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Abstract. We state Vojta’s conjecture for smooth weighted projective vari-
eties, weighted multiplier ideal sheaves, and weighted log pairs and prove that

all three versions of the conjecture are equivalent. Moreover, we introduce

generalized weighted general common divisors and express them as heights of
weighted projective spaces blown-up at a point, relative to an exceptional divi-

sor. Furthermore, we also prove that assuming Vojta’s conjecture for weighted

projective varieties one can bound the log hwgcd for any subvariety of codimen-
sion ≥ 2 and a finite set of places S. An analogue result is proved for weighted

homogeneous polynomials with integer coefficients. As an application of our

results we obtain a bound on greatest common divisors, which restricted to
projective space is the same as bounds obtained by Corvaja, Zannier, et al.

1. Introduction

The theory of weighted local and global heights for weighted projective varieties
and closed subvarieties was introduced in [10], where it was proved that any line
bundle on a weighted variety admits a locally bounded weighted M -metric. Using
these results we are able to generalize weighted general common divisors to gener-
alized weighted gcds and express them as a weighted height of a blow-up relative
to a weighted exceptional divisor. Moreover, we are able to state Vojta’s conjecture
for smooth weighted projective varieties in terms of weighted heights.

Stating results on Vojta’s conjecture in terms of weighted heights is not simply
a curiosity. Weighted heights provide much better bounds than classical projective
bounds. This paper started from a question of J. Silverman whether weighted
general common divisors (gcds) introduced in [1] can be extended to weighted
generalized gcds as in [11], for example express them as a weighted height of a
blown-up relative to an exceptional divisor. We answer positively this question and
further explore it in terms of the Vojta’s conjecture. A corollary of our main result
(cf. Lem. 4) is an interpretation of well known result of Corvaja and Zannier, et al.
on heights on rational functions on S-unit points; see [2–5].

This paper is organized as follows: In Sec. 2.1 is given a quick view on Vojta’s
conjecture on algebraic points on projective varieties; see Conj. 1. We state the
conjecture using a correction term involving a multiplier ideal sheaf instead of using
the normal crossing divisors; see Conj. 2 and summarize [15] on Vojta’s conjecture
for log pairs. This makes it possible to drop the condition that the variety be
smooth in the statement of the conjecture. Vojta’s conjecture for log pairs is stated
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in Conj. 3. In Sec. 3 we investigate whether it is possible to have analog statements
for weighted varieties and weighted heights. In Conj. 4 we state Vojta’s conjecture
for X a smooth weighted projective variety, KX a canonical divisor, A an ample
divisor and D a normal crossings divisor on X , all defined over Q. An analogue of
Conj. 2 for weighted projective varieties is stated in Conj. 5. The terminology and
theory for weighted log pairs is developed in this section, so we are able to state
Vojta’s conjecture for weighted log pairs in Conj. 6. Finally, in Cor. 1 we prove
that Conj. 4, Conj. 5, and Conj. 6 are equivalent.

In Sec. 4 we extend the concept of the generalized greatest common divisor as
in [11] to that of generalized weighted greatest common divisor. Furthermore, we
prove that generalized logarithmic weighted greatest common divisor is equal to
weighted height of x on a blowup of Pnq,Q with respect to the exceptional divisor of
the blowup. We prove that the generalized logarithmic weighted greatest common
divisor log hwgcd (x) > 0 if and only if x /∈ Sing(Pnq,Q (cf. Prop. 2) and analogues

of Theorems 1, 2, and 6 in [11] for the weighted gcds that are all subject to the
validity of Vojta’s conjecture for weighted projective varieties.

More precisely, we prove (cf. Thm. 1) that for X be a smooth weighted variety
defined over Q, A an ample divisor on X , Y ⊂ X a smooth subvariety of codimension
r ≥ 2, and −KX a normal crossing divisor whose support does not intersect Y,
assuming Conj. 4, for every finite set of places S and every 0 < ε < r − 1 there
is a proper closed subvariety Z = Z(ε,X ,Y,A, k, S) 6⊂ X , and constants Cε =
Cε(X ,Y,A, k, S) and δε = δε(X ,Y,A), such that for all P ∈ (X \ Z(Q))

(1) log hwgcd (P ;Y) ≤ ε sX ,A(P ) +
1

r − 1 + δε
s′X ,−KX ,S(P ) + Cε.

Let q = (q0, · · · , qn) be a well-formed set of weights, m = lcm(q0, · · · , qn), and
Z ⊂ Pnq,Q be a closed subvariety defined by f1, · · · , ft ∈ Zq[x0, . . . , xn], such that

Z ∩ Sing(Pnq,Q) = ∅, with codimension r = n− dim(Z) ≥ 2 in X . Let S be a finite
set of primes and ε > 0. If Vojta’s conjecture holds for smooth weighted varieties
(see Conj. 4), then there exists a nonzero weighted polynomial g ∈ Zq[x0, . . . , xn]
and a constant δ = δε,Z > 0, such that every α̃ = (α0, · · · , αn) ∈ Zn+1 with
wgcd (α0, · · · , αn) = 1 satisfies either g(α̃) = 0 or

(2) gcd(f1(α̃), · · · , ft(α̃)) ≤ max
{
|α0|

1
q0 , · · · , |αn|

1
qn }
}ε
· (|α0 · · ·αn|′S)

1
(r−1+δ) ,

where | · |′S is the “prime-to-S” part of its origin (cf. Thm. 2).
Assuming Vojta’s conjecture for weighted projective varieties, for a fixed ε > 0,

a finite set S of prime numbers, and a triple of weights q = (q0, q1, q2), there exist
a finite set Z = Z(S, ε) ⊂ Z2 such that

(3) gcd(αq01 − 1, αq02 − 1) ≤ max {|α1|
1
q1 , |α2|

1
q2 }ε · (|α1α2|′S)

1
(1+δε) ,

holds for all pairs (α1, α2) ∈ Z2\Z (cf. Lem. 4). There is an interesting consequence
of this result

(4) gcd(α1 − 1, α2 − 1) ≤ max {|α1|
1
q1 , |α2|

1
q2 }ε · (|α1α2|′S)

1
(1+δε) ,

which improves the bound on gcd(α1−1, α2−1) from results of Corvaja and Zannier;
see [3]. It remains to be seen if Thm. 2 and Lem. 4 can be proved independently
of Vojta’s conjecture. This remains a goal of further investigation.
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2. Preliminaries

Here we give a brief overview of Vojta’s conjecture over projective varieties before
consider the conjecture over weighted projective varieties.

2.1. Vojta’s conjecture for projective varieties. For any finite extension L/Q
of a number field Q, we define the logarithmic discriminant dQ(L) by

dQ(L) :=
1

[L : k]
log |Disc(L)| − log |Disc(Q)|,

where Disc(·) denotes the absolute discriminant. Given a variety X over Q and a
point x ∈ X , we define its logarithmic discriminant by dQ(x) := dQ(k(x)).

Recall that a Cartier divisor D on a smooth projective variety X is a normal
crossing divisor if at every point in the support of D there are local coordinates
z0, z1, . . . , zn such that D is given locally by an equation of the form z0z1 . . . zn = 0.
Furthermore, the canonical divisor of X is a divisor KX such that OX (KX ) = ωX ,
where ωX is the canonical sheaf of regular forms on X . Vojta made a conjecture
on algebraic points on projective varieties ([12,13]), as follows:

Conjecture 1. Let X be a smooth projective variety over a number field Q, KX
a canonical divisor, A an ample divisor, and D a normal crossings divisor on X ,
all defined over Q. Furthermore, let S be a finite subset of places containing M∞Q .
Then, given any real constant ε > 0 and any positive integer r, there exists a proper
Zariski-closed subset Z of X , depending only on k,X , D,A, ε, and r, such that

hKX (x) +
∑
ν∈S

λD(x, ν) ≤ εhA(x) + dQ(x) +O(1),

for all x ∈ (X \ Z)(k̄) with [k(x) : k] ≤ r.

