VOJTA’S CONJECTURE ON WEIGHTED PROJECTIVE
VARIETIES AND AN APPLICATION ON GREATEST COMMON
DIVISORS

S. SALAMI AND T. SHASKA

ABSTRACT. We state Vojta’s conjecture for smooth weighted projective vari-
eties, weighted multiplier ideal sheaves, and weighted log pairs and prove that
all three versions of the conjecture are equivalent. Moreover, we introduce
generalized weighted general common divisors and express them as heights of
weighted projective spaces blown-up at a point, relative to an exceptional divi-
sor. Furthermore, we also prove that assuming Vojta’s conjecture for weighted
projective varieties one can bound the log hygcq for any subvariety of codimen-
sion > 2 and a finite set of places S. An analogue result is proved for weighted
homogeneous polynomials with integer coefficients. As an application of our
results we obtain a bound on greatest common divisors, which restricted to
projective space is the same as bounds obtained by Corvaja, Zannier, et al.

1. INTRODUCTION

The theory of weighted local and global heights for weighted projective varieties
and closed subvarieties was introduced in [10], where it was proved that any line
bundle on a weighted variety admits a locally bounded weighted M-metric. Using
these results we are able to generalize weighted general common divisors to gener-
alized weighted gcds and express them as a weighted height of a blow-up relative
to a weighted exceptional divisor. Moreover, we are able to state Vojta’s conjecture
for smooth weighted projective varieties in terms of weighted heights.

Stating results on Vojta’s conjecture in terms of weighted heights is not simply
a curiosity. Weighted heights provide much better bounds than classical projective
bounds. This paper started from a question of J. Silverman whether weighted
general common divisors (gcds) introduced in [1] can be extended to weighted
generalized geds as in [11], for example express them as a weighted height of a
blown-up relative to an exceptional divisor. We answer positively this question and
further explore it in terms of the Vojta’s conjecture. A corollary of our main result
(cf. Lem. 4) is an interpretation of well known result of Corvaja and Zannier, et al.
on heights on rational functions on S-unit points; see [2-5].

This paper is organized as follows: In Sec. 2.1 is given a quick view on Vojta’s
conjecture on algebraic points on projective varieties; see Conj. 1. We state the
conjecture using a correction term involving a multiplier ideal sheaf instead of using
the normal crossing divisors; see Conj. 2 and summarize [15] on Vojta’s conjecture
for log pairs. This makes it possible to drop the condition that the variety be
smooth in the statement of the conjecture. Vojta’s conjecture for log pairs is stated
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in Conj. 3. In Sec. 3 we investigate whether it is possible to have analog statements
for weighted varieties and weighted heights. In Conj. 4 we state Vojta’s conjecture
for X a smooth weighted projective variety, Ky a canonical divisor, A an ample
divisor and D a normal crossings divisor on X, all defined over Q. An analogue of
Conj. 2 for weighted projective varieties is stated in Conj. 5. The terminology and
theory for weighted log pairs is developed in this section, so we are able to state
Vojta’s conjecture for weighted log pairs in Conj. 6. Finally, in Cor. 1 we prove
that Conj. 4, Conj. 5, and Conj. 6 are equivalent.

In Sec. 4 we extend the concept of the generalized greatest common divisor as
in [11] to that of generalized weighted greatest common divisor. Furthermore, we
prove that generalized logarithmic weighted greatest common divisor is equal to
weighted height of x on a blowup of PQ,Q with respect to the exceptional divisor of
the blowup. We prove that the generalized logarithmic weighted greatest common
divisor loghygea (x) > 0 if and only if x ¢ Sing(P{  (cf. Prop. 2) and analogues
of Theorems 1, 2, and 6 in [11] for the weighted gcds that are all subject to the
validity of Vojta’s conjecture for weighted projective varieties.

More precisely, we prove (cf. Thm. 1) that for X be a smooth weighted variety
defined over Q, A an ample divisor on X, ) C X a smooth subvariety of codimension
r > 2, and —Kx a normal crossing divisor whose support does not intersect ),
assuming Conj. 4, for every finite set of places S and every 0 < &€ < r — 1 there
is a proper closed subvariety Z2 = Z(e, X, ), Ak, S) ¢ X, and constants C. =
C.(X, Y, Ak, S) and 6. = 6.(X,V,.A), such that for all P € (X' \ Z(Q))

1

(1) log hyged (Pyy) < 55X,A(P) + mﬁl/\/)_K%

s(P)+C..

Let ¢ = (g0, -+ ,qn) be a well-formed set of weights, m = lem(qo,- - ,qn), and
Z C P o be a closed subvariety defined by fi,---, fi € Zg[zo, ..., 2n], such that
Z N Sing(Py o) = 0, with codimension 7 = n — dim(Z) > 2 in X'. Let S be a finite
set of primes and € > 0. If Vojta’s conjecture holds for smooth weighted varieties

(see Conj. 4), then there exists a nonzero weighted polynomial g € Zg[xo, ..., zy]
and a constant § = &,z > 0, such that every & = (ag, -+ ,a,) € Z" with
wged (ag, - -+, a,) = 1 satisfies either g(&) = 0 or

~ ~ B 1 .1¢ 1
(2) ged(f1(@), -, ful@)) < max {Jaol T+ [anlT}} - (a0 -+ anls) T,

where | - |5 is the “prime-to-S” part of its origin (cf. Thm. 2).

Assuming Vojta’s conjecture for weighted projective varieties, for a fixed € > 0,
a finite set S of prime numbers, and a triple of weights q = (qo, ¢1, ¢2), there exist
a finite set Z = Z(S,e) C Z? such that

1
(3) ged(af® = 1,08 — 1) < max {|on |71, |as| % }° - (Jasaas) T

holds for all pairs (o, ) € Z?\Z (cf. Lem. 4). There is an interesting consequence
of this result

1
(4) ged(ar — 1, a5 — 1) < max {[aa| ¥, [as]# }* - (Jaras|s) 555

which improves the bound on ged(a; —1, ag—1) from results of Corvaja and Zannier;
see [3]. It remains to be seen if Thm. 2 and Lem. 4 can be proved independently
of Vojta’s conjecture. This remains a goal of further investigation.
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2. PRELIMINARIES

Here we give a brief overview of Vojta’s conjecture over projective varieties before
consider the conjecture over weighted projective varieties.

2.1. Vojta’s conjecture for projective varieties. For any finite extension L/Q
of a number field Q, we define the logarithmic discriminant dg(L) by

do(L) == 1 log | Disc(L)| — log | Disc(Q)],
[L: k]

where Disc(+) denotes the absolute discriminant. Given a variety X over Q and a
point x € X, we define its logarithmic discriminant by dg(x) := dg(k(x)).

