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Abstract. We use machine learning to study the locus Ln of genus two curves
with (n, n)-split Jacobian. More precisely we design a transformer model which

given values for the Igusa invariants determines if the corresponding genus two

curve is in the locus Ln, for n = 2, 3, 5, 7. Such curves are important in isogeny
based cryptography.

During this study we discover that there are no rational points p ∈ Ln
with weighted moduli height ≤ 2 in any of L2, L3, and L5. This extends on
previous work of the authors to use machine learning methods to study the

moduli space of genus 2 algebraic curves.

1. Introduction

Genus two curves with (n, n)-split Jacobians have been the focus of study for
a long time starting with Jacobi, Hermite, Goursat, Fricke, Brioschi, and in the
last few decades by Frey, Kani, Shaska, Kumar, et al. For n odd, the locus of
genus 2 curves with (n, n)-split Jacobian, denoted by Shaska in [17] by Ln, is a
2-dimensional irreducible locus in the moduli space of genus 2 curves M2.

First Shaska [5,11,17] computed the equations of such loci for n = 3, 5 and then
Kumar [4] confirmed such computational via a different approach. With the recent
developments on Supersingular Isogeny key Encryption (SIKE) such curves have
received new attention due to work of Castryck and Decru; see [3]. Cryptographic
issues aside, there are still some computational questions that one could ask for the
Ln-locus in M2.

By a curve, we will always mean an irreducible algebraic curve defined over a
field k of characteristic char k 6= 2. When we consider the isomorphism classes of
curves, these are always meant over the algebraic closure of k.

Given a genus 2 curve C, how easy it is to determine if C belongs to one of the
loci Ln? Since Ln are rational surfaces, there must be a way to generate rational
points in Ln such that such points are fine moduli points (i.e, we can find a curve
C defined over the field of moduli of points p ∈ Ln)? Hence, even without knowing
explicitly the equation of Ln, we can create a training data and use such data to
train some machine learning model.

To the best of our knowledge the only cases that are completely understood and
explicitly given are for n = 3, and 5; see [11], [5] and some of the later refinements
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of such computations from authors. For example, for n = 3 a rational parametriza-
tion of L3 is given and the equation of genus 2 curve C is given in terms of such
parameters (cf. Eq. (8)). Equations for Ln for n > 3 are very large and not very
practical to use.

In this paper we use Machine Learning to design a model which helps determine
if a curve C belongs to any of the loci Ln. It builds on previous work of the
authors on using neural networks to study the moduli space of genus 2 curves. We
create a database of over one million isomorphism classes of genus two curves. Such
classes are described by Igusa invariants J2, J4, J6, J10. We normalize each point p
in the weighted moduli space WP2,4,6,10 via the weighted greatest common divisor

1
wgcd (p) ? p. This assures that these moduli points are as small as possible. The

data is stored in a python dictionary where the key is the set of absolute invariants
(i1, i2, i3) which are obtained via the Veronese embedding. This assures that there
is no redundancy in our data.

We order the data points by their weighted moduli height (see [7]). For every
point p ∈ WP2,4,6,10 we compute the weighted moduli height Sk(p) of p, its auto-
morphism group, whether the point is a fine moduli point (i.e, it is defined over its
field of moduli), and if p belongs to L2, L3, L5 and L7 even though the case n = 7
is much more involved computationally.

We use a transformer model to decide if a given moduli points p = [J2, J4, J6, J10]
is in Ln. This gave an accuracy rate with 99% even though it failed to run using
the whole database due to limitations in our computing capabilities. However, a
sequential model would achieve the same accuracy for the whole database.

During our computations we noticed some interesting properties of spaces Ln.
For example, all Ln, for n = 2, 3, 5 do not have rational points of weighted height
≤ 2. Using equations of Ln we were able to verify this. It provides an example how
machine learning can be used effective as important tool in AI-assisted proofs.

