
DEEP LEARNING FOR MODULI SPACE OF ALGEBRAIC CURVES

ELIRA CURRI AND TONY SHASKA

Abstract. In this project we investigate the moduli space of genus two curves defined over Q using methods of
deep learning. We will use several machine learning models such as sequential model, equivariant neural networks,

transformer neural networks to determine several properties of genus two curves. Our experiments lead us to

some interesting observations. For example, we prove that the only genus two curve with weighted moduli height
Sk < 3 defined over Q is the single curve y2 = x(x5− 1) with automorphism group isomorphic to the cyclic group

C10. Equivalently this implies that the well-known 2-dimensional locus of genus 2 curves with extra involutions,
has no rational point with height Sk ≤ 3.

This is a very rough draft. Check with us for the latest update.

1. Introduction

Artificial Intelligence and Machine Learning are some of the most active and exciting branches of science of
the last few decades. These new technologies have made their way into economy, including engineering, medical
science, finance, cybersecurity, etc. Can they be used for mathematical research?

The question is not new. After all science is all about collecting data and deducing conclusions. Machine
Learning is about gathering data, training the data, and drawing conclusions. Depending on the kind of data we
use different methods for machine learning: supervised learning, unsupervised learning, or a combination of the
two.

So the first step is to gather the data. There have always been databases in mathematics, but the most famous
databases of the XX-century were the Atlas of Finite Simple Groups, Cremona tables of elliptic curves, database
of elliptic curves compiled by Birch and Swinnerton-Dyer which led to the famous Birch and Swinnerton-Dyer
conjecture; see [4, 5]. With the development of computer algebra toward the last quarter of the XX-century we
saw different databases which had a huge impact on mathematics, for example the Small Library of Groups in
Gap, the list of Calabi-Yau hypersurfaces, etc.

The goal of this work is to use new tools of machine learning to study the moduli space Mg of genus g ≥ 2
curves defined over a field k. The moduli space of algebraic curves has been the focal point of algebraic geometry
for the last few decades. With the development of the new computational tools it became necessary in the last few
decades to reconsider the theory of invariants, in its classical form or in the framework of the theory developed by
Mumford [11] with the intention of studying the arithmetic of moduli spaces. Naturally some of the first attempts
focused onM2; see for example [9] and attempts to generalize to g > 2 [10]. From these attempts the concept of
weighted Weil height was born; see [1, 6, 12].

1.1. The moduli space M2 as a case study. The moduli spaceM2 of genus 2 curves is the most understood
moduli space among all moduli spaces. This is mostly due to two main facts; first all genus two curves are
hyperelliptic and therefore studying them it is easier than general curves, secondly even among hyperelliptic
curves the curves of genus two have a special place since they correspond to binary sextics which, from the
computational point of view, are relatively well understood compared to higher degree binary forms.

One of the main questions related to M2 has been to recover a nice equation for any point p ∈ M2. Since
M2 is a coarse moduli space, such equation is not always defined over the field of moduli of p. Can we find
a universal equation for genus two curves over their minimal field of definition? Can such equation provide a
minimal model for the curve? Does the height of this minimal model has any relation to the projective height
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of the corresponding moduli point p ∈ M2? What is the distribution in M2 of points p for which the field of
moduli is not a field of definition? The answers to these questions are still unknown.

In [2] we provide a database of genus 2 curves which contains all curves with height h ≤ 5, curves with moduli
height h ≤ 20, and curves with automorphism and height ≤ 101. They are organized in three Python directories
Li, i = 1, 2, 3. The database is build with the idea of better understandingM2, the distribution of points inM2

based on the moduli height, the distribution of points for which the field of moduli is not a field of definition.
Let X be a genus two curve defined over Q. The moduli point in M2 corresponding to X is given by

p = (i1, i2, i3), where i1, i2, i3 are absolute invariants as in [2]. Since i1, i2, i3 are rational functions in terms
of the coefficients of X , then i1, i2, i3 ∈ Q. The converse isn’t necessarily true. Let p = (i1, i2, i3) ∈M2(Q). The
universal equation of a genus 2 curve corresponding to p is determined in [9], which is defined over a quadratic
number field K. The main questions we want to consider is what percentage of the rational moduli points are
defined over Q? How can we determine a minimal equation for such curves?

For every point p ∈M2 such that p ∈M2(k), for some number field K, there is a pair of genus-two curves C±
given by C± : y2 =

∑6
i=0 a

±
6−i x

i, corresponding to p, such that a±i ∈ K(d), i = 0, . . . , 6; see [9].
In [2] were created three Python dictionaries: L1 : curves with height ≤ 10, L2 : curves with extra involutions,

L3 : curves with small moduli height. In [14] it is discussed when such curves have minimal height and how a
reduction as in [3] is easier to perform in this case. There are 20 697 curves in L2, such that for each h we have

roughly 4 h curves. So it is expected that the number of curves of height ≤ h, defined over Q is ≤ 4h(h+1)
2 ; see

[14] for more details. For p ∈ M2(Q) be such that Aut(p) ∼= V4 there is a genus 2 curve X corresponding to
p with equation y2 z4 = f(x2, z2). We pick f ∈ Z[x, z], such that f(x, z) is a reduced binary form. From 20
292 such curves we found only 57 which do not have minimal absolute height. L3 is a list of all moduli points
[x0 : x1 : x2 : x3] of projective height ≤ h in P3(Q), for some integer h ≥ 1.

Problem 1. What percentage of rational points p ∈ M2(Q) with a fixed moduli height h have Q as a field of
definition, when h becomes arbitrarily large?

We confirm, as expected, that for large moduli height h ∈ M2(Q), the majority of genus 2 curves not defined
over Q and they don’t have extra automorphisms.

Problem 2. Can we train a neural network which detects with some confidence if for a given moduli point
p ∈M2(Q) there is a curve X defined over Q, corresponding to p.

1.2. Choosing the right machine learning model. For distinguishing points in a 3-dimensional space with
properties A and B, there are various machine learning models you could consider based on the nature of your
data and the problem you’re solving:

1.2.1. Support Vector Machines (SVM). SVMs are powerful for binary classification tasks. They work well for
both linearly separable and non-linearly separable data. They find the hyperplane that best separates the data
into two classes. We consider them in ??

1.2.2. Random Forests or Decision Trees. Decision trees or ensembles like Random Forests can be effective for
classification tasks. They handle both numerical and categorical data, are relatively easy to interpret, and can
handle complex relationships between features.

1.2.3. K-Nearest Neighbors (KNN). KNN is a simple and effective algorithm for classification. It classifies points
based on the majority vote of their neighbors. It might work well for spatial data as points close together might
share similar properties.

1.2.4. Neural Networks. Specifically, you could use feedforward neural networks or deep learning models. They
are highly flexible and can learn complex patterns in the data. For spatial data, convolutional neural networks
(CNNs) might be particularly useful. We consider them in Section 2.3

1.2.5. Gradient Boosting Models. Models like XGBoost or LightGBM can be effective for classification tasks.
They work by combining multiple weak learners to create a strong model and can handle complex relationships
in the data.
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1.2.6. Naive Bayes Classifier. This is a probabilistic classifier that assumes the independence of features. It can
work well for high-dimensional data and is relatively simple and fast.