Recall that a Cartier divisor D on a smooth projective variety X is a normal
crossing divisor if at every point in the support of D there are local coordinates
20,21, - -, 2n such that D is given locally by an equation of the form zgz; ...z, = 0.
Furthermore, the canonical divisor of X is a divisor Ky such that Ox(Kx) = wx,
where wy is the canonical sheaf of regular forms on . Vojta made a conjecture
on algebraic points on projective varieties ([12,13]), as follows:

Conjecture 1. Let X be a smooth projective variety over a number field Q, Kx
a canonical divisor, A an ample divisor, and D a normal crossings divisor on X,
all defined over Q. Furthermore, let S be a finite subset of places containing Mgy .
Then, given any real constant € > 0 and any positive integer r, there exists a proper
Zariski-closed subset Z of X, depending only on k,X,D, A, e, and r, such that

hica(x) + Y Ap(x,v) < eha(x) + dg(x) + O(1),
ves

for allx € (X \ Z)(k) with [k(x): k] <.

The case r = 1 of the above conjecture is known in the literature as Vojta’s
conjecture for the rational points of algebraic varieties . In [14], Vojta restated his
conjecture using a correction term involving a multiplier ideal sheaf instead of the
normal crossing divisors as follows.

Let T be a nonzero sheaf of ideals on a projective variety X and ¢ € RZ% some
constant. Let f : X’ — X be a proper birational morphism such that X’ is a
smooth variety and f*Z = Oy/(—FE), for some normal crossing divisor E on X”.
Denote by Ry« the ramification divisor of X’ over X' and define the multiplier
ideal sheaf 7. and Z_ associated to Z and c as

T. = fuOx/(Rx1jx — [cE]), and I = lim Z._..
e—0t

We will denote Z; and Z; by Z and Z~ respectively.

Conjecture 2. Let X be a smooth projective variety over a number field Q, Kx a
canonical divisor, A an ample divisor, and T a nonzero ideal sheaf X, all defined
over Q. Let S be a finite subset of places containing Mg". Then, given any real
constant € > 0 and positive integer r, there exists a proper Zariski-closed subset Z
of X, depending only on k,X,T,A,¢e,r, such that

hice (%) + ) Az(x,0) = D Az (x,v) < eha(x) + dg(x) + O(1).

vesS ves
for allx € (X \ Z)(k) with [k(x) : k] <.
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2.2. Vojta’s conjecture for log pairs. Since Vojta’s conjectures does not deal
with singular varieties in [15] Yasuda formulated a generalization of it in terms of
log pairs and variants of multiplier ideals. In order to state his generalization, first
we need to recall some terminology. The reader can refer to [8], [7], or [15] for more
details.

Let X be a variety defined over Q. Then, X is said to be Q-Gorenstein if it
is Gorenstein in codimension one, satisfies Serre’s condition S;, and a canonical
divisor Ky is Q-Cartier. For example, if X’ is normal, then the first two conditions
are true automatically and hence a canonical divisor exists unequally up to linear
equivalence and is Cartier in codimension one.

A QQ-subscheme of X is a formal linear combination ) = 221 ¢; - V; of proper
closed subschemes ); C X with all ¢; € Q. The support of such ) is defined to
be the closed subset U, 20);, and it is called effective Q-subscheme if ¢; > 0 for
every i. By a log pair, we mean a pair (X,)) of a Q-Gorenstein variety and an
effective Q-subscheme ) of X'. For example, if X is a normal Q-Gorenstein and D
is an effective Q-divisor, then (X, D) is a log pair.

A resolution of X’ over Q is a projective birational morphism f : X’ — X such
that X’ is a smooth variety over Q. By a log resolution of a log pair (X,)) with
Y= Z?ll c; - Vs, we mean a resolution f : X’ — X of X such that the set-theoretic
inverse image f~!());) is a Cartier divisor on A’, and the union of exceptional
divisor Exc(f) of f with all f=1();)ieq is a simple normal crossing divisor of &”.
For a log resolution f : X’ — X os a log pair (X,)), the relative canonical
divisor of X’ over (X,)) is defined to be the Q-Weil divisor

Kxijxy)y=Kxryx — 7Y,

where K y//x is the relative canonical divisor of X’ over X', and f*) is the pull-back
of Y by f over X”.

For a log pair (X,Y) with a log resolution f : X’ — X, we define Z(X,)) a
variant of multiplier sheaf as

Z(X,Y) = [ Ox ([Kxryx,)])
if X' is a normal variety, otherwise, we let
(X, Y) = f:Oxr([Kxr e )1),

where f,Ox/(E) denotes the largest ideal sheaf in Oy for which its pull-back by
f is contained in Oy/(E) as an Oy,-submodule of (constant) function field sheaf
M. Moreover, there exist a constant €9 > 0 such that for every rational number
0 < e <ep,one has Z(X, (1 —€)Y) =Z(X, (1 — &9))). Based on this fact, we let

IT-(X,Y)=Z(X,(1-9))), (0<ex]l).
We also define another ideal sheaf as
H(X,Y) = f.O0x (| Kxr jx ),

where f, is as above. The definitions of Z(X,)), and hence Z~(X,)), as well as
H(X,Y) are independent of the choice of a log resolution by [15, Lem. 3.1] and
[15, Prop. 3.4] respectively.

For a Q-Gorenstein projective variety X with a canonical divisor Ky, we can
define a global height function hg, up to addition of a bounded function. For a
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log pair (X,)) of a Q-Gorenstein X, we define the height function associated to
the subscheme K(Xy) =Ky + )Y as

(5) hK(X,y) =hky + hy,

where hy is the height function associated to the subscheme ) or its ideal sheaf.

Next is Yasuda’s generalization of Vojta’s conjecture for algebraic points.

Conjecture 3. Let (X,)) a log pair with projective X, Y a closed subscheme with
ideal sheaf T = Z()), Kx a canonical divisor and A an ample divisor on X all
defined over a number field k. Let S be a finite subset of places containing Mg°.
Then, given any real constant € > 0 and positive integer r, there exists a proper
Zariski-closed subset Z of X, depending only on k, X, T, A, e,r, such that

hK(X,y) - Z /\'H(Xv V) - Z >‘I* (Xv V) < 5h¢4(x) + dQ(X) + 0(1)
vesS veS
for allx € (X \ Z)(k) with [k(x) : k] <r, where H = H(X,Y) and T~ =T~ (X,)).
One can see that the above conjecture holds for a log pair (X,)) and a log
resolution f : X’ — X, if the Vojta’s conjecture Conj. 1 holds for X’ and the
reduced simple normal crossing divisor
[Kxrjx ) +ef*Y = [Kxyxm],

for 0 < ¢ < 1. Moreover, the conjectures Conj. 1, Conj. 2 and Conj. 3 are equiva-
lent; see [15, Prop. 5.4 and Rem. 5.5] for a proof.

