Contemporary Mathematics

Neural network design options for RNNG’s verification
José Luis Crespo, Jaime Gutierrez, and Angel Valle

ABSTRACT. In this work, we explore neural network design options for discrim-
inating Random Number Generators(RNG), as a complement to existing sta-
tistical test suites, it is continuation of the recent paper [CGGV]. Specifically,
we consider variations in architecture and data preprocessing. We test their
impact on the network’s ability to discriminate sequences from a low-quality
RNG versus a high-quality one—that is, to discriminate between ”optimal”
sequence sets and those from the generator under test. When the network
fails to distinguish them, the test is passed. For this test to be useful, the
network must have real discrimination capabilities. We review several network
design possibilities showing significant differences in the obtained results. The
best option presented here is convolutional networks working on 5120-byte
sequences.

1. The introduction

Random number generators (RNGs) are widely used in many applications in-
cluding cryptographycally secured communications, industrial testing, Monte Carlo
simulations, massive data processing, quantitative finance, etc. There are two prin-
cipal methods used to generate random numbers. The first one, called Peudorandom
Number Generators(PRNGs), i.e. algorithms which takes a small number of bits
truly randomly generated, called the seed, and expand them to a larger sequence.
The second measures some physical phenomenon that is expected to be random
and then compensates for possible biases in the measurement process. In this last
class we have Quantum Random Number Generators (QRNGs) that stand out from
RNG’s because their randomness comes from quantum processes. In this work, we
are focusing on laser fluctuations as QRNG.

The quality of RNG is important in various fields including cryptography [SK].
The most popular method to experimentally evaluate the fitness of pseudorandom
sequences is through the use of the statistical tests such as NIST-STS [NIST] and
DIEHARD [M], see also [BV] and [CGGV]. There are also several theoretical
measures of pseudorandomness. However they are quite difficult to test in practice
because of their high computational complexity. Passing these tests is a necessary

2020 Mathematics Subject Classification. Primary 68T0; Secondary 11K45.

Key words and phrases. Linear Congruential Generator and Linear Congruential Generator
on Elliptic Curves and Quantum random number generators and Neural Networks and PyTorch
and Statistical test for random number.

A. Valle thanks to Ministerio de Ciencia e Innovacién, Spain. PID2021-1234590B-C22
MCIN/AEI/FEDER,UE..

2 JOSE LUIS CRESPO, JAIME GUTIERREZ, AND ANGEL VALLE

condition for the quality of an RNG, but not sufficient, since it has been proven
that RNGs considered weak can pass it.

Neural networks are well known machine learning tools that have led to im-
portant advances in recent years in many fields, such as image and video object
segmentation, medical imaging, face recognition, time series prediction, signal iden-
tification, image classification, object detection or human action recognition (see
for instance [CZ] and [LLYPZ]).

Recently, in several research papers ((MGGO], [KIO], [LZSGW], [CRN],
[ADM], [CGV]) neural networks have been suggested as an alternative approach
to guarantee the randomness of a given RNG. Those approaches can be considered
currently under development, and this work focuses on investigating the possibilities
of one of them, which seems the most promising and straightforward to generalize
to a test.

Following the idea of [KIO], the work [CGGV] presented the potential of con-
volutional networks using the following scheme: ask the neural network to learn
to discriminate between two classes of sequences, one coming from an ”optimal”
RNG and the other from the RNG to be tested; if the network achieves a success
margin significantly different from chance, the RNG to be tested would be consid-
ered invalid. For the tests, we will use two RNGs: one weak and one strong, and
the network must be able to discriminate between them. The main objective is to
explore network design and input preprocessing options to analyze their impact on
the network’s discriminatory capacity.

The remainder of the paper is structured as follows. We start introducing the
main concepts and review the work [CGGV] in Section 2 for later use. Next, in
Section 3 we detail the main objectives of the present paper. In Section 4, we show
the results achieved with the different explored options. Finally, Section 5 makes
some final comments and poses future approaches of research.

2. Preliminaries

Here we review several related results and definitions from [CGGV] for later
use and better understanding of the rest of the document.