The choice of the best model depends on various factors like the size of your dataset, the nature of the data, the
presence of noise or outliers, and computational resources. Experimenting with a few models and evaluating their
performance using metrics like accuracy, precision, recall, F1 score, and area under the ROC curve (AUC-ROC)
would be a good approach to determine the most suitable model for your specific problem.

1.3. Higher moduli: Can we generalize the approach above toMg for g > 2? Moreover, can we train a machine
learning model to obtain reliable results for g ≥ 2?

The moduli spaceM2 is a very good model for the hyperelliptic moduli Hg. Many of the results of g = 2 have
been realized to higher genus hyperelliptic curves already and we now know many general theorems for Hg; see
[7], [10], etc.

Moreover, generalizing from hyperelliptic curves to superelliptic curves gives a very important tool in under-
standingMg; see [10] for details. Using results from [8] and previous work of these authors we can determine fully
the list of automorphisms groups and inclusions among the loci for any genus, hence obtaining a full stratification
of the moduli space Mg. About 75-80% of all cases come from superelliptic curves, for which we know a great
deal.

A very important development in understanding Mg is the discovery of the weighted height on the weighted
projective spaces. Hence, the most efficient way to create a database of points in Mg is to consider the corre-
sponding weighted moduli space Wg and sort the points in this space via their weighted heights.

A great learning example is the case g = 3 for many reasons. It is the first case that we have non-hyperelliptic
curves, so it is more general than g = 2, but also it is still a case that we fully understand. For example, we
explicitly know invariants of binary octavics, which classify hyperelliptic genus 3 curves, and invariants of ternary
quartics which classify non-hyperelliptic genus 2 curves. We have a full understanding of the list of groups of
automorphisms and in each case we can write an explicit parametric equation for the corresponding family. There
has been work in the last decade by several authors on the field of moduli of genus 3 curves and we can recover
the equation of the curve over a minimal field of definition.

It needs to be pointed out that in this general approach the biggest difficulty comes from arithmetic invariant
theory in the sense that we don’t know an explicit way of describing a moduli point p ∈Mg. While GIT provides
an elegant theoretical framework, explicit results are missing even for genus g as small as 4 or 5.

Our general philosophy is to build the skeleton of Mg using the superelliptic curves. After all, the majority
of points inMg with nontrivial Aut(p) are superelliptic points. We can say a lot on these superelliptic points on
the problem of field of moduli versus field of definition, determine if they have complex multiplication, and write
down explicit equations for them.

In this paper we will describe what can be achieved and what are the challenges for fully understanding the
arithmetic of the moduli space. Our goal is to bring this topic to the attention to mathematicians specialized on
machine learning and artificial intelligence techniques and hopefully involve more people in this ambitious but
exciting project.

2. Preliminaries on neural networks

Let k be a field and for any integer n ≥ 1 denote by Ank (resp. Pnk ) the affine (resp. projective) space
over k. When k is an algebraically closed field, we will drop the subscript. A fixed tuple of positive integers
w = (q0, . . . , qn) is called set of weights. The weight of α ∈ k will be denoted by wt(α). The set

Vnw(k) := {(x1, . . . , xn) ∈ kn | wt(xi) = qi, i = 1, . . . , n}

is a graded vector space over k. An element x ∈ Vnw(k) is denoted by x = (x0, . . . , xn) and its i-th coordinate by
xi(x).

2.1. Neural networks. A neuron is a function f : Vnw(k)→ k such that

αw(x) =

n∑
i−0

wixi + b,
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where b ∈ k is a constant called bias. We can generalize neurons to tuples of neurons via

φ := Vnw(k)→ Vnw(k)

x→ g (α0(x), . . . , αn(x))

for any gives set of weights w0, . . . ,wn. Then φ is a k-linear function with matrix written as

φ(x) = W · x + b,

for some b ∈ kn+1 and W an n× n matrix with integer entries.

Definition 1. A function g : Vnw → Vnw is called an activation function while a network layer is a function

Vnw(k)→ Vnw(k)

x→ g (W · x + b)

for some g some activation function. A neural network is the composition of many layers. The l-th layer

· · · −→ Vnw(k)
φl−→ Vnw(k) −→ · · ·

x −→ φl(x) = gl
(
W lx + bl

)
,

where gl, W
l, and bl are the activation, matrix, and bias corresponding to this layer.

After m layers the output (predicted values) will be denoted by ŷ = [ŷ1, . . . , ŷn]t, where

ŷ = φm (φm−1 (. . . (φ1(x)) . . .)) ,

while the true values by y = [y1, . . . , yn]t.

2.2. Loss or cost function. For regression problems we define a loss functions as the mean absolute error
(MAE) or the mean square error (MSE) as

(1) MAE =
1

n

n∑
i=1

|yi − ŷi|, MSE =
1

n

n∑
i=1

(yi − ŷi)2,

where yi and ŷi are the true and predicted values respectively.
For classification problems the loss function will be cross entropy (CE)

(2) CE = −
n∑
i=1

yi log (ŷi),

for multiclass classification.

2.3. Equivariant Neural Networks. Let G be a group acting on a set X via

G×X → X

(g, x)→ gx

We say G acts from the left and will call X a G-set. Let f : X → Y be a map among G-sets X and Y . We call
f G-equivariant if

f(gx) = gf(x)

for all x ∈ X, and g ∈ G. A function is called G-invariant if

f(gx) = f(x)

An equivariant map induces a map between quotient spaces

f̄ : X/G→ Y/G

Notices that sometimes G/X is used to denote the quotient space of a left G-action.
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Theorem 1 (G-Equivariant Convolution Theorem). A neural network layer (linear map) ψ is G-equivariant if
and only if its form is a convolution operator ?

ψ(f) = (f ? w)(u) =
∑
g∈G

fg(ug−1)w(g)

where f : U → Rn and w : V → Rn are lifted functions of subgrouos U and V of G. On the first layer of a
neural network, f is usually is defined on the quotient space U = G/H. If the group G is locally compact (infinite
elements), then the convolution operator is

ψ(f) = (f ? w)(u) =
∑
g∈G

fg(ug−1)wdµ(g)

where µ is the group Haar measure.

3. Algebraic geometry background

Let k be a field, k[x, y] be the polynomial ring in two variables and Vd denote the (d+ 1)-dimensional subspace
of k[x, y] consisting of homogeneous polynomials

(3) f(x, y) = adx
d + ad−1x

d−1y + · · ·+ a0y
d

of degree d. Elements in Vd are called binary forms of degree d. GL2(k) acts as a natural group of automorphisms
on k[x, y]. Denote by f → fM this action. It is well known that SL2(k) leaves a bilinear form (unique up to
scalar multiples) on Vd invariant; see [13] for details.

Consider a0, a1, . . . , ad as transcendentals over k (coordinate functions on Vd). Then the coordinate ring of Vd
can be identified with k[a0, . . . , ad]. We define an action of GL2(k) on k[a0, . . . , ad] via

GL2(k)× k[a0, . . . , ad]→ k[a0, . . . , ad]

(M,F )→ FM := F (fM ), for all f ∈ Vd.

