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Abstract. This paper examines the relationship between GIT heights and

weighted heights, exploring their definitions and applications to weighted pro-

jective spaces and binary forms. Drawing on the weighted height framework
from [1, 2], we relate it to Zhang’s GIT height via the Veronese map, show-

ing that for a semistable cycle Z ⊂ PN
w,Q

, the GIT height ĥ(Z) is given

by ĥ(Z) = L(Z) +
∑

ν∈M∞
K

log ∥s∥Ch,ν(Z), incorporating the Chow met-

ric’s Archimedean contribution. For binary forms f ∈ Vd, we define an in-

variant height Ĥ(f) with respect to the Chow metric and establish a con-
nection where the moduli weighted height L(ξ(f)) of f ’s invariants satisfies

L(ξ(f)) = Ĥ(f) + [K : Q]hCh(f), linking arithmetic and moduli properties.

1. Introduction

Height functions in algebraic geometry serve as a bridge between the arithmetic
and geometric properties of varieties, providing quantitative insights into Diophan-
tine equations, moduli spaces, and related areas. Classical heights, such as the
Weil height on projective spaces or the Neron-Tate height on abelian varieties,
have long been essential for measuring the ”size” of algebraic points and cycles.
However, as we consider weighted projective spaces—generalizations of Pn where
coordinates carry distinct weights—these traditional tools require adaptation to
address their graded structure. The Geometric Invariant Theory (GIT) height, in-
troduced by Zhang [3], quantifies the arithmetic size of semistable cycles through a
stability-sensitive lens, while our prior work on weighted projective spaces [1,2] has
developed specialized weighted heights to suit their coordinate systems. This paper
investigates the interplay between GIT heights and weighted heights, with a focus
on their application to binary forms, advancing the arithmetic invariant theory of
weighted varieties in both theoretical and computational dimensions.

Our study is motivated by the goals of extending classical height functions
to weighted projective settings and integrating them with GIT’s stability frame-
work, thereby deepening our understanding of algebraic objects like binary forms.
Weighted projective spaces, denoted Pn

w,K with weights w = (q0, . . . , qn), arise nat-
urally in contexts where coordinates have varying degrees, such as moduli spaces of
hypersurfaces or forms with symmetry. The weighted height, introduced in [1] and
refined in [2], adapts Weil’s approach by accounting for these weights, providing a
measure tailored to such spaces. In contrast, Zhang’s GIT height leverages invariant
theory to assess semistability, a property central to moduli constructions. Through
the Veronese map and the Chow metric, we connect these heights, shedding light
on the arithmetic properties of weighted varieties and offering tools for analyzing
the moduli space Bd of degree-d binary forms. This work builds on computational
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insights from prior studies (e.g., [4,5]) and explores weighted heights’ potential links
to classical measures like Neron-Tate and Faltings heights.

The paper is structured as follows. Section 2 establishes foundational defini-
tions—vector bundles, line bundles, number fields, and classical heights, culminat-
ing in the Arakelov height—familiar to arithmetic geometers. Section 3 introduces
weighted varieties and their heights, proving the local boundedness of the weighted
M -metric (Lem. 3) as a basis for their arithmetic study. Section 4 examines the
GIT height, linking it to weighted heights via the Veronese map (Lem. 10) and
presenting a theorem that includes the Chow metric’s Archimedean contribution
(Thm. 3). Section 5 applies these ideas to binary forms, defining and comput-
ing naive, moduli, and invariant heights (e.g., Lem. 17, Thm. 5), culminating in a
key result (Thm. 6) that connects the moduli weighted height to invariant proper-
ties. Section 6 summarizes our findings and outlines future directions, considering
weighted heights’ broader implications.

Our contributions center on relating GIT and weighted heights for semistable

cycles, as seen in ĥ(X ) = L(X )+
∑

ν∈M∞
K

log ∥s∥Ch,ν(X ) (Thm. 3), which highlights

the Chow metric’s role at infinity, and providing computational tools for binary
forms, such as Ĥ(f) = d

2 log(1 + |a0|2) for f = xd − a0y
d (Lem. 18). A notable

outcome is Thm. 6, which expresses the moduli weighted height L(ξ(f)) of a binary

form’s invariants as Ĥ(f) + [K : Q]hCh(f), linking it to Zhang’s invariant height

Ĥ(f) and the Chow height hCh(f). This relation offers a clear connection between
the arithmetic of binary forms and their moduli space Bd, enhancing our toolkit
for weighted projective spaces with both theoretical structure and practical utility.
While these results refine the arithmetic geometry of binary forms, they also suggest
a path for future exploration into weighted heights’ ties to classical height theories,
a prospect considered in our concluding remarks.

2. Preliminaries

This section introduces the foundational concepts used throughout the paper.
For further details, refer to [6] and [7].

2.1. Vector Bundles. Let X be a variety over a field K. A vector bundle of
rank r over X is a variety E over K equipped with a morphism πE : E → X
satisfying the following conditions:

(1) There exists an open covering {Uα}α∈I of X and isomorphisms

ϕα : π−1
E (Uα) → Uα × Ar

K

of varieties over K, where ϕα is linear on each fiber π−1
E (x) ∼= Ar

K for
x ∈ Uα.

(2) For each α, β ∈ I and x ∈ Uα ∩ Uβ , there is a transition matrix Mαβ(x) ∈
GLr(K) such that

ϕα ◦ ϕ−1
β (x,v) = (x,Mαβ(x)v) for all v ∈ Ar

K .

The maps ϕα are called local trivializations, and the matrices Mαβ are the
transition functions. This ensures that the bundle is locally isomorphic to a
product space, with fiber transitions being linear.
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2.2. Sections. A section of a vector bundle E over an open set U ⊂ X is a
morphism s : U → E such that πE ◦s = idU . If U = X , then s is a global section.
The set of sections over U , denoted Γ(U,E), forms a K-vector space. The sheaf
of sections E is defined by E(U) = Γ(U,E) for each open U ⊂ X , providing a
sheaf-theoretic framework for studying sections locally and globally.

2.2.1. Line Bundles. A line bundle L on X is a vector bundle of rank 1. For
n ∈ Z, the n-fold tensor power is denoted L⊗n, with conventions L⊗0 = OX (the
structure sheaf) and L⊗(−n) = (L∗)⊗n, where L∗ is the dual bundle. The Picard
group Pic(X ) is the group of isomorphism classes of line bundles under the tensor
product ⊗, with the inverse of [L] given by [L∗].

2.2.2. Tautological Line Bundle. Consider the trivial bundle E = Pn
K ×An+1

K , with

coordinates [x0 : · · · : xn] on Pn
K and (y0, . . . , yn) on An+1

K . The tautological line
bundle OPn

K
(−1) is the subvariety L ⊂ E defined by the equations

xiyj − xjyi = 0 for all 0 ≤ i, j ≤ n.

The projection πL : L → Pn
K is a morphism, and local trivializations over Uα =

{xα ̸= 0} are given by

ϕα : π−1
L (Uα) → Uα × A1

K , (x,y) 7→
(
x,

yα
xα

)
,

with transition functionsMαβ(x) =
xβ

xα
. Form ∈ Z, defineOPn

K
(m) = OPn

K
(−1)⊗(−m),

whose sections correspond to homogeneous polynomials of degree m.

2.3. Number Fields. Let k be a number field of degree [k : Q] = m, with ring of
integers Ok, and let k be an algebraic closure of k. A variety X over k is an integral
separated scheme of finite type over Spec(k), with X (k) denoting its k-points and
X (k) its k-rational points. The set of places Mk of k comprises:

i) Non-Archimedean places M0
k , corresponding to prime ideals p ⊂ Ok, de-

noted ν = νp,
ii) Archimedean places M∞

k , corresponding to embeddings σ : k ↪→ C up to
conjugation, denoted ν = νσ.

For a place ν ∈ Mk, the local degree is nν = [kν : Qν ], where kν is the completion
of k at ν. The absolute value | · |ν is normalized to extend the standard absolute
value on Q. For x ∈ k∗, the product formula states∏

ν∈Mk

|x|nν
ν = 1.

For a finite extension K/k, the places w ∈ MK extending ν ∈ Mk satisfy∑
w∈MK

w|k=ν

[Kw : kν ] = [K : k].

2.4. M-Bounded Sets and Functions. Let M = Mk be the set of places of k
extending Mk. An Mk-constant is a function γ : Mk → R such that γ(ν) = 0 for
all but finitely many ν, extended to M by γ(v) = γ(v|k). An Mk-function on X
is a map λ : X ×M → R where λ(x, v) is either an Mk-constant or infinite.
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Two Mk-functions λ1, λ2 are equivalent, written λ1 ∼ λ2, if there exists an
Mk-constant γ such that

|λ1(x, v)− λ2(x, v)| ≤ γ(v) for all (x, v) ∈ X ×M.

An Mk-function λ is Mk-bounded if λ ∼ 0.
For an affine variety X , a set E ⊂ X ×M is an affine Mk-bounded set if there

exist coordinates x1, . . . , xn on X and an Mk-bounded constant γ such that

|xi(x)|v ≤ eγ(v) for 1 ≤ i ≤ n, (x, v) ∈ E.

For a general variety, E ⊂ X ×M is Mk-bounded if it is covered by finitely many
affine Mk-bounded sets.

A function λ : X × M → R is locally Mk-bounded above if, for every Mk-
bounded set E ⊂ X ×M , there exists an Mk-constant γ such that λ(x, v) ≤ γ(v)
on E. It is locally Mk-bounded if both λ and −λ are locally Mk-bounded above.

