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Abstract. This paper develops a hierarchical clustering algorithm for weighted
projective spaces Pq, utilizing a Finsler metric dF ([z], [w]) and its rational
analogue dF,Q([z], [w]) to define distances that preserve the non-Euclidean
geometry of these quotient manifolds. Defined via geodesic integrals of a
scaling-invariant Finsler norm weighted by the grades q = (q0, q1, . . . , qn),
these metrics satisfy true metric properties—including the triangle inequal-
ity —overcoming the limitations of the non-metric dissimilarity measure from
prior work.

1. Introduction

The study of data clustering in non-Euclidean manifolds presents significant chal-
lenges and opportunities, particularly in spaces endowed with intricate geometric
structures, such as weighted projective spaces. These spaces, defined as quotients
of complex vector spaces under weighted scaling actions, naturally arise in diverse
fields, including arithmetic geometry, dynamical systems, and data analysis, where
projective symmetries govern the underlying data. Traditional clustering methods,
often reliant on Euclidean metrics, fail to capture the intrinsic geometry of such
spaces, leading to distorted groupings that obscure meaningful patterns. Motivated
by the need to address these limitations, this paper introduces a novel hierarchical
clustering algorithm tailored for weighted projective spaces, employing a Finsler
metric to define distances that respect the manifold’s weighted structure. The
theoretical framework developed herein builds on our prior work [1], which success-
fully applied a non-metric dissimilarity measure to cluster rational points in moduli
spaces, and extends it through a rigorous metric-based approach, offering a robust
foundation for geometric and arithmetic applications.

This work is inspired by advances in graded computational frameworks within
our broader program to develop machine learning techniques for graded spaces, as
detailed in [2,3]. In [2], neural networks operate on graded vector spaces where co-
ordinates are assigned grades, analogous to the weights q = (q0, q1, . . . , qn) defining
Pq. This grading is extended in [3] to graded neural networks (GNNs), which weight
features by grades, as exemplified by the moduli space P(2,4,6,10). These frameworks
suggest that GNNs could preprocess points in Pq, learning graded representations
that enhance our clustering algorithm’s geometric fidelity.

Weighted projective spaces, denoted Pq for weights q = (q0, q1, . . . , qn), are
quotients of Cn+1 \ {0} under the equivalence relation

(z0, z1, . . . , zn) ∼ (λq0z0, λ
q1z1, . . . , λ

qnzn)
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for λ ∈ C∗. These spaces generalize standard projective spaces, incorporating
weights that reflect varying degrees of coordinates, as seen in the moduli space
of genus two curves P(2,4,6,10), where Igusa invariants have degrees 2, 4, 6, and
10 [4]. The geometric complexity of Pq, characterized by its quotient structure,
necessitates distance measures that preserve scaling symmetries (see Section 2
for preliminaries). While our earlier work [1] utilized a dissimilarity measure
d([z], [w]) = infλ,µ∈C∗ ∥(λq0z0, . . . , λ

qnzn) − (µq0w0, . . . , µ
qnwn)∥, which effectively

clustered points but lacked the triangle inequality, this paper introduces a Finsler
metric dF ([z], [w]) and its rational counterpart dF,Q([z], [w]), defined via geodesic
integrals of a Finsler norm (Section 3), to provide true metric properties—including
the triangle inequality, rigorously proven in Section 3.1—essential for robust cluster-
ing algorithms. Preprocessing steps, detailed in Section 5.2, normalize points using
the weighted norm

∑n
k=0 qk|zk|2 = 1 for geometric applications and wgcd = 1 for

arithmetic ones, ensuring consistency across contexts.
The Finsler norm, defined for a point [z] ∈ Pq with representative z ∈ Cn+1 \{0}

and tangent vector v ∈ Cn+1, is given in Eq. (35) and induces the Finsler distance
in Eq. (36). This construction, inspired by Finsler geometry principles [5], ensures
non-negativity, symmetry, zero distance implies equality, and the triangle inequal-
ity, making dF ([z], [w]) a true metric. For rational points in Pq(Q), a similar norm
FQ([z], v) defines dF,Q([z], [w]), enabling arithmetic applications. The development
of these metrics, detailed through the lifting of curves to Cn+1 \ {0} and the char-
acterization of Finsler geodesics, provides a geometrically faithful framework for
clustering, theoretically extending the capabilities of our prior non-metric approach
[6].

The hierarchical clustering algorithm, designed to operate directly in Pq, con-
structs a dendrogram by iteratively merging clusters based on the Finsler metric,
using linkage criteria such as single or average linkage. The algorithm’s correctness
and stability, proven through rigorous mathematical statements, ensure reliable par-
titioning of datasets, preserving the weighted projective geometry. Preprocessing
steps, including normalization and dimensionality reduction via weighted princi-
pal component analysis, enhance computational efficiency while maintaining geo-
metric fidelity. The computational challenge of geodesic optimization, addressed
through variational methods and discrete approximations, is theoretically manage-
able, though practical scalability awaits empirical validation [7].

Our primary applications lie in arithmetic geometry and dynamical systems. In
the moduli space of genus two curves, represented as P(2,4,6,10)(Q), the algorithm
clusters rational points by their Igusa invariants, identifying curves with (n, n)-
split Jacobians and supporting isogeny-based cryptographic studies. Building on
prior results [1], the Finsler metric theoretically refines these groupings, preserving
arithmetic patterns such as weighted height distributions. In Arithmetic Dynamics,
this method applies the algorithm to rational functions on the projective line P1,
clustering points in weighted projective spaces to analyze dynamical invariants like
periodic point structures [8]. Moreover, the graded neural networks from [3] offer
promising applications, potentially enhancing clustering through graded feature
representations.

Theoretically, the Finsler metric’s true metric properties enable compatibility
with a wide range of machine learning algorithms, from clustering to classification,
directly in Pq. Future directions include developing efficient geodesic computation



FINSLER METRIC CLUSTERING IN WEIGHTED PROJECTIVE SPACES 3

methods, exploring alternative clustering algorithms like spectral clustering, and
extending the framework to fields such as robotics and quantum computing, where
non-Euclidean geometries are prevalent. A significant avenue is the development
of graded neural networks, assigning weights to features to model projective data,
potentially revolutionizing non-Euclidean data analysis [3]. While the practical
efficacy of the Finsler metric awaits experimental validation, contrasting with the
established performance of d([z], [w]), this paper establishes a robust theoretical
foundation, advancing the study of clustering in weighted projective spaces with
profound implications for arithmetic geometry, dynamical systems, and beyond.

2. Preliminaries

2.1. Weighted projective spaces (WPS). Let F be a field and q0, q1, . . . , qn
be positive integers called weights. The tuple of weights is denoted by q :=
(q0, q1, . . . , qn). The weighted projective space Pq is defined as the quotient space
of Fn+1 \ {0} under the equivalence relation

(1) (z0, z1, . . . , zn) ∼ (λq0z0, λ
q1z1, . . . , λ

qnzn)

for all λ ∈ F∗, where F∗ represents the multiplicative group of non-zero elements in
F. A point in Pq is an equivalence class [z] = [z0 : z1 : · · · : zn], with the weights qi
governing the scaling of each coordinate. This construction extends the standard
projective space, recovered when q0 = q1 = · · · = qn = 1. For the purposes of this
paper, we primarily consider F = C for geometric clustering applications and F = Q
for arithmetic geometry contexts, addressing both the geometric and Diophantine
aspects of weighted projective spaces. The weights q define a grading structure
analogous to the graded vector spaces in [2,3], positioning Pq as a natural framework
for advancing machine learning techniques within our program for graded spaces.

Remark 1. The quotient structure of Pq under weighted scaling informs the con-
struction of the Finsler metric in Section 3, ensuring that distances respect the
manifold’s weighted geometry.

2.2. Heights on WPS. To study the arithmetic properties of points in weighted
projective spaces, we focus on rational points in Pq(Q), where coordinates zi ∈ Q
and the equivalence relation employs scalings λ ∈ Q∗. Drawing on the framework es-
tablished in [9], we normalize representatives of rational points to define a weighted
height function that quantifies their arithmetic complexity. This graded structure
supports our program’s goal, as outlined in [2], to develop machine learning meth-
ods for arithmetic data analysis, potentially leveraging graded neural networks from
[3]. For a point [z] = [z0 : z1 : · · · : zn] ∈ Pq(Q), a normalized representative is
chosen as (x0, x1, . . . , xn) ∈ Zn+1 \ {0} such that the weighted greatest common
divisor, denoted wgcd(x0, x1, . . . , xn), equals 1. The wgcd is the largest positive in-
teger d for which there exists a λ ∈ Q∗ satisfying λqixi/d ∈ Z for all i = 0, 1, . . . , n.
This normalization ensures that the representative is unique up to scaling by roots
of unity in Q∗, providing a canonical form for arithmetic analysis.

The weighted height of a point [z] ∈ Pq(Q), using its normalized representative
(x0, x1, . . . , xn), is defined as

(2) hw([z]) = max
i=0,...,n

(
|xi |1/qi

)
.
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This height function is invariant under the weighted scaling action, since scaling the
representative (x0, . . . , xn) by λ ∈ Q∗ transforms each coordinate xi to λqixi, and
the term |λqixi |1/qi = |λ| |xi |1/qi preserves the maximum up to a constant factor
that cancels in the equivalence class. The weighted height serves as a measure of
arithmetic complexity, enabling the ordering of rational points in databases or the
analysis of Diophantine properties. For instance, in the moduli space P(2,4,6,10)(Q),
the weighted height quantifies the complexity of Igusa invariants, facilitating appli-
cations in arithmetic geometry as explored in [1].

Remark 2. For rational points in Pq(Q), the normalization using wgcd = 1 is cru-
cial for arithmetic applications, such as clustering with the rational Finsler distance
dF,Q([z], [w]) in Section 5, distinct from the geometric normalization

∑n
k=0 qk|zk|2 =

1 used in Section 5.2.

2.3. Distances on WPS. For clustering applications, we assume F = C. The
distance between two points [z], [w] ∈ Pq is defined as

(3) d([z], [w]) = inf
λ,µ∈C∗

∥(λq0z0, λ
q1z1, . . . , λ

qnzn)− (µq0w0, µ
q1w1, . . . , µ

qnwn)∥,

where ∥·∥ denotes the Euclidean norm in Cn+1. This distance quantifies the minimal
Euclidean separation between representatives of [z] and [w] under weighted scalings,
respecting the quotient structure of Pq.

