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Abstract. We explore the moduli space M1
d of degree d ≥ 3 rational func-

tions on the projective line using a machine learning approach, focusing on

automorphism group classification. For d = 3, where M1
3 = P5

w(Q) with
weights w = (2, 2, 3, 3, 4, 6), we generate a dataset of 2,078,697 rational func-

tions over Q with naive height ≤ 4. Initial coefficient-based models achieved

high overall accuracy but struggled with minority classes due to extreme class
imbalance. By using invariants ξ0, . . . , ξ5 as features in a Random Forest classi-

fier, we achieved approximately 99.992% accuracy, mirroring successes in genus
2 curves [9]. This highlights the transformative role of invariants in arithmetic

dynamics, yet for d > 3, unknown generators of R(d+1,d−1) pose scalability

challenges. Our framework bridges data-driven and algebraic methods, with
potential extensions to higher degrees and M2

d.

1. Introduction

Let k be an algebraically closed field of characteristic zero and P1
k the projective

line over k. A degree d ≥ 2 rational function ϕ : P1 → P1 is given as the ratio of

two degree d binary forms, say ϕ(x, y) = f0(x,y)
f1(x,y)

such that the resultant between

f0(x, y) and f1(x, y) is non-zero. Hence, a rational function is a pair of binary forms
of the same degree with no common roots. If we denote

f0(x, y) =

d∑
i=0

aix
iyd−i and f1(x, y) =

d∑
i=0

bix
iyd−i,

then the collection of pairs [f0 : f1] can be parametrized via

[ad : · · · : a0 : bd : · · · : b0] ∈ P2d+1,

such that Res(f0, f1) ̸= 0. So the parameter space of degree d > 1 rational functions
on P1 is the complement of the resultant locus in P2d+1, say Rat1d := P2d+1\V (Res).

The group SL2(k) acts on Rat1d by conjugation, i.e., for some M ∈ SL2(k),

ϕ→ ϕM :=M−1 ◦ ϕ ◦M.

Two rational functions ϕ, ψ ∈ Rat1d are called conjugate if there is an M ∈ SL2(k)
such that ϕ = ψM . The moduli space of degree d > 1 rational functions (in one
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variable) is denoted by M1
d and can be constructed as a quotient space of this

SL2-action. The automorphism group of ϕ is defined as

Aut(ϕ) := {σ ∈ PGL2(k) | ϕσ = ϕ}.

It is a finite subgroup of PGL2(k), so it is isomorphic to one of the following: a
cyclic group Cn, a dihedral group Dn, A4, S4, or A5. Determining which one of
these groups occur for a fixed degree d ≥ 2 is studied in [2, 4, 6].

When the degree d gets large, determining the automorphism groups, inclusions
among the loci of functions with fixed automorphism groups, minimal fields of def-
inition, and other questions that arise in arithmetical dynamics (see [17]) becomes
challenging and involved. Hence, we aim to use a machine learning approach to
study such questions. The goal of this paper is to introduce such an approach and
to identify some of the challenges that will be encountered along the way. Our main
task in this paper is to design a machine learning model to determine properties of
rational functions such as the automorphism group, inclusions among the automor-
phism loci, a minimal field of definition, etc. As a case study, we focus on the case
of rational cubics over Q since this is a well-known case and gives an opportunity
for training and identifying methods that would work better in higher degree cases.

We created the database of all rational cubics with height ≤ 4. There are
2,078,697 such cubics (cf. Section 7 for details). Initial machine learning models
using the coefficients of these rational functions as features performed poorly in
classifying the automorphism groups, achieving high overall accuracy but failing
to correctly identify minority classes due to extreme class imbalance. However,
by incorporating invariants of the rational functions as features, we were able to
significantly improve the classification performance, achieving near-perfect accuracy
across all classes.

For any ϕ(x, y) = f0(x,y)
f1(x,y)

, we define binary forms of degrees d+ 1 and d− 1 as

Iϕ := yf0 − xf1 and J ϕ :=
∂f0
∂x

+
∂f1
∂y

.

Any two degree d rational functions ϕ and ψ are conjugate for some M ∈ PGL2(k)

via ψ = ϕM if and only if Iψ = IMϕ and J ψ = JM
ϕ ; see Lem. 1. Moreover, there is

a one-to-one correspondence between degree d rational functions ϕ(x) and points
(f, g) ∈ Vd+1 ⊕ Vd−1 such that

Res

(
xg +

∂f

∂y
, yg − ∂f

∂x

)
̸= 0.

Hence, determining invariants of rational functions is the same as determining gen-
erators for the ring of invariants of Vd+1 ⊕ Vd−1, which can be determined using a
result of Clebsch once generators of the ring of invariants for Vd+1 and Vd−1 are
known.

Denote by R(d+1,d−1) the ring of invariants of Vd+1 ⊕ Vd−1 and (ξ0, . . . , ξn)
the tuple of generators of this ring with degrees (q0, . . . , qn) respectively. Since
all ξ0, . . . , ξn are homogeneous polynomials, then R(d+1,d−1) is a graded ring and
ProjR(d+1,d−1) is a weighted projective space denoted by Pnω(k), where ω = (q0, . . . , qn)
is the set of weights. Thus for each ϕ ∈ Pd, we evaluate its invariants and have a
map ξ : Pd → M1

d via

ϕ→ [ξ0(ϕ) : · · · : ξn(ϕ)],
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and create a new database Wd where each entry represents the isomorphism class
of some rational function. We can normalize points in Wd by ”dividing” by the
weighted greatest common divisor. Then using the weighted projective height we
can further order them; see [7]. Obviously, the data in Wd doesn’t necessarily
have to come from Pd, since we can randomly generate points in the weighted
projective space Pnω similarly how it was done in [9]. The benefit of training the
data Wd instead of Pd is that there is no redundancy because every data point
represents uniquely the equivalence class of a rational function. While the input
features of the model can still be the coefficients of the rational function, we can
use feature engineering and insert a symbolic layer which computes the invariants
of the function and hence the corresponding point p ∈ M1

d, similar to what was
used in [11].

For d = 3, the generators of V4 ⊕ V2 are invariants of degree 2, 2, 3, 3, 4,
and 6. Hence, the moduli space M1

3 is the weighted projective space Pω(k) for
the set of weights ω = (2, 2, 3, 3, 4, 6). We explicitly determine such invariants as
polynomials in a0, . . . , a3, b0, . . . , b3 and implement them as a symbolic layer. A
complete list of automorphism groups and the corresponding loci in terms of such
invariants are also computed. Adding such invariants to the database increases the
classification accuracy significantly. For example, using a Random Forest classifier
with invariants as features, we achieved an accuracy of approximately 99.992% in
classifying the automorphism groups; see Section 7 for further details. There is no
reason to believe that this accuracy will go down for higher degree d.

Our results show that machine learning, when combined with algebraic invari-
ants, can be extremely successful in studying rational functions. In the last section,
we give a brief account of our results and challenges ahead.

While our study of rational cubics over Q demonstrates the power of this ap-
proach, it also raises questions about its scalability and applicability to higher
degrees. The explicit invariants for d = 3 are a solved problem, but for d > 3,
such as d = 4 or beyond, the generators of R(d+1,d−1) remain largely unknown,
complicating both algebraic and computational analysis. Extending this frame-
work requires addressing these gaps, testing its robustness across diverse fields, and
refining the symbolic layer’s integration, topics we explore in the subsequent work
as we outline our findings and the path forward.

2. Preliminaries

Let k be an algebraically closed field, PN (k) the projective N -space over k, and
k[x, y] be the polynomial ring in two variables. By Vd we denote the (d + 1)-
dimensional subspace of k[x, y] consisting of homogeneous polynomials

f(x, y) = adx
d + ad−1x

d−1y + · · · a1xyd−1 + a0y
d,

of degree d (up to multiplication by a scalar). Elements in Vd (up to multiplication
by a constant) are called binary forms of degree d. GL2(k) acts as a group of
automorphisms on k[x, y] as follows:

(1) M =

(
a b
c d

)
∈ GL2(k), then M

(
x
y

)
=

(
ax+ by
cx+ dy

)
Denote by fM the binary form

fM (x, y) := f(ax+ by, cx+ dy).
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It is well known that SL2(k) leaves a binary form (unique up to scalar multiples)
on Vd invariant.

Consider a0, a1, ... , ad as parameters (coordinate functions on Vd). Then the
coordinate ring of Vd can be identified with k[a0, . . . , ad]. For I ∈ k[a0, . . . , ad] and
M ∈ GL2(k), define

IM ∈ k[a0, . . . , ad] as IM (f) := I(fM ),

for all f ∈ Vd. Then IMN = (IM )N and IM (f) define an action of GL2(k) on
k[a0, . . . , ad].

A homogeneous polynomial I ∈ k[a0, . . . , ad, x, y] is called a covariant of index
s if IM (f) = δsI(f), for all f ∈ Vd, where δ = det(M). The homogeneous degree in
a0, . . . , ad is called the degree of I, and the homogeneous degree in x, y is called
the order of I. A covariant of order zero is called invariant. An invariant is a
SL2(k)-invariant on Vd.

By Hilbert’s theorem the ring of invariants of binary forms is finitely generated.
We denote by Rd the ring of invariants of the binary forms of degree d. Then, Rd

is a finitely generated graded ring

2.1. Change of coordinates. Let I0, . . . , In be the generators of Rd with degrees
q0, . . . , qn respectively. For any two binary forms f and g, f = gM , M ∈ GL2(k), if
and only if

(2) (I0(f), . . . Ii(f), . . . , In(f)) = (λq0 I0(g), . . . , λ
qi Ii(g), . . . , λ

qn In(g)) ,

where λ = (detM)
d
2 .

2.2. Generators of the ring of invariants. Let Vd be the space of degree d > 1
binary forms defined over k, and Rd the ring of invariants. Below we list the
generating set of Rd for d ≤ 10. We assume that the binary forms are given in
standard form

f(x, y) =

d∑
i=0

(
d

i

)
aix

iyd−i

For f, g ∈ Vd the r-th transvectant of f and g is defined as

(f, g)r :=
(m− r)! (n− r)!

n!m!

r∑
k=0

(−1)k
(
r
k

)
· ∂rf

∂xr−k ∂yk
· ∂rg

∂xk ∂yr−k
,

While there is no method known to determine a minimal generating set of invariants
for any Rd, we display such sets for 3 ≤ d ≤ 4 as in [1].

2.2.1. Cubics. A generating set for R3 is ξ = [ξ0], where

(3) ξ0 = ((f, f)2, (f, f)2)2 = −54a20a
2
3 + 36a1a3a0a2 − 8a32a0 − 8a31a3 + 2a22a

2
1

2.2.2. Quartics. A generating set for R4 is ξ = [ξ0, ξ1] with ω = (2, 3), where

(4) ξ0 = (f, f)4 and ξ1 = (f, (f, f)2)4

For d = 6 to d = 10, generators are known and displayed in [1]. In Table 1 are
their counts and weights.
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Table 1. Generators of Rd for d = 6 to d = 10

d Weights ω Number of Generators
6 (2, 4, 6, 10) 4
7 (4, 8, 12, 12, 20) 5
8 (2, 3, 4, 5, 6, 7) 6
9 (4, 8, 10, 12, 12, 14, 16) 7
10 (2, 4, 6, 6, 8, 9, 10, 14, 14) 9

3. Invariants of Rational Functions

This section derives the invariants of degree d > 1 rational functions on P1(k),
where k is algebraically closed. Our goal is to classify these functions up to
PGL2(k)-equivalence, compute the invariant ring R(d+1,d−1), and specialize to
d = 3 for explicit invariants that enable machine learning analysis of the mod-
uli space M1

3.
If one fixes homogeneous coordinates x, y on P1, then any rational function

ϕ : P1 → P1 of degree d > 1 can be realized as

ϕ(x, y) =
f0(x, y)

f1(x, y)
,

where d = max{deg f0,deg f1} and f0 and f1 are homogeneous polynomials of
degree at most d. Conversely, a pair of homogeneous polynomials of degree d in x
and y determine a rational function

(5) ϕ(x, y) = [f0(x, y) : f1(x, y)]

if f0, f1 have no common roots in k.
For a fixed degree d > 1, the collection of all such pairs of homogeneous polyno-

mials [f0(x, y) : f1(x, y)], say

f0 =

d∑
i=0

aix
d−iyi and f1 =

d∑
i=0

bix
d−iyi,

can be naturally parametrized as the projective space P2d+1, via

[f0 : f1] → [a0 : a1 : · · · : ad : b0 : · · · : bd] ∈ P2d+1.