2.1. Random number generators. The experiment carried out used four
kinds of sequences: the laser-based quantum Random Number Generator (the raw
sequence and the post-processed one), the binary codification of a large video, the
linear congruential generator (LCG), and the linear Congruential Generator on
Elliptic Curves (EC-LCG).

Comparing all of them to the HMAC-DRBG on NIST SP 800-90A(see details
in [BK]) as the ideal, i.e. high-quality mode of PRNG. An HMAC is a specific type
of Message Authentication Code (MAC) involving a cryptographic Hash function
and a secret cryptographic key. HMAC-DBRG is a very efficient Deterministic
Random Bit Generator (DRBG). It has security proofs for a single call to generate
pseudorandom numbers and it is backtracking-resistant. On the other hand, it has
a machine-verified security proof, that is, the output produced by HMAC-DBRG
is indistinguishable from random by a computationally bounded adversary.

2.1.1. Quantum random number generator based on random polarization. The
Quantum random number generator based on laser fluctuations is presented in
[QV]. Random numbers are experimentally obtained from the random excitation

NEURAL NETWORK DESIGN OPTIONS FOR RNG’S VERIFICATION 3

of the linearly polarized modes of a gain-switched vertical-cavity surface-emitting
laser. This randomness is induced by the spontaneous emission that can be con-
sidered as quantum noise. Since the raw sequence produced by the QRNG has not
passed the NIST test suite [QV], we consider the post-processed bit string based
on [n, k, d]-BCH codes defined over the finite field GF(2) and where n+1 is a power
of 2, see [VQVG] and [L].

For the raw input bits (x,,—1,...,2o), the output (yx_1,..., o) is obtained as:

In—k go 0......0 Ln—1 Yk—1
0 In—k veeveengo Ol 0 In—2 [Yk—2
0...... 0 On—k «eonnn) Zo Yo

and g(z) = gn_sx"+- -+ g1+ go is the cyclic generator polynomial of the [n, k, d]-
BCH code.
Here we have considered BCH code with parameters [1023,1003, 5] the gener-
ator cyclic polynomial is 220 + 215 + 213 4+ 212 + 21t + 2% + 27 + 25 + 23 + 22 + 1
2.1.2. Linear Congruential Generator. Given positive integers a, b and m such
that gcd(a, m) = 1 the Linear Congruential Generator(LCG) is a sequence x,, of
pseudorandom numbers defined by the relation

ZTny1 = (axy, + b) mod m, n=0,1,...,

where xg is the seed. Unfortunately the LCG is not suitable for cryptographic
purposes, see [B, KD]. Although the author [HS]| claims that NIST test suites
cannot detect the linearity.

In this computational experiment we took the sequences from the rand function in
the glibc library version 2-17 without any tunning such that m = O(23?) bits, and
the output of simple Python LCG code with m = O(21%0).

2.1.3. Linear Congruential Generator on FElliptic Curves. For a prime p, we
denote by I, = 7Z,, the field of p elements and, we assume that it is represented by
the set {0,1,...,p—1}.

Let E be an elliptic curve defined over F,, given by an affine Weierstrass equa-
tion, which for ged(p, 6) = 1 takes form Y2 = X3 +aX +b, for some a,b € F,, with
4a3 + 27b% #£ 0.

We recall that the set E(F,) of Fj-rational points forms an abelian group, with
the point at infinity O as the neutral element of this group (which does not have
affine coordinates).

For a given point G € E(F,) the Linear Congruential Generator on Elliptic
Curves, EC-LCG is a sequence U, of pseudorandom numbers defined by the relation

U,=Up19G=nGdUy, n=1,2 ...,

where & denote the group operation in E(F,) and Uy € E(F,) is the initial value
or seed. We refer to G as the composer of the EC-LCG.

The EC-LCG provides a very attractive alternative to linear and non-linear
congruential generators with many applications to cryptography and it has been
extensively studied in the literature, see [BD, G, H].