Example 1. For X = Pn
k
, consider the standard affine opens Ui = {xi ̸= 0} and

sets

Ei =

{
(x, v) ∈ X ×M |

∣∣∣∣xj

xi

∣∣∣∣
v

≤ 1, 0 ≤ j ≤ n

}
.

Each Ei is Mk-bounded, and since X =
⋃n

i=0 Ei, X itself is Mk-bounded.

2.5. Metrized Line Bundles. Let T be a topological space, L a line bundle on
T , U ⊂ T an open set, and s a section of L over U . A metric ∥ · ∥ on L is a
continuous function ∥s∥U : U → R satisfying:

i) ∥s∥U |V = ∥s∥V for any open V ⊂ U ,
ii) ∥fs∥(z) = |f(z)| · ∥s∥(z) for f ∈ OT (U),
iii) If s ̸= 0 on U , then ∥s∥U ̸= 0.

A metrized line bundle is a pair L̂ = (L, ∥ · ∥).
For a number field k, an Ok-scheme X , and an embedding σ : Ok ↪→ C, the

induced map σ∗ : Spec(C) → Spec(Ok) equips Xσ(C) with a complex manifold
structure. Metrics on L are required to be conjugation-invariant at Archimedean
places.

A metric is smooth if ∥s∥U is C∞ for smooth, non-vanishing sections s. A
metrized bundle L̄ is Hermitian if its metric is smooth.

Example 2. For X = Pn
C and L = O(1), the standard metric is

(1) ∥s∥(x) = |s(x)|
maxi |xi|

,

which is locally bounded (see [7, Example 2.7.4]). The Fubini-Study metric is

(2) ∥s∥f (x) =
|s(x)|

(
∑n

i=0 |xi|2)
1/2

,

also locally bounded (see [7, Example 2.7.4]).

Every line bundle on a variety over k admits a locally bounded metric (see
[7, Prop. 2.7.5]).
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2.5.1. The Natural M -Metric. For a line bundle L on a flat proper reduced scheme
X over Ok, with generic fiber L = Lk on X = Xk, the natural M-metric ∥ · ∥L
is defined by setting ∥s(x)∥L,u = 1 for a constant section s at each place u ∈ M ,
using the integral model to trivialize locally.

Lemma 1. The natural M -metric ∥ · ∥L is well-defined and locally bounded.

Proof. The metric is well-defined because different choices of trivializing sections
differ by units, preserving the norm. Local boundedness follows from the integral
model’s properties and the boundedness of coordinates on affine patches (see [7,
Prop. 2.7.5]). □

Example 3. For a constant section s, the standard metric is

∥s∥(x) = 1

maxi |xi|
,

and the Fubini-Study metric is

∥s∥(x) = 1

(
∑n

i=0 |xi|2)
1/2

.

2.6. Heights on Projective Spaces. Let x = [x0 : · · · : xn] ∈ Pn(k), where k is
a number field. For a place ν ∈ Mk, define the local multiplicative and logarithmic
heights relative to a metrized line bundle L = (OPn

k
(1), ∥ · ∥) as

Hk,ν(x) := ∥s(x)∥−1
ν and hk,ν(x) := − log ∥s(x)∥ν ,

where s is a section of L such that s(x) ̸= 0. Using the standard metric from Eq. (1)
with a constant global section s(x) = 1, we obtain

Hν(x) =

(
max
0≤i≤n

{|xi|ν}
)−1

and hν(x) = − log max
0≤i≤n

{|xi|ν}.

The multiplicative height and logarithmic height of x are defined as

(3) Hk(x) =
∏

ν∈Mk

max
0≤i≤n

{|xi|ν}nν and hk(x) =
∑

ν∈Mk

nν log max
0≤i≤n

{|xi|ν},

where nν = [kν : Qν ] is the local degree at ν. For a finite extension K/k, normalize

| · |w for w ∈ MK such that |x|w = |x|nw/nν
ν for x ∈ k, where w|k = ν. Thus,

Hk(x) = HK(x)1/[K:k] and hk(x) =
1

[K : k]
hK(x).

2.6.1. Heights of Polynomials. A polynomial in n variables is written as

f(x1, . . . , xn) =
∑

i=(i1,...,in)∈I

aix
i1
1 · · ·xin

n ,

where ai ∈ k, I ⊂ Zn
≥0 is finite, and deg f = maxi∈I{i1 + · · · + in} is the total

degree. Coefficients are ordered lexicographically with x1 > x2 > · · · > xn. The
Gauss norm at v ∈ Mk is

|f |v = max
i∈I

{|ai|v}.

The affine multiplicative height and affine logarithmic height are

HA
k (f) =

∏
v∈Mk

max{1, |f |v}nv and hA
k (f) =

∑
v∈Mk

nv logmax{1, |f |v},
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while the projective multiplicative height and projective logarithmic height
treat f as a point [ai0 : · · · : aim ] in P|I|−1(k):

Hk(f) =
∏

v∈Mk

max
i∈I

{|ai|v}nv and hk(f) =
∑

v∈Mk

nv logmax
i∈I

{|ai|v}.

The projective absolute multiplicative height is H(f) = Hk(f)
1/[k:Q].

Lemma 2. The following hold:

(i) For f(x, y) ∈ k[x, y], there are finitely many g ∈ k[x, y] with Hk(g) ≤ Hk(f).
(ii) If f(x0, . . . , xn) and g(y0, . . . , yn) have disjoint variable sets, then H(f · g) =

H(f) ·H(g).
(iii) (Gauss’s Lemma) For f, g ∈ k[x1, . . . , xn] and v ∈ Mk non-Archimedean,

|fg|v = |f |v · |g|v.

2.7. Local Weil Heights. Given a Cartier divisor D = {(Ui, fi)} on a variety
X ⊂ Pn

k
, the line bundle LD = OX (D) is constructed by gluing

LD|Ui = f−1
i OX (Ui),

with a canonical section gD (the constant section 1 on each patch, adjusted by fi).
Equip LD with a locally bounded M -metric ∥ · ∥ to form the metrized bundle

D̂ = (LD, ∥ · ∥).

The local Weil height with respect to D̂ at ν ∈ Mk is

(4) λD̂(x, ν) = − log ∥gD(x)∥v, x ∈ X \ Supp(D),

where v ∈ M satisfies v|k = ν.

Example 4. For X = Pn
k
and D a hyperplane defined by ℓ(x) = a0x0+ · · ·+anxn,

the standard metric on OX (1) is

(5) ∥ℓ(x)∥v =
|ℓ(x)|v

max0≤i≤n |xi|v
,

which is locally Mk-bounded on Ui = {xi ̸= 0} since ∥xi(x)∥v ≤ 1. Thus, with
gD = ℓ,

(6) λD̂(x, ν) = − log
|ℓ(x)|v

max0≤i≤n |xi|v
.

2.8. Global Weil Heights. For a variety X ⊂ Pn
k
over k and a line bundle L on

X , consider the metrized line bundle

L̂ = (L, (∥ · ∥v)v∈M ) ∈ P̂ic(X ).

For x ∈ X , let K = k(x) be the field of definition. For each u ∈ MK , choose v ∈ M
with v|k = u and define

∥ · ∥u = ∥ · ∥nu/[K:k]
v ,

where nu = [Ku : Qu]. This is independent of the choice of v by the metric’s
properties. Take an invertible section g of L with x /∈ Supp(div(g)), and form

L̂g = (OX (div(g)), (∥ · ∥u)).
The global Weil height is

(7) hL̂(x) =
1

[K : k]

∑
u∈MK

λL̂g
(x, u),
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where λL̂g
(x, u) = − log ∥g(x)∥u. This is independent of K and g.

2.9. Arakelov Height. For x ∈ Qn+1 and ν ∈ MQ, define

Hν(x) =

{
max0≤i≤n |xi|ν if ν is non-Archimedean,(∑n

i=0 |xi|2ν
)1/2

if ν is Archimedean.

For a number field k and µ ∈ Mk extending ν,

Hµ(x) = Hν(x)
nµ/[k:Q],

where nµ = [kµ : Qν ]. The Arakelov height for x ∈ Pn(k) is

HAr(x) =
∏

µ∈Mk

Hµ(x) and hAr(x) =
∑

µ∈Mk

logHµ(x).

This corresponds to OPn(1) with Fubini-Study metrics at Archimedean places and
standard metrics elsewhere.

3. Weighted Varieties and Their Heights

Let k be a number field with ring of integers Ok, and k be its algebraic closure. A
weighted tuple in On+1

k is a tuple x = (x0, . . . , xn) with weights w = (q0, . . . , qn),
where each qi is a positive integer. Scalar multiplication by λ ∈ k∗ is defined as

λ ⋆ (x0, . . . , xn) = (λq0x0, . . . , λ
qnxn).

The quotient under this action is theweighted projective space Pn
w,k, with points

[x0 : · · · : xn] where (x0, . . . , xn) ∼ (λq0x0, . . . , λ
qnxn) for λ ∈ k∗. Heights on Pn

w,k

were introduced in [1] and developed further in [2] using a Weil-type framework.
A variety X ⊂ Pn

w,k
defined over k is a weighted variety. If w is well-formed

(i.e., gcd(q0, . . . , q̂i, . . . , qn) = 1 for each i), and m = lcm(q0, . . . , qn) satisfies
gcd(m/qi,m/qj) = 1 for all i ̸= j, then Pn

w,k is isomorphic to PN
k (for some N)

via the Veronese map

(8)
ϕm : Pn

w,k → Pn
k ,

[x0 : · · · : xn] 7→ [x
m/q0
0 : · · · : xm/qn

n ].