2. Preliminaries

2.1. Neural networks. Let k be a field of characteristic char k 6= 2. A neuron is
a function f : kn → k such that for every x = (x1, . . . , xn) we have

f(x) =

n∑
i=1

wixi + b,

where b ∈ k is a constant called bias. We can generalize neurons to tuples of
neurons via F : kn → kn

x→ (f1(x), . . . , fn(x))

for any given set of weights w0, . . . ,wn. Then F is a function written as F (x) =
W · x + b, for some b ∈ kn and W an n × n matrix with integer entries. A (non-
linear) function g : kn → kn is called an activation function while a network
layer is a function L : kn → kn, such that.

x→ g (W · x + b)

for some some activation function g. A neural network is the composition of
many layers. The i-th layer

· · · −→ kn
Li−→ kn −→ · · ·

x −→ Li(x) = gi
(
W ix + bi

)
,
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where gi, W
i, and bi are the activation, matrix, and bias corresponding to this

layer.

2.2. Weighted greatest common divisors. Let x = (x0, . . . xn) ∈ Zn+1 be a
tuple of integers, not all equal to zero. Their greatest common divisor, denoted by
gcd(x0, . . . , xn), is defined as the largest integer d such that d|xi, for all i = 0, . . . , n.
Let q0, . . . , qn be positive integers. A set of weights is called the ordered tuple
w = (q0, . . . , qn). Denote by r = gcd(q0, . . . , qn) the greatest common divisor of
q0, . . . , qn. A weighted integer tuple is a tuple x = (x0, . . . , xn) ∈ Zn+1 such that
to each coordinate xi is assigned the weight qi. We multiply weighted tuples by
scalars λ ∈ Q via

λ ? (x0, . . . , xn) = (λq0x0, . . . , λ
qnxn)

For an ordered tuple of integers x = (x0, . . . , xn) ∈ Zn+1, whose coordinates are
not all zero, the weighted greatest common divisor with respect to the set
of weights w is the largest integer d such that

dqi | xi, for all i = 0, . . . , n.

We will call a point p ∈ Pn
w(Q) normalized if wgcd (p) = 1.

2.3. Weighted projective spaces and moduli space of binary forms. For
any integer m ≥ 1, let µm denote the group of m-th roots of unity generated by
ξm, which is assumed to be contained in k. Consider the action of k∗ = k \ {0} on
An+1

k \ {(0, · · · , 0)} given by

(1) λ ? (x0, . . . , xn) = (λq0x0, . . . , λ
qnxn) , for λ ∈ k∗.

Define the weighted projective space, denoted by WPn
w(k), to be the quotient

space Vn+1
k /k∗ of this action, which is a geometric quotient since k∗ is a reductive

group. An element x ∈ WPn
w(k) is denoted by x = [x0 : · · · : xn] and its i-th

coordinate by xi(x).

2.4. Heights on weighted projective spaces. For any point p = [x0 : · · · : xn] ∈
Pn
w,k we can assume, without loss of generality, that p = [x0 : · · · : xn] ∈ Pn

w,k(Ok).

Let w = (q0, . . . , qn) be a set of weights and Pn
w,k the weighted projective space

over a number field k. Let p ∈ Pn
w,k a point such that p = [x0, . . . , xn]. We define

the weighted multiplicative height of p as

(2) Sk(p) :=
∏

v∈Mk

max

{
|x0|

nv
q0
v , . . . , |xn|

nv
qn
v

}
.

Let Pw,k be a well-formed weighted projective space and x = [x0 : · · · : xn] ∈
Pw,k(k). Assume x normalized (i.e. wgcd k(x) = 1). Clearly wgcd (x)| gcd(x0, . . . , xn)
and therefore wgcd (x) ≤ gcd(x0, . . . , xn).

Let Pw,k be a well-formed weighted projective space and x = [x0 : · · · : xn] ∈
Pw,k(k) such that x is absolutely normalized. Then gcd(x0, . . . , xn) = 1.