The case r = 1 of the above conjecture is known in the literature as Vojta’s
conjecture for the rational points of algebraic varieties . In [14], Vojta restated his
conjecture using a correction term involving a multiplier ideal sheaf instead of the
normal crossing divisors as follows.

Let I be a nonzero sheaf of ideals on a projective variety X and c ∈ R≥0 some
constant. Let f : X ′ → X be a proper birational morphism such that X ′ is a
smooth variety and f∗I = OX ′(−E), for some normal crossing divisor E on X ′.
Denote by RX ′/X the ramification divisor of X ′ over X and define the multiplier

ideal sheaf Ic and I−c associated to I and c as

Ic := f∗OX ′(RX ′/X − bcEc), and I−c := lim
ε→0+

Ic−ε.

We will denote I1 and I−1 by I and I− respectively.

Conjecture 2. Let X be a smooth projective variety over a number field Q, KX a
canonical divisor, A an ample divisor, and I a nonzero ideal sheaf X , all defined
over Q. Let S be a finite subset of places containing M∞Q . Then, given any real
constant ε > 0 and positive integer r, there exists a proper Zariski-closed subset Z
of X , depending only on k,X , I,A, ε, r, such that

hKX (x) +
∑
ν∈S

λI(x, ν)−
∑
ν∈S

λI−(x, ν) ≤ εhA(x) + dQ(x) +O(1).

for all x ∈ (X \ Z)(k̄) with [k(x) : k] ≤ r.
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2.2. Vojta’s conjecture for log pairs. Since Vojta’s conjectures does not deal
with singular varieties in [15] Yasuda formulated a generalization of it in terms of
log pairs and variants of multiplier ideals. In order to state his generalization, first
we need to recall some terminology. The reader can refer to [8], [7], or [15] for more
details.

Let X be a variety defined over Q. Then, X is said to be Q-Gorenstein if it
is Gorenstein in codimension one, satisfies Serre’s condition S2, and a canonical
divisor KX is Q-Cartier. For example, if X is normal, then the first two conditions
are true automatically and hence a canonical divisor exists unequally up to linear
equivalence and is Cartier in codimension one.

A Q-subscheme of X is a formal linear combination Y =
∑m
i=1 ci · Yi of proper

closed subschemes Yi ⊂ X with all ci ∈ Q. The support of such Y is defined to
be the closed subset ∪ci 6=0Yi, and it is called effective Q-subscheme if ci ≥ 0 for
every i. By a log pair, we mean a pair (X ,Y) of a Q-Gorenstein variety and an
effective Q-subscheme Y of X . For example, if X is a normal Q-Gorenstein and D
is an effective Q-divisor, then (X , D) is a log pair.

A resolution of X over Q is a projective birational morphism f : X ′ → X such
that X ′ is a smooth variety over Q. By a log resolution of a log pair (X ,Y) with
Y =

∑m
i=1 ci · Yi, we mean a resolution f : X ′ → X of X such that the set-theoretic

inverse image f−1(Yi) is a Cartier divisor on X ′, and the union of exceptional
divisor Exc(f) of f with all f−1(Yi)red is a simple normal crossing divisor of X ′.
For a log resolution f : X ′ → X os a log pair (X ,Y), the relative canonical
divisor of X ′ over (X ,Y) is defined to be the Q-Weil divisor

KX ′/(X ,Y) = KX ′/X − f∗Y,

where KX ′/X is the relative canonical divisor of X ′ over X , and f∗Y is the pull-back
of Y by f over X ′.

For a log pair (X ,Y) with a log resolution f : X ′ → X , we define I(X ,Y) a
variant of multiplier sheaf as

I(X ,Y) := f∗OX ′(dKX ′/(X ,Y)e)

if X is a normal variety, otherwise, we let

I(X ,Y) := f̄∗OX ′(dKX ′/(X ,Y)e),

where f̄∗OX ′(E) denotes the largest ideal sheaf in OX for which its pull-back by
f is contained in OX ′(E) as an OX ′ -submodule of (constant) function field sheaf
MX ′ . Moreover, there exist a constant ε0 > 0 such that for every rational number
0 < ε ≤ ε0, one has I(X , (1− ε)Y) = I(X , (1− ε0)Y). Based on this fact, we let

I−(X ,Y) := I(X , (1− ε)Y), (0 < ε� 1).

We also define another ideal sheaf as

H(X ,Y) := f̄∗OX ′(bKX ′/(X ,Y)c),

where f̄∗ is as above. The definitions of I(X ,Y), and hence I−(X ,Y), as well as
H(X ,Y) are independent of the choice of a log resolution by [15, Lem. 3.1] and
[15, Prop. 3.4] respectively.

For a Q-Gorenstein projective variety X with a canonical divisor KX , we can
define a global height function hKX up to addition of a bounded function. For a
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log pair (X ,Y) of a Q-Gorenstein X , we define the height function associated to
the subscheme K(X ,Y) := KX + Y as

(5) hK(X ,Y)
= hKX + hY ,

where hY is the height function associated to the subscheme Y or its ideal sheaf.
Next is Yasuda’s generalization of Vojta’s conjecture for algebraic points.

Conjecture 3. Let (X ,Y) a log pair with projective X , Y a closed subscheme with
ideal sheaf I = I(Y), KX a canonical divisor and A an ample divisor on X all
defined over a number field k. Let S be a finite subset of places containing M∞k .
Then, given any real constant ε > 0 and positive integer r, there exists a proper
Zariski-closed subset Z of X , depending only on k,X , I,A, ε, r, such that

hK(X ,Y)
−
∑
ν∈S

λH(x, ν)−
∑
ν∈S

λI−(x, ν) ≤ εhA(x) + dQ(x) +O(1).

for all x ∈ (X \Z)(k̄) with [k(x) : k] ≤ r, where H = H(X ,Y) and I− = I−(X ,Y).

One can see that the above conjecture holds for a log pair (X ,Y) and a log
resolution f : X ′ → X , if the Vojta’s conjecture Conj. 1 holds for X ′ and the
reduced simple normal crossing divisor

dKX ′/(X ,Y)e+ εf∗Y − bKX ′/(X ,Y)c,
for 0 < ε� 1. Moreover, the conjectures Conj. 1, Conj. 2 and Conj. 3 are equiva-
lent; see [15, Prop. 5.4 and Rem. 5.5] for a proof.

3. Vojta’s conjecture for weighted projective varieties

We assume the reader is familiar with weighted projective varieties in the level
covered in [1] and [10]. Let’s recall some basic terminology.

Consider the polynomial ring kq[x0, . . . , xn] where each xi has weight wtxi = qi.

Every polynomial is a sum of monomials xd =
∏
xdii with weight

wt(xd) =
∑

diqi.

A polynomial f ∈ kq[x0, . . . , xn] is called a weighted homogeneous of weight
(degree) d if every monomial of f has weight d, i.e.

f(x0, . . . , xn) =

t∑
i=1

ai

n∏
j=0

x
dj
j , for ai ∈ k and t ∈ N

and for all 0 ≤ i ≤ n, we have
n∑
i=1

qidj = d.

For every λ ∈ k∗ and any weighted homogeneous polynomial f of degree d, we have

f(λq0x0, λ
q1x1, . . . , λ

qnxn) = λdf(x0, . . . , xn),

Let us consider a simple example of weighted homogenous polynomials.

