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Abstract. We introduce a diagrammatic perspective for Shannon entropy
created by the first author and Mikhail Khovanov and connect it to information

theory and mutual information. We also give two complete proofs that the 5-
term dilogarithm deforms to the 4-term infinitesimal dilogarithm.

1. Introduction

Mathematics and theoretical physics have emerged in the rapid development
of modern technology in recent decades. In particular, information theory [18, 9,
24, 1, 21, 4] plays a pivotal role in communication, quantification, storage, and
transfer of knowledge. One of the key measures in information theory is entropy,
which quantifies the uncertainty in a random variable or the outcome of a random
process. In geometric information theory [22, 23, 26, 27, 25], spaces and manifolds
of probability distributions are studied from a geometric and analysis point-of-view.

Applications and interpretations of one-dimensional cobordisms have recently
emerged, predominantly explored by M.S. Im and her collaborators, e.g., see [6,
7, 8, 10, 11, 15, 12, 13, 14, 16, 17]. Im and M. Khovanov introduce in [12]
a diagrammatical perspective of entropy and cocycles. In particular, they view
entropy as certain cobordisms (see, e.g., [14, 19]) where information about the
network only depends on the boundary. This coincides with the fact that in physics,
the rich information about black holes also only depends on the geometric and
topological structure of their boundaries.

Furthermore, this paper has the potential to influence multiple fields. In infor-
mation theory, the diagrammatic approach could lead to new ways of visualizing
and analyzing entropy, particularly in complex systems. In topological quantum
field theories (TQFT), the connection to information-theoretic concepts may open
avenues for applying diagrammatic techniques to quantum information problems.
Our proposed future directions of extending the framework to other entropy types
and higher dimensions suggest that this work could serve as a foundation for a
broader research program, amplifying its impact.

In this paper, we recall diagrammatic interpretation of Shannon entropy in [12],
and reinterpret them in terms of information theory. We also provide two complete
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proofs that certain 5-term dilogarithm deforms into the 4-term infinitesimal dilog-
arithm.

Acknowledgments. The first author would like to thank Mikhail Khovanov
and the Research Scientists at the Naval Research Laboratory for extensive discus-
sions. The first author would like to thank the Office of Naval Research (ONR)
and United States Naval Research Laboratory (NRL) in Washington, DC for their
support.

2. Background

Let k be a field of characteristic 0.

2.1. Cathelineau’s k-vector space. J.-L. Cathelineau constructed a k-vector
space J(k) in [3], with its spanning set ⟨a, b⟩, where a, b ∈ k, satisfying the relations:

(1) (symmetry) ⟨a, b⟩ = ⟨b, a⟩,
(2) (scaling) ⟨ca, cb⟩ = c⟨a, b⟩, c ∈ k,
(3) (2-cocycle relation) ⟨a, b + c⟩ + ⟨b, c⟩ = ⟨a + b, c⟩ + ⟨a, b⟩.

For relation (3), the field (k,+) under addition is viewed as a group. Furthermore,
the symbols ⟨a, b⟩ are reminiscent of values of 2-cocycles.

First, we state a few preliminary lemmas:

Lemma 2.1. In the vector space J(k), we have ⟨a,0⟩ = ⟨0, a⟩ = 0, and ⟨a,−a⟩ = 0.

Proof. We will first prove ⟨a,0⟩ = 0. Using (2), ⟨0,0⟩ = ⟨0a,0b⟩ = 0⟨a, b⟩ = 0.
So we obtain ⟨a,0 + 0⟩ + ⟨0,0⟩ = ⟨a + 0,0⟩ + ⟨a,0⟩ by setting b = c = 0 in (3).
This tells us that ⟨a,0⟩ = 0. Using symmetry in (1), ⟨0, a⟩ = ⟨a,0⟩ = 0. Now,
to prove the last equality, ⟨a,−a⟩ = a⟨1,−1⟩. So ⟨1,−1⟩ = ⟨−(−1),−1⟩ = −⟨−1,1⟩. We
move the symbols to one side and use symmetry to obtain 0 = ⟨1,−1⟩ + ⟨−1,1⟩ =
⟨1,−1⟩ + ⟨1,−1⟩ = 2⟨1,−1⟩. Since k is a field of characteristic 0, ⟨1,−1⟩ = 0. Thus
⟨a,−a⟩ = 0. □

Lemma 2.2. We have ⟨1 − a,−1⟩ = ⟨a,1 − a⟩.