3. VOJTA’S CONJECTURE FOR WEIGHTED PROJECTIVE VARIETIES

We assume the reader is familiar with weighted projective varieties in the level
covered in [1] and [10]. Let’s recall some basic terminology.

Consider the polynomial ring kq[zo, . .., z,] where each z; has weight wt z; = ¢;.
Every polynomial is a sum of monomials z¢ = [] :17?1' with weight

wt(zd) = Zdifh-
A polynomial f € kq[zo,...,2,] is called a weighted homogeneous of weight
(degree) d if every monomial of f has weight d, i.e.

n

f(xo,...,mn):Zain?j, for a; €k and t e N

i=1  j=0

and for all 0 <7 < n, we have

Z qidj =d.
i=1

For every A € k* and any weighted homogeneous polynomial f of degree d, we have
f()‘qOIOa )\qlxlv ey Aqnxn) = )‘df(x()a s axn)a
Let us consider a simple example of weighted homogenous polynomials.

Example 1. A binary weighted form of degree d, where w = (qo, q1) be respectively
the weights of x¢ and x1, is given by a polynomial as follows

flxo,x1) = Z gy a, xlxl ) such that dogo + digy = d
do,d1
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and in decreasing powers of xg we have

d/qo0 do .d d/q1
f(@o, 1) = @dyqo,00" " + -+ + Qdg,dy T T + -+ + Q0,d/, 77

By dividing with x'f/'h and making a change of coordinates X = xd' /z1° we get
(6)  flmo,z1) = ad/qo’OXd/QOQ1 4 ado,dlde/Lh 4+t agd/q = f(X)
as noted in [1]. Notice that the condition f(P) =0 is well defined on Py k.

From now on we assume that P, is a weighted projective space with q =
(g0, ---.¢n) and m = lem(qo, . .., ¢»). A hyperplane in P, ;, is a weighted homoge-
neous polynomial of degree m. Hence, it is the set of points x = [z : ... : ,] € Py
satisfying a polynomial of the form

n m
(7) U(x) = aomgl/q“ + almgn/(“ 4o g™ = Z aix’
i=0
Notice that if g = (1,...,1) all definitions agree with those of P™.
Recall from [10] that Py o is regular with codimension one and if ¢; > 1’s are
mutually coprime then

Sing(Pgg) ={x;=1[0:---:1:---:0]: 0<i<n}

A non-singular weighted projective space Py is called a smooth weighted pro-
jective variety. Let X be a smooth weighted projective variety in IP’:LM with
q = (qo,q1, " ,qn), defined over Q. Suppose that there is an open subvariety
U C X with complement of codimension at least two which is Gorenstein, i.e., the
dualizing sheaf wg is invertible. We let K;; be a canonical divisor on U such that
w& >~ Oy (Ky), and then define the canonical sheaf Ky as the closure of K in
X.

By a weighted normal crossing divisor on &', we mean a Cartier divisor D
such that at every point in the support of D such that D is given locally by an
equation of the form mé/qoxi/ql _..z/™ = 0. Then, we formulate the analogue of
Conj. 1 for the smooth weighted projective varieties as follows:

Conjecture 4. Let X' be a smooth weighted projective variety over Q, Kx a canon-
ical divisor, A an ample divisor, and D a normal crossings divisor on X, all defined
over Q. Let S be a finite subset of places containing Mg®. Then, given any real con-
stant € > 0 and any positive integer r, there exists a proper weighted Zariski-closed
subset Z of X, depending only on k,X,D, A, e,r, such that

sicn () + 3 Co(x,v) < e sa(x) + %d@(x) + o),
ves

for allx € (X \ Z)(k) with [k(x) : k] <.

3.1. Weighted multiplier ideal sheaf. In order to avoid using the weighted
normal crossing divisors and replace it by a an error term as in [14], let Z be a
nonzero weighted ideal sheaf on a weighted projective variety X and ¢ > 0 a real
constant. Let f: X’ — X be a proper birational morphism such that X’ is smooth
weighted variety and f*Z = Oxy/(—F), for a normal crossing divisor £ on X”.
Denoting by Ry, x the ramification divisor of &’ over X, we define the weighted
multiplier ideal sheaf 7. and Z_ associated to Z and c as

(8) T. = fuOx/(Rxr/x — [cE]), and T = lim Z. ..

e—0*t
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As in the case of projective varieties, we denote Z; and Z;” by Z and Z~, respectively.
An analogue of Conj. 2 for weighted projective varieties follows:

Conjecture 5. Let X' be a smooth weighted projective variety over Q, Kx a canon-
ical divisor, A an ample divisor and I a nonzero weighted ideal sheaf X all defined
over Q. Let S be a finite subset of places containing Mg®. Then, given any real
constant € > 0 and positive integer r, there exists a proper Zariski-closed subset Z
of X, depending only on k,X,T,A,e,r, such that

ica (%) + 3 el ) = 3 G (%) < €540 + g (x) + O(1).

ves ves
for all x € (X \ Z)(k) with [k(x) : k] <.

3.2. Weighted log pairs. Next we follow closely the terminology of the log pairs
for projective varieties as in Sec. 2.2. A weighted Q-divisor on a weighted variety
X is a formal finite sum

D= Z ¢i D,

where ¢; € Q and D, € CaDivy(X). A weighted Q-divisor D is said integral if all
coefficients ¢}s are integers.

By clearing the denominators of c}s, we can write D = ¢D’ for some ¢ € Q
and an integral weighted divisor D’. A weighted Q-divisor D is called effective if
¢; > 0 and D; are weighted integral divisors on X. The support of D, denoted by
Supp(D), is

Supp(D) = |_J Supp(D;)

as in the case of projective varieties. D = Y ¢;D; is called ample if ¢; € Q,
¢; > 0 and D; are all ample Cartier divisors on X. Here, by a Weil Q-divisor
on a weighted variety X, we mean a Q-linear combination of its codimension one
subvarieties, i.e, an element of

WeDivy(X) ® Q.

