LOCAL AND GLOBAL HEIGHTS ON WEIGHTED PROJECTIVE VARIETIES

SAJAD SALAMI AND TONY SHASKA

Communicated by George Washington

Abstract

We investigate local and global weighted heights a-la Weil for weighted projective spaces via Cartier and Weil divisors and extend the definition of weighted heights on weighted projective spaces from [5] to weighted varieties and closed subvarieties. We prove that any line bundle on a weighted variety admits a locally bounded weighted M-metric. Using this fact, we define local and global weighted heights for weighted varieties in weighted projective spaces and their closed subschemes, and show their fundamental properties.

1. Introduction

Let $\mathfrak{q}=\left(q_{0}, \cdots, q_{n}\right)$ be a tuple of weights and $\mathbb{P}_{\mathfrak{q}, k}^{n}$ the weighted projective space over a field k. In [5] was introduced a new height on $\mathbb{P}_{\mathfrak{q}, k}^{n}$, called weighted height, and proved that such height satisfies basic properties of projective heights. This definition of weighted heights was motivated not only by its computational advantages, but also because such heights are more natural since they are defined on $\mathbb{P}_{\mathfrak{q}, k}^{n}$ and not on some projective space \mathbb{P}_{k}^{n} via the Veronese embedding. Such heights have been used in several computations in the moduli space of curves, rational functions; see $[6,8,16]$ and are a very useful tool in using machine learning techniques in algebraic and arithmetic geometry. However, no complete theory of such heights exists. For example, weighted heights in [5] were not defined analytically via Cartier divisors, local weighted heights via line bundles, global

[^0]weighted heights for closed subschemes. To the knowledge of authors this has not been done before.

The goal of this paper is to introduce and develop the theory of weighted heights, inspired by Weil's approach. We achieve this by providing all the necessary tools for understanding and introducing weighted heights, which have not been extensively covered in the literature. To accomplish this, we focus on developing the theory of Cartier divisors on weighted projective varieties, exploring the analytic structure of weighted varieties, investigating weighted blow-ups, and introducing both local and global weighted heights an showing their fundamental properties. In our other work [19], we state some different versions of Vojta's conjecture for weighted varieties in terms of weighted local and global heights, and give an application to the greatest common divisor problem.

This paper is organized as follows. In Sec. 2 we recall some of the basic setup for Weil height machinery on projective spaces and varieties. In Thm. 2.2 we summarize all properties of local Weil heights and in Thm. 2.3 the properties of global Weil heights for such varieties. Such setup will be important later in the paper to draw an analogy between Weil heights and weighted heights.

In Sec. 3 we establish notation for weighted projective varieties and define Zariski topology, Veronese embedding, and singular locus of weighted projective varieties. Moreover, we introduce weighted blow-ups and exceptional divisors on weighted projective varieties.

In Sec. 4 we develop the theory of weighted heights a-la Weil. We introduce Cartier divisors on weighted projective varieties and show that results carry over easily to weighted projective varieties. Moreover, we show that any line bundle on a weighted variety \mathcal{X} admits a locally bounded weighted M-metric. Given $\nu \in M_{k}$, the local weighted height $\zeta_{\widehat{D}}(-, \nu)$ with respect to \widehat{D} on weighted variety \mathcal{X} is defined as

$$
\zeta_{\widehat{D}}(\mathbf{x}, \nu)=-\log \left\|g_{D}(\mathbf{x})\right\|_{v}
$$

for $\mathbf{x} \in \mathcal{X} \backslash \operatorname{Supp}(D)$, where $v \in M$ such that $\nu=\left.v\right|_{k}$. Properties of local weighted heights are proved in Thm. 4.4 as they are similar to properties of projective heights. The global weighted height $\mathfrak{s}_{\widehat{\mathcal{L}}}(\mathbf{x})$ with respect to $\widehat{\mathcal{L}}$ is defined by

$$
\mathfrak{s}_{\widehat{\mathcal{L}}}(\mathbf{x}):=\sum_{u \in M_{K}} \zeta_{\widehat{\mathcal{L}_{g}}}(\mathbf{x}, u),
$$

where $\zeta_{\widehat{\mathcal{L}_{g}}}(\mathbf{x}, u)=-\log \|g(\mathbf{x})\|_{u}$, and its properties are described in Thm. 4.5. In Sec. 4.5 we introduce weighted local and global heights associated to closed subschemes of weighted projective varieties.

Notation: Since our goal is to provide all the technical details of the theory of weighted heights, in analogy to that of projective heights there is a real possibility of mixing up notation between different heights. Below we give a list of notation of Weil heights and weighted heights. Throughout the paper, the projective space (resp. weighted projective space) over a field k is denoted by \mathbb{P}_{k}^{n} (resp. $\mathbb{P}_{\mathfrak{q}, k}^{n}$).

Terminology in projective space	\mathbb{P}_{k}^{n}	$\mathbb{P}_{\mathfrak{q}, k}^{n}$
multiplicative height over k	H_{k}	\mathcal{S}_{k}
logarithmic height over k	h_{k}	\mathfrak{s}_{k}
absolute multiplicative height	H	\mathcal{S}
absolute logarithmic height	h	\mathfrak{s}
local Weil height with respect to the divisor \widehat{D}	$\lambda_{\widehat{D}}(\mathbf{x}, \nu)$	$\zeta_{\widehat{D}}(\mathbf{x}, \nu)$
global Weil height with respect to the line bundle $\widehat{\mathcal{L}}$	$h_{\widehat{\mathcal{L}}}(\mathbf{x})$	$\mathfrak{s}_{\widehat{\mathcal{L}}}(\mathbf{x})$
local height associated to exceptional divisor of \mathcal{Y}	$\lambda_{\mathcal{Y}}(\mathbf{x}, \nu)$	$\zeta_{\mathcal{Y}}(\mathbf{x}, \nu)$
global height associated to exceptional divisor of \mathcal{Y}	$h_{\mathcal{Y}}(\mathbf{x})$	$\mathfrak{s}_{\mathcal{Y}}(\mathbf{x})$
absolute logarithmic height on \mathcal{X} wrt divisor D	$h_{\mathcal{X}, D}$	$\mathfrak{s}_{\mathcal{X}, D}$
absolute logarithmic local height on \mathcal{X} wrt divisor D	$\lambda_{\mathcal{X}, D}$	$\zeta_{\mathcal{X}, D}$
Singular locus of $\mathbb{P}_{\mathfrak{q}, k}^{n}$		$\operatorname{Sing}\left(\mathbb{P}_{\mathfrak{q}, k}^{n}\right)$

Acknowledgments: We want to thank Min Ru for helpful discussions during the period that the last version of this paper was written.

2. Preliminaries on Weil projective heights

In this section, we review Weil heights on varieties in usual projective spaces. One can find more details on the subjects in [7].

Let k be an algebraic number field of degree $m=[k: \mathbb{Q}]$ and \bar{k} be an algebraically closed field containing k. We denote by \mathcal{O}_{k} the ring of algebraic integers in k. Let \mathcal{X} be a variety over k, i.e. an integral separated scheme of finite type over $\operatorname{Spec}(k)$ and $\mathcal{O}_{\mathcal{X}}$ the ring sheaf of regular functions on \mathcal{X}. We will use \mathcal{X} to mean $\mathcal{X}(\bar{k})$ and $\mathcal{X}(k)$ for the set of k-rational points on \mathcal{X}.

Denote by M_{k} the set of all places of k, i.e. the equivalent classes of absolute values on k. It is a disjoint union of M_{k}^{0}, the set of all non-archimedian places, and M_{k}^{∞}, the set of all Archimedean places of k. More precisely, if $\nu \in M_{k}^{0}$, then $\nu=\nu_{\mathfrak{p}}$ for some prime ideal $\mathfrak{p} \subset \mathcal{O}_{k}$ over a prime number p such that $\left.\nu_{\mathfrak{p}}\right|_{\mathbb{Q}}$ is the p-adic absolute value. If $\nu \in M_{k}^{\infty}$, then $\nu=\nu_{\infty}$ and $\left.\nu_{\infty}\right|_{\mathbb{Q}}$ is the usual absolute
value $|\cdot|_{\infty}$ on \mathbb{Q}. The local degree n_{ν} at $\nu \in M_{k}$ is defined by $n_{\nu}=\left[k_{\nu}: \mathbb{Q}_{\nu}\right]$, where k_{ν} and \mathbb{Q}_{ν} are the completions with respect to ν. For each $\nu \in M_{k}$, we let $|\cdot|_{\nu}$ be a representative of the equivalence class which is the n_{ν}-th power of the one that extends a normalized absolute value over \mathbb{Q}. Since k is a number field, then for every $x \in k^{*}$ we have the product formula $\prod_{\nu \in M_{k}}|x|_{\nu}=1$. Given a finite field extension K / k, we denote by M_{K} the set of places v on K such that $\left.v\right|_{k}=\nu$, for some $\nu \in M_{k}$. Then, we have the degree formula as

$$
\sum_{v \in M_{K},\left.v\right|_{k}=\nu}\left[K_{v}: k_{\nu}\right]=[K: k] .
$$

2.1. Heights. For $x \in k^{*}$, the multiplicative and logarithmic height are defined by

$$
\begin{equation*}
H_{k}(x)=\prod_{\nu \in M_{k}} \max \left\{1,|x|_{\nu}\right\} \quad \text { and } \quad h_{k}(x)=\log H_{k}(x)=\sum_{\nu \in M_{k}} \log |x|_{\nu} \tag{1}
\end{equation*}
$$

For $\tilde{x}=\left(x_{0}, \cdots, x_{n}\right) \in k^{n+1}$ and $v \in M_{k}$, we let

$$
|\tilde{x}|_{\nu}:=\max \left\{\left|x_{i}\right|_{\nu}: 0 \leq i \leq n\right\}
$$

One extends such definitions to the projective space $\mathbb{P}^{n}(k)$ by defining the multiplicative and logarithmic height of $\mathbf{x}=\left[x_{0}: \cdots: x_{n}\right] \in \mathbb{P}^{n}(k)$ by

$$
\begin{equation*}
H_{k}(\mathbf{x})=\prod_{\nu \in M_{k}} \max _{0 \leq i \leq n}\left\{\left|x_{i}\right|_{\nu}\right\}, \quad \text { and } \quad h_{k}(\mathbf{x})=\log H_{k}(\mathbf{x})=\sum_{\nu \in M_{k}} \max _{0 \leq i \leq n}\left\{\log \left|x_{i}\right|_{\nu}\right\} \tag{2}
\end{equation*}
$$

They are independent of the choice of the coordinates and therefore well defined.
For any finite extension K of k and $v \in M_{K}$, we normalize the absolute value $|\cdot|_{v}$ such that its restriction $|\cdot|_{\nu}$ on k satisfies $|\cdot|_{\nu}=|\cdot|{ }_{v}^{\left[K_{\nu}: k_{\nu}\right]}$. Using the degree formula, for $x \in k^{*}$ we have

$$
\begin{equation*}
H_{k}(x)=H_{K}(x)^{1 /[K: k]}, \quad \text { and } \quad h_{k}(x)=\frac{1}{[K: k]} h_{K}(x) \tag{3}
\end{equation*}
$$

and hence for all $\mathbf{x} \in \mathbb{P}^{n}(k)$,

$$
\begin{equation*}
H_{k}(\mathbf{x})=H_{K}(\mathbf{x})^{1 /[K: k]}, \quad \text { and } \quad h_{k}(\mathbf{x})=\frac{1}{[K: k]} h_{K}(\mathbf{x}) \tag{4}
\end{equation*}
$$

The field of definition of $\mathbf{x} \in \mathbb{P}^{n}(\bar{k})$ is $k(\mathbf{x}):=k\left(\frac{x_{0}}{x_{i}}, \ldots, \frac{x_{n}}{x_{i}}\right)$, for any i such that $x_{i} \neq 0$. The absolute multiplicative and logarithmic global Weil heights of $x \in \bar{k}^{*}$ are defined by

$$
H(x)=H_{K}(x)^{1 /[K: k]} \text { and } h(x)=\frac{1}{[K: k]} h_{K}(\mathbf{x})
$$

and for $\mathbf{x} \in \mathbb{P}^{n}(\bar{k})$ by

$$
\begin{equation*}
H(\mathbf{x})=H_{K}(\mathbf{x})^{1 /[K: k]}, \quad \text { and } \quad h(\mathbf{x})=\frac{1}{[K: k]} h_{K}(\mathbf{x}) \tag{5}
\end{equation*}
$$

where K is a number field containing $k(\mathbf{x})$. The absolute height is independent of the choice of K. We call $h(\mathbf{x})$ the global Weil height on $\mathbb{P}^{n}(\bar{k})$.
2.2. M-bounded sets, functions, and M-metrized line bundles. Let $M=$ $M_{\bar{k}}$ be the set of places on \bar{k} extending those of M_{k}, i.e., if $v \in M$ then $\nu=\left.v\right|_{k}$ the restriction of v over k belongs to M_{k}.

A function $\gamma: M_{k} \rightarrow \mathbb{R}$ is called M_{k}-constant if $\gamma(\nu)=0$ for all but finitely many $\nu \in M_{k}$. We extend each M_{k}-constant γ to a function $\gamma: M \rightarrow \mathbb{R}$ by setting $\gamma(v)=\gamma\left(\left.v\right|_{k}\right)$. Given any variety \mathcal{X}, by an M_{k}-function on \mathcal{X} we mean a map $\lambda: \mathcal{X} \times M \rightarrow \mathbb{R}$ such that $\lambda(\mathbf{x}, v)$ is M_{k}-constant or $\lambda(\mathbf{x}, v)=\infty$ for all $\mathbf{x} \in \mathcal{X}$ and $v \in M$. Two M_{k}-functions λ_{1} and λ_{2} on \mathcal{X} are called equivalent, and denoted by $\lambda_{1} \sim \lambda_{2}$, if there is an M_{k}-constant function γ such that

$$
\left|\lambda_{1}(\mathbf{x}, v)-\lambda_{2}(\mathbf{x}, v)\right| \leq \gamma(v) \text { for all }(\mathbf{x}, v) \in \mathcal{X} \times M
$$

We say that an M_{k}-function λ is M_{k}-bounded if $\lambda \sim 0$.
For an affine variety \mathcal{X}, a set $E \subset \mathcal{X} \times M$ is called an affine M_{k}-bounded set if there are coordinate function x_{1}, \cdots, x_{n} on \mathcal{X} and an M_{k}-bounded constant function γ such that

$$
\left|x_{i}(\mathbf{x})\right|_{v} \leq e^{\gamma(v)} \text { for all } 0 \leq i \leq n, \text { and }(\mathbf{x}, v) \in E .
$$

The set E is bounded by a finite set of absolute values and it is integral with respect to the rest of absolute values. This definition is independent of choice of the coordinates x_{i} on \mathcal{X}. By definition, any finite union of affine M-bounded sets is again an affine M-bounded.

For an arbitrary variety \mathcal{X}, we say that $E \subset \mathcal{X} \times M$ is a M_{k}-bounded set if there exists a finite cover $\left\{U_{i}\right\}$ of affine open subsets of \mathcal{X} and M_{k}-bounded sets $E_{i} \subset U_{i} \times M$ such that $E=\bigcup E_{i}$.

A function $\lambda: \mathcal{X} \times M \rightarrow \mathbb{R}$ is called locally M_{k}-bounded above if for every M_{k} bounded subset $E \subset \mathcal{X} \times M$, there exists an M_{k}-constant γ such that $\lambda(\mathbf{x}, v) \leq \gamma(v)$ holds for $(\mathbf{x}, v) \in E$. The locally M_{k}-bounded below and locally M_{k}-bounded functions are defined similarly.

Recall that a line bundle \mathcal{L} on a variety \mathcal{X} defined over k, is a covering map $\pi: \mathcal{L} \rightarrow \mathcal{X}$ such that for each $\mathrm{x} \in \mathcal{X}$, the fiber $\mathcal{L}_{\mathrm{x}}:=\pi^{-1}(\mathrm{x})$ is a 1-dimensional vector space over k. An M-metric on a line bundle \mathcal{L} is a norm $\|\cdot\|=\left(\|\cdot\|_{v}\right)$
such that for each $v \in M$, and each fiber \mathcal{L}_{x} assigns a function

$$
\|\cdot\|_{v}: \mathcal{L}_{\mathbf{x}} \rightarrow \mathbb{R}_{\geq 0}
$$

which is not identically zero and satisfies:
(i) $\|\lambda \cdot \xi\|_{v}=|\lambda|_{v} \cdot\|\xi\|_{v}$ for $\lambda \in \bar{k}$ and $\xi \in \mathcal{L}_{\mathbf{x}}$.
(ii) If $v_{1}, v_{2} \in M$ agree on $k(\mathbf{x})$, then $\|\cdot\|_{v_{1}}=\|\cdot\|_{v_{2}}$ on $\mathcal{L}_{\mathbf{x}}(k(\mathbf{x}))$.

An M-metric $\|\cdot\|=\left(\|\cdot\|_{v}\right)$ on \mathcal{L} is called locally M-bounded if for any regular function $g \in \mathcal{O}_{\mathcal{X}}(U)$ on an open set $U \subseteq \mathcal{X}$, the function $(\mathbf{x}, v) \mapsto \log \|g(\mathbf{x})\|_{v}$ on $U \times M$ is locally M_{k}-bounded.

We say that \mathcal{L} is an M-metrized line bundle on \mathcal{X} if \mathcal{L} is equipped with an M-metric. The following result shows that there exist an M-metric on any line bundle on a variety in projective spaces; see [7, Prop. 2.7.5].

Lemma 2.1. Any line bundle \mathcal{L} on a variety $\mathcal{X} \subseteq \mathbb{P}_{\bar{k}}^{n}$ defined over k admits a locally bounded M-metric $\|\cdot\|$.

Denote by $\widehat{\mathcal{L}}$ the pair $(\mathcal{L},\|\cdot\|)$. Given two pairs $\widehat{\mathcal{L}_{1}}=\left(\mathcal{L}_{1},\|\cdot\|_{1}\right)$ and $\widehat{\mathcal{L}_{2}}=$ $\left(\mathcal{L}_{2},\|\cdot\|_{2}\right)$, we define $\widehat{\mathcal{L}}_{1} \otimes \widehat{\mathcal{L}}_{2}:=\left(\mathcal{L}_{1} \otimes \mathcal{L}_{2},\|\cdot\|\right)$, where

$$
\|f \otimes g\|=\|f\|_{1} \cdot\|g\|_{2}, \text { for } f \in \mathcal{L}_{1, \mathbf{x}}, g \in \mathcal{L}_{2, \mathbf{x}}, \quad \text { and } \mathbf{x} \in \mathcal{X} .
$$

We say that $\widehat{\mathcal{L}_{1}}$ and $\widehat{\mathcal{L}_{2}}$ are isometric if there is an isomorphism between \mathcal{L}_{1} and \mathcal{L}_{2} which is fiber-wise an isometry.