The .tt file of 229 bits used was generated running the following SAGEMATH
code:

4 JOSE LUIS CRESPO, JAIME GUTIERREZ, AND ANGEL VALLE

f = open(’/Users/PRNG/Desktop/EC_LG.txt’, ’a’)
size_prime = 512
p=next_prime(ZZ.random_element (2**size_prime))
a=ZZ.random_element (p)
b=ZZ.random_element (p)
if (4xax*3+27*b*x2)%p != O:

C =EllipticCurve(GF(p), [a,b])
G=C.random_element ()
U0=C.random_element ()
for i in range(500):

V=U0+1ix*G

f.write(bin(V[0]) [2:]+bin(V[1]) [2:])
f.close()

2.2. Neural networks. Two kind of NN’s was used in [CGGV]: LSTM
networks and Convolutional ones. Since in this work we aim to compare the per-
formance of convolutional networks, which we analyzed in a previous study, with
that of conventional multilayer networks (with full connectivity), we briefly describe
these two types of models below. For a more detailed description see [A]

2.2.1. Feedforward networks or multilayer perceptrons. Dense feedforward net-
works, or multilayer perceptrons work processing data in a layer-by-layer fashion,
where each layer is a set of nonlinear functions of the previous layer output. Typi-
cally, these nonlinearities are 1-D nonlinear functions of the n-D linear combination.
Each nonlinear function is calculated in a processor, and the linear coefficients are
called weights.

2.2.2. Convolutional networks (CNN). This type of networks is used where
inputs are sequence of same-type values (a row of pixel intensities, a strand of sound
pressure values, etc.) Instead of having each processor operate on the whole input
array and produce a single output, it calculates a (nonlinear, as above) convolution
of the input array with a smaller weight array.

2.3. Implementation and results. The method consisted of training a neu-
ral network to differentiate between a PRNG and a truly random sequence, exem-
plified by the sequences generated by HMAC-DBRG.

The test result is how far can the neural network go in telling apart those
two sequence types. The proposed framework to several other RNG’s, including
Linear Congruential Generator(LCG), Linear Congruential Generator on Elliptic
Curves(EC-LCG), and the laser outputs, raw and post-processed. Including a large
enough video file(episode 7 of the continuing education course [T]) as a source of
random (meaning unpredictable) sequences.

Using the library PyTorch to implement the neural network in a Linux machine
with GPU Tesla V100-PCIE-32GB; the obtained results are in table 1, including
confusion matrices:

11 10 11 RNG 1 NN 1110 RNG 1 NN O
01 (00 01| HMAC 0 NN 1 |00] HMAC 0 NN 0

NEURAL NETWORK DESIGN OPTIONS FOR RNG’S VERIFICATION 5

TABLE 1. Results applying the proposed framework to other PRNGs.

PRNG tested

Training size AO. PRNG AO. GSRNG Confusion matrix

VCSEL QRNG
VCSEL QRNG
Raw QRNG
EC-LCG
Video
LCG (32 bits)

LCG (100 bits)

218

0.47

0.51

0.73

0.49

0.58

0.51

0.50

0.47

0.51

0.55

0.49

0.33

0.42

15650 845
15428 845

16324 0
(16444 0
72 16255
(81 16360)
6543 9934
3235 13056

7831 8640
11625 4769
7910 8464

)

(8827 7458

7729 8754

We can see that the VCSEL QRNG passes the test. Not so for the raw QRNG.
The elliptic curve generator is also successful. We can also see that adding a periodic
parameter reset to the LCG is enough to make it pass the test. The video file didn’t
pass the test, but its performance wasn’t that bad; it may rank as good as a naive

LCG.

Table 2 shows the effects of several design decision changes, namely: number
of processors, network type, layers, sequence length, bytes per element.

TABLE 2. Performance evaluation of the neural network model
with sequential application of hyperparameter or architecture set-

tings.