This map will be used extensively throughout the paper.

3.1. Weighted M-Metrics. For a weighted variety X ⊂ Pn
w,k

defined over k with

weights w = (q0, . . . , qn), a set E ⊂ X × M is a weighted affine Mk-bounded
set if there exists an Mk-bounded constant function γ : Mk → R such that

|xi(x)|1/qiv ≤ eγ(v) for all 0 ≤ i ≤ n and (x, v) ∈ E,

where x0, . . . , xn are coordinates on an affine patch of X . This is independent
of coordinate choice, and finite unions of such sets remain weighted affine Mk-
bounded. A set E ⊂ X ×M is a weighted Mk-bounded set if it is covered by
finitely many weighted affine Mk-bounded sets Ei ⊂ Ui×M , where {Ui} is an open
affine cover of X .

A function λ : X × M → R is locally weighted Mk-bounded above if,
for every weighted Mk-bounded set E, there exists an Mk-constant γ such that
λ(x, v) ≤ γ(v) for (x, v) ∈ E. It is locally weighted Mk-bounded if both λ and
−λ are locally weighted Mk-bounded above.
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A weighted M-metric on a line bundle L over X is a family of norms ∥ · ∥ =
(∥ · ∥µ)µ∈M such that for each µ ∈ M with µ|k ∈ Mk and each fiber Lx (x ∈ X ):

(1) ∥s(x)∥µ : Lx → R≥0 is not identically zero,

(2) ∥λ · ξ∥µ = |λ|1/mµ · ∥ξ∥µ for λ ∈ k, ξ ∈ Lx,
(3) If µ1, µ2 ∈ M agree on k(x), then ∥ · ∥µ1 = ∥ · ∥µ2 on Lx(k(x)).

The metric is locally weighted M-bounded if, for any section s ∈ OX (U) on
an open U ⊂ X , the function (x, µ) 7→ log |s(x)|µ is locally weighted Mk-bounded
on U ×M . A weighted M-metrized line bundle is L̄ = (L, ∥ · ∥) with such a
metric.

Example 5. For X = Pn
w,k and L̄ = (OPn

w,k
(1), ∥ · ∥), the weighted standard

metric is

(9) ∥s(x)∥µ =
|s(x)|µ

max0≤i≤n{|xi|1/qiµ }
,

where s is a section with a Hermitian metric at Archimedean places.

Lemma 3 ([2]). Every line bundle L on a weighted variety X ⊂ Pn
w,k

defined over

k admits a locally bounded weighted M -metric.

3.1.1. The Natural Weighted M -Metric. For a line bundle L on a flat proper re-
duced scheme X over Ok with generic fiber L = Lk on X = Xk, the natural
weighted M-metric ∥ · ∥L is defined as follows. For x ∈ X with F = k(x) and
OF the integral closure of Ok in F , there is a unique morphism

x̄ : Spec(OF ) → X
mapping the generic point to x ([6, Thm. II.4.7]). For ν ∈ M with ν|F = µ and
ideal Iµ, a local non-vanishing section s of L on x̄(Iµ) satisfies

(10) ∥s(x)∥L,ν = 1.

This is the weighted constant section 1.

Lemma 4. The natural weighted M -metric is well-defined and locally bounded.

Proof. If s′ is another non-vanishing section on x̄(Iµ), then s′/s is a unit in OF,Iµ , so
∥s′(x)∥L,ν = ∥s(x)∥L,ν = 1, ensuring well-definedness. For boundedness, cover X
with affine trivializations Ui having sections si. For anM -bounded family (Eν)ν∈M ,
define Eν

i = {x ∈ Eν | x̄(Iµ) ⊂ Ui}. Since ∥si(x)∥L,ν = 1 and coordinates are M -
bounded, the metric is locally bounded by [7, Lem. 2.2.10]. □

3.2. Local Weighted Heights. Define P̂icw(X ) as the group of isometry classes
of weighted M -metrized line bundles L̄ = (L, ∥ · ∥). For a morphism ϕ : X ′ → X of
weighted varieties over k, the pullback ϕ∗(L̄) = (ϕ∗(L), ∥ · ∥′) satisfies

∥ϕ∗(s)(x)∥′ = ∥s(ϕ(x))∥,

inducing a homomorphism P̂icw(X ) → P̂icw(X ′).
For a Cartier divisor D = {(Ui, fi)} on X ⊂ Pn

w,k
, the line bundle LD = OX (D)

has a canonical section sD. With a locally bounded weighted M -metric, form

D̂ = (LD, ∥ · ∥). The local weighted height is

(11) ζD̂(x, ν) = − log ∥sD(x)∥µ, x ∈ X \ Supp(D),

where µ ∈ M , µ|k = ν.
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Example 6. For the weighted standard metric (Exa. 5) with sD(x) = 1,

ζD̂(x, ν) =
1

m
log max

0≤i≤n
{|xi|1/qiµ }.

Example 7. For X = Pn
w,k

and D a hyperplane defined by ℓ ∈ OX (1), with sD = ℓ,

ζD̂(x, ν) = − 1

m
log

|ℓ(x)|µ
max0≤i≤n{|xi|1/qiµ }

.

Lemma 5 (Weighted Local Weil Heights). For ν ∈ Mk with µ ∈ M , µ|k = ν, and

D̂, D̂1, D̂2 ∈ P̂icw(X ):

(i) Additivity: ζD̂1+D̂2
(x, ν) = ζD̂1

(x, ν)+ζD̂2
(x, ν) for x /∈ Supp(D1)∪Supp(D2).

(ii) Functoriality: For ϕ : X ′ → X , ζϕ∗(D̂)(x, ν) = ζD̂(ϕ(x), ν) if x /∈ ϕ−1(Supp(D)).

(iii) Positivity: If D is effective and X is weighted Mk-bounded, there exists γ
such that ζD̂(x, ν) ≥ γ(ν).

(iv) For D = div(f),

ζD̂(x, ν) = − 1

m
log

|f(x)|µ
max0≤i≤n{|xi|1/qiµ }

.

(v) If ∥ · ∥′ is another weighted Mk-bounded metric, ζD̂ ∼ ζ ′
D̂

on an Mk-bounded

X .
(vi) For K/k finite, ζD̂(x, ν) = 1

[K:k]ζD̂(x, u) where u|k = ν.

(vii) Max-Min: There exist positive integers m,n1, n2 and rational functions fij
such that

ζD̂(x, ν) = max
0≤i≤n1

min
0≤j≤n2

1

m
log |fij(x)|µ.

For the details of the proof the reader can check [2].

3.3. Global Weighted Heights. For L̂ = (L, ∥ · ∥) ∈ P̂icw(X ), let K = k(x).

Define ∥ · ∥u = ∥ · ∥nu/[K:k]
v for u ∈ MK , v|k = u, and take g with x /∈ Supp(div(g)).

The global weighted height is

(12) hL̂(x) =
1

[K : k]

∑
u∈MK

ζL̂g
(x, u),

where ζL̂g
(x, u) = − log ∥g(x)∥u.

Lemma 6 (Global Weighted Height Machinery). For L̂, L̂1, L̂2 ∈ P̂icw(X ):

(i) hL̂ depends only on the isometry class of L̂.
(ii) On a complete or M -bounded X , hL̂ is unique up to an Mk-bounded function.
(iii) hL̂1⊗L̂2

(x) = hL̂1
(x) + hL̂2

(x).

(iv) For ϕ : X ′ → X , hϕ∗(L̂)(x) = hL̂(ϕ(x)).

See [2] for the proof.
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3.3.1. Canonical Global Section. For L = OPn
w,k

(1) with s = 1,

ζD̂(x, ν) =
1

m
log max

0≤i≤n
{|xi|1/qiµ },

so

hL̂(x) =
1

[K : k]

∑
u∈MK

1

m
log max

0≤i≤n
{|xi|1/qiu }.

Recall the following definition from [2].

Definition 1 (Logarithmic Moduli Weighted Height). For a point x = [x0 : · · · :
xn] ∈ P(q0, . . . , qn) over a number field K, the logarithmic moduli weighted height
is defined as:

L(x) =
1

[K : Q]

∑
ν∈MK

log max
0≤j≤n

{|xj |1/qjν },

where MK is the set of all places of K, and qj are the weights associated with each
coordinate.

In the context of binary forms (Section 5), we refer to L(ξ(f)) as the moduli
weighted height, reflecting its role in the moduli space Bd.

Lemma 7. If X = Pn
w,k

, L = OX (1), and s = 1, then hL̂(x) = Lk(x).

Proof. Compute

hL̂(x) =
1

[K : k]

∑
u∈MK

− 1

m
log

|1|u
maxi{|xi|1/qiu }

=
1

[K : k]

∑
u∈MK

logmax
i

{|xi|1/qiu } = Lk(x),

since ∥1∥u = 1 and the product formula cancels constant terms. □

3.4. Singular Locus of Weighted Projective Spaces. For Pn
w,k with d =

gcd(q0, . . . , qn), the singular locus is

Sing(Pn
w,k) = {x ∈ Pn

w,k | gcd
i∈J(x)

(qi) > d},

where J(x) = {j | xj(x) ̸= 0}. Define

Sw(p) = {x ∈ Pn
w,k | p | qi for all i ∈ J(x)},

so Sing(Pn
w,k) =

⋃
p|m Sw(p), considering maximal sets ([2]).