If x = [x0 : . . . , xn] is a normalized point then by definition of the height

Sk(x) =
n

max
i=0
{|xi|

1
qi }
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Assume now that x = [λq0x0 : · · · : λqnxn] such that λ = wgcd (λq0x0 : · · · : λqnxn) .

Denote by s the index where minj{|λqi xj |
1
qj } = λminj{|xj |

1
qj } is obtained. Then

(3)
1

λ(xs)1/qs
? x =

[
x0

x
q0/qs
s

: · · · : 1 : · · · : xn

x
qn/qs
s

]
=: y

where 1 is in the s position. Simplify all coordinates in Eq. (3). Multiplying y by

(xs)
1
qs we have

(xs)
1
qs ? y = [x0 : · · · : xn],

which is now a normalized point. Hence

Sk(x) =
maxn

i=0{|λqixi|
1
qi }

minn
i=0{|λqixi|

1
qi }

Notice that Sk(x) is given by

(4) Sk(x) =
maxi |xi|

1
qi

minj |xj |
1
qj

,

When x = [x0 : · · · : xn] ∈ Pw(Q) is an absolutely normalized point, then

gcd(x0, . . . , xn) ≤ Sk(x)

3. Moduli space M2 of genus 2 curves

The moduli space of genus 2 curves is isomorphic to P(1,2,3,5). Moreover the
invariant J10 of degree 10 is the discriminant of the sextic and therefore J10 6= 0.
Thus, the morphism P3

(2,4,6,10),k → P3
(1,2,3,5),k, given by

(5) [x0 : x1 : x2 : x3]→ [y0 : y1 : y2 : y3] =
[
x20 : x21 : x22 : x23

]
is an isomorphism.

Since we want to design a model where the incoming features will be a genus
two curve, then equivalently this means a point [x0 : x1 : x2 : x3] ∈ P(1,2,3,5).
Equivalently the input could be the equation of the curve, but this poses no issue
for g = 2 since we can compute easily compute invariants.

There is also an issue to address when it comes to finding the ”smallest” repre-
sentatives for the equivalence class [x0 : x1 : x2 : x3]. Theoretically this is handled
in [1], but that would require computing weighted greatest common divisors and
that could be very costly for large coordinates x0, . . . , x3.

Since q = 1 · 2 · 3 · 5 = 30, the Veronese embedding is

(6) [J2 : J4 : J6 : J10] −→
[
J30
2 : J15

4 : J10
6 : J6

10

]
=

[
J30
2

J6
10

:
J15
4

J6
10

:
J10
6

J6
10

: 1

]
So the triple

(7) i1 =
J30
2

J6
10

, i2 =
J15
4

J6
10

, i3 =
J10
6

J6
10

uniquely determines the equivalence class. We create a dictionary with keys (i1, i2, i3).
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3.1. Distribution of fine points inM2. There are two types of points in WP(2,4,6,10),
namely fine points and coarse points. Fine points are those points such that their
field of moduli is a field of definition, while the rest of points are called coarse
points.

We also classify fine points in two classes, those with extra automorphisms and
those which have automorphism group isomorphic to the cyclic group of order 2.

3.2. Genus two curves with extra involutions. The set of points with extra
automorphisms is a 2-dimensional irreducible subvariety of the moduli space corre-
sponding exactly to points p ∈WP(2,4,6,10) which satisfying J30(p) = 0. This locus
has two 1-dimensional loci corresponding to points with automorphism group D4

and D6; for details see [6].

Figure 1. L2 surface

Figure 2. 1-dimensional subloci of L2: curves with automor-
phism group D4 or D6
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4. Genus two curves with (n, n)-split Jacobians

Genus two curves with (n, n)-split Jacobians have been studied thoroughly dur-
ing the last two decades and have been getting again some attention lately due to
their use in isogeny based cryptography; see [5,9,11–14,17,18] among others. This
extends the database from [2].