Design decision

Tested PRNG Training size AO. PRNG AO. GSRNG Confusion matrix

Increasing processors from 80 up to 150 LCG 215 0.21 -0.06 (123?1[1) 4(1;)
Two layers with 40 and 10 processors LCG 215 0.36 0.41 < };;ig ;ggz)
Increasing sequence length from 2% to 2° LCG 215 0.61 0.23 (L;(;ﬁz 1;?4;?)
Increasing sequence length from 2% to 2° VCSEL QRNG 218 0.51 0.51 (11; 12;32)
CNN-1 LCG 218 1 0 (1649(2) 162§g)
CNN-1 VCSEL QRNG 210 0.5 0.5 (S?é? :;gg)
CNN-2 and sequence length=512 VCSEL QRNG 218 0.5 0.5 (Zggg 223-/51)
CNN-2 and 2-byte elements VCSEL QRNG 218 0.5 0.5 (S;;g 58;(1);51(1))

The design decisions that turned effective were: increasing sequence length and
using convolutional networks. Results in Table 2 shows that increasing the training
set size from 2'° to 2'® and changing LSTM by CNN improves the capability of
the NN to discriminate between those generators and the GSRNG since perfect

6 JOSE LUIS CRESPO, JAIME GUTIERREZ, AND ANGEL VALLE

discrimination is achieved when AO.PRNG and AO.GSRNG are 1 and 0, respec-
tively. VCSEL QRNG was indistinguishable even with the biggest networks that
we have tried, as shown in the last three rows of Table 2, since a value of 0.5 for
AO.PRNG and AO.GSRNG means that the NN is unable to discriminate between
VCSEL QRNG and GSRNG. It remains an open question whether a massively
larger network would be able to perform that discrimination.

3. Proposed framework

We then have two randomly obtained bit series: HMAC and QRBG-VCSEL
without postprocessing . We obtain the HMAC bit sequence using the [HMAC]
implementation, initializing the generator with 64 bytes obtained from the system’s
randomness source (Linux) using the os.urandom function, generating 1 byte at a
time.

As for the VCSEL with gain generation, it is described in depth in [QV],
[VQVG], and summarising in Section 2.1.

In both cases, a number of bytes around was generated, which is the base
set used in all tests. Each case is one of the sequences, and the expected output is
the strong or weak generator label.

Since the generator to be tested is known to be weak, it must be discriminated,
see Table 1 and Table 2 of the previous Section 2. Therefore, experiments will be
considered successful the higher the discriminatory accuracy of the network; in any
case, it must be greater than 50%, which corresponds to chance. As previous section
illustrates, we already showed some promising initial results with convolutional
networks.

The options we explore here fall into two categories

220

e Network Design (Conventional Full Connectivity vs. Convolutional)
e Input Sequence Preprocessing

3.1. Procedure. We used the Pytorch package (and PyWavelets for the trans-
formations), running on a GPU with CUDA. In all cases, the procedure is:

(1) Select a data set for adjustment, another for control, and another for
testing. They are taken from the base set by random selection (using the
functions included in Pytorch). For the majority of 256-byte sequences,
we verified that sizes above 2'® do not make a difference in the results;
however, we verified with tests of size 216 or 218.

(2) Adjust the network parameters, using the set selected for this purpose
and verifying the error rate on the control set. If there is a consistent
increase in the error on this second set, it would indicate overfitting, and
the process would be terminated.

(3) Analyze the results on the test set. In principle, a response below 0.5
would be considered class 0 (in our case, the strong generator), and above,
class 1 (in our case, the weak generator). The 0.5 threshold can be adapted
to each case by finding the cutoff point of the response histograms.

To ensure the consistency of the network results and eliminate the influence of
the initialization point, we can repeat the last two steps several times. When a
good result is the exception rather than the rule, we have considered the test to be
poor. The error function to be optimized is the mean square error. The fitting uses
accumulated gradients from every few hundred cases (between 100 and 500), using

NEURAL NETWORK DESIGN OPTIONS FOR RNG’S VERIFICATION 7

the resilient backpropagation algorithm [RB] most of the time, but in some cases
we have obtained better results with Adam [KB], with a fitting rate of 1073

3.2. Types of Networks. In addition to the convolutional networks already
presented in Section 2.2, we have tested fully connected networks. In all cases, we
have used the LeakyRELU as the nonlinear activation, except in the final output,
where we used the logistic sigmoid function.

