
Contemporary Mathematics

Computational complexity reduction of deep neural networks

Mee Seong Im and Venkat Dasari

Abstract. Deep neural networks (DNN) have been widely used and play a

major role in the field of computer vision and autonomous navigation. How-

ever, these DNNs are computationally complex and their deployment over
resource-constrained platforms is difficult without additional optimizations

and customization.

In this manuscript, we provide an overview of DNN architectures and
propose methods to reduce computational complexity, thereby accelerating

training and inference speed for deployment on edge computing platforms with
limited resources.

1. Introduction

Deep neural network design problems support both theoretical and experimen-
tal frameworks of machine learning [AB09,HS90,HN92,RBK98,Abd94]. They
can detect objects, recognize letters, digits, and symbols, and process scenarios such
as running children and a crying woman. They are used in video and monitoring
systems to understand established social and power networks via marriage alliance
and business relations, to model complex scientific collaborations, to examine mul-
tilayered climate dynamics and chain reaction of behavior of atoms in molecular
biology. They may be used to represent air transportation networks for various
companies, in which multilayer structure depicts flight connections operated by dif-
ferent airline companies. Complex algorithms allow such models to compute and
analyze situations, understand scenarios, and react to their surroundings, distin-
guishing between friendly and hostile environments.

Multilayer machine learning models, also known as artificial neural network,
have become more complex, with millions of parameters and weights, in order
to achieve more accurate and sophisticated outcomes. But all of such operations
are not necessary in order to achieve a reasonable output. In fact, they often
drain finite computational time and energy resources, not being able to finish the
computation within a reasonable time allowed. See, e.g., other research papers that
have investigated optimization problems with low tactical computing platforms:
[DIG19, ID18,DIB19, IDBS19, ID20]. Therefore, there is an immense problem
due to resource constraints on the tactical weights.

2020 Mathematics Subject Classification. Primary: 05C99, 13P25; Secondary: 20C99.
Key words and phrases. Multilayer models, machine learning, neural network, computational

complexity, computation reduction.

1



2 MEE SEONG IM AND VENKAT DASARI

The aim of this manuscript is to reduce multilayer machine learning model com-
plexity whilst maintain model accuracy, accelerate training and inference, within
(100 − z)%, where z is a small value, such as 2%. That is, we modify the model
in neural networks. The goal is to shrink the architectural aspects of the model
so that speed, accuracy, and data are preserved. The unnecessary mathematics
and processes are removed, depending on the computation, and we execute this by
reducing certain computational aspects of model layers in a systematic way.

2. Neural network structures

A multilayer machine learning model is an artificial neural network, which
is composed of multiple layers of nodes with threshold activation [AB09,HS90,
HN92,RBK98,Abd94]. It consists of an input layer, (multiple) hidden layers,
and an output layer. The nodes are weighted, with higher weights representing
activated neurons. See Figure 2.1.

input

signals

...
...

...
...

...
...

. . .

. . .

. . .

. . .

input

layer

1-st

hidden

layer

n-th

hidden

layer

output

layer

output

signals

Figure 2.1. A directed graph of a multilayer machine learning
model with connections and weights. It represents a feedforward
network with n+ 2 layers, input layer, output layer, and n hidden
layers.

There are several primary neural network architectural structures. Convolu-
tional neural networks are primarily designed for image recognition, recurrent neu-
ral networks best produce predictive results in sequential data, and artificial neural
networks model nonlinear problems to predict the output values for given input
parameters from their training values.

2.1. Convolutional neural networks. In convolutional neural networks,
images of a letter, number, or a symbol at a low resolution can be identified by
a deep neural network. For example, if the image of a single digit is on a grid of
28 by 28 pixels, then the input consists of 282 input data while the output consists
of a single number between 0 to 9. There are multiple hidden layers, with signals
forming a feedforward neural network, flowing only in one direction from input to
output, see, e.g., Figure 2.1.



COMPUTATIONAL COMPLEXITY REDUCTION OF DEEP NEURAL NETWORKS 3

2.2. Recurrent neural networks. Recurrent neural networks are best suited
for data sets where patterns change over time. This machine learning model
has a structure with a built-in feedback loop, allowing it to act as a forecast-
ing engine. They are applied from speech recognition to driverless vehicles and
robotics. Figure 2.2 shows the one and only structural layer in the entire net-
work. But here, the output of a layer is added to the next input and fed back
into the same layer, which is usually the only layer in the entire network. This
process could be thought of as a passage through time. See Figure 2.3. Also
see [GS05,GFGS06,KUMH17,LBE15] for more detail.

