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Abstract. We develop algorithms to determine whether an irreducible alge-

braic curve C : f(x, y) = 0 over C is superelliptic of level n and, if so, to

compute its Weierstrass normal form vn = h(u), where h(u) is a polynomial
with distinct roots. Our approach identifies the minimal n via a Wronskian-

based method and constructs a birational transformation to the normal form.

1. Introduction

Superelliptic curves represent a natural generalization of hyperelliptic curves, ex-
tending the rich algebraic geometry framework from degree 2 projections to higher-
order cyclic covers of P1. While hyperelliptic curves, defined by equations of the
form y2 = h(x), have been extensively studied for their connections to elliptic in-
tegrals, theta functions, and Jacobian varieties, superelliptic curves—characterized
by a degree n ≥ 2 cyclic Galois cover—offer a broader landscape for exploration;
see [1] for a detailed account of this subject. In [2] is highlighted this progression,
demonstrating how tools such as Weierstrass points, automorphism groups, and
differential techniques can be adapted from the hyperelliptic case to superelliptic
contexts. A more detailed account of the subject can be found in [1]. Motivated by
this vision, we tackle a fundamental computational challenge: given an irreducible
algebraic curve C : f(x, y) = 0 over C, can we algorithmically detect its superellip-
ticity, determine the minimal level n, and transform it into its Weierstrass normal
form?

Our work builds on the theoretical insights of [2] and [3], translating them into
actionable algorithms. We propose a two-stage computational framework: first,
an algorithm to identify whether C is superelliptic by examining the nongap se-
quence of holomorphic differentials at ramification points, inspired by Wronskian
method in [4] and [5,6]; second, a procedure to compute the birational transforma-
tion to vn = h(u), where h(u) is a polynomial with distinct roots. This approach
avoids exhaustive automorphism group computations, relying instead on differen-
tial properties to achieve both efficiency and generality. The resulting algorithms
are implemented in pseudo-code, with practical considerations for tools like Maple,
SageMath, or Singular, making them accessible for computational algebraic geom-
etry.

The paper is structured as follows: Section 2 defines superelliptic curves and
their differential properties, drawing from foundational works. Section 3 presents
the detection algorithm for superellipticity, including pseudo-code and mathemati-
cal validation. Section 4 develops the transformation to Weierstrass normal form,
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integrating the detection results with a computational method to standardize the
curve equation.

2. Preliminaries

Following [3], a superelliptic automorphism of level n is defined as a conformal
automorphism τ of order n ≥ 2 of a closed Riemann surface X of genus g ≥ 2,
which is central in the full automorphism group G = Aut(X ), and such that the
quotient X/⟨τ⟩ has genus zero (i.e., is isomorphic to P1). The cyclic group H = ⟨τ⟩
is called a superelliptic group of level n, and X is called a superelliptic curve of level
n. This definition imposes a stronger condition than that of cyclic n-gonal curves,
where τ need only satisfy X/⟨τ⟩ having genus zero, by requiring centrality in G,
distinguishing it from generalized superelliptic automorphisms where τ is central
only in its normalizer N ⊂ G.

A superelliptic curve X of level n can be represented by an affine algebraic curve:

yn =

s∏
j=1

(x− pj)
lj ,

where p1, . . . , ps ∈ C are distinct branch points, and the exponents l1, . . . , ls ∈
{1, . . . , n− 1} satisfy:

•
∑s

j=1 lj ≡ 0 (mod n), ensuring the covering π : X → P1 defined by

π(x, y) = x is well-defined up to normalization,
• gcd(n, l1, . . . , ls) = 1, guaranteeing that H = ⟨τ⟩ acts transitively, generat-
ing the full cyclic group of order n.

In this model, τ(x, y) = (x, ωny), with ωn = e2πi/n, is the superelliptic auto-
morphism, and π is a degree n map. Define h(x) =

∏s
j=1(x − pj)

lj with degree

m =
∑s

j=1 lj . If a branch point is at infinity (e.g., ps =∞), the factor (x− ps)
ls is

omitted from the product, and the equation is adjusted to reflect the ramification
at x =∞.

The genus g of X is determined by the Riemann-Hurwitz formula:

2g − 2 = n(2 · 0− 2) +
∑
p∈X

(ep − 1),

where ep is the ramification index at point p. For a finite branch point p = (pj , 0)
where y = 0, ep = n/ gcd(n, lj). At infinity, the ramification index e∞ is computed
as follows: under the map π(x, y) = x, the degree of the polynomial yn − h(x) = 0
in y is n, and in x at infinity, the leading term of h(x) has degree m. Thus,
e∞ = n/ gcd(n,m) when m ̸≡ 0 (mod n), with the total number of ramified points
typically s + 1 if infinity is ramified. This form, yn = h(x), is the Weierstrass
normal form we seek, generalizing the hyperelliptic case where n = 2 and τ is the
hyperelliptic involution.