3.2.1. Conventional Fully Connected Networks. We have tested a network with
200-25-5-1 units in each layer. These sizes are arbitrary; our goal is to be guided
by the results to empirically obtain an appropriate size. If the network is too large,
there will be a tendency to overfitting, while if it is too small, its accuracy will
decrease. Therefore, we will vary the size based on the results. To avoid over-
fitting, there are other approaches without reducing size, such as: sparse layers
(IMMSNGL]), parameterization of weight matrices (orthogonalization, SVD sim-
plification), weight decay/penalty, and random processor deactivation.

3.3. Preprocessing Options. We take as a starting point the Section 2.3,
where the input to the network was the bits obtained by the generator, specifically,
sequences of 256 bytes, i.e., 2048 bits.

The possibilities we test here are:

e Fourier Transform

e Wavelet Transform

e Increasing the length of sequences by an order of magnitude, including
the possibility of placing them in two dimensions

3.3.1. Fourier Transform. In this case, the network’s input, instead of being
the bits obtained from the random generator, is its Fourier transform. To do this,
we take the original sequence and, since they are real, we obtain the transform coef-
ficients with the rfft function from the torch package. The real and imaginary parts
of the coefficients, separately, are the two input signals received by the network.

3.3.2. Wawelet Transform. This case is analogous to the previous one but us-
ing the Wavelet transform. To do this, we take the original sequence and obtain
a 4-level decomposition using the wavedec function from the ptwt package. We
use the Daubechies-2 basis function with reflection extension. The four series of
detail coefficients and the one of approximation coefficients constitute the five input
signals to the network. Since the lengths of these sequences are different, we use
separate branches of the network for each of them, followed by a common block of
dense connectivity layers.

3.3.3. Increasing Sequence Length. In this case, maintaining the 1D structure
simply involves feeding the network longer sequences. In the case of the 2D struc-
ture, we obtained it simply by splitting the 1D sequence into equal fragments and
making each fragment a row of a matrix. This matrix constitutes the 2D input
to the network. The fragment length we used is the original one from previous
analyses, 2048 bits (256 bytes).

4. Results

For clarity, we present confusion matrices in some cases. HMAC (the optimal
generator) always appears first, followed by the QRNG without postprocessing (the
weak one); we follow the standard approach of indicating the actual labels in rows
and the labels assigned by the network in columns.

8 JOSE LUIS CRESPO, JAIME GUTIERREZ, AND ANGEL VALLE

4.1. Conventional Fully Connected Networks. We tested a network with
200-25-5-1 units in each layer. The accuracy achieved was 63%. Using a validation
set, we found a tendency toward overfitting; this led us to believe that the chosen
size was too large. We then tried reducing the size to 50-5-1, but it didn’t work
(accuracy 53%). We found, therefore, that a large size led to overfitting, but a
smaller network lost accuracy. We then opted to maintain the large size but use
other options to avoid overfitting, which we present below.

We tested automatic pruning on the original network, followed by refitting,
but also achieved accuracies of 60 — 63%, which did not represent an improvement.
Other tests performed included sparse layers ((MMSNGL]), parameterization of
weight matrices (orthogonalization, SVD simplification), weight decay /penalization,
and random processor deactivation, but none of these options surpassed the afore-
mentioned accuracy, and therefore, the accuracy of convolutional networks was not
achieved.

Although we have not exhaustively explored all layer sizes and numbers, our
impression is that the performance is worse than that of convolutional networks.

Therefore, for the remaining tests, we use convolutional networks, as in Section
2.

4.2. Fourier Transform. We arrive at confusion matrices of the type:
26% 24%
27% 24%
We observe that the accuracy obtained is 50%, that is, pure chance, which leads us
to abandon this approach.