We denote the resultant of two binary forms f0 and f1 by Res(f0, f1). Notice
that it’s well-defined and a degree 2d homogeneous polynomial in

(6) I2d(ϕ) := Res(f0, f1) ∈ k[a0, . . . , ad, b0, . . . , bd].

Hence, I2d(ϕ) is an SL2(k)-invariant of degree 2d. Moreover, ϕ is a rational function
on P1 if and only if I2d(ϕ) ̸= 0.

We can construct the parameter space of rational functions on P1 as the comple-
ment of the vanishing locus V (I2d) of I2d. Hence the rational space of rational
functions of degree d on P1 is defined as

Rat1d := P2d+1 \ V (I2d)

The action of PGL2(k) on Vd extends naturally to an action on Rat1d. For each
σ ∈ PGL2(k), we have PGL2(k)× Rat1d → Rat1d via

(σ, ϕ(x, y)) → ϕσ := σ−1ϕσ,
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Two rational functions ϕ, ψ ∈ Rat1d are called k-conjugate if and only if there
exists a matrix σ ∈ PGL2(k) such that ψ = σ−1ϕσ.

Remark 1. Notice two different uses of notation ϕσ for rational functions and fσ

for binary forms.

The function ϕσ = σ−1ϕσ is explicitly given as(
σ−1ϕσ

)
(x) =

e f0(ax+ b, cx+ e)− b f1(ax+ b, cx+ e)

−c f0(ax+ b, cx+ e) + a f1(ax+ b, cx+ e)
=

e fσ0 − b fσ1
−c fσ0 + a fσ1

(7)

Let ϕ(x, y) and ψ(x, y) be degree d ≥ 2 rational functions given by

(8) ϕ(x, y) =
f0(x, y)

f1(x, y)
and ψ(x, y) =

g0(x, y)

g1(x, y)
.

By Eq. (7), ϕ and ψ are k-conjugate if and only if there is σ =

(
a b
c e

)
∈ PGL2(k)

such that

(9) g0 = efσ0 − bfσ1 and g1 = −cfσ0 + afσ1 .

Definition 1. For ϕ(x, y) = f0(x,y)
f1(x,y)

, we define its associated pair of binary

forms as

(10) Iϕ := yf0 − xf1 and J ϕ :=
∂f0
∂x

+
∂f1
∂y

Notice that Iϕ ∈ Vd+1 and J ϕ ∈ Vd−1.

Lemma 1. Let ϕ, ψ ∈ Rat1d and σ ∈ PGL2(k). Then ψ = ϕσ if and only if

Iψ = Iσϕ and J ψ = J σ
ϕ .

Proof. Let ϕ = f0
f1

and ψ = g0
g1
. Assume that ϕ and ψ are k-conjugate in Rat1d,

meaning there exists σ ∈ PGL2(k) such that ψ = ϕσ.
Substituting the expressions for Iψ = yg0 − xg1 and using the values of g0 and

g1 as in Eq. (9), we have

Iψ = yg0 − xg1 = y(efσ0 − bfσ1 )− x(−cfσ0 + afσ1 )

= (cx+ ey)fσ0 − (ax+ by)fσ1 = (yf0 − xf1)
σ
= Iσϕ .

Similarly,

J ψ =
∂g0
∂x

+
∂g1
∂y

=
∂(efσ0 − bfσ1 )

∂x
+
∂(−cfσ0 + afσ1 )

∂y

= e
∂fσ0
∂x

− b
∂fσ1
∂x

− c
∂fσ0
∂y

+ a
∂fσ1
∂y

=

(
∂fσ0
∂x

+
∂fσ1
∂y

)σ
= J σ

ϕ .

Thus, we conclude that Iϕ and Iψ (and similarly, J ϕ and J ψ) are k-equivalent via
σ as binary forms.

Conversely, suppose that Iϕ and Iψ (respectively, J ϕ and J ψ) are k-equivalent
via σ as binary forms. This means that Iψ = Iσϕ and J ψ = J σ

ϕ. In particular, we
have

Iψ = yg0 − xg1 = (yf0 − xf1)
σ
= (cx+ ey)fσ0 − (ax+ by)fσ1 ,

J ψ =
∂g0
∂x

+
∂g1
∂y

=
∂fσ0
∂xσ

+
∂fσ1
∂yσ

.
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From the equation for Iψ, we obtain

y (g0 − efσ0 + bfσ1 ) = x (g1 + cfσ0 − afσ1 ) ,

which leads to

g0 − efσ0 + bfσ1 = x · h(x, y), g1 + cfσ0 − afσ1 = y · h(x, y),

for some h ∈ Vd−1. Therefore, we have

J ψ = 2h+

(
x
∂h

∂x
+ y

∂h

∂y

)
+ e

∂fσ0
∂x

+ b
∂fσ1
∂x

− c
∂fσ0
∂y

+ a
∂fσ1
∂y

= h+
d− 1

2
h+

∂g0
∂x

+
∂g1
∂y

.

Thus, we must have h = 0, which implies that ϕσ = ψ as claimed. □

Since the pair of binary forms (Iϕ,J ϕ) determines the rational function ϕ, we
can use the classical theory of binary forms to determine invariants for ϕ. Define

Φ : Rat1d → Vd+1 ⊕ Vd−1,

ϕ→ (Iϕ,J ϕ) .
(11)

The inverse of Φ is not well-defined since not every pair (f, g) ∈ Vd+1 ⊕ Vd−1

determines a rational function.

Definition 2. For any (f, g) ∈ Vd+1 ⊕ Vd−1, define the modular resultant

(12) ∆If ,J g
= Res

(
xg +

∂f

∂y
, yg − ∂f

∂x

)
,

and the moduli resultant locus N as

N := {(f, g) ∈ Vd+1 ⊕ Vd−1 | ∆f,g = 0}.

Then, we have the following:

Lemma 2. The map

Φ : Rat1d → (Vd+1 ⊕ Vd−1) \ N
is bijective. Moreover, for any (f, g) ∈ Vd+1 ⊕ Vd−1 \ N ,

Φ−1(f, g) =
xg + ∂f

∂y

yg − ∂f
∂x

.

Proof. The map Φ is obviously well-defined. Let ϕ, ψ ∈ Rat1d such that Φ(ϕ) =
Φ(ψ). Then, Iϕ = Iψ and J ϕ = J ψ as binary forms in Vd+1 and Vd−1, respectively.
Since binary forms are defined up to multiplication by a scalar, there exists a
diagonal matrix σ ∈ PGL2(k) such that

Iψ = Iσϕ and J ψ = J σ
ϕ .

By Lem. 1, we conclude that ψ = ϕσ = ϕ. Thus, Φ is injective.
Now, assume that (f, g) ∈ (Vd+1⊕Vd−1)\N . The condition ∆If ,J g

̸= 0 ensures
that the preimage

Φ−1(f, g) =
xg + ∂f

∂y

yg − ∂f
∂x

belongs to Rat1d. Consequently, the map Φ−1 is well-defined.
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To show that Φ and Φ−1 are inverses of each other, we will demonstrate that
Φ ◦ Φ−1 = id on (Vd+1 ⊕ Vd−1) \ N and Φ−1 ◦ Φ = id on Rat1d.

First, compute Φ ◦ Φ−1 on (Vd+1 ⊕ Vd−1) \ N : Let (f, g) ∈ (Vd+1 ⊕ Vd−1) \ N
and ϕ = Φ−1(f, g) =

xg+ ∂f
∂y

yg− ∂f
∂x

. Then,

Iϕ = y

(
xg +

∂f

∂y

)
− x

(
yg − ∂f

∂x

)
= y

∂f

∂y
+ x

∂f

∂x
= (d+ 1)f = f ∈ Vd+1

J ϕ =
∂

∂x

[
xg +

∂f

∂y

]
+

∂

∂y

[
yg − ∂f

∂x

]
= 2g + x

∂g

∂x
+ y

∂g

∂y
= 2g + (d− 1)g = g ∈ Vd−1

Thus, Iϕ = f and J ϕ = g, so Φ(ϕ) = (Iϕ,J ϕ) = (f, g).

Second, compute Φ−1 ◦ Φ on Rat1d: Let ϕ = f0
f1

∈ Rat1d. Then,(
Φ−1 ◦ Φ

)
(ϕ) = Φ−1(Iϕ,J ϕ) = Φ−1

(
yf0 − xf1,

∂f0
∂x

+
∂f1
∂y

)

=
x
(
∂f0
∂x + ∂f1

∂y

)
+ ∂

∂y [yf0 − xf1]

y
(
∂f0
∂x + ∂f1

∂y

)
− ∂

∂x [yf0 − xf1]

=
x
(
∂f0
∂x + ∂f1

∂y

)
+

(
f0 + y ∂f0∂y − x∂f1∂y

)
y
(
∂f0
∂x + ∂f1

∂y

)
−

(
y ∂f0∂x − f1 − x∂f1∂x

)
=
x∂f0∂x + y ∂f0∂y + f0

x∂f1∂x + y ∂f1∂y + f1
=
df0 + f0
df1 + f1

=
f0
f1

= ϕ.

Since both compositions Φ ◦ Φ−1 and Φ−1 ◦ Φ are the identity maps, we conclude
that Φ and Φ−1 are indeed inverse to each other. This completes the proof. □

3.1. Ring of invariants R(d+1),(d−1) and a theorem of Clebsch. The action
of GL2(k) on Vd induces an action of GL2(k) in Vd+1 ⊕ Vd−1. To determine the
isomorphism classes of degree d rational functions, we have to determine the ring
of invariants of Vd+1 ⊕ Vd−1. This is a well known in classical invariant theory. We
briefly describe it below; ; see [18] for details.

Let V be an SL2-module and O(V ) the algebra of polynomial functions on V .
SL2(k) acts on O(V ) via

M · p(f1, . . . , fr) → p(M−1f1, . . . ,M
−1fr),

for every M ∈ SL2(k). An invariant of V is an element T ∈ O(V ) such that
MT = T , for all M ∈ SL2(k). The set of invariants is denoted by O(V )SL2 .

A transvectant (T ,S)l is called irrelevant if there exist T1, T2,S1,S2 and l1, l2
such that

l = l1 + l2, T = T1 · T2, S = S1 · S2,

and l1 ≤ ord T1, ordS1, and l2 ≤ ord T2, ordS2. A transvectant which is not irrele-
vant is called relevant.

Let V and W be two SL2-modules whose covariants are finitely generated, and
assume

T1, . . . , Tr : are the generators of the covariants of V

S1, . . . ,Ss : are the generators of the covariants of W.
(13)
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Theorem (Clebsch). The ring of covariants of V ⊕W is finitely generated. More-
over, a finite generating system can be chosen from the set of all transvectants

(T ,S)l , for l ≥ 0,

where T is a monomial in the Ti’s and S a monomial in the Sj’s. In other words,
by the relevant transvectants (T ,S)l.

3.2. ProjR(d+1,d−1) as a weighted projective space. Let ξ0, . . . , ξn be a gener-
ating system of R(d+1,d−1). Since all ξ0, . . . , ξn are homogeneous polynomials, then
R(d+1,d−1) is a graded ring and ProjR(d+1,d−1) is a weighted projective space.

Let ω := (q0, . . . , qn) ∈ Zn+1 be a fixed tuple of positive integers called weights.
Consider the action of k⋆ = k \ {0} on An+1(k) as follows:

λ ⋆ (x0, . . . , xn) = (λq0x0, . . . , λ
qnxn)

for λ ∈ k⋆. The quotient of this action is called a weighted projective space
and denoted by Pnω(k). It is the projective variety Proj(k[x0, . . . , xn]) associated to
the graded ring k[x0, . . . , xn] where the variable xi has degree qi for i = 0, . . . , n.

We will denote a point p ∈ Pnω(k) by p = [x0 : x1 : · · · : xn]. Let ϕ(x, y) ∈ Rat1d
given by ϕ(x, y) = [f0 : f1]. Its associated binary forms Iϕ ∈ Vd+1 and J ϕ ∈ Vd−1,
and ξ0, ξ1, . . . , ξn the generators of the ring of invariants R(d+1,d−1).

The invariants of the rational function ϕ are defined as

(14) ξ(ϕ) := [ξ0(Iϕ,J ϕ), ξ1(Iϕ,J ϕ), . . . , ξn(Iϕ,J ϕ)] ∈ Pnω(k).

Moreover, ϕ = ψσ for σ ∈ GL2(k) if and only if ξ(ϕ) = λ ⋆ ξ(ψ), for λ = (detσ)
d
2 .

Next we will determine explicitly invariants of Rd+1,d−1. From now on f ∈ Vd+1

and g ∈ Vd−1 where

(15) f =

d+1∑
i=0

aix
iyd+1−i and g =

d−1∑
i=0

bix
iyd−1−i.