Let $\widehat{\operatorname{Pic}(\mathcal{X})}$ denote the group of the isometric classes of pairs $\widehat{\mathcal{L}}=(\mathcal{L},\|\cdot\|)$ where $\mathcal{L} \in \operatorname{Pic}(\mathcal{X})$. Then, the identity element of $\widehat{\operatorname{Pic}(\mathcal{X})}$ is $\mathcal{O}_{\mathcal{X}}$ with trivial metric $\|1\|_{v}=|1|_{v}$ and $\widehat{\mathcal{L}}^{-1}=\left(\mathcal{L}^{-1}, 1 /\|\cdot\|\right)$ is the inverse of $\widehat{\mathcal{L}} \in \widehat{\operatorname{Pic}(\mathcal{X})}$. Given any morphisms $\phi: \mathcal{X}^{\prime} \rightarrow \mathcal{X}$ of varieties over k, and $\left.\widehat{\mathcal{L}}=(\mathcal{L},\|\cdot\|) \in \widehat{\operatorname{Pic}(\mathcal{X}}\right)$, the pull-back of $\widehat{\mathcal{L}}$ by ϕ is defined as $\widehat{\phi^{*}(\mathcal{L})}:=\left(\phi^{*}(\mathcal{L}),\left(\|\cdot\|_{v}^{\prime}\right)\right)$, such that for $\mathbf{x} \in \mathcal{X}^{\prime}$, any open subset U of \mathcal{X} containing $\phi(\mathbf{x})$, and $g \in \mathcal{O}_{\mathcal{X}}(U)$ we have

$$
\left\|\phi^{*}(g)(\mathbf{x})\right\|_{v}^{\prime}=\|g(\phi(\mathbf{x}))\|_{v} .
$$

The pull-back induces a group homomorphism between $\widehat{\operatorname{Pic}(\mathcal{X})}$ and $\widehat{\operatorname{Pic}\left(\mathcal{X}^{\prime}\right)}$. Under this homomorphism, any locally bounded M-metrized line bundles remain locally bounded.
2.3. Local Weil heights. We assume that the reader is familiar with Cartier divisors for varieties in projective spaces. Given any effective Cartier divisor $D=\left\{\left(U_{i}, f_{i}\right)\right\}$ on \mathcal{X}, let $\mathcal{L}_{D}=\mathcal{O}_{\mathcal{X}}(D)$ be the line bundle of regular functions on D. It can be constructed by gluing $\left.\mathcal{O}_{\mathcal{X}}(D)\right|_{U_{i}}=f_{i}^{-1} \mathcal{O}_{\mathcal{X}}\left(U_{i}\right)$ and the constant section 1 becomes a canonical invertible regular section on \mathcal{L}_{D}, which we denote
it by g_{D}. We equip \mathcal{L}_{D} with a locally bounded M-metric $\|\cdot\|$, which is possible by Thm. 2.1, and denote it by $\widehat{D}=\left(\mathcal{L}_{D},\|\cdot\|\right)$. Given $\nu \in M_{k}$, the local Weil height $\lambda_{\widehat{D}}(\cdot, \nu)$ with respect to \widehat{D} on \mathcal{X} is defined to be

$$
\begin{equation*}
\lambda_{\widehat{D}}(\mathbf{x}, \nu)=-\log \left\|g_{D}(\mathbf{x})\right\|_{v}, \text { for } \mathbf{x} \in \mathcal{X} \backslash \operatorname{Supp}(D), \tag{6}
\end{equation*}
$$

where $v \in M$ such that $\left.v\right|_{k}=\nu$.
The following lemma provides a summary of all properties of local heights, which can be found in [7, Prop. 2.7.10 and 2.7.11] or [15, Chap. 10].

Lemma 2.2 (Local Weil heights). For each of $\nu \in M_{k}$, let $v \in M$ such that $\nu=\left.v\right|_{k}$. Let $\mathcal{X} \subseteq \mathbb{P}_{k}^{n}$ be a variety defined over k, and $\widehat{D}, \widehat{D}_{1}, \widehat{D}_{2} \in \widehat{\operatorname{Pic}(\mathcal{X})}$. Then, we have:
(i) For $\mathbf{x} \notin \operatorname{Supp}\left(D_{1}\right) \cup \operatorname{Supp}\left(D_{2}\right)$, we have

$$
\lambda_{\widehat{D_{1}+D_{2}}}(\mathbf{x}, \nu)=\lambda_{\widehat{D}_{1}}(\mathbf{x}, \nu)+\lambda_{\widehat{D}_{2}}(\mathbf{x}, \nu) .
$$

(ii) If $\phi: \mathcal{X}^{\prime} \rightarrow \mathcal{X}$ is a morphism over k such that $\phi\left(\mathcal{X}^{\prime}\right) \cap \operatorname{Supp}(D)=\emptyset$, then

$$
\lambda_{\phi^{*}(\widehat{D})}\left(\mathbf{x}^{\prime}, \nu\right)=\lambda_{\widehat{D}}\left(\phi\left(\mathbf{x}^{\prime}\right), \nu\right), \quad \text { for } \quad \mathbf{x}^{\prime} \in \mathcal{X}^{\prime} \backslash \phi^{-1}(\operatorname{Supp}(D)) .
$$

(iii) If D is effective and \mathcal{X} is M_{k}-bounded (e.g \mathcal{X} is projective), then there exists an M_{k}-constant function γ such that $\lambda_{\widehat{D}}(\mathbf{x}, \nu) \geq \gamma(\nu)$, for $\mathbf{x} \in \mathcal{X} \backslash \operatorname{Supp}(D)$.
(iv) If $D=\operatorname{div}(f)$ for some nonzero rational function on \mathcal{X}, then

$$
\lambda_{\widehat{D}}(\mathbf{x}, \nu)=-\log \frac{|f(\mathbf{x})|_{v}}{|\mathbf{x}|_{v}}, \text { for } \mathbf{x} \in \mathcal{X} \backslash \operatorname{Supp}(D) \text {, }
$$

by giving the trivial metric $\|1\|_{v}=|1|_{v}$ on $\mathcal{O}_{\mathcal{X}}(D) \cong \mathcal{O}_{\mathcal{X}}$.
(v) If \mathcal{X} is M_{k}-bounded, $\|\cdot\|^{\prime}$ is another M_{k}-bounded metric on $\mathcal{O}_{\mathcal{X}}(D)$ and $\lambda_{\widehat{D}}^{\prime}$ is the resulting local Weil height, then $\lambda_{\widehat{D}}=\lambda_{\widehat{D}}^{\prime}+O(1)$.
(vi) If $K \mid k$ is a finite field extension and $u \in M_{K}$ over some $\nu \in M_{k}$, then

$$
\lambda_{\widehat{D}}(\mathbf{x}, \nu)=\frac{1}{[K: k]} \lambda_{\widehat{D}}(\mathbf{x}, u), \text { for } \mathbf{x} \in \mathcal{X} \backslash \operatorname{Supp}(D) .
$$

(vii) There are $m, n \in \mathbb{Z}^{\geq 0}$, and nonzero rational functions $f_{i, j}$ on \mathcal{X} for $i=$ $0, \cdots, n_{1}, j=0, \cdots, n_{2}$ such that

$$
\lambda_{\widehat{D}}(\mathbf{x}, \nu)=\max _{0 \leq i \leq n_{1}} \min _{0 \leq j \leq n_{2}} \log \left|f_{i j}(\mathbf{x})\right|_{\nu} .
$$

2.4. Global Weil heights. Let $\mathcal{X} \subset \mathbb{P}_{\bar{k}}^{n}$ be a variety defined over k and \mathcal{L} any line bundle on \mathcal{X}. Consider the pair $\widehat{\mathcal{L}}=\left(\mathcal{L},\left(\|\cdot\|_{v}\right)\right) \in \widehat{\operatorname{Pic}(\mathcal{X})}$, a given $\mathbf{x} \in \mathcal{X}$, and K a finite extension of k containing $k(\mathbf{x})$. For each $u \in M_{K}$, we choose a place $v \in M$ over u and define

$$
\|\cdot\|_{u}:=\|\cdot\|_{v}^{1 /[K: k]}
$$

on $\mathcal{L}_{\mathbf{x}}(k(\mathbf{x}))$. By the second condition of a M-metric, one can see that it is independent of the choice of $v \in M$. We let g be an invertible rational function of \mathcal{L} with $\mathbf{x} \notin \operatorname{Supp}\left(D_{g}\right)$ where $D_{g}=\operatorname{div}(g)$. Note that such function exists because there is an open dense trivialization in a neighborhood of \mathbf{x}. Then, $\mathcal{O}_{\mathcal{X}}\left(D_{g}\right)$ is a locally M_{K}-bounded with respect to M_{K}-metric given above. We denote by $\widehat{\mathcal{L}_{g}}:=\left(\mathcal{O}_{\mathcal{X}}\left(D_{g}\right),\left(\|\cdot\|_{u}\right)\right)$. The global Weil height $h_{\widehat{\mathcal{L}}}(\mathbf{x})$ of $\mathbf{x} \in \mathcal{X}$ with respect to $\widehat{\mathcal{L}}$ is defined by

$$
\begin{equation*}
h_{\widehat{\mathcal{L}}}(\mathbf{x}):=\sum_{u \in M_{K}} \lambda_{\widehat{\mathcal{L}_{g}}}(\mathbf{x}, u) \tag{7}
\end{equation*}
$$

where we have $\lambda_{\widehat{\mathcal{L}_{g}}}(\mathbf{x}, u)=-\log \|g(\mathbf{x})\|_{u}$, assuming $\left.v\right|_{k}=u$. These definitions are independent of the choice of K and g. For the following see [7, Prop. 2.7.18].
Lemma 2.3 (Global Weil height machinery). Let \mathcal{X} be a variety and $\widehat{\mathcal{L}}, \widehat{\mathcal{L}}_{1}$, and $\widehat{\mathcal{L}}_{2} \in \widehat{\operatorname{Pic}(\mathcal{X})}$. Then:
(i) $h_{\widehat{\mathcal{L}}}$ depends only on the isometry class of $\widehat{\mathcal{L}}$, i.e, if $\widehat{\mathcal{L}}_{1}$ and $\widehat{\mathcal{L}}_{2}$ are isometric pairs, then $h_{\widehat{\mathcal{L}}_{1}}=h_{\widehat{\mathcal{L}}_{2}}$.
(ii) If \mathcal{X} is a complete variety or generally M-bounded, then $h_{\widehat{\mathcal{L}}}$ does not depends on the choice of the locally bounded M-metrics up to a locally M-bounded constant function.
(iii) For any $\mathbf{x} \in \mathcal{X}$, we have $h_{\widehat{\mathcal{L}}_{1} \otimes \widehat{\mathcal{L}}_{2}}(\mathbf{x})=h_{\widehat{\mathcal{L}}_{1}}(\mathbf{x})+h_{\widehat{\mathcal{L}}_{2}}(\mathbf{x})$.
(iv) If $\phi: \mathcal{X}^{\prime} \rightarrow \mathcal{X}$ is a morphism over k, then $h_{\phi^{*}(\widehat{\mathcal{L}})}(\mathbf{x})=h_{\widehat{\mathcal{L}}}(\phi(\mathbf{x}))$, for $\mathbf{x} \in \mathcal{X}^{\prime}$.
(v) If $\mathcal{X}=\mathbb{P}_{\bar{k}}^{n}$ and $\mathcal{L}=\mathcal{O}_{\mathcal{X}}(1)$, then $h(\mathbf{x})=h_{\widehat{\mathcal{L}}}(\mathbf{x})+O(1)$.

3. Weighted projective varieties

Let k be a field and for any integer $n \geq 1$ denote by $\mathbb{A}_{k}^{n}\left(\right.$ resp. $\left.\mathbb{P}_{k}^{n}\right)$ the affine (resp. projective) space over k. When k is an algebraically closed field, we will drop the subscript. For any integer $\ell \geq 1$, let μ_{ℓ} denote the group of ℓ-th roots of unity generated by ξ_{m}, which is assumed to be contained in k.

A fixed tuple of positive integers $\mathfrak{q}=\left(q_{0}, \ldots, q_{n}\right)$ is called weights. Let $\mathbb{V}_{k}^{n}:=$ $\mathbb{A}_{k}^{n} \backslash\{(0, \cdots, 0)\}$ and consider the action of $k^{*}=k \backslash\{0\}$ on \mathbb{V}_{k}^{n+1} given by

$$
\begin{equation*}
\lambda \star\left(x_{0}, \ldots, x_{n}\right)=\left(\lambda^{q_{0}} x_{0}, \ldots, \lambda^{q_{n}} x_{n}\right), \text { for } \lambda \in k^{*} \tag{8}
\end{equation*}
$$

Define the weighted projective space $\mathbb{P}_{\mathfrak{q}, k}^{n}$ to be the quotient space $\mathbb{V}_{k}^{n+1} / k^{*}$ of this action, which is a geometric quotient since k^{*} is a reductive group. An element $\mathbf{x} \in \mathbb{P}_{\mathfrak{q}, k}^{n}$ is denoted by $\mathbf{x}=\left[x_{0}: \cdots: x_{n}\right]$ and its i-th coordinate by $x_{i}(\mathbf{x})$. For each $i=0, \ldots, n$, we define affine pieces of $\mathbb{P}_{\mathfrak{q}, k}^{n}$ by

$$
U_{i}=\left\{\mathbf{x} \in \mathbb{P}_{\mathfrak{q}, k}^{n}: x_{i}(\mathbf{x}) \neq 0\right\} .
$$

Hence, $\mathbb{P}_{\mathfrak{q}, k}^{n}=\cup_{i=0}^{n} U_{i}$. We assume that the field k contains a q_{i}-th root of unity $\xi_{q_{i}}$ for every $i=0, \cdots, n$. Then, for each $i=0, \ldots, n$, the affine piece U_{i} is isomorphic to $\mathbb{V}_{k}^{n} / \mu_{q_{i}}$, the quotient space of the action of $\mu_{q_{i}}$ on \mathbb{V}_{k}^{n} with coordinates $z_{0}, \cdots, \hat{z}_{i}, \cdots, z_{n}$, given by

$$
\begin{equation*}
\xi_{i} \cdot\left(z_{0}, \cdots, \hat{z}_{i}, \cdots, z_{n}\right) \mapsto\left(\xi_{i}^{q_{0}} z_{0}, \cdots, \hat{z}_{i}, \cdots, \xi_{i}^{q_{n}} z_{n}\right) \tag{9}
\end{equation*}
$$

Here, for all $0 \leq j \neq i \leq n$, we have $z_{j}=\frac{x_{j}}{x_{i}^{q_{j} / q_{i}}}$, which is similar to the case of usual projective space \mathbb{P}_{k}^{n}.

Weighted projective space can also be defined as a finite quotient of usual projective space. For weights $\mathfrak{q}=\left(q_{0}, \ldots, q_{n}\right)$, we let $G_{\mathfrak{q}}:=\mu_{q_{0}} \times \cdots \times \mu_{q_{n}}$, which is a finite group of order $\left|G_{\mathfrak{q}}\right|=q$ with $q:=\prod_{i=0}^{n} q_{i}$. Then, there is an action of $G_{\mathfrak{q}}$ on \mathbb{P}_{k}^{n} given by

$$
\begin{equation*}
\left(\xi_{0}, \cdots, \xi_{n}\right) \bullet\left[x_{0}: \cdots: x_{n}\right]=\left[\xi_{0} x_{0}: \cdots: \xi_{n} x_{n}\right] . \tag{10}
\end{equation*}
$$

Note that $G_{\mathfrak{q}} \cong \mu_{m}$ if and only if $m=\operatorname{lcm}\left(q_{0}, \ldots, q_{n}\right)$, that is, all of q_{i} 's are pairwise coprime. In this case, action of G_{m} on \mathbb{P}_{k}^{n} can be expressed as

$$
\begin{equation*}
\xi^{\alpha} \cdot\left[x_{0}: \cdots: x_{n}\right]=\left[\xi^{\alpha / q_{0}} x_{0}: \cdots: \xi^{\alpha / q_{n}} x_{n}\right] \tag{11}
\end{equation*}
$$

for $0 \leq \alpha \leq m-1$, where $\xi \in G_{m}$ is a m-th root of unity. The morphism $\pi_{0}: \mathbb{V}_{k}^{n+1} \longrightarrow \mathbb{V}_{k}^{n+1}$ given by

$$
\left(x_{0}, \cdots, x_{n}\right) \mapsto\left(x_{0}^{q_{0}}, \ldots, x_{n}^{q_{n}}\right)
$$

induces the following diagram

where $p_{\mathfrak{q}}$ is the canonical quotient map and $\pi_{\mathfrak{q}}: \mathbb{P}_{k}^{n} \longrightarrow \mathbb{P}_{\mathfrak{q}, k}^{n}$ is given by

$$
\left[x_{0}: \cdots: x_{n}\right] \mapsto\left[x_{0}^{q_{0}}: \cdots: x_{n}^{q_{n}}\right]
$$

The morphism $\pi_{\mathfrak{q}}$ is surjective, finite, and its fibers are orbits of the action of $G_{\mathfrak{q}}$ on \mathbb{P}_{k}^{n}, see [12, Chap. V, Props. 1.3 and 1.8].
$\mathbb{P}_{\mathfrak{q}, k}^{n}(k)$ will denote the set of k-rational points of $\mathbb{P}_{\mathfrak{q}, k}^{n}$. When k is algebraically closed and there is no room for confusion sometimes $\mathbb{P}_{\mathfrak{q}}^{n}$ is used instead of $\mathbb{P}_{\mathfrak{q}, k}^{n}$.
3.1. Zariski topology on weighted projective spaces. Consider the ring of polynomials $k\left[x_{0}, \ldots, x_{n}\right]$ and assign to every variable x_{i} the weight $\mathrm{wt}\left(x_{i}\right)=q_{i}$, for all $i=0, \ldots, n$. Every polynomial is a sum of monomials $x^{d}=\prod x_{i}^{d_{i}}$ with $\mathrm{wt}\left(x^{d}\right)=\sum d_{i} q_{i}$.