Example 1. A binary weighted form of degree d, where w = (q0, q1) be respectively
the weights of x0 and x1, is given by a polynomial as follows

f(x0, x1) =
∑
d0,d1

ad0,d1x
d0
0 x

d1
1 , such that d0q0 + d1q1 = d
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and in decreasing powers of x0 we have

f(x0, x1) = ad/q0,0x
d/q0
0 + · · ·+ ad0,d1x

d0
0 x

d1
1 + · · ·+ a0,d/q1x

d/q1
1

By dividing with x
d/q1
1 and making a change of coordinates X = xq10 /x

q0
1 we get

(6) f(x0, x1) = ad/q0,0X
d/q0q1 + · · ·+ ad0,d1X

d0/q1 + · · ·+ a0,d/q1 = f(X)

as noted in [1]. Notice that the condition f(P ) = 0 is well defined on Pq,k.

From now on we assume that Pq,k is a weighted projective space with q =
(q0, . . . , qn) and m = lcm(q0, . . . , qn). A hyperplane in Pq,k is a weighted homoge-
neous polynomial of degree m. Hence, it is the set of points x = [x0 : . . . : xn] ∈ Pq,k

satisfying a polynomial of the form

(7) `(x) = a0x
m/q0
0 + a1x

m/q1
1 + · · ·+ anx

m/qn
n =

n∑
i=0

aix
m
qi
i

Notice that if q = (1, . . . , 1) all definitions agree with those of Pn.
Recall from [10] that Pnq,Q is regular with codimension one and if qi > 1’s are

mutually coprime then

Sing(Pnq,Q) = {xi = [0 : · · · : 1 : · · · : 0] : 0 ≤ i ≤ n}.
A non-singular weighted projective space Pnq,Q is called a smooth weighted pro-
jective variety. Let X be a smooth weighted projective variety in Pnq,k, with

q = (q0, q1, · · · , qn), defined over Q. Suppose that there is an open subvariety
U ⊂ X with complement of codimension at least two which is Gorenstein, i.e., the
dualizing sheaf ω0

U is invertible. We let KU be a canonical divisor on U such that
ω0
U
∼= OU (KU ), and then define the canonical sheaf KX as the closure of KU in

X .
By a weighted normal crossing divisor on X , we mean a Cartier divisor D

such that at every point in the support of D such that D is given locally by an

equation of the form x
1/q0
0 x

1/q1
1 . . . x

1/q1
n = 0. Then, we formulate the analogue of

Conj. 1 for the smooth weighted projective varieties as follows:

Conjecture 4. Let X be a smooth weighted projective variety over Q, KX a canon-
ical divisor, A an ample divisor, and D a normal crossings divisor on X , all defined
over Q. Let S be a finite subset of places containing M∞Q . Then, given any real con-
stant ε > 0 and any positive integer r, there exists a proper weighted Zariski-closed
subset Z of X , depending only on k,X , D,A, ε, r, such that

sKX (x) +
∑
ν∈S

ζD(x, ν) ≤ ε · sA(x) +
1

m
dQ(x) +O(1),

for all x ∈ (X \ Z)(k̄) with [k(x) : k] ≤ r.

3.1. Weighted multiplier ideal sheaf. In order to avoid using the weighted
normal crossing divisors and replace it by a an error term as in [14], let I be a
nonzero weighted ideal sheaf on a weighted projective variety X and c ≥ 0 a real
constant. Let f : X ′ → X be a proper birational morphism such that X ′ is smooth
weighted variety and f∗I = OX ′(−E), for a normal crossing divisor E on X ′.
Denoting by RX ′/X the ramification divisor of X ′ over X , we define the weighted

multiplier ideal sheaf Ic and I−c associated to I and c as

(8) Ic := f∗OX ′(RX ′/X − bcEc), and I−c := lim
ε→0+

Ic−ε.
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As in the case of projective varieties, we denote I1 and I−1 by I and I−, respectively.
An analogue of Conj. 2 for weighted projective varieties follows:

Conjecture 5. Let X be a smooth weighted projective variety over Q, KX a canon-
ical divisor, A an ample divisor and I a nonzero weighted ideal sheaf X all defined
over Q. Let S be a finite subset of places containing M∞Q . Then, given any real
constant ε > 0 and positive integer r, there exists a proper Zariski-closed subset Z
of X , depending only on k,X , I,A, ε, r, such that

sKX (x) +
∑
ν∈S

ζI(x, ν)−
∑
ν∈S

ζI−(x, ν) ≤ ε sA(x) +
1

m
dQ(x) +O(1).

for all x ∈ (X \ Z)(k̄) with [k(x) : k] ≤ r.

3.2. Weighted log pairs. Next we follow closely the terminology of the log pairs
for projective varieties as in Sec. 2.2. A weighted Q-divisor on a weighted variety
X is a formal finite sum

D =
∑

ciDi,

where ci ∈ Q and Di ∈ CaDivq(X ). A weighted Q-divisor D is said integral if all
coefficients c′is are integers.

By clearing the denominators of c′is, we can write D = cD′ for some c ∈ Q
and an integral weighted divisor D′. A weighted Q-divisor D is called effective if
ci ≥ 0 and Di are weighted integral divisors on X . The support of D, denoted by
Supp(D), is

Supp(D) =
⋃

Supp(Di)

as in the case of projective varieties. D =
∑
ciDi is called ample if ci ∈ Q,

ci > 0 and Di are all ample Cartier divisors on X . Here, by a Weil Q-divisor
on a weighted variety X , we mean a Q-linear combination of its codimension one
subvarieties, i.e, an element of

WeDivq(X )⊗Q.

We use dDe and bDc to denote the round up and round down of any Weil Q-divisor
D =

∑
i ciYi, that is,

dDe =
∑
i

dcieYi and bDc =
∑
i

bcicYi.

A weighted projective variety X defined over Q is said to be Q-Gorenstein if it is
Gorenstein in codimension one, satisfies Serre’s condition S2, and a canonical divisor
KX is Q-Cartier. For example, if X is normal, then the first two conditions are true
and hence a weighted canonical divisor exists unequally up to linear equivalence and
is Cartier in codimension one. A Q-subscheme of X is a formal linear combinations

Y =

m∑
i=1

ci · Yi

of proper closed subschemes Yi ⊂ X with all ci ∈ Q. The support of such Y is
defined to be the closed subset ∪ci 6=0Yi, and it is called effective Q-subscheme
if ci ≥ 0 for every i.

A weighted log pair is called a pair (X ,Y) of a Q-Gorenstein weighted variety
X and an effective weighted Q-subscheme Y of X .
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A resolution of X over Q is a projective birational morphism f : X ′ → X such
that X ′ is a weighted smooth variety over Q. A weighted log resolution of a
weighted log pair (X ,Y) with

Y =

m∑
i=1

ci · Yi,

is a projective birational morphism f : X ′ → X of X such that X ′ is a weighted
smooth variety defined over Q, the set-theoretic inverse image f−1(Yi) is a weighted
Cartier divisor on X ′, and the union of Exc(f) of the exceptional divisor of f with
all f−1(Yi)red is a simple weighted normal crossing divisor of X ′. The existence of
a resolution of a weighted variety X and the weighted log resolution of (X ,Y) is a
consequence of Hironoka’s theorem [8, Thm. 4.1.3].

For a weighted log resolution f : X ′ → X as a weighted log pair (X ,Y), the
relative canonical divisor of X ′ over (X ,Y) is defined to be the weighted Q-
Weil divisor

KX ′/(X ,Y) = KX ′/X − f∗Y,
where f∗Y is the pull-back of Y by f over X ′ and KX ′/X is the relative canonical
divisor of X ′ over X , i.e.,

O(KX ′) ∼= O(KX ′/X )⊗ f∗OX (KX ),

which is a Q-Weil divisor on X ′. Given a weighted log pair (X ,Y) and a weighted
log resolution f : X ′ → X , we write

KX ′/(X ,Y) =
∑
Z
aZ · Z,

where Z runs over all prime divisors of X ′. The weighted log pair (X ,Y) is called
strongly canonical (resp. Kawamata log terminal, log canonical) if aZ ≥ 0
(resp. aZ > 0, and aZ ≥ −1 ) for every Z. These properties are independent of the
resolution and are also local.