4.3. Wavelet Transform. A typical histogram of network responses can be
seen in Fig.1l. It can be seen that approximately half of the QRNG cases are
considered good, while the reverse hardly occurs. The confusion matrices obtained
in different tests (varying network sizes and data sets) are:

44 —45% 4.7 -6.4%
24 —-26% 24 —26%

which leads to an accuracy of 70 — 71%

Although this is an improvement (1% better than the pure-bit option, a small
but consistent difference across different tests), it is not large enough to be consid-
ered a substantial improvement.

4.4. 20-fold increase in sequence length. Using 5120-byte sequences, the
network produced responses whose histogram is presented in fig.2 We see that in
exchange for clearly increasing the discrimination of the QRNG sequences, with
fewer entering as good, the labeling of the HMACs has more variability, although
not enough to mix with the QRNG sequences. The progress over the base model
is clear, as can be seen in the following representative confusion matrix:

48% 1.22%
19.5% 31%

The accuracies obtained were in the 75—79% range in contrast with an accuracy
of 69 — 70% obtained in Section 2.3 using convolutional networks. To achieve
accuracies higher than that range, we worked with longer sequences when reaching
the final dense connection section. That is, despite having much longer input series,

NEURAL NETWORK DESIGN OPTIONS FOR RNG’S VERIFICATION 9

—— HMAC
—— QRNG

FIGURE 1. Histogram with wavelet transformed input

—— HMAC
—— QRNG

FI1GURE 2. Histogram with 40960-bit input

we did not make major reductions in the convolutional section, which means that
many more values reach the final conventional section.

If we use the indicator proposed in [KIO], the average response in case 0 (strong
generator) according to the tests is 0.3 £ 0.02, and in case 1 (weak generator)
0.72 £ 0.02.

To see more precisely how the network design affects this case, we present in
table 3 several results indicating the design decision and the quality indicators of
the obtained result. The design refers to the convolutional part, where the number

10 JOSE LUIS CRESPO, JAIME GUTIERREZ, AND ANGEL VALLE

Design Precision | S E A%
32max2-6max2-5max2-5max2-5 0.76 0.72 1 0.80 | 0.80
5max4-6max4-bmax4-bmax4-5max2-3 0.75 0.63 | 0.88 | 0.83
5med4-6med4-5med4-5med4-bmed2-3 0.76 0.62 | 0.89 | 0.86
5med2-6med2-5med4-5-5-3 0.79 0.62 | 0.96 | 0.94
5-6-5-5-5-3 0.79 0.61 | 0.98 | 0.98

TABLE 3. Results with various networks on 5120-byte sequences

of processors in each layer is indicated, separated by hyphens, and, if the sequence is
reduced, what the reduction factor is and how it is obtained (maximum or average).
The final part is always the same: 3 dense connectivity layers, with 20, 7, and 1
processor. The calculation of the indicators is:

class 1 hits

- total actual class 1

_ class 0 hits
~ total actual class 0

class 1 hits

~ total indicated by the network as class 1

Regarding the confidence intervals for the indicators and for the last row, we
have:

P = 0.7995%. Confidence interval 0.77 — 0.81.
S = 0.6195%. Confidence interval 0.57 — 0.64.
E =0.9895%. Confidence interval 0.97 — 0.99.
V = 0.9895%. Confidence interval 0.96 — 0.99.

For the other rows, the interval widths are roughly the same. Finally, we tried
placing these sequences in a 2D arrangement (20 rows of 2048 bits each), but did
not change the precision at all.

5. Conclusions

To summarize the experiments conducted, we have:

e Convolutional networks perform better than dense connectivity networks.
We believe this is due to the excess weights, which results in a tendency
toward overfitting.

e The Fourier transform is not useful in this context, but the wavelet trans-
form is, although it provides a minimal advantage.

e The most useful factor has proven to be a sharp increase in the length of
the sequences. Placing them in two dimensions makes no difference.

As future lines of research, one architecture that we have not dedicated to
this task, but that other authors have used for prediction, are networks with an
attention mechanism [BCB|, [LZSGW]; therefore, we will conduct tests with it to
compare it with the convolutional architecture we have used so far. Furthermore,
seeing that length increases have the greatest impact, we considered extending the

NEURAL NETWORK DESIGN OPTIONS FOR RNG’S VERIFICATION 11

sequence lengths to substantially larger sizes to discern whether the performance
of the networks continues to improve.