We use [D] and | D] to denote the round up and round down of any Weil Q-divisor
D = 3", ¢;);, that is,

[D] = Z[Cﬂyz‘ and D] =>"|e]V.

7

A weighted projective variety X defined over Q is said to be Q-Gorenstein if it is
Gorenstein in codimension one, satisfies Serre’s condition S, and a canonical divisor
Ky is Q-Cartier. For example, if X is normal, then the first two conditions are true
and hence a weighted canonical divisor exists unequally up to linear equivalence and
is Cartier in codimension one. A Q-subscheme of X is a formal linear combinations

y:ZCi'yi
i=1

of proper closed subschemes ); C X with all ¢; € Q. The support of such Y is
defined to be the closed subset U.,-0);, and it is called effective Q-subscheme
if ¢; > 0 for every 1.

A weighted log pair is called a pair (X,)) of a Q-Gorenstein weighted variety
X and an effective weighted Q-subscheme ) of X.
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A resolution of X’ over Q is a projective birational morphism f : X’ — X such
that X’ is a weighted smooth variety over Q. A weighted log resolution of a
weighted log pair (X,)) with

Y= Zci Vi,
i=1

is a projective birational morphism f : X’ — X of X such that X’ is a weighted
smooth variety defined over Q, the set-theoretic inverse image f~1();) is a weighted
Cartier divisor on X”, and the union of Exc(f) of the exceptional divisor of f with
all f~1(i)rea is a simple weighted normal crossing divisor of X’. The existence of
a resolution of a weighted variety X and the weighted log resolution of (X,)) is a
consequence of Hironoka’s theorem [8, Thm. 4.1.3].

For a weighted log resolution f : X’ — X as a weighted log pair (X,)), the
relative canonical divisor of X’ over (X,)) is defined to be the weighted Q-
WEeil divisor

Kxrjxyy=Kxyx — 7Y,
where f*) is the pull-back of Y by f over X" and Ky, is the relative canonical
divisor of X’ over X, i.e.,

O(Kx') 2 O(Kx x)® [fOx(Kx),

which is a Q-Weil divisor on X”. Given a weighted log pair (X,)) and a weighted
log resolution f : X' — X, we write

KX’/(X,)/) = ZCLZ'Z,
Z

where Z runs over all prime divisors of X’. The weighted log pair (X,)) is called
strongly canonical (resp. Kawamata log terminal, log canonical) if az > 0
(resp. az > 0, and az > —1 ) for every Z. These properties are independent of the
resolution and are also local.

Define the weighted non-SC locus of the pair (X,)) to be the smallest
weighted closed subset W C & such that the weighted pair (A\W,V|x\w) is
strongly canonical. The weighted non-KLT locus of the pair (X)) to be the
smallest weighted closed subset W C X such that the weighted pair is Kawamata
log terminal. Similarly the weighted non-LC) of the pair (X', )) to be the small-
est weighted closed subset W C X such that the weighted pair is log canonical. We
denote them respectively as wnsc(X,Y), wnklt(X,)), wnsc(X,)). One may check
that

wnsc(X,Y) C wnklt(X,Y) C wnklt(X, D).

For a weighted log pair (X, )) with a log resolution f : X' — X', we define Z(X,))
a variant of multiplier sheaf as

Z(X,Y) = fuOx/ ([ Kxryx 3y 1)

if X is a weighted normal variety; see [9, 9.3.56] for the definition of multiplier ideal
sheaf in usual case. Otherwise, we let

I(X,Y) = f.Ox ([Kxr yx ),

where f,Ox/(E) denotes the largest ideal sheaf in Oy for which its pull-back by
f is contained in Oy (F) as an Oy/-submodule of (constant) function field sheaf
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M xs. Moreover, there exist a constant ¢g > 0 such that for every rational number
0<e<eg,onehas Z(X, (1 —)Y) =Z(X, (1 —£))).
Let

o I-(X,)) =I(X,(1-¢)Y), 0<e<1)

H(X,Y) = [Ox (| Kxrjx)]),

where f, is as above. We note that the definition of H(X,)) does not depend on
the notion of “weighted simple normal crossing”.

Lemma 1. The definitions of Z(X,)), T=(X,Y), and H(X,)) are independent
of the choice of a weighted log resolution.

Proof. By adopting [15, Lem. 3.1] and [15, Prop. 3.4] respectively to the case
of weighted projective schemes, one get the result for Z(X',Y) and Z~(X,)). An
argument similar to the proof of the Proposition 3.4 in [15] shows the assertion for

H(X, D). O
Proposition 1. Let (X,)) be a weighted log pair. Then, the following are true:
(i) wnle(X,Y) C Supp(Ox /I (X,Y)) C wnklt(X,Y);
(ii) If (X\ Supp(Y),0) is a weighted Kawamata log terminal, then
wnle(X,Y) = Supp(Ox /I (X,)));

(ii) Supp(Ox/H(X,Y)) = wnsc(X, ).
(iv) If (X,)) is weighted log canonical, then Ox /H(X,)) is reduced, i.e., as a
reduced closed subscheme, H(X,)) is the ideal sheaf of wnsc(X,)).

Proof. Let f : X' — X be a weighted log resolution of (X,)), and denote by
multz(E) the multiplicity of any divisor E on X’.
(i) Given any prime divisor Z of X’ and real constant 0 < ¢ < 1, we have

multZ(KX//(va)) < -1,
which implies that
multz(KX//(X,y) + Ef*y) <0,

and hence multz(Ky//(x,y)) < —1. This proves part (i).
(ii) Tt is enough to show that if the pair (X\ Supp(}), 0) is a weighted Kawamata
log terminal, then

multz (Kx/x,y)) > —1
and so
multg(KX//(ny) +ef*y) >0.
If multz (K /x,y)) > —1, then the result is trivial. If multz(Kx/ ) (x,y)) = —1,
then Z is contained in Supp(f*)) by assumption on (X\ Supp(}),0). Thus,
multz (K jx,y) +f*Y) > =1 = multz(Kx xy) +ef*Y) >0.

(iii) If (X', )) is a weighted strongly canonical, then | Kx//(x,y)| > 0. By defini-
tion of f, we have
FOxi([Kxrjx3)]) = Ox.
This shows that
wnsc(X,Y) C Supp(Ox /H(X,))).
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If (X,)) is not a weighted strongly canonical around x € X, then there is a prime
divisor Z on &” such that z € f(2) and multz(Kx//x,y)) < 0. Thus, we have

Ox' & Ox: (| Kxryxy)))-

Replacing X with any open neighborhood of = does not change the last result.
Therefore,

Supp(Ox /H(X,Y)) C wnse(X,)).