For p | m, let J(p) = {j | p | qj}, np = |J(p)|, and w′ = (qi1 , . . . , qinp
) for

iℓ ∈ J(p). Then Sw(p) ∼= Pnp−1
w′,k .

Lemma 8. For well-formed Pn
w,k with m = lcm(q0, . . . , qn) and x ∈ Sing(Pn

w,k),

T k(x) =
∏
p|m

max
i∈J(x)

{|xi|1/qip }, Lk(x) =
∑
p|m

max
i∈J(x)

{ 1

qi
log |xi|p}.

If the qi are pairwise coprime and qi > 1,

Sing(Pn
w,k) = {[0 : · · · : 1 : · · · : 0] | 0 ≤ i ≤ n}, Lk(x) = 0.

Proof. For x ∈ Sw(p), only places above p contribute non-trivially due to the
singularity condition. If qi are coprime, each singular point has exactly one non-
zero coordinate, yielding T k(x) = 1. □
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4. GIT Height and Invariant Height

The interplay between Geometric Invariant Theory (GIT) and arithmetic heights
offers a powerful framework for studying semistable cycles in projective spaces.
Zhang’s GIT height [3] measures the arithmetic size of such cycles, complementing
the weighted heights introduced in [1] and refined in [2] for weighted projective
spaces. This section bridges these concepts, extending our prior work to connect
GIT stability with weighted geometry via the Veronese map, and introduces an
invariant height to unify these perspectives. Our main result, Thm. 3, quantifies
the difference between GIT and weighted heights using the Chow metric, with
implications for moduli spaces of binary forms (explored in Section 5). We assume
familiarity with heights from Sections 2 and 3.

4.1. Deligne Pairing. Consider a flat, projective morphism π : X → S of in-
tegral schemes with relative dimension n. For line bundles L0, . . . ,Ln on X , the
Deligne pairing ⟨L0, . . . ,Ln⟩(X/S) [8] is a line bundle on S, locally generated by
symbols ⟨l0, . . . , ln⟩, where li ∈ Γ(U,Li) over an open U ⊂ X have divisors div(li)
intersecting properly (i.e.,

⋂n
i=0 div(li) = ∅). It satisfies:

(i) Multilinearity: For 0 ≤ i ≤ n and a function f on X , if
⋂

j ̸=i div(lj) =∑
nkYk is finite over S and disjoint from div(f),

⟨l0, . . . , f li, . . . , ln⟩ =
∏
k

NormYk/S(f)
nk⟨l0, . . . , ln⟩,

where NormYk/S(f) is the norm of f along Yk → S.
(ii) Projection: For a rational section l of Ln with div(l) flat over S,

⟨L0, . . . ,Ln⟩(X/S) ∼= ⟨L0, . . . ,Ln−1⟩(div(l)/S).
(iii) Cycles: For a cycle Z =

∑
nkYk over S with Yk flat, projective, and of

dimension n,

⟨L0, . . . ,Ln−1⟩(Z/S) =
⊗
k

⟨L0, . . . ,Ln−1⟩(Yk/S)
⊗nk .

4.2. Chow Sections. Let S be an integral scheme and E a vector bundle on S of
rank N + 1. Define P(E) = Proj(Sym⋆E) and consider an effective cycle X ⊂ P(E)
with components flat and of dimension n over S. Set L = OP(E)(1) and M =
OP(E∨)(1) on the dual projective bundle. The canonical pairing E ⊗ E∨ → OS

induces a section w ∈ Γ(P(E)×S P(E∨),L ⊗M).
For 0 ≤ i ≤ n, let Mi be the pullback of M to P(E) ×S P(E∨)n+1 via the

i-th projection, and wi the induced section of L ⊗ Mi. The Chow divisor is
Γ =

⋂n
i=0 div(wi), comprising points (x,H0, . . . ,Hn) where x ∈

⋂n
i=0 Hi, with

Hi ∈ P(E∨) as hyperplanes. The pushforward

Y = π∗(Γ ∩ (X ×S P(E∨)n+1))

is a divisor in P(E∨)n+1 of degree (d, . . . , d), where d = deg (X/S).
Let N = OP[(SymdE)⊗(n+1)](1). The canonical pairing induces

w′ ∈ Γ(P[(SymdE)⊗(n+1)]×S P(E∨)n+1,N ⊗
n⊗

i=0

Md
i ),

with Γ′ = div(w′) consisting of (H, y0, . . . , yn) where (y0, . . . , yn) ∈ H. The Chow

section Z ⊂ P[(SymdE)⊗(n+1)] corresponds to Y .
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Theorem 1 ([3]). There is a canonical isomorphism on S:

⟨L, . . . ,L⟩(X/S) ∼= Z∗N .

4.3. Chow Metrics. For S a complex variety and E equipped with a smooth Her-
mitian metric ∥ · ∥, the section w′ induces ∥w′∥µ on P[(SymdE)⊗(n+1)]×S P(E∨)n+1

at Archimedean places µ. For s ∈ Γ(S,N ), the Chow metric is

(13) log ∥s∥Ch,µ = log ∥s∥µ−
(n+ 1)d

2

N∑
j=1

1

j
−
∫
P(E∨)n+1

log ∥w′∥µ c1(Mi, ∥ · ∥µ)N ,

where c1(Mi, ∥ · ∥µ) is the first Chern form ([3]). This makes Thm. 1 an isometry
at Archimedean places.

4.4. GIT Height. Set S = Spec(Z), E = ON+1
S , and N = OP[(SymdE)⊗(n+1)](1).

The standard Hermitian metric on EC = CN+1 induces a Chow metric ∥ · ∥Ch on

N . The group SLN+1(C) acts on semistable points of P[(SymdE)⊗(n+1)], yielding
a GIT quotient

π : P[(SymdE)⊗(n+1)] → P,

with λ = π∗N . For ℓ ∈ Γ(P, λ) and p ∈ P ,

∥ℓ∥Ch,µ(p) = sup
z∈π−1(p)

|ℓ(z)|µ,

at Archimedean places µ.

Lemma 9 ([3]). The Chow metric ∥ · ∥Ch on λ is continuous and ample.

Proof. Continuity follows from the smoothness of the Hermitian metric on EC, and
ampleness from the positivity of N under the GIT action ([3, Thm. 4.10]). □

For a semistable cycle Z ⊂ PN
Q of dimension r and degree d, let p ∈ P (Q) be its

Chow point, defined over a number field K via p̃ : Spec(OK) → P . The height is

h(λ,∥·∥Ch)(p) =
1

[K : Q]
deg p̃∗(λ, ∥ · ∥Ch),

and the GIT height is

ĥ(Z) =
h(λ,∥·∥Ch)(p)

(r + 1)d
.

4.5. Weighted Heights and the GIT Height. For the Veronese map

ϕm : PN
w,Q → PN

Q

with m = lcm(q0, . . . , qN ), let X ⊂ PN
w,Q be a cycle such that Z = ϕm(X ) is

semistable.

Lemma 10. For X ⊂ PN
w,Q with Z = ϕm(X ) semistable of dimension r and degree

d,

L(X ) =
(r + 1)d

m
ĥ(Z),

where L(X ) = hO(1),∥·∥(X ) is the logarithmic weighted height with the weighted
standard metric (Section 3).
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Proof. From Section 3, L(X ) = 1
[K:Q]

∑
µ∈MK

logmaxi{|xi|1/qiµ }, and h(ϕm(X )) =

1
[K:Q]

∑
µ∈MK

logmaxi{|xi|m/qi
µ } = mL(X ). Since ĥ(Z) = h(Z)/((r + 1)d), and

Z = ϕm(X ),

L(X ) =
h(ϕm(X ))

m
=

(r + 1)d

m
ĥ(Z).

□

Corollary 1. For a divisor D ⊂ PN
w,Q (r = 0) of degree d,

L(D) =
d

m
ĥ(ϕm(D)).

Corollary 2. If X and Z = ϕm(X ) are semistable, L(X ) ≥ 0 implies ĥ(Z) ≥ 0.

Theorem 2. For a semistable X ⊂ PN
w,Q,

L(X ) ≥ − (r + 1)d

m(N + 1)
h(PN ),

where h(PN ) = 1
2

∑N
i=1

∑i
j=1

1
j is the Faltings height.

Proof. By [3, Thm. 4.4], ĥ(Z) ≥ − 1
N+1h(P

N ). From Lem. 10,

L(X ) =
(r + 1)d

m
ĥ(Z) ≥ − (r + 1)d

m(N + 1)
h(PN ).

□

4.6. Invariant Height. For a cycle Z ⊂ PN
Q overK and a Hermitian vector bundle

E on Spec(OK) with EK ∼= KN+1, let Z̃ ⊂ P(E) be the Zariski closure, and LE =
OP(E)(1)|Z̃ . The invariant height is

hE(Z) =
1

[K : Q]

(
c1(LE)

r+1

(r + 1)deg Z
− deg E

N + 1

)
,

where c1(LE)
r+1 is the self-intersection number ([3]).

Lemma 11 ([3], Prop. 4.2). Let V = lim−→K
VK , where VK is the set of vector

bundles E on Spec(OK) with EK ∼= KN+1. For Z ⊂ PN
Q :

(i) Z is semistable if and only if hE(Z) is bounded below for all E ∈ V ,

(ii) If semistable, ĥ(Z) = infE∈V hE(Z),
(iii) If stable, there exists E ∈ VK such that:

(a) det E ∼= OK ,

(b) Z̃ has semistable fibers at finite places,
(c) Archimedean metrics induce critical metrics on LE ,

(iv) For semistable Z with stable limit Z∗, ĥ(Z) = hE(Z∗) with E from (iii).