Define the weighted non-SC locus of the pair (X ,Y) to be the smallest
weighted closed subset W ⊂ X such that the weighted pair (X\W,Y|X\W) is
strongly canonical. The weighted non-KLT locus of the pair (X ,Y) to be the
smallest weighted closed subset W ⊂ X such that the weighted pair is Kawamata
log terminal. Similarly the weighted non-LC) of the pair (X ,Y) to be the small-
est weighted closed subsetW ⊂ X such that the weighted pair is log canonical. We
denote them respectively as wnsc(X ,Y), wnklt(X ,Y), wnsc(X ,Y). One may check
that

wnsc(X ,Y) ⊂ wnklt(X ,Y) ⊂ wnklt(X ,Y).

For a weighted log pair (X ,Y) with a log resolution f : X ′ → X , we define I(X ,Y)
a variant of multiplier sheaf as

I(X ,Y) := f∗OX ′(dKX ′/(X ,Y)e)

if X is a weighted normal variety; see [9, 9.3.56] for the definition of multiplier ideal
sheaf in usual case. Otherwise, we let

I(X ,Y) := f̄∗OX ′(dKX ′/(X ,Y)e),

where f̄∗OX ′(E) denotes the largest ideal sheaf in OX for which its pull-back by
f is contained in OX ′(E) as an OX ′ -submodule of (constant) function field sheaf
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MX ′ . Moreover, there exist a constant ε0 > 0 such that for every rational number
0 < ε ≤ ε0, one has I(X , (1− ε)Y) = I(X , (1− ε0)Y).

Let

I−(X ,Y) := I(X , (1− ε)Y), (0 < ε� 1)

H(X ,Y) := f̄∗OX ′(bKX ′/(X ,Y)c),
(9)

where f̄∗ is as above. We note that the definition of H(X ,Y) does not depend on
the notion of “weighted simple normal crossing”.

Lemma 1. The definitions of I(X ,Y), I−(X ,Y), and H(X ,Y) are independent
of the choice of a weighted log resolution.

Proof. By adopting [15, Lem. 3.1] and [15, Prop. 3.4] respectively to the case
of weighted projective schemes, one get the result for I(X ,Y) and I−(X ,Y). An
argument similar to the proof of the Proposition 3.4 in [15] shows the assertion for
H(X ,Y). �

Proposition 1. Let (X ,Y) be a weighted log pair. Then, the following are true:

(i) wnlc(X ,Y) ⊂ Supp(OX /I−(X ,Y)) ⊂ wnklt(X ,Y);
(ii) If (X\ Supp(Y), 0) is a weighted Kawamata log terminal, then

wnlc(X ,Y) = Supp(OX /I−(X ,Y));

(iii) Supp(OX /H(X ,Y)) = wnsc(X ,Y).
(iv) If (X ,Y) is weighted log canonical, then OX /H(X ,Y) is reduced, i.e., as a

reduced closed subscheme, H(X ,Y) is the ideal sheaf of wnsc(X ,Y).

Proof. Let f : X ′ → X be a weighted log resolution of (X ,Y), and denote by
multZ(E) the multiplicity of any divisor E on X ′.

(i) Given any prime divisor Z of X ′ and real constant 0 < ε� 1, we have

multZ(KX ′/(X ,Y)) < −1,

which implies that

multZ(KX ′/(X ,Y) + εf∗Y) < 0,

and hence multZ(KX ′/(X ,Y)) ≤ −1. This proves part (i).
(ii) It is enough to show that if the pair (X\ Supp(Y), 0) is a weighted Kawamata

log terminal, then

multZ(KX ′/(X ,Y)) ≥ −1

and so

multZ(KX ′/(X ,Y) + εf∗Y) ≥ 0.

If multZ(KX ′/(X ,Y)) > −1, then the result is trivial. If multZ(KX ′/(X ,Y)) = −1,
then Z is contained in Supp(f∗Y) by assumption on (X\ Supp(Y), 0). Thus,

multZ(KX ′/(X ,Y) + εf∗Y) > −1⇒ multZ(KX ′/(X ,Y) + εf∗Y) ≥ 0.

(iii) If (X ,Y) is a weighted strongly canonical, then bKX ′/(X ,Y)c ≥ 0. By defini-

tion of f̄ , we have

f̄∗OX ′(bKX ′/(X ,Y)c) = OX .
This shows that

wnsc(X ,Y) ⊂ Supp(OX /H(X ,Y)).
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If (X ,Y) is not a weighted strongly canonical around x ∈ X , then there is a prime
divisor Z on X ′ such that x ∈ f(Z) and multZ(KX ′/(X ,Y)) < 0. Thus, we have

OX ′ 6⊂ OX ′(bKX ′/(X ,Y)c).

Replacing X with any open neighborhood of x does not change the last result.
Therefore,

Supp(OX /H(X ,Y)) ⊂ wnsc(X ,Y).

(iv) By part (iii), we have H(X ,Y) is a subset of the ideal sheaf of wnsc(X ,Y)
denoted by N . Now, let U ⊂ X be an open set and g ∈ N (U). Then f∗g vanishes
along the closed set f∗(wnsc(X ,Y)) containing every prime divisor Z on X ′ having
negative coefficient in bKX ′/(X ,Y)c, which is equal to −1 since (X ,Y) is weighted
log canonical. Therefore,

f∗g ∈ OX ′(bKX ′/(X ,Y)c)(f−1U),

which implies g ∈ H(U) and hence H ⊂ N .
�

Given a Weil Q-divisor D on a weighted projective variety X , such that nD is a
Weil divisor on X , we define height function

sD :=
1

n
snD .

For a weighted Q-Gorenstein projective variety X with a canonical divisor KX ,
we can define a weighted global height function sKX up to addition of a bounded
function. Given a weighted log pair (X ,Y) of a weighted Q-Gorenstein X , we define
the weighted height function associated to the subscheme K(X ,Y) = KX + Y as

(10) sK(X ,Y)
= sKX + sY ,

where sY is the height function associated to the subscheme Y or its ideal sheaf.
Next we are ready to state Vojta’s conjecture for weighted log pairs.

Conjecture 6. Let X be a weighted projective scheme, Y a closed weighted sub-
scheme with ideal sheaf I = I(Y), KX a canonical divisor, and A an ample divisor
on X all defined over Q.

Let (X ,Y) be a weighted log pair and S be a finite subset of places containing
M∞Q . Then, given any real constant ε > 0 and a positive integer r, there exists
a proper weighted Zariski-closed subset Z of X , depending only on k,X , I,A, ε, r,
such that

sK(X ,Y)(x)−
∑
ν 6∈S

ζH(x, ν)−
∑
ν∈S

ζI−(x, ν) ≤ ε sA(x) +
1

m
dQ(x) +O(1).

for all x ∈ (X \ Z)(k̄) with [k(x) : k] ≤ r, where

H = H(X ,Y) and I− = I−(X ,Y).

We note that the terms∑
ν∈S

ζH(x, ν) and
∑
ν∈S

ζI−(x, ν)

can be thought of as the contribution of wnsc(X ,Y) and wnklt(X ,Y), or wnlc(X ,Y)
if (X\(Supp)(Y), 0) is Kawamata log terminal.
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Since a pair (X , D) with X a smooth weighted variety and D a reduced simple
weighted normal crossing divisor on X is a weighted log canonical, by parts (i), (iii)
and (iv) of Prop. 1, one can conclude that∑

ν∈S
ζI−(x, ν) = 0

and hence the right hand side of the inequality of Conj. 6 is equal to

sK(X ,D)(x)−
∑
ν 6∈S

ζH(x, ν) = sKX (x) +
∑
ν∈S

ζD(x, ν).