Figure 2.2. The single structural layer of a recurrent neural network.

time
t = 0

time
t = 1

time
t = 2

time
t = N

· · · · · ·

Figure 2.3. Example of a recurrent neural network structure with
four timesteps, starting at t = 0. At t = 1, the net takes the output
of time at t = 0 and send it back into the net along with the next
input. This procedure is repeated in the net.

Unlike feedforward nets, a recurrent neural network receives a sequence of val-
ues as input, as well as produces a sequence of values as output. Its ability to
operate with sequences opens up these nets to a wide variety of applications. For
example, with a single input and a sequence of outputs, one such application is
image captioning. On the other hand, a sequence of inputs with a single output
may be used for document classification. When both the input and the output are
sequences, these nets can classify videos frame by frame. If a time delay is intro-
duced, the neuron network can statistically forecast that demand in supply chain
planning.



4 MEE SEONG IM AND VENKAT DASARI

2.3. Artificial neural network. Artificial neural networks are computing
systems designed to simulate by analyzing and processing information. As the
human brain has around 1.0× 1012 neurons, artificial neural networks are designed
in programmable machines to behave like interconnected brain cells.

Each connection can transmit a signal to other neurons. An artificial neuron
that receives a signal then processes it and can signal neurons connected to it. The
signal at a connection is a real number, and the output of each neuron is computed
by some nonlinear function of the sum of its inputs.

3. Neural network learning

Neurons are connected to each other in various patterns, to allow the output of
some neurons to become the input of others; they form a directed, weighted graph.

3.1. Neurons. Each artificial neuron has inputs and produces a single output
which can be sent to multiple other neurons. Initial inputs may be the feature values
of some external data, such as images or documents, or they can be the outputs of
other neurons. The outputs of the final output neurons of the neural net accomplish
the task, such as recognizing an object in an image or letters and symbols.

We follow the following procedure to obtain the output of the neuron. First, we
take the weighted sum of all the inputs, weighted by the weights of the connections
from the inputs to the neuron. We add a bias term to this sum. This weighted
sum is also called the activation. This weighted sum is then passed through a
(usually nonlinear) activation function to produce the output. The ultimate outputs
accomplish the task.

3.2. Connections and weights. The edges are called connections. Neurons
and connections have a weight that adjusts as learning proceeds. The weight in-
creases or decreases the strength of the signal at a connection. Neurons have a
threshold such that a signal is sent only if the aggregate signal crosses that thresh-
old.

Neurons are aggregated into layers, with different layers performing different
transformations on their inputs. Signals travel from the first layer, also known as
the input layer, to the last layer, also known as the output layer, possibly after
traversing the layers multiple times.

3.3. Hidden layers. In multilayer neural networks, hidden layers are located
between the input and the output layer of the algorithm. The function programmed
into the network applies weights to the inputs, adds appropriate bias, and directs
them through an activation function as the output. They perform nonlinear trans-
formations of the inputs entered into the network since they are designed to produce
an output specific for an intended result. They are often useful when the algorithm’s
intended output is a probability, since they take an input and produce an output
value x, where 0 ≤ x ≤ 1.

Hidden layers allow for the function of a neural network to be broken down
into specific transformations of the data, where each hidden layer function is spe-
cialized to produce a defined output. As an example, a hidden layer that is used
to identify ears and eyes cannot solely identify the person. However, when placed
in conjunction with additional hidden layers used to identify the facial structure,
hair, body type, etc., the neural network can then make predictions and identify
the correct individual within visual data.



COMPUTATIONAL COMPLEXITY REDUCTION OF DEEP NEURAL NETWORKS 5

Figure 3.1 is an example of a simple neural network, which has one hidden
layer, while Figure 2.1 is an example of a more general neural network, with n ≥ 1
hidden layers.

input

signals
...

...
...

...
...

input

layer

hidden

layer

output

layer

output

signals

Figure 3.1. A simple neural network consists of exactly one hid-
den layer.