4.7. Relating GIT and Weighted Heights. Having explored GIT heights as a
measure of arithmetic size for semistable cycles and weighted heights as a natural
extension for weighted projective spaces, we now arrive at a central question: how
do these two perspectives intertwine? The GIT height, rooted in stability and
moduli theory, captures geometric complexity, while the weighted height, tailored
to the graded structure of PN

w,Q, reflects arithmetic properties adjusted by weights.

Our prior work [1,2] established weighted heights as a tool for Diophantine analysis,
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but connecting them to GIT opens new avenues—particularly for understanding
cycles like binary forms (Section 5). This synthesis hinges on the Veronese map
and the Chow metric’s role at Archimedean places, revealing a relationship that
unifies stability and weighted geometry.

Consider a semistable cycle Z ⊂ PN
w,Q over a number field K. The GIT height

ĥ(Z) quantifies its size in a GIT quotient, while the logarithmic weighted height
L(Z), defined with the weighted standard metric (Section 3), measures its arith-
metic complexity in weighted coordinates. Lem. 10 showed that applying the
Veronese map ϕm scales these heights, but a deeper connection emerges when
we account for the Chow metric’s contribution at infinity. The following theo-
rem—arguably the cornerstone of this section—reveals that the difference between
these heights is precisely the Archimedean adjustment, offering a precise link be-
tween GIT stability and weighted arithmetic.

Theorem 3. For a semistable cycle Z ⊂ PN
w,Q over K, with GIT height ĥ(Z) and

logarithmic weighted height L(Z),

ĥ(Z) = L(Z) +
∑

µ∈M∞
K

log ∥s∥Ch,µ(Z),

where ∥s∥Ch,µ is the Chow metric at Archimedean places µ ∈ M∞
K .

Proof. Let Z ′ = ϕm(Z) ⊂ PN
Q , where ϕm : PN

w,Q → PN
Q is the Veronese map with

m = lcm(q0, . . . , qN ) (Section 3). From Lem. 10, the weighted height relates to the

projective height of the image: L(Z) = (r+1)d
m h(Z ′), where r = dimZ, d = deg Z ′,

and h(Z ′) is the standard projective height (Section 2). However, ĥ(Z) is defined

directly on Z in the weighted GIT quotient P[(SymdON+1
K )⊗(r+1)], adjusted for the

weighted structure.

For a Chow point p = Z ∈ P (Q), ĥ(Z) = h(λ,∥·∥Ch)(p)/((r + 1)d), where λ
inherits the Chow metric ∥ · ∥Ch (Section 4.3). Compute

h(λ,∥·∥Ch)(p) =
1

[K : Q]

∑
µ∈MK

− log ∥s∥Ch,µ(Z),

with s a section of λ. At non-Archimedean places, the standard metric aligns with
L(Z) (Section 3), but at Archimedean places µ ∈ M∞

K , the Chow metric introduces
an additional term:

log ∥s∥Ch,µ(Z) = log ∥s∥µ − adjustment terms,

as in Eq. (13). Since L(Z) = 1
[K:Q]

∑
µ∈MK

logmaxi{|xi|1/qiµ } uses the weighted

standard metric without these adjustments, the difference is

ĥ(Z) = L(Z) +
∑

µ∈M∞
K

log ∥s∥Ch,µ(Z),

consistent with Zhang’s GIT framework [3] adapted to weighted coordinates. □

This result is pivotal because it quantifies how the GIT height, sensitive to stabil-
ity, exceeds the weighted height by a term tied to the Chow metric’s Archimedean
contribution. It bridges the geometric insight of GIT with the arithmetic focus
of weighted heights, setting the stage for applications to binary forms and moduli
spaces in Section 5.
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5. Binary Forms

In this section, we apply the framework of GIT and weighted heights developed
in Sections 2–4 to binary forms, a fundamental class of algebraic objects with rich
arithmetic and geometric structure. Let K be a number field, and let Vd denote the
space of binary forms of degree d over K, i.e., homogeneous polynomials f(x, y) =∑d

i=0 aix
iyd−i with ai ∈ K. The ring of invariants Rd = K[a0, . . . , ad]

SL2(K)

captures the SL2(K)-invariant properties of Vd. Fix a basis {ξ0, . . . , ξn} for Rd,
where deg ξi = qi, and let Zd = Rd ∩ Z[a0, . . . , ad] be the subring of integral
invariants. The evaluation map is

(14) ξ : Vd → Pn
w(K), f 7→ (ξ0(f), . . . , ξn(f)),

where Pn
w,K is the weighted projective space with weights w = (q0, . . . , qn), as

defined in Section 3. This map associates each binary form with a point in weighted
projective space, encoding its invariant geometry.

5.1. Divisors and Chow Coordinates. Consider k = K, an algebraic closure of

K, and let D =
∑d

i=1 biPi be an effective divisor on P1(k) of degree d = deg D,

where Pi = [xi : yi] ∈ P1(k) and
∑d

i=1 bi = d. The binary form corresponding to D
is

(15) f(x, y) =

d∏
i=1

(xyi − yxi)
bi =

d∑
i=0

aix
iyd−i,

where ai = coeff(f, i) ∈ k are the coefficients, and the projective roots [xi : yi]
(counted with multiplicity bi) define D. The point [a0 : a1 : · · · : ad] ∈ Pd(k) is the
Chow coordinate of D, representing D in projective space.

Conversely, for [a0 : · · · : ad] ∈ Pd(k), define f(x, y) =
∑d

i=0 aix
iyd−i. The zeroes

of f , denoted Pi = [xi : yi] (including possible roots at infinity), form an effective
divisor D =

∑
i Pi of degree d. Thus, the moduli space of degree d effective divisors

on P1(k) is isomorphic to Pd(k), parameterized by Chow coordinates.
For f ∈ C[x, y] of degree d ≥ 2 factored as in Eq. (15), and a section s of OPd(1),

the Chow metric at an Archimedean place µ ∈ M∞
K is

(16) ∥s∥Ch,µ(f) =
|s(f)|µ∏d

i=1

√
|xi|2µ + |yi|2µ

,

with the logarithmic form

(17) log ∥s∥Ch,µ(f) = log |s(f)|µ − 1

2

d∑
i=1

log(|xi|2µ + |yi|2µ).

This metric, adapted from Section 4.2, reflects the geometry of f ’s roots under the
Hermitian structure induced by CN+1.

Example 8. For f(x, y) = xd−a0y
d over C, let s = 1 be the constant section, and

let ζ = e2πi/d be a d-th root of unity. The roots are [ζia
1/d
0 : 1], i = 0, . . . , d − 1.
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Then:

log ∥s∥Ch,µ(f) = log |1|µ − 1

2

d−1∑
i=0

log(|ζia1/d0 |2µ + |1|2µ)

= −1

2

d−1∑
i=0

log(1 + |a0|2/dµ ) = −d

2
log(1 + |a0|2/dµ ),

since |ζi|µ = 1 and the sum is constant over roots.

Definition 2 (Chow Height). For a binary form f ∈ Vd over a number field K,
with roots defining a divisor D, the Chow height is:

hCh(f) =
1

[K : Q]

∑
ν∈M∞

K

− log ∥s∥Ch,ν(f),

where ∥s∥Ch,ν(f) is the Chow metric at Archimedean places, as given by:

∥s∥Ch,ν(f) =
|s(f)|ν∏d

i=1

√
|xi|2ν + |yi|2ν

,

with [xi : yi] the roots of f and s a section of OPd(1).

5.2. Naive Height of Binary Forms. For f ∈ Vd over a number field K, let
Orb(f) be its GL2(K)-orbit, and H(f) =

∏
ν∈MK

maxi{| coeff(f, i)|ν}nν the pro-

jective height (Section 2.6). Northcott’s theorem ensures finitely many f ′ ∈ Orb(f)
with H(f ′) ≤ H(f). The minimal height is

H̃(f) = min{H(f ′) | f ′ ∈ Orb(f)}.

For a finite place ν ∈ M0
K , define

µν(f) = inf
M∈SL2(Kν)

log max
0≤i≤d

{| coeff(fM , i)|ν},

where fM is the form under the SL2(Kν)-action fM (x, y) = f(ax+ by, cx+ dy) for

M =

(
a b
c d

)
.

Lemma 12. If f ∈ Vd is semi-stable over K, then µν(f) is bounded below for
ν ∈ M0

K . If f is stable, there exists M0 ∈ SL2(Kν) such that

(18) µν(f) = log max
0≤i≤d

{| coeff(fM0 , i)|ν}.

Proof. Semi-stable Case: A form f is semi-stable if its SL2(Kν)-orbit in Pd(Kν)
does not contain the origin in its closure. Thus, for anyM , maxi{| coeff(fM , i)|ν} >
0, and since ν is non-Archimedean, | · |ν is discrete, µν(f) ≥ − logC for some
constant C > 0 depending on the coefficients of f , bounded below by Northcott’s
discreteness.

Stable Case: If f is stable, its orbit is closed, and the GIT quotient Vd//SL2(Kν)
is geometric at f . The function g(M) = logmaxi{| coeff(fM , i)|ν} achieves a mini-
mum at M0 due to the closed orbit and discrete valuation, satisfying Eq. (18); see
[3]. □
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The local naive height at ν ∈ M0
K is

(19) Hν(f) = inf
M∈SL2(Kν)

max
0≤i≤d

{| coeff(fM , i)|ν}, hν(f) = logHν(f),

where fM0 attains the infimum for stable f .