(iv) By part (iii), we have H(X,Y) is a subset of the ideal sheaf of wnsc(X, )
denoted by N. Now, let Y C X be an open set and g € N (). Then f*g vanishes
along the closed set f*(wnsc(X,))) containing every prime divisor Z on X’ having
negative coefficient in | Kx//(x )], which is equal to —1 since (X', )) is weighted
log canonical. Therefore,

9 € Ox(|Kxryx ) (f U,

which implies g € H(U) and hence H C N.
O
Given a Weil Q-divisor D on a weighted projective variety X, such that nD is a
WEeil divisor on X, we define height function

1
Sp ‘= —SpD -
n
For a weighted Q-Gorenstein projective variety X with a canonical divisor Ky,
we can define a weighted global height function sk, up to addition of a bounded
function. Given a weighted log pair (X, )) of a weighted Q-Gorenstein X, we define
the weighted height function associated to the subscheme K(x y) = Kx +J as

(10) SKx,y) — SKx Tt Sy,
where sy is the height function associated to the subscheme ) or its ideal sheaf.

Next we are ready to state Vojta’s conjecture for weighted log pairs.

Conjecture 6. Let X be a weighted projective scheme, YV a closed weighted sub-
scheme with ideal sheaf T = Z(Y), Kx a canonical divisor, and A an ample divisor
on X all defined over Q.

Let (X,)) be a weighted log pair and S be a finite subset of places containing
Mg Then, given any real constant € > 0 and a positive integer v, there exists
a proper weighted Zariski-closed subset Z of X, depending only on k, X, T, A, e,r,
such that

Sk 00— 3 Gl ) = 3 G () < esalx) + %d@(x) + o).
ves ves
for allx € (X \ Z)(k) with [k(x) : k] <r, where
H=HX,Y) and I~ =I (X))
We note that the terms

Z Cu(x,v) and Z (- (x,v)

ves veS

can be thought of as the contribution of wnsc(X', V) and wnklt(X, ), or wnlc(X,))
it (X\(Supp)(Y),0) is Kawamata log terminal.
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Since a pair (X, D) with X a smooth weighted variety and D a reduced simple
weighted normal crossing divisor on X is a weighted log canonical, by parts (i), (iii)
and (iv) of Prop. 1, one can conclude that

> G-(xv)=0
ves
and hence the right hand side of the inequality of Conj. 6 is equal to
SK(X,D)(X) - Z CH(X? l/) = SKX (X) + Z <D(X7 V)
vgS ves

Thus Conj. 6 is the same as Conj. 5 and Conj. 4 in this case.
In contrast, given a weighted log pair (X,)) and a log resolution

f: X =X,
if we suppose that Conj. 4 holds for X’ and the reduced simple normal crossing
divisor
[Kxrjx,y) +ef V] = [Kxyxp],

for 0 < € < 1, then Conj. 5 and Conj. 6 holds for (X,)).
Indeed, the argument is similar to those given in [14, Prop. 4.3] and [15, Prop.
5.4] as follows. By definition, we have

FHH C Oxr (| Ky, 3)))
and
fT7 COx([Kxryxy) +ef* V1)
for 0 < e <« 1. Using these and the properties of weighted height functions, we get

CH Of > €7D17 with Dl = I_KX//(XQ})J’
(r- o f > ( p, with Dy = [Kxijx )] +ef*V].

Then, using the above inequalities, we have

5Ky = D (1) =Y () | 0 f S8k =Sk gy — D CoDy — D (s

vgS ves vgS ves
<S50, — Y Cp— Y, ¢ D
vgS veS
< Sk + Y CDs D
vgS

where
Dy — Dy = [Kxyxy)| +ef* V] — [Kxyx )l

Recall that the pullback f*D of an ample divisor D is ample. Therefore, the above
argument leads to following result.

Corollary 1. Conjectures Conyj. 4, Conj. 5, and Conj. 6 are equivalent.
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4., WEIGHTED BLOWUPS AND GENERALIZED WEIGHTED GCDS

In [11] Silverman used the idea of generalized gecds to define a height for blowups
of smooth projective varieties and then assuming Vojta’s conjecture for such height
function obtained some conjectural results on the generalized gcds. We general-
ize such results for weighted heights by defining the generalized weighted greatest
common divisor and defining a height for weighted blowups as defined in [10].

As above, k is a number field, Oy its ring of integers, and v, the valuation at a
prime p € O. For any two elements «, 5 € Oy the greatest common divisor is
defined as

ng(OQB) = H pmin{”p(a)v’/p(ﬂ)}7
p€O0

and the logarithmic greatest common divisor is
log ged(av, B) = Z min {v(«a),v(B)}logp = Z min {v(a),v(8)}
p€O0 veM;
For each place v € My, we define

vtk — 10,00,

(11)

a — max{v(a),0},

which v can be viewed as a height function on P! (k) = k U {cc} with respect the
divisor (0), where we set vt (c0) = 0. The generalized logarithmic greatest
common divisor of a, 5 € Q is defined as

hged (@, 8) == ) min{v"(a),v* ()}
veM,
Then, given («, 8) # (0,0), one may consider the following function
G, : P (k) x P(k) — [0, 00],
(v, 8) = min{v* (), v (8)},

as a local height function and the generalized logarithmic greatest common
divisor, being their sum all together,

(13) heea (0, 8) = Y G

vE My

(12)

as a global height function on P! (k) x P!(k). In [11], it was given a theoretical
interpretation of the function GG, in terms of blowups. More precisely, for X = (IP’,IC)2
let 7 : X — X be the blowup of the point (0,0) and E = 7—*(0,0) be the exceptional
divisor of the blowup. Then, for all (o, 8) € X(k)\(0,0) and v € My, one has

Arp(r™ (@, 8),v) = min {v™(a),v(B)},
and adding all of these over all v € M, leads to
hgea (@, 8) = hg p(n~ (@, B)).

By this realization, in [11, Def. 2], Silverman’s introduced generalized logarithmic
greatest common divisors of points on smooth varieties with respect to its subvari-
eties.
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4.1. Weighted greatest common divisors. Most of this material follows from
[1, Section 3]. Notice that the goal of Section 3 in [1] was to extend definition of
generalized ged from Silverman’s paper [11] to that of generalized ged. In all of this
k = Q, however authors in [1] continue with the notation of their previous sections
k for the field and that could be a cause for confusion.

A weighted tuple of integers in Z is a tuple & = (xo,...,7,) € Z""! such
that to each coordinate z; is assigned the weight ¢;. We multiply weighted tuples
by scalars A € Q via

Ax (g, ) = (A20,..., A2, .