2.1. Description of the Space of Holomorphic Differentials. The space of
holomorphic 1-forms on X , denoted V = H0(X ,Ω1

X ), has dimension equal to the
genus g. For a superelliptic curve X : yn = h(x) with h(x) of degree m, a basis for
V consists of differentials:

ωi,j =
xi dx

yj
,
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where the indices (i, j) range over i ≥ 0 and 1 ≤ j ≤ n−1, subject to holomorphicity
constraints. A differential ωi,j is holomorphic if it has no poles at any point of X . At
a finite branch point x = pj , the order of ωi,j is i− j · lj/ gcd(n, lj), requiring i ≥ j ·
lj/ gcd(n, lj) for non-negativity, though typically i is small relative tom. At infinity,

using a local parameter t = 1/x, the differential becomes ωi,j = −t−i−2tjm/n dt
(assuming m ≡ 0 (mod n) for simplicity), with pole order −(i+ 2− jm/n), which
must be non-positive. Thus, the basis is:

{ωi,j | 0 ≤ i ≤ ⌊(n− 1)(m− 1)/2⌋/n, 1 ≤ j ≤ n− 1, in+ jm ≤ (n− 1)(m− 1)},

adjusted to yield exactly g elements, where g = (n − 1)(m − 1)/2 if m and n are
coprime and s is sufficiently large, with corrections for specific cases.

For a general plane curve C : f(x, y) = 0 of degree d, holomorphic differentials
are:

ω =
p(x, y) dx

∂f
∂y

,

where p(x, y) is a polynomial of degree at most d − 3, chosen to be regular at all
points, including singularities. At a singularity p, the differential must be checked
for poles, often requiring resolution of singularities to compute V accurately. The
action of an automorphism τ on V is crucial: for τ(x, y) = (x, ζny), τ

∗ωi,j = ζ−j
n ωi,j ,

and the eigenspace V0 = {ω ∈ V | τ∗ω = ω}must be trivial if C/⟨τ⟩ ∼= P1, reflecting
the absence of holomorphic differentials on P1.

3. Detecting Superellipticity

With the theoretical groundwork for superelliptic curves established in the pre-
ceding sections, we now address the task of determining whether an irreducible
algebraic curve C, defined by f(x, y) = 0 over C, is superelliptic. A curve C is su-
perelliptic if it admits a degree n ≥ 2 map π : C → P1 such that the field extension
C(C)/C(P1) is Galois with cyclic group Z/nZ, and the automorphism generating
this group is central in Aut(C), with the quotient C/⟨τ⟩ isomorphic to P1. We
adapt the generalized Wronskian framework of Towse [4] to detect this property
by analyzing the orders of holomorphic differentials at ramification points, iden-
tifying the minimal n for which C is superelliptic. This approach is enriched by
insights from Shor and Shaska [6], who detail differential bases and properties of
q-Weierstrass points for superelliptic curves, enhancing our computational strategy.

3.1. Initial Computations. The analysis commences with the computation of the
genus g of C, a key invariant governing superellipticity. The genus is the dimension
of the space of holomorphic 1-forms, V = H0(C,Ω1

C), with basis {b1, b2, . . . , bg},
where:

bi = fi(x, y) dx, fi(x, y) =
pi(x, y)

∂f
∂y

,

and pi(x, y) is a polynomial of degree at most deg(f)− 3, adjusted for regularity at
all points, including singularities. For a smooth plane curve of degree d, the genus
is:

g =
(d− 1)(d− 2)

2
,

reduced by the sum of delta invariants δp at singularities. If g < 1, C ∼= P1 (genus
0) and cannot support a non-trivial cyclic cover to itself with g ≥ 2, as required
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for superellipticity beyond n = 1. Thus, we proceed only if g ≥ 1, rejecting such
curves otherwise.

3.2. Defining the Search Scope. For C with g ≥ 1, we seek the smallest n ≥ 2
admitting a superelliptic map. The gonality of C, the minimal degree of a map to
P1, is bounded above by ⌊(g+3)/2⌋ for non-hyperelliptic curves, though superelliptic
curves may exhibit higher degrees. We set:

nmax = ⌊(g + 3)/2⌋+ 1,

exceeding the gonality to encompass potential cyclic maps, justified by the fact
that superelliptic n may exceed minimal gonality when ramification aligns with a
central automorphism. We test n from 2 to nmax, constrained by:

g ≥ n− 1,

derived from the Riemann-Hurwitz formula for a degree n map to a genus-0 quo-
tient, ensuring sufficient ramification. If g < n− 1, we skip to the next n.