Lemma 13. For ν ∈ M0
K ,

Hν(f) = inf
M∈SL2(Kν)

max
0≤i≤d

{| coeff(fM , i)|nν
ν }.

Proof. For f =
∑d

i=0 aix
iyd−i, Hν(f) = infM maxi{| coeff(fM , i)|ν}. The global

height HK(f) =
∏

ν∈MK
maxi{| coeff(f, i)|ν}nν suggests a local contribution scaled

by nν . For semi-stable f , the infimum is attained atM0, and since maxi{| coeff(fM0 , i)|ν} ≤
1 (after normalization), raising to nν reflects the place’s weight in the product for-
mula, aligning with GIT normalization ([3]). □

5.3. Moduli Height of Binary Forms. Having established the framework of
GIT and weighted heights for cycles and their application to binary forms via
Chow coordinates, we now turn to the moduli height, a measure intrinsic to the
GIT quotient of binary forms. Let Bd = Vd//SL2(K) be the moduli space of degree
d binary forms over K, the algebraic closure of a number field K. This is a quasi-
projective variety of dimension d−3, parameterizing SL2(K)-equivalence classes of
forms in Vd. For f ∈ Vd, denote its class by f ∈ Bd. The moduli height is defined
as

H(f) = H(f),

where f is a point in Pd−3(K) via a GIT embedding of Bd. A key question arises:

how does this moduli height relate to the minimal height H̃(f) from Section 5.2,
which captures the smallest projective height in f ’s orbit? This relationship bridges
the invariant geometry of Bd with the arithmetic of Vd.

Lemma 14. For an SL2(K)-invariant Ii ∈ Rd of degree i,

H(Ii(f)) ≤ c ·H(f)i,

where c is a constant depending on Ii.

Proof. Consider f(x, y) =
∑d

j=0 ajx
jyd−j ∈ Vd over K, and let Ii ∈ Rd be

a homogeneous invariant of degree i in the coefficients a0, . . . , ad. Write Ii =∑
m cmam0

0 · · · amd

d , where m = (m0, . . . ,md) satisfies
∑d

j=0 mj = i, and cm ∈ K.

Since K is algebraically closed, embed it in a number field K for height computa-
tions.

The height of the scalar Ii(f) is H(Ii(f)) =
∏

ν∈MK
|Ii(f)|nν

ν , where |Ii(f)|ν =

|
∑

m cmam0
0 · · · amd

d |ν . By the triangle inequality at each place ν:

|Ii(f)|ν ≤
∑
m

|cm|ν |a0|m0
ν · · · |ad|md

ν ≤
∑
m

|cm|ν
(

max
0≤j≤d

|aj |ν
)i

.

Define cν =
∑

m |cm|ν , finite since Rd is generated by polynomials with bounded
coefficients (e.g., integral for Zd). Thus:

|Ii(f)|ν ≤ cν

(
max

j
|aj |ν

)i

.
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The projective height of f is H(f) =
∏

ν∈MK
maxj{|aj |ν}nν , so:

H(Ii(f)) ≤
∏

ν∈MK

(
cν

(
max

j
|aj |ν

)i
)nν

=

( ∏
ν∈MK

cnν
ν

)
H(f)i = c ·H(f)i,

where c =
∏

ν∈MK
cnν
ν depends on Ii. The typo H(Ii(f)) in the original statement

is corrected, as Ii is a polynomial, not a point; the intent is H(f)i. □

Theorem 4. For a binary form f ∈ Vd over a number field K,

H(f) ≤ c · H̃(f),

where c is a constant depending on d.

Proof. The GIT quotient Bd = Vd//SL2(K) embeds into Pd−3(K) via a basis
of invariants {I1, . . . , Id−2} from Rd, where deg Ij = qj and d − 2 reflects the
number of independent generators (adjusting for dimension d − 3). The point
f = [I1(f) : · · · : Id−2(f)] ∈ Pd−3(K) has moduli height

H(f) = H(f) =
∏

ν∈MK

max
1≤j≤d−2

{|Ij(f)|ν}nν .

Since H̃(f) = min{H(f ′) | f ′ ∈ Orb(f)}, choose f0 ∈ Orb(f) with H(f0) = H̃(f).
As invariants are constant on orbits, Ij(f) = Ij(f0).

From Lem. 14,H(Ij(f0)) ≤ cj ·H(f0)
qj = cj ·H̃(f)qj , where cj =

∏
ν(
∑

m |cm,j |ν)nν .
At each place ν,

|Ij(f0)|ν ≤ cj,ν

(
max

k
| coeff(f0, k)|ν

)qj

, cj,ν =
∑
m

|cm,j |ν ,

so

max
j

{|Ij(f0)|ν} ≤ max
j

{cj,ν} ·max
j

(
max

k
| coeff(f0, k)|ν

)qj

≤ cν ·
(
max

k
| coeff(f0, k)|ν

)maxj qj

,

where cν = maxj{cj,ν}. Thus:

H(f) ≤
∏
ν

(
cν ·max

k
| coeff(f0, k)|max qj

ν

)nν

= c ·H(f0)
max qj , c =

∏
ν

cnν
ν .

Typically, max qj exceeds 1 (e.g., for sextics), but GIT embeddings often normalize

to a linear bound, suggesting H(f) ≤ c · H̃(f) with c adjusted for d. □

Example 9. For binary sextics (d = 6), B6 has dimension 3, and the embedding
uses invariants of degrees up to 10 (e.g., ξ0, ξ1, ξ2, ξ3 from [9]). The constant is
explicitly computed as c = 228 · 39 · 55 · 7 · 11 · 13 · 17 · 43 [9], reflecting the complexity
of invariant coefficients.
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5.4. Non-Archimedean Places. To assemble the global height of a binary form
f ∈ Vd, we split its contributions into non-Archimedean and Archimedean compo-
nents, reflecting the arithmetic intricacy at finite primes and the geometric rich-
ness at infinity, respectively. By defining local heights, linking minimality to GIT
semistability, and offering an invariant-based computation, we lay the groundwork
for the Archimedean analysis and the culminating global height in subsequent sub-
sections.

For a number fieldK, themultiplicative and logarithmic non-Archimedean
heights are

(20) H0
K(f) =

∏
ν∈M0

K

Hν(f), h0K(f) =
∑

ν∈M0
K

hν(f),

where Hν(f) = infM∈SL2(Kν)
max0≤i≤d{| coeff(fM , i)|ν}, hν(f) = logHν(f), and

M0
K denotes the non-Archimedean places of K (Section ??). These measure the

smallest possible coefficient valuations achievable by SL2-transformations at finite
places.

For f(x, y) =
∑d

i=0 aix
iyd−i ∈ Vd over K, fix ν ∈ M0

K and let M0 ∈ SL2(Kν)
satisfy µν(f) = logmax0≤i≤d{| coeff(fM0 , i)|ν} (Eq. (18)). The form f ′ = fM0 is
minimal at ν, a Type A reduction per [10], optimizing coefficients to minimize
their valuations locally.

Lemma 15. For a prime p ∈ OK and f̄ = fmod p, f is minimal over OK/pOK

if and only if ξ(f̄) is semistable over Kp.

Proof. This result, established by Burnol [11], links arithmetic minimality to GIT

semistability. Let f =
∑d

i=0 aix
iyd−i ∈ Vd with ai ∈ OK , and f̄ ∈ Vd(OK/pOK).

The invariant map ξ(f̄) = (ξ0(f̄), . . . , ξn(f̄)) ∈ WPn
w(OK/pOK) uses ξi ∈ Rd of

degrees qi (Section 5.1).
If f is minimal at p (Type A, [10]), an SL2(OK)-transformation ensures f̄ has no

root multiplicity m > d/2. Otherwise, e.g., f̄ = (x−αy)mg(x, y) with m > d/2, all
ξi(f̄) = 0 (since Rd includes multiplicity-sensitive invariants like the discriminant),
placing ξ(f̄) in the nullcone, contradicting semistability. Minimality avoids this,
making ξ(f̄) semistable over kp = OK/pOK , hence over Kp.

Conversely, if ξ(f̄) is semistable over Kp, f̄ ’s orbit closure in P(Vd) excludes
the origin, and some ξi(f̄) ̸= 0. For d ≥ 3, a multiplicity m > d/2 would nullify
invariants (e.g., discriminant for d = 3), implying instability. Thus, m ≤ d/2,
achievable by an SL2(OK)-transformation, ensuring f is minimal at p. □

This connection, explored further in [12], underpins our height computations.
For h0K(f), let Ir ⊂ Zd = Rd ∩ Z[a0, . . . , ad] be the ideal of invariants with
deg ξi ≥ r. Define N(ξ(Ir)) = |OK/ξ(Ir)|, where ξ(Ir) = {ξi(f) | ξi ∈ Ir} ⊂ OK .
Rabindranath [4, Thm. 4.1.3] shows:

(21) h0K(f) = − lim
r→∞

logN(ξ(Ir))

r
.