Let $f \in k\left[x_{0}, \ldots, x_{n}\right]$, where $\operatorname{wt}\left(x_{i}\right)=q_{i}$, for $i=0, \ldots, n$. Then, f is called a weighted homogeneous ${ }^{1}$ polynomial of degree d if each monomial in f is weighted of degree d, i.e.

$$
f\left(x_{0}, \ldots, x_{n}\right)=\sum_{i=1}^{t} a_{i} \prod_{j=0}^{n} x_{j}^{d_{j}}, \text { for } a_{i} \in k \text { and } t \in \mathbb{N}
$$

and for all $0 \leq i \leq n$, we have that $\sum_{i=1}^{n} q_{i} d_{j}=d$. For every $\lambda \in k^{*}$ and any weighted homogeneous polynomial f, we have

$$
f\left(\lambda^{q_{0}} x_{0}, \lambda^{q_{1}} x_{1}, \ldots, \lambda^{q_{n}} x_{n}\right)=\lambda^{d} f\left(x_{0}, \ldots, x_{n}\right)
$$

We denote by $k_{\mathfrak{q}}\left[x_{0}, \ldots, x_{n}\right]$ the set of weighted homogeneous polynomials over k. It is a subring of $k\left[x_{0}, \ldots, x_{n}\right]$ and therefore a Noetherian ring. By $k_{\mathfrak{q}}\left[x_{0}, \ldots, x_{n}\right]_{d}$ we mean the additive group of all weighted homogeneous polynomials of degree d.

Let $\alpha=\left[\alpha_{0}: \cdots: \alpha_{n}\right] \in \mathbb{P}_{\mathfrak{q}, k}^{n}$ and $f \in k_{\mathfrak{q}}\left[x_{0}, \ldots, x_{n}\right]_{d}$. Then, for any $\lambda \in k^{*}$, we have $\alpha=\left[\lambda^{q_{0}} \alpha_{0}: \cdots: \lambda^{q_{n}} \alpha_{n}\right]$. Since

$$
f\left(\lambda^{q_{0}} \alpha_{0}, \ldots, \lambda^{q_{n}} \alpha_{n}\right)=\lambda^{d} f\left(\alpha_{0}, \ldots, \alpha_{n}\right)=0
$$

then α being a zero of f is well-defined for all $\alpha \in \mathbb{P}_{\mathfrak{q}, k}^{n}$.
A weighted hyperplane in $\mathbb{P}_{\mathfrak{q}, k}$ is a weighted homogeneous polynomial of degree m. Hence, it is the set of points $\mathbf{x}=\left[x_{0}: \ldots: x_{n}\right] \in \mathbb{P}_{\mathfrak{q}, k}$ satisfying a polynomial of the form

$$
\begin{equation*}
\ell(\mathbf{x})=a_{0} x_{0}^{m / q_{0}}+a_{1} x_{1}^{m / q_{1}}+\cdots+a_{n} x_{n}^{m / q_{n}}=\sum_{i=0}^{n} a_{i} x_{i}^{\frac{m}{q_{i}}} \tag{13}
\end{equation*}
$$

[^1]Notice that if $\mathfrak{q}=(1, \ldots, 1)$ all definitions agree with those of \mathbb{P}^{n}.
An ideal $I \subset k_{\mathfrak{q}}\left[x_{0}, \ldots, x_{n}\right]$ is called a weighted homogeneous ideal if every element of $f \in I$ can be written as $f=\sum_{i=0}^{d} f_{i}$ where $f_{i} \in k_{\mathfrak{q}}\left[x_{0}, \ldots, x_{n}\right]_{i} \cap I$ with $\operatorname{deg}\left(f_{i}\right)=i$. The sum of two weighted homogeneous ideals I and J, is denoted by $I+J$ and is defined to be

$$
I+J=\{f+g \mid f \in I, g \in J .\}
$$

If I and J are weighted homogeneous ideals in $k_{\mathfrak{q}}\left[x_{0}, \ldots, x_{n}\right]$, then $I+J$ is also an weighted homogeneous ideal in $k_{\mathfrak{q}}\left[x_{0}, \ldots, x_{n}\right]$. The product of two weighted homogeneous ideals I and J is denoted by $I J$ and is defined to be the ideal

$$
I J=\langle\{f g \mid f \in I, g \in J\}\rangle
$$

For any given weighted homogeneous ideal I, we define weighted projective variety of I by

$$
\begin{equation*}
V(I)=\left\{\mathbf{x} \in \mathbb{P}_{\mathfrak{q}, k}^{n} \mid \quad f(\mathbf{x})=0 \text { for all } f \in I\right\} \tag{14}
\end{equation*}
$$

Let I and J be weighted homogeneous ideals. Then the following hold:
(i) $V(I) \cap V(J)=V(I+J)$
(ii) $V(I) \cup V(J)=V(I J)$
(iii) $\mathbb{P}_{\mathfrak{q}, k}^{n}=V(0)$

Conversely, given any $V \subset \mathbb{P}_{\mathfrak{q}, k}^{n}$ the weighted homogeneous ideal associated to V is given by

$$
I(V)=\left\{f \in k_{\mathfrak{q}}\left[x_{0}, \ldots, x_{n}\right] \mid \quad f(\mathbf{x})=0 \text { for all } \mathbf{x} \in V\right\}
$$

A weighted homogeneous ideal I is called a radical weighted homogeneous ideal if $f \in k_{\mathfrak{q}}\left[x_{0}, \ldots, x_{n}\right]$ such that $f^{r} \in I$ for an integer $r \geq 1$ then $f \in I$.

Lemma 3.1. Let $V \subset \mathbb{P}_{\mathfrak{q}, k}^{n}$ be a weighted projective variety. Then, weighted homogeneous ideal $I(V)$ associated to V is a radical weighted homogeneous ideal.

Proof. Let f and g be two polynomials in $I(V)$. Then, $f(P)=g(P)=0$ for all points $P \in V$, i.e. they both vanish at all points P in the variety V then so does $f+g$ and $f h$ where h is any polynomial in $I(V)$. Therefore, $I(V)$ is a weighted homogeneous ideal.

Since, $k_{\mathfrak{q}}\left[x_{0}, \ldots, x_{n}\right]$ is Noetherian, then $I(V)$ is finitely generated, say $I(V)=$ $\left\langle f_{1}, \ldots, f_{n}\right\rangle$. However, $f_{i} \in k_{\mathfrak{q}}\left[x_{0}, \ldots, x_{n}\right]$ for all i and therefore every f_{i} is weighted homogeneous polynomial. Hence $I(V)$ is weighted homogeneous ideal since it is generated by finitely many weighted homogeneous polynomials.

Finally let us prove that $I(V)$ is radical. Let $f^{r} \in I(V)$. Then, for all points $P \in V$ we have that $f^{r}(P)=0$. But since $f \in k_{\mathfrak{q}}\left[x_{0}, \ldots, x_{n}\right]$, which is an integral domain, then $f^{r}(P)=(f(P))^{r}=0$ implies that $f(P)=0$ for all $P \in V$. Therefore, $I(V)$ is radical. This completes the proof.

For weighted projective varieties V and W then we say that V is a weighted subvariety of W if $V \subset W$. It can be shown that any finite union of weighted projective varieties is a weighted projective variety. Furthermore, an arbitrary intersection of weighted projective varieties is a weighted projective variety. A weighted projective variety is said to be irreducible if it has no non-trivial decomposition into subvarieties. We notice that any weighted projective varieties are projective varieties too. Hence, we can define the Zariski topology for weighted projective varieties. Zariski topology on a weighted projective space $\mathbb{P}_{\mathfrak{q}, k}^{n}$ is given by defining closed sets of $\mathbb{P}_{\mathfrak{q}, k}^{n}$ to be those of the form $V(I)$ for some weighted homogeneous ideal $I \subset k_{\mathfrak{q}}\left[x_{0}, \ldots, x_{n}\right]$.
Definition 1. Zariski closure of a subset S of a weighted projective space $\mathbb{P}_{\mathfrak{q}, k}^{n}$ is the smallest weighted projective variety that contains S.

Remark 1. Let $S \subset \mathbb{P}_{\mathfrak{q}, k}^{n}$. Then, $V(I(S))$ is the Zariski closure of S. The proof is similar to the case of projective varieties.

Example 1. Let $\mathfrak{q}=\left(q_{0}, q_{1}, q_{2}\right)$ and $f \in k_{\mathfrak{q}}[x, y, z]_{d}$. Then, $V(f) \subset \mathbb{P}_{\mathfrak{q}, k}^{2}$ is a degree d-plane curve in $\mathbb{P}_{\mathfrak{q}, k}^{2}$.

The following gives the third equivalent definition of weighted projective space in language of schemes, see [11, Subsection 1.2.2] or [4, Theorem 3A.1].

Proposition 3.2. $\mathbb{P}_{\mathfrak{q}, k}^{n}$ is isomorphic to $\operatorname{Proj}\left(k_{\mathfrak{q}}\left[x_{0}, \ldots, x_{n}\right]\right)$.
For the rest of this paper, by a weighted variety we mean an integral, separated subscheme of finite type in $\operatorname{Proj}\left(k_{\mathfrak{q}}\left[x_{0}, \cdots, x_{n}\right]\right)$. In other words, $\mathcal{X} \subseteq \mathbb{P}_{\mathfrak{q}, k}^{n}$ is a weighetd variety if there are $f_{1}, \cdots, f_{t} \in k_{\mathfrak{q}}\left[x_{0}, \ldots, x_{n}\right]$ such that \mathcal{X} is isomorphic to the k-scheme $\operatorname{Proj}\left(\frac{k_{\mathrm{q}}\left[x_{0}, \ldots, x_{n}\right]}{\left\langle f_{1}, \cdots, f_{t}\right\rangle}\right)$.

A weighted space $\mathbb{P}_{\mathfrak{q}, k}^{n}$ is called reduced if $\operatorname{gcd}\left(q_{0}, \cdots, q_{n}\right)=1$. It is called normalized or well-formed if

$$
\operatorname{gcd}\left(q_{0}, \ldots, \hat{q}_{i}, \ldots, q_{n}\right)=1, \quad \text { for each } i=0, \ldots, n
$$

3.2. Veronese map. Let R be a graded ring and $d \geq 1$ be an integer. Its d-th truncated ring is the subring $R^{[d]} \subseteq R$ defined by

$$
R^{[d]}:=\bigoplus_{d \mid n} R_{n}=\bigoplus_{i \geq 0} R_{d i}
$$

Clearly we have the embedding $R^{[d]} \hookrightarrow R$, which is called the d-th Veronese embedding, implying that $\operatorname{Proj}\left(R^{[d]}\right) \cong \operatorname{Proj}(R)$ by [13, Prop. 2.4.7]. Moreover, the sheaf $\mathcal{O}(1)$ on $\operatorname{Proj}\left(R^{[d]}\right)$ corresponds via the isomorphism to $\mathcal{O}(d)$ on $\operatorname{Proj}(R)$.

Proposition 3.3. Given any tuple of weights $\mathfrak{q}=\left(q_{0}, \ldots, q_{n}\right)$, the following hold:
(i) Any weighted projective space $\mathbb{P}_{\mathfrak{q}, k}^{n}$ is isomorphic to $\mathbb{P}_{\mathfrak{q}^{\prime}, k}^{n}$, where \mathfrak{q}^{\prime} is a reduced tuple of weights.
(ii) If $\mathbb{P}_{\mathfrak{q}, k}^{n}$ is reduced and $d_{i}=\operatorname{gcd}\left(q_{0}, \cdots, \hat{q}_{i}, \cdots, q_{n}\right)$ for $0 \leq i \leq n$, then $\mathbb{P}_{\mathfrak{q}, k}^{n} \cong \mathbb{P}_{\mathfrak{q}^{\prime}, k}^{n}$ with $\mathfrak{q}^{\prime}=\left(\frac{q_{0}}{d_{i}}, \ldots, \frac{q_{i-1}}{d_{i}}, q_{i}, \frac{q_{i+1}}{d_{i}}, \ldots, \frac{q_{n}}{d_{i}}\right)$.
(iii) Any $\mathbb{P}_{\mathfrak{q}, k}^{n}$ is isomorphic to a reduced and well-formed one.
(iv) If \mathfrak{q} is reduced and all of m / q_{i} are co-prime, where $m=\operatorname{lcm}\left(q_{0}, \cdots, q_{i}\right)$, then $\mathbb{P}_{\mathfrak{q}, k}^{n}$ is isomorphic to \mathbb{P}_{k}^{n} by $\phi_{m}: \mathbb{P}_{\mathfrak{q}, k}^{n} \longrightarrow \mathbb{P}_{k}^{n}$ defined as

$$
\begin{equation*}
\phi_{m}\left(\left[x_{0}, \ldots, x_{n}\right]\right)=\left[x_{0}^{m / q_{0}}, x_{1}^{m / q_{1}}, \ldots, x_{n}^{m / q_{n}}\right] . \tag{15}
\end{equation*}
$$

Proof. Let $d=\operatorname{gcd}\left(q_{0}, \ldots, q_{n}\right), R=k_{\mathfrak{q}}\left[x_{0}, \ldots, x_{n}\right]$, and $R^{[d]}$ be the d-th truncated subring of R. Then, $R^{[d]}=k_{\mathfrak{q}}\left[x_{0}^{d}, \ldots, x_{n}^{d}\right]$ and by Thm. 3.2 we have

$$
\mathbb{P}_{\mathfrak{q}, k}^{n}=\operatorname{Proj}(R) \cong \operatorname{Proj}\left(R^{[d]}\right)=\mathbb{P}_{\mathfrak{q}^{\prime}, k}^{n}, \text { with } \mathfrak{q}^{\prime}=\left(\frac{q_{0}}{d}, \ldots, \frac{q_{n}}{d}\right)
$$

under the isomorphism

$$
\begin{equation*}
\left[x_{0}: \cdots: x_{n}\right] \rightarrow\left[y_{0}: \cdots: y_{n}\right]:=\left[x_{0}^{d}: x_{1}^{d}: \cdots: x_{n}^{d}\right] . \tag{16}
\end{equation*}
$$

This shows that $\mathbb{P}_{\mathfrak{q}, k}^{n}$ is isomorphic to a reduced weighted projective space $\mathbb{P}_{\mathfrak{q}^{\prime}, k}^{n}$, i.e., with $\mathfrak{q}^{\prime}=\left(q_{0}^{\prime}, \cdots, q_{n}^{\prime}\right)$ such that $\operatorname{gcd}\left(q_{0}^{\prime}, \cdots, q_{n}^{\prime}\right)=1$. This completes the proof of part (i).

Now, we assume that $\operatorname{gcd}\left(q_{0}, \ldots, q_{n}\right)=1$ and let $d_{i}=\operatorname{gcd}\left(q_{0}, \cdots, \hat{q}_{i}, \cdots, q_{n}\right)$, for $0 \leq i \leq n$. Then, $\operatorname{gcd}\left(d_{i}, q_{j}\right)=1$, for all $0 \leq i \neq j \leq n$. If $x_{0}^{p_{0}} \cdots x_{n}^{p_{n}}$ is a monomial of degree $p d_{i}$ for an integer $p \geq 1$, then

$$
p_{0} q_{0}+\cdots+p_{n} q_{n}=p d_{i}
$$

and so d_{i} divides $p_{i} q_{i}$, and hence $d_{i} \mid p_{i}$. This implies that x_{i} only appears in $R^{\left[d_{i}\right]}$ as $x_{i}^{d_{i}}$. Thus, we have $R^{\left[d_{i}\right]}=k\left[x_{0}, \ldots, x_{i-1}, x_{i}^{d_{i}}, x_{i+1}, \ldots, x_{n}\right]$ and hence

$$
\begin{equation*}
\mathbb{P}_{\mathfrak{q}, k}^{n}=\operatorname{Proj}(R) \cong \operatorname{Proj}\left(R^{\left[d_{i}\right]}\right)=\mathbb{P}_{\mathfrak{q}^{\prime}, k}^{n}, \tag{17}
\end{equation*}
$$

with $\mathfrak{q}^{\prime}=\left(\frac{q_{0}}{d_{i}}, \ldots, \frac{q_{i-1}}{d_{i}}, q_{i}, \frac{q_{i+1}}{d_{i}}, \ldots, \frac{q_{n}}{d_{i}}\right)$ under the isomorphism

$$
\left[x_{0}: \cdots: x_{n}\right] \rightarrow\left[y_{0}: \cdots: y_{n}\right]:=\left[x_{0}: \cdots: x_{i}^{d_{i}}: \cdots: x_{n}\right]
$$

see [5, Prop. 3] for more details. Thus, the part (ii) is proved.

One can conclude part (iii) by repeatedly using (ii). Indeed, by defining $d_{i}=\operatorname{gcd}\left(q_{0}, \cdots, \hat{q}_{i}, \cdots, q_{n}\right), a_{i}=\operatorname{lcm}\left(d_{0}, \cdots, \hat{d}_{i}, \cdots, d_{n}\right), a=\operatorname{lcm}\left(d_{0}, \cdots, d_{n}\right)$,
for all $0 \leq i \leq n$, one can easily check the following:
(1) $a_{i} \mid q_{i}, \operatorname{gcd}\left(a_{i}, d_{i}\right)=1$ and $a_{i} d_{i}=a$ for $0 \leq i \leq n$;
(2) $\operatorname{gcd}\left(d_{j}, d_{i}\right)=1$, and $d_{j} \mid q_{i}$, for $0 \leq i \neq j \leq n$.

Then, denoting by $R^{[\mathbf{d}]}:=k_{\mathfrak{q}}\left[x_{0}^{d_{0}}, \cdots, x_{n}^{d_{n}}\right]$, we have

$$
\mathbb{P}_{\mathfrak{q}, k}^{n}=\operatorname{Proj}(R) \cong \operatorname{Proj}\left(R^{[\mathbf{d}]}\right)=\mathbb{P}_{\mathfrak{q}^{\prime}, k}^{n} \text { with } \mathfrak{q}^{\prime}=\left(q_{0}^{\prime}, \ldots, q_{n}^{\prime}\right)
$$

where $q_{i}^{\prime}=q_{i} / a_{i}$ for all $0 \leq i \leq n$, under the morphism

$$
\begin{equation*}
\left[x_{0}: \cdots: x_{n}\right] \rightarrow\left[y_{0}: \cdots: y_{n}\right]:=\left[x_{0}^{d_{0}}: \cdots: x_{n}^{d_{n}}\right] . \tag{18}
\end{equation*}
$$

Since $\operatorname{gcd}\left(q_{0}^{\prime}, \cdots, \hat{q}_{i}^{\prime}, \cdots, q_{n}^{\prime}\right)=1$ for all $0 \leq i \leq n$, then $\mathbb{P}_{\mathfrak{q}^{\prime}, k}^{n}$ is a well-formed weighted projective space; see [2, Prop. 2.3] for more details. This completes the proof of part (iii).