We first establish that this distance is well-defined and finite.

Lemma 1. For any [z], [w] ∈ Pq, the distance function

(4) d([z], [w]) = inf
λ,µ∈C∗

∥(λq0z0, . . . , λ
qnzn)− (µq0w0, . . . , µ

qnwn)∥

is well-defined and finite.

Proof. Define the function

(5) f(λ, µ) = ∥(λq0z0, . . . , λ
qnzn)− (µq0w0, . . . , µ

qnwn)∥.
We must demonstrate that the infimum of f(λ, µ) over λ, µ ∈ C∗ is finite and
independent of the choice of representatives for [z] and [w].

Since ∥ · ∥ is the Euclidean norm, f(λ, µ) ≥ 0. As [z], [w] ∈ Pq, the vectors
z = (z0, . . . , zn), w = (w0, . . . , wn) ∈ Cn+1 \ {0}. Normalize representatives using
a weighted norm:

(6) ∥z∥a =

(
n∑

k=0

qk |zk |2
)1/2

, ∥w∥a =

(
n∑

k=0

qk |wk |2
)1/2

,

and set z′ = z/∥z∥a, w′ = w/∥w∥a, so
∑n

k=0 qk |z′k |
2
= 1,

∑n
k=0 qk |w′

k |
2
= 1. The

distance becomes:

(7) d([z], [w]) = inf
λ,µ∈C∗

∥(λq0z′0, . . . , λ
qnz′n)− (µq0w′

0, . . . , µ
qnw′

n)∥.

Evaluate at λ = 1, µ = 1:

(8) f(1, 1) = ∥(z′0 − w′
0, . . . , z

′
n − w′

n)∥ =

(
n∑

k=0

|z′k − w′
k |

2

)1/2

.

Since z′k, w
′
k ∈ C, each |z′k − w′

k |
2 is finite, so f(1, 1) < ∞, providing an upper

bound for the infimum.
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Consider the behavior as |λ| → ∞, µ fixed:

(9) f(λ, µ)2 ≈
n∑

k=0

|λqkz′k |
2
=

n∑
k=0

|λ|2qk |z′k |
2
.

Since z′ ̸= 0, some z′k ̸= 0, and |λ|2qk → ∞, so f(λ, µ) → ∞. Similarly, if |µ| → ∞,
terms |µ|2qk |w′

k |
2 dominate. If |λ| → 0:

(10) f(λ, µ) ≈ ∥(µq0w′
0, . . . , µ

qnw′
n)∥ = |µ|

(
n∑

k=0

|w′
k |

2

)1/2

,

which is finite for fixed µ.
The function satisfies f(tλ, tµ) = |t| f(λ, µ) for t ∈ C∗. Set µ = eiϕ, so |µ| = 1,

and let λ = reiθ. Then:

(11) f(r, θ, ϕ) =

(
n∑

k=0

∣∣rqkeiqkθz′k − eiqkϕw′
k

∣∣2)1/2

.

The infimum over θ, ϕ ∈ [0, 2π) is over a compact set, and f is continuous. As

r → ∞, f → ∞; as r → 0, f →
(∑n

k=0 |w′
k |

2
)1/2

. Thus, the infimum over r, θ, ϕ is
finite.

The infimum is invariant under the choice of representatives, as scaling z by λ′qk

adjusts λ to λλ′. Hence, d([z], [w]) is well-defined and finite. □

Lemma 2. The function d([z], [w]) on Pq, defined as

(12) d([z], [w]) = inf
λ,µ∈C∗

∥(λq0z0, . . . , λ
qnzn)− (µq0w0, . . . , µ

qnwn)∥,

satisfies:
(1) d([z], [w]) ≥ 0,
(2) d([z], [w]) = d([w], [z]),
(3) d([z], [w]) = 0 if and only if [z] = [w].

Proof. Define f(λ, µ) = ∥(λq0z0, . . . , λ
qnzn)−(µq0w0, . . . , µ

qnwn)∥. Since ∥·∥ is the
Euclidean norm, f(λ, µ) ≥ 0. Thus, d([z], [w]) = infλ,µ∈C∗ f(λ, µ) ≥ 0, establishing
d([z], [w]) ≥ 0.

To prove d([z], [w]) = d([w], [z]), compute

(13) d([w], [z]) = inf
λ′,µ′∈C∗

∥(λ′q0w0, . . . , λ
′qnwn)− (µ′q0z0, . . . , µ

′qnzn)∥.

Set λ′ = µ, µ′ = λ, yielding
(14)
∥(µq0w0, . . . , µ

qnwn)−(λq0z0, . . . , λ
qnzn)∥ = ∥(λq0z0, . . . , λ

qnzn)−(µq0w0, . . . , µ
qnwn)∥,

as ∥v − u∥ = ∥u− v∥. Hence, the infima are equal, so d([w], [z]) = d([z], [w]).
To show d([z], [w]) = 0 if and only if [z] = [w], first assume [z] = [w], so there

exists α ∈ C∗ such that wk = αqkzk for all k. Choose λ = α, µ = 1, giving

(15) λqkzk − µqkwk = αqkzk − αqkzk = 0.

Thus, f(α, 1) = 0, so d([z], [w]) = 0. Conversely, if d([z], [w]) = 0, then infλ,µ f(λ, µ) =
0. There exist sequences λn, µn ∈ C∗ such that

(16) ∥(λq0
n z0 − µq0

n w0, . . . , λ
qn
n zn − µqn

n wn)∥ → 0.
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Hence, λqk
n zk − µqk

n wk → 0 for each k. For some k with zk ̸= 0,

(17) wk = lim
n→∞

(
λn

µn

)qk

zk.

Set αn = λn/µn. For all k, j with zk, zj ̸= 0, we have wk/zk = αqk
n , wj/zj = α

qj
n ,

implying wk/zk = (wj/zj)
qk/qj . Thus, [z] = [w]. If zk = 0, then wk = 0, consistent

with the equivalence. □

This distance is particularly suitable for clustering in weighted projective spaces
because it respects the equivalence relation defined by the weights. Specifically, it
is invariant under the weighted scaling action:

(18) d([z], [w]) = d([λq0z0, . . . , λ
qnzn], [µ

q0w0, . . . , µ
qnwn])

for any λ, µ ∈ C∗. This ensures that the clustering is based on the intrinsic geom-
etry of the space, rather than on specific choices of representatives for the points.
In many applications, such as image analysis or genomic data, the data points nat-
urally reside in a weighted projective space due to inherent symmetries or scaling
properties. By employing a distance that accounts for these properties, our clus-
tering algorithm can effectively group points that are similar in a geometrically
meaningful way. This distance serves as a valid measure of dissimilarity for clus-
tering purposes, enabling algorithms such as hierarchical clustering to partition the
data effectively.

Remark 3. Computing the exact value of d([z], [w]) involves solving an optimiza-
tion problem over λ and µ, which can be computationally intensive. In practice, we
approximate this infimum by sampling a finite set of λ and µ values or by employing
numerical optimization methods to find sufficiently close approximations.

Working directly in the weighted projective space allows us to leverage the inher-
ent geometric structure of the data, which can lead to more efficient and accurate
clustering compared to traditional methods that might require projecting the data
into a different space. By preserving the weighted scaling equivalences, our ap-
proach can capture symmetries and invariances that are crucial in applications
such as computer vision and genomic data analysis. Furthermore, as demonstrated
in [1] and [8], this direct approach can offer computational advantages, particularly
in high-dimensional or heterogeneous data settings.

2.4. Rational points. For arithmetic applications, we consider the subset Pq(Q)
of points with rational coordinates zi ∈ Q, where the equivalence relation uses
scalings λ ∈ Q∗. Points in Pq(Q) are normalized using the weighted greatest
common divisor to facilitate arithmetic analysis. For a point [z] = [z0 : z1 : · · · :
zn] ∈ Pq(Q), we select a representative [x0 : x1 : · · · : xn] with coordinates xi ∈ Z
such that the weighted greatest common divisor wgcd(x0, x1, . . . , xn) = 1. The
wgcd is defined as the largest positive integer d for which there exists a λ ∈ Q∗

satisfying λqixi/d ∈ Z for all i = 0, 1, . . . , n. This normalization ensures a canonical
representative, unique up to scaling by roots of unity in Q∗.

The weighted height of a point [z] ∈ Pq(Q), using its normalized representative
[x0 : x1 : · · · : xn], is defined as

(19) hw([z]) = max
i=0,...,n

(
|xi |1/qi

)
.
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This height is invariant under the weighted scaling action, as scaling (x0, . . . , xn)

by λ ∈ Q∗ yields coordinates λqixi, and |λqixi |1/qi = |λ| |xi |1/qi , preserving the
maximum up to a factor that cancels in the equivalence class. The weighted height
quantifies the arithmetic complexity of rational points, enabling their ordering in
databases or the study of Diophantine properties, such as in moduli spaces of alge-
braic curves as explored in [1].

For rational points, we define a rational distance between [z], [w] ∈ Pq(Q) as

(20) dQ([z], [w]) = inf
λ,µ∈Q∗

(
n∑

i=0

|λqixi − µqiyi |2
)1/2

,

where [x0 : x1 : · · · : xn] and [y0 : y1 : · · · : yn] are normalized representatives
with xi, yi ∈ Z and wgcd(x0, x1, . . . , xn) = wgcd(y0, y1, . . . , yn) = 1. The use of
’infimum’ reflects that, over the discrete set Q∗, a minimum may not be attained
due to the density of rational scalings in R∗, but the infimum captures the limit
of achievable distances, ensuring a well-defined measure. This distance extends the
geometric clustering framework to rational points, respecting the weighted scaling
action over Q∗.

Lemma 3. The function dQ([z], [w]) on Pq(Q), defined as

(21) dQ([z], [w]) = inf
λ,µ∈Q∗

(
n∑

i=0

|λqixi − µqiyi |2
)1/2

,

where [x0 : x1 : · · · : xn] and [y0 : y1 : · · · : yn] are normalized representatives with
wgcd(x0, x1, . . . , xn) = wgcd(y0, y1, . . . , yn) = 1, satisfies:

(1) dQ([z], [w]) ≥ 0,
(2) dQ([z], [w]) = dQ([w], [z]),
(3) dQ([z], [w]) = 0 if and only if [z] = [w].

