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Abstract. Motivated by recent progress in the problem of numerical Kähler

metrics, we survey machine learning techniques in this area, discussing ad-

vantages and drawbacks. We then revisit the algebraic ansatz pioneered by
Donaldson. Inspired by his work, we present a novel approach to obtain-

ing Ricci-flat approximations to Kähler metrics, applying machine learning
within a principled framework that guarantees positivity of the metric and

thus Kählericity. This offers a solution to a problem arising from the use of

machine-learned metrics. In particular, we use gradient descent on the Grass-
mannian manifold to identify an efficient subspace of sections for calculation

of the metric. We combine this approach with both Donaldson’s algorithm

and learning on the h-matrix itself (the latter method being equivalent to
gradient descent on the fibre bundle of Hermitian metrics on the tautological

bundle over the Grassmannian). We implement our methods on the Dwork

family of threefolds, commenting on the behaviour at different points in mod-
uli space. In particular, we observe the emergence of nontrivial local minima

as the moduli parameter is increased.

1. Introduction

At the 1954 International Congress of Mathematicians, the geometer Eugenio
Calabi proposed a conjecture that would dominate his field for decades. In 1933
Erich Kähler had defined Kähler manifolds, combining a compatible Riemannian,
complex and symplectic structure [53]. Twenty years later, Calabi argued that the
Ricci curvature of such a manifold should be arbitrarily prescribable, assuming the
most naive topological restriction [17]. More specifically, given a symmetric (0,2)
tensor h, one can always ask whether there exists a metric g on a Riemannian
M , such that Ricg = h. In general this is a highly difficult problem, involving a
collection of nonlinear PDEs. However, Calabi argued that on Kähler manifolds,
it is sufficient to consider the topological first Chern class alone. Since this is
represented by the normalised Ricci form associated to the metric, we obtain a
necessary condition on h, that the appropriately normalised (1,1)-form associated
to it should also represent the first Chern class. Calabi’s remarkable claim was that
this obviously necessary condition is also sufficient.

Whilst this may seem to be an esoteric mathematical problem, it becomes
easily motivated from a physical perspective by considering the vacuum Einstein
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field equations (EFE). These are expressible in the form ρ = 0 on a Kähler manifold
with vanishing Chern class, so that a solution to the prescribed Ricci curvature
problem with h = 0 is also one for the vacuum EFE. Underlying this discussion are
remarkable aspects of Kähler geometry, most importantly that the Ricci curvature
is locally expressible in terms of a real-valued function. Calabi’s conjecture was
believed false by leading geometers for several decades, as described by S.T. Yau,
the mathematician who eventually proved it [49], [75]. This was because a merely
topological condition was believed to be insufficient for the existence of the desired
metrics. Yau began his work by seeking a counterexample, and has the following
remarkable quote on the time he spent searching for one: ‘Every time I gave one,
it failed in a very delicate manner, so I felt it cannot be that delicate unless God
had fooled me; so it had to be right... I changed my mind completely, and then
I prepared everything to try to solve it’ [49]. He succeeded in 1976 [74], and was
awarded the Fields medal in 1982, largely in recognition of this achievement.

Once the existence and (appropriate) uniqueness of Ricci-flat metrics had been
established in the case of vanishing Chern class, such manifolds became known
as Calabi-Yaus. This fit into a wider programme of modernising and classifying
Riemannian geometries, for example by holonomy groups. For Riemannian man-
ifolds these are contained in the orthogonal group, since the metric gij is parallel
with respect to the Levi-Civita connection. At the same 1954 conference (also at-
tended by Cartan and Dolbeault, amongst others), Marcel Berger had presented
his famous classification [7]. In the Kähler case the holonomy group is contained
inside the unitary group, because the Kähler form is parallel. For Calabi-Yaus,
this is restricted to the special unitaries, essentially because the nowhere-vanishing
(n,0)-form Ω associated to M is also parallel.

During the mid 1980s the field was again revolutionised by theoretical physics,
in particular by the landmark formulation of 6 + 4 = 10-dimensional superstring
theory [18]. In its framework, spacetime is modelled as a manifold of 10 real dimen-
sions, with the 6 extra dimensions forming a compact manifold M which is in some
sense small [32]. It turns out that M must itself be Einstein, with the assumption
of zero vacuum energy. Since it must also be without infinitesimal isometries∗, the
only known choice of compactifying spaces are three-dimensional compact complex
Kähler manifolds which are Ricci-flat, i.e. Calabi-Yau threefolds. An ‘industry’
for the production of Calabi-Yaus was developed, one of its goals being the iden-
tification of properties necessary for recovering observed physics. For example, to
obtain the the correct gauge group for the standard model, SU(3)×SU(2)×U(1),
one requires more conditions onM , including the existence of a holomorphic vector
bundle V with a Hermitian Yang-Mills connection.

Given a Calabi-Yau (CY)M , the goal is to calculate meaningful physical quan-
tities, such as accessible particle masses and Yukawa couplings associated to the
low energy theory, from the compactified heterotic string theory. The relevant cal-
culations are integrals on M ; the corresponding integrands are the wedge products
of bundle-valued harmonic forms [32]. In the case that the bundle is the tangent
bundle, that is, V = TM , known as the standard embedding, the Yukawa cou-
plings are integrals of wedged (1,1) and (2,1)-forms. There are special situations
in which physical data may be derived topologically [64], since the integrals de-
pend only on cohomology classes of the modes. However, the physically meaningful

∗This would lead to the observation of particles that do not occur in nature.
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normalised coupling constants require a correct choice of representative, necessitat-
ing knowledge of the Ricci-flat metric. Yau’s existence proof was not constructive.
This means that outside cases where alternative techniques (e.g. special geometry)
can be applied, many physically interesting cases are likely to require numerical
approximation.

Beyond phenomenology, the discovery and classification of Calabi-Yaus led to
significant cross-fertilisation between mathematics and high-energy physics, centred
on the concept of mirror symmetry. In its simplest form, this conjectures that for
every Calabi-Yau threefold M , there exists a mirror manifold M̃ , such that the
Hodge diamonds, diagrams describing the structures of the Dolbeault cohomologies,
are related by a mirror reflection along the diagonal [47]. On a Calabi-Yau threefold
with h1,0 = 0, the only nontrivial parts of the Hodge diamond are h1,1 and h2,1,
interchanged by this map. Since these cohomologies correspond to deformations of
the symplectic and complex structures, mirror symmetry can also be formulated
as a duality between this pair. Whilst further discussion of this profound area is
beyond the scope of this paper, it displays the rich interplay between theoretical
physics and pure mathematics in the second half of the twentieth century. A major
player in this was Simon Donaldson, the next foundational figure of this paper.

Whilst rapid progress was made on the theoretical side, the numerical com-
putation of Ricci-flat metrics lagged behind. The first results were in the work
of Headrick and Wiseman [44], who approximated the Kähler potential, a local
real-valued function encoding the same information as the metric. However, com-
putations took on the order of several days due to memory requirements. A sig-
nificant breakthrough was the work of Donaldson [30], [29], [28], building on ideas
outlined by Yau, Tian, and others [66], [68], [78], [20], [56]. Donaldson had proven
a sequence of significant results in 1980s by using ideas from physics, in particular
Yang Mills gauge theory, to study the topology of four manifolds. In the case of
constant scalar curvature Kähler (cscK) metrics, previous work had introduced ap-
proximation schemes via sequences of embeddings into projective space, using the
sections of a holomorphic line bundle L. Donaldson’s first contribution was to prove
a convergence guarantee in the general cscK case, assuming that the automorphism
group Aut(M,L) is discrete. Secondly, specialising to the case of Calabi-Yaus, he
provided a simplified method, based on the existence of the CY volume form. His
elegant work was developed in [15] by Douglas and collaborators, who implemented
the theory on a specific class of quintics.

Whilst Donaldson’s method represented a triumph of inventive computational
algebraic geometry, in practice it was limited by the ‘curse of dimensionality’, asso-
ciated to the growth of the space of global holomorphic sections. Another method,
using energy functional minimisation within his framework, was soon introduced
[43]. Of course, all such research was being conducted in a time of comparatively
limited computational resources. The explosive growth of hardware and computable
data in recent decades has enabled rapid advances in data science and machine
learning (ML). From the start, these have had a major influence in the applied
natural sciences [46]. On the other hand, applications in pure mathematics and
theoretical physics have not been as significant, although this is beginning to shift.
Generalising greatly, there are fairly obvious reasons for this: it is hard to apply
black-box models with the potential for false positives in disciplines focused on
rigour and explicability.
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The computation of Ricci-flat metrics lies on this spectrum. Despite the sophis-
ticated mathematical setup, ultimately it involves approximating a matrix-valued
function on a manifold. This is evaluated with a well-defined loss, the integral of
scalar-valued quantities associated to the curvature. However, care must be taken
when working with Kähler metrics, requiring consideration of the individual math-
ematical constraints, as well as unique difficulties arising from their simultaneous
enforcement. Inspired by other ML approaches to PDEs, such as physics-informed
neural networks (PINNs) [61], a series of recent collaborations have applied ML
techniques to the CY metrics problem [2], [5], [52], [55], [36], [8], [57], [45]. The
basic idea is to impose the constraints on the metric and its derivatives in the most
straightforward way, composing them with the Ricci-flatness objective into a single
loss function, alongside designing neural architectures that automatically incorpo-
rate some of the constraints. This work has culminated in the computation of exact
Yukawa couplings with respect to both standard and non-standard embeddings [16],
[25]. In the first case, significant agreement is found with results obtained by al-
ternative methods. The importance of such results should not be downplayed; as
stated in a recent article summarising progress in this research direction, ‘until now,
any such calculations would have been unthinkable’ [73].

Contemporary ML work has obvious advantages over past approaches, lever-
aging the usual techniques, such as parallel computing and efficient optimisation
via backpropagation, to compute metrics with high degrees of accuracy with rela-
tively low computational cost. However, in this paper, we will argue that despite
very real progress, there are currently unaddressed drawbacks associated to error
composition. Most importantly, there are serious questions surrounding the pos-
itivity of the metrics, fundamental to their very definition. Whilst the current
literature has moved far beyond basic computation into actual physical geometry
applications, we suggest here that a rush to calculate must be accompanied by a
consistent reexamination of the fundamentals.

The paper is structured as follows. After a review of the necessary mathematical
framework, we discuss ML approaches to CY metrics in some detail, presenting the
cases ‘for’ and ‘against’ their use. We then return to more traditional methods.
Inspired by this, we present our own approach, applying ML within a ‘morally’
justified framework. In particular, we use gradient descent on the Grassmannian
manifold to identify an efficient subspace of sections for computation of the metric.
This is further justified in a ‘Fourier modes’ viewpoint, with conceptual similarities
to the use of symmetries to restrict the basis. We test our algorithms on the Dwork
family of quintics. Finally, we make some general comments about applications of
ML in pure mathematics, whilst outlining avenues for future research.