Thus for F ∈ k[a0, . . . , ad] and M ∈ GL2(k), define FM ∈ k[a0, . . . , ad] as

FM (f) := F (fM ),

for all f ∈ Vd. Then FMN = (FM )N . The homogeneous degree in a0, . . . , ad is called the degree of F , and the
homogeneous degree in x, y is called the order of F . An invariant is usually referred to an SL2(k)-invariant on
Vd. Hilbert’s theorem says that the ring of invariants Rd of binary forms of degree d is finitely generated. Thus,
Rd is finitely generated, and Rd is a graded ring.

Let {ξ0, . . . , ξn} be a minimal generating set for Rd. Since ξi ∈ k[a0, . . . , ad] are homogenous polynomials we
denote deg ξi = qi and assume that

(4) q0 ≤ q1 ≤ · · · ≤ qn.

Degrees q0, . . . , qn are called weights. If f, g ∈ Vd, M ∈ GL2(k), λ = (detM)
d
2 , then f = gM if and only if

(5) (ξ0(f), . . . ξi(f), . . . , ξn(f)) = (λq0 ξ0(g), . . . , λqi ξi(g), . . . , λqn ξn(g)) .

Example 1 (Quadratics). Let f(x, y) = a2x
2+a1xy+a0y

2. R2 is generated by the discriminant ∆ = a21−4a0a2.

For any M =

[
a b
c d

]
∈ GL2(k), fM (x, y) has

∆(fM ) = (ad− bc)2 · (a21 − 4a0a2) = (detM)
2 ·∆(f).

The exponent of det(M) is precisely d
2 · qi, where qi the degree of the invariant ξi.

If k = Q we can choose ξ0, . . . , ξn with integer coefficients and primitive polynomials in Z[a0, . . . , ad].
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3.1. Weighted greatest common divisors. Let x = (x0, . . . xn) ∈ Zn+1 be a tuple of integers, not all equal
to zero. Their greatest common divisor, denoted by gcd(x0, . . . , xn), is defined as the largest integer d such
that d|xi, for all i = 0, . . . , n. Let q0, . . . , qn be positive integers. A set of weights is called the ordered tuple
w = (q0, . . . , qn). Denote by r = gcd(q0, . . . , qn) the greatest common divisor of q0, . . . , qn. A weighted integer
tuple is a tuple x = (x0, . . . , xn) ∈ Zn+1 such that to each coordinate xi is assigned the weight qi. We multiply
weighted tuples by scalars λ ∈ Q via

λ ? (x0, . . . , xn) = (λq0x0, . . . , λ
qnxn)

For an ordered tuple of integers x = (x0, . . . , xn) ∈ Zn+1, whose coordinates are not all zero, the weighted
greatest common divisor with respect to the set of weights w is the largest integer d such that

dqi | xi, for all i = 0, . . . , n.

We will call a point p ∈ Pnw(Q) normalized if wgcd (p) = 1. The absolute weighted greatest common
divisor of an integer tuple x = (x0, . . . , xn) with respect to the set of weights w = (q0, . . . , qn) is the largest real
number d such that

dqi ∈ Z and dqi | xi, for all i = 0, . . . n.

3.2. Weighted projective spaces and moduli space of binary forms. For any integer m ≥ 1, let µm denote
the group of m-th roots of unity generated by ξm, which is assumed to be contained in k. Consider the action of
k∗ = k \ {0} on An+1

k \ {(0, · · · , 0)} given by

(6) λ ? (x0, . . . , xn) = (λq0x0, . . . , λ
qnxn) , for λ ∈ k∗.

Define the weighted projective space, denoted by WPnw(k), to be the quotient space Vn+1
k /k∗ of this action,

which is a geometric quotient since k∗ is a reductive group. An element x ∈WPnw(k) is denoted by x = [x0 : · · · :
xn] and its i-th coordinate by xi(x).

Sometimes Pnw,k will be used instead of WPnw(k). A weighted space Pnw,k is called reduced if gcd(q0, · · · , qn) =
1. It is called normalized or well-formed if

gcd(q0, . . . , q̂i, . . . , qn) = 1, for each i = 0, . . . , n.

Any weighted projective space is isomorphic to a reduced and well-formed one. Given any tuple of weights
w = (q0, . . . , qn), the following hold ([12, Prop. 4]):

(i) Any weighted projective space Pnw,k is isomorphic to Pnw′,k, where w′ is a reduced tuple of weights.

(ii) If Pnw,k is reduced and di = gcd(q0, · · · , q̂i, · · · , qn) for 0 ≤ i ≤ n, then Pnw,k ∼= Pnw′,k with w′ =(
q0
di
, . . . , qi−1

di
, qi,

qi+1

di
, . . . , qndi

)
.

(iii) Any weighted projective space is isomorphic to a reduced and well-formed one.
(iv) If w is reduced and all of m/qi are coprime, where m = lcm (q0, · · · , qi) , then φm : Pnw,k → Pnk , via

φm([x0, . . . , xn]) = [x
m/q0
0 , x

m/q1
1 , . . . , xm/qnn ].(7)

is an isomorphism. The map in Eq. (7) is called the Veronese map.

3.3. Heights on weighted projective spaces. For any point p = [x0 : · · · : xn] ∈ Pnw,k we can assume, without

loss of generality, that p = [x0 : · · · : xn] ∈ Pnw,k(Ok). The height for weighted projective spaces will be defined in
the next section.

Let w = (q0, . . . , qn) be a set of weights and Pnw,k the weighted projective space over a number field k. Let

p ∈ Pnw,k a point such that p = [x0, . . . , xn]. We define the weighted multiplicative height of p as

(8) Sk(p) :=
∏
v∈Mk

max

{
|x0|

nv
q0
v , . . . , |xn|

nv
qn
v

}
.

The logarithmic height of the point p is defined as follows

(9) sk(p) := logSk(p) =
∑
v∈Mk

max
0≤j≤n

{
nv
qj
· log |xj |v

}
.

Sk(p) is well defined and Sk(p) ≥ 1 for any p ∈ Pnw,k, see [12].
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Let Pw,k be a well-formed weighted projective space and x = [x0 : · · · : xn] ∈ Pw,k(k). Assume x normalized
(i.e. wgcd k(x) = 1). Clearly wgcd (x)| gcd(x0, . . . , xn) and therefore wgcd (x) ≤ gcd(x0, . . . , xn).

Remark 1. Let Pw,k be a well-formed weighted projective space and x = [x0 : · · · : xn] ∈ Pw,k(k) such that x is
absolutely normalized. Then gcd(x0, . . . , xn) = 1.