4. Propagation and backpropagation

The problem of vanishing gradient is worse for recurrent neural networks. This
is because each time step is the equivalent of an entire layer in a feedforward net-
work. So training a recurrent neural network for 10, 000 time steps is equivalent to
training a 10, 000-layer feedforward net, which leads to exponentially small gradi-
ents and a decay of information through time.

One way to address this problem is by the method of gating, which is a tech-
nique to help decide when to forget the current input, and when to remember it for
future time steps. The most popular gating types are gated recurrent unit (GRU)
and long short-term memory (LSTM), while other techniques include gradient clip-
ping, steeper gates, and better optimizers.

When it comes to training a recurrent network, graphics processing units
(GPUs) are preferred over central processing units (CPUs), via accumulated ev-
idence on text processing tasks like sentiment analysis and helpfulness extraction.
GPUs train the neural network 250 times faster, where GPUs can complete a com-
putation in 1 day versus over 8 months using CPUs.

A notion called stacking (see Figure 4.1) consists of a more complex output
than processing a single recurrent neural network.

5. The structure of neural network models

A network is a graph that represents a complex system, which uses linear and
nonlinear algebraic operations, statistics, linear algebra, and any other necessary
mathematical techniques to obtain accurate outcomes.

Assign a weight wi to each edge (connection) between neuron from the first
layer to our neuron, where wi ∈ R is allowed to be any positive or negative number.
Take all those activations ai from the input (first) layer and compute their weighted



6 MEE SEONG IM AND VENKAT DASARI

time

t = 0

time

t = 1

time

t = 2

time

t = N

. . .

· · · · · ·

· · · · · ·

Figure 4.1. An example of stacking in recurrent neural network.

sum:

(1)

n∑
i=1

wiai = w1a1 + w2a2 + . . .+ wnan.

See Figure 5.1.

...

a1

a2

an

w1

w2

wn

Figure 5.1. An instance of the input layer activations all con-
nected to a node in the second layer.

Since the weighted sum
∑n

i=1 wiai is allowed to be any value, activation values
should be between 0 and 1 in order to make sense, e.g., for an image processing sce-
nario. For example, in image processing scenarios, the weighted sum is normalized
to the range (0, 1) using the logistic curve

σ : R → (0, 1), where σ(x) =
1

1 + e−x

to ensure meaningful activation values. The activation σ(
∑n

i=1 wiai) of the neuron
is essentially a measure of the positivity of the relevant weighted sum. If the
activation is meaningful only when the weighted sum is bigger than a bias b, then



COMPUTATIONAL COMPLEXITY REDUCTION OF DEEP NEURAL NETWORKS 7

modify the activation by subtracting b: σ(
∑n

i=1 wiai−b). So the weights give what
pixel pattern this neuron in the second layer is picking up on and the bias says how
high the weighted sum needs to be before the neuron begins to be meaningfully
active.

The above analysis is for a single neuron, so every neuron in the second layer
is connected to all input neurons from the first layer, and each of those connections
has its own weight (on the edge) and bias associated with it. This is just the
connections from the first layer to the second layer. Connections between all the
other layers have their own weights and biases associated with them.

...

...

...

...

a
(0)
1

a
(0)
2

a
(0)
n0

w
(0)
1,1

w
(0)
1,2

w
(0)
1,n0

...

...

...

a
(1)
1

a
(1)
n1

w
(0)
n1,1

w
(0)
n1,2

w
(0)
n1,n0

...

w
(1)
1,n1

w
(1)
n2,n1

a
(2)
1

a
(2)
n2

w
(1)
1,1

w
(1)
n2,1

...

. . .

. . .

. . .

...

...

a
(k)
1

a
(k)
nk

Figure 5.2. General neural network.

Representing this mathematically, consider the more general case in Figure 5.2.
Here, we have

(2)

a
(1)
1 = σ

(
w

(0)
1,1a

(0)
1 + . . .+ w

(0)
1,n0

a(0)n0
+ b

(0)
1

)
a
(1)
2 = σ

(
w

(0)
2,1a

(0)
1 + . . .+ w

(0)
2,n0

a(0)n0
+ b

(0)
2

)
...

...

a(1)n1
= σ

(
w

(0)
n1,1

a
(0)
1 + . . .+ w(0)

n1,n0
a(0)n0

+ b(0)n1

)
...

...