We assume k = Q for the rest of this paper. Given q = (qo, - ,qn), We let
q; = (1,¢;) for each ¢ = 0,1,---n. The canonical inclusion

Qchz (xl) — @q (J)o, to axn)
which induces the rational map Py o — P} given by
X=[zg: - :xy] = [1:m],

which is defined precisely in the complement of V(z;) in P§ o- Considering all of
these maps, we have the rational map

n
. pn 1
¢"7q : Pq#@ HPqi,k’
i=0

X=[x0: 1 Tp] = Ppq(x) = ([1:xo],[1: 1], ,[1:x4]),

which is defined in the open set Py o\ U, V(x;). For each p € Z, we define the
function F,, as:

(14)

F,, : ﬁl@li’@ — Z,

i=1

([1 : 330], [1 : 1‘1], cee, [1 . xn]) i—)pmin{ VJG(JO)J"“’V;F;:MJ }

For x = [wg : -+ : w,] € PF(Q), we define the generalized weighted greatest
common divisor as

(15) heged ) = [ Fop(@nax) = [ p“““{V"’:(;‘”J““’Hf:")J}

vp€Mg v, €Mg

4.2. Generalized weighted greatest common divisors as heights for blowups.
The weighted greatest common divisor for any tuple of integers (zg, - - - ,z,) € Z" 1
was defined in [1], which we are going to recall in below.

Let & = (z9,...,7,) € Z"" with r = ged(zo, . .., ,) and

S
r=uTles
j=1

where u is a unit in Z and pq, - - - , ps are primes. The weighted greatest common
divisor of & € Z"*! is defined as
vp(20) vp(en)

(16) wged (2) := H = H pminﬂTJ """ LTJL

pe{p1,- ,ps} VpEL
plilz;
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where the last equality comes from [1, Lem. 4]. Here, the symbol |-] denotes the
integer part function. A tuple & € Z"*! is said to be normalized if wged (%) = 1.
In [1, Lem. 7 and Corollary 1], it is proved that any point x in a well-formed space

Py has a unique normalization y = # * X.
ged ()
For the rest of this paper, a normalized point x € P; g means a point x =
[zo :...: x,] with integer coordinates x; € Z such that wged (xo,...,2,) = 1.

The generalized weighted greatest common divisor of a given tuple T =
(0, ..., 2,) € Q" is defined as

(17) thcd (f) — H pmin{ {”;rq(:o)J .... LV’J’F;:")J}

We define the logarithmic weighted greatest common divisor of any tuple

of integers & = (xg, -+ ,x,) € Z"*! as the sum
(18) log wged (2) := Z min { LV(IO)J Yoy {V(IH)J } ,

uEMg qo qn
and the generalized logarithmic weighted greatest common divisor of any
tuple # = (zg, -+ ,,) € Q" is defined to be

+ +
0 lbeam 3 w20 [ )
0 n

veMg

Let us consider the following positive real-valued function on Py (Q),
n

T, : [ P30 = (0,00
i=0

([1:560],[1:xn],...,[lan])_)min{rﬁ(xow VW%)J}

qo0 qn

(20)

For any point x = [zg : -+ : z,] € Py(Q), define its generalized logarithmic
weighted greatest common divisor as
(21)

O huned ()= 3 Tolonao) = 30 min{| 2100 ||,

vEMy vp€ Mg

where ¢y, q is defined by Eq. (14).
Notice that all points x € Py (Q) with log hygeq (x) = 0 belong to the singular
locus Sing (P} o) as shown next.

Proposition 2. Let ]P;"Q be a well-formed weighted projective space with q =
(90:°++ +qn) and x € P(Q). Ifloghygea (x) = 0 then x € Sing(Py ).

Proof. Let m = lem(qo, - ,¢qn), and define J(x) = {j : z;(x) # 0} for any point
x = [zg - :2,] € Py(Q). Given any prime divisor p | m, we define

Sq(p) = {x €EPyg: plgiforallie J(x)}.
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where Sing(P{ o) = U, Sa(p). Then, for p € Z we have
X=[xo: 12, € 4(p) = p|q, foralli e J(x)

= v, (2;) < g, for all i € J(x)

N {V;r(ﬂh)

qi

o S,

If we assume loghygeq (x) = 0, then

(22) > minHV’Tq(;%)J,...,V;(x”)J}_o.

vp€ Mg in

J =0, for all ¢ € J(x)

Thus, for all v, € Mg with p € Z, we have

R (e

This implies that x € Sy(p) for any prime p | m and hence x € Sing(}P’g’Q). ([l

Example 2. Consider the weights q = (1,...,1). Then ]P’:;,Q = P is the projective
space and the weighted height Sg is simply the projective height Hy. Since m =
lem(qo, . ..,qn) = 1 then there are no primes dividing m and Sing Pg = (. On the
other side from Eq. (21) we have

10g hyged (x) = Z min{ {MJ T {V;(%)J}

vp€Mg 1 o
= 5 min {y} (z0), ... v (@a)}
vp€EMg
> min{{vL (zo),...,vL(zn)} >0,

since at least one of the coordinates x; # 0,

Lemma 2. Let X/Q be a smooth weighted variety, defined over Q, and Y/Q a
subvariety of X/Q of codimension r > 2. Let m: X — X be the blowup of X along
Y and denote by Y := 1~ ()) its the exceptional divisor. Then,

(i) Tlr-1a\y) @ T H(XN\Y) = X\ Y is an isomorphism.

(ii) FEzceptional divisor 57 is an effective Cartier divisor on X.
Proof. This is a direct consequence of [6, Prop. I1.7.13]. For every y € ) we have
an open neighborhood O around 7~ !(y) and f € O. The conditions from the
definition of Cartier divisors are satisfied. O
Proposition 3. Let X =[], P;i,lw and consider m : X — X, the blowup of X
along 0= ([1:0],[1:0],--- ,[1:0]). Denote by Y =n~1(0) the exceptional divisor
of this blowup. Then, for all v € Mg and any non-singular points

X=[xg:@y: Xy EPQ’Q\{H:O:---:O]}
with T = ¢nq |x (x) € X(Q) \ {0}, we have
+ +

@2 ey @) min{ [(“J [ (““’”)J } ~T,(2).

qo0 qn
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and

(25) log hyged (x) = Z C~’3~,(7r_1(5c), V)= S5y (W_l(i), V) .
veMog

Proof. Since Y is an effective divisor on X by Lem. 2, so using the functoriality of
local weighted heights, we have

C:j}(ﬂil(i’)ay) = CX,G(i'vV) = C]P’;’/@,[lzo:~~-:0] ([xém : 1,{?1 coecd x'r({n}a’/) P

1 1
mm{”*ugl),m ,u+<xz“>}

o[22 [ £ i

Adding these weighted local heights together we get the global formula.
O
The above result leads to the following definition.