Proof. Let w = (q0, . . . , qn, m = lcm(q0, . . . , qn), φ : Pw,k → Pn Veronese embedding. Assume gcd(x0, . . . , xn) =

d > 1. Then gcd(φ(x0), . . . , φ(xn)) = d and wgcd (x) = d
1
m > 1, which is a contradiction. �

If x = [x0 : . . . , xn] is a normalized point then by definition of the height

Sk(x) =
n

max
i=0
{|xi|

1
qi }

Assume now that x = [λq0x0 : · · · : λqnxn] such that λ = wgcd (λq0x0 : · · · : λqnxn) . Denote by s the index where

minj{|λqi xj |
1
qj } = λminj{|xj |

1
qj } is obtained. Then

(10)
1

λ(xs)1/qs
? x =

[
x0

x
q0/qs
s

: · · · : 1 : · · · : xn

x
qn/qs
s

]
=: y

where 1 is in the s position. Simplify all coordinates in Eq. (10). Multiplying y by (xs)
1
qs we have

(xs)
1
qs ? y = [x0 : · · · : xn],

which is now a normalized point. Hence

Sk(x) =
maxni=0{|λqixi|

1
qi }

minni=0{|λqixi|
1
qi }

Remark 2. Notice that Sk(x) is given by

(11) Sk(x) =
maxi |xi|

1
qi

minj |xj |
1
qj

,

Theorem 2. Let x = [x0 : · · · : xn] ∈ Pw(Q) be an absolutely normalized point. Then

gcd(x0, . . . , xn) ≤ Sk(x)

Proof. Let x = [x0 : . . . , xn] be a normalized point. Denote by s the index where minj |xj |
1
qj is obtained and by

r the index where maxi |xi|
1
qi is obtained. Hence

Sk(x) =
|xr|

1
qr

|xs|
1
qs

Let d := gcd(x0, . . . , xn). Then

gcd(x0, . . . , xn) :=
∏
p∈Z

pmin{νp(x0),...,νp(xn)}

Assume d > Sk(x). There must be at least one l ∈ {0, . . . , n} such that

d · |xs|
1
qs < |xl|

1
ql ,

otherwise wgcd (x0, . . . , xn) > 1. Hence we have

1

λ
|xi|

1
qi < d < |xs|

1
qs ,

So

|xs|
1
qs >

1

λ
|xi|

1
qi =⇒ 1

λ
|xs|

1
qs >

1

λ
Sk(x)

�
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3.4. Stability. Let G be an algebraic group acting rationally on a variety X (that is, through a morphism
G×X → X , say (g, x)→ g.x. We write G.x for the orbit

G.x = {y ∈ X : y = g.x for some g ∈ G}

of x. Assume that G is a reductive group.
Let X ⊂ Pdk and G act linearly on X . Hence we can assume G ≤ GL2(k) acting on X in the natural way and

I ∈ k[a0, . . . , ad] a G-invariant polynomial. By XI ⊂ Pd(k) we denote the set XI := {b ∈ X | I(b) 6= 0}.

Definition 1. A point α ∈ X is called stable under the G-action if α has a finite stabilizer Gα and there exist
a G-invariant I ∈ k[a0, . . . , ad] such that α ∈ XI .

If we drop the condition that the stabilizer Gα is finite then α ∈ X is called semistable under the G-action.

A binary form f(x, y) ∈ k[x, y] of degree deg f = d is stable if and only if all roots of f are of multiplicity < d
2

and semistable if and only if all roots are of multiplicity ≤ d
2 .

Definition 2. If a degree d ≥ 2 binary form f(x, y) has roots of multiplicity d
2 we say that f is strictly

semistable.

A binary form f(x, y) of degree deg f = d is unstable if and only if ξ(f) = 0 in Pnw,k. Moreover, if d is even there
is only one strictly semistable point in the moduli space and there are no such points when d is odd. The following
was shown in [6]. Let d ≥ 3, k be a number field, f ∈ Vd an integral form defined over k, and p = ξ(f) ∈ Pnw,k
the moduli point in the corresponding weighted projective space. If f is semistable, then s(ξ(f)) ≥ 0. Moreover,
for every d ≥ 4, there exist exactly one integral binary form g ∈ Vd, defined over k, such that s (ξ(g)) = 0.
If f is strictly semistable then d = deg f is even and its absolute weighted moduli height S(ξ(f) and absolute
logarithmic weighted height s(ξ(f)), for d = 4, 6, 8, 10 are determined in [6, Table 1].

4. Generating invariants

Our goal is to find numerical evidence on the number of binary forms of degree d > 2 with bounded weighted
moduli height. Since weighted moduli height is defined in terms of the generating invariants of the ring of
invariants Rd, we display such invariants for d ≤ 10; see [6] for details.

Let f(x, y) be a degree d > 2 binary form as in Eq. (3). The ring of invariants of degree > 2 binary forms is
denoted by Rd and (f, g)r denotes the r-transvection between two binary forms f and g. Below we list generating
sets ξ = (ξ0, . . . , ξn), for Rd, d = 3, . . . , 10.

4.0.1. Cubics. A generating set for R3 is ξ = {ξ0},

ξ0 =
1

2
((f, f)2, (f, f)2)2 =

2

3
a1a3a0a2 −

4

27
a31a3 −

4

27
a32a0 +

1

27
a22a

2
1 − a20a23

4.0.2. Quartics. A generating set for R4 is ξ = [ξ0, ξ1] with w = (2, 3), where

ξ0 = a4a0 −
a1a3

4
+
a22
12
, ξ1 = a2a4a0 −

3

8
a21a4 −

3

8
a0a

2
3 +

1

8
a2a1a3 −

1

36
a32

4.0.3. Quintics. A generating set for R5 is ξ = [ξ0, ξ1, ξ2] with w = (4, 8, 12), where

c1 = (f, f)4, c2 = (f, f)2, c3 = (f, c1)2, c4 = (c3, c3)2

ξ0 =
1

2
(c1, c1)2, ξ1 = (c4, c1)2, ξ2 = (c4, c4)2,

4.0.4. Sextics. Let c1 = (f, f)4, c3 = (f, c1)4, c4 = (c1, c1)2. A generating set for R6 is ξ = [ξ0, ξ1, ξ2, ξ3] with
weights w = (2, 4, 6, 10), where

ξ0 =
1

2
(f, f)6, ξ1 =

1

2
(c1, c1)4, ξ2 =

1

2
(c4, c1)4, ξ3 = (c4, c

2
3)4.
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4.0.5. Septics. A generating set of R7 is given by ξ = [ξ0, ξ1, ξ2, ξ3, ξ4] with weights w = (4, 8, 12, 12, 20). We
define them as c1 = (f, f)6, c2 = (f, f)4, c4 = (f, c1)2,

c5 = (c2, c2)4, ξ2 =
1

16
((c5, c5)2, c5)4, c7 = (c4, c4)4, ξ0 =

1

2
(c1, c1)2,

ξ1 = (c7, c1)2, ξ3 =
(
(c4, c4)2, c

3
1

)
6
, ξ4 =

1

64

(
[(c2, c5)4]

2
, (c5, c5)2

)
4

4.0.6. Octavics. A generating set of R8 is given by ξ = [ξ0, ξ1, ξ2, ξ3, ξ4, ξ5] with weights w = (2, 3, 4, 5, 6, 7). We
define them as follows. Let c1 = (f, f)6, c2 = (f, c1)4, c3 = (f, f)4, c5 = (c1, c1)2. Then invariants are:

ξ0 =
1

2
(f, f)8, ξ1 = (f, c3)8, ξ2 =

1

2
(c1, c1)4,

ξ3 = (c1, c2)4, ξ5 =
1

2
(c5, c1)4, ξ6 = ((c1, c2)2, c1)4.

