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Abstract. This paper explores the theoretical foundations of rational points

on weighted hypersurfaces over finite fields, employing an orbit-stabilizer method
and a zeta function framework inspired by classical projective variety theory.

We refine Serre-type upper bounds, investigate modular congruences, and an-

alyze hypersurface structures in weighted projective spaces. Building on prior
studies, we present a comprehensive framework for counting rational points,

illustrated by the locus of genus 2 curves with (n, n)-split Jacobians. Our

results lay the groundwork for further computational and applied studies, of-
fering insights into arithmetic geometry with potential relevance to number

theory.

1. Introduction

The enumeration of rational points on algebraic varieties over finite fields is a
fundamental problem in arithmetic geometry, with profound connections to number
theory and algebraic geometry. Classical results, such as those for projective hyper-
surfaces, have been extensively studied, but weighted projective spaces introduce
a richer geometric framework by assigning distinct integer weights to coordinates.
This weighted structure, akin to an orbifold, allows for the study of varieties with
enhanced symmetries and singularities, broadening the scope of traditional projec-
tive geometry.

In this work, we advance the theoretical understanding of rational points on
weighted hypersurfaces over finite fields Fq. We develop two complementary ap-
proaches: an orbit-stabilizer method for precise computation of Fq-rational points
and a zeta function framework that encapsulates point counts over all field exten-
sions Fqd . These methods build on foundational studies, such as our prior explo-
ration of weighted projective varieties and Vojta’s conjecture [1], as well as classical
bounds by Serre [11] and recent generalizations by Aubry and Perret [4]. Our ap-
proach refines these results by adapting them to the weighted setting, offering new
insights into hypersurface structures and their arithmetic properties.

Weighted projective spaces provide a versatile setting for analyzing varieties
with additional structural constraints. For instance, in [1, Exa 1], we examined a
hypersurface in Pw with weights w = (2, 4, 6, 10), linked to genus 2 curves with
extra automorphisms, demonstrating that direct analysis in this space outperforms
embeddings into standard projective spaces. Similarly, [2] established the absence
of rational points with weighted height ≤ 2 over Q on this hypersurface, a result
efficiently derived in the weighted framework. These examples motivate our focus
on weighted hypersurfaces, which we explore here through a purely theoretical lens.

Date: March 22, 2025.

1



2 JORGE MELLO, SAJAD SALAMI, AND TONY SHASKA

Our primary contributions include:

• A detailed definition of weighted projective spaces and varieties over finite
fields, emphasizing their geometric and algebraic properties.

• An orbit-stabilizer method for counting rational points, leveraging the weighted
action of F∗

q .
• A zeta function approach, inspired by classical projective variety theory, to
study point counts across extensions.

• Refined upper bounds and conjectures on modular congruences, extending
classical results to weighted settings.

As an illustrative example, we consider the locus Ln ⊂ Pw, which parametrizes
genus 2 curves over Fq with (n, n)-split Jacobians, defined by explicit equations
from [5–8]. While specific computations are deferred to a companion paper, this
locus serves as a concrete application of our theoretical framework, highlighting its
relevance to varieties with structured arithmetic properties.

The paper is organized as follows:

• Section 2 defines weighted projective spaces, varieties, and rational points,
introducing the orbit-stabilizer method.

• Section 3 develops counting methods, including the orbit-stabilizer and zeta
function approaches.

• Section 4 presents bounds and conjectures for rational points on weighted
hypersurfaces.

• Section 5 introduces Ln theoretically, focusing on its geometric significance.
• Section 6 concludes with a summary and future directions.

2. Rational Points on Weighted Varieties

Weighted projective spaces generalize standard projective spaces by incorporat-
ing a weighted grading, offering a flexible framework for studying varieties with
diverse geometric properties. This section establishes the foundational definitions
and introduces a method for counting rational points, drawing on [3, 9, 10].