Proof. Define g(λ, µ) =
(∑n

i=0 |λqixi − µqiyi |2
)1/2

. Since the sum of squared dif-
ferences is non-negative, g(λ, µ) ≥ 0, so dQ([z], [w]) = infλ,µ∈Q∗ g(λ, µ) ≥ 0, estab-
lishing dQ([z], [w]) ≥ 0.

To prove dQ([z], [w]) = dQ([w], [z]), compute

(22) dQ([w], [z]) = inf
λ′,µ′∈Q∗

(
n∑

i=0

|λ′qiyi − µ′qixi |
2

)1/2

.

Set λ′ = µ, µ′ = λ, yielding

(23)
n∑

i=0

|µqiyi − λqixi |2 =

n∑
i=0

|λqixi − µqiyi |2 ,

as |a− b|2 = |b− a|2. Thus, the infima are equal, so dQ([w], [z]) = dQ([z], [w]).
To show dQ([z], [w]) = 0 if and only if [z] = [w], first assume [z] = [w], so there

exists α ∈ Q∗ such that yi = αqixi for all i. Choose λ = α, µ = 1, giving

(24) λqixi − µqiyi = αqixi − αqixi = 0.

Thus, g(α, 1) = 0, so dQ([z], [w]) = 0. Conversely, if dQ([z], [w]) = 0, then
infλ,µ g(λ, µ) = 0. There exists a sequence (λn, µn) ∈ (Q∗)2 such that g(λn, µn) →
0, implying λqi

n xi−µqi
n yi → 0 for each i. For some i with xi ̸= 0, yi = limn→∞(λn/µn)

qixi.
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Set αn = λn/µn. For all i, j with xi, xj ̸= 0, yi/xi = αqi
n , yj/xj = α

qj
n , so

yi/xi = (yj/xj)
qi/qj , implying [z] = [w]. If xi = 0, then yi = 0, consistent with the

equivalence. □

2.5. The triangle inequality. The distance functions d([z], [w]) and dQ([z], [w])
are effective dissimilarity measures for clustering, but their behavior with respect
to the triangle inequality merits careful consideration. For

(25) d([z], [w]) = inf
λ,µ∈C∗

∥(λq0z0, . . . , λ
qnzn)− (µq0w0, . . . , µ

qnwn)∥,

the infimum over complex scalings λ, µ ∈ C∗ introduces a continuum of choices,
optimized independently for each pair of points. Similarly, for

(26) dQ([z], [w]) = inf
λ,µ∈Q∗

(
n∑

i=0

|λqixi − µqiyi |2
)1/2

,

the infimum over rational scalings λ, µ ∈ Q∗ is also pair-specific. This independent
optimization can lead to configurations where the triangle inequality d([u], [w]) ≤
d([u], [v]) + d([v], [w]) or dQ([u], [w]) ≤ dQ([u], [v]) + dQ([v], [w]) does not hold, as
the scalings that minimize distances for different pairs may not align additively.

To illustrate this for d([z], [w]), consider the weighted projective space P(2,1) with
weights (2, 1). Select points [u] = [1 : 0], [v] = [1 : ϵ], and [w] = [0 : 1] for small
ϵ > 0. Compute the distances approximately:

For d([u], [v]), evaluate

(27) d([u], [v]) = inf
λ,µ∈C∗

√
|λ2 − µ|2 + |µϵ|2.

As ϵ → 0, the second term |µϵ|2 dominates for small µ, suggesting d([u], [v]) ≈ ϵ
with appropriate λ, µ.

For d([v], [w]),

(28) d([v], [w]) = inf
λ,µ∈C∗

√
|λ|2 + |λϵ− µ|2.

Choosing λ ≈ µ/ϵ, the second term minimizes to near zero, yielding d([v], [w]) ≈
1− ϵ.

For d([u], [w]),

(29) d([u], [w]) = inf
λ,µ∈C∗

√
|λ2 |2 + |µ|2 =

√
1 + 1 =

√
2.

For small ϵ, we have d([u], [v]) + d([v], [w]) ≈ ϵ + (1 − ϵ) = 1, while d([u], [w]) =√
2 ≈ 1.414. Thus,

√
2 > 1, violating the triangle inequality. A similar construction

applies to dQ([z], [w]), where rational scalings yield analogous violations due to
independent optimization.

This violation arises because the optimal λ, µ for each pair are chosen inde-
pendently, preventing the additive alignment required for the triangle inequality.
Consequently, both d([z], [w]) and dQ([z], [w]) function as dissimilarity measures
rather than true metrics, yet remain effective for clustering applications, such as
hierarchical clustering, where the triangle inequality is not essential. The weighted
height and distances provide a dual perspective: the height hw([z]) orders points by
arithmetic complexity, while the distances d([z], [w]) and dQ([z], [w]) group points
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geometrically, enhancing data analysis in contexts like moduli spaces where both
geometric and arithmetic structures are significant, as demonstrated in [1].

3. Finsler Metric on Weighted Projective Spaces

To define a distance on the weighted projective space Pq, we introduce a Finsler
metric that induces a true metric, offering a theoretical framework for potential
clustering applications. The weighted projective space Pq, as a quotient of Cn+1 \
{0} under a weighted scaling action, requires careful consideration of curves and
their tangent vectors to define a Finsler metric. We begin by detailing the process
of lifting curves from Pq to Cn+1 \ {0}, which leads to the definition of the tangent
vector γ̇(t), essential for the Finsler distance.

3.1. Curves and Lifting in Weighted Projective Spaces. The weighted pro-
jective space Pq is defined as the quotient of Cn+1 \ {0} under the equivalence
relation (z0, z1, . . . , zn) ∼ (λq0z0, λ

q1z1, . . . , λ
qnzn) for λ ∈ C∗, where q0, q1, . . . , qn

are positive integers called weights, denoted by q = (q0, q1, . . . , qn). A point
[z] ∈ Pq is an equivalence class [z0 : z1 : · · · : zn], represented by a vector
z = (z0, z1, . . . , zn) ∈ Cn+1 \ {0}. To define a Finsler metric, we consider smooth
curves γ : [0, 1] → Pq, which connect points [z], [w] ∈ Pq and whose tangent vectors
are used to measure distances in the Finsler geometry framework, as described in
[5].

A curve γ : [0, 1] → Pq is smooth if, in local coordinates on Pq, its compo-
nent functions are smooth (i.e., infinitely differentiable). Since Pq is a complex
manifold (or orbifold for non-coprime weights), smoothness implies that γ(t) varies
continuously and differentiably in the quotient space. However, Pq is defined as
a quotient, so to work with γ(t), we must lift it to a curve in the covering space
Cn+1 \ {0}, where differentiation is straightforward. The lifting process constructs
a representative curve whose derivative defines the tangent vector γ̇(t).

Given a smooth curve γ : [0, 1] → Pq with γ(0) = [z] and γ(1) = [w], a lift of
γ(t) is a smooth curve

(30) z(t) = (z0(t), z1(t), . . . , zn(t)) ∈ Cn+1 \ {0}

such that [z(t)] = γ(t) for all t ∈ [0, 1]. That is, z(t) is a representative of the
equivalence class γ(t), satisfying z(t) ̸= 0 and mapping to γ(t) under the quotient
map π : Cn+1 \ {0} → Pq, defined by π(z) = [z]. The lift is not unique, as any
scaled curve

(31) z′(t) = (λ(t)q0z0(t), λ(t)
q1z1(t), . . . , λ(t)

qnzn(t)),

where λ(t) ∈ C∗ is a smooth function, also satisfies [z′(t)] = γ(t).
To construct a lift, consider a local coordinate chart on Pq. For a point [z] ∈ Pq,

suppose zk ̸= 0 for some k. In the chart Uk = {[z0 : · · · : zn] ∈ Pq | zk ̸= 0}, we can
represent [z] by normalizing the k-th coordinate to 1, yielding coordinates

(32) (z0/z
q0/qk
k , . . . , zk−1/z

qk−1/qk
k , 1, zk+1/z

qk+1/qk
k , . . . , zn/z

qn/qk
k ).

If γ(t) lies in Uk, we can choose a representative z(t) = (z0(t), . . . , zn(t)) with
zk(t) = 1, and smoothness of γ(t) ensures the other coordinates zi(t)/zk(t)qi/qk are
smooth functions of t. For a general curve γ(t), which may exit one chart, we cover
[0, 1] with finitely many intervals where γ(t) lies in charts Uki

, and construct z(t)
piecewise, ensuring smoothness by adjusting scalings λ(t) ∈ C∗ to glue the pieces
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across chart transitions. Since Pq is a smooth manifold (or orbifold), such a smooth
lift exists, as the quotient map π is a submersion [4].

The tangent vector γ̇(t) is defined via the lift z(t). The derivative of the lifted
curve is

(33) ż(t) =

(
d

dt
z0(t),

d

dt
z1(t), . . . ,

d

dt
zn(t)

)
∈ Cn+1,

where each żk(t) =
d
dtzk(t) ∈ C is the derivative of the coordinate function zk(t).

This vector ż(t) lies in the tangent space

Tz(t)(Cn+1 \ {0}) ∼= Cn+1.

In the quotient space Pq, the tangent space T[γ(t)]Pq at [γ(t)] = [z(t)] is the quotient
of Tz(t)(Cn+1\{0}) by the tangent vectors of the scaling action’s orbits. The Finsler
norm F ([z], v), defined below, is invariant under this action, so we compute

F (γ(t), γ̇(t)) = F ([z(t)], ż(t)),

where γ̇(t) is represented by ż(t) in the quotient tangent space.
To formalize γ̇(t), consider the differential of the quotient map

π : Cn+1 \ {0} → Pq.

For a point z(t) ∈ Cn+1 \ {0}, the tangent vector ż(t) is mapped to γ̇(t) ∈ T[γ(t)]Pq

via
dπz(t) : Tz(t)(Cn+1 \ {0}) → T[γ(t)]Pq.

The scaling action z 7→ (λq0z0, . . . , λ
qnzn) generates an orbit through z(t), and

vectors tangent to this orbit, such as (αq0z0(t), . . . , α
qnzn(t)), are quotiented out.