2. Mathematical background

Following on from the general historical background, in this section we intro-
duce the basic mathematical formalism necessary for understanding Calabi-Yau
manifolds. We will assume knowledge of introductory differential geometry, as well
as some familiarity with complex manifolds. Most of the material in this section is
inspired by [21], [69], [50]. Some aspects of Riemannian geometry, with an emphasis
on computation, will be covered in Section 5 on Grassmannians.

We would also like for this paper to be somewhat accessible to computer scien-
tists and mathematicians working primarily on computation and algorithms. It is
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highly likely that they would have much to contribute to solving the problems dis-
cussed here. We feel that the mathematical formalism outlined here can eventually
be put partially to the side, once the concrete problem is formulated. Moreover,
it is helpful to remember that considered pointwise, many of the statements en-
countered are really just linear algebra. Amongst the confusion, it is also rather
beautiful to see these structures interact.

2.1. Complex and Kähler geometry. An n-dimensional complex manifold
is 2n-dimensional real manifold M equipped with an (integrable) complex struc-
ture J ∶ TM → TM , thought of as multiplication by i. A perhaps more intrinsic
way of thinking about the space is local identification with Cn, using holomorphic
transition maps. It is surprising that this small change, R → C, has far reach-
ing consequences, leading to a drastically new type of geometry. Following the
usual course, a complex structure J induces a decomposition of the complexified
TM ⊗ C into ±i eigenspaces, identified as the holomorphic and antiholomorphic
tangent spaces, T 1,0(M) and T 0,1(M), respectively. One can then run through
many definitions and theorems: of (p, q)-forms, the Hodge decomposition, and the
Dolbeault operators inducing its own cohomology. Here we will skip this discussion,
taking it as mostly assumed. The reader without this background is encouraged to
consult [21], [50].

This setup allows us to consider Kähler manifolds. As already stated, perhaps
the best introductory intuition to these is the existence of three compatible struc-
tures, the Riemannian, complex and symplectic. Starting with a complex manifold
equipped with a bilinearly extended Riemannian metric, a natural class of metrics
to consider is those that are compatible with J . We call such a triple (M,J, g) a
Hermitian manifold. A basic and useful fact is the existence of a bijection between
J-invariant metrics and Hermitian metrics on the holomorphic tangent bundle, de-
fined as a smoothly varying choice of sesquilinear form in each fibre. This comes
naturally from the isomorphism between the real and holomorphic tangent bundles.

As is often the case in geometry, it is more convenient to study differential
rather than bilinear forms. This leads to:

Definition 2.1 (Fundamental 2-form). This is the two-form defined by ω(X,Y ) ∶=
g(JX,Y ). It is a real (1,1)-form, as can be checked.

Crucially, the complex structure J, the fundamental 2-form, J-invariant Rie-
mannian metric, and Hermitian metric on T 1,0(M) all encode the same information.
If the J is not given, any two of these objects determine the other two. Now, we say
the (1,1)-form ω is positive if the corresponding Hermitian metric is. Of course,
the corresponding g is then also J-invariant and positive-definite. We will return
to this notion frequently.

Definition 2.2 (Kähler manifold). A Hermitian manifold such that dω = 0 is
called a Kähler manifold.

The canonical example of a Kähler manifold is Pn equipped with the Fubini-
Study (FS) metric, given in local coordinates by:

(2.1) ωj ∶=
i

2π
∂∂̄ ( ∣z

0∣2 + ... + ∣zn∣2
∣zj ∣2 ),
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over the open sets {Uk ∶ [z] ∈ Pn ∶ zk ≠ 0}. We will return to this expression, in
modified forms, many times in this paper. One finally sees the connection to the
symplectic viewpoint, since the closed fundamental 2-form is a symplectic structure.

In algebraic geometry, holomorphic line bundles and their sections are especially
important, partly because there are no non-constant global holomorphic functions
on compact, connected Kähler manifolds. They will be useful in this paper, playing
a central role in Donaldson’s algorithm. A particularly important line bundle is the
canonical bundle, defined as the top degree exterior power bundle Λn,0(M), and
denoted by KM .

Definition 2.3 (Calabi-Yau manifold). A compact Kähler manifold with triv-
ial canonical bundle is called a Calabi-Yau.

Here, we have taken the strongest possible definition; the adjunction formula
[50] then makes it clear that every hypersurface in Pn defined by the vanishing locus
of a homogeneous polynomial of degree n+1 is Calabi-Yau. For such a polynomial,
it is easily calculated that there are (2n−1

n−1
) adjustable coefficients. However, two

such varieties are projectively equivalent if there exists a GL(n,C) transformation
between them, reducing the general parameters space by n2. It turns out that the
singularities lie on a codimension-one variety, so that the dimension of the space is
just (2n−1

n−1
) − n2. For a CY threefold in P4, this gives 101 components. Later, we

will focus on the one-parameter Dwork family embedded in Pn−1, given by:

(2.2)
n

∑
i=1

Zn
i − ϕ

n

∏
i=1

Zi = 0,

for some fixed complex parameter ϕ.
For completeness, we provide some more elementary definitions and notation

we will use in this paper, since these can vary in the literature. On Hermitian
manifolds we can formulate the usual Levi-Civita connection, with the remarkable
property that ∇J = 0 if and only if dω = 0 (this gives new intuition for the Kähler
condition). One can write down the usual curvature tensors, with many identities
for the local components, easily referenced in the physics literature. A crucial
feature of Kähler geometry is the local expression:

(2.3) Rij̄ = −∂i∂j̄(log det(gkl̄)),

which gives the Ricci curvature purely in terms of a single real-valued function, the
determinant of a matrix. It isn’t really an exaggeration to state that this simple
fact underlies a tremendous amount of what is interesting about Kähler manifolds,
all the way up to and including Yau’s results. The Ricci curvature can also be
turned into a (1,1)-form to make it more amenable to geometric analysis, giving
us the Ricci form: ρ(X,Y ) ∶= Ricci(JX,Y ).

Just as we can formulate the unique torsion-free metric-compatible Levi-Civita
connection, for line bundles we can define the unique unitary and locally purely
holomorphic connection with respect to a Hermitian metric, referred to as the
Chern connection. In this paper, the first Chern class of a line bundle is then just
the i

2π
multiplied onto the cohomology of the Chern curvature form. The latter

can be calculated by the local formula:

(2.4) Ωh = −∂∂̄(log∣s∣2h),



CY METRICS VIA GRASSMANNIAN LEARNING AND DONALDSON’S ALGORITHM 7

where s is any nonvanishing section. Now, we say a line bundle L is positive if
c1(L) can be represented by a positive form. The first Chern class of a complex
manifold M is thus defined to be −c1(KM), a purely topological quantity. Another
obviously important line bundle is the hyperplane bundle O(1), the dual to the
tautological bundle O(−1), as well as its tensor powers, denoted by O(k).

We can now state the foundational results discussed in the introduction.

Theorem 2.4 (Calabi, 1957, [17]). Given (M,J,ω), a compact Kähler man-
ifold, and ψ, a real (1,1)-form representing c1(M), there exists a unique Kähler
form ω̃ such that [ω̃] = [ω] and ρω̃ = 2πψ.

Theorem 2.5 (Yau, 1977, [74]). Given (M,J,ω), a compact Kähler manifold
with c1(M) = 0, there exists a unique Kähler form ω̃ such that [ω̃] = [ω] and
Ric(ω̃) = 0.

Since it can easily be shown that the curvature (of the Chern connection) of
the canonical bundle, ΩK , satisfies iΩK = −ρ (where these objects are related by
the usual identifications), one can finally see precisely by what was meant when we
stated that Calabi had assumed the weakest topological condition for his conjecture.
We see that on Calabi-Yaus, there is a unique Ricci-flat metric in every Kähler form
cohomology class. Moreover, this is a vacuum solution to Einstein’s equations.

Another characterisation of the Ricci-flat metrics that will be especially useful
for numerical approximation is given by the Monge-Ampère (MA) equation. A
crucial feature of Calabi-Yaus, sometimes given as the definition, is the existence of
a nowhere vanishing holomorphic (n,0)-form, often denoted by Ω. Then we have:

Theorem 2.6. Given a Calabi-Yau (M,ω), the Kähler form ω̃ is Ricci-flat if

and only if the Monge-Ampère equation: ω̃n

n!
= cΩ ∧ Ω̄, where c is constant, holds.

From now on, we denote the Kähler volume form ωn

n!
by dµg, and the holomor-

phic volume form (−i)nΩ ∧ Ω̄ by dµΩ. Also, we denote the corresponding volumes
by Volg and VolΩ. Then, the MA equation gives an easy measure of deviation from
Ricci-flatness:

(2.5) LMA =
1

VolΩ
∫
M
∣1 − 1

κ

dµg

dµΩ
∣ dµΩ,

where κ can either be the ratio of volumes or set to a constant. In the latter case, this
controls the Kähler class. One could also use integrals of scalar-valued quantities
associated to the curvature, but this tends to involve the costly computation of
derivatives [2].

Finally, we include some useful theorems about Kähler manifolds, and general
remarks that will be helpful for the remainder of the paper. We have mentioned
the importance of global holomorphic sections. A main reason for their significance
is that they allow embeddings into higher-dimensional projective spaces. In the lit-
erature, it is often stated that these sections are homogeneous monomials of degree
k in the homogeneous coordinates. This can be confusing, since strictly speaking
such monomials are not well-defined as functions. The correct interpretation is
to divide by the local trivialisations (zi)k over Uk, so that everything transforms
correctly.

The embeddings will be the standard choice in algebraic geometry, given by:

(2.6) i ∶M → PN , i(z) ∶= [s0(z) ∶ ... ∶ sN(z)],
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where {s0, ..., sN} are the N + 1 global sections of a line bundle L. An iconic result
of Kodaira states that for compact M , the bundle L is ample (has enough sections
to embed for a sufficiently high power Lk) if and only if it is positive. For the cases
we will consider, L will always be very ample, which means that it already admits
enough sections.

Given a Kähler manifold X, the ∂-Poincaré lemma (a simple amendment of the
usual result, with restricted domains [69]) implies an elementary but useful result:

Lemma 2.7. Let (M,ω, g) be a Kähler manifold. Around any p ∈M , there exists
an open set U and a real function v ∈ C∞(U), such that ω = i∂∂̄v, or equivalently,

gij̄ = ∂2v
∂zi∂z̄j̄ .

Put simply, ω can be locally represented by a smooth function, known as the
potential. The problem of Ricci-flat metrics reduces to finding a collection of func-
tions v with the right properties. However, it isn’t a priori easy to produce functions
giving Kähler metrics. In particular, the positivity of the Riemannian metric g is
hard to enforce, apart from the case of Fubini-Study (FS). For the FS metric, the
form ωFS on Pn is uniquely invariant under the action of U(n + 1). This means it
suffices to show positivity at the origin, then restrict to the variety.