Proof. Applying (3) and letting a = a, b = 1 − a, and c = −1, we have ⟨a,1 −
a⟩+⟨a+1−a,−1⟩ = ⟨a,1−a−1⟩+⟨1−a,−1⟩. So ⟨a,1−a⟩+����⟨1,−1⟩ =����⟨a,−a⟩+⟨1−a,−1⟩
since ⟨a,−a⟩ = 0. We thus obtain the equality. □

If k is a field of characteristic p /= 0, then

(2.1)
p

∑
n=1
⟨1, n1⟩ = 0.

The vector space J(k) is known as the space of infinitesimal dilogarithms,
which is often infinite-dimensional over k.

In the case when k = R, J(k) is isomorphic to the entropy of finite random
variables.

2.2. Vector space isomorphic to Shannon’s entropy. The k-vector space
β(k) has a spanning set [a], a ∈ k∗ is invertible, of vectors and relations:

(1) [1] = 0,

(2) [a] − [b] + a[
b

a
] + (1 − a)[

1 − b

1 − a
] = 0, a ∈ k ∖ {0,1}, b ∈ k∗.

This vector space also satisfies [a] = [1 − a].
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Lemma 2.3. The vector space β(k) satisfies [
1

a
] = −

1

a
[a].

Proof. Let b = 1 in (2) to obtain

[a] −��[1] + a [
1

a
] +

�������
(1 − a) [

1 − 1

1 − a
] = 0.

This completes the proof. □

If k is a field of characteristic p /= 0,2, then

p−1
∑
n=2
[n1] = 0.

The space β(k) generalizes entropy, which we explain in Section 3. This 4-term
equation (2) is a limit of the 5-term equation for the dilogarithm (see [Zagier]), hence
the name infinitesimal dilogarithm. For completeness, we provide a proof of this
derivation in Section 10.

2.3. Isomorphism of J(k) and β(k). Cathelineau proves in [2] that the two
vector spaces J(k) and β(k) are isomorphic by sending [a]↦ ⟨a,1−a⟩. Conversely,

⟨a,−a⟩ ↦ [0] = 0, and ⟨a, b⟩ ↦ (a + b) [
a

a + b
] whenever a + b /= 0. Furthermore,

⟨a, b⟩ = ⟨b, a⟩ if and only if [a] = [1 − a].
Via the isomorphism J(k) ≅ β(k), the 2-cocycle condition in (3) for J(k) is

equivalent to

(a + b + c) [
a

a + b + c
] + (b + c) [

b

b + c
] = (a + b + c) [

a + b

a + b + c
] + (a + b) [

a

a + b
] .

Cathelineau shows that there is an isomorphism between the second homology
and his construction H2(Aff1(k),kr) ≃ β(k) ≃ J(k), where

Aff1(k) = {(
c a
0 1

) ∶ c ∈ k∗, a ∈ k}

is the group of affine symmetries of a k-line and kr is a suitable right Aff1(k)-
module. We refer to [12] for further details.

3. Shannon entropy and and Cathelineau’s vector space

3.1. Shannon entropy. Let X = {x1, . . . , xn}, a finite set. Shannon entropy
of a finite probability distribution pX on X that associates probabilities p1, . . . , pn,

where
n

∑
i=1

pi = 1, 0 < pi < 1 to its points xi, respectively, is given by

(3.1) H(pX) = −
n

∑
i=1

pi log pi.