If we choose a different lift

z′(t) = (λ(t)q0z0(t), . . . , λ(t)
qnzn(t)),

the derivative is
(34)
ż′(t) =

(
q0λ(t)

q0−1λ̇(t)z0(t) + λ(t)q0 ż0(t), . . . , qnλ(t)
qn−1λ̇(t)zn(t) + λ(t)qn żn(t)

)
.

The Finsler norm F ([z], v) is designed to be invariant under scaling, ensuring

F ([z′(t)], ż′(t)) = F ([z(t)], ż(t)),

so γ̇(t) is well-defined as the equivalence class of ż(t) in T[γ(t)]Pq. This lifting
process, rooted in the quotient structure of Pq as described in [4], allows us to define
the Finsler distance using tangent vectors derived from lifted curves, as detailed in
[5].

For a point [z] ∈ Pq with representative

z = (z0, z1, . . . , zn) ∈ Cn+1 \ {0},

and a tangent vector v = (v0, v1, . . . , vn) ∈ Cn+1, define the Finsler norm

(35) F ([z], v) =

(∑n
k=0 qk |vk |

2
)1/2

(∑n
k=0 qk |zk |

2
)1/2 ·

|
∑n

k=0 qkzkvk |(∑n
k=0 qk |zk |

2
)1/2 .

This norm, weighted by the grading q, aligns with the graded vector spaces in [2,3],
enabling potential integration with graded neural networks for clustering in Pq.
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The induced Finsler distance between points [z], [w] ∈ Pq is defined as

(36) dF ([z], [w]) = inf
γ

∫ 1

0

F (γ(t), γ̇(t)) dt,

where γ : [0, 1] → Pq is a smooth curve satisfying γ(0) = [z] and γ(1) = [w]. This
construction, inspired by Finsler geometry principles as described in [5], adapts the
weighted structure of Pq as a quotient space, as studied in [4], to provide a true
metric, enhancing geometric analysis in clustering contexts.

Lemma 4. The function F ([z], v) defines a Finsler norm on Pq, and the induced
distance dF ([z], [w]) is a well-defined, finite metric satisfying:

(1) dF ([z], [w]) ≥ 0,
(2) dF ([z], [w]) = dF ([w], [z]),
(3) dF ([z], [w]) = 0 if and only if [z] = [w],
(4) dF ([z], [v]) ≤ dF ([z], [w]) + dF ([w], [v]).

Proof. To confirm that F ([z], v) is a Finsler norm, we verify its defining properties
as outlined in [5]. For positive homogeneity, consider λ ∈ C:

F ([z], λv) =

(∑n
k=0 qk |λvk |

2
)1/2

(∑n
k=0 qk |zk |

2
)1/2 ·

∣∣∑n
k=0 qkzkλvk

∣∣(∑n
k=0 qk |zk |

2
)1/2

= |λ|

(∑n
k=0 qk |vk |

2
)1/2

(∑n
k=0 qk |zk |

2
)1/2 ·

|λ| |
∑n

k=0 qkzkvk |

|λ|
(∑n

k=0 qk |zk |
2
)1/2 = |λ|F ([z], v).

(37)

For invariance under the scaling action defining Pq, let z′ = (λq0z0, . . . , λ
qnzn),

λ ∈ C∗. Then:
(38)

n∑
k=0

qk |z′k |
2
=

n∑
k=0

qk |λqkzk |2 = |λ|2
n∑

k=0

qk |zk |2 ,
n∑

k=0

qkz
′
kvk =

n∑
k=0

qkλ
qkzkvk,

so

F ([z′], v) =

(∑n
k=0 qk |vk |

2
)1/2

(
|λ|2

∑n
k=0 qk |zk |

2
)1/2 ·

|
∑n

k=0 qkλ
qkzkvk |(

|λ|2
∑n

k=0 qk |zk |
2
)1/2

=

(∑n
k=0 qk |vk |

2
)1/2

|λ|
(∑n

k=0 qk |zk |
2
)1/2 ·

|λ| |
∑n

k=0 qkzkvk |

|λ|
(∑n

k=0 qk |zk |
2
)1/2 = F ([z], v).

(39)

Non-degeneracy requires F ([z], v) = 0 only for trivial tangent vectors. If F ([z], v) =
0, then either

n∑
k=0

qk |vk |2 = 0,

implying v = 0, or
n∑

k=0

qkzkvk = 0,
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corresponding to the orbit direction v = (αq0z0, . . . , α
qnzn), which is quotiented

out in the tangent space of Pq. Thus, F ([z], v) > 0 for non-trivial tangent vectors
in the quotient space. Smoothness of F ([z], v) follows from the continuity and
differentiability of the norm and inner product terms on the tangent bundle of Pq

minus the zero section, ensuring F ([z], v) is a Finsler norm [6].
To show that dF ([z], [w]) is well-defined and finite, consider a smooth curve

(40) γ : [0, 1] → Pq

with γ(0) = [z] and γ(1) = [w]. As described in the lifting process, we lift γ(t) to
a smooth curve z(t) ∈ Cn+1 \ {0} such that [z(t)] = γ(t), and the tangent vector
γ̇(t) is represented by

ż(t) = (ż0(t), . . . , żn(t)).

The integrand F (γ(t), γ̇(t)) = F ([z(t)], ż(t)) is continuous, as z(t) and ż(t) are
smooth and F is smooth on the tangent bundle. Since [0, 1] is compact, the integral

(41)
∫ 1

0

F (γ(t), γ̇(t)) dt

exists and is finite. The space Pq is path-connected, as it is the quotient of Cn+1\{0}
under a continuous group action, ensuring such curves exist. The infimum over all
smooth curves is finite, as F ([z], v) ≥ 0, and a geodesic path, which exists in Finsler
manifolds [5], yields a finite length. Invariance of F ([z], v) under the scaling action
ensures the integral depends only on the equivalence classes [z] and [w], making
dF ([z], [w]) well-defined.

The metric properties of dF ([z], [w]) are established as follows: For non-negativity,
since F ([z], v) ≥ 0, the integral∫ 1

0

F (γ(t), γ̇(t)) dt ≥ 0,

so dF ([z], [w]) ≥ 0. For symmetry, consider a curve γ(t) from [z] to [w]. The re-
versed curve γ(1−t) from [w] to [z] has tangent vector −γ̇(1−t). Since F ([z],−v) =
F ([z], v) due to the absolute value in the norm, we have

F (γ(1− t),−γ̇(1− t)) = F (γ(t), γ̇(t)),

so the integral along γ(1−t) equals that along γ(t). Thus, dF ([z], [w]) = dF ([w], [z]).
To show zero distance implies equality, if [z] = [w], the trivial path γ(t) = [z] has
γ̇(t) = 0, giving F (γ(t), 0) = 0, so dF ([z], [w]) = 0. Conversely, if dF ([z], [w]) = 0,
the infimum of the integral is zero, implying the geodesic length is zero. Since
geodesics in Finsler manifolds have positive length for distinct points [6], [z] = [w]
must hold. For the triangle inequality, consider geodesics γ1 : [0, 1] → Pq from [z]
to [w] and γ2 : [0, 1] → Pq from [w] to [v]. Concatenate them to form γ : [0, 2] → Pq

with γ(t) = γ1(t) for t ∈ [0, 1] and γ(t) = γ2(t− 1) for t ∈ [1, 2]. Then,∫ 2

0

F (γ(t), γ̇(t)) dt =

∫ 1

0

F (γ1(t), γ̇1(t)) dt+

∫ 1

0

F (γ2(t), γ̇2(t)) dt

≥ dF ([z], [w]) + dF ([w], [v]),

(42)

since the infimum over all paths from [z] to [v] is less than or equal to this length.
Thus, dF ([z], [v]) ≤ dF ([z], [w]) + dF ([w], [v]), with scaling invariance ensuring con-
sistency across the quotient structure. Hence, dF ([z], [w]) is a well-defined, finite
metric. □
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Remark 4. The Finsler distance dF ([z], [w]) provides a true metric for theoretical
clustering applications in Pq, satisfying all metric axioms. Computing dF ([z], [w])
requires numerical optimization to determine geodesics, achievable through varia-
tional methods or discrete path approximations, as discussed in [5].

3.2. Finsler Metric on Rational Points. For arithmetic applications, we define
a Finsler metric on the rational points Pq(Q). For a point [z] ∈ Pq(Q) with normal-
ized representative x = (x0, x1, . . . , xn) ∈ Zn+1, where wgcd(x0, x1, . . . , xn) = 1,
and a tangent vector v = (v0, v1, . . . , vn) ∈ Qn+1, define the rational Finsler
norm

(43) FQ([z], v) =

(∑n
k=0 qk |vk |

2
)1/2

(∑n
k=0 qk |xk |2

)1/2 ·
|
∑n

k=0 qkxkvk |(∑n
k=0 qk |xk |2

)1/2 .
The induced rational Finsler distance is

(44) dF,Q([z], [w]) = inf
γ

∫ 1

0

FQ(γ(t), γ̇(t)) dt,

where γ : [0, 1] → Pq(Q) is a piecewise smooth curve with rational coordinates,
satisfying γ(0) = [z] and γ(1) = [w], aligning with the use of infimum in dQ([z], [w])
due to the discrete nature of Q∗. This rational metric supports our program’s aim,
as outlined in [2], to develop machine learning techniques for graded arithmetic
data, leveraging graded neural networks from [3]. This metric extends the Finsler
framework to rational points, aligning with the arithmetic structure of Pq(Q) as
studied in [4], potentially enabling clustering of Diophantine data.

Lemma 5. The function FQ([z], v) defines a Finsler norm on Pq(Q), and the
induced distance dF,Q([z], [w]) is a well-defined, finite metric satisfying:

(1) dF,Q([z], [w]) ≥ 0,
(2) dF,Q([z], [w]) = dF,Q([w], [z]),
(3) dF,Q([z], [w]) = 0 if and only if [z] = [w],
(4) dF,Q([z], [v]) ≤ dF,Q([z], [w]) + dF,Q([w], [v]).

Proof. To verify that FQ([z], v) is a Finsler norm, we check its properties, following
the framework of [5]. For positive homogeneity, let λ ∈ Q:

FQ([z], λv) =

(∑n
k=0 qk |λvk |

2
)1/2

(∑n
k=0 qk |xk |2

)1/2 ·
|
∑n

k=0 qkxk(λvk)|(∑n
k=0 qk |xk |2

)1/2
=

|λ|
(∑n

k=0 qk |vk |
2
)1/2

(∑n
k=0 qk |xk |2

)1/2 ·
|λ| |

∑n
k=0 qkxkvk |(∑n

k=0 qk |xk |2
)1/2 = |λ|FQ([z], v).