Rewrite (2) more compactly as matrices, i.e.,
a
(1)
1

a
(1)
2
...

a
(1)
n1

 = σ̃




w
(0)
1,1 . . . w

(0)
1,n0

w
(0)
2,1 . . . w

(0)
2,n0

w
(0)
n1,1

. . . w
(0)
n1,n0



a
(0)
1

a
(0)
2
...

a
(0)
n0

+


b
(0)
1

b
(0)
2
...

b
(0)
n1


 ,



8 MEE SEONG IM AND VENKAT DASARI

or a(1) = σ̃
(
W (0)a(0) + b(0)

)
, where

σ̃



v1
v2
...
vn


 :=


σ(v1)
σ(v2)

...
σ(vn)

 , a(i) =


a
(i)
1

a
(i)
2
...

a
(i)
ni

 , and b(i) =


b
(i)
1

b
(i)
2
...

b
(i)
ni+1

 ,

etc. Figure 5.2 has wt+ biases parameters, where

wt = a(0)n0
a(1)n1

+ a(1)n1
a(2)n2

+ . . .+ a(k−1)
nk−1

a(k)nk
and biases =

k∑
i=1

a(i)ni
,

where wt is the number of weights and biases is the number of biases.
So for machine learning, we modify the computer with a valid setting for all

of these weights and biases so that it will solve the original problem. It seems
plausible to change the structure or improve the neural network in order to make
the model more efficient. But if the network does work, and not for the reasons
that we may expect, then investigating what the weights and biases are doing is
an adequate way to challenge one’s assumptions and explore the full spectrum of
possible solutions.

As we move from the first layer of edges to the second layer of edges in the
general neural network, see Figure 5.2, we are applying matrix and column vector
products and a logistic curve again, analogous to (2). A specific number that
neurons hold depends on the input that has been fed into the model. So each
neuron should be thought of as a function.

6. Backpropagation algorithm

Consider the general multilayered neural network in Figure 5.2. Let Ck =
nk∑
j=1

(a
(k)
j − y

(k)
j )2 be the cost function in the output layer, where y

(k)
i ’s are the

desired output.

Let z
(k)
j = w

(k−1)
j,1 a

(k−1)
1 + . . . + w

(k−1)
j,nk−1

a
(k−1)
nk−1 + b

(k−1)
j , where 1 ≤ j ≤ nk.

Let a
(k)
j = σk(z

(k)
j ), where σk is a nonlinear function. The derivative of the cost

function with respect to a weight is

(3)
∂Ck

∂w
(k−1)
j,u

=
∂z

(k)
j

∂w
(k−1)
j,u

∂a
(k)
j

∂z
(k)
j

∂Ck

∂a
(k)
j

= a(k−1)
u σ′

k(z
(k)
j )

(
2
(
a
(k)
j − y

(k)
j

))
,

where 1 ≤ j ≤ nk and 1 ≤ u ≤ nk−1.
The derivative of the cost with respect to one of the activations in layer k − 1

is

(4)
∂Ck

∂a
(k−1)
u

=

nk∑
j=1

∂z
(k)
j

∂a
(k−1)
u

∂a
(k)
j

∂z
(k)
j

∂Ck

∂a
(k)
j

,

where 1 ≤ u ≤ nk−1. Here, a neuron in layer k − 1 influences the cost function
through multiple paths, so we sum over activations in layer k. This tells us how
sensitive the cost function is relative to the activation of the previous layer (see
Figure 6.1).



COMPUTATIONAL COMPLEXITY REDUCTION OF DEEP NEURAL NETWORKS 9

...

...
a
(k−1)
u

w
(k−1)
1,u

w
(k−1)
2,u

a
(k)
1

a
(k)
2

a
(k)
nk

w
(k−1)
nk,u

Figure 6.1. The activation in the previous layer influences the
cost function through multiple paths.

Finally, we have

(5)
∂Ck

∂b
(k)
j

=
∂z

(k)
j

∂b
(k)
j

∂a
(k)
j

∂z
(k)
j

∂Ck

∂a
(k)
j

= σ′
k(z

(k)
j )2

(
a
(k)
j − y

(k)
j

)
.