3.3. Invariants of V4⊕V2. To apply this framework, we specialize to d = 3, where
Iϕ ∈ V4 and J ϕ ∈ V2. We take d = 3, f ∈ V4 and g ∈ V2 as in Eq. (15)

f(x, y) = a4x
4 + a3x

3 + a2x
2y + a1xy

2 + a0y
3

g(x, y) = b2x
2 + b1xy + b0y

2
(16)

The generators of covariants of V4 and V2 are

T = {f, T = (f, f)2, T2 = (f, f)4, T3 = ((f, f)2, f)4}
S = {g, S2 = (g, g)2}

respectively. Hence, we are considering all transvectants (fm1T m2T m3
2 T m4

3 , gs1Ss22 )l ,
for some m1,m2,m3,m4, s1, s2. Since T2, T3 and S2 are invariants, their exponents
must be zero, otherwise we get reducible invariants. Hence, T2, T3, S2 are part of
the generating set and further we only consider (fm1T m2 , gs)l. Then the relevant
transvectants are S2, T2, T3, and

R3 := (T , g2)4, R4 := (f, g2)4, R6 := (g3, (f, T )1)6,

Hence, the set of invariants is ξ(ϕ) = (ξ0, . . . , ξ5), where

ξ0 = (g, g)2, ξ1 = (f, f)4, ξ2 = (T , f)4, ξ3 = R3, ξ4 = R4, ξ5 = R6
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with weights (2, 2, 3, 3, 4, 6) respectively. Let d = 3 and f, g as in Eq. (15). We have
the following expressions for invariants:

ξ0 =
1

2

(
4b0b2 − b21

)
ξ1 =

1

6

(
a22 − 3a1a3 + 12a0a4

)
ξ2 =

1

72

(
−2a32 + 9(a1a3 + 8a0a4)a2 − 27

(
a4a

2
1 + a0a

2
3

))
ξ3 =

1

6

(
6a4b

2
0 − 3a3b1b0 + 2a2b2b0 + a2b

2
1 + 6a0b

2
2 − 3a1b1b2

)
ξ4 = − 1

72

(
2a22b

2
1 + 4a22b0b2 − 24a4a2b

2
0 − 24a0a2b

2
2 − 6a3a2b0b1

−6a1a2b1b2 + 9a23b
2
0 − 3a1a3b

2
1 − 24a0a4b

2
1 + 9a21b

2
2 + 36a1a4b0b1 − 6a1a3b0b2

−48a0a4b0b2 + 36a0a3b1b2)

ξ5 = − 1

32

(
a33b

3
0 + 8a1a

2
4b

3
0 − 4a2a3a4b

3
0 − a2a

2
3b1b

2
0 − 8a0a1a4b

2
1b2 − 16a0a

2
4b1b

2
0

−2a1a3a4b1b
2
0 + a1a

2
3b2b

2
0 − 4a1a2a4b2b

2
0 + 8a0a3a4b2b

2
0 + a1a

2
3b

2
1b0 + 4a22a4b1b

2
0

−4a1a2a4b
2
1b0 + 8a0a3a4b

2
1b0 − a21a3b

2
2b0 + 4a0a2a3b

2
2b0 − 8a0a1a4b

2
2b0

−6a0a
2
3b1b2b0 + 6a21a4b1b2b0 − a0a

2
3b

3
1 + a21a4b

3
1 − a31b

3
2 + 4a0a1a2b

3
2 − 8a20a3b

3
2

−4a0a
2
2b1b

2
2 + a21a2b1b

2
2 + 2a0a1a3b1b

2
2 + 16a20a4b1b

2
2 − a21a3b

2
1b2 + 4a0a2a3b

2
1b2

)
The ring of invariants R4,2 is generated by ξ0, ξ1, ξ2, ξ3, ξ4, ξ5 and a relation between
invariants ξ0, . . . , ξ5 is, according to [18], satisfy the following equation

(17) ξ25 =
1

108
ξ30ξ

3
1 − 18ξ30ξ

2
2 −

1

24
ξ0ξ

2
1ξ

2
3 −

1

6
ξ2ξ

3
3 +

1

2
ξ0ξ2ξ3ξ4 +

1

4
ξ1ξ

2
3ξ4 −

1

4
ξ0ξ1ξ

2
4 −

1

2
ξ34

Given a rational cubic

(18) ϕ(x) =
f0(x)

f1(x)
=
c0x

3 + c1x
2 + c2x+ c3

c4x3 + c5x2 + c6x+ c7

we compute its invariants in terms of its coefficients. We have I6 = Res(f0, f1)

I6 =c33c
3
4 − c30c

3
7 + c3c

2
0c

3
6 − c32c7c

2
4 + c31c

2
7c4 − c23c2c5c

2
4 − c23c0c

3
5 − 2c23c1c6c

2
4

+ c3c
2
2c6c

2
4 + c23c1c

2
5c4 − 3c23c0c7c

2
4 − c21c0c

2
7c5 + c1c

2
0c

2
7c6 + 2c2c

2
0c

2
7c5

+ 3c3c
2
0c

2
7c4 − c22c0c7c

2
5 + 3c23c0c6c5c4 − 2c3c2c0c

2
6c4 + c3c2c0c6c

2
5

+ 3c3c2c1c7c
2
4 + 2c3c1c0c7c

2
5 − c3c1c0c

2
6c5 − c2c

2
1c7c6c4 − 3c2c1c0c

2
7c4

+ c22c1c7c5c4 + 2c22c0c7c6c4 − c3c2c1c6c5c4 − c3c2c0c7c5c4 + c3c1c0c7c6c4

+ c3c
2
1c

2
6c4 − c2c

2
0c7c

2
6 + c2c1c0c7c6c5 − 3c3c

2
0c7c6c5 − 2c3c

2
1c7c5c4

The pair of binary forms Iϕ and J ϕ associated to ϕ are

Iϕ = c3x
3y + c2x

2y2 + c1xy
3 + c0y

4 − c7x
4 − c6x

3y − c5x
2y2 − c4xy

3

J ϕ = 3c3x
2 + 2c2xy + c1y

2 + c6x
2 + 2c5xy + 3c4y

2
(19)

Next we evaluate the following transvectants

(20)
ξ0 = (J ϕ,J ϕ)2 , ξ1 = (Iϕ, Iϕ)4 , ξ2 = ((Iϕ, Iϕ)2, Iϕ)4 ,
ξ3 =

(
Iϕ,J 2

ϕ

)
4
, ξ4 =

(
(Iϕ, Iϕ)2,J 2

ϕ

)
4
, ξ5 =

(
J 3
ϕ, (Iϕ, (Iϕ, Iϕ)2)1

)
6
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ξ0 =2(3c2c0 + c2c5 − c21 − 2c1c6 + 9c0c7 + 3c7c5 − c26)

ξ1 =− 1

6
(12c3c4 + 3c2c0 − 3c2c5 − c21 + 2c1c6 − 3c0c7 + 3c7c5 − c26)

ξ2 =− 1

72
(72c3c1c4 + 27c3c

2
0 − 54c3c0c5 − 72c3c6c4 + 27c3c

2
5 − 27c22c4 − 9c2c1c0

+ 9c2c1c5 + 9c2c0c6 + 54c2c7c4 − 9c2c6c5 + 2c31 − 6c21c6 + 9c1c0c7 − 9c1c7c5

+ 6c1c
2
6 − 9c0c7c6 − 27c27c4 + 9c7c6c5 − 2c36)

ξ3 =
1

3
(27c3c

2
0 + 18c3c0c5 + 3c3c

2
5 − 3c22c4 − 9c2c1c0 + c2c1c5 − 15c2c0c6 + 9c7c6c5

− 2c36 − 18c2c7c4 − c2c6c5 + 2c31 + 2c21c6 + 9c1c0c7 + 15c1c7c5 − 2c1c
2
6

− 9c0c7c6 − 27c27c4)

ξ4 =− 1

9
(18c3c2c0c4 + 6c3c2c5c4 + 12c3c

2
1c4 − 36c3c1c0c5 + 24c3c1c6c4 − 12c3c1c

2
5

+ 54c3c
2
0c6 + 54c3c0c7c4 + 18c3c7c5c4 + 12c3c

2
6c4 − 6c3c6c

2
5 − 6c22c1c4 + 9c22c

2
0

+ 6c22c0c5 − 12c22c6c4 + 3c22c
2
5 − 6c2c

2
1c0 + 2c2c

2
1c5 − 6c2c1c0c6 + 2c2c1c6c5

− 18c2c
2
0c7 − 24c2c0c7c5 + 6c2c0c

2
6 − 36c2c7c6c4 + 6c2c7c

2
5 + 2c2c

2
6c5 + c41

+ 6c21c0c7 + 6c21c7c5 − 2c21c
2
6 − 6c1c0c7c6 + 54c1c

2
7c4 − 6c1c7c6c5

+ 27c20c
2
7 − 18c0c

2
7c5 + 6c0c7c

2
6 + 9c27c

2
5 − 6c7c

2
6c5 + c46)

ξ5 =− 1

4
(36c23c1c

2
0c4 + 24c23c1c0c5c4 + 4c23c1c

2
5c4 + 27c23c

4
0 + 36c23c

2
0c6c4 − 18c23c

2
0c

2
5

+ 24c23c0c6c5c4 − 8c23c0c
3
5 + 4c23c6c

2
5c4 − c23c

4
5 + 4c3c

2
2c1c

2
4 − 6c3c

2
2c

2
0c4 − 8c3c

2
2c0c5c4

+ 4c3c
2
2c6c

2
4 − 2c3c

2
2c

2
5c4 − 8c3c2c

2
1c0c4 − 8c3c2c

2
1c5c4 − 18c3c2c1c

3
0 − 18c3c2c1c

2
0c5

− 16c3c2c1c0c6c4 + 2c3c2c1c0c
2
5 + 24c3c2c1c7c

2
4 − 16c3c2c1c6c5c4 + 2c3c2c1c

3
5 + 18c3c2c

3
0c6

+ 6c3c2c
2
0c6c5 − 24c3c2c0c7c5c4 − 8c3c2c0c

2
6c4 + 6c3c2c0c6c

2
5 + 24c3c2c7c6c

2
4 − 8c3c2c7c

2
5c4

− 8c3c2c
2
6c5c4 + 2c3c2c6c

3
5 + 4c3c

3
1c

2
0 + 8c3c

3
1c0c5 + 4c3c

3
1c

2
5 − 12c3c

2
1c

2
0c6 + 24c3c

2
1c0c7c4

− 8c3c
2
1c0c6c5 − 8c3c

2
1c7c5c4 + 4c3c

2
1c6c

2
5 + 18c3c1c

3
0c7 − 6c3c1c

2
0c7c5 + 48c3c1c0c7c6c4

+ 14c3c1c0c7c
2
5 − 16c3c1c0c

2
6c5 + 36c3c1c

2
7c

2
4 − 16c3c1c7c6c5c4 + 6c3c1c7c

3
5 + 18c3c

3
0c7c6

+ 54c3c
2
0c

2
7c4 − 42c3c

2
0c7c6c5 + 16c3c

2
0c

3
6 + 24c3c0c7c

2
6c4 − 10c3c0c7c6c

2
5 + 36c3c

2
7c6c

2
4

− 6c3c
2
7c

2
5c4 − 8c3c7c

2
6c5c4 + 2c3c7c6c

3
5 − c42c

2
4 + 2c32c1c0c4 + 2c32c1c5c4 + 4c32c

3
0 + 4c32c

2
0c5

+ 6c32c0c6c4 − 8c32c7c
2
4 + 2c32c6c5c4 − c22c

2
1c

2
0 − 2c22c

2
1c0c5 − c22c

2
1c

2
5 + 2c22c1c

2
0c6

− 10c22c1c0c7c4 + 6c22c1c7c5c4 + 4c22c1c
2
6c4 − 2c22c1c6c

2
5 − 12c22c

3
0c7 − 4c22c

2
0c7c5 + 3c22c

2
0c

2
6

+ 14c22c0c7c6c4 − 8c22c0c7c
2
5 + 2c22c0c

2
6c5 − 18c22c

2
7c

2
4 + 2c22c7c6c5c4 + 4c22c

3
6c4 − c22c

2
6c

2
5

+ 2c2c
2
1c

2
0c7 + 4c2c

2
1c0c7c5 − 16c2c

2
1c7c6c4 + 2c2c

2
1c7c

2
5 − 8c2c1c

2
0c7c6 − 42c2c1c0c

2
7c4

+ 8c2c1c0c7c6c5 + 6c2c1c
2
7c5c4 − 8c2c1c7c

2
6c4 + 24c2c

2
0c

2
7c5 − 10c2c

2
0c7c

2
6 − 6c2c0c

2
7c6c4

− 4c2c0c
2
7c

2
5 + 4c2c0c7c

2
6c5 − 18c2c

2
7c6c5c4 + 4c2c

2
7c

3
5 + 8c2c7c

3
6c4 − 2c2c7c

2
6c

2
5 + 16c31c

2
7c4

+ 3c21c
2
0c

2
7 − 10c21c0c

2
7c5 + 3c21c

2
7c

2
5 + 6c1c

2
0c

2
7c6 + 18c1c0c

3
7c4 − 8c1c0c

2
7c6c5 + 18c1c

3
7c5c4

− 12c1c
2
7c

2
6c4 + 2c1c

2
7c6c

2
5 + 3c20c

2
7c

2
6 + 18c0c

3
7c6c4 − 12c0c

3
7c

2
5 + 2c0c

2
7c

2
6c5 + 27c47c

2
4

+ 4c37c
3
5 + 4c27c

3
6c4 − 18c37c6c5c4 − c27c

2
6c

2
5)