Definition 1. Let X/Q be a smooth weighted variety, defined over Q, and Y/Q a
subvariety of X/Q of codimension r > 2 and 7w : X — X, the blowup of X along ).
For any P € (X \ Y)/Q we denote by

P.= 77_1(P) cX and Y= 7 HY).

The generalized logarithmic weighted greatest common divisor of the point
P with respect to Y is defined to be

(26) 1Oghwgcd (P,y) 25/—?75)(})).

A point x = [zg : -+ xp] € P§ @ is called normalized if it has integers coordi-
nates and wged (xg, x1, -+ ,x,) = 1; see [1] for details.
Lemma 3. Letq = (qo,- -+ ,qn) be a well-formed set of weights, m = lem(qo, - - , qn),
y=[1:0:--:0], andx = [x0 : -~ : zn] € P a smooth and normalized point.
Then

1

(27) log hyged (x; {y}) = - log ged(x1,...,x,) + O(1).

Proof. Indeed, letting q; = (qo, ¢;) for each i = 1,--- ;n and

X =1[Px
i=0
then considering the rational map m, q : Py, — X, we have 0 = ¢n,q(y), where
0= ([1:0],---,[1:0]) € X.
Let T = ¢y, 4(x) and apply Prop. 3 to the blowup 7 : X — X along Y = {0}. Let
Y =7 1(Y) be the exceptional divisor of the blowup. Then
IOg hwgcd (X; {y}) = IOg hwgcd (:Ea y) - 5;\?75; (7T71 (i'))

By definition of the global weighted height and properties of local weighted height
[10, Thm. 1 (iv)], one can see that the last term is equal to the right-hand side of

Eq. (27). O
One can extend the result of Lem. 3.
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Proposition 4. Let ¢ = (qo, - ,qn) be a well-formed set of weights and m =
lem(qo, -+ ,qn). Assume that Z C Py o s a closed subvariety defined by the
weighted homogeneous polynomials f1,--- , f, with integer coefficients such that

Z N Sing(Py o) = 0.

Then
(28) log e (5 2) = - logaed(f (), .. £,(3)) + O(1),

forx € Py o\ {Sing(]P’g,Q) U Supp(Z)} with x; € Z and wged (zo, z1, -+ ,@,) = 1.
Proof. Let Y be given by

(29) V=0nq(2)C X = H]P%Q,

where q; = (qo,¢;) for i =1,--- ,n and where ¢,, q is defined by Eq. (14)
Consider the blowup 7 : X — X along ) and its exceptional divisor y = w*l(y).
Let y = ¢n,q(x), for any x € Py o\ {Slng 0)USupp(Z)} . Then, we have

IOg hwgcd (X§ Z) = Z C)E,j}(ﬂ-_l(Y)’ VP)

vp€Mg

= Y ey, m)

vp€Mg

= Z C]Pm x yp

vp€Mg

Do Gz 1) + G 2 (X Vo)

pEMg\{oo}

By definition (see [10, Eq. (37)]) of the local weighted height associated to Z, for
v, € Mg, we have

1
Cer o,z (X,vp) = min {_loglfj(zl/:f}

lsjsr max, |z

1
—log pax. | £ (30w, + ElongaXIxilup-

Thus,
Z Cer 0,2 (%,1p) loggcd(fl(x),...,ft(x))—|—0(1).

vp€Mg

Therefore, putting all together gives the desired equality.

108 hgea (% 2) = — logged (1), /i(x)) + O(1).

This completes the proof.
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5. VOJTA’S CONJECTURE AND BOUNDS ON GREATEST COMMON DIVISORS

It is a well-known fact that the canonical bundle of the blowup m : X — X is
given by

Ky~ Ky + (r—1)Y,
see Def. 1. If A is an ample divisor on &, then there is an integer N such that
—Y + Nn* A is ample on X, see [6, Thm. A.5.1]. Let

. 1
./4 = *Ny + W*A
be the ample cone of X. We further assume that —K is a normal crossing and
Supp(Kx)NY = 0.
Let S be a finite set of places of Q and define
(30) sxp,s() =Y Cap(hv) and sy ps() = Cxn(v)
ves vgS
Then we have the following;:
Theorem 1. Let X be a smooth weighted variety, A an ample divisor on X, Y C X
a smooth subvariety of codimension r > 2, and —Kx a normal crossing divisor
whose support does not intersect Y, all defined over Q.

Assume Vojta’s conjecture (see Conj. 4) for smooth weighted varieties. Then
for every finite set of places S and every 0 < € < r — 1 there is a proper closed
subvariety

Z= Z(E,X,y,A,k,S) ¢ X)
and constants Ce = Co(X,Y, Ak, S) and 6. = 0.(X, Y, A), such that

(31) log hygea (P;Y) < esx,4(P) +

for all P € (X \ 2)(Q).

Foir s s (P)E G

Proof. The proof goes similarly to [11, Thm. 6] with necessary adjustments. We
apply Conj. 4 for the weighted blow-up 7 : X — X and the divisor D = —7*Kx to
get ~ ~ ~
5)?7—77*KX,S(P) +5(\>7KX(P) < EEX,A(P) + C;,
for all P € X(Q)\ 2. Substituting K = m*Kx + (r — 1)V and A = 7%57 +7*A
we get
5,08 (P) + 820 (P) + (1 = )5z 5(P) < esxalP) -

for all P € X(Q)\ m(2). Since —sx kr.5(P) + 5x,5, (P) = 8 g We have

5)25)(15) + C,

£ ~
S sas(P)+ (1= 1+ <) ag3(P) < csa(P)+C,

N
for all P € X(Q) \ Z. Hence,

~ N
spy(P) < No—1te <_5/X,KX,S(P) +esg 4(P)+ C&)

Since s 5 3 (P) = log hwgea (P;)), we have

N

. < ) -
log Bygea (P; V) < N(r—l)—|—5< S sy s(P) 25 (P) +Ce ).
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Finally, setting 6 = ¢/N gives Eq. (31) and this completes the proof.
O
Let ¢ = (go, - ,qn) and assume that X = IP’;’Q is well-formed weighted projec-
tive space. Define