More generally,

(6)
∂Cl

∂w
(l−1)
j,u

=
∂z

(l)
j

∂w
(l−1)
j,u

∂a
(l)
j

∂z
(l)
j

∂Cl

∂a
(l)
j

= a(l−1)
u σ′

l(z
(l)
j )2(a

(l)
j − y

(l)
j ),

where 1 ≤ l ≤ k.
Thus, the derivative of the full cost function

∂C

∂w(u)
=

1

N

N∑
v=1

∂C(v)

∂w(u)

is the average of all training examples, and

∇C =



∂C

∂w
(0)
1,1
...

∂C

∂b
(0)
n1

...
∂C

∂w
(k)
1,1
...

∂C

∂b
(k)
nk



.



10 MEE SEONG IM AND VENKAT DASARI

7. Optimization and neural network reduction

Optimization on tactical computing platforms are very important in today’s
society, see, e.g., [DIG19,ID18,DIB19,IDBS19,ID20], as more advanced mod-
els become quickly developed but computational resources remain limited. This
prevents even the most advanced computing platforms to complete many of their
algorithms.

Optimizers define how neural networks learn by finding parameter values that
minimize a loss function. In general, the optimizers do not know the terrain of the
loss so they need to minimize the function essentially blindfolded.

The original optimizer for deep neural networks involves taking small steps it-
eratively until the correct weights are reached. However, the problem is the weights
are updated once after seeing the entire data set. So this gradient is typically large,
and the weights could lead to larger jumps. It may also hover over its optimal
value without actually being able to reach it. The solution to this is to update the
parameters more frequently.

One example is to use stochastic gradient descent, which updates the weights
after seeing each data point, instead of the entire data set. But this may make ex-
ceedingly noisy jumps that move away from the optimal values since it is influenced
by every single sample. Because of this, mini-batch gradient descent is used as a
compromise, updating the parameters after several samples.

Another way to decrease the noise of stochastic gradient descent is to add the
concept of momentum. The parameters of a model may have the tendency to
change in one direction, typically if examples follow a similar pattern. With this
momentum, the model can learn faster by paying little attention to the few examples
that throw it off from time-to-time. But there is a problem here also. The jumps
could be too large to the point that the cost function actually moves away from
the minimum, optimal values. That is, choosing to blindly ignore samples simply
because they are not typical may be a costly mistake, resulting in a loss. However,
adding an acceleration term will help. The weights for the model-in-training (neural
network edge values that are being adjusted) could become larger, with little to no
effect from the outliers. This would show that discarding the outliers would not
lead to a drastic loss in order to fine-tune the current model.

With multiple predictors, the learning rate is fixed for every parameter, but
one can impose adaptive learning rate to each parameter, where different size step
is taken for every parameter. Adaptive learning rate optimizers are able to learn
more along one direction than another, so they can traverse certain types of terrain.
Furthermore, momentum updates for each parameter could also be imposed.

The mathematics behind neural networks reduces to using calculus and other
analytical techniques to find the minimum of the cost function. Conceptually, we
are thinking of each neuron as being connected to all the neurons in the previous

layer. The weights wi or w
(k)
i,j in the weighted sum defining its activation in (1) and

(2) are the strengths of those connections. The bias b is an indication of whether
or not that neuron tends to be active or inactive.

One constructs a cost function to determine wrong or erroneous output, i.e.,
it is the sum of the square of the differences between actual and predicted output
activations. The cost function C takes weights (wt) and biases (biases) as inputs
and a single value as its output, which says how bad its weights and biases are, and



COMPUTATIONAL COMPLEXITY REDUCTION OF DEEP NEURAL NETWORKS 11

the way that it is defined depends on the network’s behavior over all the thousands
of pieces of labeled training data, which is the cost of a single training example.

We want to minimize the cost function by changing all of the weights and biases
(all connections) to most efficiently decrease the cost. But the smallest local value
of the cost function is not necessarily the global minimum value. In fact, attaining
the global minimum may be computationally heavy, possibly wasting time and
resources, since we are working with possibly millions of weights and biases. One

uses gradient descent −∇C(w
(0)
1,1, . . . , w

(0)
n1,n0 , . . . , w

(k)
1,1 , . . . , w

(k)
n1,n0 , b

(k)
1 , . . . , b

(k)
nk−1),

which is the direction of the steepest descent, i.e., it maximally decreases the output
of the cost function as quickly as possible. For example, see Figure 7.1.

−∇C





w
(0)
1,1
...

w
(0)
n1,n0

...

w
(k)
1,1
...

w
(k)
n1,n0



t
=



0.25
...