3.3. Generalized Wronskian Framework. We employ Towse’s generalizedWron-
skian method [4] to detect superellipticity by identifying the nongap sequence of
differential orders at ramification points. Let F = {f1, f2, . . . , fg} where bi = fidx
forms a basis for V . Select a set of candidate points Plist ⊂ C including:

• Points P = (0, yi) where f(0, yi) = 0,

• Singularities of C, solutions to f = ∂f
∂x = ∂f

∂y = 0,

• Points where ∂f
∂y = 0, potential ramification loci under a map π(x, y) = x.

For each P ∈ Plist, choose a local uniformizing parameter (e.g., x−P [1] if ∂f
∂y (P ) ̸= 0,

or adjust via resolution if singular). Define the Wronskian matrix for a sequence
s = (m0,m1, . . . ,mg−1), 0 ≤ m0 < m1 < · · · < mg−1:

MF [s] =


f
(m0)
1 f

(m0)
2 · · · f

(m0)
g

f
(m1)
1 f

(m1)
2 · · · f

(m1)
g

...
...

. . .
...

f
(mg−1)
1 f

(mg−1)
2 · · · f

(mg−1)
g

 ,

where f
(m)
i = dmfi

dxm . The determinant detMF [s](P ) ̸= 0 indicates s is the nongap
sequence at P .

3.4. Constructing Superelliptic Sequences. For C to be superelliptic of level
n, the nongap sequence at a ramification point must reflect a cyclic n-gonal struc-
ture. For yn = h(x) with h(x) of degree m and distinct roots, a basis {xidx/yn−1 |
0 ≤ i < k} yields orders i up to m − 2, then n-spaced gaps, where k adjusts for
infinity. Initially, estimate:

m0 =

⌈
2g − 2 + 2n

n− 1

⌉
,

assuming full ramification (ep = n). Define:

q = max

(
0, g −

⌊
(n− 1)m0

2

⌋)
,

and the candidate sequence:

sn = (0, 1, . . . , q − 1, q, q + n, q + 2n, . . . , q + (g − q − 1)n).
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Refinem iteratively: if detMF [sn](P ) ̸= 0, compute the number of n-gaps r = g−q,
and adjust m = r + 1 if infinity ramifies, verifying:

2g − 2 = −2n+m(n− 1).

3.5. Superelliptic Test. For each P ∈ Plist, compute detMF [sn](P ). If non-zero,
sn is the nongap sequence at P (Towse [4]), and we check the Riemann-Hurwitz
condition with refined m. If consistent, C is superelliptic with level n, and we take
the smallest such n; otherwise, test the next n up to nmax.

3.6. Mathematical Validation. The method’s validity rests on Towse’s theorem:
detMF [sn](P ) ̸= 0 identifies the nongap sequence. For superelliptic yn = h(x),
τ : (x, y) 7→ (x, ζny) ensures C/⟨τ⟩ ∼= P1, with n-spaced gaps at ramification
points, matching g = (n− 1)(m− 1)/2 when adjusted. Shor and Shaska [6] affirm
this structure, supporting the detection process.

3.7. Pseudocode Implementation.

Require: Polynomial f(x, y), variables x, y
Ensure: Boolean, minimal n if superelliptic
1: b← ComputeHolomorphicDifferentials(f, x, y)
2: g ← Length(b)
3: if g < 1 then
4: return false
5: end if
6: nmax ← ⌊(g + 3)/2⌋+ 1

7: Plist ← FindRamificationPoints(f) {Includes f(0, y) = 0, singularities, ∂f
∂y = 0}

8: if Plist = ∅ then
9: Error ”No ramification points found”

10: return false
11: end if
12: F ← {bi/dx | bi ∈ b}
13: for n = 2 to nmax do
14: if g ≥ n− 1 then

15: m0 ←
⌈
2g−2+2n

n−1

⌉
16: q ← max

(
0, g −

⌊
(n−1)m0

2

⌋)
17: sn ← [0, 1, . . . , q − 1, q, q + n, . . . , q + (g − q − 1)n]
18: for P ∈ Plist do

19: M ← Matrix(g, g, (i, j)→ dsn[i]F [j]
dxsn[i] )

20: detM ← Determinant(M)(x = P [1], y = P [2])
21: if detM ̸= 0 then
22: r ← g − q, m← r + 1
23: if 2g − 2 = −2n+m(n− 1) then
24: Output ”Superelliptic level: n at point P”
25: return true
26: end if
27: end if
28: end for
29: end if
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30: end for
31: return false

4. Weierstrass Normal Form for Superelliptic Curves

With the groundwork laid in Section 3 for detecting superellipticity, we now focus
on transforming a superelliptic curve C : f(x, y) = 0 over C into its Weierstrass
normal form. Assuming C is identified as superelliptic of level n via the algorithm in
Section 3, we establish the existence of a birational transformation to the form vn =
h(u), where h(u) is a polynomial with distinct roots, and provide a computational
method to construct this transformation explicitly.