Thus Conj. 6 is the same as Conj. 5 and Conj. 4 in this case.
In contrast, given a weighted log pair (X ,Y) and a log resolution

f : X ′ → X ,

if we suppose that Conj. 4 holds for X ′ and the reduced simple normal crossing
divisor

dKX ′/(X ,Y) + εf∗Ye − bKX ′/(X ,Y)c,

for 0 < ε� 1, then Conj. 5 and Conj. 6 holds for (X ,Y).
Indeed, the argument is similar to those given in [14, Prop. 4.3] and [15, Prop.

5.4] as follows. By definition, we have

f−1H ⊂ OX ′(bKX ′/(X ,Y)c)

and

f−1I− ⊂ OX ′(dKX ′/(X ,Y) + εf∗Ye)

for 0 < ε� 1. Using these and the properties of weighted height functions, we get

ζH ◦ f ≥ ζ−D1 , with D1 = bKX ′/(X ,Y)c,
ζI− ◦ f ≥ ζ−D2

with D2 = dKX ′/(X ,Y)e+ εf∗Ye.

Then, using the above inequalities, we havesK(X ,Y)
−
∑
ν 6∈S

ζH(·, ν)−
∑
ν∈S

ζI−(·, ν)

 ◦ f ≤ sKX′ − sKX′/(X ,Y)
−
∑
ν 6∈S

ζ−D1
−
∑
ν∈S

ζ−D2

≤ sKX′ + s−D1
−
∑
ν 6∈S

ζ−D1
−
∑
ν∈S

ζ−D2

≤ sKX′ +
∑
ν 6∈S

ζD2−D1 ,

where

D2 −D1 = dKX ′/(X ,Y)e+ εf∗Ye − bKX ′/(X ,Y)c.

Recall that the pullback f?D of an ample divisor D is ample. Therefore, the above
argument leads to following result.

Corollary 1. Conjectures Conj. 4, Conj. 5, and Conj. 6 are equivalent.
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4. Weighted blowups and generalized weighted gcds

In [11] Silverman used the idea of generalized gcds to define a height for blowups
of smooth projective varieties and then assuming Vojta’s conjecture for such height
function obtained some conjectural results on the generalized gcds. We general-
ize such results for weighted heights by defining the generalized weighted greatest
common divisor and defining a height for weighted blowups as defined in [10].

As above, k is a number field, Ok its ring of integers, and νp the valuation at a
prime p ∈ Ok. For any two elements α, β ∈ Ok the greatest common divisor is
defined as

gcd(α, β) :=
∏
p∈Ok

pmin{νp(α), νp(β)},

and the logarithmic greatest common divisor is

log gcd(α, β) :=
∑
p∈Ok

min {ν(α), ν(β)} log p =
∑
ν∈M0

k

min {ν(α), ν(β)}

For each place ν ∈Mk, we define

ν+ : k −→ [0,∞],

α 7→ max{ν(α), 0},
(11)

which ν+ can be viewed as a height function on P1(k) = k ∪ {∞} with respect the
divisor (0), where we set ν+(∞) = 0. The generalized logarithmic greatest
common divisor of α, β ∈ Q is defined as

hgcd (α, β) :=
∑
ν∈Mk

min{ν+(α), ν+(β)}.

Then, given (α, β) 6= (0, 0), one may consider the following function

Gν : P1(k)× P1(k)→ [0,∞],

(α, β) 7→ min{ν+(α), ν+(β)},
(12)

as a local height function and the generalized logarithmic greatest common
divisor, being their sum all together,

(13) hgcd (α, β) =
∑
ν∈Mk

Gν .

as a global height function on P1(k)× P1(k). In [11], it was given a theoretical
interpretation of the function Gν in terms of blowups. More precisely, for X = (P1

k)2

let π : X̃ → X be the blowup of the point (0, 0) and E = π−1(0, 0) be the exceptional
divisor of the blowup. Then, for all (α, β) ∈ X (k)\(0, 0) and ν ∈Mk, one has

λX ,E(π−1(α, β), ν) = min {ν+(α), ν+(β)},

and adding all of these over all ν ∈Mk leads to

hgcd (α, β) = hX̃ ,E(π−1(α, β)).

By this realization, in [11, Def. 2], Silverman’s introduced generalized logarithmic
greatest common divisors of points on smooth varieties with respect to its subvari-
eties.
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4.1. Weighted greatest common divisors. Most of this material follows from
[1, Section 3]. Notice that the goal of Section 3 in [1] was to extend definition of
generalized gcd from Silverman’s paper [11] to that of generalized gcd. In all of this
k = Q, however authors in [1] continue with the notation of their previous sections
k for the field and that could be a cause for confusion.

A weighted tuple of integers in Z is a tuple x̃ = (x0, . . . , xn) ∈ Zn+1 such
that to each coordinate xi is assigned the weight qi. We multiply weighted tuples
by scalars λ ∈ Q via

λ ? (x0, . . . , xn) = (λq0x0, . . . , λ
qnxn) .

We assume k = Q for the rest of this paper. Given q = (q0, · · · , qn), we let
qi = (1, qi) for each i = 0, 1, · · ·n. The canonical inclusion

Qqi(xi) ↪→ Qq(x0, · · · , xn)

which induces the rational map Pnq,Q → P1
qi,Q given by

x = [x0 : · · · : xn] 7→ [1 : xi],

which is defined precisely in the complement of V (xi) in Pnq,Q. Considering all of
these maps, we have the rational map

φn,q : Pnq,Q −→
n∏
i=0

P1
qi,k,

x = [x0 : · · · : xn] 7→ φn,q(x) := ([1 : x0], [1 : x1], · · · , [1 : xn]),

(14)

which is defined in the open set Pnq,Q\ ∪ni=0 V (xi). For each p ∈ Z, we define the
function Fνp as:

Fνp :

n∏
i=1

P1
qi,Q −→ Z,

([1 : x0], [1 : x1], · · · , [1 : xn]) 7→ p
min

{⌊
ν+p (x0)

q0

⌋
,...,

⌊
ν+p (xn)

qn

⌋}
.

For x = [x0 : · · · : xn] ∈ Pnq (Q), we define the generalized weighted greatest
common divisor as

(15) hwgcd (x) :=
∏

νp∈MQ

Fνp(φn,q(x)) =
∏

νp∈MQ

p
min

{⌊
ν+p (x0)

q0

⌋
,...,

⌊
ν+p (xn)

qn

⌋}

4.2. Generalized weighted greatest common divisors as heights for blowups.
The weighted greatest common divisor for any tuple of integers (x0, · · · , xn) ∈ Zn+1

was defined in [1], which we are going to recall in below.
Let x̃ = (x0, . . . , xn) ∈ Zn+1 with r = gcd(x0, . . . , xn) and

r = u ·
s∏
j=1

pj ,

where u is a unit in Z and p1, · · · , ps are primes. The weighted greatest common
divisor of x̃ ∈ Zn+1 is defined as

(16) wgcd (x̃) :=
∏

p∈{p1,··· ,ps}
pqi |xi

p =
∏
νp∈Z

p
min

{⌊
νp(x0)

q0

⌋
,...,
⌊
νp(xn)

qn

⌋}
,
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where the last equality comes from [1, Lem. 4]. Here, the symbol b·c denotes the
integer part function. A tuple x̃ ∈ Zn+1 is said to be normalized if wgcd (x̃) = 1.
In [1, Lem. 7 and Corollary 1], it is proved that any point x in a well-formed space
Pnq has a unique normalization y = 1

wgcd (x̃) ? x.

For the rest of this paper, a normalized point x ∈ Pq,Q means a point x =
[x0 : . . . : xn] with integer coordinates xi ∈ Z such that wgcd (x0, . . . , xn) = 1.