2.2. Algebraic metrics. In this subsection we introduce the Kähler algebraic
metric ansatz, and show that it can be interpreted as a truncated Fourier-like series.

Consider a projective variety X equipped with the ample line bundle O(k). Let
{Z0, ... , ZNk} denote the set of homogeneous monomials of degree k in homogeneous

coordinates. The eigenfunctions of FS Laplacian, expressible as: ψαβ̄ = ZαZ̄β̄

(∑i ∣z
i∣2)k

,

form a complete orthonormal basis for functions in Pn [30]. Therefore any function

in C∞(X) can be approximated by an expansion in the ψαβ (restricted to X, with
some potential analytic subtleties). This can be used to produce Ricci-flat metrics.

A convenient general fact is the following. Consider a holomorphic vector bun-
dle E →M . Any two hermitian metrics on E, h1 and h2, are related by a positive
rescaling, so that ⟨., .⟩h1 = e−f ⟨., .⟩h2 , for a function f ∶M → R. Given s ∈ Γ(E), it
follows that the difference: log(∣s∣2h1

) − log(∣s∣2h2
) is a global real function on M .

Let us return to the Kähler case. Embed Pn into higher-dimensional projective
space using O(k). Then pull back the FS metric associated to a positive-definite
hermitian hαβ̄ , to the variety X. This gives local potentials of the form:

(2.7) Kj([z]) =
1

πk
log

Zαhaβ̄Z̄
β̄

∣zj ∣2k ,

over the open set Uj . The 1
k
prefactor ensures that the Kähler class remains the

same as the FS metric on X, for all k. Crucially, pulling back preserves positivity;
we know that this is otherwise hard to ensure. Following [30], [43], we call this the
algebraic metric ansatz.

Another way of interpreting the local potentials 2.7, inside the logarithms, is
as hermitian metrics on O(k), using the local sections (zj)k to trivialise. These
expressions satisfy the correct transformation rules with the transition functions

gαβ = (z
α
)
k

(zβ)k
. By the above reasoning, the differenceK−KFS is a global real function,

where KFS denotes the FS potential 1
π
log(∑i ∣zi∣2). So it can be approximated by
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a truncated expansion in the ψαβ . By direct calculation:

(2.8) K −KFS =
1

πk
log (Zαhαβ̄Z̄

β̄) − 1

π
log (∑

i

∣zi∣2) = 1

πk
log(ψαβ̄hαβ̄),

one finds that the elements hαβ are the coefficients of the eigenfunctions [43]. Hav-

ing established this, we seek a matrix such that the potential K approximates the
unique Ricci-flat representative of the FS Kähler class. Since the dimension Nk

grows like O(kn), for computational efficiency, it may make sense to use a different
truncated basis.

3. Existing methods

The universal approximation theorem [48] implies that neural networks are
function approximators to an arbitrary degree of accuracy. In this section, we review
ML approximations and some simple statistical background, leading naturally into
a summary of older methods.

3.1. Neural network approaches. A neural network (NN) can be used as
a form of ansatz for either the metric or the potential. The NN outputs either
a matrix-valued function gNN or a smooth function ϕNN ∶ M → C, learning the
metric as ωFS + ∂∂̄ϕNN . At a point p ∈M , the non-zero components are an n × n
Hermitian matrix hαβ̄ . Recall that the positive definiteness of g is equivalent to the
positive-definiteness of this matrix, which can be interpreted as a Hermitian metric
on T 1,0(M).

After inputting the homogeneous coordinates {z1, ..., zn}, or their real and
imaginary parts, the neural network ansatz is a composition of affine transfor-
mations and non-linear activations. In other words, soutput = Ln ○ σn ○ Ln−1 ○ ... ○
σ1 ○L1(sinput), where the affine transformations Li are multiplication and addition

by a (real or complex) weight matrix Wi and a (real or complex) bias vector bi,
and the σi the nonlinear activation functions. Training, in this context, means
inputting a collection of uniformly sampled points, then minimising the loss L by
optimising the weights and biases.

Thus far, most papers - for example [2], [52], [55], [8] - have used the same
overall idea, taking an L of the form:

(3.1) L = λ1LMA + λ2LTransition + λ3LdJ(+LClass),

where the terms should be understood as numerical integrals on M , calculated by
a Monte Carlo method. The constants λi control the contribution each term have
on the overall loss. Depending on the ansatz, some may be set 0, as the constraints
are automatically satisfied. We briefly consider the purpose of each of them.

The first term is just the same as in 2.5. The second term enforces patch
agreement on overlaps, for example:

(3.2) LTransition =∑
i≠j
∫
Ui∩Uj

∣ϕi − ϕj ∣ dµΩ.

This is necessary if learning takes place on several different patches, with each
network outputting ϕi on Ui. If the NN outputs gNN , 3.1 is replaced by the
condition that it transforms correctly under the usual transition functions. Finally,
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the third term enforces closedness of the associated (1,1)-form ω:

(3.3) LdJ =∑
ijk

∣Re(
∂gij̄
∂zk
−

∂gkj̄
∂zi
)∣

2

+ ∣Im(
∂gij̄

∂zk
−
∂gkj̄

∂zi
)∣

2

,

where ∣.∣2 denotes the L2-norm on M . Note that the simplicity of this condition
(only the ∂ term is vanishing) follows from the reality of ω.

Depending on the setting, one can include the term LClass to enforce a choice
of Kähler class. If h1,1 = 1, this is fixed by volume, controlled already by LMA.
To learn a form cohomologous to Fubini-Study, one expresses ωFS as a linear
combination of a basis for H1,1(M), i.e. ωFS = tiωi, then calculates the cor-
responding volume with known intersection numbers. The deviation of [ω2

NN ]
from [ω2

FS] can then be penalised by adding an appropriate term, of the form
Lclass ∝ ∣ ∫M ω2 ∧ ωi dΩ − Sum of intersection numbers ∣, summed over the basis
elements (these volumes are known as the slopes of the line bundles L with c1(L)
given by ωi [55]). We note that this only enforces that [ω2

NN ] = [ω2
FS], which de-

pending on the structure of H2(M), may not be equivalent to [ωNN ] = [ωFS]. For
example, in the case of h1,1 = 2, if there exist nilpotent elements in the cohomology
linearly independent from ωFS , it is easy to come with examples [ωFS + µ] such
that [ωFS+µ]2 = [ωFS]2, with µ ≠ 0. Thus it is unclear to us whether this condition
will enforce the right Kähler class, beyond simple situations like the Fermat quintic
with h1,1 = 1.

Some have found the most numerically stable results have been achieved by
initialising with gFS , the Fubini-Study metric [8]. Others initialise with standard
Gaussians [55]. The NN can learn a variety of different relations between gNN

and the desired Ricci-flat gRF , for example gRF = gNN or gRF = gFS + gFS ⋅ gNN ,
making this approach very flexible to the desired application. Of course, the great
strength of neural networks is their ability to learn functions to a high degree of ac-
curacy in relatively quick times, as confirmed by Monge-Amperè errors of O(10−3),
(or better) being achieved [8], [16]. Moreover, partial derivatives of the resulting
metrics are easily computed, in contrast, for example, to solving the equation on
a lattice. This means that in the case of the standard embedding, the harmonic
tangent bundle-valued (0,1)-forms are easily computed. One can parameterise the
appropriate exact corrections to the cohomology basis elements using another neu-
ral network s(θ), then minimise the relevant integrals over θ with respect to the
volume form inherited from gNN . This is a crucial step in the computation of the
physically-meaningful normalised Yukawa couplings, and is easily incorporated in
a NN pipeline.

Beyond the speed of computation and relative flexibility, another key advantage
of the neural network ansatz is that it does not rely on the discrete symmetries of the
CY itself, for example interchange of the homogeneous variables or multiplication
by roots of unity. The networks achieve good results without directly implementing
such symmetries on the network, in contrast with more traditional methods, which
require a manual reduction of the relevant basis for computational efficiency. This
once again suggests a synthesis of approaches, which we will return to in Section 6.

3.2. Metric positivity. Machine learned metrics have enabled significant
strides in the realm of string phenomenology. However, it is worthwhile consid-
ering the applicability of neural networks in this area of research.
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For one thing, the geometry of the problem seems to enforce certain architecture
choice. These have not yet widely adopted in the literature. In our view, if the
metric is being learnt directly, it is essential that one uses the local decomposition
gNN = LDL†. Here, D is a positive diagonal real matrix of eigenvalues and L is an
invertible lower triangular matrix with ones along the diagonal. What this means is
that the outputted g is manifestly positive (this approach was taken in [2] and [52],
but not in [55] and [8]. The matrices D and L can be outputted by two different,
simultaneously optimised, networks. However, local agreement and closedness do
not automatically hold, so λ2 and λ3 in 3.1 must be taken as non-zero. If the
metric is learned directly as a 3 × 3 tensor on a CY threefold, without any such
decomposition, positive eigenvalues are not guaranteed.

A potentially cleaner approach is to directly learn a functional correction to
ωFS ; this has become the standard method in the literature. On a compact CY, by
the ∂∂̄-lemma, there is a global real ϕ such that ωRF = ωFS + i∂∂̄ϕ, unique up to an
additive constant, which can be approximated by a NN. In this case ωNN is a true
global and closed form by construction. Unfortunately, the positivity of the metric
is again no longer guaranteed. The relevant space of functions can be denoted by:

(3.4) H = {ϕ ∈ C∞(M) ∶ ωϕ = ω0 + i∂∂̄ϕ > 0}.
Obviously, this is a tricky condition to satisfy, and is required to state the Calabi
conjecture, as noted by Yau himself [76]. To our knowledge, there are no other
simple mathematical characterisations of this class, and it is unclear how it can
be enforced, even weakly, on the outputs. Surprisingly, we found the incorrect
statement ωFS + i∂∂̄ϕ is automatically Kähler several times in the literature [55].
We believe that existing consistency checks - for example in the slope or volume
calculations of [55] - only address cohomological information, for example, that
[ω3

FS] = [ω3
NN ]. This does not say anything about positivity.

One justification for overlooking this issue in the literature is that the LMA

loss and ωFS initialisation somehow encourages the NN to learn positive forms.
However, we find this argument unsatisfying. Current ML methods hope that the
network learns positive forms on uncountably many tangent spaces on the manifold,
an intrinsically difficult problem. Note that if the network is initialised as positive
definite, it is plausible that the Monge-Ampère loss will discourage det(gαβ̄) from
crossing 0, since the loss would become singular on some points. However, the
loss is an integral, and functions with singularities can obviously still be integrable.
We believe that this poses a serious mathematical problem to learning a functional
correction to the potential.