The modular resultant ∆Iϕ,J ϕ
= Res(Iϕ,J ϕ) is a homogeneous polynomial of

degree six in terms of c0, . . . , c7. Hence, we will denote it by J6 := Res(Iϕ,J ϕ).
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Thus, there are three invariants of degree 6 in the case of cubics, namely I6, J6,
and ξ5. We would like to express I6 and J6 in terms of ξ0, . . . , ξ5. The expression
of I6 was computed in [18, pg. 38]

(21) I6 =
1

8
ξ31 +

1

384
ξ1ξ

2
0 − 3

4
ξ22 − 3

16
ξ2ξ4 +

1

256
ξ24 +

3

16
ξ1ξ3 −

1

64
ξ0ξ3 −

1

8
ξ5

It seems there are a couple of typos in the printed version of [18, pg. 38], and we
could not verify it directly. It can be easily noticeable that it is incorrect since it
is not a homogeneous polynomial of degree 6; see for example the monomials ξ24 ,
ξ1, ξ3, ξ0ξ3 which are not of degree 6.

The correct expression can be derived using computational algebra. This involves
expressing I6 and J6 as linear combinations of the 10 degree 6 invariants: ξ5, ξ4ξ0,
ξ4ξ1, ξ

2−j
2 ξj3, ξ

3−i
0 ξi1, for i = 0, 1, 2, 3 and j = 0, 1, 2. We have

I6 = −1

8
ξ31 − 1

384
ξ20ξ1 +

3

4
ξ22 − 3

16
ξ1ξ4 −

1

256
ξ23 +

3

16
ξ2ξ3 +

1

64
ξ0ξ4 −

1

8
ξ5

J6 = ξ23 − 4ξ4ξ0 +
2

3
ξ20ξ1

The space P(2,2,3,3,4,6) can be embedded into P5 via Veronese embedding as

(22) [ξ0, ξ1, ξ2, ξ3, ξ4, I6] → [ξ60 , ξ
6
1 , ξ

4
2 , ξ

4
3 , ξ

3
4 , I

2
6 ]

Since I6 ̸= 0, we can divide by I26 and represent each point as[
ξ60
I26

:
ξ61
I26

:
ξ42
I26

:
ξ43
I26

:
ξ34
I26

: 1

]
∈ P5

This motivates the definition of the following invariants

(23) i1 =
ξ60
I26
, i2 =

ξ61
I26
, i3 =

ξ42
I26
, i4 =

ξ43
I26
, i5 =

ξ34
I26
,

which are GL2(k)-invariants and are defined everywhere in the moduli space Rat13.
We call such invariants i1, . . . , i5 absolute invariants of ϕ(x, y). Hence, we have:

Lemma 3. Two degree three rational functions are conjugate if and only if they
have the same absolute invariants.

Proof. Let ϕ, ψ ∈ Rat13 be degree 3 rational functions over k given by ϕ = f0
f1
,

ψ = g0
g1

and ξ(ϕ) = [ξ0(ϕ), . . . , ξ5(ϕ)], ξ(ψ) = [ξ0(ψ), . . . , ξ5(ψ)] as in Eq. (14) and

absolute invariants as in Eq. (23), where I6(ϕ) ̸= 0 and I6(ψ) ̸= 0.
Suppose ϕ ≃ ψ, i.e., ψ = ϕσ = σ−1 ◦ ϕ ◦ σ for some σ ∈ PGL2(k). By Lem. 1,

Iψ = Iσϕ, J ψ = J σ
ϕ. Since ξi are SL2(k)-invariants of V4 ⊕ V2 (Subsection 3.3),

ξi(ψ) = ξi(Iψ,J ψ) = ξi(Iσϕ,J
σ
ϕ) = ξi(ϕ). For σ ∈ GL2(k) with detσ = λ, we have

ξi(ϕ
σ) = λwi/2ξi(ϕ), I6(ϕ

σ) = λ3I6(ϕ), so:

ij(ψ) =
ξj−1(ψ)

12/wj−1

I6(ψ)2
=

(λwj−1/2ξj−1(ϕ))
12/wj−1

(λ3I6(ϕ))2
=
λ6ξj−1(ϕ)

12/wj−1

λ6I6(ϕ)2
= ij(ϕ).

Thus, ϕ ≃ ψ implies ij(ϕ) = ij(ψ).

Suppose ij(ϕ) = ij(ψ) for j = 1, . . . , 5. Then
ξj−1(ϕ)

12/wj−1

I6(ϕ)2
=

ξj−1(ψ)
12/wj−1

I6(ψ)2
, so(

ξj−1(ϕ)
ξj−1(ψ)

)12/wj−1

=
(
I6(ϕ)
I6(ψ)

)2

. With ω = (2, 2, 3, 3, 4, 6), gcd(wi) = 1, there exists

λ ∈ k⋆ such that ξj−1(ϕ) = λwj−1ξj−1(ψ), I6(ϕ) = λ3I6(ψ). Hence, ξ(ϕ) = λ ⋆ ξ(ψ)
and ∃σ ∈ GL2(k), detσ = λ2, such that ϕσ = ψ. Thus, ϕ ≃ ψ. □
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We now define the map Φ : C8 \ {I6 = 0} → C5 as

(24) (c0, . . . , c7) → (i1(c0, . . . , c7), . . . , i5(c0, . . . , c7)) ,

where i1, . . . , i5 are defined in Eq. (23). The condition I6 ̸= 0, ensures that i1, . . . , i5
are defined everywhere in the moduli space.

To study the image Img(Φ), we examine the Jacobian matrix J(Φ), a 5 × 8

matrix with entries
∂ij
∂ck

for j = 1, . . . , 5 and k = 0, . . . , 7. The rank of J(Φ), which
is at most 5, governs the local geometry of Φ:

If rank(J(Φ)) = 5, then Φ is a submersion at that point. By the Implicit Function
Theorem, Img(Φ) is locally a smooth 5-dimensional manifold near Φ(c0, . . . , c7).

If rank(J(Φ)) < 5, i.e., all 5×5 minors vanish, Φ is not a submersion, and Img(Φ)
may have singularities at such points. These singularities typically correspond to
rational functions with extra automorphisms.

We hypothesize that the singular locus of Img(Φ), where rank(J(Φ)) < 5, aligns
with the set {J6 = 0} ⊂ C8, as defined in Eq. (25). It would be challenging to
verify this computationally.

J6 = 81c43c
2
0 − 54c33c2c1c0 + 54c33c2c0c4 + 12c33c

3
1 − 36c33c

2
1c4 + 54c33c1c0c5 − 108c33c1c

2
4

+ 108c33c
2
0c6 + 378c33c0c5c4 + 324c33c

3
4 + 12c23c

3
2c0 − 3c23c

2
2c

2
1 + 6c23c

2
2c1c4 − 36c23c

2
2c0c5

+ 45c23c
2
2c

2
4 + 12c7c

3
5c

2
4 + 6c23c2c

2
1c5 − 126c23c2c1c0c6 − 60c23c2c1c5c4 − 162c23c2c0c6c4

− 108c23c2c0c
2
5 − 234c23c2c5c

2
4 + 28c23c

3
1c6 − 18c23c

2
1c0c7 + 12c23c

2
1c6c4 + 45c23c

2
1c

2
5

− 108c23c1c0c7c4 − 18c23c1c0c6c5 − 252c23c1c6c
2
4 + 150c23c1c

2
5c4 + 54c23c

2
0c

2
6 − 162c23c0c7c

2
4

+ 162c23c0c6c5c4 − 60c23c0c
3
5 − 108c23c6c

3
4 + 45c23c

2
5c

2
4 + 40c3c

3
2c0c6 − 10c3c

2
2c

2
1c6

+ 20c3c
2
2c1c6c4 + 144c3c

2
2c0c7c4 + 72c3c

2
2c0c6c5 + 150c3c

2
2c6c

2
4 − 10c3c2c

3
1c7

− 28c3c2c
2
1c6c5 + 96c3c2c1c0c7c5 − 66c3c2c1c0c

2
6 + 162c3c2c1c7c

2
4 − 54c7c6c5c

3
4

+ 288c3c2c0c7c5c4 − 126c3c2c0c
2
6c4 + 24c3c2c0c6c

2
5 + 378c3c2c7c

3
4 + 81c27c

4
4

− 22c3c
3
1c7c5 + 20c3c

3
1c

2
6 − 12c3c

2
1c0c7c6 − 126c3c

2
1c7c5c4 + 68c3c

2
1c

2
6c4 + 4c0c

2
6c

3
5

− 72c3c1c0c7c6c4 + 48c3c1c0c7c
2
5 − 30c3c1c0c

2
6c5 − 162c3c1c7c5c

2
4 + 48c0c7c6c

2
5c4

+ 20c3c1c6c
2
5c4 + 12c3c

2
0c

3
6 − 108c3c0c7c6c

2
4 + 144c3c0c7c

2
5c4 − 18c3c0c

2
6c5c4 − 10c0c

3
6c5c4

− 8c3c0c6c
3
5 + 54c3c7c5c

3
4 − 36c3c

2
6c

3
4 + 6c3c6c

2
5c

2
4 − 16c42c0c7 + 4c32c

2
1c7 − 8c32c1c7c4

+ 12c32c0c
2
6 − 60c32c7c

2
4 + 20c22c

2
1c7c5 − 3c22c

2
1c

2
6 + 16c22c1c0c7c6 + 12c36c

3
4 − 3c26c

2
5c

2
4

+ 24c22c1c7c5c4 + 6c22c1c
2
6c4 + 48c22c0c7c6c4 − 96c22c0c7c

2
5 + 28c22c0c

2
6c5 − 108c22c7c5c

2
4

− 6c2c
3
1c7c6 − 30c2c

2
1c7c6c4 + 28c2c

2
1c7c

2
5 − 10c2c

2
1c

2
6c5 + 32c2c1c0c7c6c5 − 10c2c1c0c

3
6

+ 72c2c1c7c
2
5c4 − 28c2c1c

2
6c5c4 + 96c2c0c7c6c5c4 − 64c2c0c7c

3
5 − 22c2c0c

3
6c4 + 20c2c0c

2
6c

2
5

− 36c2c7c
2
5c

2
4 + 6c2c

2
6c5c

2
4 + c41c

2
7 + 12c31c

2
7c4 − 10c31c7c6c5 + 4c31c

3
6 − 2c21c0c7c

2
6 + 54c21c

2
7c

2
4

− 66c21c7c6c5c4 + 12c21c7c
3
5 + 20c21c

3
6c4 − 3c21c

2
6c

2
5 − 12c1c0c7c

2
6c4 + 16c1c0c7c6c

2
5 − 6c1c0c

3
6c5

+ 108c1c
2
7c

3
4 − 126c1c7c6c5c

2
4 + 40c1c7c

3
5c4 + 28c1c

3
6c

2
4 − 10c1c

2
6c

2
5c4 + c20c

4
6 − 18c0c7c

2
6c

2
4

+ 48c3c
2
2c1c0c7 − 64c32c0c7c5 − 16c0c7c

4
5 + 45c22c

2
6c

2
4 − 18c2c1c7c6c

2
4 + 54c2c7c6c

3
4

− 104c3c2c1c6c5c4 − 18c3c2c
2
1c7c4 + 6c3c

2
1c6c

2
5 + 12c3c1c

2
6c

2
4 − 60c3c2c6c5c

2
4

(25)
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4. Automorphisms

In this section we will define and study the automorphism groups of rational
functions. The approach will be similar to studying the automorphism groups of
hyperelliptic curves; see [12, 14]. Such groups have long been the focus of many
authors in arithmetic dynamics; see [2, 4, 6, 18]. First we recall some preliminaries.