We can also think of H(pX) = −E[log pi] = E [log 1
pi
], where E[log pi] is the ex-

pected value of log pi. When n = 2, the function H(pX) becomes a function of a
single probability p ∶= p1. Then the entropy is

(3.2) H(p) = −p log p − (1 − p) log(1 − p).

https://people.mpim-bonn.mpg.de/zagier/files/scanned/DilogarithmInGeometryAndNumberTh/fulltext.pdf


4 MEE SEONG IM, CLEMENT KAM, AND CADEN PICI

−1 1 2

−0.5

−0.25

0.25

p

H(p)

Figure 3.1.1. Entropy function H(p) = −p log ∣p∣−(1−p) log ∣1−p∣
for −1 ≤ p ≤ 2.

It is natural to extendH from the open interval (0,1) to all real numbers by defining
H(0) =H(1) = 0 and

(3.3) H(p) ∶= −p log ∣p∣ − (1 − p) log ∣1 − p∣.

Then H is defined and continuous on all of R. The graph of H is given in Fig-
ure 3.1.1.

Lemma 3.1. We have H(a) =H(1 − a) and H (
1

a
) = −

1

a
H(a).

Proof. For the first equality, we have

H(a) = −a log ∣a∣−(1−a) log ∣1−a∣ = −(1−a) log ∣1−a∣−(1−(1−a)) log ∣1−(1−a)∣ =H(1−a).

For the second equality, we have

H (
1

a
) = −

1

a
log ∣

1

a
∣ − (1 −

1

a
) log ∣1 −

1

a
∣

=
1

a
log ∣a∣ − (1 −

1

a
) log ∣

a − 1

a
∣

=
1

a
log ∣a∣ − (1 −

1

a
) (log ∣1 − a∣ − log ∣a∣)

= log ∣a∣ − (1 −
1

a
) log ∣1 − a∣

= −
1

a
(−a log ∣a∣ − (1 − a) log ∣1 − a∣)

= −
1

a
H(a).

This concludes the proof. □

The entropy function satisfies a four-term functional equation, see [20],

(3.4) H(p) −H(q) + pH (
q

p
) + (1 − p)H (

1 − q

1 − p
) = 0.

Equation (3.4) together with H(1 − p) = H(p) and continuity property uniquely
determine H as a nonzero function R Ð→ R. See [5, 20]. Also see [28, Equation
(38)].
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Proposition 3.2. Let H ∶ R → R, where H is (3.3) satisfying conditions
H(0) =H(1) = 0. Then H satisfies the 4-term relation (3.4).

Since the proof of Proposition 3.2 is not explicitly stated anywhere in the
literature, we will provide its proof.

Proof. We have the following set of equalities:

−H(p) = p log ∣p∣ + (1 − p) log ∣1 − p∣,

−H(q) = q log ∣q∣ + (1 − q) log ∣1 − q∣,

−H (
q

p
) =

q

p
log ∣

q

p
∣ + (1 −

q

p
) log ∣1 −

q

p
∣

=
q

p
(log ∣q∣ − log ∣p∣) +

p − q

p
(log ∣p − q∣ − log ∣p∣) ,

−H (
1 − q

1 − p
) =

1 − q

1 − p
log ∣

1 − q

1 − p
∣ +

q − p

1 − p
log ∣

q − p

1 − p
∣

=
1 − q

1 − p
(log ∣1 − q∣ − log ∣1 − p∣) +

q − p

1 − p
(log ∣q − p∣ − log ∣1 − p∣) .