The generalized weighted greatest common divisor of a given tuple x̄ =
(x0, . . . , xn) ∈ Qn+1 is defined as

(17) hwgcd (x̄) :=
∏
p∈Z

p
min

{⌊
ν+p (x0)

q0

⌋
,...,

⌊
ν+p (xn)

qn

⌋}
,

We define the logarithmic weighted greatest common divisor of any tuple
of integers x̃ = (x0, · · · , xn) ∈ Zn+1 as the sum

(18) log wgcd (x̃) :=
∑
ν∈M0

Q

min

{⌊
ν(x0)

q0

⌋
, . . . ,

⌊
ν(xn)

qn

⌋}
,

and the generalized logarithmic weighted greatest common divisor of any
tuple x̄ = (x0, · · · , xn) ∈ Qn+1 is defined to be

(19) log hwgcd (x̄) :=
∑
ν∈MQ

min

{⌊
ν+(x0)

q0

⌋
, . . . ,

⌊
ν+(xn)

qn

⌋}
.

Let us consider the following positive real-valued function on Pnq (Q),

Tν :

n∏
i=0

P1
qi,Q → [0,∞]

([1 : x0], [1 : xn], . . . , [1 : xn])→ min

{⌊
ν+(x0)

q0

⌋
, . . . ,

⌊
ν+(xn)

qn

⌋}.(20)

For any point x = [x0 : · · · : xn] ∈ Pnq (Q), define its generalized logarithmic
weighted greatest common divisor as
(21)

log hwgcd (x) =
∑
ν∈MQ

Tν(φn,q(x)) =
∑

νp∈MQ

min

{⌊
ν+
p (x0)

q0

⌋
, . . . ,

⌊
ν+
p (xn)

qn

⌋}
,

where φn,q is defined by Eq. (14).
Notice that all points x ∈ Pnq (Q) with log hwgcd (x) = 0 belong to the singular

locus Sing(Pnq,Q) as shown next.

Proposition 2. Let Pnq,Q be a well-formed weighted projective space with q =

(q0, · · · , qn) and x ∈ Pnq (Q). If log hwgcd (x) = 0 then x ∈ Sing(Pnq,Q).

Proof. Let m = lcm(q0, · · · , qn), and define J(x) = {j : xj(x) 6= 0} for any point
x = [x0 : · · · : xn] ∈ Pnq (Q). Given any prime divisor p | m, we define

Sq(p) =
{
x ∈ Pnq,Q : p | qi for all i ∈ J(x)

}
.
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where Sing(Pnq,Q) =
⋃
p|m Sq(p). Then, for p ∈ Z we have

x = [x0 : · · · : xn] ∈ Sq(p)⇒ p | qi, for all i ∈ J(x)

⇒ ν+
p (xi) < qi, for all i ∈ J(x)

⇒
⌊
ν+
p (xi)

qi

⌋
= 0, for all i ∈ J(x)

⇒ min

{⌊
ν+
p (x0)

q0

⌋
, . . . ,

⌊
ν+
p (xn)

qn

⌋}
= 0.

If we assume log hwgcd (x) = 0, then

(22)
∑

νp∈MQ

min

{⌊
ν+
p (x0)

q0

⌋
, . . . ,

⌊
ν+
p (xn)

qn

⌋}
= 0.

Thus, for all νp ∈MQ with p ∈ Z, we have

(23) min

{⌊
ν+
p (x0)

q0

⌋
, . . . ,

⌊
ν+
p (xn)

qn

⌋}
= 0.

This implies that x ∈ Sq(p) for any prime p | m and hence x ∈ Sing(Pnq,Q). �

Example 2. Consider the weights q = (1, . . . , 1). Then Pnq,Q = PnQ is the projective
space and the weighted height SQ is simply the projective height HQ. Since m =
lcm(q0, . . . , qn) = 1 then there are no primes dividing m and SingPnQ = ∅. On the
other side from Eq. (21) we have

log hwgcd (x) =
∑

νp∈MQ

min

{⌊
ν+
p (x0)

q0

⌋
, . . . ,

⌊
ν+
p (xn)

qn

⌋}
=

∑
νp∈MQ

min
{
ν+
p (x0), . . . , ν+

p (xn)
}

≥ min{
{
ν+
∞(x0), . . . , ν+

∞(xn)
}
> 0,

since at least one of the coordinates xi 6= 0,

Lemma 2. Let X/Q be a smooth weighted variety, defined over Q, and Y/Q a

subvariety of X/Q of codimension r ≥ 2. Let π : X̃ → X be the blowup of X along

Y and denote by Ỹ := π−1(Y) its the exceptional divisor. Then,

(i) π |π−1(X\Y) : π−1(X \ Y)→ X \ Y is an isomorphism.

(ii) Exceptional divisor Ỹ is an effective Cartier divisor on X̃ .

Proof. This is a direct consequence of [6, Prop. II.7.13]. For every y ∈ Y we have
an open neighborhood O around π−1(y) and f ∈ O. The conditions from the
definition of Cartier divisors are satisfied. �

Proposition 3. Let X :=
∏n
i=1 P1

qi,k
, and consider π : X̃ → X , the blowup of X

along 0̄ = ([1 : 0], [1 : 0], · · · , [1 : 0]). Denote by Ỹ = π−1(0̄) the exceptional divisor
of this blowup. Then, for all ν ∈MQ and any non-singular points

x = [x0 : x1 : · · · : xn] ∈ Pnq,Q\{[1 : 0 : · · · : 0]}
with x̄ = φn,q |X (x) ∈ X (Q) \ {0̄}, we have

(24) ζX̃ ,Ỹ(π−1(x̄), ν) = min

{⌊
ν+(x0)

q0

⌋
, . . . ,

⌊
ν+(xn)

qn

⌋}
= Tν(x̄),
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and

(25) log hwgcd (x) =
∑
ν∈MQ

ζX̃ ,Ỹ(π−1(x̄), ν) = sX̃ ,Ỹ
(
π−1(x̄), ν

)
.

Proof. Since Ỹ is an effective divisor on X̃ by Lem. 2, so using the functoriality of
local weighted heights, we have

ζX̃ ,Ỹ(π−1(x̄), ν) = ζX ,0̄(x̄, ν) = ζPnq,Q,[1:0:···:0]

(
[x

1
q0
0 : x

1
q1
1 : · · · : x

1
qn
n ], ν

)
,

= min

{
ν+(x

1
q1
0 ), · · · , ν+(x

1
qn
n )

}
= min

{⌊
ν+(x0)

q0

⌋
, · · · ,

⌊
ν+(xn)

qn

⌋}
= Tν(x̄).

Adding these weighted local heights together we get the global formula.
�

The above result leads to the following definition.

Definition 1. Let X/Q be a smooth weighted variety, defined over Q, and Y/Q a

subvariety of X/Q of codimension r ≥ 2 and π : X̃ → X , the blowup of X along Y.
For any P ∈ (X \ Y)/Q we denote by

P̃ := π−1(P ) ∈ X̃ and Ỹ = π−1(Y).

The generalized logarithmic weighted greatest common divisor of the point
P with respect to Y is defined to be

(26) log hwgcd (P ;Y) = sX̃ ,Ỹ(P̃ ).

A point x = [x0 : · · · : xn] ∈ Pnq,Q is called normalized if it has integers coordi-

nates and wgcd (x0, x1, · · · , xn) = 1; see [1] for details.

Lemma 3. Let q = (q0, · · · , qn) be a well-formed set of weights, m = lcm(q0, · · · , qn),
y = [1 : 0 : · · · : 0], and x = [x0 : · · · : xn] ∈ Pnq,Q a smooth and normalized point.
Then

(27) log hwgcd (x; {y}) =
1

m
log gcd(x1, . . . , xn) +O(1).