It is also very unlikely that this condition can be checked by pointwise sampling.
Consider a simple semi-definite example, e.g. the (0,2) tensor: T = ∑i(ti −αi)2 dt2i
on Rn. Sampling points and checking the eigenvalues would always give positive
answers, away from the measure zero hypersurfaces ti = αi. This undermines the
reliability of the consistency checks performed, for example, in the appendices of
[8]. More generally, on an open U -trivialisation, a semi-definite function matrix M
will fail to be positive definite on the measure-zero set {p ∈ U ∣ det(M ∣p) = 0}. If
the output of the NN is real analytic, the identity theorem implies that the points
of vanishing are isolated [54].

Informally, there seems to be a ‘no free lunch principle’ for the ML-derived
metrics. In practice, anytime one of the λi can be zero by a choice of ansatz, the
other λi conditions become harder to enforce. This underlines the delicate nature



12 CARL HENRIK EK, OISIN KIM, AND CHALLENGER MISHRA

of Kähler geometry and motivates a reexamination of older methods. In particular,
the algebraic ansatz 2.7 is Kähler by construction.

3.3. Problems with error composition. Using weighting parameters such
as the λi in Eq. 3.1 is a common way of combining several different objectives in
machine learning. The classic example is an underdetermined regression task, where
additional error terms relating to the regression coefficients are introduced to make
the problem well-posed (this is known as Tikhonov or ridge regression). However,
the setting we are interested in here is significantly different. The functions in L
are not soft constraints on the problem but hard theoretical requirements, which
cannot be ‘approximately’ satisfied in any obvious sense. From a statistical learning
perspective, a ‘soft constraints’ approach allows an expression of prior beliefs about
the model parameters, so that in the aforementioned example, L2 regularisation is
equivalent to a Gaussian prior [11]. We briefly review this perspective now.

Consider a supervised learning problem on a datasetD ofN labelled data points
(xi,yi). We seek a w-parameterised function f(w, .), such that f(w,x) ≈ yi, for
all i. Having selected objective function L, e.g. the mean squared error over D, we
are given a set of M constraint functions Cj(.). Following [58], one can think of
two different problems:

w∗ = argmin
w

L(w), s.t. Cj(f(w,xi)) = 0, for 1 ≤ i ≤ N,1 ≤ j ≤M,(3.5a)

w̃∗ = argmin
w

(L(w) +∑
i,j

λjCj(f(w,xi))
2),(3.5b)

where in 3.5a, hard constraints are enforced, and in 3.5b, soft constraints are en-
forced. It is worthwhile considering the different formulations, in particular that
3.5b necessarily involves a compromise between minimising L and satisfying the
Cj(.).

Of course, the problem with case 3.5a is that it becomes very hard to solve
directly, when the w-space becomes high-dimensional, or D gets sufficiently large.
Things must be simplified, essentially by relaxing the hard constraints. Alterna-
tively, one can try to enforce them by a clever choice of architecture, but this may
not be straightforward. An example of the former is [58] who find the solution to
the appropriate Lagrangian linear system with a Krylov method; an example of the
latter is [1], who incorporate a differentiable projection operator onto the constraint
space, into the gradient descent.

Perhaps more seriously, the issue with case 3.5b is that Cj(.) may be poorly
enforced. The limitations of NNs as cheap ‘approximate solvers’ is widely accepted
in the ML literature [58], [31], [41]. The issue of infeasible solutions has been
discussed in the contexts of power grids, climate models, and many-body physics,
amongst others [77], [10], [26]. In all these situations, solutions must conform
to known physical laws, and deviations can have serious practical consequences,
for example power outages. In our view, Kähler-Einstein manifolds fall in this
paradigm.

We believe that soft constraints should always be thought of as imposing some
form of prior on the model parameters [11]. The practical justification is that it
prevents overfitting, meaning better generalisation to unseen data. However, the
addition of terms to the loss function affects the loss landscape (in both convex and
nonconvex cases) leading, for example, to getting trapped in small w local minima
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[79], [65]. There are results showing the genericity of bad local points under the
assumption of weight decay regularisation [79], [27]. For the calculation of Kähler
metrics many more loss terms are typically being added, almost certainly making
the issue more serious.

3.4. Approximate Kähler metrics? In 3.1, LMA is the objective function
whilst LTransition, LdJ and LClass can be thought of as constraints. Whilst regular-
isation implies that bad local minima exist, other results suggest that for sufficiently
wide neural networks, there may be few such bad points, in a sense that can be
made precise [24], [59]. The behaviour of NNs during training has been studied, for
example using Neural Tangent Kernels (NTKs) [51]. These can be used to analyse
convergence of NNs in function space in an infinite width limit. For our purposes, it
is sufficient to note that even the solutions lying near a local minima which is very
‘good’ in terms of error are quite simply not Kähler metrics. Thus Yau’s existence
and uniqueness proofs do not make sense for them.

The basins of attraction of local minima can be escaped by introducing stochas-
ticity, an example being simulated annealing. However, in much of the existing
work, the LdJ and LTransition errors appear to be converging to small, positive
fixed values, even as LMA continues to decrease. Most pathological are the cases
when loss terms increase during training, following an initial dip [60] (for example,
Figure 5 of [2] or Figure 10 of [52]). From the perspective of regularisation, we
would like a δ-function prior on Kählericity, but it is not clear how to impose this
on a NN architecture. Further, it is unclear how gradient information outside of
the range of feasibility should be interpreted. Morever, this is all ignoring the more
serious positivity issue, outlined already in Section 3.1.

For now, we pass over further discussion and interpretation of the NN met-
rics. We believe that a strong case has been made for development of alternative
approaches, in particular those that are based on principled ansatzes. In the next
section, we review Donaldson’s algorithm, which forms the basic framework for our
method, augmented with vanilla gradient descent.

3.5. Donaldson’s algorithm, in brief. One would like to inform any learn-
ing by the geometry underlying the problem. This brings us back to algebraic
potentials, and the problem of finding the right matrices hαβ . The first steps in

this direction were taken in the pioneering work of Donaldson [30], using a sequence
of embeddings to approximate the potential [29], [28], [66]. In its simplest form,
Donaldson’s algorithm can be understood in terms of two limits.

(1) One is for a fixed line bundle O(k).
(2) The second is for the bundles O(k), as k →∞.

Given a positive-definite hermitian hαβ̄ , define the integral operator:

(3.6) (T (h))γδ̄ ∶= R∫
M

ZγZ̄ δ̄

∑(h−1)αβ̄ZαZ̄ β̄
dµΩ,

where dµΩ = Ω ∧ Ω̄, as before. Then we have the following:

Theorem 3.1. Consider a compact CY embedded in Pn. For each line bundle
O(k), there exists a unique fixed point of the T-operator up to scale, and iterating
T (h0) for any initial h0 converges to it. Moreover, the sequence of corresponding
balanced Kähler forms ωk

∞ converges to the Ricci-flat metric as k →∞.
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We call a fixed point of the T -operator, for a given bundle O(k), the balanced
metric. Thus Theorem 3.1 can be rephrased as stating the balanced metrics con-
verge to the Ricci-flat one, in the limit that k → ∞. One show that convergence
takes places with a decay in error that is O(k−2) [30]. Thus we have an algorithmic
method for tuning the coefficients occurring in the algebraic potential 2.7 in terms
of a simple integral operator.

However, it was found to have one major flaw: the curse of dimensionality
associated to the growth of the space of global sections {Z0, ..., ZNk}. It turns
out that the number of necessary operations scales like O(k4n), where the biggest
bottleneck is the O(N2

k) points necessary for the numerically stable computation
of 3.6. Beyond k = 10, the calculations become far too much for the capabilities of
a typical laptop. For physical applications, where one hopes to move in the mod-
uli space and compute associated metrics rapidly, these timings are unacceptable,
even using powerful computing. It is therefore natural to consider methods which
maintain Kählericity, but converge more quickly in k.

3.6. Energy functionals. Although they converge in the limit, the balanced
metrics are not directly optimising for Ricci-flatness [30], [43]. Donaldson predicted
a sequence of ‘refined’ algebraic metrics, such that the σ-error decays exponentially
with k. Following this suggestion, Headrick and Nassar [43] used energy functional
minimisation to achieve this. They considered the integral of a convex, differen-
tiable, bounded below F (η). As noted by many classic references, it is generally
accepted in numerical analyis that such an approach is easier than directly solving
a PDE [60]. We review their method now.

Let us assume, without a loss of generality, that F (η) attains a unique minimum
at η = 1. The aim is to extremise the functional:

(3.7) EF [ω] ∶= ∫
X
F (η) dµΩ,

for variations of ω within the algebraic class. Thus one can derive the first order
variation in 3.7, corresponding to ω → ω + i∂∂̄ϕ, which gives the appropriate Euler-
Lagrange (E-L) equations. Note ϕ will take a particular ‘algebraic’ form.

We specialise to the case that F = (η − 1)2, justified as the leading order con-
tribution whenever η ≈ 1. This gives the E-L equations:

(3.8) ∫
X
η∇2

ω η
ZγZ̄ δ̄

Zαhαβ̄Z̄
β̄
dµΩ = 0, for γ, δ = 1, ...,Nk.

The function ∇2
ωη is integrated against the eigenstates of the FS Laplacian, so that

3.8 becomes a Galerkin-like condition for ∇2
ωη = 0 with these orthogonal functions.

This implies the constancy of η, equivalent to solving Monge-Ampère. To enforce
these equations, Headrick and Nassar use a sequence of algebraic manipulations and
a Levenberg-Marquardt method. The result is a more direct method for imposing
Ricci-flatness in the coefficients of the potential.

This approach can still be considered as the state-of-art in many respects. In
our personal view, it is unclear why neural networks have recently been so strongly
preferred in the literature. Because the error decays exponentially with k, one
can achieve errors at the order of 10−3 by k = 8. Like Donaldson’s algorithm, the
Headrick and Nassar approach the advantage of manifest Kählericity. It has also
been combined with ML, used to speed up the functional minimisation [4].



CY METRICS VIA GRASSMANNIAN LEARNING AND DONALDSON’S ALGORITHM 15

However, such an approach still suffers from the curse of dimensionality. Head-
rick and Nassar only implement on CYs with a great deal of symmetry, such as
the Fermat quartics and quintics. They use symmetries of the defining polynomial,
for example zi interchange, to greatly restrict the class of polynomials occurring in
the potential. Thus a method relying less on naive symmetries would be useful for
more general calculations.

Moreover, the gradient approach taken in [43] is just one possibility, involving a
specific choice of optimisation procedure. For example, stochastic gradient descent
approach on the h-matrix was taken in [2]. We were not sure how the matrix was
enforced to be positive Hermitian in either case. Since the problem has been reduced
to a single potential matrix, it is much easier than for the NNs. Nevertheless, a
gradient descent approach that searches strictly on the objects of interest, i.e. the
manifold of positive Hermitian matrices, seems desirable, avoiding a potentially
problematic ‘projection step’ in the updates.