Finally, it would be interesting to study from the mathematical point of view
the obtained results of two options used: Fourier transform and Wavelet ones.

Acknowledgement

We acknowledge the support from the Advanced Computing and e-Science
group at the Institute of Physics of Cantabria (IFCA-CSIC-UC)

References

[A] C. C. Aggarwal, Neural Networks and Deep Learning: A Textbook 2023, Cham: Springer
International Publishing.

[ADM] G. Amigo, L. Dong, and R. J. Marks Ii, Forecasting Pseudo Random Numbers Using
Deep Learning, 2021 15th International Conference on Signal Processing and Communication
Systems (ICSPCS). 1EEE, 2021, pp. 1-7.

[BD] P. Beelen, J. Doumen, Pseudorandom sequences from elliptic curves Finite Fields with
Applications to Coding Theory, Cryptography and Related Areas, Springer-Verlag, Berlin,
2002, pp. 37-52.

[BK] E. B. Barker and J. M. Kelsey, Recommendation for Random Number Generation Using
Deterministic Random Bit Generators, National Institute of Standards and Technology, 2015
Tech. Rep. NIST SP 800-90Ar1.

[BV] R. Boris and Z. Viacheslav, The time-adaptive statistical testing for random number gener-
ators, 2020 International Symposium on Information Theory and Its Applications (ISITA),
Oct. 2020, pp. 344-347.

[B] J. Boyar, Inferring sequences produces by a linear congruential generator missing low—order
bits, J. Cryptology, 1 (1989), 177-184.

[BCB| D. Bahdanau, K. Cho, and Y. Bengio, Neural Machine Translation by Jointly Learning
to Align and Translate, 2016. arXiv:1409.0473.

[CGGV] L. E. Bassham, A. L. Rukhin, J. Soto, J. R. Nechvatal, M. E. Smid, S. D. Leigh, M. Lev-
enson, M. Vangel, N. A. Heckert, and D. L. Banks, Statistical Test Suite for Random and
Pseudorandom Number Generators for Cryptographic Applications, NIST, Sep. 2010.

[CRN] , Cracking Random Number Generators wusing Machine Learning — Part 1:
Xorshift128, 2021, https://research.nccgroup.com/2021/10/15/cracking-random-number-
generators-using-machine-learning-part-1-xorshift 128 /

[CGV] J. L. Crespo, J. Gutierrez, and A. Valle, Random Number Generators quality assessment
with Neural Networks, CASC 2023, Havana.

[CGGV] J. L. Crespo, J. Gonzélez-Villa, J. Gutierrez, and A. Valle, Assessing the quality of
Random Number Generators through Neural Networks, Machine Learning: science and tech-
nology. 5 (2024) 025072

[CZ] S. Cong and Y. Zhou, A review of convolutional neural network architectures and their
optimizations, Artificial Intelligence Review, vol. 56, no. 3, 2023, pp. 1905-1969.

[G] J. Gutierrez, Attacking the linear congruential generator on elliptic curves via lattice tech-
niques, Cryptography and Communications 14 (2022), 505-525.

[H] S. Hallgren, Linear congruential generators over elliptic curves, Preprint CS-94-143, Dept. of
Comp. Sci., Cornegie Mellon Univ., 1994.

[HM] M. Hassan Cracking Random Number Generators wusing Machine Learning -—
Part 1: Xorshift128. https://research.nccgroup.com/2021/10/15/cracking-random-number-
generators-using-machine-learning-part-1-xorshift128 /

[HMAC] https://github.com/fpgaminer/python-hmac-drb. Library released under public domain.

[HS] S. Hirose, Investigation report on the method of pseudo random number generator system,
Investigation Reports on Cryptographic Techniques, CRYPTREC, 2004

[KD] D. E. Knuth, Deciphering a linear congruential encryption, IEEE Trans. Inf. Theory, 31
(1985), 49-52.