If $a_{i}=q_{i}$ for all $0 \leq i \leq n$ in the above discussion, then $\mathbb{P}_{\mathfrak{q}, k}^{n} \cong \mathbb{P}_{k}^{n}$. This holds if m / q_{i} are all co-primes, where $m=\operatorname{lcm}\left(q_{0}, \cdots, q_{n}\right)$ The isomorphism is given by Eq. (15).

We call the isomorphism ϕ_{m} given in Eq. (15) the Veronese map.
Example 2 (The space \mathcal{M}_{2}). Consider the weighted projective moduli space of genus 2 curves, say $\mathbb{P}_{\mathfrak{q}, k}^{3}$ for $\mathfrak{q}=(2,4,6,10)$.

Let $d_{0}:=\operatorname{gcd}(4,6,10)=2, d_{1}=\operatorname{gcd}(2,6,10)=2, d_{2}=\operatorname{gcd}(2,4,10)=2$, $d_{3}:=\operatorname{gcd}(2,4,6)=2$ and $a_{0}=\operatorname{lcm}(2,2,2)=2=a_{1}=a_{2}=a_{3}$, and $a=$ $\operatorname{lcm}(2,2,2,2)=2$. The new set of weights is $q_{i}^{\prime}=\frac{q_{i}}{a_{i}}$. Hence $\mathfrak{q}^{\prime}=(1,2,3,5)$. Thus, the morphism $\mathbb{P}_{(2,4,6,10), k}^{3} \rightarrow \mathbb{P}_{(1,2,3,5), k}^{3}$, given by

$$
\begin{equation*}
\left[x_{0}: x_{1}: x_{2}: x_{3}\right] \rightarrow\left[y_{0}: y_{1}: y_{2}: y_{3}\right]=\left[x_{0}^{2}: x_{1}^{2}: x_{2}^{2}: x_{3}^{2}\right] \tag{19}
\end{equation*}
$$

is an isomorphism, from Eq. (18). Then $q=2 \cdot 3 \cdot 5=30$ and the Veronese embedding is

$$
\left[J_{2}: J_{4}: J_{6}: J_{10}\right] \longrightarrow\left[J_{2}^{30}: J_{4}^{15}: J_{6}^{10}: J_{10}^{6}\right]
$$

Since J_{10} is the discriminant then $J_{10} \neq 0$, then

$$
\left[J_{2}^{30}: J_{4}^{15}: J_{6}^{10}: J_{10}^{6}\right]=\left[\frac{J_{2}^{30}}{J_{10}^{6}}: \frac{J_{4}^{15}}{J_{10}^{6}}: \frac{J_{6}^{10}}{J_{10}^{6}}: 1\right]
$$

Thus, two genus curves are isomorphic if and only if they have the same $i_{1}:=\frac{J_{2}^{30}}{J_{10}^{6}}$, $i_{2}:=\frac{J_{4}^{15}}{J_{10}^{6}}$, and $i_{3}:=\frac{J_{6}^{10}}{J_{10}^{6}}$ invariants. Such invariants i_{1}, i_{2}, i_{3} are $\mathrm{GL}_{2}(k)-$ invariants and sometimes are called absolute invariants. To avoid invariants with
such high degrees sometimes different invariants have been used, where $i_{1}=\frac{J_{4}}{J_{2}^{2}}$, $i_{2}=\frac{J_{2} J_{4}-J_{6}}{J_{2}^{3}}$, and $i_{3}=\frac{J_{10}}{J_{2}^{5}}$, but then we have to define new invariants for the locus $J_{2}=0$; see [6], and many other authors.

Example above shows the benefits of weighted projective spaces from a computational point of view, since it is much easier to compute with $\left[J_{2}: J_{4}: J_{6}: J_{10}\right]$ because the coordinates have much smaller degrees instead of $\left[J_{2}^{30}: J_{4}^{15}: J_{6}^{10}: J_{10}^{6}\right]$. It was exactly this fact and computational efforts in [6] which led to the definition of the weighted general common divisors and weighted heights in [16] and [5]; as we will see in detail in Sec. 4. \mathcal{M}_{2} is a very nice example of doing explicit computations, however GIT guarantees that the theory works in every genus.
3.3. Singular locus of weighted projective varieties. Singularities of $\mathbb{P}_{\mathfrak{q}, k}$ are classified in the following proposition, see [11] or [4] for its proof.

Proposition 3.4. $\mathbb{P}_{\mathfrak{q}, k}^{n}$ is an irreducible, normal and Cohen-Macaulay variety having only cyclic quotients singularities. Moreover, if $\mathbb{P}_{\mathfrak{q}, k}^{n}$ is non-singular, then it is isomorphic to \mathbb{P}_{k}^{n}.

We let $d=\operatorname{gcd}\left(q_{0}, \ldots, q_{n}\right)$ and denote by $\operatorname{Sing}\left(\mathbb{P}_{\mathfrak{q}, k}^{n}\right)$ the singular locus of $\mathbb{P}_{\mathfrak{q}, k}^{n}$. Then, following the proof of $[10$, Prop. 7$]$, one can show that

$$
\operatorname{Sing}\left(\mathbb{P}_{\mathfrak{q}, k}^{n}\right)=\left\{\mathbf{x} \in \mathbb{P}_{\mathfrak{q}, k}^{n}: \underset{i \in J(\mathbf{x})}{\operatorname{gcd}}\left(q_{i}\right)>d\right\}
$$

For $\mathbf{x} \in \mathbb{P}_{\mathfrak{q}, k}^{n}$ denote by $\left.J(\mathbf{x}):=\left\{j: x_{j}(\mathbf{x}) \neq 0\right\}\right)$, the set of indexes where \mathbf{x} has non-zero coordinates. Let $m=\operatorname{lcm}\left(q_{0}, \cdots, q_{n}\right), p$ a prime dividing m, and

$$
S_{\mathfrak{q}}(p)=\left\{\mathbf{x} \in \mathbb{P}_{\mathfrak{q}, k}^{n}: d p \mid q_{i} \text { for all } i \in J(\mathbf{x})\right\}
$$

The singular locus decomposes into irreducible components as

$$
\operatorname{Sing}\left(\mathbb{P}_{\mathfrak{q}, k}^{n}\right)=\bigcup_{\text {primes } p \mid m} S_{\mathfrak{q}}(p),
$$

where only the maximal sets are considered in the union. The proof can be easily extended from that of [9] see remark below.

Remark 2. In most papers the weighted projective space is assumed well formed. This is not really a restriction since every weighted projective space is isomorphic to a well-formed space. Then

$$
\begin{equation*}
S_{\mathfrak{q}}(p)=\left\{\mathbf{x} \in \mathbb{P}_{\mathfrak{q}, k}^{n}: p \mid q_{i} \text { for all } i \in J(\mathbf{x})\right\} \tag{20}
\end{equation*}
$$

and the singular locus is

$$
\operatorname{Sing}\left(\mathbb{P}_{\mathfrak{q}, k}^{n}\right)=\left\{\mathbf{x} \in \mathbb{P}_{\mathfrak{q}, k}^{n}: \underset{i \in J(\mathbf{x})}{\operatorname{gcd}}\left(q_{i}\right)>1\right\}
$$

see $\left[10\right.$, Prop. 7]. Since $\mathbb{P}_{\mathfrak{q}, k}^{n}$ is well-formed then $\mathbf{x} \in \operatorname{Sing}\left(\mathbb{P}_{\mathfrak{q}, k}^{n}\right)$ implies that $x_{i}(\mathbf{x})=0$ for at least one index $i \in\{0, \ldots, n\}$.

Example 3 (\mathcal{M}_{2} again). Let us consider again Exa. 2.
Consider $\mathbb{P}_{\mathfrak{q}}^{3}$ for $\mathfrak{q}=(2,4,6,10)$. Then $m=\operatorname{lcm}(2,4,6,10)=60$. The only primes dividing $m=60$ are $p=2,3,5$. Then

$$
\begin{aligned}
S_{\mathfrak{q}}(2) & =\left\{[0: t: 0: 0] \in \mathbb{P}_{\mathfrak{q}}^{3}\right\}, \\
S_{\mathfrak{q}}(3) & =\left\{[0: 0: t: 0] \in \mathbb{P}_{\mathfrak{q}}^{3}\right\}, \\
S_{\mathfrak{q}}(5) & =\left\{[0: 0: 0: t] \in \mathbb{P}_{\mathfrak{q}}^{3}\right\}
\end{aligned}
$$

Hence, Sing $\mathbb{P}_{\mathfrak{q}, \mathbb{Q}}^{3}=S_{\mathfrak{q}}(2) \cup S_{\mathfrak{q}}(3) \cup S_{\mathfrak{q}}(5)$.
One can take $\mathfrak{q}^{\prime}=(1,2,3,5)$ and $\mathbb{P}_{\mathfrak{q}^{\prime}, \mathbb{Q}}^{3}$. Then $m=\operatorname{lcm}(1,2,3,5)=30$. Only primes $p=2,3,5$ divide m. Then,

$$
\begin{aligned}
S_{\mathfrak{q}^{\prime}}(2) & =\left\{[0: t: 0: 0] \in \mathbb{P}_{\mathfrak{q}}^{3}\right\}, \\
S_{\mathfrak{q}^{\prime}}(3) & =\left\{[0: 0: t: 0] \in \mathbb{P}_{\mathfrak{q}}^{3}\right\}, \\
S_{\mathfrak{q}^{\prime}}(5) & =\left\{[0: 0: 0: t] \in \mathbb{P}_{\mathfrak{q}}^{3}\right\} .
\end{aligned}
$$

Hence, Sing $\mathbb{P}_{\mathfrak{q}^{\prime}, \mathbb{Q}}^{3}=S_{\mathfrak{q}}^{\prime}(2) \cup S_{\mathfrak{q}}^{\prime}(3) \cup S_{\mathfrak{q}}^{\prime}(5)$.
For a fixed prime p such that $p \nmid m$, then $S_{\mathfrak{q}}(p)=\emptyset$. If $p \mid m$ then denote

$$
J(p)=\left\{j \mid \text { such that } p \mid q_{j}\right\}, \quad \text { and } \quad n_{p}=\# J(p)
$$

Then $S_{\mathfrak{q}}(p) \neq \emptyset$ is isomorphic to the weighted projective space $\mathbb{P}_{\mathfrak{q}^{\prime}, k}^{n_{p}}$, where $\mathfrak{q}^{\prime}=$ $\left(q_{i_{1}}, \cdots, q_{i_{n_{p}}}\right)$ with $i_{\ell} \in J(p)$ for $1 \leq \ell \leq n_{p}$. Moreover, as a consequence of the normality of $\mathbb{P}_{\mathfrak{q}, k}^{n}$, we have $\operatorname{Codim}_{\mathbb{P}_{\mathfrak{q}, k}^{n}}\left(\operatorname{Sing}\left(\mathbb{P}_{\mathfrak{q}, k}^{n}\right)\right) \geq 2$. This means that $\mathbb{P}_{\mathfrak{q}, k}^{n}$ is regular in codimension one. In particular, if q_{i} 's are mutually coprime and $q_{i}>1$, then

$$
\operatorname{Sing}\left(\mathbb{P}_{\mathfrak{q}, k}^{n}\right)=\left\{\mathbf{x}_{i}=[0: \cdots: 1: \cdots: 0]: 0 \leq i \leq n\right\}
$$

Next we consider the canonical quotient map $p_{\mathfrak{q}}: \mathbb{V}_{k}^{n+1} \rightarrow \mathbb{P}_{\mathfrak{q}, k}^{n}$, which induces the surjective morphism $\pi_{\mathfrak{q}}: \mathbb{P}_{k}^{n} \rightarrow \mathbb{P}_{\mathfrak{q}, k}^{n}$. Let \mathcal{X} be a weighted subvariety of $\mathbb{P}_{\mathfrak{q}, k}^{n}$. The punctured affine cone over \mathcal{X} is $\mathcal{C}_{\mathcal{X}}^{*}=p_{\mathfrak{q}}^{-1}(\mathcal{X})$. The affine cone $\mathcal{C}_{\mathcal{X}}$ over \mathcal{X} is the closure of $\mathcal{C}_{\mathcal{X}}^{*}$ in \mathbb{A}_{k}^{n+1}. The origin point $\mathbf{0}=(0, \cdots, 0)$ refers to the vertex of $\mathcal{C}_{\mathcal{X}}^{*}$. We note that k^{*} acts on the punctured affine cone $\mathcal{C}_{\mathcal{X}}^{*}=p_{\mathfrak{q}}^{-1}(\mathcal{X})$ to result $\mathcal{X}=\mathcal{C}_{\mathcal{X}}^{*} / k^{*}$. Moreover, $\mathcal{C}_{\mathcal{X}}^{*}$ has no isolated singularities.

A weighted subvariety \mathcal{X} of $\mathbb{P}_{\mathfrak{q}, k}^{n}$ is called quasi-smooth of dimension m if its affine cone $\mathcal{C}_{\mathcal{X}}$ is smooth variety of dimension $m+1$ outside its vertex. The singularities of a quasi-smooth variety \mathcal{X} are due to the k^{*}-action and hence are cyclic quotients singularities. Furthermore, by [4, Cor. 5.9], if $\mathcal{X} \subset \mathbb{P}_{\mathfrak{q}, k}^{n}$ is subvariety such that $\mathcal{X} \cap \operatorname{Sing}\left(\mathbb{P}_{\mathfrak{q}, k}^{n}\right)=\emptyset$, then \mathcal{X} is non-singular if and only if \mathcal{X} is quasi-smooth.

A weighted subvariety \mathcal{X} of $\mathbb{P}_{\mathfrak{q}, k}^{n}$ of codimension c is called well-formed if $\mathbb{P}_{\mathfrak{q}, k}^{n}$ itself is well-formed and \mathcal{X} contains no codimension $c+1$ singular stratum of $\mathbb{P}_{\mathfrak{q}, k}^{n}$. Hence, any codimension 1 stratum of a well-formed variety \mathcal{X} is either nonsingular on $\mathbb{P}_{\mathfrak{q}, k}^{n}$ or it is equal to $\mathcal{X} \cap \mathcal{Y}$, where \mathcal{Y} is a codimension 1 stratum of $\mathbb{P}_{\mathfrak{q}, k}^{n}$. This means that $\operatorname{Codim}_{\mathcal{X}}\left(\mathcal{X} \cap \mathbb{P}_{\mathfrak{q}, k}^{n}\right) \geq 2$.

Given a weighted polynomial $f \in k_{\mathfrak{q}}\left[x_{0}, \cdots, x_{n}\right]$ of degree d, let \mathcal{X}_{d} denotes the hypersurfaces defined by f. It is called a linear cone if $d=q_{i}$ for some $0 \leq i \leq n$, i.e, it is defined by $x_{i}+g$ with $g \in k$. A linear cone is well-formed if and only if it is isomorphic to $\mathbb{P}_{\left(q_{0}, \cdots, \hat{q}_{i}, \cdots, q_{n}\right), k}^{n-1}$. In the case of hypersurfaces, \mathcal{X}_{d} is well-formed if and only if the following hold:
(i) $\operatorname{gcd}\left(q_{0}, \cdots, \hat{q}_{i}, \cdots, q_{n}\right)=1$ for all $0 \leq i \leq n$;
(i) $\operatorname{gcd}\left(q_{0}, \cdots, \hat{q}_{i}, \cdots, \hat{q}_{j}, \cdots, q_{n}\right)$ divides d for $0 \leq i \neq j \leq n$.

For more on well formed subvarieties of $\mathbb{P}_{\mathfrak{q}, k}^{n}$ of codimension ≥ 2, see [14].
3.4. Analytic structure of weighted projective spaces. As regular projective spaces, the weighted complex projective spaces can also be equipped with an analytic structure. We consider the decomposition of

$$
\mathbb{P}_{\mathfrak{q}, \mathbb{C}}^{n}=U_{0} \cup \ldots \cup U_{n}
$$

where

$$
U_{i}=\left\{\mathbf{x} \in \mathbb{P}_{\mathfrak{q}, \mathbb{C}}^{n}: x_{i}(\mathbf{x}) \neq 0\right\} \subset \mathbb{P}_{\mathfrak{q}, \mathbb{C}}^{n}
$$

for each $0 \leq i \leq n$. Then, the map $\tilde{\psi}_{i}: \mathbb{C}^{n} \rightarrow U_{i}$,

$$
\begin{equation*}
\left(x_{0}, \ldots, x_{i-1}, x_{i+1} \ldots, x_{n}\right) \rightarrow\left[x_{0}: \ldots: x_{i-1}: 1: x_{i+1}: \ldots: x_{n}\right]_{\mathfrak{q}} \tag{21}
\end{equation*}
$$

is a surjective analytic map, but not a chart since it is not injective. However, it induces the isomorphism $\psi_{i}: \mathcal{X}\left(q_{i}: q_{0}, \ldots, \widehat{q}_{i}, \ldots q_{n}\right) \rightarrow U_{i}$, such as

$$
\left[\left(x_{0}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)\right] \rightarrow\left[x_{0}: \ldots: x_{i-1}: 1: x_{i+1}: \ldots: x_{n}\right]_{\mathfrak{q}}
$$

where $\mathcal{X}\left(q_{i}: q_{0}, \ldots, \widehat{q}_{i}, \ldots q_{n}\right)$ is the cyclic quotient space of the action of $\mu_{q_{i}}$ on \mathbb{C}^{n} given by $\mu_{q_{i}} \times \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ such as

$$
\begin{equation*}
\left(\xi_{i},\left(x_{0}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)\right) \rightarrow\left(\xi_{i}^{q_{0}} x_{0}, \ldots, \xi_{i}^{q_{i-1}} x_{i-1}, \xi^{q_{i+1}} x_{i+1}, \ldots, \xi_{i}^{q_{n}} x_{n}\right) \tag{22}
\end{equation*}
$$

where $\xi_{i} \in \mu_{q_{i}}$. Since the changes of charts are analytic, then $\mathbb{P}_{\mathfrak{q}, \mathbb{C}}^{n}$ is an analytic space with cyclic quotient singularities; see [2,3] for details.
3.5. Weighted Blow-ups. Consider $\widehat{\mathbb{C}}_{\mathfrak{q}}^{n+1}:=\left\{\left(\mathbf{x},[\mathfrak{u}]_{\mathfrak{q}}\right) \in \mathbb{C}^{n+1} \times \mathbb{P}_{\mathfrak{q}, \mathbb{C}}^{n} \mid \mathbf{x} \in \overline{[\mathfrak{u}]_{\mathfrak{q}}}\right\}$, where $\left[\bar{u}_{\mathfrak{q}}\right.$ denote the Zariski closure of $[\mathfrak{u}]_{\mathfrak{q}}$ and $\mathbf{x} \in{\overline{[u}]_{\mathfrak{q}}}$ means that there exists $t \in \mathbb{C}$ satisfying $x_{i}=t^{q_{i}} \cdot u_{i}$ for each $0 \leq i \leq n$. The natural projection map

$$
\begin{equation*}
\pi_{\mathfrak{q}}: \widehat{\mathbb{C}}_{\mathfrak{q}}^{n+1} \rightarrow \mathbb{C}^{n+1} \tag{23}
\end{equation*}
$$

is an isomorphism over $\widehat{\mathbb{C}}_{\mathfrak{q}}^{n+1} \backslash \pi_{\mathfrak{q}}^{-1}(\mathbf{0})$ and the exceptional divisor $E:=\pi_{\mathfrak{q}}^{-1}(\mathbf{0})$ is identified with $\mathbb{P}_{\mathfrak{q}, \mathbb{C}}^{n}$. The space $\widehat{\mathbb{C}}_{\mathfrak{q}}^{n+1}=\widehat{U}_{0} \cup \ldots \cup \widehat{U}_{n}$ can be covered with $(n+1)$ charts, where

$$
\widehat{U}_{i}=\left\{\left(\mathbf{x},[\mathfrak{u}]_{\mathfrak{q}}\right) \in \mathbb{C}^{n+1} \times \mathbb{P}_{\mathfrak{q}, \mathbb{C}}^{n}: u_{i} \neq 0\right\} \subset \widehat{\mathbb{C}}^{n+1}(\mathfrak{q})
$$

However, $\phi^{i}: \mathbb{C}^{n+1} \rightarrow \widehat{U}_{i}$,

$$
\left.\mathbf{x} \rightarrow\left(x_{0}^{q_{0}}, x_{0}^{q_{1}} x_{1}, \ldots, x_{0}^{q_{n}} x_{n}\right),\left[x_{1}: \ldots, x_{i-1}: 1: x_{i+1}: \ldots: x_{n}\right]\right)
$$

are surjective, but not injective. Indeed, we have that $\phi^{i}(\mathbf{x})=\phi^{i}(\mathbf{y})$ is and only if there exists $\xi \in \mu_{q_{i}}$ such that $y_{i}=\xi^{-1} x_{i}$ and $y_{j}=\xi^{q_{j}} x_{j}$ for $j \neq i$. Hence, the $\operatorname{map} \phi^{i}$ induces an isomorphism $\mathcal{X}\left(q_{i}: q_{0}, \ldots, q_{i-1},-1, q_{i+1}, \ldots, q_{n}\right) \rightarrow \widehat{U}_{i}$.