3.7. No free lunch. Previously we formulated a ‘no free lunch’ principle for
the ML metrics. This stated that whenever the NN directly enforced some desired
properties, the other conditions became harder to satisfy. Now it can be gener-
alised to Donaldson’s algorithm and the energy functional method. In the first
case, one ‘pays’ for manifest Kählericity and a convergence guarantee with high
computational cost. In the second case, one ‘pays’ for Kählericity and exponential
convergence by restricting the set of CYs one can implement on. From that per-
spective, an approach which achieves the right compromise between our different
requirements is to be aimed for, seeing as a perfect solution does not seem possible.

4. Donaldson’s algorithm

Having addressed other methods, we return to Donaldson, with a greater focus
on the mathematical formulation. By carefully defining ‘balancedness’, it becomes
clear that it can be restricted to a smaller space. This fact will lead naturally into
our proposal.

4.1. Balanced metrics. Given a d-dimensional Calabi-Yau X equipped with
a positive Hermitian bundle L, the method is based around two kinds of data,
uniquely determining each other. These are:

(1) Hermitian forms on the space of global sections of L⊗k, denoted byH0(X,Lk),
(2) Hermitian metrics on the line bundles L⊗k.

Firstly, every Hermitian line bundle metric (., .)h can easily be turned into a Her-
mitian form on H0(X,Lk) by taking an L2 inner product:

(4.1) ⟨sα, sβ⟩Hilb(h) ∶=
Nk

Voldν
∫
Pn
(sα, sβ)h dν,

where dν is a positive Radon measure [38].
Conversely, given a Hermitian form on H0(X,Lk), say ⟨., .⟩G, there is a Her-

mitian metric on L⊗k, FS(G), uniquely characterised by the pointwise condition:

(4.2) ∑
i

∣ti∣2FS(G) = 1,

where ti is an orthonormal basis for H0(X,Lk) with respect to G. Importantly,
this does not depend on the choice of basis, provided it is orthonormal, nor does it
depend on a rescaling of h.
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Now, the hαβ̄ matrix occurring in the algebraic potential 2.7, can be interpreted
as line bundle metric in the following sense:

(4.3) (sα, sβ)h =
sα ⋅ s̄β

∑hγδ̄sγsδ̄
.

It turns out, following a calculation, that if we apply 4.2 to a form on H0(X,Lk),
encoded in a positive-definite Hermitian matrix Gαβ̄ = ⟨sα, sβ̄⟩, we get the line
bundle metric:

(4.4) (sα, sβ)FS(G) =
sα ⋅ s̄β

∑(G−1)γδ̄sγsδ̄
,

using the inverse matrix. To summarise: we have two maps, Hilb and FS, which
map from line bundle metrics to Hermitian forms on H0(X,Lk), and vice versa.
Composing 4.2 and 4.1, one recovers exactly the T-operator already given in 3.6.
This is the true definition.

Definition 4.1. A Hermitian metric h is ν-balanced, if T (h) ∶= FS(Hilb(h)).

Since a bundle metric h determines a Hermitian form, and vice versa, one can
think of G, h, or the pair (G,h) as each being itself ‘balanced’. Then an embedding
ik into PNk−1 with a basis of sections orthonormal with respect to such a G is called
a balanced embedding. The pullback Kähler ωk ∶= 1

k
i∗k(ωFS) is also called a balanced

metric. Moreover, we may call a pair (X,L) balanced, if a balanced embedding
exists.

4.2. Convergence results. Having defined the balanced metrics, it remains
to show what we ultimately want: that they converge to Ricci-flat representatives.

Theorem 4.2. Given dν, a positive Radon measure on Pn, there is a unique
ν-balanced pair (h,G) up to scaling. Moreover, if h∞ is the balanced line metric,
then T r(h0) converges to h∞ as r →∞.

Theorem 4.3. The sequence of a balanced Kähler metrics 1
k
ωk converges to

the metric with corresponding volume dν, as k →∞.

These results have generalised Theorem 3.1 to a greater class of measures. Of
course taking the Radon measure given by the top degree volume form, and restrict-
ing to X, gives an algorithmic procedure for generating approximations Ricci-flat
metrics on Calabi-Yaus. The definition of the Radon measure means that this is
robust to integral approximations by sums of point masses. As an aside, it is an in-
teresting mathematical fact that no analytic expressions for balanced metrics have
yet been found.

Because it will in some sense relate to our own method, we have included our
own rough outline of a proof to Theorem 4.3 in Appendix A. Although it is not
novel, we use ideas from Local Index Theory, which we have not yet come across in
the literature in this area. The proof to Theorem 4.2 is more standard and can be
found in [30] and [62] (for two different integration measures - the case of interest
to us is covered in the former).
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4.3. Summary. To recap, Donaldson’s algorithm is a simultaneously global
and local approach. It is a compelling geometric method that unfortunately suffers
from the curse of dimensionality. However, it is natural to consider whether aspects
of it can be coupled with a more proabilistic/ML framework. In particular, we note
that the O(N2

k) growth in computational cost is associated to the dimensionality of

H0(X,Lk). If a notion of ‘balancedness’ could be sensibly formulated on a subspace,
this large cost could be reduced. The mathematical way of thinking systematically
about subspaces is the Grassmannian, which we now turn to.

5. Grassmannians

In theoretical physics, the positive Grassmannian has been connected to scat-
tering amplitudes in N = 4 super Yang-Mills theory [3]. In machine learning and
signal processing, the Grassmannian has been applied to low-rank sparse matrix
completion problems [12]. One particularly interesting paper utilises a combina-
tion of SVD and Grassmann kernel learning for image classification through LDA,
‘tracing out’ irrelevant data [42] by projecting. Grassmann learning is useful when
optimisation on linear spaces only depends on subspace information, allowing one
to lower complexity. In our strategy, it will play an important role as an auxiliary
manifold, upon which gradient descent can be performed. Much of this section is
an elaboration and explanation of ideas from [37].

5.1. Definition. The complex Grassmannian manifold G(n, k) is the space
of all k-dimensional subspaces of Cn, endowed with a holomorphic structure. This
generalises projective space by allowing all k-dimensional planes intersecting the
origin. A point of G(n, k) is specified by k linearly independent vectors spanning
the plane. Then we can give homogeneous coordinates by putting these into the
columns of a (maximum rank) matrix. The plane is invariant under actions of
U(k), so we quotient our coordinates by the equivalence relation:

(5.1) W ∼ W̃ , if and only if there existsM ∈ GL(k, k) such thatW = W̃M.

The invertible matrix M is analogous to the scale factor in Pn.
The Grassmannian is a homogeneous space, since the unitary group acts transi-

tively. ThusG(n, k) ≊ U(n)/(U(k)×U(n−k)), quotienting by the isotropy subgroup
of the point spanned by the first k standard basis elements. From this perspective,
a point [Q] looks like the equivalence class:

(5.2) [Q] = (Q(Qk 0
0 Qn−k

) ∶ Qk ∈ U(k), Qn−k ∈ U(n − k)).

In contrast to the homogeneous coordinates approach, Q will be an n × n unitary
rather than an n × k matrix.

For comparison, consider the Stiefel manifold V (n, k), the space of k-dimensional
orthonormal frames in Cn. Then V (n, k) ≊ U(n)/U(n − k), since to distinguish
frames we no longer act with a U(k) factor. A point [Q] looks like:

(5.3) [Q] = (Q(Ik 0
0 Qn−k

) ∶ Qn−k ∈ U(n − k)).

Unlike the Grassmannian, the Stiefel manifold can be intrinsically thought of as
orthonormal n×k matrices, noting that G(n, k) ≊ V (n, k)/U(k). Our ultimate goal
will be to compare subspaces of the Nk-dimensional complex vector space of global
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sections, H0(X,Lk). To proceed, we must choose an appropriate metric on the
Grassmannian.

5.2. The metric. To endow G(n, k) with a metric, the homogeneous space
perspective becomes useful. This is because if the Riemannian geometry of a given
manifold is well understood, the same is true for all quotients of the manifold.

The tangent space to G(n, k) at a point [Q] can be identified with a subspace
of TQ(U(n)), using the notions of a vertical and horizontal spaces. The former
contains vectors tangent to [Q]; the latter is chosen orthogonally, containing vectors
of the form:

(5.4) ϕ = Q(Qk 0
0 Qn−k

)( 0 −B
B† 0

) , Qk ∈ U(k), Qn−k ∈ U(n − k).

Here, the third skew-symmetric matrix is a horizontal vector at the identity, shifted
to the tangent space at [Q] by premultiplication. In fact, this subspace is exactly
what we wanted, and is isomorphic to T[Q](G(n, k)); intuitively, movement along
the vertical space makes no difference to the quotient. Then the standard Un

metric, restricted to 5.4, gives us a metric on the Grassmannian. Clearly it is
totally determined at the origin.

Of course, for a given application, the metric chosen would ideally respect the
geometry of the loss landscape. However, since we cannot a priori know what this
is, we will use this (likely) suboptimal metric for computational efficiency. As a
result, our metric choice will converge more slowly, but should still reach a global
minimum (unless convexity is relaxed, which will unfortunately eventually happen).

5.3. Geodesics. Although we derived the metric using U(n) equivalence classes,
in practice we will work with n × k orthonormal representatives. A point of the
Grassmannian now looks like:

(5.5) [Y ] = {Y Qk, Qk ∈ Uk},

using the fact that G(n, k) ≊ V (n, k)/U(k). The horizontal subspace to [Y ] con-
tains n× k matrices H, such that Y †H = 0. Applying the previous metric gives the
formula:

(5.6) Y (t) = (Y V U)(cos Σt
sin Σt

)V †,

for geodesics, where Y (0) = Y , Ẏ (0) = H, and UΣV † is the compact SVD of H.
The matrix Y is a Stiefel representative of the initial point and H is the initial
velocity vector. The cos and sin operations act elementwise along the diagonals, on
the principal values. A derivation can be found in [37] (just substitute 5.6 into the
ODE defining geodesics).

Importantly, using this formula allows us to explore the full Grassmann space
whilst using Stiefel representatives. The geodesic equation will move around or-
thonormal representatives in a consistent way, using the horizontal directions. In
the case of gradient descent, the choice of metric allows us to define descent direc-
tions by defining ∇. Moreover, moving along geodesics by small ϵ in the extremal
directions allows us to discretise our gradient paths, analogous to cutting up a
curved path in Cn into short straight segments.
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6. Strategy

We return to Kähler-Einstein metrics.
In sections 3.2 through 3.4, we argued that naive applications of ML to Kähler

manifolds can have many drawbacks, the most serious being that the tensors pro-
duced may fail to be metrics. In section 3.5, we saw that traditional methods, in
particular Donaldson’s algorithm, suffered seriously from the curse of dimension-
ality. As a result, we postulated a ‘no free lunch’ theorem for numerical Kähler
metrics.