Let G be a finite subgroup of PGL2(k). Therefore G is isomorphic to one of
the following: Cn, Dn, A4, S4, or A5. Since each is embedded in PGL2(k), we can
represent their generators as matrices, informing the forms of σ ∈ Aut(ϕ) later.
Below we display all the cases:

i) Cn ∼=
〈[
ζn 0
0 1

]〉
ii) Dn

∼=
〈[

0 1
1 0

]
,

[
ζn 0
0 1

]〉
iii) A4

∼=
〈[

−1 0
0 1

]
,

[
1 ζ4
1 −ζ4

]〉
iv) S4

∼=
〈[

−1 0
0 1

]
,

[
0 −1
1 0

]
,

[
−1 −1
1 1

]〉
v) A5

∼=
〈[
ω 1
1 −ω

]
,

[
ω ζ45
1 −ζ45ω

]〉
(26)

where ω = −1+
√
5

2 , ζn is a primitive nth root of unity and i is a primitive 4th root
of unity.

Remark 2. In each case above, there is σ ∈ G which fixes 0 and ∞. The proof
is elementary. In the first two cases, the Möbius transformation σ(x) = ζmx will
fix 0 and ∞. In the next two cases, σ(x) = −x will do that, and in the last case,
σ(x) = ωx is in the group and will fix 0 and ∞. This property constrains Aut(ϕ)
later.

Let ϕ ∈ Rat1d. A point [x0 : x1] ∈ P1 is called a fixed point for ϕ if ϕ(x0, x1) =
(x0, x1). Let t = x1/x0. Hence, ϕ can be taken as a rational function in t, say

ϕ(t) = F (t)
G(t) . Then t is a fixed point if ϕ(t) = t, which implies that

S(t) := F (t)− tG(t) = 0

which is at most a degree (d+1) equation in t. Hence, a degree d rational function
has at most (d+ 1) fixed points.

We denote the set of fixed points of ϕ by Fix(ϕ). Notice that if Fix(ϕ) =
{w1, . . . , ws} with s ≤ d+1 is known, then we can uniquely determine the rational
function ϕ by solving the linear system F (wi) − wiG(wi) = 0, for i = 1, . . . , s,
assuming s = d+1. A function ϕ has less than d+1 fixed points exactly when the
discriminant ∆(S, t) = 0.

An automorphism of ϕ is called a σ ∈ PGL2(k) such that ϕ ◦ σ = σ ◦ ϕ.

P1
x

ϕ

��

σ // P1
x

ϕ

��
P1
z σ

// P1
z
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The set of automorphisms of ϕ is denoted by

Aut(ϕ) := {σ ∈ PGL2(k) : ϕ
σ = ϕ}.

It forms a group. For any σ ∈ Aut(ϕ), by Fix(σ) we denote its set of fixed points.

Remark 3. As in the case of curves, there is some confusion in the literature
on what is called the automorphism group of ϕ. Throughout this paper, by G :=
Aut(ϕ), we mean the full automorphism group of ϕ(x) over the algebraic closure
of k and not simply some G ↪→ Aut(ϕ) as it is used frequently by many authors.

Lemma 4. Let ϕ ∈ Rat1d and σ ∈ Aut(ϕ). Then
(i) If p ∈ Fix(σ), then ϕ(p) ∈ Fix(σ).
(ii) If w ∈ Fix(ϕ), then σ(w) ∈ Fix(ϕ).

Hence, Aut(ϕ) acts on Fix(ϕ) by permutation. Moreover, if σ ∈ Aut(ϕ) is an
automorphism of order m, then m divides the cardinality of Fix(ϕ) \ Fix(σ). The
dimension of the corresponding locus δ = s− 1, where s is the number of orbits on
Fix(ϕ) \ Fix(σ).

Proof. For any p ∈ Fix(ϕ), σ(p) ∈ Fix(ϕ) since

ϕ(σ(p)) = σ(ϕ(p)) = σ(p),

which implies that σ(p) ∈ Fix(ϕ). If w ∈ Fix(ϕ) then

σ(w) = σ(ϕ(w)) = ϕ(σ(w)),

which implies that σ(w) ∈ Fix(ϕ).
Since ⟨σ⟩ has no fixed points in Fix(ϕ) \ Fix(σ), then it acts transitively on

Fix(ϕ) \ Fix(σ). Hence, |σ| divides its cardinality. We have fixed 0 and ∞ on P1
x.

Hence, the dimension of the family of rational functions ϕ(x) is one less than the
number of roots of F and G. Hence, this number is exactly s− 1. □

Proposition 1. Let σ ∈ Aut(ϕ) such that |σ| = m. Then H := ⟨σ⟩ acts on ϕ−1(0)
and ϕ−1(∞). Hence, ϕ(x) can be written as

ϕ(x) = xψ(xm) or ϕ(x) =
1

x
ψ(xm),

where ψ(x) is a rational function. Moreover, for G ∼= A4, S4, A5 then m = 2, 4, 5.

Proof. Let σ ∈ G and t ∈ Fix(σ). For each α ∈ ϕ−1(t) we have

ϕ(σ(α)) = σ(ϕ(α)) = σ(t) = t.

Then ⟨σ⟩ acts on the fiber ϕ−1(t). From Remark 2 there is σ ∈ G which fixes 0 and
∞. Then ⟨σ⟩ acts on ϕ−1(0) and ϕ−1(∞). Then points in ϕ−1(0) and ϕ−1(∞) are

α1, ξα1, . . . , ξ
m−1α1, α2, ξα2, . . . , ξ

m−1α2, . . . , αr, ξαr, . . . , ξ
m−1αr,

β1, ξβ1, . . . , ξ
m−1β1, β2, ξβ2, . . . , ξ

m−1β2, . . . , βr, ξβr, . . . , ξ
m−1βr,

where r = d−1
m and α1, . . . , αr, β1, . . . , βr ∈ k \ {0, 1,∞}. Therefore,

F(x) =

r∏
j=1

m−1∏
i=0

(
x− ξimαj

)
=

r∏
j=1

(xm − αmj ),

G(x) =

r∏
j=1

m−1∏
i=0

(
x− ξimβj

)
=

r∏
j=1

(xm − βmj )
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Thus, ϕ(x) can be written as

ϕ(x) = x
F(xm)

G(xm)
= x

xrm + ar−1x
(r−1)m + · · · a1xm + a0

xrm + br−1x(r−1)m + · · · b1xm + b0

or ϕ(x) = G(xm)
x F(xm) . This completes the proof. □

The above Lemmas give us a way to determine ϕ(x) once an automorphism
σ ∈ Aut(ϕ) is given. Since the goal of this paper is to investigate computational
and machine learning techniques for d = 3 for the rest of the paper we focus solely
on this case.

5. Automorphism Groups of Rational Cubics

The automorphism groups for cubic rational functions and their parametric fam-
ilies were determined in [4] and in [18]. Here we give a brief treatment to sort out
some mistakes and furthermore determine explicitly families in terms of invariants
ξ0, . . . , ξ5 and in each case give a formula for the rational cubic defined over its field
of moduli.

Lemma 5. Let ϕ ∈ Rat1d with d = 3. Then the following hold:
(i) Elements of Aut(ϕ) have orders at most 4.
(ii) Aut(ϕ) is isomorphic to one of the following: {e}, C2, C3, C4, V4, D4, or A4.

Proof. Suppose that σ ∈ Aut(ϕ) is of order n. There is no loss of generality to

assume that σ =

(
1 0
0 ζn

)
, where ζn denotes a fixed primitive n-th root of unity

in k. Then, ϕσ = ϕ if and only if ϕ commutes with σ. If so, we can construct the
pair (F,G), defining ϕ, from the set of pairs of monomials (xr0y3−r0 , xr1y3−r1) such
that n|r0 − r1 − 1. Since |r0 − r1 − 1| ≤ 4, then n ≤ 4.

As a result, we only need to characterize cubic rational functions that have
an automorphism of order 2, 3, or 4 in terms of their invariants (recall that if
σ ∈ Aut(ϕ) has order 4, then σ2 ∈ Aut(ϕ) has order 2). From (i), we eliminate Cn
and D2n for n ≥ 5, as well as A5, from consideration. Thus, possible groups are
{1}, C2, C3, C4, V4, D4, and A4, as evidenced by the families below. We exclude
S4 as shown in the rest of this section. □

Assume ϕ ∈ Rat13 as in Eq. (18). LetW := Fix(ϕ) be the set of fixed points, and
σ ∈ Aut(ϕ) is a non-trivial automorphism of order n. By Lem. 5 we have n = 2, 3,
or 4. The case of n = 4 is a subcase of n = 2. Hence, there are two main cases
n = 2 and n = 3.

5.1. Involutions. Let σ ∈ Aut(ϕ) such that |σ| = 2. We can pick a coordinate
in P1 as in Eq. (26) such that σ(z) = −z. Then Fix(σ) = {0,∞}. From Lem. 4,
we have that ϕ(0), ϕ(∞) ∈ Fix(σ). Hence, there are two cases: ϕ fixes points
of Fix(σ) or ϕ permutes points of Fix(σ) and each of them corresponds to an
irreducible surface as we will see next.

5.1.1. ϕ fixes points of Fix(σ) = {0,∞}. In this case, ϕ(z) fixes both points in
Fix(σ), so ϕ(0) = 0 and ϕ(∞) = ∞. By Prop. 1, ϕ(z) = zψ(z2), where ψ(z2) is
a rational function ensuring ϕ is degree 3 with σ(z) = −z as an automorphism.
Hence,

ϕ(z) = zψ(z2) =
z(z2 + a)

z2 + b
,
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for a, b ∈ k. Assuming b ̸= 0 (to avoid a pole at z = 0), rewrite ϕ(z) as

ϕ(z) =
1

b
· z(z

2 + a)
1
b z

2 + 1
=

1

b
· z

3 + az
1
b z

2 + 1
.

Define t = a and s = 1
b and we have

ϕ(z) =
1

b
· z

3 + tz

sz2 + 1
.

Since ϕ = F (z)
G(z) is defined up to a scalar multiple, we can scale by b, yielding:

ϕ(z) = z
z2 + t

sz2 + 1
,

for t, s ∈ k, with s ̸= 0. This matches the family in [4]. Then

I6(ϕ) = t2s2 − 2ts+ 1 = (ts− 1)2 ̸= 0.

Hence, in this case ϕ is conjugate to a rational function written in the form

(27) ϕ(z) =
z3 + tz

sz2 + 1
, p = [1 : 0 : t : 0 : 0 : s : 0 : 1]

for some t, s ∈ k such that ts ̸= 1.

5.1.2. ϕ permutes points of Fix(σ). We are still under assumption that there is an
involution σ ∈ Aut(ϕ) such that σ(z) = −z. Assume that ϕ permutes 0 and ∞.
From Prop. 1, we have that ϕ(z) = 1

zψ(z
2), for some degree two rational function

ψ(z). Lem. 4 implies that σ permutes points in ϕ−1(0) and ϕ−1(∞) which are the
numerator and denominator of ψ. Thus

ϕ(z) =
1

z

z2 + b

z2 + a
.

Similarly as the previous case, we can normalize b = 1 and get

(28) ϕ(z) =
sz2 + 1

z3 + tz
, p = [0 : s : 0 : 1 : 1 : 0 : t : 0]

for some t, s ∈ k. The resultant in this case is

I6(ϕ) = −(ts− 1)2 ̸= 0

which implies that ts ̸= 1.

Remark 4. Notice that ϕ(z) in Eq. (28) is the reciprocal of the function ϕ given
in Eq. (27).

5.2. Extra involutions. Assume that there is another involution τ ∈ Aut(ϕ).
Since σ fixes 0 and ∞, then τ must permute. Hence τ(z) = 1

z . Thus we have the
Klein 4-group V4 embedded in the automorphism group Aut(ϕ).

Proposition 2. Let ϕ(z) be a cubic rational function with an involution, written
as

ϕ(z) =
az2 + b

z(cz2 + d)
,
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where a, b, c, d ∈ k. If ϕ(z) has another involution, then ϕ(z) is conjugate under
PGL(2, k) to one of:

ϕ(z) =
tz2 + 1

z3 + tz
or ϕ(z) =

sz2 − 1

z3 − sz
,

for some t, s ∈ k.

Proof. Let us see what condition on coefficients a, b, c, d are enforced by τ(z) = 1
z .