−0.05
...

1.034
...

−2.98



↑ w
(0)
1,1

...
↓ w

(0)
n1,n0 by ≈ 0

...
↑ w

(k)
1,1 by a lot

...
↓ w

(k)
n1,n0 by a lot

Figure 7.1. The notation t is the transpose of the column vector.
This is an example of the negative of the gradient function, paving
a way for a strategy on a neural network to minimize the cost
function. The relative magnitude of the components tells us how
sensitive the cost function is to each weight and bias, i.e., which
changes matter more.

We see in Figure 7.1 that an adjustment to some of the weights have a greater
impact on the cost function than the adjustment of other weights. Thus, some
of the connections matter much more for the training data. The gradient descent
function encodes the relative importance of each weight and bias. When changing
by some small multiple of −∇C, the relative importance of the weights and bias
remain the same. As we can see, this technique is computationally heavy due
to immense set of input data. Furthermore, the testing data may show that the
number of correct outputs over the total number of simulations may be close to
approximately 95− 98% of testing accuracy, not 100%, as we would like.

Backpropagation is an algorithm for computing the gradient descent. Theo-
retically, the way we adjust weights and biases for a single gradient descent step
also depends on every single training example (since each step uses every example),
but for computational efficiency, we will keep from needing to obtain every single
example for every single step.

First, consider one single example, for example, the image of the number 8.
We will discuss the effects this one training example have on how the weights and
biases get adjusted. If the neural network is not yet well-trained, activations in the
output will appear random. For example, there are 10 outputs labeled from 0 to 9



12 MEE SEONG IM AND VENKAT DASARI

and we may have

a
(k)
1 = 0.4

a
(k)
2 = 0.7

a
(k)
3 = 0.2

a
(k)
4 = 0.1

a
(k)
5 = 0.0

a
(k)
6 = 0.4

a
(k)
7 = 1.0

a
(k)
8 = 0.1

a
(k)
9 = 0.0

a
(k)
10 = 0.3

where a
(k)
j is the neural network output for the number j − 1, 1 ≤ j ≤ 10. If the

network is well-trained, then all a
(k)
j should go down to 0, except a

(k)
9 since we are

considering the image of the number 8, so a
(k)
9 should go up to 1. We cannot change

these activations but instead, we may influence weights and biases. Moreover, the
sizes of these nudges are proportional to how far away each current value is from
its target value. For example, the increase to that number 8 neuron activation, i.e.,

a
(k)
9 , is more important than the decrease to the number 3 neuron, i.e., a

(k)
4 , which

is fairly close to where it should be.

Focusing on a
(k)
9 , this activation a

(k)
9 is defined as the weighted sum of all of

the activations in the previous layer, plus a bias, and then it has been substituted
into a nonlinear function σ, cf., (2). We see that there are three different ways
to increase the activation: increase the bias, increase the weights, or change the
activations from the previous layer.

Consider the weights. In order to adjust the weights, notice that the weights
have differing levels of influence. The connections with the brightest neurons from
the preceding layer have the biggest effect since those weights are multiplied by
larger activation values. If we increase one of those weights, it has a stronger
influence on the ultimate cost function than increasing the weights of connections
with dimmer neurons.

Note that when we consider the gradient descent, we care not only the sign of
each component, but we care about the magnitude of each component. That is,
the neurons that are firing when seeing the number 8 get even more greatly linked
to those firing when thinking about the number 8.

The last way to increase this neuron’s activation is by changing all the activa-
tions from the previous layer, and in proportion to each associated weight. Namely,
if everything connected to that digit 8 neuron with a positive weight got brighter
and everything connected with a negative weight got dimmer, then the digit 8 neu-
ron would become more active. We do not have direct influence on these activations,
but we only have control over the weights and biases.



COMPUTATIONAL COMPLEXITY REDUCTION OF DEEP NEURAL NETWORKS 13

Now, focusing on all the other neurons a
(k)
j in the output layer, where j ̸= 9, we

want all of the other neurons in the last layer to become less active; each of those
other output neurons has its own algorithm about what should happen to that
second-to-last layer. We combine the strategy for the output neuron 8 with those
for other output neurons to determine adjustments for the second-to-last hidden
layer, proportionately to the weights and to how much each of those neurons needs
to change.