One would like combine these approaches to learn ‘geometrically’. We achieve
this by embedding into a lower-dimensional PNs and approximating the potential
there. This is is done in two different ways. Firstly, we use Donaldson’s algorithm,
learning balanced metrics for the subspaces. Secondly, we perform a joint ‘fibre
bundle’ optimisation on the product manifold: Stiefel × Symmetric positive defi-
nite matrices. The latter method means simultaneously optimising the basis and
corresponding h-matrix.

In both cases, a suitable projection is identified with gradient descent, using
the σ-error as a loss function. We find qualitative agreement between the behaviour
of the resulting optimal solutions as the dimensionality of the subspace varies. Fur-
thermore, we find that this method fits very well with the eigenfunction expansion
interpretation of the potential.

Finally, we reiterate that our methods obviously rely on Monte Carlo inte-
gration. It is hard to avoid this in numerical geometry, but it is possible that it
introduces inaccuracies in some cases, depending on the rate of convergence. In the
CY case, we first sample with respect to the measure induced by the Fubini-Study
volume form in projective space, then reweight by the ratio with dµΩ. Therefore,
the rate of convergence also depends on the L∞ norm of this C∞ reweighting func-
tion. However, this issue is the same for all existing methods discussed in this
paper.

6.1. Projecting down. Recall that the algebraic ansatz came from the Veronese
embedding of X with Lk into PNk . Its high computational cost came from the rapid
growth of the space of global sections, which scaled like O(N2

k). A potential solu-

tion is to restrict to a subspace of H0(X,Lk), via a projection from PNk to PNs .
We thus define the map I ∶X → PNs , as:

PNk

X PNs .

PE

I

The projection can be specified by Ns + 1 linear functions on PNk , so that I takes
the form:

(6.1) I ∶X ⇢ PNs , P (z) ∶= (T 0(z) ∶ ... ∶ TNs(z)).
Here, the {T 0,..., TNs} are weighted linear combinations of degree k monomials
in the homogeneous coordinates. Provided they are linearly independent, these
define a point of G(Nk,Ns). We would like to use familiar machinery to produce
Kähler metrics on X, via pullbacks of Fubini Study from PNs . However, in order
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to do this, we must show that for a ‘random’ choice {T 0, ..., TNs}, the map I
is an embedding. The proof is mathematically elementary, but for the sake of
completeness and accessibility, we include it.

Theorem 6.1. Let X ⊂ PN be a nonsingular variety. The space of its embed-
dings is Zariski dense in the space of projections from PN to PK , provided K > 2n+1.

Proof. Let Πd denote the spaces of point projections from Pd to Pd−1, and
let ΠN,K denote the space of projections from PN to PK . For the collection Πd,
Theorem 6.1 is a standard result in algebraic geometry, by dimension counting [63].

Now consider the space of products: Proj ∶= ∏
K<d≤N

Πd. There is a surjective map

f (composition) from Proj to ΠN,K (given an element of Proj defined by linear
functions E0, ...,EK , just extend to a full basis, then successively project out).
Clearly the space of products of embeddings is dense in the Zariski topology on
Proj. So its image under f is dense in ΠN,K . □

6.2. Balanced subspaces. Having selected a subspace [M], we consider its
relation to Donaldson’s algorithm. In particular, note that the notions 4.1 and 4.2
make sense for it alone.

Firstly, and obviously, the L2 inner product 4.1 can be restricted to the set of
sections {T 0,.., TNs}. Denote the span by p ⊂ H0(X,Lk). Given a bundle metric
h, Hilb(h) defines a Hermitian form on p. It is slightly harder to see that the
other directions works. But it indeed holds, since given a Hermitian form G on
p, the pointwise condition 4.2 uniquely determines a line bundle metric, provided
that {T 0,..., TNs} is basepoint-free. In our case this will always be true. In other
words, it makes sense to discuss a pair (G,h∞(p)), balanced with respect to (Lk,p).
Note that again, p ∈ G(Nk,Ns). Unfortunately we do not have a ‘subspace’ result
corresponding to Theorem 4.2. We have however numerically verified convergence,
as will be seen in next section of this paper.

6.3. Subspace potentials. Consider the subspace Span{T 0, ..., TNs} ∈ G(Nk,Ns).
This defines an algebraic potential:

(6.2) Kj([z]) =
1

πk
log

Tαhaβ̄T̄
β̄

∣zj ∣2k ,

provided we have chosen a positive Hermitian hαβ̄ ∈ PNs(C). For our first approach,
the Grassmann-Donaldson algorithm, we select this matrix as the balanced metric
corresponding to the subspace. This is well-defined by the discussion of the previous
subsection. Now the connection to the Fourier mode viewpoint can be made clear.
Extending {T 0, ..., TNs} to a full basis, we have, reproducing equation 2.8:

(6.3) K −KFS =
1

πk
log (Tαhαβ̄T̄

β̄) − 1

π
log (∑

i

∣zi∣2) = 1

πk
log(ϕαβ̄hαβ̄),

defining the new eigenfunctions ϕαβ̄ as linear combinations of the previous ψαβ̄ .
Selecting a subspace of sections corresponds exactly to throwing away a collection

of eigenfunctions ϕαβ̄ in the above expansion, ideally such that the corresponding
coefficients are small. However, we would like to do this without training on the
full space, which is computationally taxing.
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6.4. Grassmann-Donaldson optimisation. This can be summed up in the
psuedocode of Algorithm 1.

Algorithm 1 Grassmann-Donaldson

1: CY← Projective Calabi-Yau variety
2: Lk ← Positive line bundle with Nk-dimensional space of sections
3: Ns ← Subspace dimension
4: function L(p): G(Nk,Ns)→ R:
5: Compute h(p) by 12 iterations of T on a basis {T 0, ..., TNs} for p
6: Compute potential K(h(p)), return σ(K) by integration of Kähler form

over CY
7: if Nk < Ns then end
8: else
9: Instantiate complex Grassmannian manifold G(Nk,Ns)

10: Choose p0 ∈ G(Nk,Ns) by random sampling
11: k ← 0
12: while STOP-CRIT and k < kmax do
13: pk+1 ← pk − αk∇L(pk)
14: with αk =minαL(pk − α∇L(p))
15: k ← k + 1
16: return pk

Essentially, having chosen a Calabi-Yau, a line bundle power, and a fixed sub-
space dimension, we identify a good restricted subspace metric without a priori
knowledge, using relatively vanilla gradient descent on the Grassmannian. Our
loss function L is just the sigma error corresponding to the algebraic potential,
derived from the approximately balanced metric at a point of G(Nk,Ns), in the
sense discussed in Section 6.2. The Kählericity of the metric for a ‘random’ choice
of p ∈ G(Nk,Ns) is guaranteed by the embedding result of Theorem 6.1.

For instantiation of the complex Grassmann manifold we used PYMANOPT
[67], a Python package for optimisation on Riemmannian manifolds. We adapted
this for a JAX framework. In the pseudocode, STOP-CRIT refers to a collection
of stopping criteria, for example a minimum step size or gradient norm. The Rie-
mannian gradient descent algorithm uses a line search method, noting that the ∇ is
defined by the choice of metric discussed in Section 5.2. As already discussed, this is
likely suboptimal. For computation of the T -operator we utilised the Python pack-
age CYJAX [39], adapting the code to allow the computation of the operator on a
subspace of sections, encoded in a Ns by Nk orthonormal matrix representative.

A serious problem is the necessity of passing the gradient through many nonlin-
ear applications of the T -map. By default, the gradient will include point sampling
and computation of the measure weights in the numerical evaluation of the loss.
JAX allows us to manually take these steps out of ∇L. However, training on itera-
tions of the T -operator is necessarily costly, reducing the computational advantage
of the subspace approach. A related issue is that, as discussed in section 3.6,
the Donaldson algorithm does not optimise Ricci-flatness within a given algebraic
class. It is therefore natural to consider other methods for jointly optimising for
the subspace and h, other than the T -operator.
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6.5. Bundle (joint) optimisation. We would like to optimise the basis of
sections and h-matrix simultaneously.

Recall that the tautological bundle E over the Grassmannian, a subbundle of
the trivial G(Nk,Ns)×CNk , is such that the fibre over a point p contains the vectors
in CNk belonging to it. We want to optimise over the space Herm(E) of Hermitian
metrics on the fibres of E. However, this can be simplified by correctly choosing
the right Stiefel representatives. Consider the following commutative diagram:

f∗Herm(E) Herm(E)

V (Nk,Ns) G(Nk,Ns)

h

π̃ π

f

.

It is useful to note that f∗Herm(E) ≃ V (Nk,Ns) × PNs(C). Given a point of
the pullback bundle (p,H), where H is Hermitian metric corresponding to the
equivalence class [p], evaluate H on the frame to obtain a matrix (this is trivially
an isomorphism). We will use this to simplify the gradient exploration of Herm(E).

We recap material covered earlier in the paper. Given a parameterised path in
the Grassmannian, given by γ(t) ∶ [0,1] → G(Nk,Ns), there exists a unique lift to
the Stiefel manifold γ̃(t) ∶ [0,1] → V (Nk,Ns), such that the following conditions
all hold: (i) f ○ γ̃(t) = γ(t), for all t (ii) γ̃(0) = p (iii) γ̃′(t) is horizontal, for all
t. We have already seen this discussed in Sections 5.2 and 5.3. Now we apply it to
the situation of interest to us. Given a path now in the bundle Herm(E), there is
a unique lift (γ̃1(t), γ̃2(t)) in the pullback V (Nk,Ns) ×PNs(C), such that the first
factor γ̃′1(t) is always horizontal, after fixing a starting point. So one can move in
the fibre bundle Herm(E) by consistently choosing the right representatives. This is
very easily performed in the PYMANOPT framework, because as discussed, points
on G(Nk,Ns) are already stored in frame matrices there.

Algorithm 2 Bundle optimisation

1: CY← Projective Calabi-Yau variety
2: Lk ← Positive line bundle with Nk-dimensional space of sections
3: Ns ← Subspace dimension
4: function L(p, h): L ∶ V (Nk,Ns) × PNs(C)→ R
5: Compute algebraic potential K(p, h) for the frame-matrix pair (p, h)
6: return σ(K) by integration of the corresponding Kähler form over CY

7: if Nk < Ns then end
8: else
9: Instantiate product manifold V (Nk,Ns) × PNs(C)

10: Choose p0 ∈ V (Nk,Ns) × PNs(C) by random sampling
11: k ← 0
12: while STOP-CRIT and k < kmax do
13: pk+1 ← pk − αk∇L(pk)
14: with αk =minαL(pk − α∇L(p))
15: k ← k + 1
16: return pk

The bundle optimisation approach is outlined in the pseudocode of Algorithm
2. We perform gradient descent on the product manifold V (Nk,Ns)×PNs(C), using
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the standard product metric [22], whilst moving in horizontal directions infinites-
imally. For clarification, the algebraic potential corresponding to a frame matrix
pair (p, h) is just 2.7, with monomials and coefficients corresponding to p and h re-
spectively. The goal is to identify the point (popt, hopt) such that the corresponding
metric has minimal error.