Proof. Indeed, letting qi = (q0, qi) for each i = 1, · · · , n and

X =

n∏
i=0

P1
qi,k,

then considering the rational map πn,q : Pnq,k → X , we have 0̄ = φn,q(y), where

0̄ = ([1 : 0], · · · , [1 : 0]) ∈ X .

Let x̄ = φn,q(x) and apply Prop. 3 to the blowup π : X̃ → X along Y = {0̄}. Let

Ỹ = π−1(Y) be the exceptional divisor of the blowup. Then

log hwgcd (x; {y}) = log hwgcd (x̄;Y) = sX̃ ,Ỹ
(
π−1(x̄)

)
By definition of the global weighted height and properties of local weighted height
[10, Thm. 1 (iv)], one can see that the last term is equal to the right-hand side of
Eq. (27). �

One can extend the result of Lem. 3.
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Proposition 4. Let q = (q0, · · · , qn) be a well-formed set of weights and m =
lcm(q0, · · · , qn). Assume that Z ⊂ Pnq,Q is a closed subvariety defined by the
weighted homogeneous polynomials f1, · · · , fr with integer coefficients such that

Z ∩ Sing(Pnq,Q) = ∅.

Then

(28) log hwgcd (x;Z) =
1

m
log gcd(f1(x), . . . , fr(x)) +O(1),

for x ∈ Pnq,Q\
{

Sing(Pnq,Q) ∪ Supp(Z)
}

with xi ∈ Z and wgcd (x0, x1, · · · , xn) = 1.

Proof. Let Y be given by

(29) Y = φn,q(Z) ⊂ X =

n∏
i=1

P1
qi,Q,

where qi = (q0, qi) for i = 1, · · · , n and where φn,q is defined by Eq. (14).

Consider the blowup π : X̃ → X along Y and its exceptional divisor Ỹ = π−1(Y).
Let y = φn,q(x), for any x ∈ Pnq,Q\

{
Sing(Pnq,Q) ∪ Supp(Z)

}
. Then, we have

log hwgcd (x;Z) =
∑

νp∈MQ

ζX̃ ,Ỹ(π−1(y), νp)

=
∑

νp∈MQ

ζX ,Y(y, νp)

=
∑

νp∈MQ

ζPnq,Q,Z(x, νp).

=
∑

p∈MQ\{∞}

ζPnq,Q,Z(x, νp) + ζPnq,Q,Z(x, ν∞)

By definition (see [10, Eq. (37)]) of the local weighted height associated to Z, for
νp ∈MQ, we have

ζPnq,Q,Z(x, νp) = min
1≤j≤r

{
− log

|fj(x)|
1
m
νp

maxi |x
1/qi
i |νp

}

=
1

m
log max

1≤j≤r
|fj(x)|νp +

1

qi
log max

i
|xi|νp .

Thus, ∑
νp∈MQ

ζPnq,Q,Z(x, νp) =
1

m
log gcd(f1(x), . . . , ft(x)) +O(1).

Therefore, putting all together gives the desired equality.

log hwgcd (x;Z) =
1

m
log gcd(f1(x), . . . , ft(x)) +O(1).

This completes the proof.
�
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5. Vojta’s conjecture and bounds on greatest common divisors

It is a well-known fact that the canonical bundle of the blowup π : X̃ → X is
given by

KX̃ ∼ π
?KX + (r − 1)Ỹ,

see Def. 1. If A is an ample divisor on X , then there is an integer N such that
−Ỹ +Nπ?A is ample on X̃ , see [6, Thm. A.5.1]. Let

Ã = − 1

N
Ỹ + π?A

be the ample cone of X̃ . We further assume that −KX is a normal crossing and

Supp(KX ) ∩ Y = ∅.
Let S be a finite set of places of Q and define

(30) sX ,D,S(·) :=
∑
ν∈S

ζX ,D(·, ν) and s′X ,D,S(·) :=
∑
ν 6∈S

ζX ,D(·, ν)

Then we have the following:

Theorem 1. Let X be a smooth weighted variety, A an ample divisor on X , Y ⊂ X
a smooth subvariety of codimension r ≥ 2, and −KX a normal crossing divisor
whose support does not intersect Y, all defined over Q.

Assume Vojta’s conjecture (see Conj. 4) for smooth weighted varieties. Then
for every finite set of places S and every 0 < ε < r − 1 there is a proper closed
subvariety

Z = Z(ε,X ,Y,A, k, S) 6⊂ X ,
and constants Cε = Cε(X ,Y,A, k, S) and δε = δε(X ,Y,A), such that

(31) log hwgcd (P ;Y) ≤ ε sX ,A(P ) +
1

r − 1 + δε
s′X ,−KX ,S(P ) + Cε,

for all P ∈ (X \ Z)(Q).

Proof. The proof goes similarly to [11, Thm. 6] with necessary adjustments. We

apply Conj. 4 for the weighted blow-up π : X̃ → X and the divisor D = −π?KX to
get

sX̃ ,−π?KX ,S(P̃ ) + sX̃ ,KX (P̃ ) ≤ ε sX̃ ,Ã(P̃ ) + Cε,

for all P̃ ∈ X̃ (Q) \ Z̃. Substituting KX̃ = π?KX + (r − 1)Ỹ and Ã = − 1
N Ỹ + π?A

we get

− sX ,KX ,S(P ) + sX ,KX (P ) + (r − 1) sX̃ ,Ỹ(P̃ ) ≤ ε sX ,A(P )− ε

N
sX̃ ,Ỹ(P̃ ) + Cε

for all P ∈ X (Q) \ π(Z̃). Since − sX ,KX ,S(P ) + sX ,KX (P ) = s′X ,KX ,S we have

s′X ,KX ,S(P ) +
(
r − 1 +

ε

N

)
sX̃ ,Ỹ(P̃ ) ≤ ε sX ,A(P ) + Cε,

for all P ∈ X (Q) \ Z. Hence,

sX̃ ,Ỹ(P̃ ) ≤ N

N(r − 1) + ε

(
− s′X ,KX ,S(P ) + ε sX̃ ,A(P ) + Cε

)
Since sX̃ ,Ỹ(P̃ ) = log hwgcd (P ;Y), we have

log hwgcd (P ;Y) ≤ N

N(r − 1) + ε

(
− s′X ,KX ,S(P ) + ε sX̃ ,A(P ) + Cε

)
.
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Finally, setting δ = ε/N gives Eq. (31) and this completes the proof.
�

Let q = (q0, · · · , qn) and assume that X = Pnq,Q is well-formed weighted projec-
tive space. Define

Hi = {x ∈ X | xi = 0}, for i = 0, . . . , n,

A0 = H0, and KX = −
∑n
i=0Hi. Consider the map

φn,q : Pnq,Q → X :=

n∏
i=0

P1
qi,Q,

where qi = (q0, qi) for i = 1, · · · , n and denote by

Hi = φn,q(Hi), A0 = φn,q(H0), KX = −
n∑
i=0

φn,q(Hi).

Notice that the canonical divisor KX is a normal crossing on X satisfying

Y ∩ Supp(−KX ) = ∅, where Y = φn,q(Z).

Theorem 2. Assume that Z ⊂ Pnq,Q be a closed subvariety defined by

f1, · · · , ft ∈ Zq[x0, . . . , xn],

such that Z∩Sing(Pnq,Q) = ∅, and has transversal intersection with the union ∪ni=0Hi
Let r := n− dim(Z) ≥ 2 be the codimension of Z in Pnq,Q.