(3.5)

So

−pH (
q

p
) − (1 − p)H (

1 − q

1 − p
) = q (log ∣q∣ − log ∣p∣) + (p − q) (log ∣p − q∣ − log ∣p∣)

+ (1 − q) (log ∣1 − q∣ − log ∣1 − p∣) + (q − p) (log ∣q − p∣ − log ∣1 − p∣)

= q log ∣q∣ − q log ∣p∣ +((((((((
(p − q) log ∣p − q∣ − (p − q) log ∣p∣

+ (1 − q) log ∣1 − q∣ − (1 − q) log ∣1 − p∣ +((((((((
(q − p) log ∣q − p∣ − (q − p) log ∣1 − p∣

= q log ∣q∣ + (1 − q) log ∣1 − q∣ −����q log ∣p∣ +����q log ∣p∣ − p log ∣p∣

− log ∣1 − p∣ +�����q log ∣1 − p∣ −�����q log ∣1 − p∣ + p log ∣1 − p∣

= q log ∣q∣ + (1 − q) log ∣1 − q∣ − (p log ∣p∣ + (1 − p) log ∣1 − p∣)

= −H(q) +H(p).

Therefore, H(p) −H(q) + pH (
q

p
) + (1 − p)H (

1 − q

1 − p
) = 0 holds. □

We conclude this section by mentioning an important relationship relating
Cathelineau’s vector space [2, 3] and Kontsevich’s observation [20], which is

(3.6) ⟨p1, p2⟩ =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(p1 + p2)H (
p1

p1 + p2
) if p1 + p2 /= 0,

0 if p1 + p2 = 0,

relating Cathelineau’s vector space and entropy.

Lemma 3.3. Equation (3.6) satisfies symmetry, scaling, and the 2-cocycle re-
lation.

Proof. We will first prove symmetry:

⟨p1, p2⟩ = (p1 + p2)H (
p1

p1 + p2
)

= (p1 + p2) (−
p1

p1 + p2
log ∣

p1
p1 + p2

∣ − (1 −
p1

p1 + p2
) log ∣1 −

p1
p1 + p2

∣)
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= (p1 + p2) (−
p1

p1 + p2
log ∣

p1
p1 + p2

∣ −
p2

p1 + p2
log ∣

p2
p1 + p2

∣)

= (p1 + p2) (−
p2

p1 + p2
log ∣

p2
p1 + p2

∣ −
p1

p1 + p2
log ∣

p1
p1 + p2

∣)

= (p1 + p2) (−
p2

p1 + p2
log ∣

p2
p1 + p2

∣ − (1 −
p2

p1 + p2
) log ∣1 −

p2
p1 + p2

∣)

= (p1 + p2)H (
p2

p1 + p2
)

= ⟨p2, p1⟩.

Next, we will prove scaling:

⟨c p1, c p2⟩ = (c p1 + c p2)H (
c p1

c p1 + c p2
)

= (c p1 + c p2) (−
c p1

c p1 + c p2
log ∣

c p1
c p1 + c p2

∣ − (1 −
c p1

c p1 + c p2
) log ∣1 −

c p1
c p1 + c p2

∣)

= c(p1 + p2) (−
�c p1

�c p1 + �c p2
log ∣ �c p1

�c p1 + �c p2
∣ − �c p2

�c p1 + �c p2
log ∣ �c p2

�c p1 + �c p2
∣)

= c(p1 + p2) (−
p1

p1 + p2
log ∣

p1
p1 + p2

∣ −
p2

p1 + p2
log ∣

p2
p1 + p2

∣)

= c(p1 + p2)H (
p1

p1 + p2
)

= c⟨p1, p2⟩.

Finally, we will prove the 2-cocycle condition:

⟨p1, p2⟩ = (p1 + p2)H (
p1

p1 + p2
)

=����
(p1 + p2) (−

p1

����p1 + p2
log ∣

p1
p1 + p2

∣ −
p2

����p1 + p2
log ∣

p2
p1 + p2

∣)

= −p1 log ∣
p1

p1 + p2
∣ − p2 log ∣

p2
p1 + p2

∣

= −p1 log ∣p1∣ − p2 log ∣p2∣ + (p1 + p2) log ∣p1 + p2∣

while

⟨p1 + p2, p3⟩ = (p1 + p2 + p3)H (
p1 + p2

p1 + p2 + p3
)

=H(p1 + p2) since p1 + p2 + p3 = 1

= −(p1 + p2) log ∣p1 + p2∣ − (1 − (p1 + p2)) log ∣1 − (p1 + p2)∣

= −(p1 + p2) log ∣p1 + p2∣ − p3 log ∣p3∣.