As in [17], we denote the locus of genus 2 curves with (n, n)-split Jacobian by
Ln. For n odd, it is a 2-dimensional irreducible locus inM2. Here we will describe
how to create a database of points in Ln for n = 5, 7, 11.

A degree n covering C → E, where C is a genus two curve and E an elliptic
curve, induces a degree n covering φ : P1 → P1 with ramification(

2
n−1
2 , 2

n−1
2 , 2

n−1
2 , 2

n−3
2 , 2

)
The unramified points in the fibers of the first four branch points are the Weierstrass
points of the genus 2 curve.

Figure 3. Ramification type and Weierstrass points

Denote by Fi(x), i = 1, . . . 4 the polynomial over the branch point qi, which has
as roots points of ramification index 2. Hence, deg F1 = deg F2 = deg F2 = n−1

2 ,

and deg F4 = n−3
2 . We fix a coordinate on the lower P1 by letting q1 = 0, q2 =∞,

and q3 = 1 and on the upper P1 by w1 = 0, w1 = 1, and w3 =∞. Then

φ(x) = x

(
F1(x)

F2(x)

)2

, φ(x)− 1 = (x− 1)

(
F3(x)

F2(x)

)2

,

Cases when n = 3 and n = 5 are special cases. When n = 3 the fibers of q1,
q2, q3, and q5 are identical, so we have extra symmetries permuting these branch
points. When n = 5 then the fibers of q4 and q5 are identical so we have an extra
involution permuting q4 and q5. The first general case is when n = 7 which is
somewhat simpler since we don’t have to worry about such extra symmetries, but
of course everything becomes computational more challenging when n gets bigger.



MACHINE LEARNING FOR MODULI SPACE M2 7

4.1. (3, 3)-split: This case was studied in [17] and summarized in [11]. Let C be a
genus 2 curve with (3, 3) split Jacobian. Then from [14, Theorem 4] C has equation

(8) y2 =
(
v2x3 + uvx2 + vx+ 1

) (
4v2x3 + v2x2 + 2vx+ 1

)
for ∆ = v (v − 27)

(
4u3 − u2v − 18uv + 4v2 + 27v

)
6= 0. Its moduli point is

p =
[
2v4α, 4v7β, 4v10γ,−16v17(v − 27)δ3

]
=
[
2vα, 4vβ, 4vγ,−16v2(v − 27)δ3

]
since v 6= 0 and α, β, γ, δ are

α = 4u2 − 12uv + 3v2 + 252u− 54v − 405

β = u4v − 24u4 − 66u3v + 9u2v2 + 1188u3 + 297u2v + 138u v2 − 36v3 − 8424uv

+ 945v2 + 14580v

γ = 2u6v2 − 8u5v3 + 2u4v4 − 40u6v + 106u5v2 + 495u4v3 − 204u3v4 + 18u2v5 − 144u6

+ 1476u5v − 18756u4v2 + 4280u3v3 − 1038u2v4 + 564u v5 − 72v6 + 160704u4v

+ 4464u3v2 + 75024u2v3 − 33480u v4 + 3186v5 − 104004u3v − 1353996u2v2 + 315252u v3

− 4032v4 + 3669786u v2 − 622323v3 − 2821230v2

δ = 4u3 − u2v − 18uv + 4v2 + 27v

Notice that for rational values of u, v we get rational points p ∈ L3. This provides
an easy way to generate a database of points fine points in L3. However, if we

Figure 4. L3 surface

simply want to generalize rational points in L3, not necessarily fine moduli points,
we have to use parameters r1, r2 which provide a birational parametrization of L3,
but not necessarily genus 2 curves defined over Q; see [11] for details.