4.0.7. Nonics. A generating set ofR9 is given by ξ = [ξ0, ξ1, ξ2, ξ3, ξ4, ξ5, ξ6] with weights w = (4, 8, 10, 12, 12, 14, 16);
see [6] for their definitions.

4.0.8. Decimics. A generating set ofR10 is given by ξ = [ξ0, ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7, ξ8] with weights w = (2, 4, 6, 6, 8, 9, 10, 14, 14);
see [6] for their excplicit definitions.

Problem 3. Determine an equivariant neural network which will determine a minimal set of invariants for any
given d.

5. Number of binary forms with bounded weighted moduli height

Let ξ = (ξ0, . . . , ξn) be a generating set of Rd and with weights w = (q0, . . . , qn). Recall that Pnw denotes the
weighted projective space over C (say Pnw,C) and Pnw(Q) the set of points with rational coordinates. Notice that

for each p ∈ Pnw(Q) we can assume p = [x0, . . . , xn], where xi ∈ Z, for all i = 0, . . . , n.
Fix h ∈ R≥0 and let

Bh := {p ∈ Pnw | Sk(p) ≤ h)}, Ch := {p ∈ Pnw | h− 1 < Sk(p) ≤ h)},
Let Fd : [0,∞)→ Z≥0 be the function which denotes the cardinality of Bh and Gd : [1,∞)→ Z≥0 the cardinality
of Ch. Then,

Gd(h) = Fd(h)− Fd(h− 1).

From Northcott’s theorem for weighted heights (see [1, Theorem 1]) F (h) is well defined.

Theorem 3. Let w = (q0, . . . , qn and WPnw,Q a well-formed weighted projective space. The number of points in
WPnw,Q with height less or equal to a number h is

Fd(h) ≤
n∑
i=0

hqn−i ·
n−i∏
j=0

(2hqj + 1)


Proof. Assume Sk(p) ≤ h. For each i = 0, . . . n we have

|xi|
1
qi ≤ h =⇒ |xi| ≤ hqi

Hence, there are 2hqi +1 choices for xi. Moreover, we can normalize one of the coordinates so it is always positive.
We can do that for the highest power, which by our ordering in Eq. (4) is qn. Then there will be only hqn + 1
choices for that coordinate. Hence, our total number is bounded by

(hqn + 1) ·
n−1∏
i=0

(2hqi + 1)

Since we are counting stable points in the moduli space of binary forms, then at least one of the coordinates must
be nonzero; see [6]. Assume xn 6= 0. Then there are hqn choices for xn and the number of such forms is less than

hqn ·
n−1∏
j=0

(2hqj + 1) .
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If xn = 0 then by the same argument there are hqn−1 ·
∏n−2
j=0 (2hqj + 1) . and so on. Adding up all the cases we

have

Fd(h) ≤
n∑
i=0

hqn−i ·
n−i∏
j=0

(2hqj + 1)


This completes the proof.

�

Remark 3. Notice that the above method counts as different moduli points tuples λ ? (x0, . . . , xn) as long as
max{|λqixi|1/qi} ≤ h. Formula is precise only for h = 1 as it will be seen in computations with binary sextics.
Consider for example [1 : 0 : 0 : 0] and [2 : 0 : 0 : 0] in P(1,2,3,5). They are the same point but counted separately

by the above formula when h >
√

2.

Next we determine such bound for binary forms of degree ≤ 10.

Lemma 1. For d = 4, . . . , 10 the moduli space of binary forms as a well formed space and values of Fd(h) are
given in Table 1.

Table 1

d w = (q0, . . . , qn) w′ Fd(1)

4 w = (2, 3) w = w′ 3
5 (4, 8, 12) (1,2,3) 32

6 w = (2, 4, 6, 10) (1,2,3,5) 33

7 (4, 8, 12, 12, 20) (1,2,3,3,5) 34

8 (2, 3, 4, 5, 6, 7) w = w′ 35

9 (4, 8, 10, 12, 12, 14, 16) (2, 4, 5, 6, 6, 7, 8) 36

10 (2, 4, 6, 6, 8, 9, 10, 14, 14) w = w′ 38

Proof. Cases d = 4, 8, 10 are already well formed spaces. Let d = 5. Following the definition of the Veronese map
from Eq. (7),

d0 = gcd(8, 12) = 4, d1 = gcd(4, 12) = 4, d2 = gcd(4, 8) = 4,

and α0 = lcm(d1, d2), α1 = lcm(d0, d2), α2 = lcm(d0, d1), are

α0 = α1 = α2 = 4, and a = lcm(d0, d1, d2) = lcm(4, 4, 4) = 4.

The new set of weights is w′ = (q′0, q
′
1, q
′
2), where q′i = qi

αi
. Hence, w′ = (1, 2, 3). The morphism P3

(4,8,12),k →
P3
(1,2,3),k, given by [x0 : x1 : x2] → [y0 : y1 : y2] =

[
x40 : x41 : x42

]
is an isomorphism. Then q = 2 · 3 = 6 and the

Veronese embedding is [J4 : J8 : J12] −→
[
J6
4 : J3

8 : J2
12

]
.

Let d = 6 and consider the weighted projective moduli space of binary sextics. It is isomorphic to P3
w,k for

w = (2, 4, 6, 10). Following the definition of the Veronese map from Eq. (7), we let

d0 = gcd(4, 6, 10) = 2, d1 = gcd(2, 6, 10) = 2,

d2 = gcd(2, 4, 10) = 2, d3 = gcd(2, 4, 6) = 2

and α0 = lcm(d1, d2, d3), α1 = lcm(d0, d2, d3), α2 = lcm(d0, d1, d3), α3 = lcm(d0, d1, d2), are

α0 = α1 = α2 = α3 = 2, and a = lcm(d0, d1, d2, d3) = lcm(2, 2, 2, 2) = 2.

The new set of weights is w′ = (q′0, q
′
1, q
′
2, q
′
3, ), where q′i = qi

αi
. Hence, w′ = (1, 2, 3, 5).

Let d = 7. Then d0 = . . . = d4 = 4. Then α0 = . . . = α4 = 4, and a = 4. The set of new weights is qi = qi
αi

, so

we have w′ = (1, 2, 3, 3, 5).
Let d = 9. Then d0 = . . . = d6 = 2 and α0 = . . . = α6 = 2. Then the set of weights is w′ = (2, 4, 5, 6, 6, 7, 8).

This completes the proof. �
Define the function fd(h) := F ′d(h) + 1, then fd(h) represents the number of binary forms for a given height h.