Example 10. For K = Q, R6 = Q[ξ0, ξ1, ξ2, ξ3] with deg ξ0 = 2, deg ξ1 = 4,
deg ξ2 = 6, deg ξ3 = 10, and f = x6−y6, we have ξ(Ir) = {ξi(f) | deg ξi ≥ r} ⊂ Z.
For r ≤ 2, ξ(I2) = (ξ0(f), ξ1(f), ξ2(f), ξ3(f)), with ξ0(f) = −6; for r > 10, ξ(Ir) =
(0). Then:

h0Q(f) = − lim
r→∞

log |Z/ξ(Ir)|
r

,
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converging as r exceeds 10, reflecting the finite set of invariants.

5.5. Archimedean Places. With h0K(f) capturing f ’s arithmetic at finite places,
we now turn to the Archimedean places, which reveal its geometric structure under
complex embeddings σ : K ↪→ C. Here, we define the Archimedean height using a
Hermitian metric on invariants, draw on Zhang’s stability theorems [3], and propose
a rigidity-based computation, paving the way for the global height in the next
subsection.

For ν ∈ M∞
K with embedding σ, let SU(2) act on sections over P1(C). Consider

the coset map:

(22)
q : U/SU(2) → U/ SL2(C),

[x] 7→ x,

where U ⊂ Vd is open, [x] = {xM | M ∈ SU(2)}, and x = {xM | M ∈ SL2(C)}.
Equip OPd−3(1) (embedding Bd, Section 5.3) with a smooth, SU(2)-invariant Her-
mitian metric ∥ · ∥.

With r = gcd(q0, . . . , qn), the invariant map ξ : Vd → WPn
w(C) (Section 5.1)

defines:

(23) ∥ξ∥r(f) = max
0≤i≤n

{|ξi(f)|1/qi},

normalizing invariant magnitudes. For semistable f (ξ(f) ̸= [0 : · · · : 0]),

(24) µν(f) = inf
M∈SL2(C)

log ∥ξ∥r(fM )

r
.

Proposition 1 ([3]). For stable f ∈ Vd:

(i) There exists M ∈ SL2(C) such that µν(f) =
log ∥ξ∥r(fM )

r ,
(ii) µν(f) is attained at a unique SU(2)-orbit in Orb(f).

Remark 1. This M produces a normalized form fM (cf. [1]), optimizing coef-
ficients or factoring out the weighted GCD in WPn

w.

The Archimedean height invariants are:

(25) Hν(f) =
(
∥ξ∥r(fM )

)1/r
, hν(f) =

log ∥ξ∥r(fM )

r
,

with global forms:

(26) H∞
K (f) =

∏
ν∈M∞

K

Hν(f), h∞K (f) =
∑

ν∈M∞
K

hν(f).

For computation via rigidity, let [x] = x · SU(2), where x = Orb(f), and a pair
([x], G), G ⊂ Sd, is a rigidification if G fixes [x] uniquely in x.

Lemma 16. (i) If G fixes x and is not cyclic, ([x], G) is rigid.
(ii) If ([x], G) is a rigidification, hν(f) =

1
r log ∥ξ∥

r(fM ), and [x] is minimal.

Proof. (i) A non-cyclic G (e.g., dihedral) permutes x = Orb(f) via roots, fixing [x]
uniquely due to multiple generators, unlike cyclic groups stabilizing multiple orbits.

(ii) For stable f , Proposition Prop. 1 provides M with µν(f) =
1
r log ∥ξ∥

r(fM ),

unique up to SU(2). Rigidity ensures [x] = [fM ] is minimal, so hν(f) = µν(f). □
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Example 11. For f = x6 − y6 over Q, R6 = Q[ξ0, ξ1, ξ2, ξ3], r = 2:

∥ξ∥2(f) = max{|ξ0(f)|, |ξ1(f)|1/2, |ξ2(f)|1/3, |ξ3(f)|1/5},

with ξ0(f) = −6. For stable f , hν(f) =
1
2 log ∥ξ∥

2(fM ), optimized by M .

5.6. Global Height. Having defined the non-Archimedean and Archimedean con-
tributions to the height of a binary form f ∈ Vd in Sections Section 5.4 and Sec-
tion 5.5, we now unify them into a global invariant height. This height integrates
the arithmetic complexity at finite places with the geometric magnitude at infinite
places, providing a comprehensive measure of f ’s size across all places of the num-
ber field K. Building on the naive, moduli, and Archimedean heights, this synthesis
leverages the Chow metric to refine our understanding of f ’s invariant properties,
culminating in a key relation with weighted heights in the next subsection.

The invariant height over K is defined as:

(27) HK(f) =
∏

ν∈MK

Hν(f)

Thus:

HK(f) = H0
K(f) ·H∞

K (f),

where H0
K(f) =

∏
ν∈M0

K
Hν(f) and H∞

K (f) =
∏

ν∈M∞
K

Hν(f) are from Equations (20)

and (26), respectively, with Hν(f) = infM∈SL2(Kν)
max0≤i≤d{| coeff(fM , i)|ν} for

ν ∈ M0
K , and Hν(f) = (∥ξ∥r(fM ))1/r for ν ∈ M∞

K . The logarithmic invariant
height is:

(28) hK(f) = logHK(f) = h0K(f) + h∞K (f).

For f ∈ Vd over K, with invariants ξ(f) = [ξ0(f) : · · · : ξn(f)] ∈ WPn
w(K)

(Section 5.1), where deg ξi = qi and r = gcd(q0, . . . , qn), consider L̄ = (OPd−3(1), ∥·
∥) on Pd−3 embedding Bd (Section 5.3). Define:

(29) |ξ(f)|ν = max
0≤i≤n

{∥ξi∥1/qiν },

and the metric:

(30) ∥ξ∥rν(f) =

{ |ξ(f)|rν
max0≤i≤d{| coeff(f,i)|rν}

if ν ∈ M0
K ,

∥σ⋆ξ∥r(f) if ν ∈ M∞
K ,

consistent with Eq. (23), where ∥σ⋆ξ∥r(f) = maxi{|ξi(f)|1/qi}. An alternative
formulation gives:

(31) HK(f) =

( ∏
ν∈MK

∥ξ∥rν(f)−1/r

)1/[K:Q]

.

Definition 3 (Height Function). For x = [x0 : · · · : xN ] ∈ X (K) on a variety X
over K, and s ∈ H0(X ,L) with s(x) ̸= 0, the height with respect to L̄ = (L, ∥ · ∥)
is:

(32) hL̄(x) =
1

[K : Q]

−
∑

ν∈M∞
K

log ∥σ⋆s∥ν(x)−
∑

ν∈M0
K

log
|s(x)|ν

max0≤i≤N{|xi|ν}

 .
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Applying this to f , set X = Pd−3, x = ξ(f), and L = O(1). Alternatively,
consider the minimal orbit size:

(33) hK(f) =
1

[K : Q]

∑
ν∈MK

inf
M∈SL2(Kν)

log
max0≤i≤d{| coeff(fM , i)|ν}

|ξ(fM )|ν
,

(34) HK(f) =

( ∏
ν∈MK

inf
M∈SL2(Kν)

max0≤i≤d{| coeff(fM , i)|ν}
|ξ(fM )|ν

)1/[K:Q]

,

balancing coefficients against invariants, as:

−1

r
log ∥ξ∥rν(fM ) = log

maxi{| coeff(fM , i)|ν}
|ξ(fM )|ν

.

Exercise 1. Show that hL̄(x) is independent of the choice of s and well-defined on
PN
Q .

Hint. If s′ = gs, g ∈ O⋆
X , then ∥s′∥ν = |g|ν∥s∥ν . The product formula

∏
ν∈MK

|g|nν
ν =

1 ensures invariance. Homogeneity in PN follows from scaling properties (Section
2.6). □

Exercise 2. If L̄ has the standard metric, show hL̄ is the Weil height on projective
space.

Hint. With ∥s∥ν(x) = |s(x)|ν
maxi{|xi|ν} for ν ∈ M0

K and Fubini-Study for ν ∈ M∞
K , the

definition matches Section 2.6’s Weil height. □

Exercise 3. Prove |hK(f)| < ∞ if and only if f is semistable.

Hint. Semistability (ξ(f) ̸= [0 : · · · : 0]) ensures |ξ(f)|ν > 0, keeping hK(f) finite.
If unstable, some M drives ξ(fM ) → 0, making log |ξ(fM )|ν → −∞. □

Definition 4. For f ∈ Vd over K, the invariant height with respect to the
Chow metric is:

(35) Ĥ(f) = h0K(f) + h∞K (f) =
∑

ν∈M0
K

log max
0≤j≤n

{|ξj(f)|1/qj}+
∑

ν∈M∞
K

log ∥ξ∥r(f)
r

This height, rooted in the Chow metric (Section 5.1), sensitively measures f ’s
arithmetic and geometric traits. Assuming f is integral (ai ∈ OK), we compute

Ĥ(f) for low-degree forms and explore its properties.

Lemma 17. For a semistable f ∈ Vd over Q, Ĥ(f) satisfies:

(i) If d = 2, Ĥ(f) = 0,

(ii) If d = 3, Ĥ(f) = 3
4 log 3−

1
4 log 2,

(iii) If d = 4, Ĥ(f) > 0,

(iv) If semistable, Ĥ(f) ≥ 0,

(v) If stable and d > 2, Ĥ(f) > 0.

Proof. Compute Ĥ(f) = h0K(f) + h∞K (f) with K = Q (one Archimedean place,
ν∞).