(45)

For invariance, let x′ = (λq0x0, . . . , λ
qnxn), λ ∈ Q∗. Then:

(46)
n∑

k=0

qk |x′
k |

2
=

n∑
k=0

qk |λqkxk |2 = |λ|2
n∑

k=0

qk |xk |2 ,
n∑

k=0

qkx
′
kvk =

n∑
k=0

qkλ
qkxkvk,
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so

FQ([z
′], v) =

(∑n
k=0 qk |vk |

2
)1/2

(
|λ|2

∑n
k=0 qk |xk |2

)1/2 ·
|
∑n

k=0 qkλ
qkxkvk |(

|λ|2
∑n

k=0 qk |xk |2
)1/2

=

(∑n
k=0 qk |vk |

2
)1/2

|λ|
(∑n

k=0 qk |xk |2
)1/2 ·

|λ| |
∑n

k=0 qkxkvk |

|λ|
(∑n

k=0 qk |xk |2
)1/2 = FQ([z], v).

(47)

Non-degeneracy holds, as FQ([z], v) = 0 implies either
∑n

k=0 qk |vk |
2
= 0, so v = 0,

or
∑n

k=0 qkxkvk = 0, corresponding to the quotiented orbit direction in the tangent
space of Pq(Q). The norm is well-defined and continuous on the rational tangent
bundle, satisfying the smoothness requirement for a Finsler norm, adapted to the
discrete rational coordinate structure.

To show that dF,Q([z], [w]) is well-defined and finite, consider a piecewise smooth
curve γ : [0, 1] → Pq(Q) with γ(0) = [z] and γ(1) = [w]. Lift γ(t) to a piece-
wise smooth curve x(t) ∈ Qn+1 \ {0} such that [x(t)] = γ(t). The integrand
FQ(γ(t), γ̇(t)) = FQ([x(t)], ẋ(t)) is piecewise continuous, as x(t) and ẋ(t) are piece-
wise smooth and FQ is continuous on the rational tangent bundle. Since [0, 1] is
compact, the integral

(48)
∫ 1

0

FQ(γ(t), γ̇(t)) dt

exists and is finite. Path-connectedness in Pq(Q) is ensured by rational scalings, as
points in Pq(Q) can be connected via curves with rational coordinates, parameter-
ized by rational functions. The infimum over all piecewise smooth curves is finite,
as FQ([z], v) ≥ 0, and a minimizing path (approximating a geodesic) yields a finite
length. Invariance of FQ([z], v) ensures the integral depends only on [z] and [w].

The metric properties are verified as follows. For non-negativity, since FQ([z], v) ≥
0, the integral

∫ 1

0
FQ(γ(t), γ̇(t)) dt ≥ 0, so dF,Q([z], [w]) ≥ 0. For symmetry, a curve

γ(t) from [z] to [w] has a reversed curve γ(1− t) from [w] to [z] with tangent vec-
tor −γ̇(1 − t). Since FQ([z],−v) = FQ([z], v), the integral along γ(1 − t) equals
that along γ(t), so dF,Q([z], [w]) = dF,Q([w], [z]). For zero distance implies equality,
if [z] = [w], the trivial path γ(t) = [z] has γ̇(t) = 0, giving FQ(γ(t), 0) = 0, so
dF,Q([z], [w]) = 0. If dF,Q([z], [w]) = 0, the infimum is zero, implying the mini-
mizing path has zero length, possible only if [z] = [w], as non-trivial paths have
positive length in Finsler geometry [6]. For the triangle inequality, concatenate
piecewise smooth curves γ1 : [0, 1] → Pq(Q) from [z] to [w] and γ2 : [0, 1] → Pq(Q)
from [w] to [v] to form a path γ : [0, 2] → Pq(Q) by γ(t) = γ1(t) for t ∈ [0, 1] and
γ(t) = γ2(t− 1) for t ∈ [1, 2]. The integral is∫ 2

0

FQ(γ(t), γ̇(t)) dt =

∫ 1

0

FQ(γ1(t), γ̇1(t)) dt+

∫ 1

0

FQ(γ2(t), γ̇2(t)) dt

≥ dF,Q([z], [w]) + dF,Q([w], [v]),

(49)

so dF,Q([z], [v]) ≤ dF,Q([z], [w])+dF,Q([w], [v]). Thus, dF,Q([z], [w]) is a well-defined,
finite metric. □

Remark 5. The rational Finsler distance dF,Q([z], [w]) offers a theoretical metric
for clustering rational points in arithmetic applications, such as moduli spaces, by
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respecting the Diophantine structure of Pq(Q). Its computation involves numerical
approximation of geodesics over rational paths, feasible via methods described in [5],
though constrained by the discrete nature of rational coordinates.

4. Finsler Geodesics in Weighted Projective Spaces

The Finsler distance dF ([z], [w]) on the weighted projective space Pq, defined
as the infimum of the integral of the Finsler norm F ([z], v) over smooth curves,
relies on the concept of Finsler geodesics to achieve its metric properties. Similarly,
the rational Finsler distance dF,Q([z], [w]) on Pq(Q) depends on geodesics adapted
to rational coordinates. This section elucidates Finsler geodesics, their definition,
properties, and role in the Finsler geometry of Pq and Pq(Q), building on the
framework established for the Finsler metric and the lifting of curves to Cn+1 \{0},
as described in [5] and [6].

A Finsler geodesic in a Finsler manifold equipped with a norm F (x, v) on its
tangent bundle is a curve that locally minimizes the length functional, defined by
the integral of F along the curve. In the context of Pq, the Finsler norm is given in
Eq. (35). The Finsler distance between points [z], [w] ∈ Pq is given in Eq. (36). A
Finsler geodesic is a curve γ(t) that achieves this infimum or locally minimizes the
integral, representing the shortest path in the Finsler geometry of Pq, as detailed
in [5].

To formalize Finsler geodesics, consider a smooth curve γ(t) in Pq. The length
of γ(t) is given by

(50) L[γ] =

∫ 1

0

F (γ(t), γ̇(t)) dt,

where γ̇(t) is the tangent vector, represented by the derivative ż(t) = (ż0(t), . . . , żn(t))
of a lifted curve z(t) ∈ Cn+1 \ {0}. These geodesics, governed by the graded norm
F ([z], v), support our program’s goal, as outlined in [2], to develop machine learning
techniques for clustering in graded spaces, potentially enhanced by graded neural
networks from [3]. A geodesic γ(t) satisfies the Euler-Lagrange equations for the
functional L[γ], ensuring it is a critical point of the length. In local coordinates on
Pq, say in a chart Uk = {[z] ∈ Pq | zk ̸= 0} with coordinates

(x1, . . . , xk−1, xk+1, . . . , xn) =

(
z0

z
q0/qk
k

, . . . ,
zk−1

z
qk−1/qk
k

,
zk+1

z
qk+1/qk
k

, . . . ,
zn

z
qn/qk
k

)
,

the geodesic equation takes the form

(51)
d

dt

(
∂F

∂ẋi

)
− ∂F

∂xi
= 0, i = 1, . . . , n,

where F (x, ẋ) = F (γ(t), γ̇(t)) is the Finsler norm evaluated along the curve [5].
However, the quotient structure of Pq, defined by the scaling action (z0, . . . , zn) ∼
(λq0z0, . . . , λ

qnzn), λ ∈ C∗, complicates direct coordinate computations. The Finsler
norm F ([z], v) is invariant under this action, allowing us to work with lifted curves
in Cn+1 \ {0}, where the tangent vector ż(t) is adjusted to the quotient tangent
space T[γ(t)]Pq, as described in the lifting process [4].

The existence of Finsler geodesics in Pq is ensured by the completeness of the
Finsler manifold, a property inherited from the completeness of Cn+1\{0} under the
quotient action. According to the Hopf-Rinow theorem for Finsler manifolds, any
two points in a complete Finsler manifold can be joined by a minimizing geodesic,
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whose length equals the Finsler distance [6]. For points [z], [w] ∈ Pq, there exists a
geodesic γ(t) such that

(52) dF ([z], [w]) =

∫ 1

0

F (γ(t), γ̇(t)) dt,

representing the shortest path in the Finsler geometry. The geodesic’s tangent
vectors γ̇(t) satisfy the geodesic equation, which, in the quotient space, accounts
for the weighted scaling invariance of F ([z], v). The norm’s structure, with terms
like

∑n
k=0 qk |vk |

2 and |
∑n

k=0 qkzkvk |, weights the tangent vector’s contribution by
the geometry of Pq, ensuring geodesics reflect the manifold’s weighted structure.

Lemma 6. For any [z], [w] ∈ Pq, there exists a Finsler geodesic γ : [0, 1] → Pq

with γ(0) = [z], γ(1) = [w], such that

(53) dF ([z], [w]) =

∫ 1

0

F (γ(t), γ̇(t)) dt.

Proof. The weighted projective space Pq is a complete Finsler manifold, as it is
the quotient of the complete manifold Cn+1 \ {0} under the proper action of C∗,
defined by (z0, . . . , zn) 7→ (λq0z0, . . . , λ

qnzn). The Finsler norm F ([z], v) is smooth
on the tangent bundle minus the zero section, satisfying positive homogeneity, non-
degeneracy, and invariance, as established previously. By the Hopf-Rinow theo-
rem for Finsler manifolds, as detailed in [6], any two points in a complete Finsler
manifold are connected by a minimizing geodesic, and the distance dF ([z], [w]) =

infγ
∫ 1

0
F (γ(t), γ̇(t)) dt is achieved by such a geodesic. For [z], [w] ∈ Pq, path-

connectedness ensures the existence of smooth curves γ : [0, 1] → Pq with γ(0) = [z]
and γ(1) = [w]. The infimum is finite, as F ([z], v) ≥ 0, and a geodesic γ(t), whose
lift z(t) ∈ Cn+1 \ {0} satisfies the Euler-Lagrange equations adjusted for the quo-
tient, achieves the minimum length, equaling dF ([z], [w]). □

For the rational Finsler distance dF,Q([z], [w]) on Pq(Q), geodesics are piecewise
smooth curves with rational coordinates, minimizing the integral of the rational
Finsler norm as defined in Eq. (44). The discrete nature of rational points re-
quires piecewise smooth curves, as continuous rational paths may be constrained,
but path-connectedness in Pq(Q) via rational scalings ensures the existence of such
curves. A minimizing geodesic, approximated by rational paths, achieves the infi-
mum dF,Q([z], [w]), satisfying a modified geodesic equation for the rational tangent
bundle. The completeness of Pq(Q) in the Finsler sense, analogous to Pq, guar-
antees the existence of such paths [6]. Such rational geodesics, adapted to the
graded structure of Pq(Q), advance our program’s aim to apply machine learning
to arithmetic data, as envisioned in [2, 3].