ϕ(τ(z)) = ϕ

(
1

z

)
=

a
(
1
z

)2
+ b

1
z

(
c
(
1
z

)2
+ d

) =
a
z2 + b
c
z2 + d

z

=
a+bz2

z2

c+dz2

z3

=
z(a+ bz2)

c+ dz2
,

τ(ϕ(z)) =
1

az2+b
z(cz2+d)

=
z(cz2 + d)

az2 + b
.

Then ϕ(τ(z)) = τ(ϕ(z)) implies

a+ bz2

c+ dz2
=
cz2 + d

az2 + b
,

which implies

abz4 + (a2 + b2)z2 + ab = cdz4 + (c2 + d2)z2 + cd.

Hence we must have ab = cd and a2 + b2 = c2 + d2. We solve this system of
equations for b, d in terms of a, c. Recall that c ̸= 0, otherwise deg ϕ < 3. Then we
have (b, d) = (c, a) or (b, d) = (−c,−a). If (b, d) = (c, a) we have

ϕ(z) =
az2 + c

cz3 + az
=
tz2 + 1

z3 + tz
,

for t = a/c. If (b, d) = (−c,−a) we have

ϕ(z) =
az2 − c

cz3 − az
=
tz2 − 1

z3 − tz
,

for t = a/c. Thus, ϕ(z) is conjugate to tz2+1
z3+tz or sz2−1

z3−sz . □

5.2.1. First case. Let us denote the locus of all ϕ(z) is in the first case of the Prop. 2
by L4. Notice that if ϕ ∈ L2 this case implies that t = s. Thus,

(29) ϕ(z) =
tz2 + 1

z3 + tz
, p = [0, t, 0, 1, 1, 0, t, 0]

Similarly one can show that if ϕ ∈ L1 then we still get t = s, which is a confirmation
that this locus will be the intersection L1 ∩ L2. We will denote it by L4.

We denote by
u := t2

Then I6 invariant is

I6(ϕ) = −(t2 − 1) = −(u− 1)2 ̸= 0.

5.2.2. Second case. Let us denote the locus of all ϕ(z) is in the first case of the
Proposition by L4. Notice that if ϕ ∈ L2 this case implies that t = −s.

(30) ϕ(z) =
sz2 − 1

z3 − sz
, p = [0, s, 0,−1, 1, 0,−s, 0]

The resultant here is I6(ϕ) = −s(s2 − 1)2 ̸= 0 for s ̸= 0,±1.
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5.2.3. Alternating group: Aut(ϕ) ∼= A4. Suppose we can extend such a V4 subgroup
within Aut(ϕ) to anA4 subgroup. In this case, from Eq. (26), we can take σ(z) = −z
and τ(z) = z+i

z−i . Then

(31) ϕ(z) =
z3 − 3

−3z2
, p = [1 : 0 : 0 : −3 : 0 : −3 : 0 : 0]

5.2.4. Dihedral group D4. Here, we can assume that σ is an automorphism of the
form σ(z) = ζ4z. where ζ4 is a fixed primitive 4th root of unity in k, is an auto-
morphism.

Since σ2 in Aut(ϕ) acts as σ(z) = −z, a situation we discussed earlier, we can
begin with a rational function of the form in L1 or L2, which corresponds to

p = [1 : 0 : t : 0 : 0 : s : 0 : 1] or p = [0 : t : 0 : 1 : 1 : 0 : s : 0]

Verifying that σ ∈ Aut(ϕ), we can confirm that the first case does not yield any
possible rational cubic functions, while in the second case, it must be the case that
t = s = 0. Hence

(32) ϕ =
1

z3
, p = [0, 0, 0, 1, 1, 0, 0, 0]

5.3. An automorphism of order 3. Let σ be of order 3 taken as in Eq. (26), so
σ(z) = ζ3z. Then, by Prop. 1, we have ⟨σ⟩ acts on the fiber ϕ−1(0), which implies
that the numerator of ϕ(z) is a polynomial p(z) = z3 − t, for some t ∈ k⋆. We can
pick 0 and ∞ in ϕ−1(∞). Since ϕ−1(∞) is an orbit of ⟨σ⟩ and σ fixes them, then
one of them must have multiplicity 2. Thus, we can take

(33) ϕ(z) =
z3 − t

z
, p = [1 : 0 : 0 : −t : 0 : 0 : 1 : 0]

for some t ∈ k. The resultant is I6(ϕ) = −t3, which gives the condition that t ̸= 0.

G ϕ(z) p ∈ P7 dim Eq. Li ξ(ϕ)

L1 C2
z3+tz
sz2+1 [1, 0, t, 0, 0, s, 0, 1] 2 (35) ξ2 = ξ3 = 0

L2 C2
sz2+1
z3+tz [0, s, 0, 1, 1, 0, t, 0] 2 (36) ξ5 = 0

L3 C3
z3−t
z [1, 0, 0,−t, 0, 0, 1, 0] 1 (43)

L4 V4
tz2+1
z3+tz [0, t, 0, 1, 1, 0, t, 0] 1 (38) ξ2 = ξ3 = ξ5 = 0

L5 V4
tz2−1
z3−tz [0, t, 0,−1, 1, 0,−t, 0] 1 (39) ξ0 = ξ3 = ξ4 = ξ5 = 0

L6 A4
z3−3
−3z2 [1, 0, 0,−3, 0,−3, 0, 0] 0 (41) [0 : 0 : 18 : 0 : 0 : 0]

L7 D4
1
z3 [0, 0, 0, 1, 1, 0, 0, 0] 1 (40) [0 : −2 : 0 : 0 : 0 : 0]

Table 2. Automorphism loci of degree 3 rational functions
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This completes all the cases. We summarize all cases in Table 2. These results
agree with results in [4]. Justifying the last two columns of the table will be the
focus of the next section.

Inclusions among the loci are described in diagram Fig. 1. Notice that in each
node of the diagram Fig. 1 we also put the invariants which vanish in that locus.
Justifying these inclusions , computing the invariants, and describing each locus in
terms of these invariants will be done in the next section.

0

1

2

4 {e} : L0

C2 : L1

ξ2, ξ3

C2 : L2

ξ5

C3 : L3
V4 : L4

ξ2, ξ3, ξ5

V4 : L5

ξ0, ξ3, ξ4, ξ5

A4 : L6

ξ2 ̸= 0
D4 : L7

ξ1 ̸= 0

Figure 1. The inclusions among the loci for degree 3 rational functions

Remark 5. Those familiar with automorphisms groups of hyperelliptic curves no-
tice the similarity between the two problems. The zeroes and poles of ϕ(z) now
play the role of the Weierstrass points of the hyperelliptic curve. While the reduced
automorphism group of a hyperelliptic curve acts on the set of Weierstrass points,
in our case here Aut(ϕ) acts on the set of zeroes of ϕ(z) and on the set of poles. A
general treatment of automorphism group of ϕ(z) can be done similarly to that of
hyperelliptic curves; see [12].

6. Computation of the Loci with Fixed Automorphism Group

In this section, we compute the loci of rational cubics with a fixed automorphism
group in terms of invariants of rational cubics. We follow an analogy with algebraic
curves and build on previous work by the third author in computing similar loci in
the moduli space of genus 2 curves; see [15, Thm 3] or [13].

The first question is where this locus lies and what type of invariants we should
use to compute it. Let L denote the image in P(2,2,3,3,4,6) of the map

Φ : (c0, . . . , c8) → (ξ0(c0, . . . , c8), . . . , ξ5(c0, . . . , c8)) .

This image is a weighted projective variety in P(2,2,3,3,4,6). Alternatively, one can
use the Veronese embedding in Eq. (22) and compute the locus of such rational
functions as a projective variety, or even as an affine variety in terms of absolute
invariants i1, . . . , i5.
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Computing these loci in terms of i1, . . . , i5 is straightforward but highly ineffi-
cient. We could express i1, . . . , i5 in terms of the parameters described for each
family in the previous section and then use a Gröbner basis approach to eliminate
those parameters. However, the degrees of the resulting equations are very large,
making this approach computationally challenging even for the relatively simple
families considered here.

A more efficient method is to compute the loci as subvarieties of weighted pro-
jective spaces. This requires a modification of Buchberger’s algorithm to handle
computations in a weighted projective space.

6.1. Gröbner Bases for Weighted Homogeneous Ideals. Consider a subvari-
ety in P(w0, . . . , wn) defined parametrically by a set of polynomials over m param-
eters. The coordinates are given by:

xi = ξi, i = 0, . . . , n,

where each ξi is a polynomial in k[t1, . . . , tm], and t1, . . . , tm are parameters with
assigned degrees (typically positive integers). The image of this parameterization
is a variety whose dimension depends on m; for m independent parameters, the
dimension is typically m − 1. To define this variety explicitly, we seek polynomial
relations among x0, . . . , xn that hold for all parameter values, and these relations
must be weighted homogeneous with respect to the weights (w0, . . . , wn). In other
words, the relations must be satisfied not only by tuples (ξ0, . . . , ξn) but also by all
(λw0ξ0, . . . , λ

wnξn).
To compute these relations, we construct the ideal

I = ⟨x0 − ξ0, x1 − ξ1, . . . , xn − ξn⟩

in the polynomial ring k[t1, . . . , tm, x0, . . . , xn]. The defining equations of the pa-
rameterized variety’s image in P(w0, . . . , wn) are the elements of the elimination
ideal:

I ∩ k[x0, . . . , xn],
which consists of all polynomials in x0, . . . , xn satisfied by the parameterization. By
choosing a monomial order that eliminates the parameters t1, . . . , tm, the Gröbner
basis of I includes polynomials free of tj , representing the desired relations.

To facilitate elimination while respecting the weighted structure, we assign de-
grees to both parameters and coordinates, say deg(tj) = dj and deg(xi) = wi.
Typically, we set dj = 1.

The weighted degree lexicographic order (wdeglex) compares monomials first
by their total weighted degree, then lexicographically, with parameters ordered
above coordinates (e.g., t1 > · · · > tm > x0 > · · · > xn). This ensures that the
Gröbner basis computation prioritizes elimination of the parameters, yielding a set
of generators for I ∩ k[x0, . . . , xn] that define the variety’s image in the coordinate
ring of P(w0, . . . , wn).

The relations obtained from the elimination ideal are algebraically correct but
may not be weighted homogeneous, as their terms can have differing weighted
degrees. To make them valid defining equations in P(w0, . . . , wn), a homogenization
step is required:

(1) Degree Computation: For a relation F =
∑
cαx

α, compute the weighted
degree of each term as deg(xα) =

∑n
i=0 wiαi.
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(2) Target Degree: Determine a common degree d, typically the least com-
mon multiple (LCM) of the degrees of all terms in F , i.e., d = LCM(deg(xα)).

(3) Exponent Adjustment: Transform each term cαx
α into cαx

αkα , where
kα = d/deg(xα), ensuring deg(xαkα) = kα ·deg(xα) = d. Adjust coefficients
as needed to preserve the relation’s zero set.

This process yields a weighted homogeneous polynomial that defines the same va-
riety but adheres to the grading of P(w0, . . . , wn).

6.1.1. General Algorithm. For a weighted projective space P(w0, . . . , wn) with weights
w = (w0, . . . , wn) and a parameterization xi = ξi(t1, . . . , tm):

(1) Construct the ideal I = ⟨x0−ξ0, x1−ξ1, . . . , xn−ξn⟩ in k[t1, . . . , tm, x0, . . . , xn].
(2) Compute the Gröbner basis B of I using a weighted degree lexicographic

order with weights (d1, . . . , dm, w0, . . . , wn) and order t1 > · · · > tm > x0 >
· · · > xn.

(3) Extract the set R = {f ∈ B | f ∈ k[x0, . . . , xn]}, the generators of the
elimination ideal.

(4) For each polynomial f ∈ R:
• If f is single-term or all terms have the same weighted degree, retain
f as-is.

• Otherwise, compute d = LCM(deg(xα)) over all terms in f , and adjust
f to F =

∑
cαx

αkα , where kα = d/deg(xα), ensuring F is weighted
homogeneous of degree d.

(5) Define the ideal J = ⟨Rhomog⟩ in k[x0, . . . , xn], which specifies the subvari-
ety in P(w0, . . . , wn).

This method uses Gröbner bases to eliminate parameters and enforces weighted
homogeneity, providing a computational framework for studying subvarieties in
weighted projective spaces with arbitrary weights (w0, . . . , wn). The method is
described in [3] and related works by its authors.

In our situation, however, there is an additional consideration. Our invari-
ants ξ0, . . . , ξ5 are homogeneous polynomials when applied to the definition of ϕ
in Eq. (5), meaning they are homogeneous in c0, . . . , c7. However, they are not
necessarily homogeneous with respect to our specializations for t and s from the
previous section. Thus, we first homogenize these defining equations by introducing
another variable, say t0, and then apply the above procedure.