For Ns = Nk, we recover gradient descent on the full h-matrix alone, an ap-
proach which is very similar to previous work in [43] and [2]. However, in this case
our method searches exclusively on the manifold of positive definite Hermitian ma-
trices. Our approach also makes choosing a new metric straightforward. Because
there is no need to pass the gradient through the T -operator, the joint optimisation
approach is dramatically quicker than Grassmann-Donaldson optimisation. By di-
rectly optimising for Ricci-flatness, σ-errors of lower orders of magnitude become
achievable. We discuss the results of both methods in the next section.

7. Results

For the numerical experiments of this paper, we will focus on the Dwork three-
folds of equation 2.2. The algebraic metrics and Donaldson approach can easily be
extended to arbitrary polynomial hypersurfaces and other generalisations (CICYs
and quotients) by computing an appropriate basis of global sections [14]. For n = 5
and ϕ = 0, it is the Fermat quintic, upon which Donaldson’s methods have already
been tested on in some depth [15], [2], [14]. The singularities occur for ϕ equal to
five times a fifth root of unity.

We chose random initial points on the Grassmann manifold by choosing the
frame representative as i.i.d standard normal. This gives a uniform distribution
with respect to the measure induced by our chosen metric [23]. For the joint
approach, we experimented with several distributions on the space of Hermitian
positive definites, for example the complex Wishart, or a QR decomposition of a
random Gaussian. For each evaluation of the loss function, a Monte Carlo integral,
we sampled a new set of at least 30,000 points to prevent overfitting. We then
tested the resulting optimal metrics on a new set of at least 30,000 sampled points
(in both cases, typically more).

7.1. The Fermat quintic. We start with the simple case of the quintic. The
results are shown in Figure 1, for the line bundles O(4), O(5), and O(6). Note
that the majority of plots in this paper have subspace dimension on the x-axis, so
that plotted points correspond to optimised errors.

It is clear that a great deal of learning can happen on the subspaces, since the
majority of the lost error occurs within a small fraction of sections. For example,
working with the O(6) line bundle, an O(10−2) σ-error is achieved with just one
half of the total dimension. Then there is a shallow, roughly linear decrease for
the remaining growth up to the full Nk. Considering the significant scaling of
computational cost with the growth of Ns, this is a positive result, justifying the use
of subspace methods. One can imagine choosing a subspace and bundle dimension
tailored to a desired degree of metric accuracy within this framework.

There was no reason to expect the plots to take these concave forms. Many
behaviors could have occurred as the basis size was varied from 0 to Nk, for ex-
ample a linear decrease, or no significant significant improvement before the full
dimension. In our view, the concave behaviour is mathematically interesting and
tells us something nontrivial about the embedding method. Naturally, the joint
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(a) O(4) with linear scale.
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(b) O(5) with linear scale.
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(c) O(6) with linear scale.
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Figure 1. Final test σ-errors for Grassmann-Donaldson and bun-
dle optimisation on the Fermat quintic and a range of line bundles.

bundle optimisation outperforms the Grassmann-Donaldson method for all values
of Ns, since the space of matrices in the former case completely contains the latter.
The only thing that could obstruct this is the loss landscape, where local minima
could prevent convergence to the desired solution.

Another finding is that the loss curves for both approaches have essentially
the same overall shape. The qualitative agreement between these two approaches
confirms the existence of a lower-dimensional geometric structure in the space of
global sections. If the σ-error is plotted in log scale, one observes the same pattern
for all bundles, that the relative performance difference between the approaches
grows as Ns approaches Nk.

Note also that the loss curves are pushed into the origin as the tensor power
of the bundle increases. More precisely, for a fixed fraction of global sections, i.e.
Ns = γNk, where γ ∈ [0,1], the σ-error seems to decay with k. We confirmed
this in Figure 2a, using a joint approach for half the total dimension as k varies
from 2 to 8. The ‘squeezing’ behaviour suggests the possibility of a sequence of
fixed fractional subspaces Sk, such that the corresponding restricted metrics still
converge to Ricci-flatness in the limit.
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Figure 2. (a) Final test error for bundle optimisation and a fixed
fraction Ns = 1

2
Nk, on the Fermat quintic. The y-axis has a linear

scale. (b) Final test errors using bundle optimisation for O(5)
and a range of real moduli parameters on the Dwork. The initial
positive matrix is chosen by a QR decomposition and the y-axis
has a logarthmic scale.

7.2. Non-zero moduli parameters. We consider the more general case.
Figure 2b shows the results of bundle joint optimisation on the Dwork for a range of
moduli parameters. Note the apparent emergence of local minima in the manifold
V (Nk,Ns) × PNs(C) with the growth of ϕ. For example, for ϕ = 11.9, this is
suggested by the relatively stable performance in the range 30 ≤ Ns < 125, with a
sudden drop in error upon reaching the full space of sections. By ϕ = 100 highly
variable outcomes are achieved for all dimensions.

The local minima did not occur for the Grassmann-Donaldson approach, as
shown in Figure 3a. Whilst the algorithm performs worse with the growth of ϕ,
there is still a continued decrease in optimised error, without plateauing. The im-
plication is that the local minima are in the product manifold, rather than the
Grassmannian. As shown in Figure 3b, the Grassmann-Donaldson algorithm out-
performs the joint approach on random initialisations for the ϕ = 4 case, supporting
this intuition, since the space of solutions in the latter contains the former. Similar
results were obtained for all sufficiently large ϕ.

To test this, we iterated the T -operator once on the initially sampled h-matrix,
hoping to escape basins of attraction of the local minima. The results for this
are shown in Figure 3c. Joint optimisation now improves with the growth of the
subspace (no plateauing). It outperforms the Grassmann-Donaldson approach for
a sufficiently large subspace dimension, and the randomly initialised joint approach
in all cases (this is for ϕ = 4 in 3b, but the same pattern occurred for any sufficiently
large ϕ). So a single initial T step helped to avoid the local minima, without entirely
solving the problem. This is not surprising. When the gradient descent moves to
a new frame, the h-matrix T-initialisation corresponding to the first basis may no
longer be a ‘good’ choice.

The performance of Donaldson’s algorithm with the growth of the complex
structure parameter was discussed in [39]. We note that there, the final performance
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Figure 3. All plots are for the Dwork equipped with the O(5)
bundle, with a logarithmic scale on the y-axis. (a) Final test error
for Grassmann-Donaldson optimisation for a range of real moduli
parameters, initialising with QR distribution. (b) Comparison of
Grassmann-Donaldson, joint, and T -initialised joint optimisations
for the ϕ = 4 case. (c) Final test error for joint optimisation with
a T -initialisation, for a range of real moduli parameters.

is essentially circularly symmetric in the naive distance from the origin, which makes
intuitive sense. However, noting that the natural notion of distance on this space,
the Weil-Petersson metric, is not circularly symmetric (see Figure 8 in [19], there
is only a five-fold rotational symmetry), we find this surprising, although it may be
explainable by a lack of resolution. A comparison of its performance on a collection
of five random quintics was presented in [14]. However, to our knowledge a wider
comparison of different methods on a variety of CYs is currently lacking in the
literature. There may be some connection to the symmetry group of the CY, also
acting on the space of global sections.
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7.3. Summary. We have presented implementations of the Grassmann-Donaldson
and bundle approaches, for the Dwork family with a range of real moduli parame-
ters †. The key finding is that for the O(k) bundles, a relatively small fraction of
sections performed well in terms of the optimised error. We note that the errors are
not directly competitive with the state-of-art neural networks. However, our ap-
proach is Kähler by construction, offering a solution to the problem arising from the
failure of machine-learned metrics to enforce positivity. Moreover, we feel that the
method is of some geometric interest in its own right. By using a straightforward
gradient descent approach, we were able to identify a good subspaces of sections
without a priori knowledge. Moreover, we observed continued improvement as k
increases for all fixed fractions Ns/Nk. Finally, as the parameter ϕ was varied,
we observed the occurrence of local minima in the loss landscape of the manifold
V (Nk,Ns)×PNs(C). This problem was partially mitigated by initialising with a T
step.

8. Discussion

In the introduction, we discussed the history of the Kähler metrics problem,
highlighting how physical calculations, such as the work of Candelas and collab-
orators [19], have guided mathematical intuition in this area. Remarkably, Erich
Kähler already knew in 1933 that the Ricci curvature of his proposed metrics was
locally expressible in terms of a real-valued function [53]. He was also aware that
the cohomology of the corresponding forms was a topological invariant of the man-
ifold. As noted by the geometer Jean-Pierre Bourguignon, ‘more or less every page,
he (Kähler) opens a new path that has later turned out to be crucial for the de-
velopment of the subject’ [13]. As he defined his manifolds, Kähler was already
considering them as solutions to Einstein’s equations, since the simplicity of the
Ricci curvature implies a reduced form for the vacuum EFE. This is echoed in
Yau’s own testimony. After struggling to understand the Ricci curvature in general
relativity, he came to Kähler manifolds initially for the intuition they provided on
this tensor [49]. Thus from its beginnings Kähler geometry sits at the intersection
of mathematics and theoretical physics.

The original motivation for numerical Ricci-flat metrics is string phenomenol-
ogy. Speaking broadly, its long-term goal is the identification of higher-dimensional
geometries which recover four-dimensional theories, agreeing with observed particle
physics in their low energy limits. Efforts in this direction originally proceeded us-
ing simple geometries for which the metric was known, or sophisticated models for
which it wasn’t [18], [32], [33]. In the former case, the simplicity of the compactify-
ing spaces meant that they struggled to reproduce the complexity of the standard
model. In the latter, various tricks became necessary to avoid the metric. Due
to recent ML progress, contact has been made between the geometric and com-
putational sides of string phenomenology. We see our work within this tradition,
learning geometrically in a concrete way.

We include some further remarks on phenomenology, relevant for future re-
search avenues. Beyond the gauge group SU(3)×SU(2)×U(1) ‡, other observables
can be deduced along mostly geometric lines, within a string-theoretic framework.

†Im(ϕ) ≠ 0 did not change the qualitative behaviour.
‡For mathematicians and computer scientists, these roughly correspond to the strong, weak,

and electromagnetic forces.
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Reproducing the correct number of particle generations § can impose various condi-
tions on the pair (M,V). ML can also contribute in this direction, for example by
showing that approximately correct flavour hierarchies are reproduced away from
symmetric points in moduli space [9]. The methods used here can be generalised to
CICYs and quotients by computing the appropriate bases of sections. Donaldson’s
algorithm has already been applied to Hermitian Yang Mills connections through
the ‘generalised’ T-operator [33]. We believe that the Grassmann-Donaldson ap-
proach could also be used there, although the computational times may not be
feasible. We are in the (very) nascent stages of ‘precision string phenomenology’,
although as of now, it is still a ‘needle in a haystack search’ [73].