Remark 4. How good is the above bound for Fd(h)? For what h the formula is precise?
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Table 2. Number of binary sextics up to equivalence

h # of points in B6

1 40
2 24 862
3 1 781 202
4 39 251 668
5 440 104 780
6 3 195 496 050
7 17 146 927 462
8 73 657 853 512
9 266 816 523 888
10 844 626 323 110

6. Moduli space M2 of genus 2 curves

We showed in the previous section that the moduli space of binary sextics is isomorphic to P(1,2,3,5). Moreover
the invariant J10 of degree 10 is the discriminant of the sextic and therefore J10 6= 0. Thus, the morphism
P3
(2,4,6,10),k → P3

(1,2,3,5),k, given by

(12) [x0 : x1 : x2 : x3]→ [y0 : y1 : y2 : y3] =
[
x20 : x21 : x22 : x23

]
is an isomorphism.

Since we want to design a model where the incoming features will be a genus two curve, then equivalently this
means a point [x0 : x1 : x2 : x3] ∈ P(1,2,3,5). Equivalently the input could be the equation of the curve, but this
poses no issue for g = 2 since we can compute invariants. In general this would be a major issue for higher genus
g.

There is also an issue to address when it comes to finding the ”smallest” representatives for the equivalence
class [x0 : x1 : x2 : x3]. Theoretically this is handled in [1], but that would require computing weighted greatest
common divisors and that could be very costly for large coordinates x0, . . . , x3.

Since q = 1 · 2 · 3 · 5 = 30, the Veronese embedding is

(13) [J2 : J4 : J6 : J10] −→
[
J30
2 : J15

4 : J10
6 : J6

10

]
=

[
J30
2

J6
10

:
J15
4

J6
10

:
J10
6

J6
10

: 1

]
So the triple i1 =

J30
2

J6
10

, i2 =
J15
4

J6
10

, i3 =
J10
6

J6
10

uniquely determines the equivalence class. Ideally we would create a

dictionary with keys (i1, i2, i3), but these numbers blow up very quickly which makes and significant computations
impossible. If the rational numbers have a significant number of decimal places, their exact representation might
be lost when converted to floating-point format.

We will use a very simplistic model for now and see how things work out.

in_features: Igusa invariants

out_features: weighted height, Fine/Coarse, Automorphism group,

An entry in the dictionary looks like:

(x,y, z) : ( [J_2, J4, J6, J10], weighted_height, obstruction, AutGroup)

where

1 # M_dict data with data types

2 M_dict = {

3 # (x, y, z): ([a, b, c, d], wh , label , [m,n] ), where

4 # x, y, z are float32 ,

5 # a, b, c, d are int ,

6 # wh is float32 ,

7 # label is bool ,
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8 # m,n are int

9 (x1 , y1 , z1): ([1, 2, 3, 4], 1.23, True , [2,1] ),

10 (x2 , y2 , z2): ([5, 6, 7, 8], 2.54, False , [4,2] )

11 # ... other entries

12 }

Listing 1. M dict data with data types

In a second stage we intend to include other properties of genus two curves as whether or not the curve is of
CM-type, splitting (n, n) of the Jacobian, torsion subgroup, etc.

6.1. Another look on the number of moduli points with bounded moduli height.

Lemma 2. The number of points in M2 with weighted moduli height ≤ h
F6(h) ≤ h5

(
2h3 + 1

)(
2h2 + 1

)
(2h+ 1) + h3

(
2h2 + 1

)
(2h+ 1) + h2(2h+ 1) + h

= h
(
8h10 + 4h9 + 4h8 + 6h7 + 2h6 + 6h5 + 3h4 + 2h3 + 3h2 + h+ 1

)
Moreover, there are exactly 27 genus 2 curves with weighted moduli height Sk = 1.

Proof. The invariant with the highest degree is the discriminant of the binary form. Since this binary form
correspond to a hyperelliptic curve, the discriminant is not zero. Hence, xqn 6= 0. Then, there are only hqn

choices for xqn ; see the proof of Theorem 3. This completes the proof.
�

In Table 3 we display all points p ∈WP3
(1,2,3,5)(Q) \ {J10 = 0} with weighted moduli heights h = 1.

Table 3. Moduli points p = [J2 : J4 : J6 : J10] with weighted moduli height h = 1

# p # p # p

1 [0, -1, 0, 1] 10 [1, 0, 1, 1] 19 [0, 1, 1, 1]
2 [0, 1, 0, 1] 11 [1, -1, -1, 1] 20 [1, 0, 1, -1]
3 [0, -1, 1, 1] 12 [1, 1, -1, 1] 21 [1, -1, -1, -1]
4 [0, 0, 0, 1] 13 [1, 1, 1, -1] 22 [1, 1, -1, -1]
5 [0, 0, 1, -1] 14 [1, -1, 1, -1] 23 [1, -1, 0, -1]
6 [0, 0, 1, 1] 15 [1, 1, 1, 1] 24 [1, 1, 0, -1]
7 [1, 0, -1, 1] 16 [1, 0, -1, -1] 25 [1, 1, 0, 1]
8 [1, 0, 0, -1] 17 [0, -1, 1, -1] 26 [1, -1, 0, 1]
9 [1, 0, 0, 1] 18 [0, 1, 1, -1] 27 [1, -1, 1, 1]

Let Nh denote the number of Q-points p ∈ WPnw with height h − 1 < Sk(p) < h. Thus, Nh := Bh − Bh−1.
Notice that

Nh(0) = 8, Nh(1) = 5208, Nh(2) = 160360

Notice that as the weighted moduli height h increases, the number Nh is not precise but only an estimate since
our database is not complete.

6.2. Distribution of fine points in M2. There are two types of points in WP(1,2,3,5), namely fine points and
coarse points. Fine points are those points such that their field of moduli is a field of definition, while the rest of
points are called coarse points.

We also classify fine points in two classes, those with extra automorphisms and those which have automorphism
group isomorphic to the cyclic group of order 2.

6.3. Genus two curves with extra involutions. The set of points with extra automorphisms is a 2-dimensional
irreducible subvariety of the moduli space corresponding exactly to points p ∈WP(1,2,3,5) which satisfying J30(p) =
0. This locus has two 1-dimensional loci corresponding to points with automorphism group D4 and D6; for details
see [10].

Problem 4. Given a genus 2 curve in the form of a moduli point p = [J2, J4, J6, J10], determine the properties
of this curve such as the i) weighted height, ii) Fine or coarse, ii) automorphism group, iv) CM-type, and possibly
others.
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Figure 1. The number of points in the moduli for a given height. Data represents 850 000
points and the height is computed numerically

Figure 2. Curves with extra involutions

Figure 3. Curves with automorphism group D4 and D6
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7. Determining a suitable machine learning model for our problem

Since our problem is outside of the typical problems studied by machine learning we experimented with several
different models. The code is provided in the Appendix and also in the separate file.

7.1. Sequential Model. See Appendix A for details. This model has an accuracy of 99% in our tests and
performed very well.

1. Data Preparation:
• Extracts input features and labels from a dictionary M dict.
• Converts boolean labels to integers (0 or 1).
• Converts the lists of features and labels into NumPy arrays.

2. Normalization:
• Normalizes the input features using Min-Max scaling.

3. Neural Network Definition:
• Defines a simple neural network model using Keras Sequential API.
• The model has one hidden layer with 32 units and ReLU activation, and an output layer with 1 unit

and sigmoid activation.
4. Model Compilation:

• Compiles the neural network model using the Adam optimizer with a specified learning rate and
binary cross-entropy loss.