These charts are compatible with the ones of $\mathbb{P}_{\mathfrak{q}, \mathbb{C}}^{n}$. In \widehat{U}_{i} the exceptional divisor is $\left\{x_{i}=0\right\}$ and the i-th chart of $\mathbb{P}_{\mathfrak{q}, \mathbb{C}}^{n}$ is the quotient space

$$
\mathcal{X}\left(q_{i}: q_{0}, \ldots, q_{i-1},-1, q_{i+1}, \ldots, q_{n}\right)
$$

Example $4($ Case $n=2)$. Let $\mathfrak{q}=\left(q_{0}, q_{1}, q_{2}\right)$ be a tuple of reduced weights, i.e., $\operatorname{gcd}\left(q_{0}, q_{1}, q_{2}\right)=1$ and $\pi_{\mathfrak{q}}: \widehat{\mathbb{C}}_{\mathfrak{q}}^{3} \rightarrow \mathbb{C}^{3}$, be the weighted blow-up at the origin with respect to \mathfrak{q}. Then $\widehat{\mathbb{C}}^{3} \cong \widehat{U}_{0} \cup \widehat{U}_{1} \cup \widehat{U}_{2}$, where

$$
\widehat{U}_{0} \cong X\left(q_{0}:-1, q_{1}, q_{2}\right), \widehat{U}_{1} \cong X\left(q_{1}: q_{0},-1, q_{2}\right), \widehat{U}_{2} \cong X\left(q_{2}: q_{0}, q_{1},-1\right)
$$

and the charts are given by
$\psi^{0}: X\left(q_{0}:-1, q_{1}, q_{2}\right) \rightarrow U_{0}, \quad\left[\left(x_{0}: x_{1}: x_{2}\right)\right] \mapsto\left(\left(x_{0}^{q_{0}}, x_{0}^{q_{1}} x_{1}, x_{0}^{q_{2}} x_{2}\right),\left[1: x_{1}: x_{2}\right]\right)$
$\psi^{1}: X\left(q_{1}: q_{0},-1, q_{2}\right) \rightarrow U_{1}, \quad\left[\left(x_{0}: x_{1}: x_{2}\right)\right] \mapsto\left(\left(x_{1}^{q_{1}} x_{0}, x_{1}^{q_{1}}, x_{1}^{q_{2}} x_{2}\right),\left[x_{0}: 1: x_{2}\right]\right)$
$\psi^{2}: X\left(q_{1}: q_{0}, q_{1},-1\right) \rightarrow U_{2}, \quad\left[\left(x_{0}: x_{1}: x_{2}\right)\right] \mapsto\left(\left(x_{2}^{q_{2}} x_{0}, x_{2}^{q_{2}} x_{1}, x_{2}^{q_{2}}\right),\left[x_{0}: x_{1}: 1\right]\right)$.
The exceptional divisor $\pi_{\mathfrak{q}}^{-1}((0,0,0))$ is isomorphic to $\mathbb{P}_{\mathfrak{q}, \mathbb{C}}^{2}$, which can be simplified by isomorphism $\mathbb{P}_{\mathfrak{q}, \mathbb{C}}^{2} \cong \mathbb{P}_{\mathfrak{q}^{\prime}, \mathbb{C}}^{2}$ given by

$$
\left[x_{0}: x_{1}: x_{2}\right] \mapsto\left[x_{0}^{\operatorname{gcd}\left(q_{1}, q_{2}\right)}: x_{1}^{\operatorname{gcd}\left(q_{0}, q_{2}\right)}: x_{2}^{\operatorname{gcd}\left(q_{0}, q_{1}\right)}\right]
$$

where

$$
\mathfrak{q}^{\prime}=\left(\frac{q_{0}}{\operatorname{gcd}\left(q_{0}, q_{1}\right) \cdot \operatorname{gcd}\left(q_{0}, q_{2}\right)}, \frac{q_{1}}{\operatorname{gcd}\left(q_{0}, q_{1}\right) \cdot \operatorname{gcd}\left(q_{1}, q_{2}\right)}, \frac{q_{2}}{\operatorname{gcd}\left(q_{0}, q_{2}\right) \cdot \operatorname{gcd}\left(q_{1}, q_{2}\right)}\right) .
$$

4. Weighted heights

In [5] a height function was defined for weighted projective spaces $\mathbb{P}_{\mathrm{q}, k}^{n}$, called weighted height. We briefly describe basic definitions here. To avoid confusion with projective heights we will use different notation than that of [5]. We will follow the parallelism with Weil heights by using $\mathcal{S}, \mathfrak{s}$ instead of $H, h . \mathbb{P}_{\mathfrak{q}}^{n}(k)$ denotes the set of k-rational points of $\mathbb{P}_{\mathfrak{q}, k}^{n}$.
4.1. Weighted heights on $\mathbb{P}_{\mathfrak{q}, k}^{n}$. Given any $\mathbf{x} \in \mathbb{P}_{\mathfrak{q}}^{n}(k)$, the multiplicative weighted height over k is defined as

$$
\begin{equation*}
\mathcal{S}_{k}(\mathbf{x}):=\prod_{\nu \in M_{k}} \max \left\{\left|x_{0}\right|_{\nu}^{\frac{1}{\left.\right|_{0} ^{0}}}, \ldots,\left|x_{n}\right|_{\nu}^{\frac{1}{q_{n}}}\right\} \tag{24}
\end{equation*}
$$

and its logarithmic weighted height (over k) as

$$
\begin{equation*}
\mathfrak{s}_{k}(\mathbf{x}):=\log \mathcal{S}_{k}(\mathbf{x})=\sum_{\nu \in M_{k}} \max _{0 \leq j \leq n}\left\{\frac{1}{q_{j}} \cdot \log \left|x_{j}\right|_{\nu}\right\} . \tag{25}
\end{equation*}
$$

In [5, Prop. 1] it is shown that height functions $\mathcal{S}_{k}(\mathbf{x})$ and hence $\mathfrak{s}_{k}(\mathbf{x})$ are independent of the choice of coordinates of the point \mathbf{x}. Moreover, in [5, Prop. 5ii], it is proved that for any finite extension $K \mid k$ we have

$$
\mathcal{S}_{k}(\mathbf{x})^{[K: k]}=\mathcal{S}_{K}(\mathbf{x}), \text { and hence }[K: k] \cdot \mathfrak{s}_{k}(\mathbf{x})=\mathfrak{s}_{K}(\mathbf{x}) .
$$

Weighted heights can be interpreted in terms of Weil height on projective varieties using Veronese map defined by Eq. (15). Assume that $\mathfrak{q}=\left(q_{0}, \cdots, q_{n}\right)$ is reduced, well-formed and satisfies $\operatorname{gcd}\left(m / q_{0}, \cdots, m / q_{n}\right)=1$, where $m=$ $\operatorname{lcm}\left(q_{0}, q_{1} \cdots, q_{n}\right)$. Proof of the following can be found in [5].

Lemma 4.1. Weighted height \mathcal{S}_{k} is given in terms of projective height H_{k} via

$$
\begin{equation*}
\mathcal{S}_{k}(\mathbf{x})=H_{k}\left(\phi_{m}(\mathbf{x})\right)^{\frac{1}{m}} \quad \text { and } \quad \mathfrak{s}_{k}(\mathbf{x})=\frac{1}{m} \cdot h_{k}\left(\phi_{m}(\mathbf{x})\right), \tag{26}
\end{equation*}
$$

for all $\mathbf{x} \in \mathbb{P}_{\mathfrak{q}}^{n}(k)$, where ϕ_{m} is the Veronese map given in Eq. (15).
The absolute weighted height on $\mathbb{P}_{\mathfrak{q}}^{n}(\bar{k})$ is defined as

$$
\begin{align*}
\mathcal{S}: \mathbb{P}_{\mathfrak{q}}^{n}(\bar{k}) & \rightarrow[0, \infty], \\
\mathbf{x} & \mapsto \mathcal{S}(\mathbf{x}):=\mathcal{S}_{K}(\mathbf{x})^{1 /[K: k]}, \tag{27}
\end{align*}
$$

and the absolute logarithmic weighted height on $\mathbb{P}_{\mathfrak{q}}^{n}(\bar{k})$ is given by

$$
\begin{align*}
\mathfrak{s}: & \mathbb{P}_{\mathfrak{q}}^{n}(\bar{k}) \rightarrow[0, \infty] \\
& \mathbf{x} \mapsto \mathfrak{s}(\mathbf{x}):=\frac{1}{[K: k]} \log \mathcal{S}_{K}(\mathbf{x}), \tag{28}
\end{align*}
$$

for which $K \subset \bar{k}$ is a finite extension of k containing $k(\mathbf{x})$, the field of definition of \mathbf{x} defined by

$$
k(\mathbf{x}):=k\left(\frac{x_{0}^{1 / q_{0}}}{x_{i}^{1 / q_{i}}}, \cdots, 1, \cdots, \frac{x_{n}^{1 / q_{n}}}{x_{i}^{1 / q_{i}}}\right)
$$

for some $x_{i} \neq 0$. Notice that both of these height functions are independent of the choice of the field K; see [5]. For simplicity, we call $\mathfrak{s}(\mathbf{x})$ the global weighted height on $\mathbb{P}_{\mathfrak{q}}^{n}(\bar{k})$.

By Eq. (26), for a field $K \subset \bar{k}$ containing and $k(\mathbf{x})$, we have:
Lemma 4.2. For all $\mathbf{x} \in \mathbb{P}_{\mathfrak{q}}^{n}(\bar{k})$, we have

$$
\begin{equation*}
\mathcal{S}(\mathbf{x})=H\left(\phi_{m}(\mathbf{x})\right)^{\frac{1}{m}}, \quad \text { and } \quad \mathfrak{s}(\mathbf{x})=\frac{1}{m} \cdot h\left(\phi_{m}(\mathbf{x})\right) \tag{29}
\end{equation*}
$$

where ϕ_{m} is as in Eq. (15), $H(\cdot), h(\cdot)$ as in Eq. (5), and $\mathcal{S}(\cdot), \mathfrak{s}(\cdot)$ as in Eq. (27).
4.2. Cartier and Weil divisors on weighted varieties. Let \mathcal{X} be a weighted variety in $\mathbb{P}_{\mathfrak{q}, k}^{n}$ over the field k. The group of Weil divisors on \mathcal{X} is a free Abelian group generated by weighted closed subvarieties of codimension one on \mathcal{X}. This group is denoted by $\operatorname{WeDiv}_{\mathfrak{q}}(\mathcal{X})$. The support of the divisor $D=\sum_{Y} n_{\mathcal{Y}} \cdot \mathcal{Y}$ is the union of all codimension one weighted subvarieties \mathcal{Y} such that $n_{\mathcal{Y}} \neq 0$, which is denoted by $\operatorname{Supp}(D)$. A divisor is said to be effective if every $n_{\mathcal{Y}} \geq 0$ for all codimension one subvarieties $\mathcal{Y} \subset \mathcal{X}$. We define ord $\mathcal{Y}: \mathcal{O}_{\mathcal{X}, \mathcal{Y}} \backslash\{0\} \rightarrow \mathbb{Z}$ to be

$$
\operatorname{ord}_{\mathcal{Y}}(f)=\operatorname{length}_{\mathcal{O}_{\mathcal{X}, \mathcal{Y}}}\left(\frac{\mathcal{O}_{\mathcal{X}, \mathcal{Y}}}{\langle f\rangle}\right)
$$

which is well defined since $\mathcal{O}_{\mathcal{X}, \mathcal{Y}}$ is a local ring. Then, one can extend ord \mathcal{Y} to the fraction field $k_{\mathfrak{q}}(\mathcal{X})^{*}$ in the usual way. The order function ord $\mathcal{Y}: k_{\mathfrak{q}}(\mathcal{X})^{*} \rightarrow \mathbb{Z}$ has the following properties:
(1) $\operatorname{ord}_{\mathcal{Y}}(f \cdot g)=\operatorname{ord}_{\mathcal{Y}}(f)+\operatorname{ord}_{\mathcal{Y}}(g)$
(2) For a fixed $f \in k_{\mathfrak{q}}(\mathcal{X})^{*}$ there are only finitely many \mathcal{Y} such that ord $\mathcal{Y} \neq 0$.
(3) Let $f \in k_{\mathfrak{q}}(\mathcal{X})^{*}$. Then, $f \in \mathcal{O}_{\mathcal{X}, \mathcal{Y}}$ if and only if $\operatorname{ord} \mathcal{Y}(f) \geq 0$. Similarly, $f \in \mathcal{O}_{\mathcal{X}, \mathcal{Y}}^{*}$ if and only if $\operatorname{ord}_{\mathcal{Y}}(f)=0$.
(4) If \mathcal{X} is weighted projective variety and $f \in k_{\mathfrak{q}}(\mathcal{X})^{*}$, then $f \in k^{*}$ if and only if $\operatorname{ord} \mathcal{Y}(f) \geq 0$ for all \mathcal{Y}; if and only if $\operatorname{ord} \mathcal{Y}(f)=0$ for all \mathcal{Y}.

The divisor of any $f \in k_{\mathfrak{q}}(\mathcal{X})^{*}$ is defined as

$$
\operatorname{div}(f)=\sum_{\mathcal{Y} \subset \mathcal{X}} \operatorname{ord}_{\mathcal{Y}}(f) \cdot \mathcal{Y}
$$

which is called a principal divisor. Two divisors D and D^{\prime} are said to be linearly equivalent if their difference is a principal divisor. The divisor of zeros and divisor of poles of f, denoted by $(f)_{0}$ and $(f)_{\infty}$ respectively, are

$$
(f)_{0}=\sum_{\operatorname{ord} \mathcal{Y}(f)>0} \operatorname{ord}_{\mathcal{Y}}(f) \cdot \mathcal{Y},(f)_{\infty}=-\sum_{\operatorname{ord}_{\mathcal{Y}}<0} \operatorname{ord}_{\mathcal{Y}}(f) \cdot \mathcal{Y}
$$

The divisor class group of \mathcal{X} is the group of divisor classes modulo linear equivalence. This group is denoted by $\mathrm{Cl}_{\mathfrak{q}}(\mathcal{X})$, and $\mathrm{Cl}\left(\mathbb{P}_{\mathfrak{q}, k}^{n}\right)$ for $\mathcal{X}=\mathbb{P}_{\mathfrak{q}, k}^{n}$.

A Cartier divisor on a weighted variety \mathcal{X} is an equivalence class of collection of pairs $\left(U_{i}, f_{i}\right)_{i \in I}$ satisfying the following conditions:
(i) The U_{i} are affine weighted open sets that cover \mathcal{X}.
(ii) The f_{i} are non zero rational functions, $f_{i} \in k_{\mathfrak{q}}\left(U_{i}\right)^{*}=k_{\mathfrak{q}}(\mathcal{X})^{*}$.
(iii) $\frac{f_{i}}{f_{j}} \in \mathcal{O}_{\mathcal{X}}\left(U_{i} \cap U_{j}\right)^{*}$, so $\frac{f_{i}}{f_{j}}$ has no poles or zeros on $U_{i} \cap U_{j}$.