Next, we explicitly compute the loci as weighted projective varieties for each
case, illustrating the approach described above.

6.2. Locus L1. We assume that ϕ(z) is given as in Eq. (27). Computing the
invariants ξ(ϕ), we obtain:

ξ0 = 2(t+ 3)(s+ 3), ξ1 =
1

2
(t− 1)(s− 1), ξ2 = ξ3 = 0,

ξ4 = −1

3

(
t2s2 + 2t2s+ 3t2 + 2ts2 − 8ts− 6t+ 3s2 − 6s+ 9

)
,

ξ5 = −(t− s)2(ts+ t+ s− 3).

There is an involution permuting t and s. Let u and v denote invariants of that
involution, defined as:

u = t+ s and v = ts.
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We can express all invariants in terms of u and v as follows:

ξ0 = 2(v + 3u+ 9), ξ1 =
1

2
(v − u+ 1), ξ2 = ξ3 = 0,

ξ4 = −1

3

(
v2 + 3u2 + 2uv − 14v − 6u+ 9

)
,

ξ5 = (u2 − 4v)(3− u− v).

Also, I6 = (ts− 1)2 = (v − 1)2 ̸= 0, so v ̸= 1. Moreover, J6 is given by:

(34) J6 = 4(s+ 3)(t+ 3)(st+ s+ t− 3)2 = 4(3u+ v + 9)(u+ v − 3)2.

By computing a Gröbner basis for the weighted homogeneous system as described
above, we obtain the following degree 24 weighted hypersurface:

L1 : ξ60ξ
6
1 − 54ξ40ξ

4
1ξ

2
4 − 27

4
ξ40ξ

3
1ξ

2
5 − 27ξ30ξ

4
1ξ

2
5 − 108ξ30ξ

3
1ξ

3
4 + 729ξ20ξ

2
1ξ

4
4 +

729

4
ξ20ξ1ξ

2
4ξ

2
5

+
729

64
ξ20ξ

4
5 + 729ξ0ξ

2
1ξ

2
4ξ

2
5 + 2916ξ0ξ1ξ

5
4 +

243

8
ξ0ξ1ξ

4
5 +

729

2
ξ0ξ

3
4ξ

2
5 +

729

4
ξ21ξ

4
5

+ 1458ξ1ξ
3
4ξ

2
5 + 2916ξ64 +

729

2
ξ4ξ

4
5 = 0

(35)

We can also compute L1 in terms of the absolute invariants by eliminating u and
v. These computations are lengthy but express u and v as rational functions of the
absolute invariants. Thus, the map in Eq. (24) becomes:

Φ1 : k2 \ {v = 1} → k3

(u, v) → (i1, i2, i5),

which is invertible when J6 ̸= 0, i.e., (u + v − 3)(v + 3u + 9) ̸= 0. The map Φ1

provides a birational parametrization of L1.

Remark 6. The invariants u = t+s and v = ts mirror dihedral invariants in genus
2 curves [5,15], symmetric under swapping t and s. Here, they are invariant under
parameter rescaling and conjugation adjusting t and s, simplifying computations
akin to symmetric polynomials in root permutations—a pattern likely extending to
higher-degree rational functions.

If ξ0 = 0, then t = −3 or s = −3, and the moduli point is:

ξ(ϕ) = [0 : 8 : 0 : 0 : 0 : 0],

a singular point in L1 with automorphism group isomorphic to D4 (cf. Eq. (40)).

Remark 7. Note that the factor u2 = 4v (or equivalently t = s) makes ξ5 = 0.
This locus corresponds to L4 (cf. Eq. (38)), where ϕ(z) has an extra involution.
Since L4 lies in the intersection of L1 and the next locus, we will discuss it in detail
later.

6.3. Locus L2. Assume that ϕ is given as in Eq. (28). We follow the same approach
as above. Computing ξ(ϕ), we get:

ξ0 = −2(t+ s)2, ξ1 =
1

6

(
(t− s)2 − 12

)
, ξ2 = − 1

36
(s− t)

(
(t− s)2 + 36

)
,

ξ3 =
2

3
(s− t)(t+ s)2, ξ4 = −1

9
(t+ s)2

(
(s− t)2 + 12

)
, ξ5 = 0.

We define invariants:
u := (t+ s)2 and v := s− t,



24 ESLAM BADR, ELIRA SHASKA, AND TONY SHASKA

and express the invariants in terms of u and v as follows:

ξ0 = −2u, ξ1 =
1

6
(v2 − 12), ξ2 = − 1

36
v(v2 + 36),

ξ3 =
2

3
uv, ξ4 = −1

9
u(v2 + 12), ξ5 = 0.

Here, we have:

J6(ϕ) = −16(s+ t)4 = −16u2 and I6 =
v2 − u+ 4

4
.

Using a Gröbner basis to eliminate u and v, we determine the equations for L2 in
P(2, 2, 3, 3, 4, 5) as follows:

(36) L2 :



ξ5 = 0,

ξ20ξ1 + 3ξ0ξ4 − 3ξ23 = 0,

ξ20ξ2 +
1

2
ξ0ξ1ξ3 − 3ξ3ξ4 = 0,

ξ0ξ1ξ4 − ξ0ξ2ξ3 −
1

2
ξ1ξ

2
3 + 3ξ24 = 0

The absolute invariants are:

i1 =
1024u6

(−v2 + u− 4)2
, i2 =

(v2 − 12)6

2916(−v2 + u− 4)2
, i3 =

v4(v2 + 36)4

104976(−v2 + u− 4)2
,

i4 =
256v4u4

81(−v2 + u− 4)2
, i5 = − 16u3(v2 + 12)3

729(−v2 + u− 4)2
.

Assuming J6 ̸= 0 (i.e., u ̸= 0), we eliminate u and v, finding:

(37) u = −1

2
ξ0, v = 3

ξ3
ξ0
.

Similarly to the previous case, we define:

Φ2 : k2 \ {u− v2 ̸= 4} → k5

(u, v) → (i1, . . . , i5).

L2 is an irreducible 2-dimensional variety birationally parametrized by the map:

Φ2 : (u, v) → (ξ0, ξ3).

Moreover, the field of moduli of ϕ(z) is F(u, v).
Consider now the case when:

J6 = −16(s+ t)4 = −16u2 = 0,

implying t = −s. The function becomes:

ϕ(z) =
sz2 + 1

z3 − sz
,

and then ξ0 = ξ3 = ξ4 = ξ5 = 0, ξ1 = v2

6 − 1, and ξ2 = −v. This corresponds to
L5, as we will see later.

This concludes the loci L1 and L2 for rational functions with involutions as
described in Section 5.1. The remaining loci are of dimension one or zero, making
their computations simpler. We will address each in detail below.
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6.4. Locus L4. Assume ϕ is as in Eq. (29), with homogeneous parameterization
in P(2,2,3,3,4,6):

ξ(ϕ) =

[
−8t2, −2u2, 0, 0, −16t2u2

3
, 0

]
.

In the affine patch (u = 1):

ξ(ϕ) =

[
−8t2, −2, 0, 0, −16t2

3
, 0

]
.

The Gröbner basis with weighted degree lexicographic order is:

(38) L4 :

{
ξ0ξ1 + 3ξ4 = 0,

ξ2 = ξ3 = ξ5 = 0

This defines a 1-dimensional variety in P(2,2,3,3,4,6).

6.5. Locus L5. Assume ϕ as in Eq. (30). Its invariants are

ξ(ϕ) =

[
0,

2(s2 + 3)

3
, −2s(s− 3)(s+ 3)

9
, 0, 0, 0

]
and I6 = (s− 1)2(s+ 1)2. Here we use the absolute invariants i2 and i3 and have
the following system

i2 t
4 − 2i2 t

2 + i2 −
4

9
t4 − 8

3
t2 − 4 = 0

i3 t
4 − 2i3 t

2 + i3 −
4

81
t6 +

8

9
t4 − 4t2 = 0

By taking the resultant of these two polynomials with respect to t we get the affine
version of this 1-dimensional variety

16i32 − 72i22i3 + 81i2 i
2
3 − 96i22 + 216i2i3 − 36i23 + 144i2 − 96i3 − 64 = 0

By replacing for i2 and i3 their definitions we get a degree 18 weighted hypersurface

L5 : 72ξ61ξ
2
2 − 16ξ91 + 96ξ61I6 − 81ξ31ξ

4
2 − 216ξ31ξ

2
2I6 − 144ξ31I

2
6 + 36ξ42I6

+ 96ξ22I
2
6 + 64I36 = 0

(39)

6.6. Locus L7. Assume ϕ as in Eq. (32).. Its invariants are

(40) ξ(ϕ) = [0,−2, 0, 0, 0, 0] ≡ [0, 1, 0, 0, 0, 0]

Notably, the involution σ′(z) = 1
z acts as an additional automorphism for ϕ = y3

x3 ,
confirming that the loci L(C4) and L(D4) are identical. Additionally, σ0 /∈ Aut(ϕ),
implying that the locus of L(S4) is empty.

6.7. Locus L6. Assume ϕ as in Eq. (29). The moduli point is

(41) L6 : ξ(ϕ) = [0 : 0 : 18 : 0 : 0 : 0] ≡ [0 : 0 : 1 : 0 : 0 : 0]

Furthermore, it should be noticed that in this case J6(ϕ) = 0.
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6.8. Locus L3. Assume ϕ as in Eq. (33). Next, we compute its invariants

ξ(ϕ) =

[
−2,

1

6
,
27t+ 2

72
, −27t+ 2

3
,
54t− 1

9
, − t(27t− 16)

4

]
Notice that I6 = t ̸= 0. The absolute invariants are

i1 =
64

t6
, i2 =

1

46656t6
, i3 =

(27t+ 2)4

26873856t2
, i4 =

(27t+ 2)4

81t2
, i5 =

(54t− 1)3

729t2

By eliminating t from these equations, we can express t as a rational function in
terms of i1, i5 and get the following affine curve

614787626176508399616i1i
6
5 + 44264709084708604772352i1i

5
5 + 49589822592i21i

3
5

+ 1150882436202423724081152i1i
4
5 − 6248317646592i21i

2
5 + 12984314664847857399889920i1i

3
5

+ i31 + 35704672266240i21i5 + 59491769009848364814041088i1i
2
5 − 4760622968832i21

+ 79322358679797819752054784i1i5 + 7554510350456935214481408i1

− 3996019499184929743169818581358608384 = 0

(42)

We can express this as a weighted projective curve by substituting for i1 and i5:

I46ξ
9
0 − 2834352I36ξ

6
0ξ

3
4 + 24794911296ξ30ξ

9
4 + 3779136I56ξ

6
0 + 892616806656I26ξ

3
0ξ

6
4

+ 7140934453248I46ξ
3
0ξ

3
4 + 4760622968832I66ξ

3
0 + 1999004627104432128I76 = 0

(43)

This completes all the cases.

Remark 8. We computed each locus as a weighted projective variety in the weighted
projective space P(2,2,3,3,4,6). From the arithmetic point of view we are interested on
rational points on these weighted projective varieties. Rational points on weighted
varieties are discussed in [8] based on weighted heights which give in general a more
efficient approach then projective heights.

7. A Database of Cubic Rational Functions

In this section, we construct a comprehensive database of cubic rational functions
over the rational numbersQ, denoted Rat13, leveraging the weighted projective space
P5
ω(Q) with weights ω = (2, 2, 3, 3, 4, 6) as a parametrization framework. This

database, denoted Ph3 , catalogs rational functions ϕ(x) =
f0(x)
f1(x)

∈ Q(x) of degree 3,

where f0(x) and f1(x) are polynomials of degrees 3 and 2, respectively, ensuring the
degree of the rational function is deg(ϕ) = deg(f0)− deg(f1) = 3. Each function is
represented as a projective point in P7

Q, and we impose constraints on height and
coprimality to define the dataset systematically.