5. Training Loop:
• Trains the model for a total of 5 epochs (specified in the loop header).
• In each epoch, the model is trained for one epoch using the training data.
• Loss and accuracy values are recorded after each epoch.

6. Loss and Accuracy Visualization:
• Plots two graphs:

– Training loss over epochs.
– Training accuracy over epochs.

7.2. Equivariant Neural Network. See Appendix B for details.
The equivariant neural network provides probably the most efficient method to study this type of problem.

Unfortunately, we were not able to run it with the full data because there were problems with over floating. The
big size of our coordinates makes this method rather challenging to run. When we cleaned the data (deleted all
entries with coordinates > 103) we had 66% accuracy.

1. Custom Dataset Definition:
• Defines a custom dataset class CustomDataset inheriting from PyTorch’s Dataset.
• Initializes the dataset with a dictionary and converts dictionary items into a list.

2. Neural Network Definition:
• Defines a simple neural network class EquivariantNet inheriting from PyTorch’s nn.Module.
• The neural network includes three linear layers with ReLU activations, considering coordinates.

3. Data Loading and Model Instantiation:
• Creates an instance of CustomDataset named custom dataset using a dictionary M dict.
• Sets up a data loader (data loader) to load data in batches from the custom dataset.
• Instantiates the neural network model (EquivariantNet) based on the features of the first sample

in the dataset.
4. Model Training:

• Defines a mean squared error loss (criterion) and an Adam optimizer for training the model.
• Runs a training loop for a specified number of epochs.
• Within each epoch, iterates over batches of data from the data loader, performs forward and backward

passes, clips gradients, and updates the model parameters.
• Prints the average loss for each epoch.

5. Loss Plotting:
• Plots the training loss over time using matplotlib.
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7.3. Transformers. See Appendix C for the code. The model worked when we run it with a few hundred data
points, but then very quickly would run out of memory for anything significant. It was the same even after we
got the professional version of Colab.

1. Data Preparation:
• Extracts input features and labels from a dictionary M dict containing coordinates, input features,

labels, and other information.
• Converts the extracted features and labels into PyTorch tensors.

2. Feature Mapping:
• Maps the original features to unique indices using torch.unique.

3. Model Definition:
• Defines a transformer-based neural network model (TransformerModel) using PyTorch’s nn.Module.
• The model consists of an embedding layer, a transformer layer, global average pooling, and two fully

connected layers with ReLU and sigmoid activation functions.
4. Model Training:

• Instantiates the model with specified input size, hidden size, and output size.
• Defines a binary cross-entropy loss (criterion) and an Adam optimizer for training the model.
• Trains the model for a specified number of epochs using a loop.
• Within each epoch, it performs forward and backward passes, updates the model parameters, and

prints the loss.

8. Results

Let us now see what is the distribution of fine points with automorphisms in out database (red points). From
a computational point of view it is quite hard to do this simply by brute force for our database which has about
500 000 points. Instead we will use the above models to see what information we can gather and then prove our
results (if any) via brute force computationally.

By taking a random sample and graphing all red points we get the following picture.

Figure 4. Distribution of points with automorphisms
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Remark 5. There are two quick points to be noticed:
First, the red points seem to be very scarce around the origin of the coordinate system and secondly there are no

green points (fine points with trivial automorphism group). Somewhat to be expected by people who have extensive
computational experience with the moduli space of genus 2 curves, but not any obvious theoretical reason for it.

8.1. Coarse moduli points in M2. Note that in Table 3 the points 1 to 15 are fine moduli points, i.e. with
methods that we will explain in the upcoming subsection we can compute their equations defined over Q. We
graph below all points for weighted height Sk(p) ≤ 3.

Figure 5. Graph of rational points of weighted height Sk ≤ 3

Surprisingly there is only one red dot in all these graphs. These graphs were obtained using the sequential
method and the existing red dot was no surprise because that is a very special genus 2 curve and well known.
However, these graphs were a strong enough reason for us to go through all the cases for Sk(p) ≤ 3 and check
computationally.

Lemma 3. There is only one genus two curve with weighted moduli height Sk < 3 defined over Q, namely
y2 = x(x5 − 1), which is the single curve with automorphism group isomorphic to the cyclic group of order 10.
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Proof. Computationally compiling a list of all points with weighted height Sk(p) ≤ 3 and checking each one of
them.

�
The following is an immediate consequence of the above Lemma.

Corollary 1. There are no rational points with weighted moduli height Sk < 3 in the locus J30 = 0 in WP(1,2,3,5).

9. Concluding remarks

With necessary adjustments, these results can be extended to a field of positive characteristic. The reader plan-
ning to attempt this must be aware that the system of generating invariants will change in certain characteristics.
For example, an invariant of order eight, usually denoted by J8, is needed for binary sextics.

Our models didn’t always give us what we expected in terms of efficiency and at this point it is unclear to us
if this is due to our limitations in computing power or limitations of the architectures chosen. This remains to be
further investigated.

Our main goal was to test whether machine learning techniques can be used in theoretical areas of mathematics
and we can definitely say that this modest project gave a positive answer to that question.
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http://www.ams.org/mathscinet-getitem?mr=2135032
http://www.ams.org/mathscinet-getitem?mr=1954371
http://www.ams.org/mathscinet-getitem?mr=3731039
http://www.ams.org/mathscinet-getitem?mr=3978315
http://www.ams.org/mathscinet-getitem?mr=719371
http://www.ams.org/mathscinet-getitem?mr=4375119
http://www.ams.org/mathscinet-getitem?mr=3525576


18 ELIRA CURRI AND TONY SHASKA

Appendix A. Sequential Model

1 import numpy as np

2 from keras.models import Sequential

3 from keras.layers import Dense

4 from keras.optimizers import Adam

5 from sklearn.preprocessing import MinMaxScaler

6 import matplotlib.pyplot as plt

7 # Data Preparation

8 coordinates = []

9 features = []

10 labels = []

11

12 for coords , (input_features , wh, label , _) in M_dict.items ():

13 coordinates.append(coords)

14 features.append(input_features)

15 labels.append(int(label)) # Convert boolean to int

16 features = np.array(features , dtype=np.float32)

17 labels = np.array(labels , dtype=np.float32)

18 scaler = MinMaxScaler ()

19 features_normalized = scaler.fit_transform(features)

20 # Neural Network Architecture

21 model = Sequential ()

22 model.add(Dense(32, input_shape =(4,), activation=’relu’))

23 model.add(Dense(1, activation=’sigmoid ’))

24 # Model Compilation

25 model.compile(optimizer=Adam(learning_rate =0.123) , loss=’binary_crossentropy ’, metrics =[’

accuracy ’])

26 # Training Loop

27 losses = []

28 accuracies = []

29

30 for epoch in range (5):

31 history = model.fit(features_normalized , labels , epochs=1, batch_size =32, verbose =0)

32 losses.append(history.history[’loss’][0])

33 accuracies.append(history.history[’accuracy ’][0])