Two Cartier divisors $\left\{\left(U_{i}, f_{i}\right) \mid i \in I\right\}$ and $\left\{\left(V_{j}, g_{j}\right) \mid j \in J\right\}$ are equivalent if for all $i \in I$ and $j \in J$ we have

$$
\frac{f_{i}}{g_{j}} \in \mathcal{O}_{\mathcal{X}}\left(U_{i} \cap V_{j}\right)^{*}
$$

The sum of two Cartier divisors is

$$
\left.\left\{\left(U_{i}, f_{i}\right) \mid i \in I\right\}+\left\{V_{j}, g_{j}\right) \mid j \in J\right\}=\left\{\left(U_{i} \cap V_{j}, f_{i} g_{j}\right) \mid(i, j) \in I \times J\right\}
$$

The Cartier divisors with this operation on a weighted variety \mathcal{X} form a group that we denote it by $\operatorname{CaDiv}_{\mathfrak{q}}(\mathcal{X})$. The support of a Cartier divisor is the set of zeros and poles of f_{i}, which is denoted by $\operatorname{Supp}(D)$. A Cartier divisor is said to be effective or positive if it can be defined by a collection $\left\{\left(U_{i}, f_{i}\right) \mid i \in I\right\}$ such that every $f_{i} \in \mathcal{O}_{\mathcal{X}}\left(U_{i}\right)$. For a given $f \in k_{\mathfrak{q}}(\mathcal{X})^{*}$, the divisor $\operatorname{div}(f)=\{(\mathcal{X}, f)\}$ is called a principal Cartier divisor. Two Cartier divisors are linearly equivalent if their difference is a principal divisor. The group of Cartier divisors classes modulo linear equivalence is called Picard group of a weighted variety \mathcal{X} and is denoted by $\operatorname{Pic}_{\mathfrak{q}}(\mathcal{X})$. In the case $\mathcal{X}=\mathbb{P}_{\mathfrak{q}, k}^{n}$, we write $\operatorname{Pic}\left(\mathbb{P}_{\mathfrak{q}, k}^{n}\right)$. A Cartier divisor D on a weighted variety \mathcal{X} is said to be ample or big if the corresponding line bundle $\mathcal{O}(D)$ is ample or big, respectively.

For $\mathcal{X}=\mathbb{P}_{\mathfrak{q}, k}^{n}$ with reduced weights \mathfrak{q}, in [1, Sections 5, 6], it is proved that the following maps

$$
\begin{array}{lll}
\mathbb{Z} & \rightarrow \operatorname{Cl}(\mathcal{X}), & \mathbb{Z} \rightarrow \operatorname{Pic}(\mathcal{X}), \\
1 & \mapsto \mathcal{O}_{\mathcal{X}}(1), & 1 \mapsto \mathcal{O}_{\mathcal{X}}(m), \tag{30}
\end{array} \quad m=\operatorname{lcm}\left(q_{0}, \cdots, q_{n}\right),
$$

induce the following isomorphism $\mathrm{Cl}(\mathcal{X}) \cong \mathbb{Z}$, and $\operatorname{Pic}(\mathcal{X}) \cong \mathbb{Z}$, respectively. Furthermore, $\mathcal{O}_{\mathcal{X}}(a)$ is not necessarily an invertible sheaf for any given integer $a \in \mathbb{Z}$. However, by [17, Lem. 1.3], the sheaf $\mathcal{O}_{\mathcal{X}}(m)$ with $m=\operatorname{lcm}\left(q_{0}, \cdots, q_{n}\right)$ is ample and invertible, and for $a, b \in \mathbb{Z}$ we have

$$
\mathcal{O}_{\mathcal{X}}(a) \otimes \mathcal{O}_{\mathcal{X}}(m)^{\otimes b} \cong \mathcal{O}_{\mathcal{X}}(a+b m)
$$

In [4, Thm. 4B. 7], it is proved that $\mathcal{O}_{\mathbb{P}_{\mathfrak{q}, k}^{n}}(m)$ is ample and there is $c \in \mathbb{Z}$ such that $\mathcal{O}_{\mathbb{P}_{\mathfrak{q}, k}^{n}}(\mathrm{~cm})$ is very ample. Furthermore, the sheaf $\mathcal{O}_{\mathbb{P}_{\mathfrak{q}, k}^{n}}(a)$ is coherent and Cohen-Macaulay for any $a \in \mathbb{Z}$. If $\mathcal{O}_{\mathbb{P}_{\mathfrak{q}, k}^{n}}(a) \neq 0$, then it is reflexive of rank 1 by [4, Cor. 5.8].

Following [17], we define the weak projective space over any field k as follows:
Definition 2. The complement of $\operatorname{Sing}\left(\mathbb{P}_{\mathfrak{q}, k}^{n}\right)$ in $\mathcal{X}=\mathbb{P}_{\mathfrak{q}, k}^{n}$ is called the weak projective space over k, which is a smooth weighted subvariety, denoted by

$$
\begin{equation*}
\mathbb{W P}_{\mathfrak{q}, k}^{n}:=\mathbb{P}_{\mathfrak{q}, k}^{n} \backslash \operatorname{Sing}\left(\mathbb{P}_{\mathfrak{q}, k}^{n}\right) \tag{31}
\end{equation*}
$$

By [17, Prop. 1.1], the sheaf $\mathcal{O}_{\mathcal{X}}(1)$ is locally free on $\mathbb{W P}_{\mathfrak{q}, k}^{n}$. Hence, defining

$$
\mathcal{O}_{\mathbb{W P}_{\mathfrak{q}, k}^{n}}^{n}(1):=\left.\mathcal{O}_{\mathbb{P}_{\mathfrak{q}, k}^{n}}(1)\right|_{\mathbb{W P}_{\mathfrak{q}, k}^{p}} ^{n}
$$

one can see that $\mathbb{W} \mathbb{P}_{\mathfrak{q}, k}^{n}$ is the largest open set $U \subset \mathbb{P}_{\mathfrak{q}, k}^{n}$ such that $\left.\mathcal{O}_{\mathbb{P}_{\mathfrak{q}, k}^{n}}(1)\right|_{U}$ is an invertible sheaf on U and

$$
\left.\left(\left.\mathcal{O}_{\mathbb{P}_{\mathbf{q}, k}^{n}}(1)\right|_{U}\right)^{\otimes a} \cong \mathcal{O}_{\mathbb{P}_{\mathfrak{q}, k}^{n}}(a)\right|_{U}
$$

for any $a \in \mathbb{Z}$ by [17, Thm. 1.7]. Furthermore, we have $\operatorname{Pic}_{\mathfrak{q}}\left(\mathbb{W P}_{\mathfrak{q}, k}^{n}\right) \cong \mathbb{Z}$ and it is generated by $\mathcal{O}_{\mathbb{W W}_{q, k}^{n}}(1)$.

For any (weighted) projective variety \mathcal{X} of $\operatorname{dimension} \operatorname{dim}(\mathcal{X})=d$ over k, we denote by $\Omega_{\mathcal{X}}^{i}$ the sheaf of i-th regular differential forms on \mathcal{X}, and $\omega_{\mathcal{X}}=\Omega_{\mathcal{X}}^{d}$ the canonical sheaf of \mathcal{X}. By [17, Prop. 2.3], the canonical sheaf of $\mathbb{W}_{\mathfrak{q}, k}^{n}$ is

$$
\omega_{\mathbb{W} \mathbb{P}_{\mathfrak{q}, k}^{n}} \cong \mathcal{O}_{\mathbb{W P}_{\mathbf{q}, k}^{n}}(-\tilde{q})
$$

where $\tilde{q}=q_{0}+q_{1}+\cdots+q_{n}$, by [17, Prop. 2.3].
We also denote by $\omega_{\mathcal{X}}^{0}$ the dualizing sheaf of \mathcal{X}. If \mathcal{X} is a nonsingular or more generally normal (weighted) projective variety, then $\omega_{\mathcal{X}}^{0}=\omega_{\mathcal{X}}$. Otherwise,
we let $\mathcal{W}=\mathcal{X} \backslash \operatorname{Sing}(\mathcal{X})$ and consider the canonical embedding $j: \mathcal{W} \rightarrow \mathcal{X}$. Then, if $\operatorname{Codim}_{\mathcal{X}}(\mathcal{X}-\mathcal{W}) \geq 2$, then

$$
\omega_{\mathcal{X}}^{0}=j_{*} \omega_{\mathcal{W}}^{0}=j_{*} \omega_{\mathcal{W}}
$$

In the case $\mathcal{X}=\mathbb{P}_{\mathfrak{q}, k}^{n}$, since it is normal and Cohen-Macaualy and $\mathcal{W}=\mathbb{W}_{\mathfrak{q}, k}^{n}$, so by $[4$, Cor. 6 B. 8$]$ one has $\omega_{\mathbb{P}_{\mathfrak{q}, k}}^{0} \cong \mathcal{O}_{\mathbb{P}_{\mathfrak{q}, k}^{n}}(-\tilde{q})$.
4.3. Local weighted heights. We assume that \mathcal{X} is a weighted variety defined over k in $\mathbb{P}_{\mathfrak{q}, \bar{k}}^{n}$, where $k \subset \bar{k}$ and $\mathfrak{q}=\left(q_{0}, \cdots, q_{n}\right)$. If \mathcal{X} is a weighted affine variety with coordinates $x_{0}, x_{1}, \cdots, x_{n}$, then a set $E \subset \mathcal{X} \times M$ is called a weighted affine M_{k}-bounded set if there is an M_{k}-bounded constant function γ such that

$$
\left|x_{i}(\mathbf{x})\right|_{v}^{\frac{m}{q_{i}}} \leq e^{\gamma(v)}, 0 \leq i \leq n \text { and }(\mathbf{x}, v) \in E
$$

We note that this definition is independent of choice of the coordinates x_{i} 's on \mathcal{X}. Moreover, any finite union of weighted affine M-bounded sets is again a weighted affine M-bounded.

For an arbitrary variety \mathcal{X}, we say that $E \subset \mathcal{X} \times M$ is a weighted $M_{k^{-}}$ bounded set if there exists a finite cover $U_{i}^{\prime} s$ of weighted affine open subsets of \mathcal{X} and the weighted M_{k}-bounded sets $E_{i} \subset U_{i} \times M$ such that $E=\bigcup E_{i}$. A function

$$
\lambda: \mathcal{X} \times M \rightarrow \mathbb{R}
$$

is called a locally weighted M_{k}-bounded above if for every weighted M_{k} bounded subset $E \subset \mathcal{X} \times M$, there exists an M_{k}-constant γ such that $\lambda(\mathbf{x}, v) \geq$ $\gamma(v)$ holds for $(\mathbf{x}, v) \in E$. The locally weighted M_{k}-bounded below and locally weighted M_{k}-bounded functions are defined similarly.

Example 5. For example, let $\mathcal{X}=\mathbb{P}_{\mathbf{q}, \bar{k}}^{n}$ and consider the finite cover of affine open sets $\left\{\left(U_{i}, x_{i}\right)\right\}$ and $\gamma \equiv 0$. Moreover, for $0 \leq i \leq n$, the following sets are weighted M_{k}-bounded:

$$
\begin{equation*}
\widetilde{E}_{i}=\left\{(\mathbf{x}, v) \in \mathcal{X} \times M: \text { and }\left|\frac{x_{0}^{\frac{m}{q_{0}}}}{x_{i}^{\frac{m}{q_{i}}}}\right|_{v} \leq 1, \cdots,\left|\frac{x_{n}^{\frac{m}{q_{n}}}}{x_{i}^{\frac{m}{q_{i}}}}\right|_{v} \leq 1\right\} \tag{32}
\end{equation*}
$$

Thus $\mathcal{X}=\mathbb{P}_{\mathfrak{q}, \bar{k}}^{n}$ is a weighted M_{k}-bounded set, since it is covered by $\widetilde{E}_{i}^{\prime}$ s.
Let \mathcal{L} be a line bundle on a weighted variety \mathcal{X} defined over k. A weighted M-metric on \mathcal{L} is a norm $\|\cdot\|=\left(\|\cdot\|_{v}\right)$ such that for each $v \in M$, extending $\left.v\right|_{k} \in M_{k}$, and each fiber $\mathcal{L}_{\mathbf{x}}$ with $\mathbf{x} \in \mathcal{X}$ assigns a function $\|\cdot\|_{v}: \mathcal{L}_{\mathbf{x}} \rightarrow \mathbb{R}_{\geq 0}$, not identically equal to zero, satisfying the following:

- $\|\lambda \cdot \xi\|_{v}=|\lambda|_{v} \cdot\|\xi\|_{v}$ for $\lambda \in \bar{k}$ and $\xi \in \mathcal{L}_{\mathbf{x}}$.
- If $w_{1}, w_{2} \in M$ agree on the residue field $k(\mathbf{x})$, then $\|\cdot\|_{w_{1}}=\|\cdot\|_{w_{2}}$ on $\mathcal{L}_{\mathbf{x}}(k(\mathbf{x}))$.
A weighted M-metric on \mathcal{L} is called locally weighted M-bounded if for section $g \in \mathcal{O}_{\mathcal{X}}(U)$ on an open set $U \subseteq \mathcal{X}$, the function

$$
(\mathbf{x}, v) \mapsto \log \|g(\mathbf{x})\|_{v}
$$

on $U \times M$ is locally weighted M_{k}-bounded. We say that \mathcal{L} is a weighted M metrized line bundle on \mathcal{X} if \mathcal{L} is equipped with a weighted M-metric $\|\cdot\|=$ $\left(\|\cdot\|_{v}\right)$.

Next we show that there exist a locally bounded weighted M-metric on any line bundle on the weighted variety \mathcal{X}.

Proposition 4.3. Any line bundle \mathcal{L} on a weighted variety $\mathcal{X} \subseteq \mathbb{P}_{\mathbf{q}, \bar{k}}^{n}$ defined over k admits a locally bounded weighted M-metric. ${ }^{2}$

Proof. First we assume that $\mathcal{X}=\mathbb{P}_{\mathbf{q}, \bar{k}}^{n}$ and $\mathcal{L}=\mathcal{O}_{\mathcal{X}}(m)$, where $m=\operatorname{lcm}\left(q_{0}, q_{1}, \cdots, q_{n}\right)$. Then, one can define an M-metric by letting

$$
\begin{equation*}
\|\ell(\mathbf{x})\|_{v}=\frac{|\ell(\mathbf{x})|_{v}}{\max _{i}\left|x_{i}\right|_{v_{v}}^{\frac{m}{m_{i}}}} \tag{33}
\end{equation*}
$$

for each $v \in M, \mathbf{x} \in \mathcal{X}$ and a global section $\ell \in \mathcal{O}_{\mathcal{X}}(m)$ given by

$$
\ell=a_{0} x_{0}^{\frac{m}{q_{0}}}+a_{1} x_{1}^{\frac{m}{q_{1}}}+\cdots+a_{1} x_{1}^{\frac{m}{a_{1}}} .
$$

It is well-defined on \mathcal{L}, and on the set $U_{i}=\left\{x_{i} \neq 0\right\}$ we have

$$
\left\|x_{i}^{\frac{m}{q_{i}}}(\mathbf{x})\right\|_{v}=\frac{\left|x_{i}^{\frac{m}{q_{i}}}(\mathbf{x})\right|_{v}}{\max _{i}\left|x_{i}\right|_{v}^{\frac{m}{m_{i}}}} \leq 1
$$

Moreover, the functions $\left|\frac{x_{j}^{m / q_{j}}}{x_{i}^{m / q_{i}}}\right|_{v}$ are bounded by an M_{k}-constant on the bounded sets \widetilde{E}_{i} defined by Eq. (32). Thus, $\log \left\|x_{i}^{\frac{m}{q_{i}}}(\mathbf{x})\right\|_{v}$ are bounded below for all indexes, and hence Eq. (33) gives the desired locally bounded weighted M-metric.

Next, we assume that $\mathcal{X} \subseteq \mathbb{P}_{\mathrm{q}, \overline{\bar{k}}}^{n}$ is a weighted projective variety and $\mathcal{L}=$ $\mathcal{O}_{\mathcal{X}}(D)$, where D is an effective Cartier divisor on \mathcal{X} both defined over k. In this case, \mathcal{L} can be written as $\mathcal{L}=\mathcal{M}_{1} \otimes \mathcal{M}_{2}^{-1}$, where \mathcal{M}_{1} and \mathcal{M}_{2} are base point free line bundles on \mathcal{X}. Now, we choose generating global functions $s_{1}, \cdots, s_{n_{1}}$ of

[^2]\mathcal{M}_{1}, and $t_{1}, \cdots, t_{n_{2}}$ of \mathcal{M}_{2}. Then, for $\mathbf{x} \notin \operatorname{Supp}(D)$, the desired locally bounded weighted M-metric on \mathcal{L} is given by
\[

$$
\begin{equation*}
\left\|g_{D}(\mathbf{x})\right\|_{v}=\max _{1 \leq i \leq n_{1}} \min _{1 \leq j \leq n_{2}}\left\|\frac{s_{i} g_{D}}{t_{j}}(\mathbf{x})\right\|_{v} \tag{34}
\end{equation*}
$$

\]

where $v \in M_{k}$ and g_{D} is a section of $\mathcal{L}=\mathcal{O}_{\mathcal{X}}(D)$ with $D=\operatorname{div}\left(g_{D}\right)$. One can show this metric is uniquely determined and independent of choices $\mathcal{M}_{1}, \mathcal{M}_{2}$, and their generating sections as [18, B2.2.10 and B2.2.11]. We notice that if $\mathcal{X}=\mathbb{P}_{\mathfrak{q}, \bar{k}}^{n}$ and $\mathcal{L}=\mathcal{O}_{\mathcal{X}}(m)$, then Eq. (34) will be same as Eq. (33) by considering $\mathcal{M}_{1}=\mathcal{L}$ and \mathcal{M}_{2} trivial line bundle and $t_{i}=x_{i}^{m / q_{i}}$ for $0 \leq i \leq n$ and $g_{D} \in \mathcal{O}_{\mathcal{X}}(m)$.

Finally, for an arbitrary weighted variety \mathcal{X}, first we cover it by finitely many open affine sets U_{i} such that on each U_{i} the line bundle \mathcal{L} is trivialized with a non-vanishing section g_{i}. Letting $p_{j, t}$ be the coordinates on U_{j} with $p_{j 0}=1$, one can find constants C and γ (not depending on i and j) such that

$$
\left|\frac{g_{i}(\mathbf{x})}{g_{j}(\mathbf{x})}\right|_{v} \leq C \cdot \max _{t}\left|p_{j t}\right|_{v}^{\gamma}
$$

and hence for $\mathbf{x} \in U_{i} \cap U_{j}$ we have

$$
\left|g_{j i}(\mathbf{x})\right|_{v}=\left|\frac{g_{j}(\mathbf{x})}{g_{i}(\mathbf{x})}\right|_{v} \geq \frac{1}{C \cdot \max _{t}\left|p_{j t}\right|_{v}^{\gamma}}
$$

Thus, for $\mathbf{x} \in U_{i}$, defining

$$
\begin{equation*}
\left\|g_{i}(\mathbf{x})\right\|_{v}=\max _{t} \min _{\left\{j: \mathbf{x} \in U_{j}\right\}}\left|p_{j t}\right|_{v}^{\gamma} \cdot\left|\frac{g_{i}(\mathbf{x})}{g_{j}(\mathbf{x})}\right|_{v} \tag{35}
\end{equation*}
$$

we obtain the desired locally bounded weighted M-metric of \mathcal{L} on U_{i}, which is independent of the choice of transition functions $g_{j i}=g_{j} / g_{i}$ over $U_{i} \cap U_{j}$. Using the cocycle rule $g_{e j}=g_{e i} g_{i j}$, for every $\mathbf{x} \in U_{e} \cap U_{i}$, we have

$$
\left\|g_{e}(\mathbf{x})\right\|_{v}=\left|g_{e i}(\mathbf{x})\right|_{v} \cdot\left\|g_{i}(\mathbf{x})\right\|_{v}
$$

Therefore, Eq. (35) provides a well-defined M-metric of \mathcal{L} on \mathcal{X}. By a similar argument as in the end of proof of [7, Prop. 2.7.5] or [18, B2.2.10], one can see that this is a locally bounded weightd metric.