2.1. Weighted Projective Space. Let Fq be a finite field with q elements, and let
w = (w0, w1, . . . , wn) be a tuple of positive integers called weights. The weighted
projective space Pw(Fq) is defined as the quotient of An+1(Fq) \ {0} under the
equivalence relation:

(x0, x1, . . . , xn) ∼ (y0, y1, . . . , yn) if ∃λ ∈ F∗
q such that xi = λwiyi, i = 0, 1, . . . , n.

Points are denoted [x0 : x1 : · · · : xn]w. Unlike Pn, where coordinates scale uni-
formly by λ, each xi here scales by λwi , creating a geometry with singularities and
symmetries governed by the weights.

A weighted projective space is well-formed if gcd(w0, . . . , ŵi, . . . , wn) = 1 for
each i, a condition that mitigates severe singularities [10, Prop. 3.3]. We assume
well-formedness throughout, noting that any Pw is isomorphic to a well-formed
space. Algebraically, Pw(Fq) = Proj(Fq[x0, . . . , xn]), with deg(xi) = wi.

Alternatively, Pw can be viewed as a quotient of Pn under the action of Gw =
µw0

× · · · ×µwn
, where µwi

denotes the wi-th roots of unity in an algebraic closure
of Fq. The action is:

(ξ0, . . . , ξn) · [y0 : · · · : yn] = [ξ0y0 : · · · : ξnyn],
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yielding Pw
∼= Pn/Gw via [y0 : · · · : yn] 7→ [yw0

0 : · · · : ywn
n ] [10, Sec. 2.2]. This

perspective, also employed in [3, Section 1], highlights the orbifold-like nature of
Pw.

2.2. Weighted Varieties. A weighted variety X ⊂ Pw is defined by weighted
homogeneous polynomials. A polynomial f ∈ Fq[x0, . . . , xn] is weighted homo-
geneous of degree d with respect to w if:

f(λw0x0, λ
w1x1, . . . , λ

wnxn) = λdf(x0, x1, . . . , xn) ∀λ ∈ F∗
q .

The zero set X = {f = 0} defines a weighted hypersurface, invariant under
weighted scaling. Our study focuses on such hypersurfaces, with applications to
loci like Ln.

2.3. Rational Points. The Fq-rational points of a variety X over Fq, denoted
X(Fq), are equivalence classes [x0 : x1 : · · · : xn]w where xi ∈ Fq, not all zero,
satisfying X’s defining equations. The cardinality is |X(Fq)|, representing orbits
under the weighted F∗

q-action.

2.4. Counting Rational Points on Weighted Projective Spaces. To compute
|Pw(Fq)|, we analyze the F∗

q-action on An+1(Fq)\{0}. For a point (x0, . . . , xn), the
support is S = {i | xi ̸= 0}. The stabilizer is:

Stab(x) = {λ ∈ F∗
q | λwi = 1, i ∈ S},

with order gcd(kS , q − 1), where kS = gcd({wi | i ∈ S}). The orbit size is:

q − 1

gcd(kS , q − 1)
.

Let NS = (q − 1)|S| denote the number of points with support S. Each support
contributes:

NS · gcd(kS , q − 1)

q − 1
,

so:

|Pw(Fq)| =
∑
S ̸=∅

NS · gcd(kS , q − 1)

q − 1
.

Goto [3, Prop. 1.3] verifies this equals 1 + q + · · · + qn, aligning with classical
projective spaces.

Example 1. For P(1,2)(Fq):

• If x ̸= 0, scale to [1 : y], yielding q points.
• If x = 0, y ̸= 0, [0 : y] under λ2y = y gives 2 points (if q odd) or 1 (if q
even).

Thus:

|P(1,2)(Fq)| =

{
q + 2 if q is odd,

q + 1 if q is even.