Lemma 1. There are no rational points p ∈ L3 with weighted height Sk(p) < 2.
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The proof is a brute force approach. We check all points p ∈ WP(2,4,6,10) of
weighted height Sk(p) ≤ 3. There are, however, many rational points for weighted
height 2 < Sk(p) ≤ 3. L3 has at least these rational points

# p # p # p
1 [6, 18, 27, 2] 2 [-6, -18, 45, 2] 3 [3, 18, 0, 4]
4 [-3, -18, 36, 4] 5 [5, -26, 56, 4] 6 [ -3, 27, 315, 4]
7 [-5, 58, -76, 4 ] 8 [-5, 31, -49, 4 ] 9 [ 5, 29, -9, 4 ]
10 [-2, -18, 39, 6] 11 [-2, -18, 165, 6] 12 [2, 18, -15, 6]
13 [-8, -80, 429, 8] 14 [-8, 49, -101, 8] 15 [8, -47, -59, 8]
16 [-1, -18, 60, 12] 17 [8, 36, 69, 12] 18 [-1, -45, 105, 12]
19 [-8, -36, 123, 12] 20 [-5, 67, -55, 12] 21 [1, 18, -48, 12]
22 [1, 63, -15, 12] 23 [5, -65, -15, 12] 24 [6, 36, 36, 16]
25 [-6, -36, 108, 16] 26 [8, -63, 3, 24] 27 [-4, -36, 102, 24]
28 [-8, 81, -171, 24] 29 [4, 36, -6, 24] 30 [5, -59, 16, 32]
31 [5, -68, 100, 32] 32 [-3, -36, 108, 32] 33 [-3, -27, 504, 32]
34 [-5, 61, -132, 32] 35 [3, 36, -36, 32] 36 [9, 54, 108, 36]
37 [-9, -54, 216, 36] 38 [-2, -36, 132, 48] 39 [-2, -72, 336, 48]
40 [3, 18, 0, 4] 41 [-3, -18, 36, 4] 42 [-2, -18, 39, 6]
43 [2, 18, -15, 6] 44 [-1, -18, 60, 12] 45

Table 1. Some rational points of height ≤ 3 in L3

Remark 1. In [10] was studied the intersection L2 ∩ L3. Such points p ∈ L2 ∩ L3

have Jacobians which are (2, 2)-split and (3, 3)-split and rational points in such
genus 2 curves were determined. In [14] are given other examples of genus 2 curves
with many elliptic subcovers (Jacobian splits in more than one way).

4.2. (5, 5)-split: This case was studied in detail in [5]. The parametric family of
genus two curves in the locus L5 is given by

(9) C : y2 = x(x− 1)
(
a3x

3 + a2x
2 + a1x+ a0

)
where

a0 = − b4(2b3a+ 4b3 − 2zab2 + 7b2a2 + 8zb2 + 4b2 + 16ab2 + 16zba+ 6a3b+ 8ba

+ 2za2b+ 12zb+ 16ba2 + 13za2 + za4 + 6za3 + 4z + 12ya)

a1 = − b2(12b3 + 12b4a+ 32zba− 6a4b2 + 44b2a3 + 6ba2 + 24ab2 + 10a3b+ 44b3a2 + 2ba

+ 52b3a+ 61b2a2 − 12ba5 − 7za2 − 2za+ 12zb− 4a6 + 12b4 − a4 − 40za3b2 − 16zb3a2

− 12za5 + 36zb2 − 18za3 − 26za4 + 56zab2 + 4azb3 + 2za2b2 − 20za3b+ 28za2b

+ 2za6 + 24zb3 + 4zba5 − 4a5 − 32za4b)