HZ:{X€X|$Z:O}7 f()r 7::0’...771’
Ayg = Hp, and Kx = — Y, H;. Consider the map

Pnq: Pog— &= H]P’ql,@’
=0

where q; = (g0, ¢;) for i = 1,--- ;n and denote by

Hi = dnq(Hi), Ao =bnq(Ho), Kx=-— qu

Notice that the canonical divisor Ky is a normal crossing on X’ satisfying
YNSupp(—Kx) =0, where)Y = ¢, q(2).
Theorem 2. Assume that Z C ]PZ,Q be a closed subvariety defined by
fi, Jr € Zg[o, . . ., xp),

such that ZﬁSing(IP’" ) = 0, and has transversal intersection with the union U}_oH,;
Let r :=n — dim(Z ) > 2 be the codimension of Z in Py
Let S be a finite set of primes and € > 0. If Conj. 4 holds for the weighted blow-

up w: X — X, then there exists a nonzero weighted polynomial g € Z. qlTos -5 T
and a constant § = 8.z > 0, such that every & = (ag, -+ ,qy,) € Z"" with
wged (g, -+ ,an) = 1 satisfies either g(&) =0 or

~ ~ ER I S N
(82) ged(fi(@), -+, ful@)) < max {Jao|#, - [an|7}} - (lag -+ anls) T,

where | - |'s is the “prime-to-S” part of its origin.

Proof. By definition of the global weighted height for

x=lag: - :ay] € P"Q\{Slng( ) U Supp(2)}Q)
with wged (ag, - -+, ) = 1, we have
Bl B
(33) sx,4(x) = log max{|ag|®, -, |an|7 } + O(1)
By Prop. 4,
1
(34) log hygea (%5 2) = poey log ged(f1(x), -+, fe(x)) + O(1).
Let y = ¢ q(x) for x = [ag : -+ : ay] € Py . Then, by definition of S-part of the
weighted heights and functoriality of the weighted heights, we have
1
53{,%,5()’) *5XH s ZV (i) ;log\ai\/s,
ves ¢

which implies that

1
(35) Sy _kes(Y) =5x _x, s(x Z 5x H,.8 Elog lovoon - - - an .
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By substituting Eq. (33), Eq. (34), Eq. (35), into the Eq. (31) we obtain

1 1
E IOg ng(fl (&)7 ) ft(@)) E 10g hwgcd (X Z) IOg hwgcd (Y; y)
1 1

<e—s + —5h + C%,
=& X,A(Y) r—1+9 X, KX,S(Y) €
L .
< e-logmax{|ag|, -, |ap| }
1

. | can | a
G —1790) og (lapay - - - apls) + Ce,

where § = J. z. Replacing ¢ with ¢/m, then multiplying the both sides by m and
exponentiating, we obtain the desired inequality Eq. (2). O

5.1. An application on gcds and a result of Corvaja/Zannier. Let S be a
finite set of rational primes. The “prime-to-S” part |z|y of any nonzero integer x
is defined to be the largest divisor of x that is not divisible by any of the primes in

S, in other words,
jzls = [a - ] l=lp-

peS
In particular, z is an S-unit if and only if |z|y = 1.
The following result can be though as a weighted version of the main result of
[2] for weighted projective varieties.

Lemma 4. Assume Conj. 4. Fix e > 0, a finite set S of prime numbers, and a
triple of weights q = (qo,q1,q2). Then, there exist a finite set Z = Z(S,e) C 7>
such that

(36)  ged(af’ — 1,08 —1) < max {|on |7, Jagl %} - (jarazls) T

holds for all pairs (a1, a2) € Z?\Z.

Proof. Let X = ]P’ﬁ((@) with well-formed q = (g0, ¢1,¢92) and m = ¢oq1g2. Take
Z={fi=fa=0}CX, where f; =2z —zaf, fo=2l—zF.

are weighted homogeneous polynomials of degree goq; and goqo respectively.

Points in Z look like
q1/q0 . ,.92/40
sx .

= [zo : x§
Multiplying by —-— we get x = [1: 1 : 1]. Since Z has only one point x = [1: 1 : 1],
Zo
it is of codimension r = 2 in X. By Thm. 2 there exists a 1-dimensional exceptional
set Z C X, depending on f1, fo and € > 0, such that
) 1
ged(af® — af',af’ — af?) < max {Jao|®, Jon |7, o] } - (| aparas [5) 7T

Now, we assume xo = 1 and 1 = a1, T2 = ay for any given (ay, as) € Z?\Z. This
completes the proof. |

Corollary 2. Assume Conj. 4. Fix e > 0, a finite set S of prime numbers, and
a triple of weights q = (qo, q1,q2). Then, there exist a finite set Z = Z(S,e) C 7>
such that

(37) ged(an — 1,5 — 1) < max {Jaq |, [aa| % }° - (Jasnls) 775 |

holds for all pairs (ay,az) € Z2\Z.
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Proof. Since ged(ag — 1, a9 — 1) always divides ged(af® — 1,ad” — 1), so by last
inequality one has Eq. (37). O

In particular, for gqg = ¢1 = ¢o = 1 if we assume x¢g = 1 and 1 = a3, T2 = a9
are S-units, then |ajasls = 1 and hence we recover conditionally the main result
of [3], as stated in [11, Thm. 1].

Thus, Vojta’s conjecture implies a natural weighted generalization of [11, Thm.
1] in which we remove the restriction that oy and «y are S-units and replace it’s
third condition with Eq. (37), which is more general.

Let Py be a well-formed weighted projective space and x = [zg : --- : ] €
Py k(k). Assume x normalized (i.e. wged ,(x) = 1). The above lemma suggests
that there might be a way to bound ged(xo, . .., x,) with S(x).

If x = [xg: - : x| € Pgr(k) s is absolutely normalized then the situation is
simpler as it can be seen below.

Remark 1. Let Py be a well-formed weighted projective space and x = [xg : - - :
o] € Pq i (k) such that x is absolutely normalized. Then ged(xo, ..., 2,) = 1.

Proof. Let q = (qo,.-.,qn) be well-formed, m = lem(qo, ..., ¢n), and let ¢ : Pq  —
P" be Veronese embedding. Assume ged(xo, ..., 2,) =d > 1. Then

ged(g(wo), - -, plan)) = d,

and hence wged (x) = dw > 1, which is a contradiction. (]

It remains to be further investigated the relation between ged(¢p(zg), ..., ¢(xy))
and S(x) when x is just normalized, and whether Lem. 4 can be proved indepen-
dently of Vojta’s conjecture.
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