Applying backpropagation is adding together these desired effects to obtain a
list of nudges that we want to occur in the second-to-last layer. After we apply
this, we recursively apply this algorithm to the relevant weights and biases that
determine those values by repeating this process and moving backwards through
the network.

This is how a single training example wishes to nudge each one of those weights
and biases. If we only focused on one simple example of 8, then the network would
ultimately be incentivized just to classify all images as an 8. So what we need to do
is go through this same backpropagation routine for every other training example,
recording how each of them would like to change the weights and the biases. Then
we average together these desired changes, over all training data. This collection
of the average changes to each weight and bias is the negative gradient of the cost
function.

Gradient descent in practice takes large amount of computational time to add
up the influence of every single training example, every single gradient descent step.
So what we do instead is stochastic gradient descent, i.e., we randomly shuffle our
training data and then divide it into groups of mini-batches, for example, each
one having 1000 training examples. Then we compute a gradient descent step
using backpropagation according to the mini-batch. This doesn’t give the actual
gradient descent of the cost function, which depends on all of the training data.
So this is not the most efficient step downhill, but we do obtain a fairly decent
approximation, and it gives us a significant computational speed up. That is, if we
plot the trajectory of the network under the relevant cost surface, it would be similar
to a person aimlessly walking downhill, taking quick steps, rather than a carefully
calculating person determining the exact downhill direction of each infinitesimal
step, before taking a very slow and careful step in that direction.

8. Neural network complexity

Numerous labeled training data are needed, like handwritten numbers, letters,
and symbols, or people labelling tens of thousands of images. Neural networks are
governed by bandwidth and performance. As there is a higher demand for artificial
intelligence, there is a greater need for bandwidth reduction and performance bump,
which will allow one to load less data from system memory into the local memory
and overall from the system.

Although researchers have investigated many ways towards neural network re-
duction, we focus on certain convolution called Rectified Linear Units (ReLU) or
rectified linear activation function. That is, we insert a new layer to create more
sparsity in the weights and in the activations. ReLU is a piecewise linear function
whose output will be the input directly if it is positive, or else, its output is zero.



14 MEE SEONG IM AND VENKAT DASARI

That is, it is the linear function

f(x) =

{
0 if x ≤ 0,

x if x > 0.

However, for our manuscript, we modify the function as

(7) f(x) =

{
0 if x ≤ ε,

x if x > ε,

where ε ≥ 0. After applying modified ReLU, we know that sparsity increases
from 15% to about 35% in the weights after pruning and then retraining, and
in activation, applying modified ReLU (pruning) and then retraining will extend
sparsity from 40% to approximately 60 − 90%. Our modification is expected to
increase sparsity beyond 35% for weights and 90% for activations, as negligible
contributions remain negligible after pruning. This is also because the sum of
negligible numbers is still negligible relative to other weights and activations. This
procedure will give us a swift identification of objects by machines as complexity
has been further reduced by using modified ReLU.

Therefore, we modify (7) and apply it to nonlinear functions like the sigmoid
in (2) so that modified ReLU is applied to our deep neural network, i.e.,

(8)

a
(1)
1 =

{
0 if x

(1)
1 ≤ ε

(1)
1 ,

σ(x
(1)
1 ) if x

(1)
1 > ε

(1)
1 ,

a
(1)
2 =

{
0 if x

(1)
2 ≤ ε

(1)
2 ,

σ(x
(1)
2 ) if x

(1)
2 > ε

(1)
2 ,

...
...

a(1)n1
=

{
0 if x

(1)
n1 ≤ ε

(1)
n1 ,

σ(x
(1)
n1 ) if x

(1)
n1 > ε

(1)
n1 ,

...
...

where ε
(1)
1 , ε

(1)
2 , . . . , ε

(1)
n1 , . . . ≥ 0, and

x
(1)
1 = w

(0)
1,1a

(0)
1 + . . .+ w

(0)
1,n0

a(0)n0
+ b

(0)
1 ,

x
(1)
2 = w

(0)
2,1a

(0)
1 + . . .+ w

(0)
2,n0

a(0)n0
+ b

(0)
2 ,

...
...

x(1)
n1

= w
(0)
n1,1

a
(0)
1 + . . .+ w(0)

n1,n0
a(0)n0

+ b(0)n1
,

...
...