a2 =5b2a6 + 20b2a5 + 8ba6 − 61b4a2 − 18b5a− 56b4a+ 4zba+ 5a4b2 − 18b2a3 − 24zb4

− 14zb4a− 4ab2 + 8b3a4 + 2b3a5 − 54b3a3 − 70b3a2 − 24b3a− 14b2a2 + 4a4b+ 10ba5

− 6za7 + 64za3b3 + 38za4b2 + 54za3b2 + 12zb3a2 − 14za6b− 10zb2a5 − 4za7b− 4a6zb2

+ 32a2b4z + 2a7b− za8 − 36zb3 − 12za5 − 12zb2 − 4za4 − 28zab2 − 64azb3 − 5za2b2

+ 16za2b+ 28za4b− 4zba5 − 13za6 − 12b5 − 12b4 + 34za3b

a3 =(2a+ 1)(za4 − 2a3b+ 4za3 + 6za3b− 4ba2 + 12za2b2 + 10za2b− 9b2a2 + 5za2

− 2ba+ 2za− 8ab2 − 12b3a+ 8azb3 − 4b3 − 4zb− 4b4 − 12zb2 − 8zb3)



MACHINE LEARNING FOR MODULI SPACE M2 9

As mentioned above, there is an involution permuting branch points q4 and q5.
Moreover, a, b, and z satisfy the equation

(1 + 2a) z2 +
(
−a2 − 2ab− 2a+ 2b

)
z + 2ab+ b2,

see [5, Thm. 2] for details. This is a cubic surface and by a result of Clebsch
it is rational. Hence a, b ∈ k(t, s) for some parameters t and s. Thus invariants
J2, J4, J6, J10 ∈ k(t, s). Giving random values to t and s generates rational points
in L5.

4.2.1. Equation of L5. Computing the equation of L5 sounds as an easy exercise in
elimination theory: compute i1(t, s), i2(t, s), i3(t, s) and eliminate t and s. This will
give an affine equation f(i1, i2, i3) = 0. The get the projective equation, substitute
i1, i2, i3 in terms of J2, J4, J6, J10.

The main problem with the above approach is that the degree of rational func-
tions i1, i2, i3 in terms of t and s are very large, which makes the elimination of t
and s practically impossible.

In [5] was given the following approach in the computation of L5. Let

u =
2a (ab+ b2 + b+ a+ 1)

b (a+ b+ 1)
, v =

a3

b (a+ b+ 1)
, w =

(z2 − z + 1)3

z2(z − 1)2

They are invariants of a group action on k(a, b, z). Since the modular invariants
J2, J4, J6, J10 are invariants of any permutation of fibers, they can be expressed in
terms of u, v, w. Moreover,

k(L5) = k(u, v, w),

where the equation of w in terms of u, v is

(10) c2w
2 + c1w + c0 = 0

with c0, c1, c2 as follows:

c2 = 64v2(u− 4v + 1)2

c1 = − 4v(−272v2u− 20vu2 + 2592v3 − 4672v2 + 4u3 + 16v3u2 − 15vu4

− 96v2u2 + 24v2u3 + 2u5 − 12u4 + 92vu3 + 576vu− 128v4 − 288v3u)

c1 = (u2 + 4vu+ 4v2 − 48v)3

(11)

Notice that the surface in u, v, w is a septic surface and more difficult to get
a parametrization of it. However, expressing i1(u, v, w), i2(u, v, w), i3(u, v, w) to-
gether with the (10) gives us a system of equations which is easier to handle and
possible to eliminate u, v, and w.

Remark 2. The equation of L5 was computed in [5]. Since it is too long it was not
displayed in the paper, but in a webpage that no longer is available. Due to regular
and repeated requests for this equation, we intend to display it in [16], even though
it is exactly its impracticality of usage due to its length which motivates this paper.

4.3. Cases for n ≥ 7. Both cases n = 3 and n = 5 are special cases due to their
ramification structure. For example, for n = 3 the fibers φ−1(qi), for i = 1, 2, 3 and
φ−1(q5) are the same and for n = 5 the fibers φ−1(q4) and φ−1(q5) are the same.
This fact induces extra symmetries and therefore a group action as shown in the
computation of these spaces.
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The first case which is a general case (i.e. the ramification structure is the same
as large n) is the case n = 7. Its computation is much more involved for such a
small paper.