Let S be a finite set of primes and ε > 0. If Conj. 4 holds for the weighted blow-
up π : X̃ → X , then there exists a nonzero weighted polynomial g ∈ Zq[x0, . . . , xn]
and a constant δ = δε,Z > 0, such that every α̃ = (α0, · · · , αn) ∈ Zn+1 with
wgcd (α0, · · · , αn) = 1 satisfies either g(α̃) = 0 or

(32) gcd(f1(α̃), · · · , ft(α̃)) ≤ max
{
|α0|

1
q0 , · · · , |αn|

1
qn }
}ε
· (|α0 · · ·αn|′S)

1
(r−1+δ) ,

where | · |′S is the “prime-to-S” part of its origin.

Proof. By definition of the global weighted height for

x = [α0 : · · · : αn] ∈ Pnq,Q\{Sing(Pnq,Q) ∪ Supp(Z)}(Q)

with wgcd (α0, · · · , αn) = 1, we have

(33) sX,A(x) = log max{|α0|
1
q0 , · · · , |αn|

1
qn }+O(1)

By Prop. 4,

(34) log hwgcd (x;Z) =
1

m
log gcd(f1(x), · · · , ft(x)) +O(1).

Let y = φn,q(x) for x = [α0 : · · · : αn] ∈ Pnq,Q. Then, by definition of S-part of the
weighted heights and functoriality of the weighted heights, we have

s′X ,Hi,S(y) = s′X,Hi,S(x) =
∑
ν∈S

ν+(αi) =
1

qi
log |αi|′S ,

which implies that

(35) s′X ,−KX ,S(y) = s′X,−KX ,S(x) =

n∑
i=0

s′X,Hi,S =
1

m
log |α0α1 · · ·αn|′S .
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By substituting Eq. (33), Eq. (34), Eq. (35), into the Eq. (31) we obtain

1

m
log gcd(f1(α̃), · · · , ft(α̃)) ≤ 1

m
log hwgcd (x;Z) = log hwgcd (y;Y)

≤ ε 1

m
sX ,A(y) +

1

r − 1 + δ
s′X ,−KX ,S(y) + Cε,

≤ ε · log max{|α0|
1
q0 , · · · , |αn|

1
qn }

· 1

m(r − 1 + δ)
log (|α0α1 · · ·αn|′S) + Cε,

where δ = δε,Z . Replacing ε with ε/m, then multiplying the both sides by m and
exponentiating, we obtain the desired inequality Eq. (2). �

5.1. An application on gcds and a result of Corvaja/Zannier. Let S be a
finite set of rational primes. The “prime-to-S” part |x|′S of any nonzero integer x
is defined to be the largest divisor of x that is not divisible by any of the primes in
S, in other words,

|x|′S = |x| ·
∏
p∈S
|x|p.

In particular, x is an S-unit if and only if |x|′S = 1.
The following result can be though as a weighted version of the main result of

[2] for weighted projective varieties.

Lemma 4. Assume Conj. 4. Fix ε > 0, a finite set S of prime numbers, and a
triple of weights q = (q0, q1, q2). Then, there exist a finite set Z = Z(S, ε) ⊂ Z2

such that

(36) gcd(αq01 − 1, αq02 − 1) ≤ max {|α1|
1
q1 , |α2|

1
q2 }ε · (|α1α2|′S)

1
(1+δε) ,

holds for all pairs (α1, α2) ∈ Z2\Z.

Proof. Let X = P2
q(Q) with well-formed q = (q0, q1, q2) and m = q0q1q2. Take

Z = {f1 = f2 = 0} ⊂ X, where f1 = xq01 − x
q1
0 , f2 = xq02 − x

q2
0 .

are weighted homogeneous polynomials of degree q0q1 and q0q2 respectively.
Points in Z look like

x = [x0 : x
q1/q0
0 : x

q2/q0
0 ].

Multiplying by 1

x
1/q0
0

we get x = [1 : 1 : 1]. Since Z has only one point x = [1 : 1 : 1],

it is of codimension r = 2 in X. By Thm. 2 there exists a 1-dimensional exceptional
set Z ⊂ X, depending on f1, f2 and ε > 0, such that

gcd(αq01 − α
q1
0 , α

q0
2 − α

q2
0 ) ≤ max

{
|α0|

1
q0 , |α1|

1
q1 , |α2|

1
q2

}ε
· (| α0α1α2 |′S)

1
m(1+δε) .

Now, we assume x0 = 1 and x1 = α1, x2 = α2 for any given (α1, α2) ∈ Z2\Z. This
completes the proof. �

Corollary 2. Assume Conj. 4. Fix ε > 0, a finite set S of prime numbers, and
a triple of weights q = (q0, q1, q2). Then, there exist a finite set Z = Z(S, ε) ⊂ Z2

such that

(37) gcd(α1 − 1, α2 − 1) ≤ max {|α1|
1
q1 , |α2|

1
q2 }ε · (|α1α2|′S)

1
(1+δε) ,

holds for all pairs (α1, α2) ∈ Z2\Z.
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Proof. Since gcd(α1 − 1, α2 − 1) always divides gcd(αq01 − 1, αq02 − 1), so by last
inequality one has Eq. (37). �

In particular, for q0 = q1 = q2 = 1 if we assume x0 = 1 and x1 = α1, x2 = α2

are S-units, then |α1α2|′S = 1 and hence we recover conditionally the main result
of [3], as stated in [11, Thm. 1].

Thus, Vojta’s conjecture implies a natural weighted generalization of [11, Thm.
1] in which we remove the restriction that α1 and α2 are S-units and replace it’s
third condition with Eq. (37), which is more general.

Let Pq,k be a well-formed weighted projective space and x = [x0 : · · · : xn] ∈
Pq,k(k). Assume x normalized (i.e. wgcd k(x) = 1). The above lemma suggests
that there might be a way to bound gcd(x0, . . . , xn) with S(x).

If x = [x0 : · · · : xn] ∈ Pq,k(k) s is absolutely normalized then the situation is
simpler as it can be seen below.

Remark 1. Let Pq,k be a well-formed weighted projective space and x = [x0 : · · · :
xn] ∈ Pq,k(k) such that x is absolutely normalized. Then gcd(x0, . . . , xn) = 1.

Proof. Let q = (q0, . . . , qn) be well-formed, m = lcm(q0, . . . , qn), and let φ : Pq,k →
Pn be Veronese embedding. Assume gcd(x0, . . . , xn) = d > 1. Then

gcd(φ(x0), . . . , φ(xn)) = d,

and hence wgcd (x) = d
1
m > 1, which is a contradiction. �

It remains to be further investigated the relation between gcd(φ(x0), . . . , φ(xn))
and S(x) when x is just normalized, and whether Lem. 4 can be proved indepen-
dently of Vojta’s conjecture.

References

[1] L. Beshaj, J. Gutierrez, and T. Shaska, Weighted greatest common divisors and weighted

heights, J. Number Theory 213 (2020), 319–346. MR4091944
[2] Yann Bugeaud, Pietro Corvaja, and Umberto Zannier, An upper bound for the G.C.D. of

an − 1 and bn − 1, Math. Z. 243 (2003), no. 1, 79–84. MR1953049

[3] Pietro Corvaja and Umberto Zannier, A lower bound for the height of a rational function at
S-unit points, Monatsh. Math. 144 (2005), no. 3, 203–224. MR2130274

[4] , Some cases of Vojta’s conjecture on integral points over function fields, J. Algebraic
Geom. 17 (2008), no. 2, 295–333. MR2369088

[5] , Greatest common divisors of u − 1, v − 1 in positive characteristic and rational

points on curves over finite fields, J. Eur. Math. Soc. (JEMS) 15 (2013), no. 5, 1927–1942.
MR3082249

[6] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Gradu-

ate Texts in Mathematics, No. 52. MR0463157
[7] János Kollár, Singularities of the minimal model program, Cambridge Tracts in Mathemat-

ics, vol. 200, Cambridge University Press, Cambridge, 2013. With a collaboration of Sándor
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