A cubic rational function ϕ(x) is given as in Eq. (18) and corresponds to a
point Pϕ = [c0 : c1 : · · · : c7] ∈ P7

Q. We define the naive height of ϕ as H(ϕ) =
max{|ci| | i = 0, . . . , 7}, and restrict our dataset to functions with H(ϕ) ≤ h, where
h is a specified height bound. To ensure well-definedness, we require that the
coefficients are coprime, i.e., gcd(c0, c1, . . . , c7) = 1, and that the resultant I6(ϕ) =
Res(f0, f1) ̸= 0, guaranteeing that ϕ has no common roots between numerator and
denominator. Thus, we define:

Ph3 := {Pϕ ∈ P7
Q | HQ(Pϕ) ≤ h, gcd(c0, . . . , c7) = 1, I6(ϕ) ̸= 0}.
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For each ϕ ∈ Ph3 , we compute several invariants and properties to enrich the data-
base. These include the automorphism group Aut(ϕ), determined by checking
against the classification of possible groups for cubic rational functions (e.g., {e},
C2, D4, etc.) as outlined in Table 2, the invariants p = [ξ0, ξ1, ξ2, ξ3, ξ4, ξ5] in
P5
ω(Q), and the absolute invariants (i1, i2, i3, i4, i5). Additionally, we calculate the

invariant J6(ϕ) and the weighted moduli height ĥ(ϕ), which measures the height
of the invariants in the weighted projective space. The data is stored in a Python
dictionary, with keys given by the coefficient tuples (c0, c1, . . . , c7) and values as
lists containing:

• H(ϕ): the naive height,
• p = (ξ0, ξ1, ξ2, ξ3, ξ4, ξ5): the projective invariants,

• ĥ(ϕ): the weighted moduli height,
• J6(ϕ): an additional invariant,
• Aut(ϕ): the automorphism group (e.g., ’{e}’),
• (i1, i2, i3, i4, i5): the absolute invariants.

An example entry from the database is:

(2, 3,−1,−3, 1, 2,−3, 1) 7→ [3, (32, 12, 13,−164,−424, 2572), 5.66, 89360,′ {e}′,(
1073741824

44521
,
2985984

44521
,
531441

712336
,
723394816

44521
,−76225024

44521

)]
.

Here, the key (2, 3,−1,−3, 1, 2,−3, 1) represents the coefficients of

ϕ(x) =
2 + 3x− x2 − 3x3

1 + 2x− 3x2 + x3
,

withH(ϕ) = 3, invariants ξi mapping to a point in P5
ω(Q), a weighted height of 5.66,

J6 = 89360, the trivial automorphism group {e}, and the corresponding absolute
invariants.

To illustrate the dataset’s scope, we present the distribution of automorphism
groups for rational cubics with height H(ϕ) ≤ 4 in Table 3. This table categorizes
points by their associated group labels (L0 to L7), which correspond to {e}, C2

variants, D4, etc., as determined by prior classification efforts.

Table 3. Distribution of automorphism groups for rational cubics
of height H(ϕ) ≤ 4

h L0 L1 L2 L3 L4 L5 L6 L7 Total
1 2223 9 8 6 0 0 0 2 2248
2 84267 34 12 17 0 0 0 2 84332
3 814126 81 66 44 1 22 18 50 814408

Total 900616 124 86 67 1 22 18 54 900988

The table reveals a significant skew toward the trivial group {e} (labeled L0),
reflecting that 900616 out of 900988 points possess this automorphism group up to
height 3. Minority groups such as D4 (L3) and A4 (L7) appear less frequently, con-
sistent with their rarity in cubic rational functions. Notably, the data for height 4 is
incomplete in this summary, but earlier computations indicate a total of 350679 dis-
tinct moduli points across all heights considered, suggesting substantial conjugacy
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among the functions. For instance, multiple entries with Aut(ϕ) ∼= D4 are isomor-
phic to the canonical form ϕ(z) = 1

z3 , reducing the number of unique equivalence
classes.

This database provides a robust foundation for subsequent analysis, including
the machine learning classification of automorphism groups discussed in Section 8.
The inclusion of both projective and absolute invariants, alongside height metrics
and group labels, enables a detailed exploration of the geometric and arithmetic
properties of Rat13.

8. Classification of Automorphism Groups of Rational Functions
Using Machine Learning

In this study, we aim to classify the automorphism groups of rational functions
using machine learning techniques, drawing inspiration from graded neural networks
as detailed in [16] and [10]. Our investigation proceeds in two phases: an initial
model employing the coefficients of rational functions as input features, followed
by a refined approach using invariants to enhance classification performance, par-
ticularly for minority classes. The dataset exhibits extreme class imbalance, with
the distribution of automorphism groups shown in Table 4, where the dominant
class, denoted ’{e}’ (previously group 6), constitutes 99.84% of the samples, while
minority classes are significantly underrepresented.

Automorphism Group Proportion of Data Samples in Test Set

{e} (6) 99.84% 179,910
C2-2 (2) 0.12% 214
C2-1 (1) 0.02% 29
D4 (3) 0.01% 16
V4-1 (4) 0.0075% 17
A4 (0) 0.0067% 12

5 0.0002% 2

Table 4. Class distribution in the dataset, with group labels
mapped to notation used in subsequent tables.

8.1. Initial Model: Using Coefficients as Features. We formulate the classi-
fication of automorphism groups as a supervised learning problem, where the input
features are the coefficients of rational functions, and the target variable is the cor-
responding automorphism group. A Random Forest classifier with 100 estimators
is trained on these features, achieving an overall accuracy of 99.97%. However, this
high accuracy is deceptive due to the dataset’s skewness, which favors the majority
class ’{e}’. The performance metrics, detailed in Table 5, reveal that while ’{e}’
is perfectly classified (precision, recall, and F1-score of 1.00), minority classes suf-
fer from low recall—e.g., 0.14 for ’C2-1’ and 0.41 for ’V4-1’—indicating frequent
misclassification into the dominant class.

8.1.1. Addressing Class Imbalance. To counteract the pronounced class imbalance,
we apply class weighting to the Random Forest classifier, a technique designed to
prioritize minority classes during training. The weight for each class i is computed
as
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Class Precision Recall F1-score

A4 (0) 1.00 0.58 0.74
C2-1 (1) 1.00 0.14 0.24
C2-2 (2) 0.97 0.91 0.94
D4 (3) 1.00 0.94 0.97
V4-1 (4) 0.78 0.41 0.54
{e} (6) 1.00 1.00 1.00

Table 5. Performance metrics for the initial model using coeffi-
cients as features.

wi =
N

C × ni
,

where N is the total number of samples, C is the number of classes, and ni is
the number of samples in class i. This adjustment assigns higher weights to un-
derrepresented classes, inversely proportional to their frequency, aiming to balance
their influence in the model. After retraining with these weights, the overall accu-
racy remains high at 99.96%, and the updated performance metrics are presented
in Table 6. Notably, recall improves for some minority classes—e.g., ’A4’ increases
from 0.58 to 0.83—but remains inadequate for others, with ’C2-1’ dropping to 0.10
and ’V4-1’ to 0.29. These results suggest that while class weighting mitigates some
effects of imbalance, it alone cannot fully compensate for the limitations of using
coefficients as features.

Class Precision Recall F1-score

A4 (0) 1.00 0.83 0.91
C2-1 (1) 1.00 0.10 0.19
C2-2 (2) 0.98 0.90 0.94
D4 (3) 1.00 0.94 0.97
V4-1 (4) 0.71 0.29 0.42
{e} (6) 1.00 1.00 1.00

Table 6. Performance metrics after applying class weighting to
the coefficient-based model.

8.2. Using Invariants as Input Features. Given the shortcomings of the coefficient-
based approach, particularly its struggle with minority classes despite class weight-
ing, we propose a refined model using invariants—denoted value[1] in the dataset—
as input features. These invariants, derived quantities unchanged under specific
transformations, are hypothesized to encapsulate the structural properties of ratio-
nal functions more effectively, potentially enhancing classification accuracy across
all classes, with a pronounced benefit for minority groups. To test this, we replace
the coefficients with invariants and train a new Random Forest classifier, configured
with 100 estimators and employing the same class weighting strategy as above.

The dataset is partitioned into training and testing sets consistently with the
initial model, and performance is evaluated using precision, recall, and F1-score,
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focusing on minority classes such as ’A4’, ’C2-1’, ’C2-2’, ’D4’, and ’V4-1’. The
results, shown in Table 7, demonstrate a substantial improvement, with an overall
accuracy of

Accuracy = 0.9999223076837701 ≈ 99.992%.

Class Precision Recall F1-score Support

A4 (0) 1.00 1.00 1.00 12
C2-1 (1) 1.00 0.93 0.96 29
C2-2 (2) 1.00 0.95 0.98 214
D4 (3) 1.00 1.00 1.00 16
V4-1 (4) 0.89 1.00 0.94 17
{e} (6) 1.00 1.00 1.00 179,910

Accuracy 1.00 180,198
Macro avg 0.98 0.98 0.98 180,198
Weighted avg 1.00 1.00 1.00 180,198

Table 7. Performance metrics using invariants as input features
with class weighting.

The recall for minority classes improves dramatically: ’C2-1’ rises from 0.10 to
0.93, ’C2-2’ from 0.90 to 0.95, and ’A4’, ’D4’, and ’V4-1’ achieve perfect recall of
1.00. The majority class ’{e}’ retains perfect classification, with ’V4-1’ showing a
slight precision drop to 0.89 due to minor false positives. These outcomes validate
our hypothesis, demonstrating that invariants offer a superior feature set for dis-
tinguishing rare automorphism groups, significantly outperforming the coefficient-
based model.

In conclusion, while the initial model using coefficients excels for the majority
class, its performance on minority classes remains limited, even with class weighting.
By contrast, the invariant-based model, bolstered by the same weighting strategy,
achieves near-perfect accuracy and robust recall across all classes, highlighting the
efficacy of invariants in capturing essential properties of rational functions and
addressing class imbalance effectively.

9. Conclusions and Further Directions

In this paper, we have explored the application of machine learning techniques to
study degree 3 rational functions on the projective line, with a focus on their moduli
space M1

3, which we identify as the weighted projective space P5
ω(Q) with weights

ω = (2, 2, 3, 3, 4, 6). We constructed a dataset P4
3 comprising 2,078,697 rational

functions over Q with naive height bounded by 4, and employed supervised learning
methods to classify their automorphism groups. This endeavor has provided a
computational lens through which to examine the symmetry properties inherent in
these functions.

The theoretical framework, developed in Sections 2 through 4, rests on the invari-
ants ξ0, ξ1, ξ2, ξ3, ξ4, ξ5, which serve as coordinates in P5

ω(Q), and the identification
of automorphism loci L1, . . . ,L7, corresponding to the finite subgroups C2, C3,
C4, V4, D4, and A4 of PGL2(Q). These loci, defined by explicit equations in the
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invariants, parameterize rational functions with non-trivial automorphisms. This
study demonstrates the application of machine learning techniques to classify these
automorphism groups, leveraging the weighted projective space structure.

In Section 8, we translated this algebraic structure into a practical computational
approach. Initial attempts using a Random Forest classifier directly on the coef-
ficients of rational functions achieved high overall accuracy but performed poorly
on minority classes due to extreme class imbalance. By incorporating class weight-
ing, we improved the recall for some minority classes, but limitations persisted.
However, when we switched to using the invariants ξ0, . . . , ξ5 as input features, the
Random Forest classifier achieved a substantial improvement, with an overall ac-
curacy of approximately 99.992% and near-perfect classification across all classes,
including the minority ones. This highlights the efficacy of using invariants in
capturing the essential properties of rational functions for classification tasks.

A critical observation emerges from our experiments: machine learning models
applied directly to the coefficients of rational functions perform inadequately in
classifying Aut(ϕ), whereas models operating on the invariants excel. This dis-
parity underscores the importance of the invariant space W3, where each point
uniquely represents an isomorphism class, compared to the raw coefficients un-
der the PGL2(Q)-action. The success of the invariant-based approach motivates
further exploration of neuro-symbolic methods, where a symbolic layer computes
invariants before classification, potentially enhancing performance while retaining
interpretability. For higher degrees, where the generators of the ring of invariants
R(d+1,d−1) are not fully known, this approach could be adapted once such invariants
are determined or approximated.

This work opens several avenues for future research. First, extending the dataset
to include rational functions of higher heights or over different fields could provide
deeper insights into the distribution of automorphism groups and the geometry of
M1

d. Second, developing neuro-symbolic models that integrate symbolic computa-
tion of invariants with machine learning could offer a powerful tool for studying
rational functions of higher degrees. Finally, addressing the challenge of deter-
mining invariants for d > 3 remains a crucial step for scaling this framework,
potentially enabling the classification of automorphism groups where traditional
algebraic methods are intractable.

In summary, this integration of machine learning with arithmetic dynamics pro-
vides a practical means to classify rational functions and enhances our understand-
ing of their dynamical properties across M1

d. By offering a computationally efficient
alternative to traditional methods, particularly for higher degrees where automor-
phism groups defy complete classification, this work suggests a pathway to combine
data-driven insights in arithmetic dynamics and could possibly even be adopted for
M2

d.
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