Remark 3. There are other ways how to generate rational points in Ln, even
though not general points. The general ramification for n > 7 has four cases (called
degenerate cases in [5, 11]). These cases give 4 curves in Ln and two of these
curves are genus zero curves. Hence, a rational parametrization of these curves
would provide rational points in Ln. However, any model based only on these points
would be suited only for this curve and not the whole Ln space.

5. A machine learning approach

Now that we know how to generate rational points in Ln, we would like to see if
we can generate some random data inM2 and train a model that answer arithmetic
properties of p ∈ M2, including whether p ∈ Ln. Our data will have points from
Ln, for n = 2, 3, 5, 7 and all points of weighted moduli height Sk ≤ 3.

Notice that for a fixed h ∈ R≥0 the number of points in WP(2,4,6,10) with bounded
height h is finite, by Northcott’s theorem for weighted heights (see [1, Theorem 1].
More precisely, such number is bounded by

(2h2 + 1)(2h4 + 1)(2h6 + 1)2h10

This bound is just a combinatorial bound and counts all tuples without considering
their equivalence in the weighted projective space. For more detailed version of
such counting issues see [8].

5.1. Distribution of fine points in the moduli space. Let x ∈ Pn
w(Q). Can

we find a binary form f ∈ Vd, defined over Q, such that x = [f ]. The answer is in
general negative. Points for which we can answer positively the above question are
called fine moduli points, otherwise x has a non-trivial obstruction and we will
call it a coarse point. The problem of determining which points are fine points
is referred to as field of moduli versus field of definition problem in arithmetic of
moduli spaces of curves; see [15] among many others.

To determine some distribution of fine moduli points using any machine learning
techniques one can attempt support vector machines which we will discuss briefly
later. Before doing that we want to focus on a special locus where the field of
moduli is always a field of definition.

An entry in the dictionary looks like:

(x, y, z) : (p,Sk(p),Fine,Aut(p), p ∈ L3, p ∈ L5, p ∈ L7)

where

p = [J2, J4, J6, J10] weighted moduli point

Sk = weighted height

Fine = True/False

Aut = Automorphism group Aut(p)

flag = (3, 3)− split Jacobian

flag = (5, 5)− split Jacobian

flag = (7, 7)− split Jacobian
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where the key (x, y, z) is the triple of absolute invariants (i1, i2, i3). Notice that the
automorphism group basically determines if the corresponding point is in the L2

locus or not. Other then the curve y2 = x(x5 − 1), all curves with |Aut(p)| > 2 are
in the L2 locus and they are fine moduli points.

We use a transformer model for each Ln even though different models were
tested with similar results. First we extract input features and labels from the
dictionary M dict containing moduli points p = [J2, J4, J6, J10] and converts them
into PyTorch tensors. We define a transformer-based neural network model using
PyTorch’s nn.Module. The model consists of an embedding layer, a transformer
layer, global average pooling, and two fully connected layers with ReLU and sigmoid
activation functions. The training is done by a binary cross-entropy loss and an
Adam optimizer, which trains the model for a specified number of epochs using a
loop. Within each epoch, it performs forward and backward passes, updates the
model parameters, and prints the loss.

5.2. Results. Let us now see what is the distribution of fine points with automor-
phisms in out database (red points). From a computational point of view it is quite
hard to do this simply by brute force for our database which has about 500 000
points. Instead we will use the above models to see what information we can gather
and then prove our results (if any) via brute force computationally.

By taking a random sample and graphing all red points we get the following
picture.

Figure 5. Distribution of points with extra automorphisms

Red points seem to be very scarce around the origin of the coordinate system and
secondly there are no green points (fine points with trivial automorphism group).
Somewhat to be expected by people who have extensive computational experience
with the moduli space of genus 2 curves, but not any obvious theoretical reason for
it.

