂1⊗L̂2
(x) = sL̂1

(x) + sL̂2
(x).

(iv) Functoriality: If φ : X ′ → X is a morphism of weighted varieties over

k, then

sφ∗(L̂)(x) = sL̂(φ(x)) for x ∈ X .

(v) Base change: If K|k is a finite field extension, then

sD̂(x) =
1

[K : k]
s
D̂′

(x′), for x′ ∈ X ′\Supp(D′).

where X ′ = X⊗kK and x′ ∈ X ′ corresponds to x ∈ X (k), and D′ CaDiv(X ′)
correspond to D.

(vi) If L̂ is a line bundle on X , generated by its global sections, then sL̂(x) is

bounded from below for all x ∈ X (k̄), by a constant depending on L̂.

Proof. The proof is essentially similar to the proof of Thm. 2.3. The part (i) is

obvious by definitions. One may conclude part (ii) using (iii) of Thm. 4.4 and the

definitions. The part (iii) comes from (i) of Thm. 4.4, and (iv) is a consequence

of (ii) of Thm. 4.4. The part (v) comes by (vii) of Thm. 4.4, and (vi) is a result

of (iii) of Thm. 4.4.

�

4.5. Weighted local and global heights for closed subschemes. The local

and global heights for closed subschemes of projective varieties are introduced

in [20]. Here, we develop them to the closed subschems of weighted projective

varieties.

Fix a weighted projective variety X in Pn
q,k̄

defined over k, i.e., an integral

and separated subscheme of finite type. Given any closed subscheme Y of X over

k, we let IY denotes the corresponding sheaf of ideals generated by f1, · · · , fr ∈
kq[x0, x1, · · · , xn] with deg(fj) = dj for j = 1, · · · r. Letting Dj := div(fj) for

j = 1, · · · , r and ν ∈Mk, we define

ζY(·, ν) : (X\Y)(k)→ R,

the local weighted height associated to Y, by

(42) ζY(x, ν) := min
1≤j≤r

{ζ
D̂j

(x, ν)} = min
1≤j≤r

− log
|fj(x)|ν

maxi |xi|
dj
qi
ν

 .
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By convention, we define ζY(x, ν) = ∞ for x ∈ Y(k). One can show that this

is unique up to a weighted Mk-bounded function by a similar argument for the

projective varieties.

Recall that for closed subschemes Y1 and Y2 of X defined over k with corre-

sponding ideal sheaves IY1
, IY2

, the closed subschemes Y1 ∩ Y2, Y1 + Y2, and

Y1∪Y2 are defined by ideal sheaves IY1
+IY2

, IY1
IY2

, and IY1
∩IY2

respectively.

Note that Y1 ∪ Y2 ⊂ Y1 + Y2 ⊂ X as schemes, since IY1IY2 ⊂ IY1 ∩ IY2

The basic properties of weighted local heights associated to closed subschemes

are given in the following proposition.

Proposition 4.6. For any ν ∈ Mk, and a closed subscheme Y of a weighted

projective variety X , the following hold:

(1) ζY1∩Y2(·, ν) = min{ζY1(·, ν), ζY2(·, ν)};
(2) ζY1+Y2

(·, ν) = ζY1
(·, ν) + ζY2

(·, ν);

(3) ζY1(·, ν) ≤ ζY2(·, ν) if Y1 ⊂ Y2;

(4) max{ζY1
(·, ν), ζY2

(·, ν)} ≤ ζY1∪Y2
(·, ν) ≤ ζY1

(·, ν) + ζY2
(·, ν);

(5) ζY1(·, ν) ≤ c · ζY2(·, ν) if Supp(Y1) ⊂ Supp(Y2) for some constant c > 0,

where Supp(Y) denotes the support of Y;

(6) If Y = D is an effective divisor, then ζY(·, ν) is equal ζD̂(·, ν) defined by

Eq. (37), where D̂ = (OX (D), ‖ · ‖) ∈ ̂Picq(X );

(7) If φ : X ′ → X is a morphism of weighted projective varieties, Y ⊂ X a

closed subscheme over k, and φ∗(Y) denotes the closed subscheme of X ′
associated to ideal sheaf φ−1IY · OX ′ , then ζφ∗(Y)(x, ν) = ζY(φ(x), ν) for

x ∈ (X ′\φ∗(Y)) (k).

The global weighted height associated to Y, can be defined up to a

bounded function by summing all local weighted heights. More precisely, given

x ∈ X , we let K be a finite extension of k containing k(x) and define:

(43) sY(x) :=
∑
u∈MK

ζY(x, u),

which is independent of the choice of the field K. The weighted global heights sat-

isfy similar properties, except the first one, as given in Thm. 4.6 for the weighted

local heights.

Proposition 4.7. For any ν ∈ Mk, and a closed subscheme Y of a weighted

projective variety X the following hold:

(1) sY1∩Y2
≤ min{sY1

, sY2
};

(2) sY1+Y2
= sY1

+ sY2
;



32 SALAMI/SHASKA

(3) sY1
≤ sY2

if Y1 ⊂ Y2;

(4) max{sY1 , sY2} ≤ sY1∪Y2 ≤ sY1 + sY2 ;

(5) sY1
≤ c · sY2

if Supp(Y1) ⊂ Supp(Y2) for some constant c > 0;

(6) If Y = D is an effective divisor, then sY is equal to sD̂defined by Eq. (40),

where D̂ = (OX (D), (‖ · ‖u)) ∈ ̂Picq(X );

(7) If φ : X ′ → X is a morphism of weighted projective varieties, Y ⊂ X a

closed subscheme over k, then sφ∗(Y) = sY ◦ φ.

All of the above assertions follow by summing from the corresponding proper-

ties for the local weighted heights associated to subschemes. When we want to

emphasize on the base weighted variety X in any of the previously defined global

weighted heights, we will put it as a subscript on them for example sX ,D and

sX ,Y .

5. Conclusion

This work is devoted to develop a detailed theory of Cartier divisors, analytic

structure of weighted varieties, weighted blow-ups. While it was believed that

these results could be recovered from the Veronese embedding it is the first time

that a direct approach is presented.

Weighted projective spaces are very natural objects which makes the theory of

weighted heights a powerful tool of arithmetic geometry. However, connections

of weighted heights with other heights such as GIT height, Neron-Tate height,

Faltings height, etc are not well understood. Some glimpses of the connection

between weighted heights and GIT height can be seen in [8], but overall this is an

area that offers many open questions. Vojta’s conjecture for weighted varieties in

terms of weighted heights is studied in [19].
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