We denote by $\widehat{\operatorname{Pic}_{\mathfrak{q}}(\mathcal{X})}$ the group of isometric classes of pairs $\tilde{\mathcal{L}}=(\mathcal{L},\|\cdot\|)$. As in the usual case, given any morphisms $\phi: \mathcal{X}^{\prime} \rightarrow \mathcal{X}$ of weighted varieties over k, and $\widehat{\mathcal{L}}=(\mathcal{L},\|\cdot\|) \in \widehat{\operatorname{Pic}_{\mathfrak{q}}(\mathcal{X})}$, the pull-back of $\widehat{\mathcal{L}}$ by ϕ is defined as $\widehat{\phi^{*}(\mathcal{L})}=\left(\phi^{*}(\mathcal{L}),\|\cdot\|^{\prime}\right)$, such that

$$
\begin{equation*}
\left\|\phi^{*}(g)(\mathbf{x})\right\|^{\prime}=\|g(\phi(\mathbf{x}))\|\left(\mathbf{x} \in \mathcal{X}^{\prime}\right) \tag{36}
\end{equation*}
$$

for any open subset U of \mathcal{X} containing $\phi(\mathbf{x})$ and $g \in \mathcal{O}_{\mathcal{X}}(U)$.

The pull-back induces a group homomorphism between $\widehat{\operatorname{Pic}_{\mathfrak{q}}(\mathcal{X})}$ and $\widehat{\operatorname{Pic}_{\mathfrak{q}}\left(\mathcal{X}^{\prime}\right)}$. Under this homomorphism, any locally bounded weighted M-metrized line bundles remain locally bounded weighted M-metrized. Now we can define the weighted local Weil heights on a variety \mathcal{X} in $\mathbb{P}_{\mathfrak{q}, \bar{k}}^{n}$ as follows: Given any Cartier divisor $D=\left\{\left(U_{i}, f_{i}\right)\right\}$ on \mathcal{X}, we let $\mathcal{L}_{D}=\mathcal{O}_{\mathcal{X}}(D)$ be the line bundle of regular functions on D. It can be constructed by gluing

$$
\left.\mathcal{O}_{\mathcal{X}}(D)\right|_{U_{i}}=f_{i}^{-1} \mathcal{O}_{\mathcal{X}}\left(U_{i}\right)
$$

and 1 becomes a canonical invertible meromorphic section of \mathcal{L}_{D}, which is denoted by g_{D}. Thus, by Thm. 4.3, we can equip \mathcal{L}_{D} with a weighted locally bounded M-metric $\|\cdot\|$, determined by the max-min method in proof of Thm. 4.3, and denote it by $\widehat{D}=\left(\mathcal{L}_{D},\|\cdot\|\right)$.

Definition 3. Given $\nu \in M_{k}$, we define the local weighted height $\zeta_{\widehat{D}}(-, \nu)$ with respect to \widehat{D} on the weighted variety \mathcal{X} as

$$
\begin{equation*}
\zeta_{\widehat{D}}(\mathbf{x}, \nu):=-\log \left\|g_{D}(\mathbf{x})\right\|_{v} \tag{37}
\end{equation*}
$$

for $\mathbf{x} \in \mathcal{X} \backslash \operatorname{Supp}(D)$, where $v \in M$ such that $\nu=\left.v\right|_{k}$.
We note that the local weighted height $\zeta_{\widehat{D}}(-, \nu)$ is well defined because the norm $\|\cdot\|$ is well-defined by its construction as it explained in proof of Thm. 4.3.

Here, we have the fundamental properties of the local weighted heights.
Theorem 4.4 (Weighted local Weil height machinery). For each of $\nu \in M_{k}$, fix $v \in M$ such that $\nu=\left.v\right|_{k}$. Suppose that \mathcal{X} is a weighted variety defined over k and $\widehat{D}, \widehat{D}_{1}, \widehat{D}_{2} \in \widehat{\operatorname{Pic}_{\mathfrak{q}}(\mathcal{X})}$. Then:
(i) Additivity: For $\mathbf{x} \notin \operatorname{Supp}\left(D_{1}\right) \cup \operatorname{Supp}\left(D_{2}\right)$, we have

$$
\zeta_{\widehat{D_{1}+D_{2}}}(\mathbf{x}, \nu)=\zeta_{\widehat{D}_{1}}(\mathbf{x}, \nu)+\zeta_{\widehat{D}_{2}}(\mathbf{x}, \nu)
$$

(ii) Functoriality: If $\phi: \mathcal{X}^{\prime} \rightarrow \mathcal{X}$ is a morphism of weighted varieties defined over k such that $\phi\left(\mathcal{X}^{\prime}\right) \cap \operatorname{Supp}(D)=$, then

$$
\zeta_{\phi^{*}(\widehat{D})}\left(\mathbf{x}^{\prime}, \nu\right)=\zeta_{\widehat{D}}\left(\phi\left(\mathbf{x}^{\prime}\right), \nu\right) \text { for } \mathbf{x}^{\prime} \in \mathcal{X}^{\prime} \backslash \phi^{*}(D)
$$

(iii) Boundedness from below: If D is effective and \mathcal{X} is weighted M_{k} bounded projective variety, then there exists an M_{k}-constant function γ such that

$$
\zeta_{\widehat{D}}(\mathbf{x}, \nu) \geq \gamma(\nu) \text { for } \mathbf{x} \in \mathcal{X} \backslash \operatorname{Supp}(D)
$$

(iv) Normalization: If $\mathcal{X}=\mathbb{P}_{\mathfrak{q}, \bar{k}}^{n}$ and D is a hyperplane defined by $\ell \in$ $\mathcal{O}_{\mathcal{X}}(m)$, with $m=\operatorname{lcm}\left(q_{0}, q_{1}, \cdots, q_{n}\right)$, then

$$
\begin{equation*}
\zeta_{\widehat{D}}(\mathbf{x}, \nu)=-\log \frac{|\ell(\mathbf{x})|_{v}}{\max _{i}\left|x_{i}\right|_{v_{i}}^{\frac{m}{m_{i}}}} \text { for } \mathbf{x} \in \mathcal{X} \backslash \operatorname{Supp}(D) \tag{38}
\end{equation*}
$$

(v) Principal divisor: If $D=\operatorname{div}(f)$ for some nonzero $f \in \mathcal{O}_{\mathcal{X}}(D)$ with $\operatorname{deg}(f)=d$, then

$$
\begin{equation*}
\zeta_{\widehat{D}}(\mathbf{x}, \nu)=-\log \frac{|f(\mathbf{x})|_{v}}{\max _{i}\left|x_{i}\right|_{v}^{\frac{d}{q_{i}}}} \text {, for } \mathbf{x} \in \mathcal{X} \backslash \operatorname{Supp}(D) \text {, } \tag{39}
\end{equation*}
$$

by letting $\|1\|_{v}=|1|_{v}$ on $\mathcal{O}_{\mathcal{X}}(D)$ for $v \in M$ over $\nu \in M_{k}$.
(vi) Uniqueness: If \mathcal{X} is weighted M_{k}-bounded, $\|\cdot\|_{v}^{\prime}$ is another weighted M_{k}-bounded metric on \mathcal{L}_{D} and $\zeta_{\widehat{D}}^{\prime}$ is the resulting local weighted Weil height respect to $\left(\mathcal{L}_{D},\|\cdot\|^{\prime}\right)$, then

$$
\zeta_{\widehat{D}}(\mathbf{x}, \nu)=\zeta_{\widehat{D}}^{\prime}(\mathbf{x}, \nu)+O(1) .
$$

(vii) Base change: If $K \mid k$ is a finite field extension and $u \in M_{K}$ over some $v \in M_{k}$, then

$$
\zeta_{\widehat{D}}(\mathbf{x}, \nu)=\frac{1}{\left[K_{u}: k_{\nu}\right]} \zeta_{\widehat{D^{\prime}}}\left(\mathbf{x}^{\prime}, u\right), \text { for } \mathbf{x}^{\prime} \in \mathcal{X}^{\prime} \backslash \operatorname{Supp}\left(D^{\prime}\right)
$$

where $\mathcal{X}^{\prime}=\mathcal{X} \otimes_{k} K$ and $\mathbf{x}^{\prime} \in \mathcal{X}^{\prime}$ corresponds to $\mathbf{x} \in \mathcal{X}(k)$, and $D^{\prime} \operatorname{CaDiv}\left(\mathcal{X}^{\prime}\right)$ correspond to D.
(viii) Max-Min: There are positive integers n_{1} and n_{2}, and nonzero rational functions $f_{i j}$ on \mathcal{X} for $i=0, \cdots, n_{1}$ and $j=0, \cdots, n_{2}$ such that

$$
\zeta_{\widehat{D}}(\mathbf{x}, \nu)=\max _{0 \leq i \leq n_{1}} \min _{0 \leq j \leq n_{2}} \log \left|f_{i j}(\mathbf{x})\right|_{\nu} .
$$

Proof. The proofs are almost straightforward and similar to proof of the Weil local heights on projective heights.
(i) Using the product of weighted M-metrics from $\mathcal{O}_{\mathcal{X}}\left(D_{1}\right)$ and $\mathcal{O}_{\mathcal{X}}\left(D_{2}\right)$ on $\mathcal{O}_{\mathcal{X}}\left(D_{1}+D_{2}\right)$, and $g_{D_{1}+D_{2}}=g_{D_{1}} \otimes g_{D_{2}}$, we have

$$
\left\|g_{D_{1}+D_{2}}\right\|_{\nu}=\left\|g_{D_{1}} \otimes g_{D_{2}}\right\|_{\nu}=\left\|g_{D_{1}}\right\|_{\nu} \cdot\left\|g_{D_{2}}\right\|_{\nu},
$$

which implies the desired equality by taking logarithm from both sides.
(ii) The functoriality is a direct consequence of the functoriality of the weighted M-metrics $\|\cdot\|=\left(\|\cdot\|_{v}\right)$, i.e., $\left\|\phi^{*}\left(g_{D}\right)(\mathbf{x})\right\|=\left\|g_{D}(\phi(\mathbf{x}))\right\|$ for all $v \in M$.
(iii) Note that the rational function g_{D} is defined everywhere for any effective divisor D. Then, on bounded sets inside an affine open set U of \mathcal{X} where $\mathcal{O}_{\mathcal{X}}(D)$ is trivial and so all global sections can be identified noncanonically as regular functions, $\left|g_{D}(\mathbf{x})\right|_{v}$ and is bounded above by an
M_{k}-constant. This implies that $\zeta_{D}(\mathbf{x}, \nu)$ is bounded below by an $M_{k^{-}}$ constant.
(iv) A locally M_{k}-bounded metric on $\mathcal{O}_{\mathcal{X}}(D) \cong \mathcal{O}_{\mathbb{P}_{\mathfrak{q}, \bar{k}}^{n}}(m)$ is given by Eq. (33) and hence $g_{D}=\ell$ is defined away from the hyperplane D. Given any $\nu \in M_{k}$ and fixing $v \in M$ such that $\nu=\left.v\right|_{k}$, one can get (38) by taking logarithm.
(v) For a divisor $D=\operatorname{div}(f)$ with $\operatorname{deg}(f)=d$, we have $\mathcal{O}_{\mathcal{X}}(D)=f^{-1} \mathcal{O}_{\mathcal{X}}$ and $g_{D}=f$ whenever f is defined. Hence, for any v over ν, we have

$$
\|f(\mathbf{x})\|_{v}=-\frac{|f(\mathbf{x})|_{v}}{\max _{i}\left|x_{i}\right|_{v}^{\frac{d}{q_{i}}}}
$$

By taking logarithm, this implies Eq. (39) as desired,
(vi) Using (i) with $\widehat{D}=\widehat{D}+(0)$ where \widehat{D} on the left hand side is endowed with $\|\cdot\|^{\prime}$, then

$$
\zeta_{\widehat{D}}(\mathbf{x}, \nu)-\zeta_{\widehat{D}}^{\prime}(\mathbf{x}, \nu)
$$

is the logarithm of norm of 1 with the locally bounded metric $\|\cdot\|_{v} /\|\cdot\|_{v}^{\prime}$ on $\mathcal{O}(\mathcal{X})$. Since 1 is a global nowhere-vanishing section, by the definition, we have $\zeta_{\widehat{D}}(\mathbf{x}, \nu)=\zeta_{\widehat{D}}^{\prime}(\mathbf{x}, \nu)+O(1)$.
(vii) Since $|\cdot|_{v}=|\cdot|_{u}^{1 /\left[K_{u}: k_{v}\right]}$ for $u \in M_{K}$ over $v \in M_{k}$, so $\|\cdot\|_{\nu}=\|\cdot\|_{u}^{1 /\left[K_{u}: k_{v}\right]}$ and hence the desired equality.
(viii) By linearity of the both sides of equality,

$$
\zeta_{\widehat{D}}(\mathbf{x}, \nu)=\max _{0 \leq i \leq n_{1}} \min _{0 \leq j \leq n_{2}} \log \left|f_{i j}(\mathbf{x})\right|_{\nu}
$$

and the proof of Thm. 4.3, it is enough to consider \widehat{D} such that $\mathcal{O}_{\mathcal{X}}(D) \cong$ $\mathcal{O}_{\mathcal{X}}(m)$. In this case, the existence of $f_{i j}$'s is clear by the proof of Eq. (33).
4.4. Global weighted heights. Now, we assume $\mathcal{X} \subseteq \mathbb{P}_{\mathfrak{q}}^{n}(\bar{k})$ is a weighted variety and consider $\widehat{\mathcal{L}}=(\mathcal{L},\|\cdot\|) \in \widehat{\operatorname{Pic}_{\mathfrak{q}}(\mathcal{X})}$. Given $\mathbf{x} \in \mathcal{X}$, let K be a finite extension of k containing $k(\mathbf{x})$. For each $u \in M_{K}$, we choose a place $v \in M$ over u and define $\|\cdot\|_{u}:=\|\cdot\|_{v}^{1 /[K: k]}$ on $\mathcal{L}_{\mathbf{x}}(k(\mathbf{x}))$. By the second condition of a weighted M-metric, one can see that it is independent of the choice of $v \in M$. We let g be an invertible regular function of \mathcal{L} with $\mathbf{x} \notin \operatorname{Supp}\left(\mathcal{L}_{g}\right)$ where $\mathcal{L}_{g}=\operatorname{div}(g)$. Note that such function exists because there is an open dense trivialization in a neighborhood of the point \mathbf{x}. Then, we have the weighted M-metrized line bundle $\widehat{\mathcal{L}_{g}}=\left(\mathcal{O}_{\mathcal{X}}\left(L_{g}\right),\left(\|\cdot\|_{u}\right)\right) \in \widehat{\operatorname{Pic}_{\mathfrak{q}}(\mathcal{X})}$.

The global weighted height $\mathfrak{s}_{\widehat{\mathcal{L}}}(\mathbf{x})$ with respect to $\widehat{\mathcal{L}}$ is defined by

$$
\begin{equation*}
\mathfrak{s}_{\widehat{\mathcal{L}}}(\mathbf{x}):=\sum_{u \in M_{K}} \zeta_{\widehat{\mathcal{L}_{g}}}(\mathbf{x}, u), \tag{40}
\end{equation*}
$$

where $\zeta_{\widehat{\mathcal{L}_{g}}}(\mathbf{x}, u)=-\log \|g(\mathbf{x})\|_{u}$ assuming $\left.v\right|_{k}=u$. It is easy to check that these definitions are independent of the choice of field K and regular function g.

Example 6. Let $\mathcal{X}=\mathbb{P}_{\mathfrak{q}, \bar{k}}^{n}, D=\operatorname{div}\left(x_{0}^{1 / q_{i}}\right)$, and $\mathcal{L}=\mathcal{O}(D)$. Then, one has $\mathfrak{s}(\mathbf{x})=\mathfrak{s}_{\widehat{\mathcal{L}}}(\mathbf{x})$, where $\mathfrak{s}(\mathbf{x})$ is the global weighted height on $\mathbb{P}_{\mathfrak{q}, \bar{k}}^{n}$ given by Eq. (27).

Indeed, if $K=k(\mathbf{x})$ and $u \in M_{K}$ over $\nu \in M_{k}$, Eq. (38) becomes

$$
\begin{equation*}
\zeta_{\widehat{D}}(\mathbf{x}, u)=-\log \frac{\left|x_{0}^{\frac{1}{q_{0}}}\right|_{u}}{\max _{i}\left|x_{i}^{\frac{1}{q_{i}}}\right|_{u}}, \text { for } \mathbf{x} \in \mathcal{X} \backslash \operatorname{Supp}(D) \tag{41}
\end{equation*}
$$

Since $\zeta_{\widehat{\mathcal{L}_{x_{0}}}}(\mathbf{x}, u)$ and $\zeta_{\widehat{D}}(\mathbf{x}, u)$ are same local height, we have

$$
\begin{aligned}
\mathfrak{s}_{\widehat{\mathcal{L}}}(\mathbf{x}) & =\sum_{u \in M_{K}} \zeta_{\widehat{\mathcal{L}_{x_{0}}}}(\mathbf{x}, u)=\sum_{u \in M_{K}}-\log \frac{\left|x_{0}^{\frac{1}{q_{0}}}\right|_{u}}{\max _{i}\left|x_{i}^{\frac{1}{q_{i}}}\right|_{u}} \\
& =\sum_{u \in M_{K}} \frac{1}{q_{i}} \log \max _{i}\left|x_{i}\right|_{u}-\frac{1}{q_{0}} \sum_{u \in M_{K}} \log \left|x_{0}\right|_{u}
\end{aligned}
$$

The last term vanishes by product formula and using Thm. 4.4 (vi), we have

$$
\begin{aligned}
\mathfrak{s}_{\mathfrak{\mathcal { L }}}(\mathbf{x}) & =\sum_{u \in M_{K}} \frac{1}{q_{i}} \log \max _{i}\left|x_{i}\right|_{v}=\sum_{v \in M_{k} u \mid v} \frac{1}{\left[K_{u}: k_{v}\right] q_{i}} \log \max _{i}\left|x_{i}\right|_{v} \\
& =\frac{1}{[K: k]} \cdot \sum_{v \in M_{k}} \max _{i}\left\{\frac{1}{q_{i}} \cdot \log \left|x_{i}\right|_{v}\right\}=\mathfrak{s}(\mathbf{x}) .
\end{aligned}
$$

The above example shows the normalization property of the weighted global Weil height function, and their other essential properties are given by the following theorem.