So the sum is:

⟨p1, p2⟩ + ⟨p1 + p2, p3⟩ = −p1 log ∣p1∣ − p2 log ∣p2∣ +(((((((((
(p1 + p2) log ∣p1 + p2∣

−(((((((((
(p1 + p2) log ∣p1 + p2∣ − p3 log ∣p3∣

= −p1 log ∣p1∣ − p2 log ∣p2∣ − p3 log ∣p3∣

=H(pX).
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On the other hand,

⟨p2, p3⟩ = (p2 + p3)H (
p2

p2 + p3
)

=����
(p2 + p3) (−

p2

����p2 + p3
log ∣

p2
p2 + p3

∣ −
p3

����p2 + p3
log ∣

p3
p2 + p3

∣)

= −p2 log ∣
p2

p2 + p3
∣ − p3 log ∣

p3
p2 + p3

∣

= −p2 log ∣p2∣ − p3 log ∣p3∣ + (p2 + p3) log ∣p2 + p3∣

while

⟨p1, p2 + p3⟩ = (p1 + p2 + p3)H (
p1

p1 + p2 + p3
)

=H(p1) since p1 + p2 + p3 = 1

= −p1 log ∣p1∣ − (1 − p1) log ∣1 − p1∣

= −p1 log ∣p1∣ − (p2 + p3) log ∣p2 + p3∣.

So the sum is:

⟨p2, p3⟩ + ⟨p1, p2 + p3⟩ = −p2 log ∣p2∣ − p3 log ∣p3∣ +(((((((((
(p2 + p3) log ∣p2 + p3∣

− p1 log ∣p1∣ −(((((((((
(p2 + p3) log ∣p2 + p3∣

= −p1 log ∣p1∣ − p2 log ∣p2∣ − p3 log ∣p3∣

=H(pX).

This concludes the proof. □

Lemma 3.4. If p1 + p2 = 1, we have

(3.7) H (p1) =H (p2) .

Proof. This follows from Lemma 3.3. □

Let ρ ∶H(k)→ J(k), where ρ(H(a)) = ⟨a,1 − a⟩.

Theorem 3.5. The map ρ is an isomorphism of vector spaces.

Proof. We have

ρ(H(a)) = ⟨a,1 − a⟩ = ⟨1 − a, a⟩ = ⟨1 − a,1 − (1 − a)⟩ = ρ(H(1 − a))

and

ρ(H (
1

a
)) = ⟨

1

a
,1 −

1

a
⟩ = −

1

a
⟨−1,−a + 1⟩ = −

1

a
⟨−1,1 − a⟩

= −
1

a
⟨1 − a,−1⟩

†
= −

1

a
⟨a,1 − a⟩ = −

1

a
ρ(H(a)),

where † holds by Lemma 2.2.
Furthermore, equation (3.4) under ρ becomes

ρ(H(0)) = ρ(H(a)) − ρ(H(b)) + aρ(H (
b

a
)) + (1 − a)ρ(H (

1 − b

1 − a
))

= ⟨a,1 − a⟩ − ⟨b,1 − b⟩ + a ⟨
b

a
,1 −

b

a
⟩ + (1 − a) ⟨

1 − b

1 − a
,1 −

1 − b

1 − a
⟩

= ⟨a,1 − a⟩ − ⟨b,1 − b⟩ + ⟨b, a − b⟩ + ⟨1 − b,1 − a − (1 − b)⟩
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‡
= ⟨a,1 − a⟩ − ⟨b,1 − b⟩ − ⟨a, b − a⟩ + ⟨1 − b, b − a⟩,

where ‡ holds due to

⟨b, a − b⟩ = b ⟨1,
a

b
− 1⟩ = −b ⟨1 −

a

b
,−1⟩ = −b ⟨

a

b
,1 −

a

b
⟩ = −⟨a, b − a⟩

via Lemma 2.2. Now, replacing a with a, b with b− a, and c = 1− b in the 2-cocycle
relation (3), we see that