3. Counting Rational Points on Weighted Varieties

This section presents two theoretical frameworks for counting rational points on
weighted varieties over Fq: an orbit-stabilizer method and a zeta function approach,
extending classical results [3].
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3.1. Rational Points on Weighted Varieties over Finite Fields. For a variety
X ⊂ Pw defined by weighted homogeneous polynomials f1, . . . , ft of degrees dj , the
set of Fq-rational points is:

X(Fq) = {[x0 : x1 : · · · : xn]w ∈ Pw(Fq) | fj(x0, . . . , xn) = 0, j = 1, . . . , t},
where xi ∈ Fq, not all zero. As Pw(Fq) = (An+1(Fq) \ {0})/F∗

q , X(Fq) consists of
orbits under weighted scaling.

3.2. Counting Fq-Rational Points via Orbit-Stabilizer. The orbit-stabilizer
method computes |X(Fq)|. For (x0, . . . , xn) ∈ An+1(Fq) \ {0} with support S =
{i | xi ̸= 0}, the stabilizer order is gcd(kS , q − 1), and the orbit size is:

q − 1

gcd(kS , q − 1)
.

Define NS as the number of solutions to fj = 0 with support S. The contribution
per S is:

NS · gcd(kS , q − 1)

q − 1
,

yielding:

|X(Fq)| =
∑
S ̸=∅

NS · gcd(kS , q − 1)

q − 1
.

3.3. Zeta Function Approach. The zeta function of X over Fq is:

Z(X, t) = exp

( ∞∑
d=1

|X(Fqd)|
td

d

)
,

where |X(Fqd)| =
∑

S ̸=∅
N

(d)
S ·gcd(kS ,qd−1)

qd−1
, and N

(d)
S counts solutions over Fqd . This

generating function, inspired by classical theory, suggests rationality for weighted
hypersurfaces, as shown by Goto [3, Prop. 5.1] for diagonal cases.

Example 2. For X : y = x2 in P(1,2):

• S = {0, 1}: [1 : y], y = 1, NS = 1, contribution = 1.
• S = {1}: [0 : y], y = 0, NS = 0.
• S = {0}: [1 : 0], 0 = 1, NS = 0.

Thus, |X(Fq)| = 1. Over Fq2 , q odd, q2+1 points give Z(X, t) ≈ 1+t+ q2+1
2 t2+· · ·.

4. Bounds and Conjectures for Rational Points on Weighted
Hypersurfaces

We extend classical bounds and conjectures for rational points on weighted hy-
persurfaces, drawing on [4, 11].

4.1. Serre’s Inequality and Generalization. For a hypersurface in Pn of degree
d, Serre [11] proved:

|V (F )(Fq)| ≤ dqn−1 + pn−2,

where pn = (qn+1 − 1)/(q − 1). Aubry et al. [4] conjecture for P(w0, . . . , wn):

|V (F )(Fq)| ≤ min

{
pn,

d

w0
qn−1 + pn−2

}
,

proven for w0 = w1 = 1.
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4.2. Upper Bounds. For d ≤ q + 1, Aubry et al. [4] establish:

|V (F )(Fq)| ≤ dqn−1 + pn−2,

using an ”unscrewing” technique.

4.3. Lower Bounds and Extremal Examples. Aubry et al. [4] construct max-

imal hypersurfaces, e.g., F =
∏d

i=1(αiX0 − βiX1) for w0 = w1 = 1.

5. Genus 2 Curves with (n, n)-Split Jacobians over Finite Fields

The locus Ln ⊂ Pw with w = (2, 4, 6, 10) parametrizes genus 2 curves over Fq

with (n, n)-split Jacobians, defined by Fn = 0 [5–8]. For n = 2, F2 has degree
30, encoding curves with an extra involution. This section focuses on theoretical
aspects, with computations reserved for a companion paper.

6. Conclusion

This paper provides a theoretical framework for rational points on weighted hy-
persurfaces over finite fields, introducing orbit-stabilizer and zeta function methods.
We refine bounds and illustrate with Ln. Future work could explore zeta function
rationality and tighter bounds.
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