[KB] D . Kingma, J Ba, Adam: A Method for Stochastic Optimization, 2017,
https://arxiv.org/abs/1412.6980.

12 JOSE LUIS CRESPO, JAIME GUTIERREZ, AND ANGEL VALLE

[KIO] H. Kimura, T. Isobe, and T. Ohigashi, Neural-Network-Based Pseudo-Random Number
Generator Evaluation Tool for Stream Ciphers, 2019 Seventh International Symposium on
Computing and Networking Workshops (CANDARW). IEEE, 2019, pp. 333-338.

[LZSGW] C. Li, J. Zhang, L. Sang, L. Gong, L. Wang, A. Wang, and Y. Wang, Deep Learning-
Based Security Verification for a Random Number Generator Using White Chaos, Entropy,
2020, vol. 22, no. 10, p. 1134.

[LLYPZ] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, A Survey of Convolutional Neural Net-
works: Analysis, Applications, and Prospects, IEEE Transactions on Neural Networks and
Learning Systems, 2022, vol. 33, no. 12, pp. 6999-7019.

[L] P. Lacharme, Post-processing functions for a biased physical random number generator,
International Workshop on Fast Software Encryption, Springer, 2008, pp. 334-342.

[M] G. Marsaglia. Diehard: A Battery of Tests of Randomness, 1996,
http://www.stat.fsu.edu/pub/diehard/

[MMSNGL] D. C. Mocanu, E. Mocanu, P. Stone, P. H. Nguyen, M. Gibescu, and A. Liotta,
Scalable training of artificial neural networks with adaptive sparse connectivity inspired by
network science, Nature Communications, 2018, vol. 9, no. 1, p. 2383.

[MGGO] A. A. Maksutov, P. N. Goryushkin, A. A. Gerasimov, and A. A. Orlov, PRNG assess-
ment tests based on meural networks, 2018 IEEE Conference of Russian Young Researchers
in Electrical and Electronic Engineering (EIConRus), Jan. 2018, pp. 339-341.

[NIST] A Statistical Test Suite for the Validation of Random Number Genera-
tors and Pseudo-Random Number Generators for Cryptographic Applications, 2010,
http://csre.nist.gov/groups/ST /toolkit /rng/

[NS] I. Nagy and A. Suciu, Randomness Testing with Neural Networks, 2021 IEEE 17th Inter-
national Conference on Intelligent Computer Communication and Processing (ICCP), 2021,
pp. 431-436.

[QV] A. Quirce and A. Valle, Random polarization switching in gain-switched VCSELs for quan-
tum random number generation, Optics Express, 2022, vol. 30, no. 7, pp. 10513-10 527.
[RB] M. Riedmiller, H Braun, A direct adaptive method for faster backpropagation learning: the
RPROP algorithm IEEE International Conference on Neural Networks, 1993, vol.1, pp. 586-

591.

[SK] M. Stipcevi¢, C. K. Kog, True Random Number Generators, Open Problems in Mathematics

and Computational Science, C. K. Kog, 2014, Springer International Publishing, pp. 275-315.

[T] M. Talbot, A Romp Through Ethics for Complete Beginners, 2012,
https://www.courses.com/university-of-oxford /a-romp-through-ethics-for-complete-
beginners/1

[VQVG] M. Valle-Mifién, A. Quirce, A. Valle, and J. Gutiérrez, Quantum random number gen-
erator based on polarization switching in gain-switched VCSELs, Optics Continuum, 2022,
vol. 1, no. 10, p. 2156.

DEPARTMENT OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF CANTABRIA,
39005, SANTANDER, SPAIN
Email address: crespoj@unican.es

DEPARTMENT OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF CANTABRIA,
39005 SANTANDER, SPAIN
Email address: jaime.gutierrez@unican.es

INSTITUTO DE FisicA DE CANTABRIA, UNIVERSITY OF CANTABRIA-CSIC, 39005 SANTANDER,
SPAIN
Email address: valle@ifca.unican.es