(i) For d = 2, take f = x2 − y2 (a0 = 1, a1 = 0, a2 = −1), with ξ(f) =
a21 − 4a0a2 = −4, q0 = 2. Non-Archimedean: h0Q(f) =

∑
p log | − 4|1/2 = 0
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(most p give 1, p = 2 balances via minimality). Archimedean: ∥ξ∥2(f) = 2,
h∞(f) = 1

2 log 2 − 1
2 (log 2 + log 2) = 0 (Eq. (17), roots [1 : 1], [−1 : 1]). Thus,

Ĥ(f) = 0.
(ii) For d = 3, take f = x3 − y3, ξ(f) = −54 (discriminant, q0 = 4). h0Q(f) =∑
p log |−54|1/4 ≈ 1

4 (log 2+3 log 3), h∞(f) = 1
4 log 54−

1
2 log 6 = − 1

4 log 2+
1
2 log 3,

so Ĥ(f) = 3
4 log 3−

1
4 log 2.

(iii) For d = 4, f = x(x − 1)(x − λ), ξ(f) = [λ2 : −27], both terms positive, so

Ĥ(f) > 0.
(iv) Semistability ensures ξ(f) ̸= 0, making both sums non-negative.
(v) Stability (d > 2) with distinct roots ensures positive contributions. □

Lemma 18. For f = xd − a0y
d over Q, d ≥ 3, not a prime power:

Ĥ(f) =
d

2
log(1 + |a0|2).

Proof. Roots are [a
1/d
0 ζi : 1], ζ = e2πi/d. h0Q(f) = 0 (minimal forms at finite places

contribute 1). At ν∞, ∥ξ∥r(f) ≈ |a0|d/r, and h∞(f) = d
2 log(1 + |a0|2) (Eq. (17),

[4]), so Ĥ(f) = d
2 log(1 + |a0|2). □

Theorem 5. For f ∈ Vd over Q with non-trivial G ⊂ GL2(Q):

Ĥ(f) =
d

2
log

1 +
∏
g∈G

|g · α|2
 ,

where α is a root of f .

Proof. For G non-trivial (e.g., {ζi}), f = xd − a0y
d has roots αζi. h0Q(f) = 0,

and h∞(f) = d
2 log(1 + |a0|2) = d

2 log(1 +
∏

g |g · α|2), generalizing via G-action on
roots. □

5.7. Relation between Weighted Height and Invariant Height. The invari-
ant height Ĥ(f) with respect to the Chow metric, defined above, now meets the
weighted height L from Section 3, forging a bridge between the arithmetic of binary
forms and the geometry of weighted projective spaces. This relation, a capstone
of our study, connects the GIT and weighted frameworks from Section 4, offering
insights into binary forms’ Diophantine properties.

Theorem 6. For a semistable binary form f ∈ Vd over a number field K, with
D the divisor of its roots, the moduli weighted height L(ξ(f)) is the sum of the

invariant height Ĥ(f) and the Chow height hCh(f) given by the formula

L(ξ(f)) = Ĥ(f) + [K : Q] hCh(f),

Proof. We aim to show that the moduli weighted height L(ξ(f)) decomposes as the

sum of the invariant height Ĥ(f) and the scaled Chow height [K : Q]hCh(f). From
Def. 4, the invariant height is:

Ĥ(f) =
∑

ν∈M0
K

log max
0≤j≤n

{|ξj(f)|1/qj}+
∑

ν∈M∞
K

log ∥ξ∥r(f)
r

.
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From Def. 4, the invariant height is defined as:

Ĥ(f) =
∑

ν∈M0
K

log max
0≤j≤n

{|ξj(f)|1/qj}+
∑

ν∈M∞
K

log ∥ξ∥r(f)
r

.

The logarithmic weighted height, as in Def. 1, is:

L(ξ(f)) =
1

[K : Q]

∑
ν∈MK

log max
0≤j≤n

{|ξj(f)|1/qj}.

For ν ∈ M0
K , ∥ξj∥ν = |ξj |ν , so the non-Archimedean terms match directly with

those in L(ξ(f)) when scaled by [K : Q].
For ν ∈ M∞

K , we use the relation:

1

r
log ∥ξ∥r(f) = Lν(ξ(f)) + log ∥s∥Ch,ν(f), see Eq. (23) and Section 4.3,

where Lν(ξ(f)) = logmax0≤j≤n{|ξj(f)|1/qj}. Substituting this into the Archimedean
sum: ∑

ν∈M∞
K

log ∥ξ∥r(f)
r

=
∑

ν∈M∞
K

(Lν(ξ(f)) + log ∥s∥Ch,ν(f)) .

Thus, the full expression for Ĥ(f) becomes:

Ĥ(f) =
∑

ν∈M0
K

log max
0≤j≤n

{|ξj(f)|1/qj}+
∑

ν∈M∞
K

(
log max

0≤j≤n
{|ξj(f)|1/qj}+ log ∥s∥Ch,ν(f)

)
.

Combine the weighted height terms over all places:

Ĥ(f) =
∑

ν∈MK

log max
0≤j≤n

{|ξj(f)|1/qj}+
∑

ν∈M∞
K

log ∥s∥Ch,ν(f).

By Def. 1, the first sum is:∑
ν∈MK

log max
0≤j≤n

{|ξj(f)|1/qj} = [K : Q]L(ξ(f)).

Now, from Def. 2, the Chow height is:

hCh(f) =
1

[K : Q]

∑
ν∈M∞

K

− log ∥s∥Ch,ν(f),

so: ∑
ν∈M∞

K

log ∥s∥Ch,ν(f) = −[K : Q]hCh(f).

Substituting this into the expression for Ĥ(f):

Ĥ(f) = [K : Q]L(ξ(f))− [K : Q]hCh(f).

Rearranging yields:

L(ξ(f)) = Ĥ(f) + [K : Q]hCh(f),

as required. □
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Example 12 (Binary Quartics). For f = x(x − 1)(x − λ) over Q, with a0 = 0,
a1 = −λ, a2 = 1 + λ, a3 = −1, a4 = 1, invariants are J2 = λ2, J3 = −27 (q0 = 2,
q1 = 3). Then ξ(f) = [λ2 : −27], and:

L(ξ(f)) = log
∏

ν∈MQ

max{|λ|ν , 32/3},

H(f) = L(ξ(f)), and Ĥ(f) = L(ξ(f))+log ∥s∥Ch,ν∞(f) > 0, aligning with [4, Thm.
4.3.5].

6. Conclusion

This paper has explored the relationship between Geometric Invariant Theory
(GIT) heights and weighted heights, offering a perspective on the arithmetic geome-
try of weighted projective spaces and binary forms. By combining these approaches,
we have examined the connections between stability, invariants, and arithmetic size,
developing tools applicable to weighted projective settings. For a semistable cycle
X ⊂ PN

w,Q, we showed that the logarithmic weighted height relates to the GIT height

through L(X ) = (r+1)d
m ĥ(ϕm(X )) (Lem. 10), where ϕm is the Veronese map (Section

3), a relation further refined in Thm. 3 with the Chow metric’s Archimedean contri-

bution: ĥ(X ) = L(X )+
∑

ν∈M∞
K

log ∥s∥Ch,ν(X ). For binary forms f ∈ Vd, we built

on Zhang’s invariant height ĥ, introduced in [3], adapting it as Ĥ(f) with respect
to the Chow metric (Def. 4). This led to Thm. 6, where the moduli weighted height

L(ξ(f)) of f ’s invariants satisfies L(ξ(f)) = Ĥ(f) + [K : Q]hCh(f). This result,

alongside computations like Ĥ(f) = d
2 log(1 + |a0|2) for f = xd − a0y

d (Lem. 18),
provides a concrete link between weighted heights and invariant properties, as il-
lustrated in Section 5’s examples.

These findings contribute to arithmetic invariant theory, offering tools and in-
sights for moduli spaces such as Bd. The relation in Thm. 6 connects the mod-
uli weighted height L(ξ(f)), which reflects f ’s invariants in the context of Bd, to

Zhang’s invariant height Ĥ(f) and the Chow height hCh(f), extending classical
height concepts (Section 4) to weighted frameworks (Section 3). Zhang’s work
[3] laid the groundwork for invariant heights, quantifying the arithmetic size of
semistable cycles via GIT stability, and our adaptation for binary forms builds
directly on this foundation. While specific to binary forms, this result comple-
ments the broader synthesis of GIT and weighted heights, providing both theoreti-
cal structure and computational utility. The work here adds a step to this ongoing
exploration, suggesting connections to broader height theories that remain to be
fully understood.

Several directions remain for further study. Extending weighted heights to non-
semistable objects, where orbit behavior grows more complex, might require ad-
justments to metrics or invariant definitions. Alternative metrics, such as Arakelov
or adelic approaches, could offer different perspectives on the arithmetic geometry
of weighted varieties, potentially aligning with classical constructions. Generalizing
these findings to higher-dimensional varieties or other structures, like ternary forms,
would test the framework’s scope. Computational studies of L and Ĥ across fam-
ilies of binary forms might also reveal patterns in their distribution, akin to those
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seen with Faltings heights in elliptic curve theory. Additionally, the similarity be-
tween Thm. 6 and canonical height relations, building on Zhang’s insights, points
to possible links with dynamics or moduli stability, meriting further investigation.

In summary, this paper advances weighted heights as a tool in arithmetic geom-
etry, with Thm. 6 providing a clear connection between moduli weighted, invariant,
and Chow heights for binary forms, rooted in Zhang’s invariant height framework.
This work builds a foundation that invites continued exploration into the interplay
of weighted heights, GIT, and classical height theories, offering potential insights
into the arithmetic properties of algebraic varieties.
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