4.1. Existence of the Weierstrass Normal Form. Let C be an irreducible
algebraic curve defined by f(x, y) = 0, where f(x, y) ∈ C[x, y], and assume C is
superelliptic of level n, as defined in Section 2 and confirmed by Section 3. We have
the following theorem.

Theorem 1. If C is a superelliptic curve of level n, then there exists a birational
transformation ϕ : C 99K C ′ mapping C to a curve C ′ in Weierstrass normal form:

vn = h(u),

where h(u) ∈ C[u] is a polynomial with distinct roots. Furthermore, this transfor-
mation ϕ can be constructed explicitly using the holomorphic differentials of C and
the ramification data encoded in the nongap sequence at a ramification point of π.

Proof. Since C is superelliptic of level n, there exists a morphism π : C → P1 of
degree n such that C(C)/C(P1) is Galois with G ∼= Z/nZ. Let C(P1) = C(t), where
t ∈ C(C) is a rational function, and C(C) = C(t, s) with:

sn = h(t) ∈ C(t),
and τ(s) = ζs (ζn = 1) fixes C(t).

From Section 3, we have a basis {b1, . . . , bg} forH0(C,Ω1
C), where bi = fi(x, y) dx,

and a ramification point P with nongap sequence sn = (0, 1, . . . , q−1, q, q+n, . . . , q+
(g − q − 1)n), where detMF [sn](P ) ̸= 0, F = {f1, . . . , fg}. Define t such that
ordP (t − t(P )) = n, ensuring π(x, y) = t(x, y) has degree n, consistent with sn’s
ramification structure.

To find s, use the resultant method on:

f(x, y) = 0, t(x, y)− t = 0, s(x, y)− S = 0.

Compute:
R1(x, S) = Resy(f(x, y), s(x, y)− S),

p(S, t) = Resx(R1(x, S), t(x, y)− t).

If p(S, t) = Sn−h(t) is irreducible of degree n, then sn = h(t), and C(C) = C(t, s).
If h(t) = p(t)

q(t) , define:

u =
1

t− a
, a a root of q(t),

v = s · (t− a)deg q,

so:

vn = vn deg q ·
p
(
a+ 1

u

)
q
(
a+ 1

u

) = h(u) ∈ C[u],
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with distinct roots by adjusting a.
The transformation ϕ : (x, y) 7→ (u, v) is birational, as t, s ∈ C(x, y), and in-

versely, t = a+ 1
u , s =

v
udeg q , mapping C to C ′ : vn = h(u). □

4.2. Computing the Transformation. Building on Section 3, we construct t
and s using the differential basis and sn. If t = x aligns with sn, solve f(x, y) = 0
for y = s, setting h(x) = sn. Otherwise, compute t(x, y) via ramification orders
and use resultants to find s.

4.3. Pseudo-Code Implementation.

1. Input: f(x, y) ∈ C[x, y], x, y, level n
2. Output: u, v, hv(u) such that vn = hv(u)
3. Set t← x
4. Set s← y
5. Compute poly← subs(y = s, f)
6. Compute ht ← −subs(y = s, f − yn)
7. Simplify ht ← simplify(expand(ht))
8. If ht depends on y

1. Compute ht ← solve(f, yn)
2. If ht = NULL or list, error: ”Adjust t”
3. Simplify ht ← simplify(ht)

9. Compute numh ← numer(ht), denh ← denom(ht)
10. If denh = 1

1. Set u← t, v ← s, hv ← ht

11. Else
1. Compute roots← solve(denh, t)
2. If no roots, error: ”Normalization failed”
3. Set a← roots[1]
4. Set u← 1

t−a

5. Compute degq ← degree(denh, t)

6. Set v ← s · (t− a)quo(degree(numh,t)−n·degq,n)

7. Compute hv ← simplify(subs(t = 1
u+a, ht)·(1/u)degree(numh,t)/(1/u)degree(denh,t))

8. Set hv ← collect(hv, u)
12. Return [u, v, hv]

4.4. Practical Considerations. For singular curves, resolve singularities using
Gröbner bases. The complexity depends on g and n, suggesting optimization for
efficiency. This method extends differential techniques from [7], aligning with Sec-
tion 3’s framework.
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