⟨a, b − a + 1 − b⟩ + ⟨b − a,1 − b⟩ − ⟨a + b − a,1 − b⟩ − ⟨a, b − a⟩

= ⟨a,1 − a⟩ + ⟨1 − b, b − a⟩ − ⟨a, b − a⟩ − ⟨b,1 − b⟩ = 0.

So

ρ(0) = ρ(H(0)) = ρ(H(a) −H(b) + aH (
b

a
) + (1 − a)H (

1 − b

1 − a
))

= ⟨a,1 − a⟩ − ⟨b,1 − b⟩ − ⟨a, b − a⟩ + ⟨1 − b, b − a⟩ = 0.

Conversely, let λ ∶ J(k) → H(k), where λ(⟨a, b⟩) = (a + b)H ( a
a+b) if a + b /= 0, and

λ(⟨a, b⟩) = 0 if a + b = 0. So we have

λ(⟨a, b⟩) = (a + b)H (
a

a + b
)

= (a + b)H (1 −
a

a + b
) by the first equality in Lemma 3.1

= (a + b)H (�
a + b − �a

a + b
)

= (b + a)H (
b

a + b
)

= λ(⟨b, a⟩).

Secondly, λ(⟨ca, cb⟩) = cλ(⟨a, b⟩) holds by scaling in Lemma 3.3.
Lastly, we have

0 = λ(0)

= λ(⟨a, b + c⟩ + ⟨b, c⟩ − ⟨a + b, c⟩ − ⟨a, b⟩)

= λ(⟨a, b + c⟩) + λ(⟨b, c⟩) − λ(⟨a + b, c⟩) − λ(⟨a, b⟩)

= (a + b + c)H (
a

a + b + c
) + (b + c)H (

b

b + c
) − (a + b + c)H (

a + b

a + b + c
) − (a + b)H (

a

a + b
)

= (a + b + c)H (
a

a + b + c
) + (b + c)H (

b

b + c
) − (a + b + c)H (

a + b

a + b + c
) − (a + b)H (

b

a + b
)

since H ( a
a+b) =H (

b
a+b) by the first equality in Lemma 3.1.

Let

u =
a

a + b + c
and v =

c

a + b + c
.

Then

(a + b + c)H (
a

a + b + c
) + (b + c)H (

b

b + c
) − (a + b + c)H (

a + b

a + b + c
) − (a + b)H (

b

a + b
)

= (a + b + c) (H(u) + (1 − u)H (
1 − u − v

1 − u
) −H(1 − v) − (1 − v)H (

1 − u − v

1 − v
))

= (a + b + c) (H(u) + (1 − u)H (
v

1 − u
) −H(1 − v) − (1 − v)H (

u

1 − v
))
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by the first equality in Lemma 3.1. Now let p = u and q = 1 − v. Then

H(u) + (1 − u)H (
v

1 − u
) −H(1 − v) − (1 − v)H (

u

1 − v
)

=H(p) + (1 − p)H (
1 − q

1 − p
) −H(q) − qH (

p

q
)

=H(p) + (1 − p)H (
1 − q

1 − p
) −H(q) + �q

p

�q
H (

q

p
)

=H(p) + (1 − p)H (
1 − q

1 − p
) −H(q) + pH (

q

p
)