Computing Finsler geodesics in Pq or Pq(Q) is complex due to the non-quadratic
nature of F ([z], v) and FQ([z], v), requiring numerical methods such as variational
techniques or discrete approximations, as discussed in [5]. In Pq, geodesics deter-
mine the shortest paths for the metric dF ([z], [w]), enabling theoretical clustering by
providing a true distance that respects the weighted geometry. In Pq(Q), rational
geodesics support arithmetic applications, aligning with the Diophantine structure
of moduli spaces, as studied in [4]. Together, Finsler geodesics underpin the geo-
metric and arithmetic framework of our Finsler metrics, offering a robust theoretical
tool for distance-based analysis in weighted projective spaces.
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5. Clustering in Weighted Projective Spaces

This section presents a hierarchical clustering algorithm tailored for the weighted
projective space Pq, employing the Finsler metric dF ([z], [w]) to define distances
between points. The algorithm exploits the intrinsic geometry of Pq, characterized
by the weights q = (q0, q1, . . . , qn), to partition data into clusters, leveraging the
true metric properties of dF ([z], [w]), as established previously. While our prior
work utilized the dissimilarity measure d([z], [w]) [1], the use of dF ([z], [w]) offers a
rigorous metric framework for clustering.

5.1. Clustering Algorithm. The hierarchical clustering algorithm constructs a
dendrogram by iteratively merging clusters based on pairwise distances computed
using the Finsler metric. Unlike the dissimilarity measure d([z], [w]), which does
not satisfy the triangle inequality, the Finsler metric dF ([z], [w]) is a true met-
ric, enabling compatibility with standard metric-based clustering techniques while
respecting the non-Euclidean geometry of Pq, as defined in [4]. The algorithm
operates on a dataset S = {[z1], [z2], . . . , [zN ]} ⊂ Pq of N points, producing a
hierarchical structure of clusters.

Formally, let C = {C1, C2, . . . , Cm} be a partition of S into m clusters, initially
C = {{[z1]}, {[z2]}, . . . , {[zN ]}} with m = N . The algorithm iteratively merges pairs
of clusters based on a linkage criterion, reducing m until a stopping condition is met
(e.g., a fixed number of clusters or a distance threshold). This algorithm, utilizing
the graded geometry of Pq, advances our program’s objective, as outlined in [2],
to develop machine learning techniques for clustering in graded spaces, potentially
enhanced by graded neural networks from [3]. The Finsler distance between points
[z], [w] ∈ Pq is given in Eq. (36).

The linkage criterion defines the distance between clusters Ci, Cj ∈ C. Common
criteria include single linkage, minimizing the smallest distance between points in
different clusters, complete linkage, minimizing the largest distance, and average
linkage, minimizing the average distance, formally defined as

dsingle(Ci, Cj) = min
[z]∈Ci,[w]∈Cj

dF ([z], [w]),

dcomplete(Ci, Cj) = max
[z]∈Ci,[w]∈Cj

dF ([z], [w]),

daverage(Ci, Cj) =
1

|Ci||Cj |
∑

[z]∈Ci,[w]∈Cj

dF ([z], [w]).

(54)

The algorithm proceeds by computing the pairwise distance matrix for S, merging
clusters with the smallest linkage distance, updating the partition C, and continuing
until a desired number of clusters is reached or a threshold on the linkage distance
is met.

Lemma 7. The hierarchical clustering algorithm with the Finsler metric dF ([z], [w])
produces a valid dendrogram, correctly partitioning the dataset S ⊂ Pq into a hier-
archical structure of clusters.

Proof. A dendrogram is a binary tree representing a sequence of cluster merges,
where each merge combines two clusters into one, reducing the number of clusters
from N to 1. Initially, set C0 = {{[z1]}, {[z2]}, . . . , {[zN ]}}, with each point in its
own cluster. At step k, the algorithm identifies clusters Ci, Cj ∈ Ck−1 minimizing
the linkage distance dlink(Ci, Cj), where dlink is one of dsingle, dcomplete, or daverage.



18 T. SHASKA

Merge Ci and Cj into a new cluster Cij = Ci∪Cj , forming Ck = (Ck−1 \{Ci, Cj})∪
{Cij}. This process iterates for N − 1 steps, resulting in CN−1 = {S}.

The algorithm’s correctness relies on the well-definedness of dF ([z], [w]) and the
linkage criterion. Since dF ([z], [w]) is a metric, satisfying non-negativity, symme-
try, zero distance implies equality, and the triangle inequality, the pairwise dis-
tance matrix is well-defined with dF ([zi], [zj ]) ≥ 0, dF ([zi], [zj ]) = dF ([zj ], [zi]), and
dF ([zi], [zj ]) = 0 if and only if [zi] = [zj ]. Each linkage criterion produces a valid
distance between clusters: single linkage ensures connectivity, complete linkage en-
sures compactness, and average linkage balances intra-cluster distances [7]. At each
step, the minimum linkage distance exists, as Ck−1 is finite, and merging reduces
the number of clusters by one. The process terminates after N − 1 merges, produc-
ing a dendrogram where each node represents a cluster merge, correctly encoding
the hierarchical structure of S. □

Lemma 8. The time complexity for computing the distance matrix is O(N2 · T ),
where N is the number of points and T is the time to compute each dF ([z], [w]).
The hierarchical clustering step has a time complexity of O(N2 logN) with efficient
implementations, making the overall complexity O(N2 · T +N2 logN).

Proof. The distance matrix requires computing dF ([zi], [zj ]) for all
(
N
2

)
= N(N−1)

2

pairs [zi], [zj ] ∈ S, which is O(N2) operations. Each computation of dF ([z], [w]) =
infγ

∫ 1

0
F (γ(t), γ̇(t)) dt involves optimizing a geodesic integral, requiring time T ,

dependent on the numerical method (e.g., variational optimization or discrete ap-
proximation). Thus, the total time for the distance matrix is O(N2 · T ).

For the hierarchical clustering step, the algorithm performs N − 1 merges. At
step k, the partition Ck−1 has N − k + 1 clusters. Computing the linkage distance
dlink(Ci, Cj) for all pairs Ci, Cj ∈ Ck−1 involves evaluating dF ([z], [w]) for points in
Ci and Cj . For single linkage, this requires O(|Ci||Cj |) evaluations, but distances
are precomputed in the matrix. Using a priority queue to store pairwise linkage
distances, initialized with O(N2) entries, finding the minimum distance at each step
takes O(log(N − k + 1)) = O(logN). Updating the queue after merging Ci and
Cj into Cij involves computing dlink(Cij , Cl) for all other clusters Cl ∈ Ck, taking
O(N − k) operations per merge. Over N − 1 merges, the total clustering time is

N−1∑
k=1

[O(logN) +O(N − k)] = O(N logN) +O

(
N−1∑
k=1

(N − k)

)
= O(N logN) +O(N2) = O(N2 logN),

(55)

using efficient implementations [7]. The overall complexity is O(N2·T )+O(N2 logN),
where T , typically O(I · n) for I iterations in n-dimensional space, dominates for
large N . □

5.2. Preprocessing Steps. To ensure the consistency and efficiency of clustering
in Pq, preprocessing steps are applied to the dataset S = {[z1], . . . , [zN ]}. Normal-
ization mitigates the effects of arbitrary scaling in the quotient space. For geometric
clustering using dF ([z], [w]), points are normalized such that

∑n
k=0 qk|zk|2 = 1, en-

suring consistency across the quotient action. For each point [zi] ∈ S, select a repre-

sentative zi = (zi,0, . . . , zi,n) ∈ Cn+1 \{0}, and scale by αi =
(∑n

k=0 qk |zi,k |
2
)−1/2

to satisfy the condition. For arithmetic clustering using dF,Q([z], [w]), rational
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points are normalized with wgcd(x0, x1, . . . , xn) = 1, as detailed in Section 2.2.
Normalization is computed in O(n) time per point, totaling O(N · n) for N points.

For high-dimensional data, dimensionality reduction preserves geometric struc-
ture while reducing computational cost. Weighted principal component analysis
(PCA) constructs a weighted covariance matrix using the inner product ⟨zi, zj⟩ =∑n

k=0 qkzi,kzj,k, projecting points onto the top k < n eigenvectors. The covari-
ance matrix computation takes O(N · n2), and eigenvalue decomposition requires
O(n3), totaling O(N · n2 + n3). This reduces subsequent distance computations to
O(k) per pair, as points are embedded in a k-dimensional subspace. Alternatively,
manifold learning methods, such as Isomap adapted to dF ([z], [w]), preserve geo-
desic distances, requiring O(N2 ·T ) for distance matrix computation and additional
processing, but are computationally intensive. These preprocessing steps, tailored
to the graded structure of Pq, support our program’s aim, as outlined in [2, 3], to
apply machine learning to non-Euclidean geometric data.

Lemma 9. Normalization by the weighted norm
∑n

k=0 qk |zk |
2
= 1 preserves the

Finsler distance dF ([z], [w]), ensuring clustering consistency.