34 print(f’Epoch [{ epoch +1}/5] , Loss: {losses [ -1]:.4f}, Accuracy: {accuracies [ -1]:.4f}’)

35 # Visualization

36 plt.figure(figsize =(12, 4))

37 plt.subplot(1, 2, 1)

38 plt.plot(losses , label=’Training Loss’)

39 plt.xlabel(’Epochs ’)

40 plt.ylabel(’Loss’)

41 plt.title(’Training Loss over Epochs ’)

42 plt.legend ()

43 plt.subplot(1, 2, 2)

44 plt.plot(accuracies , label=’Training Accuracy ’, color=’orange ’)

45 plt.xlabel(’Epochs ’)

46 plt.ylabel(’Accuracy ’)

47 plt.title(’Training Accuracy over Epochs ’)

48 plt.legend ()

49 plt.show()

Listing 2. Sequential Neural Network

Appendix B. Equivariant model
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1 import torch

2 import torch.nn as nn

3 from torch.utils.data import Dataset , DataLoader

4 import matplotlib.pyplot as plt

5

6 class CustomDataset(Dataset):

7 def __init__(self , data_dict):

8 self.data = list(data_dict.items())

9

10 def __len__(self):

11 return len(self.data)

12

13 def __getitem__(self , idx):

14 key , value = self.data[idx]

15 coordinates = torch.tensor(key , dtype=torch.float32)

16 in_features = torch.tensor(value[0], dtype=torch.float32)

17 out_features = torch.tensor(value[2], dtype=torch.float32)

18

19 return coordinates , in_features , out_features

20

21 # Create an instance of the CustomDataset

22 custom_dataset = CustomDataset(M_dict)

23

24 # Use a larger batch size

25 batch_size = 64

26 data_loader = DataLoader(custom_dataset , batch_size=batch_size , shuffle=True)

27

28 # Define a simple equivariant neural network without e3nn

29 class EquivariantNet(nn.Module):

30 def __init__(self , in_features , out_features):

31 super(EquivariantNet , self).__init__ ()

32

33 self.fc1 = nn.Linear(in_features + 3, 16) # Add 3 for coordinates

34 self.relu = nn.ReLU()

35 self.fc2 = nn.Linear (16, 8)

36 self.fc3 = nn.Linear(8, out_features)

37

38 def forward(self , coordinates , in_features):

39 # Concatenate coordinates and in_features

40 x = torch.cat([ coordinates , in_features], dim=-1)

41

42 x = self.fc1(x)

43 x = self.relu(x)

44 x = self.fc2(x)

45 x = self.relu(x)

46 x = self.fc3(x)

47

48 return x

49

50 # Instantiate the model

51 in_features = len(next(iter(custom_dataset))[1]) # Use the first sample to determine

in_features

52 out_features = len(next(iter(custom_dataset))[2]) # Use the first sample to determine

out_features

53 model = EquivariantNet(in_features , out_features)

54

55 # Set up the loss function and optimizer
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56 criterion = nn.MSELoss ()

57 optimizer = torch.optim.Adam(model.parameters (), lr =0.001)

58

59 # Training loop

60 num_epochs = 10

61 losses = [] # to store the loss values for plotting

62

63 for epoch in range(num_epochs):

64 model.train ()

65 total_loss = 0.0

66

67 # Inside your training loop

68 for coordinates , in_features , out_features in data_loader:

69 optimizer.zero_grad ()

70 outputs = model(coordinates , in_features)

71 loss = criterion(outputs , out_features)

72 loss.backward ()

73

74 # Clip gradients before optimization step

75 torch.nn.utils.clip_grad_norm_(model.parameters (), max_norm =1.0)

76

77 optimizer.step()

78 total_loss += loss.item()

79

80 # Print average loss for the epoch

81 average_loss = total_loss / len(data_loader)

82 losses.append(average_loss)

83 print(f’Epoch {epoch + 1}/{ num_epochs}, Average Loss: {average_loss :.4f}’)

84

85 # Plot the loss over time

86 plt.plot(losses , label=’Training Loss’)

87 plt.xlabel(’Epoch ’)

88 plt.ylabel(’Loss’)

89 plt.title(’Training Loss Over Time’)

90 plt.legend ()

91 plt.show()

Listing 3. Equivariant Neural Network

Appendix C. Transformer model

1 import torch

2 import torch.nn as nn

3 import torch.optim as optim

4

5 # Assuming M_dict is your data dictionary

6

7 # Extract input features and labels from the dictionary

8 coordinates = []

9 features = []

10 labels = []

11

12 for coords , (input_features , label , _) in M_dict.items ():

13 coordinates.append(coords)

14 features.append(input_features)

15 labels.append(int(label)) # Convert boolean to int

16

17 # Convert lists to PyTorch tensors
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18 features = torch.tensor(features , dtype=torch.float32)

19 labels = torch.tensor(labels , dtype=torch.float32)

20

21 # Map the original features to indices

22 unique_features , inverse_indices = torch.unique(features , dim=0, return_inverse=True)

23

24 # Define the transformer model

25 class TransformerModel(nn.Module):

26 def __init__(self , input_size , hidden_size , output_size):

27 super(TransformerModel , self).__init__ ()

28 self.embedding = nn.EmbeddingBag(num_embeddings=len(unique_features), embedding_dim=

hidden_size)

29 self.transformer = nn.Transformer(d_model=hidden_size , nhead=4, num_encoder_layers =3)

30 self.global_pooling = nn.AdaptiveAvgPool1d (1) # Global average pooling

31 self.fc1 = nn.Linear(hidden_size , 64)

32 self.fc2 = nn.Linear (64, output_size)

33 self.relu = nn.ReLU()

34 self.sigmoid = nn.Sigmoid ()

35

36 def forward(self , x):

37 x = self.embedding(x, torch.zeros(x.size (0), dtype=torch.long)) # Use zeros as offsets

38 x = x.view(1, x.size (0), -1) # Add batch dimension and rearrange features

39 x = self.transformer(x, x) # Use x as both source and target sequences

40 x = self.global_pooling(x.permute(0, 2, 1)) # Global average pooling

41 x = x.squeeze(dim=-1)

42 x = self.relu(self.fc1(x))

43 x = self.sigmoid(self.fc2(x))

44 return x

45

46 # Instantiate the model

47 model = TransformerModel(input_size=len(unique_features), hidden_size =32, output_size =1)

48

49 # Define loss and optimizer

50 criterion = nn.BCELoss ()

51 optimizer = optim.Adam(model.parameters (), lr =0.001)

52

53 # Ensure labels is a 1D tensor

54 labels = labels.view(-1)

55

56 # Train the model

57 num_epochs = 10

58 for epoch in range(num_epochs):

59 optimizer.zero_grad ()

60 outputs = model(inverse_indices)

61 outputs = outputs.squeeze(dim=-1) # Remove singleton dimension

62 loss = criterion(outputs , labels)

63 loss.backward ()

64 optimizer.step()

65 print(f’Epoch [{ epoch + 1}/{ num_epochs }], Loss: {loss.item():.4f}’)

Listing 4. TransformerModel
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