= 0

by the second equality in Lemma 3.1 and (3.4). □

In characteristic p > 0, we have

ρ(
p

∑
n=1

H(n)) =
p

∑
n=1

ρ(H(n)) =
p

∑
n=1
⟨n,1 − n⟩ =

p

∑
n=1
⟨1 − n,−1⟩

= −

p

∑
n=1
⟨n − 1,1⟩ = −

p

∑
n=1
⟨1, n − 1⟩ = −

p

∑
n=1
⟨1, n⟩ = 0,

where the last equality holds by (2.1).
Entropy is related to the pair of symbols ⟨⋅, ⋅⟩ via the following:

Proposition 3.6. Let p1, . . . , pn be a finite probability distribution on a finite
set X = {x1, . . . , xn}. Then for n ≥ 3,

(3.8) H(pX) =H(p1, . . . , pn) =
n

∑
j=2
⟨

j−1
∑
i=1

pi, pj⟩ .

Expanding out (3.8), we have

H(p1, . . . , pn) = ⟨p1, p2⟩+⟨p1+p2, p3⟩+⟨p1+p2+p3, p4⟩+ . . .+⟨p1+p2+ . . .+pn−1, pn⟩.

Proof. Since

⟨p1, p2⟩ + ⟨p1 + p2, p3⟩ + ⟨p1 + p2 + p3, p4⟩ + . . . + ⟨p1 + p2 + . . . + pn−1, pn⟩

= (p1 + p2)H (
p1

p1 + p2
) + (p1 + p2 + p3)H (

p1 + p2
p1 + p2 + p3

) + . . .+

+ (p1 + p2 + p3 + . . . + pn)H (
p1 + p2 + . . . + pn−1

p1 + p2 + p3 + . . . + pn
)

= (p1 + p2) (−
p1

p1 + p2
log ∣

p1
p1 + p2

∣ − (1 −
p1

p1 + p2
) log ∣1 −

p1
p1 + p2

∣)

+ (p1 + p2 + p3) (−
p1 + p2

p1 + p2 + p3
log ∣

p1 + p2
p1 + p2 + p3

∣

−(1 −
p1 + p2

p1 + p2 + p3
) log ∣1 −

p1 + p2
p1 + p2 + p3

∣) + . . .+

+ (p1 + p2 + p3 + . . . + pn) (−
p1 + p2 + . . . + pn−1

p1 + p2 + p3 + . . . + pn
log ∣

p1 + p2 + . . . + pn−1
p1 + p2 + p3 + . . . + pn

∣

−(1 −
p1 + p2 + . . . + pn−1

p1 + p2 + p3 + . . . + pn
) log ∣1 −

p1 + p2 + . . . + pn−1
p1 + p2 + p3 + . . . + pn

∣)
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=����
(p1 + p2) (−

p1

����p1 + p2
log ∣

p1
p1 + p2

∣ −
p2

����p1 + p2
log ∣

p2
p1 + p2

∣)

+((((((
(p1 + p2 + p3) (−

p1 + p2

((((((p1 + p2 + p3
log ∣

p1 + p2
p1 + p2 + p3

∣ −
p3

((((((p1 + p2 + p3
log ∣

p3
p1 + p2 + p3

∣)

+ . . . +(((((((((
(p1 + p2 + . . . + pn)(−

p1 + p2 + . . . + pn−1

((((((((((
p1 + p2 + p3 + . . . + pn

log ∣
p1 + p2 + . . . + pn−1

p1 + p2 + p3 + . . . + pn
∣

−
pn

((((((((((
p1 + p2 + p3 + . . . + pn

log ∣
pn

p1 + p2 + p3 + . . . + pn
∣)