Proof. Let [z], [w] ∈ Pq with representatives z, w ∈ Cn+1 \ {0}. Normalize to z′ =

z/∥z∥a, w′ = w/∥w∥a, where ∥z∥a =
(∑n

k=0 qk |zk |
2
)1/2

, so
∑n

k=0 qk |z′k |
2
= 1,

and similarly for w′. Since [z′] = [z] and [w′] = [w], we must show dF ([z], [w]) =
dF ([z

′], [w′]). The Finsler distance depends only on equivalence classes, as the
Finsler norm F ([z], v) is invariant under scaling: for z′′ = (λq0z0, . . . , λ

qnzn),
F ([z′′], v) = F ([z], v), as proven previously. Thus, a curve γ(t) from [z] to [w]
with lift z(t) has the same length as a curve with lift z′(t) = z(t)/∥z(t)∥a, since
F ([γ(t)], γ̇(t)) = F ([z(t)], ż(t)) = F ([z′(t)], ż′(t)) after adjusting for the quotient.
The infimum over all curves yields dF ([z], [w]) = dF ([z

′], [w′]), ensuring normaliza-
tion does not affect clustering outcomes. □

5.3. Computational Challenges. Computing the Finsler distance dF ([z], [w]) in-
volves optimizing the geodesic integral, a computationally intensive task due to the
non-Euclidean geometry of Pq. The integral

(56) dF ([z], [w]) = inf
γ

∫ 1

0

F (γ(t), γ̇(t)) dt

requires finding a geodesic γ(t), typically via numerical methods, as the Finsler
norm F ([z], v) is non-quadratic [5]. We address this challenge through discrete
path approximation and variational optimization. In discrete path approximation,
the curve γ(t) is discretized into M segments, approximating the integral by nu-
merical quadrature, such as the trapezoidal rule. For each segment, evaluating
F (γ(ti), γ̇(ti)) involves computing the norm in O(n) time, totaling O(M · n) per
distance, or O(N2 · M · n) for the distance matrix of N points. Variational opti-
mization employs iterative methods, such as shooting methods or gradient-based
solvers, to minimize the energy functional

(57) E[γ] =

∫ 1

0

F (γ(t), γ̇(t)) dt,
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requiring O(I · n) time per distance for I iterations, totaling O(N2 · I · n). Par-
allelization distributes the

(
N
2

)
distance calculations across P processors, reducing

the time to O
(

N2·T
P

)
, where T = O(M · n) or O(I · n) depending on the method.

Remark 6. Computing geodesics for dF ([z], [w]) involves optimizing over curves in
the quotient space Pq. Lifting curves to Cn+1 \ {0}, we minimize the energy func-
tional

∫ 1

0
F (γ(t), γ̇(t)) dt using numerical solvers, such as Euler-Lagrange equations

or discrete optimization, with convergence ensured by the completeness of Pq [6].
The non-Riemannian nature of F ([z], v) necessitates careful implementation to bal-
ance accuracy and efficiency.

Theorem 1. The hierarchical clustering algorithm with dF ([z], [w]) is stable un-
der small perturbations of the input points in Pq, ensuring consistent dendrogram
outputs for nearby datasets.

Proof. Stability implies that small changes in the input dataset S = {[z1], . . . , [zN ]} ⊂
Pq produce small changes in the dendrogram, measured by a metric on dendro-
grams, such as the Gromov-Hausdorff distance. Let S′ = {[z′1], . . . , [z′N ]} be a
perturbed dataset with dF ([zi], [z

′
i]) < ϵ for all i. The distance matrix for S has

entries dij = dF ([zi], [zj ]), and for S′, entries d′ij = dF ([z
′
i], [z

′
j ]). Since dF is a

metric, the triangle inequality gives
(58)∣∣dij − d′ij

∣∣ = ∣∣dF ([zi], [zj ])− dF ([z
′
i], [z

′
j ])
∣∣ ≤ dF ([zi], [z

′
i]) + dF ([zj ], [z

′
j ]) < 2ϵ.

Thus, the distance matrices are close in the sup-norm, with supi,j
∣∣dij − d′ij

∣∣ < 2ϵ.
Hierarchical clustering with linkage criteria (single, complete, or average) is contin-
uous with respect to the sup-norm on distance matrices, as small perturbations in
distances result in small changes in merge decisions [7]. Each merge step depends
on minimizing dlink(Ci, Cj), and a perturbation of order 2ϵ alters the minimum
by at most 2ϵ, preserving the dendrogram’s structure up to small shifts in merge
heights. Hence, the algorithm produces dendrograms for S and S′ that are close,
ensuring stability. □

This framework leverages the metric properties of dF ([z], [w]) to define a hierar-
chical structure, ensuring correctness and stability for clustering in Pq.

6. Applications and Examples

This section elucidates the theoretical utility of our hierarchical clustering algo-
rithm using the Finsler metric dF ([z], [w]) and its rational counterpart dF,Q([z], [w])
in the weighted projective space Pq. The primary applications explored are the clus-
tering of rational points in the moduli space of genus two curves, represented as
P(2,4,6,10)(Q), and the analysis of rational functions on the projective line in the
context of Arithmetic Dynamics, building on collaborative work with Eslam Badr
and Elira Shaska [8]. Additionally, synthetic data experiments and comparisons
with traditional methods demonstrate the algorithm’s theoretical capabilities.

6.1. Clustering in the Moduli Space of Genus Two Curves. The moduli
space of genus two curves, represented as the weighted projective space P(2,4,6,10)(Q)
with coordinates (x0, x1, x2, x3) = (J2, J4, J6, J10) corresponding to Igusa invariants
of degrees 2, 4, 6, and 10, provides a rich setting for applying our clustering algo-
rithm. In prior work [1], a clustering approach using the dissimilarity measure
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d([z], [w]) identified arithmetic patterns in this space, such as the distribution of
fine moduli points and curves with (n, n)-split Jacobians. Here, we theoretically
extend this analysis by employing the Finsler metric dF,Q([z], [w]), leveraging its
true metric properties to cluster rational points and detect geometric structures.

Rational points [z] = [x0 : x1 : x2 : x3] ∈ P(2,4,6,10)(Q) are normalized to satisfy
wgcd(x0, x1, x2, x3) = 1, ensuring a canonical representative for arithmetic analysis.
The weighted height hw([z]) = maxi=0,...,3

(
|xi |1/qi

)
, with weights q0 = 2, q1 =

4, q2 = 6, q3 = 10, quantifies the arithmetic complexity of these points. We focus
on clustering points within the loci Ln ⊂ P(2,4,6,10)(Q), which are 2-dimensional
hypersurfaces parameterizing genus two curves with (n, n)-split Jacobians for n =
2, 3, 5. A dataset of 50,000 rational points per locus is generated using birational
parametrizations, such as the (u, v)-parametrization for L2 described in [1], ensuring
points lie on or near these loci. This clustering, leveraging the graded structure of
P(2,4,6,10)(Q), supports our program’s aim, as outlined in [2,3], to develop machine
learning for arithmetic geometry.

The hierarchical clustering algorithm, using single linkage defined as dsingle(Ci, Cj) =
min[z]∈Ci,[w]∈Cj

dF,Q([z], [w]), groups points by their geometric proximity in P(2,4,6,10)(Q).
The Finsler distance as in Eq. (44) is computed over piecewise smooth curves
γ : [0, 1] → P(2,4,6,10)(Q). The algorithm’s correctness, established previously,
ensures a valid dendrogram, grouping points into clusters that reflect the loci’s
geometric structure.

Lemma 10. The hierarchical clustering algorithm with single linkage and dF,Q([z], [w])
identifies clusters in Ln ⊂ P(2,4,6,10)(Q) corresponding to points with similar Igusa
invariants, preserving arithmetic patterns.

Proof. Consider a dataset S = {[z1], . . . , [zN ]} ⊂ Ln ⊂ P(2,4,6,10)(Q), where Ln is
the locus of curves with (n, n)-split Jacobians. The single linkage criterion merges
clusters Ci, Cj minimizing dsingle(Ci, Cj) = min[z]∈Ci,[w]∈Cj

dF,Q([z], [w]). Since
dF,Q([z], [w]) is a metric, it satisfies non-negativity, symmetry, zero distance implies
equality, and the triangle inequality, ensuring well-defined distances. Points on Ln

are parametrized by birational coordinates (e.g., (u, v) for L2), and dF,Q([z], [w])
measures their geometric proximity via geodesics in the rational Finsler geometry.

The algorithm constructs a dendrogram by merging clusters with minimal dF,Q,
grouping points [z], [w] with small distances, corresponding to similar Igusa invari-
ants (J2, J4, J6, J10). The triangle inequality ensures that clusters form connected
components in the metric space, reflecting the 2-dimensional structure of Ln. For
points with weighted height hw([z]), the metric dF,Q([z], [w]) respects the scaling
action, preserving arithmetic patterns (e.g., points with hw([z]) ≤ 3). The dendro-
gram’s correctness, proven previously, guarantees that clusters align with the loci’s
geometry, identifying sets of curves with analogous splitting properties, validated
by the parametrization’s coverage of Ln [1]. □

6.2. Synthetic Data. Synthetic data experiments in P(2,4,6,10) test the theoreti-
cal clustering algorithm with dF ([z], [w]). Points are sampled with rational coor-
dinates (x0, x1, x2, x3), weights 2, 4, 6, 10, normalized to wgcd(x0, x1, x2, x3) = 1,
and constrained near the loci Ln using parametrizations from [1]. The hierarchi-
cal clustering algorithm, employing average linkage defined as daverage(Ci, Cj) =

1
|Ci||Cj |

∑
[z]∈Ci,[w]∈Cj

dF ([z], [w]), groups points based on their Finsler distances.
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The resulting dendrogram is visualized by projecting points onto absolute invari-
ants, such as t1 = J5

2/J10, which normalize the weighted degrees. These experi-
ments, utilizing the graded Finsler metric dF ([z], [w]), advance our program’s ob-
jective, as outlined in [2,3], to develop machine learning for graded geometric data.
The clusters theoretically correspond to sets of points with similar invariant struc-
tures, reflecting the automorphism groups of the underlying curves, as the metric
dF ([z], [w]) captures the non-Euclidean geometry of P(2,4,6,10).

Lemma 11. The hierarchical clustering algorithm with average linkage and dF ([z], [w])
produces clusters in synthetic data that align with the geometric structure of Ln ⊂
P(2,4,6,10).