It would be reductive to view such methods as exclusively applicable in string
theory. The problem of numerical Kähler-Einstein manifolds is an interesting test-
case for the application of machine learning in numerical geometry, PDEs, and the-
oretical physics. Balanced metrics have been extensively studied within a purely
mathematical context, a major reason being their links to algebo-geometric notions
of stability. In particular, under appropriate conditions on a polarized projective
manifold (X,L), the existence of a balanced metric for some power Lk is equivalent
to Gieseker stability [70], [71]. This becomes important when constructing ‘good’
moduli spaces of vector bundles over projective manifolds, in a suitable sense. The
asymptotic expansion of ρ has been physically motivated with the path integral. It
has also been applied to the study of BPS black holes compactified on a CY mani-
fold [34], [35]. Intriguingly, an exact link is drawn there between maximal entropy
and balancedness. It is our hope that the numerical methods developed here could
be used in these contexts.

The computation of Ricci-flat metrics can also be thought of as a geometric
problem alone. We believe that there is a relationship between the following: (i)
the existence of a subspace structure on H0(M,Lk) approximating Ricci-flatness
well and (ii) the underlying geometry, i.e. as a point in a parameterised moduli
space. Our results suggest a correlation between the size of the symmetry group of
M and the existence of such a lower-dimensional structure. There may be further
work to do in untangling the relationship between balancedness and Ricci-flatness.
In Donaldson’s papers [30], we feel that this emerges purely in the proof, without
clear geometric or physical intuition. There may be direct links from the geometry
back to physics, since the data of a positive L overM gives a geometric quantization
of the Poisson structure corresponding to ω.

As previously mentioned, the asymptotic expansion of the density of states
function ρ(ω) could provide a convergence guarantee for the Grassmann-Donaldson
method. For example, there may exist a sequence of ‘fractional’ expansions, con-
verging to constant scalar curvature in an appropriate limit. An improvement of
our algorithm would be an adaptive approach, whereby a numerical Kähler metric
computed after a particular step of gradient descent is used to redefine a more
relevant metric on the loss landscape. Finally, the embedding method necessarily
depends on the existence of complex and Kähler structures. One may hope that the
ideas of Donaldson, Yau, and Tian could be applied to real, Lorentzian manifolds
in numerical relativity. However, there are many reasons to doubt this, since the
Kähler condition implies remarkable simplifications on the geometry. In the words

§This is a categorisation of fermions into three groups with the same overall irreducible rep-
resentations [72].



CY METRICS VIA GRASSMANNIAN LEARNING AND DONALDSON’S ALGORITHM 29

of Eugenio Calabi, he studied Kähler manifolds for one main reason: ‘because they
are so simple’ [13].
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Appendix A. Proof outline to Theorem 4.3

The basic idea is to use a density of states functional:

(A.1) ρ(ω) =∑
i

∣∣si∣∣2,

where the sum is taken over a basis of orthonormal sections, with respect to the
norm from ω. This function is constant exactly when ω is balanced, and has an
asymptotic expansion in k involving the scalar curvature. Assuming it, arguments
showing that a sequence of balanced ωk converge to the Ricci-flat metric are stan-
dard [29], [33]; we recap them later.

Let us consider the expansion itself. We note that existing analytic arguments
have been presented in [78], [20], [56]; however, it is interesting to see how ideas
from local index theory may be used to derive an alternative proof. We consider
this now, in the hopes that it will provide its own insight. The theorems and results
referenced in this Appendix without proof can all be checked in [40].

Denote the space of E-valued (0, k)-forms C∞(Λ0,kM ⊗ E) by Ω(E). There
then exists the usual Dolbeault complex:

(A.2) Ω0(M) ∂̄Ð→ Ω1(M) ∂̄Ð→ ...
∂̄Ð→ Ωd(M),

with its associated cohomology, denoted by Hq(M,E).
Now, A.2 can be viewed as the simpler complex, with a corresponding index:

(A.3) Ωeven(E) DÐ→ Ωodd(E),

(A.4) Index(D) ∶= dim(KerD) − dim(CokerD),

where we have defined D ∶= ∂̄ + ∂̄∗. This index is equal to the alternating sum:

(A.5) Ξ(M,E) ∶=
m

∑
k=0

(−1)k dim(Hk(M,E)),

known as the holomorphic Euler characteristic. A famous result is:

Theorem A.1. (Hirzebruch-Riemann-Roch). We have that:

(A.6) Ξ(M,E) = ∫
M

td(M)ch(E),

where td(M) is the Todd class of TM and ch is the Chern character of E.
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Although we will not precisely define them, we have the concrete expansions:

(A.7) td(M) = 1 + c1(M)
2
+ c

2
1(M) + c2(M)

12
+ .... ,

(A.8) ch(E) = 1 + c1(E) +
c1(E)2 − 2c2(E)

2
+ ... .

where ci(E) and cj(M) are the Chern classes.
Now, associated to A.3 are the even and odd heat kernels:

(A.9) K+t (x, y) ∶=∑
i

e−tλ
+

i (∑
j

s+i,j(x)⊗ (s+i,j)∗(y)),

K−t (x, y) ∶=∑
i

e−tλ
−

i (∑
j

s−i,j(x)⊗ (s−i,j)∗(y)),

where the collections s±i,j over j are bases of E-valued forms corresponding to the λ±i
eigenspaces of the Laplacians ∆+ ∶=D∗D and ∆− ∶=DD∗. The sections are chosen
to be orthonormal with respect to a fixed Kähler form ω, whilst for notational
cleanness, we suppress a second sum over them.

We are interested in a particular part of K+t (x, y). Specialise to the case that
E = Lk, using the Kähler form ω induced by the Hermitian L, and consider the
λ0 = 0 eigenspace only. This gives:

(A.10) Bk(x, y) ∶=
Nk−1

∑
j=0

sk+j (x)⊗ (sk+j )∗(y)

where Nk = dim H0(M,Lk), and is known as the Bergman kernel [20], and we have
included a k index on the sections to make the bundle dependence explicit. Note
that a priori there could also be contributions from H2(M,Lk),H4(M,Lk)... , by
the Hodge Theorem for an elliptic complex. However, in this case, these all vanish
for positive L and Calabi-Yau M , by the Kodaira vanishing theorem (because KM

is trivial). To see the connection to our discussion, we take the trace of A.10,
yielding exactly A.1, the density of states functional.

We still want an asymptotic expansion. What this means is that we allow the
bundle Lk to vary, taking k → ∞, whilst keep ω fixed. Let us take the traces
of K±t (x,x), denoting these by K±t (x). Then these have their own asymptotic
expansions in t:
(A.11)

K+t (x) ∼ a+−d(k)t−d + a+−d+1(k)t−d+1 + ... , K−t (x) ∼ a−−d(k)t−d + a−−d+1(k)t−d+1 + ... ,

which we will use shortly. The notation of k-dependence for the functions a em-
phasises the dependence on the bundle Lk, which will vary. Since we want an
asymptotic expansion in k, at this point we will make the substitution t = 1

k
into

A.11.
Importantly, Theorem A.1 has a local analogy.

Theorem A.2. (Local Hirzebruch-Riemann-Roch). We have that:

(A.12) lim
t→0
(K+t (x) −K−t (x)) dvolω = [Ch(L)Td(X)]2d,

where [.]2d denotes the 2d-form term in the expansion.
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Note that integration over M recovers Theorem A.1. It was shown in terms
in a famous paper of Patodi [6] that the negative power terms in A.11 all cancel
in the LHS of Theorem A.2; this has commonly been referred to as a ‘miraculous’
calculation. Thus the LHS should be interpreted as the constant term in the expan-
sion A.9 (recall this is just H0(M,Lk), plus any contributions from higher order
eigenspaces which may contribute in the limit t → 0, i.e. k → ∞. This can be
expressed as:

(A.13)
Nk−1

∑
j=0

∣∣sk+j (x)∣∣2 +C(k),

where C(k) here denotes k dependence, without telling us anything about asymp-
totic behaviour yet.

Specialising to threefolds, Theorem A.2 implies that:

(A.14) (ρk(ω) +C(k)) dvolω =
k3(c1(L))3

3!
+ k

2(c1(L))2 ∧ c1(M)
4

+O(k)

= k3ω3

3!(2π)3 +
k2ω2 ∧ ρ
2(2π)3 +O(k) =

dvolω
(2π)3

(k3 + 1

2π
S(ω) +O(k)),

exactly what we wanted to show, that is:

(A.15) ρk(ω) =
Nk−1

∑
j=0

∣∣s+j (x)∣∣2 ∼
1

(2π)d
(kd + 1

2π
S(ω)kd−1 +O(kd−2)),

provided that the C(k) terms only contribute at O(k) - in this paper we will take
this as a given. To verify this analysis for the general d case one would require
using higher order Chern characters, which may be difficult.

So now, we can use this expansion to show that a sequence of balanced metrics
on tensor power bundles - (ωk,Lk) - converges to the Ricci-flat metric. The asymp-
totic expansion A.15 made sense for any ω coming from L. We specify to balanced
ωk, so that ρk(ωk) is constant. The value of this constant is determined by integra-
tion: since the si(.) are an orthonormal basis we must have that ∫X ρk(ω) = Nk for

any ω, so that for the balanced metrics ρk(ωk) = Nk

V
, where V is the CY volume.

Moreover, we have the usual Riemann-Roch expansion for Nk:

(A.16) Nk = a0kd + a1kd−1 + ... = Vol(X) ⋅ kd +
1

2π
∫
X
S(ω) ⋅ kd−1 + ... .

The definition of the ‘asymptotic’ expansion (see [29], [28]) means that:

(A.17) ∥ρk(ωk) − kd −
1

2π
S(ωk)kd−1∥C0(X)

≤ Ckd−2,

for some constant C, which has absorbed the 1
(2π)d

prefactor. Moreover, we know

that ρk(ωk) has constant value Nk

V
, and we can expand the numerator using A.16,

yielding:

(A.18) ∥ 1
V
(V kd + a1kd−1 + ...) − kd −

S(ωk)
2π

kd−1∥
C0(X)

≤ Ckd−2

which means that:

(A.19) ∥2π
V
a1 − S(ωk)∥C0(X)

= O(k−1),
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implying that the curvature tends to a constant value in the limit. On a CY
manifold this implies zero scalar curvature and that the Ricci curvature vanishes,
which is what we wanted.

We should note that the notion of balanced discussed in [29], for which the
asymptotic expansion derived here makes sense, does not agree with Definition 4.1.
This is because the volume form defining balancedness also depends on the line
bundle metric, and is not fixed to be Ω ∧ Ω̄ throughout (as a result, it is a more
‘nonlinear’ notion). On a CY the ‘nonlinear’ balanced metric converges to the
Ricci-flat one. Thus the asymptotic expansion A.15 should also hold for our case
in an appropriate limit.
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