5.2.1. Coarse moduli points in M2. We graph below all points for weighted height
Sk(p) ≤ 3.
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Figure 6. Graph of rational points of weighted height Sk leq2
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Surprisingly there is only one red dot in all these graphs. These graphs were
obtained using the sequential method and the existing red dot was no surprise
because that is a very special genus 2 curve and well known. However, these graphs
were a strong enough reason for us to go through all the cases for Sk(p) ≤ 3 and
check computationally. Cases for n = 3, 5 generate similar pictures.

Remark 4. There are no rational points with weighted moduli height Sk < 2 in the
loci L2,L3,L5.

Proof. Computationally compiling a list of all points with weighted height Sk(p) ≤ 3
and checking each if they satisfy the equation of Ln, for n = 2, 3, 5. �

6. Concluding remarks

With necessary adjustments, these results can be extended to characteristic 2.
A further invariant of order eight, usually denoted by J8, is needed in this case.

Our models didn’t always give us what we expected in terms of efficiency and at
this point it is unclear to us if this is due to our limitations in computing power or
limitations of the architectures chosen. This remains to be further investigated.

Our main goal was to test whether machine learning techniques can be used in
theoretical areas of mathematics and we can definitely say that this note gives a
positive answer to that question.
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Appendix A. Transformer model

1 import torch

2 import torch.nn as nn

3 import torch.optim as optim

4 # Extract input features and labels from the dictionary

5 coordinates = []

6 features = []

7 labels = []

8 for coords , (input_features , label , _) in M_dict.items():

9 coordinates.append(coords)

10 features.append(input_features)

11 labels.append(int(label)) # Convert boolean to int

12 # Convert lists to PyTorch tensors

13 features = torch.tensor(features , dtype=torch.float32)

14 labels = torch.tensor(labels , dtype=torch.float32)

15 # Map the original features to indices

16 unique_features , inverse_indices = torch.unique(features , dim=0,

return_inverse=True)

17 # Define the transformer model

18 class TransformerModel(nn.Module):

19 def __init__(self , input_size , hidden_size , output_size):

20 super(TransformerModel , self).__init__ ()

21 self.embedding = nn.EmbeddingBag(num_embeddings=len(

unique_features), embedding_dim=hidden_size)

22 self.transformer = nn.Transformer(d_model=hidden_size , nhead

=4, num_encoder_layers =3)

23 self.global_pooling = nn.AdaptiveAvgPool1d (1) # Global

average pooling

24 self.fc1 = nn.Linear(hidden_size , 64)

25 self.fc2 = nn.Linear (64, output_size)

26 self.relu = nn.ReLU()

27 self.sigmoid = nn.Sigmoid ()

28 def forward(self , x):

29 x = self.embedding(x, torch.zeros(x.size (0), dtype=torch.long)

) # Use zeros as offsets

30 x = x.view(1, x.size (0), -1) # Add batch dimension and

rearrange features

31 x = self.transformer(x, x) # Use x as both source and target

sequences

32 x = self.global_pooling(x.permute(0, 2, 1)) # Global average

pooling

33 x = x.squeeze(dim=-1)

34 x = self.relu(self.fc1(x))

35 x = self.sigmoid(self.fc2(x))

36 return x

37 # Instantiate the model

38 model = TransformerModel(input_size=len(unique_features), hidden_size

=32, output_size =1)

39 # Define loss and optimizer

http://www.ams.org/mathscinet-getitem?mr=3508311
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40 criterion = nn.BCELoss ()

41 optimizer = optim.Adam(model.parameters (), lr =0.001)

42 # Ensure labels is a 1D tensor

43 labels = labels.view(-1)

44 # Train the model

45 num_epochs = 10

46 for epoch in range(num_epochs):

47 optimizer.zero_grad ()

48 outputs = model(inverse_indices)

49 outputs = outputs.squeeze(dim=-1) # Remove singleton dimension

50 loss = criterion(outputs , labels)

51 loss.backward ()

52 optimizer.step()

53 print(f’Epoch [{ epoch + 1}/{ num_epochs }],Loss: {loss.item():.4f}’)

Listing 1. TransformerModel
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