9. Summary and Future Direction

Deep neural networks are emerging in many technologies today. We introduced
three common neural networks and then discussed the role of activations, weights,
hidden layers, and bias. Understanding the mathematics behind propagation and



COMPUTATIONAL COMPLEXITY REDUCTION OF DEEP NEURAL NETWORKS 15

backpropagation enabled us to introduce an optimization model which further re-
duces the computational complexity by introducing more sparsity into the model.
With modified ReLU implemented in the deep neural network, we have enabled
for the training and inference speeds to accelerate further on computing platforms
consuming low computational resources.

References

[AB09] Martin Anthony and Peter L Bartlett, Neural network learning: Theoretical founda-

tions, cambridge university press, 2009.
[Abd94] Herve Abdi, A neural network primer, Journal of Biological Systems 2 (1994), no. 03,

247–281.

[DIB19] Venkat R. Dasari, Mee Seong Im, and Lubjana Beshaj, Solving machine learning
optimization problems using quantum computers, arXiv preprint arXiv:1911.08587,

to appear in Proc. SPIE (2019), 1–6.

[DIG19] Venkat R. Dasari, Mee Seong Im, and Billy Geerhart, Complexity and mission com-
putability of adaptive computing systems, The Journal of Defense Modeling and Sim-

ulation 17 (2019), no. 1, 1–7.

[GFGS06] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber, Con-
nectionist temporal classification: labelling unsegmented sequence data with recurrent

neural networks, Proceedings of the 23rd international conference on Machine learn-

ing, 2006, pp. 369–376.
[GS05] Alex Graves and Jürgen Schmidhuber, Framewise phoneme classification with bidi-

rectional LSTM and other neural network architectures, Neural networks 18 (2005),
no. 5-6, 602–610.

[HN92] Robert Hecht-Nielsen, Theory of the backpropagation neural network, Neural networks

for perception, Elsevier, 1992, pp. 65–93.
[HS90] Lars Kai Hansen and Peter Salamon, Neural network ensembles, IEEE transactions

on pattern analysis and machine intelligence 12 (1990), no. 10, 993–1001.

[ID18] Mee Seong Im and Venkat R. Dasari, Optimization and synchronization of pro-
grammable quantum communication channels, Quantum Information Science, Sens-

ing, and Computation X (Eric Donkor and Michael Hayduk, eds.), vol. 10660, Inter-

national Society for Optics and Photonics, SPIE, 2018, pp. 166–172.
[ID20] Mee Seong Im and Venkat Dasari, Genetic optimization algorithms applied toward

mission computability models, 88th MORS Symposium: AI and Autonomous Systems

WG35 (2020), 1–11.
[IDBS19] Mee Seong Im, Venkat R. Dasari, Lubjana Beshaj, and Dale Shires, Optimization

problems with low SWAP tactical computing, Disruptive Technologies in Information
Sciences II (Misty Blowers, Russell D. Hall, and Venkateswara R. Dasari, eds.), vol.
11013, International Society for Optics and Photonics, SPIE, 2019, pp. 70–76.

[KUMH17] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter, Self-
normalizing neural networks, Proceedings of the 31st international conference on neu-

ral information processing systems, 2017, pp. 972–981.

[LBE15] Zachary C Lipton, John Berkowitz, and Charles Elkan, A critical review of recurrent
neural networks for sequence learning, arXiv preprint arXiv:1506.00019 (2015), 1–38.

[RBK98] Henry A Rowley, Shumeet Baluja, and Takeo Kanade, Neural network-based face
detection, IEEE Transactions on pattern analysis and machine intelligence 20 (1998),
no. 1, 23–38.

Department of Mathematics, Johns Hopkins University, Baltimore, MD 21218, USA (cur-

rent)
Department of Mathematics, United States Naval Academy, Annapolis, MD 21402 USA
Email address: meeseongim@gmail.com

U.S. Army Combat Capabilities Development Command, U.S. Army Research Labo-
ratory, Aberdeen Proving Ground, MD 21005 USA

Email address: venkateswara.r.dasari.civ@mail.mil


	1. Introduction
	2. Neural network structures
	3. Neural network learning
	4. Propagation and backpropagation
	5. The structure of neural network models
	6. Backpropagation algorithm
	7. Optimization and neural network reduction
	8. Neural network complexity
	9. Summary and Future Direction
	References