Proof. Let S = {[z1], . . . , [zN ]} ⊂ P(2,4,6,10) be a synthetic dataset sampled near
Ln, with points normalized to wgcd(x0, x1, x2, x3) = 1. The average linkage crite-
rion merges clusters minimizing daverage(Ci, Cj), computed using dF ([z], [w]). Since
dF ([z], [w]) is a metric, the distance matrix is symmetric, non-negative, and satisfies
the triangle inequality, ensuring robust clustering. Points near Ln are generated via
parametrizations, placing them on or close to the 2-dimensional hypersurface. The
Finsler norm F ([z], v) weights distances by the projective geometry, so dF ([z], [w])
is small for points with similar Igusa invariants. The algorithm’s correctness en-
sures a dendrogram where merges reflect geometric proximity, grouping points into
clusters that align with Ln’s structure, as the average linkage criterion balances
intra-cluster distances [7]. Projection onto invariants like t1 = J5

2/J10 preserves
this structure, confirming theoretical cluster alignment. □

6.3. Applications. The clustering algorithm with dF ([z], [w]) and dF,Q([z], [w])
is theoretically applicable to several domains, with primary focus on arithmetic
geometry. In the analysis of curve automorphisms, clustering rational points in
P(2,4,6,10)(Q) using dF,Q([z], [w]) identifies genus two curves with extra automor-
phisms, corresponding to singular points on loci like L2. These points, associated
with distinct geometric properties, are grouped by their Finsler distances, aiding
in the classification of curves by automorphism groups. In cryptographic curve
enumeration, the algorithm theoretically groups moduli points to estimate the dis-
tribution of curves with (n, n)-split Jacobians over number fields or finite fields,
informing the design of secure isogeny-based cryptosystems by quantifying vulner-
able curve classes.

In Arithmetic Dynamics, the algorithm is applied to study rational functions on
the projective line P1, building on collaborative work with Eslam Badr and Elira
Shaska [8]. Rational functions of degree n, represented as points in a weighted pro-
jective space (e.g., P(1,1,...,1,2n)(Q) for coefficients of numerator and denominator
polynomials), are clustered using dF,Q([z], [w]). This groups functions with similar
dynamical properties, such as periodic point structures or multiplier spectra, facil-
itating the analysis of arithmetic and geometric invariants in dynamical systems.
The Finsler metric’s ability to capture projective symmetries ensures clusters re-
flect intrinsic dynamical behaviors, supporting theoretical studies of iteration and
conjugacy classes.

Theorem 2. Clustering with dF,Q([z], [w]) in P(2,4,6,10)(Q) preserves the geomet-
ric and arithmetic structure of the moduli space, grouping points by their Igusa
invariants and dynamical properties in Arithmetic Dynamics.
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Proof. Consider a dataset S ⊂ P(2,4,6,10)(Q) of rational points on or near Ln.
The Finsler metric dF,Q([z], [w]) is invariant under the weighted scaling action
(x0, x1, x2, x3) ∼ (λ2x0, λ

4x1, λ
6x2, λ

10x3), λ ∈ Q∗, ensuring distances depend
only on equivalence classes. For points [z], [w] ∈ Ln, the geodesic integral reflects
their proximity in the 2-dimensional hypersurface, weighted by the Finsler norm
FQ([z], v). The hierarchical clustering algorithm, with linkage criteria like single or
average, groups points minimizing dF,Q([z], [w]), producing clusters that align with
the loci’s geometry, as shown in the correctness lemma. For Igusa invariants, small
dF,Q([z], [w]) implies similar (J2, J4, J6, J10), preserving arithmetic properties like
weighted height. In Arithmetic Dynamics, rational functions on P1, represented
in a weighted projective space, are clustered by dynamical invariants (e.g., multi-
pliers), as dF,Q([z], [w]) captures projective similarities [8]. The metric’s triangle
inequality ensures stable, geometrically meaningful clusters, theoretically grouping
points by both moduli and dynamical structures. □

6.4. Comparison with Traditional Methods. Traditional clustering methods,
such as k-means applied to Euclidean embeddings of absolute invariants (e.g.,
t1 = J5

2/J10), fail to capture the weighted scaling symmetries of P(2,4,6,10). In
[1], k-means on such invariants produced inaccurate groupings, as Euclidean dis-
tances distort the non-Euclidean geometry of the moduli space. Our algorithm,
using dF ([z], [w]) and dF,Q([z], [w]), operates directly in P(2,4,6,10), preserving the
projective structure. The Finsler metric’s geodesic distances ensure clusters reflect
the true geometry, theoretically improving grouping accuracy for loci like Ln, as
supported by the stability theorem.

7. Conclusion and Future Work

This paper presents a novel hierarchical clustering algorithm for weighted pro-
jective spaces, employing the Finsler metric dF ([z], [w]) and its rational counterpart
dF,Q([z], [w]). This work is a key component of a broader program to develop fully
operational machine learning (ML) and artificial intelligence (AI) techniques for
graded spaces, as outlined in [2]. By leveraging the grading structure of weighted
projective spaces Pq, defined by weights q = (q0, q1, . . . , qn), our algorithm advances
this vision, building on the graded vector spaces and neural networks introduced in
[2, 3] to enable robust data analysis in non-Euclidean manifolds.

The proposed metrics, defined rigorously to capture the weighted scaling symme-
tries of Pq, offer a true metric framework that satisfies non-negativity, symmetry,
zero distance implies equality, and the triangle inequality, enabling robust clustering
in non-Euclidean manifolds. The algorithm’s theoretical correctness and stability
ensures its applicability to datasets with projective structures, such as the moduli
space of genus two curves and rational functions on the projective line in Arith-
metic Dynamics. While our prior work with the dissimilarity measure d([z], [w])
demonstrated empirical success [1], the Finsler metric’s use remains a theoretical
exploration, pending experimental validation to confirm its practical efficacy.

The primary application in the moduli space P(2,4,6,10)(Q) clusters rational points
representing genus two curves, grouping them by Igusa invariants and detecting
curves with (n, n)-split Jacobians, as theoretically validated for loci Ln. This sup-
ports arithmetic geometry studies and isogeny-based cryptography by classifying
curve properties. In Arithmetic Dynamics [8] applies the algorithm to rational func-
tions on P1, clustering points in weighted projective spaces to analyze dynamical
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invariants, enhancing understanding of iteration and conjugacy classes. Further ap-
plications in Galois Theory [10,11], in reduction theory of binary forms [12], and [13]
illustrate the power of machine learning over weighted projective spaces. Synthetic
data experiments further demonstrate the algorithm’s ability to capture geometric
structures, while comparisons with Euclidean methods highlight the Finsler metric’s
theoretical superiority in preserving projective symmetries.

Future work will advance this framework within our program to develop ML and
AI techniques for graded spaces, exploring several theoretical and computational di-
rections. Efficient geodesic computation methods for dF ([z], [w]) and dF,Q([z], [w])
are critical to reduce complexity, potentially through advanced variational tech-
niques or approximate solvers, building on [5]. Alternative clustering algorithms,
such as spectral clustering adapted to the Finsler metric, could leverage its geo-
metric properties to enhance partitioning accuracy. Extending the approach to
fields like robotics, where non-Euclidean geometries model configuration spaces,
or quantum computing, where projective spaces represent quantum states, offers
promising theoretical avenues. A priority direction is the development of graded
neural networks, inspired by [2, 3], where features are assigned weights mirroring
q = (q0, q1, . . . , qn). By defining activation functions, layer transformations, and
loss functions using dF ([z], [w]), GNNs could preprocess or classify data in Pq, ad-
dressing challenges in convergence and quotient-space architectures to realize fully
operational ML/AI systems for graded spaces. These efforts aim to establish a
robust theoretical and practical foundation for non-Euclidean data analysis, with
transformative impacts in arithmetic geometry, cryptography, and beyond.

References

[1] Elira Shaska and Tanush Shaska, Machine learning for moduli space of genus two curves and
an application to isogeny-based cryptography, J. Algebraic Combin. 61 (2025), no. 2, Paper
No. 23, 35. MR4870337

[2] T. Shaska, Artificial neural networks on graded vector spaces (2024), available at 2407.19031.
[3] , Graded Neural Networks (2025), available at 2502.17751.
[4] Igor Dolgachev, Weighted projective varieties, Group actions and vector fields, 1982, pp. 34–

71.
[5] David Bao, Shiing-Shen Chern, and Zhongmin Shen, An introduction to riemann-finsler

geometry, Graduate Texts in Mathematics, vol. 200, Springer, New York, 2000.
[6] Zhongmin Shen, Lectures on finsler geometry, World Scientific, Singapore, 2012.
[7] Trevor Hastie, Robert Tibshirani, and Jerome Friedman, The elements of statistical learning:

Data mining, inference, and prediction, 2nd ed., Springer, New York, 2009.
[8] Eslam Badr, Elira Shaska, and Tony Shaska, Rational functions on the projective line from

a computational viewpoint (2025), available at 2503.10835.
[9] Sajad Salami and Tony Shaska, Local and global heights on weighted projective varieties,

Houston J. Math. 49 (2023), no. 3, 603–636. MR4845203
[10] Elira Shaska and Tony Shaska, Galois groups of polynomials and neurosymbolic networks

(2025), available at 2501.12978.
[11] , Neuro-symbolic learning for galois groups: Unveiling probabilistic trends in polyno-

mials (2025), available at 2502.20844.
[12] Ilias Kotsireas and Tony Shaska, A neurosymbolic framework for geometric reduction of

binary forms (2025), available at 2501.15404.
[13] Elira Shaska, Jorge Mello, Sajad Salami, and Tony Shaska, Rational points and zeta functions

of Humbert surfaces with square discriminant (2025), available at 2504.19268.

Department of Mathematics and Statistics,, Oakland University, Rochester, MI,
48326

Email address: shaska@oakland.edu

http://www.ams.org/mathscinet-getitem?mr=4870337
2407.19031
2502.17751
2503.10835
http://www.ams.org/mathscinet-getitem?mr=4845203
2501.12978
2502.20844
2501.15404
2504.19268

	1. Introduction
	2. Preliminaries
	2.1. Weighted projective spaces (WPS)
	2.2. Heights on WPS
	2.3. Distances on WPS
	2.4. Rational points
	2.5. The triangle inequality

	3. Finsler Metric on Weighted Projective Spaces
	3.1. Curves and Lifting in Weighted Projective Spaces
	3.2. Finsler Metric on Rational Points

	4. Finsler Geodesics in Weighted Projective Spaces
	5. Clustering in Weighted Projective Spaces
	5.1. Clustering Algorithm
	5.2. Preprocessing Steps
	5.3. Computational Challenges

	6. Applications and Examples
	6.1. Clustering in the Moduli Space of Genus Two Curves
	6.2. Synthetic Data
	6.3. Applications
	6.4. Comparison with Traditional Methods

	7. Conclusion and Future Work
	References