Theorem 4.5 (Global weighted height machinery). Let \mathcal{X} be a weighted variety and consider $\widehat{\mathcal{L}}, \widehat{\mathcal{L}}_{1}$, and $\widehat{\mathcal{L}}_{2} \in \widehat{\operatorname{Pic}(\mathcal{X})}$.
(i) Independence (a): $\mathfrak{s}_{\widehat{\mathcal{L}}}$ depends only on the isometry class of $\widehat{\mathcal{L}}$, i.e, if $\widehat{\mathcal{L}}_{1}$ and $\widehat{\mathcal{L}}_{2}$ are isometric pairs, then $\mathfrak{s}_{\widehat{\mathcal{L}}_{1}}=\mathfrak{s}_{\mathfrak{L}_{2}}$.
(ii) Independence (b): If \mathcal{X} is a complete weighted variety or generally M-bounded, then $\mathfrak{s}_{\widehat{\mathcal{L}}}$ does not depend on the choice of weighted locally bounded M-metrics up to a locally M-bounded constant function.
(iii) Additivity: For any $\mathbf{x} \in \mathcal{X}$, we have $\mathfrak{s}_{\widehat{\mathcal{L}}_{1} \otimes \widehat{\mathcal{L}}_{2}}(\mathbf{x})=\mathfrak{s}_{\widehat{\mathcal{L}}_{1}}(\mathbf{x})+\mathfrak{s}_{\widehat{\mathcal{L}}_{2}}(\mathbf{x})$.
(iv) Functoriality: If $\phi: \mathcal{X}^{\prime} \rightarrow \mathcal{X}$ is a morphism of weighted varieties over k, then

$$
\mathfrak{s}_{\phi^{*}(\widehat{\mathcal{L}})}(\mathbf{x})=\mathfrak{s}_{\widehat{\mathcal{L}}}(\phi(\mathbf{x})) \text { for } \mathbf{x} \in \mathcal{X}
$$

(v) Base change: If $K \mid k$ is a finite field extension, then

$$
\mathfrak{s}_{\widehat{D}}(\mathbf{x})=\frac{1}{[K: k]} \mathfrak{s}_{\widehat{D^{\prime}}}\left(\mathbf{x}^{\prime}\right), \text { for } \mathbf{x}^{\prime} \in \mathcal{X}^{\prime} \backslash \operatorname{Supp}\left(D^{\prime}\right)
$$

where $\mathcal{X}^{\prime}=\mathcal{X} \otimes_{k} K$ and $\mathbf{x}^{\prime} \in \mathcal{X}^{\prime}$ corresponds to $\mathbf{x} \in \mathcal{X}(k)$, and $D^{\prime} \operatorname{CaDiv}\left(\mathcal{X}^{\prime}\right)$ correspond to D.
(vi) If $\widehat{\mathcal{L}}$ is a line bundle on \mathcal{X}, generated by its global sections, then $\mathfrak{s}_{\widehat{\mathcal{L}}}(\mathbf{x})$ is bounded from below for all $\mathbf{x} \in \mathcal{X}(\bar{k})$, by a constant depending on $\widehat{\mathcal{L}}$.

Proof. The proof is essentially similar to the proof of Thm. 2.3. The part (i) is obvious by definitions. One may conclude part (ii) using (iii) of Thm. 4.4 and the definitions. The part (iii) comes from (i) of Thm. 4.4, and (iv) is a consequence of (ii) of Thm. 4.4. The part (v) comes by (vii) of Thm. 4.4, and (vi) is a result of (iii) of Thm. 4.4.
4.5. Weighted local and global heights for closed subschemes. The local and global heights for closed subschemes of projective varieties are introduced in [20]. Here, we develop them to the closed subschems of weighted projective varieties.

Fix a weighted projective variety \mathcal{X} in $\mathbb{P}_{\mathfrak{q}, \bar{k}}^{n}$ defined over k, i.e., an integral and separated subscheme of finite type. Given any closed subscheme \mathcal{Y} of \mathcal{X} over k, we let $\mathcal{I}_{\mathcal{Y}}$ denotes the corresponding sheaf of ideals generated by $f_{1}, \cdots, f_{r} \in$ $k_{\mathfrak{q}}\left[x_{0}, x_{1}, \cdots, x_{n}\right]$ with $\operatorname{deg}\left(f_{j}\right)=d_{j}$ for $j=1, \cdots r$. Letting $D_{j}:=\operatorname{div}\left(f_{j}\right)$ for $j=1, \cdots, r$ and $\nu \in M_{k}$, we define

$$
\zeta \mathcal{Y}(\cdot, \nu):(\mathcal{X} \backslash \mathcal{Y})(k) \rightarrow \mathbb{R}
$$

the local weighted height associated to \mathcal{Y}, by

$$
\begin{equation*}
\zeta \mathcal{y}(\mathbf{x}, \nu):=\min _{1 \leq j \leq r}\left\{\zeta_{\widehat{D_{j}}}(\mathbf{x}, \nu)\right\}=\min _{1 \leq j \leq r}\left\{-\log \frac{\left|f_{j}(\mathbf{x})\right|_{\nu}}{\max _{i}\left|x_{i}\right|_{\nu}^{\frac{d_{j}}{q_{i}}}}\right\} \tag{42}
\end{equation*}
$$

By convention, we define $\zeta \mathcal{Y}(\mathbf{x}, \nu)=\infty$ for $\mathbf{x} \in \mathcal{Y}(k)$. One can show that this is unique up to a weighted M_{k}-bounded function by a similar argument for the projective varieties.

Recall that for closed subschemes \mathcal{Y}_{1} and \mathcal{Y}_{2} of \mathcal{X} defined over k with corresponding ideal sheaves $\mathcal{I}_{\mathcal{Y}_{1}}, \mathcal{I}_{\mathcal{Y}_{2}}$, the closed subschemes $\mathcal{Y}_{1} \cap \mathcal{Y}_{2}, \mathcal{Y}_{1}+\mathcal{Y}_{2}$, and $\mathcal{Y}_{1} \cup \mathcal{Y}_{2}$ are defined by ideal sheaves $\mathcal{I}_{\mathcal{Y}_{1}}+\mathcal{I}_{\mathcal{Y}_{2}}, \mathcal{I}_{\mathcal{Y}_{1}} \mathcal{I}_{\mathcal{Y}_{2}}$, and $\mathcal{I}_{\mathcal{Y}_{1}} \cap \mathcal{I}_{\mathcal{Y}_{2}}$ respectively. Note that $\mathcal{Y}_{1} \cup \mathcal{Y}_{2} \subset \mathcal{Y}_{1}+\mathcal{Y}_{2} \subset \mathcal{X}$ as schemes, since $\mathcal{I}_{\mathcal{Y}_{1}} \mathcal{I}_{\mathcal{Y}_{2}} \subset \mathcal{I}_{\mathcal{Y}_{1}} \cap \mathcal{I}_{\mathcal{Y}_{2}}$

The basic properties of weighted local heights associated to closed subschemes are given in the following proposition.

Proposition 4.6. For any $\nu \in M_{k}$, and a closed subscheme \mathcal{Y} of a weighted projective variety \mathcal{X}, the following hold:
(1) $\zeta_{\mathcal{Y}_{1} \cap \mathcal{Y}_{2}}(\cdot, \nu)=\min \left\{\zeta_{\mathcal{Y}_{1}}(\cdot, \nu), \zeta_{\mathcal{Y}_{2}}(\cdot, \nu)\right\}$;
(2) $\zeta_{\mathcal{Y}_{1}+\mathcal{Y}_{2}}(\cdot, \nu)=\zeta_{\mathcal{Y}_{1}}(\cdot, \nu)+\zeta \mathcal{y}_{2}(\cdot, \nu)$;
(3) $\zeta_{\mathcal{Y}_{1}}(\cdot, \nu) \leq \zeta \mathcal{Y}_{2}(\cdot, \nu)$ if $\mathcal{Y}_{1} \subset \mathcal{Y}_{2}$;
(4) $\max \left\{\zeta_{\mathcal{Y}_{1}}(\cdot, \nu), \zeta_{\mathcal{Y}_{2}}(\cdot, \nu)\right\} \leq \zeta_{\mathcal{Y}_{1} \cup \mathcal{Y}_{2}}(\cdot, \nu) \leq \zeta_{\mathcal{Y}_{1}}(\cdot, \nu)+\zeta_{\mathcal{Y}_{2}}(\cdot, \nu)$;
(5) $\zeta_{\mathcal{Y}_{1}}(\cdot, \nu) \leq c \cdot \zeta_{\mathcal{Y}_{2}}(\cdot, \nu)$ if $\operatorname{Supp}\left(\mathcal{Y}_{1}\right) \subset \operatorname{Supp}\left(\mathcal{Y}_{2}\right)$ for some constant $c>0$, where $\operatorname{Supp}(\mathcal{Y})$ denotes the support of \mathcal{Y};
(6) If $\mathcal{Y}=D$ is an effective divisor, then $\zeta \mathcal{Y}(\cdot, \nu)$ is equal $\zeta_{\widehat{D}}(\cdot, \nu)$ defined by Eq. (37), where $\widehat{D}=\left(\mathcal{O}_{\mathcal{X}}(D),\|\cdot\|\right) \in \widehat{\operatorname{Pic}_{\mathfrak{q}}(\mathcal{X})}$;
(7) If $\phi: \mathcal{X}^{\prime} \rightarrow \mathcal{X}$ is a morphism of weighted projective varieties, $\mathcal{Y} \subset \mathcal{X} a$ closed subscheme over k, and $\phi^{*}(\mathcal{Y})$ denotes the closed subscheme of \mathcal{X}^{\prime} associated to ideal sheaf $\phi^{-1} \mathcal{I}_{\mathcal{Y}} \cdot \mathcal{O}_{\mathcal{X}^{\prime}}$, then $\zeta_{\phi^{*}(\mathcal{Y})}(\mathbf{x}, \nu)=\zeta_{\mathcal{Y}}(\phi(\mathbf{x}), \nu)$ for $\mathbf{x} \in\left(\mathcal{X}^{\prime} \backslash \phi^{*}(\mathcal{Y})\right)(k)$.

The global weighted height associated to \mathcal{Y}, can be defined up to a bounded function by summing all local weighted heights. More precisely, given $\mathbf{x} \in \mathcal{X}$, we let K be a finite extension of k containing $k(\mathbf{x})$ and define:

$$
\begin{equation*}
\mathfrak{s y}^{\mathcal{Y}}(\mathbf{x}):=\sum_{u \in M_{K}} \zeta_{\mathcal{Y}}(\mathbf{x}, u) \tag{43}
\end{equation*}
$$

which is independent of the choice of the field K. The weighted global heights satisfy similar properties, except the first one, as given in Thm. 4.6 for the weighted local heights.

Proposition 4.7. For any $\nu \in M_{k}$, and a closed subscheme \mathcal{Y} of a weighted projective variety \mathcal{X} the following hold:
(1) $\mathfrak{s y}_{1} \cap \mathcal{Y}_{2} \leq \min \left\{\mathfrak{s} \mathcal{Y}_{1}, \mathfrak{s y}_{2}\right\}$;
(2) $\mathfrak{s} y_{1}+\mathcal{Y}_{2}=\mathfrak{s} y_{1}+\mathfrak{s} y_{2}$;
(3) $\mathfrak{s y}_{1} \leq \mathfrak{s y}_{2}$ if $\mathcal{Y}_{1} \subset \mathcal{Y}_{2}$;
(4) $\max \left\{\mathfrak{s y}_{1}, \mathfrak{s} y_{2}\right\} \leq \mathfrak{s} y_{1} \cup \mathcal{Y}_{2} \leq \mathfrak{s} y_{1}+\mathfrak{s} y_{2}$;
(5) $\mathfrak{s}_{y_{1}} \leq c \cdot \mathfrak{s y}_{2}$ if $\operatorname{Supp}\left(\mathcal{Y}_{1}\right) \subset \operatorname{Supp}\left(\mathcal{Y}_{2}\right)$ for some constant $c>0$;
(6) If $\mathcal{Y}=D$ is an effective divisor, then $\mathfrak{s y}$ is equal to $\mathfrak{s}_{\widehat{D}}$ defined by Eq. (40), where $\widehat{D}=\left(\mathcal{O}_{\mathcal{X}}(D),\left(\|\cdot\|_{u}\right)\right) \in \widehat{\operatorname{Pic}_{\mathfrak{q}}(\mathcal{X})}$;
(7) If $\phi: \mathcal{X}^{\prime} \rightarrow \mathcal{X}$ is a morphism of weighted projective varieties, $\mathcal{Y} \subset \mathcal{X} a$ closed subscheme over k, then $\mathfrak{s}_{\phi^{*}(\mathcal{Y})}=\mathfrak{s y} \circ \phi$.

All of the above assertions follow by summing from the corresponding properties for the local weighted heights associated to subschemes. When we want to emphasize on the base weighted variety \mathcal{X} in any of the previously defined global weighted heights, we will put it as a subscript on them for example $\mathfrak{s x}, D$ and $\mathfrak{s}_{\mathcal{X}, \mathcal{Y}}$.

5. Conclusion

This work is devoted to develop a detailed theory of Cartier divisors, analytic structure of weighted varieties, weighted blow-ups. While it was believed that these results could be recovered from the Veronese embedding it is the first time that a direct approach is presented.

Weighted projective spaces are very natural objects which makes the theory of weighted heights a powerful tool of arithmetic geometry. However, connections of weighted heights with other heights such as GIT height, Neron-Tate height, Faltings height, etc are not well understood. Some glimpses of the connection between weighted heights and GIT height can be seen in [8], but overall this is an area that offers many open questions. Vojta's conjecture for weighted varieties in terms of weighted heights is studied in [19].

References

[1] A. Al Amrani, Classes d'idéaux et groupe de picard des fibrés projectifs tordus. (ideal classes and picard group of twisted projective fibre bundles), K-Theory 2 (1989), no. 5, 559-578. MR0999392
[2] Enrique Artal Bartolo, Jorge Martín-Morales, and Jorge Ortigas-Galindo, Cartier and Weil divisors on varieties with quotient singularities, Internat. J. Math. 25 (2014), no. 11, 1450100, 20. MR3285300
[3] Enrique Artal Bartolo, Jorge Martín-Morales, and Jorge Ortigas-Galindo, Intersection theory on abelian-quotient v-surfaces and \mathbf{q}-resolutions, Journal of Singularities 8 (2014), 1130. MR3193225
[4] Mauro Beltrametti and Lorenz Robbiano, Introduction to the theory of weighted projective spaces, Expositiones Mathematicae 4 (1986), 111-162. MR0879909
[5] L. Beshaj, J. Gutierrez, and T. Shaska, Weighted greatest common divisors and weighted heights, J. Number Theory 213 (2020), 319-346. MR4091944
[6] L. Beshaj, R. Hidalgo, S. Kruk, A. Malmendier, S. Quispe, and T. Shaska, Rational points in the moduli space of genus two, Contemp. Math. 703 (2018), 83-115. MR3782461
[7] Enrico Bombieri and Walter Gubler, Heights in Diophantine geometry, New Mathematical Monographs, vol. 4, Cambridge University Press, Cambridge, 2006. MR2216774
[8] Elira Curri, On the stability of binary forms and their weighted height, Albanian J. Math. 16 (2022), no. 1, 3-23. MR4448533
[9] Alexandru Dimca, Singularities and coverings of weighted complete intersections, Journal für die Reine und Angewandte Mathematik 366 (1986), 184-193 (English). MR0833017
[10] Alexandru Dimca and Stancho Dimiev, On analytic coverings of weighted projective spaces, Bull. Lond. Math. Soc. 17 (1985), no. 3, 234-238. MR0806423
[11] Igor Dolgachev, Weighted projective varieties, Group actions and vector fields (Vancouver, B.C., 1981), 1982, pp. 34-71. MR704986
[12] Alexander Grothendieck and Michèle Raynaud, Revêtements étales et groupe fondamental, Lecture Notes in Mathematics, Vol. 224, Springer-Verlag, Berlin-New York, 1971. Séminaire de Géométrie Algébrique du Bois Marie 1960-1961 (SGA 1), Dirigé par Alexandre Grothendieck. Augmenté de deux exposés de M. Raynaud. MR354651
[13] Alexandre Grothendieck, Éléments de géométrie algébrique: Alexandre (Jean Alexandre Dieudonné, ed.), Publications mathématiques, vol. 2, Inst. des Hautes Études Scientifiques, Paris, 1961. MR0217084
[14] A. R. Iano-Fletcher, Working with weighted complete intersections, Explicit birational geometry of 3-folds, 2000, pp. 101-173 (English). MR1798982
[15] Serge Lang, Fundamentals of diophantine geometry, Springer, New York [u.a.], 1983. Literaturverz. S. 359-365. MR0715605
[16] J. Mandili and T. Shaska, Computing heights on weighted projective spaces, Algebraic curves and their applications, 2019, pp. 149-160. MR3916738
[17] Shigefumi Mori, On a generalization of complete intersections, Journal of Mathematics of Kyoto University 15 (1975), 619-646 (English). MR0393054
[18] Min Ru, Nevanlinna theory and its relation to Diophantine approximation, Second, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, [2021] © 2021. MR4265173
[19] Sajad Salami and Tony Shaska, Vojta's conjecture on weighted projective varieties, submitted (2023), available at 2309. 10300.
[20] Joseph H. Silverman, Arithmetic distance functions and height functions in diophantine geometry, Mathematische Annalen 279 (1987), 193-216. MR0919501
(Sajad Salami) Institute of Mathematics and Statistics \& State University of Rio de Janeiro, Rio de Janeiro, Brazil

Email address: sajad.salami@ime.uerj.br
(Tony Shaska) Department of Mathematics \& Statistics, Oakland University, Rochester
Hills, MI
Email address: tanush@umich.edu

[^0]: 2000 Mathematics Subject Classification. Primary 11G50; Secondary 14G40.
 Key words and phrases. weighted varieties, weighted local and global heights, closed subschemes.

[^1]: ${ }^{1}$ In some papers on weighted projective spaces, a weighted homogeneous polynomial is also called quasihomogeneous polynomial.

[^2]: ${ }^{2}$ We thank Min Ru for clarifying some details in the proof of Thm. 4.3 by indicating [18, B2.2.10 and B2.2.11].