= −p1 log ∣
p1

p1 + p2
∣ − p2 log ∣

p2
p1 + p2

∣ − (p1 + p2) log ∣
p1 + p2

p1 + p2 + p3
∣ − p3 log ∣

p3
p1 + p2 + p3

∣

− . . . − (p1 + p2 + . . . + pn−1) log ∣
p1 + p2 + . . . + pn−1

p1 + p2 + p3 + . . . + pn
∣

− pn log ∣
pn

p1 + p2 + p3 + . . . + pn
∣

= −p1 log ∣p1∣ − p2 log ∣p2∣ +(((((((((
(p1 + p2) log ∣p1 + p2∣ −(((((((((

(p1 + p2) log ∣p1 + p2∣ − p3 log ∣p3∣

+
(((((((((((((
(p1 + p2 + p3) log ∣p1 + p2 + p3∣ −

(((((((((((((
(p1 + p2 + p3) log ∣p1 + p2 + p3∣ + . . .+

+ (p1 + p2 + . . . + pn−1)(((((((((((
log ∣p1 + p2 + . . . + pn−1∣

− (p1 + p2 + . . . + pn−1)(((((((((((
log ∣p1 + p2 + . . . + pn−1∣ − pn log ∣pn∣

+ (p1 + p2 + p3 + . . . + pn
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

1

) log ∣p1 + p2 + p3 + . . . + pn
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

1

∣

= −p1 log ∣p1∣ − p2 log ∣p2∣ − p3 log ∣p3∣ − . . . − pn log ∣pn∣ =H(pX).

This concludes the proof. □

4. Joint entropy

4.1. Joint entropy of 2 random variables. Let X be a discrete random
variable associated with probabilities p1, . . . , pn. Recall Shannon entropy in (3.1).
Let Y be a discrete random variable associated with probabilities q1, . . . , qk. Then
the joint entropy of X and Y is defined to be

(4.1) H(pX , pY ) = −
n

∑
i=1

m

∑
j=1

pij log pij ,

where pij = P (X = pi, Y = qj), the probability that the random variables X = pi
and Y = qj . Then similar to (3.6), we have

(4.2) ⟨pij , pℓk⟩ =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(pij + pℓk)H (
pij

pij + pℓk
) if pij + pℓk /= 0,

0 if pij + pℓk = 0.

Proposition 4.1. Equation (4.2) satisfies symmetry, scaling, and the 2-cocycle
relation for the vector space J(k).

The proof of Proposition 4.1 is similar to the proof of Lemma 3.3.
Similar in spirit to Proposition 3.6 and in order to provide a motivation for

Theorem 4.3, we have the following:
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Proposition 4.2. Let p1, p2 and q1, q2 be finite probability distributions on sets
X = {x1, x2} and Y = {y1, y2}, respectively. Let pij be the probability of obtaining
pi and qj. Then a relation between entropy and Cathelineau’s vector space is

(4.3) H(pX , pY ) = ⟨p11, p21⟩ + ⟨p12, p22⟩ + ⟨p11 + p21, p12 + p22⟩.

Proof. Using (4.2), we have:

⟨p11, p21⟩ = (p11 + p21)H (
p11

p11 + p21
) ,

⟨p12, p22⟩ = (p12 + p22)H (
p12

p12 + p22
) ,

⟨p11 + p21, p12 + p22⟩ = (p11 + p21 + p12 + p22)H (
p11 + p21

p11 + p21 + p12 + p22
) .

So

⟨p11, p21⟩ + ⟨p12, p22⟩ + ⟨p11 + p21, p12 + p22⟩ = (p11 + p21)H (
p11

p11 + p21
)

+ (p12 + p22)H (
p12

p12 + p22
) + (p11 + p21 + p12 + p22)H (

p11 + p21
p11 + p21 + p12 + p22

)

= (p11 + p21) (−
p11

p11 + p21
log (

p11
p11 + p21

) − (1 −
p11

p11 + p21
) log (1 −

p11
p11 + p21

))

+ (p12 + p22) (−
p12

p12 + p22
log (

p12
p12 + p22

) − (1 −
p12

p12 + p22
) log (1 −

p12
p12 + p22

))

+ (p11 + p21 + p12 + p22) (−
p11 + p21

p11 + p21 + p12 + p22
log (

p11 + p21
p11 + p21 + p12 + p22

)

−(1 −
p11 + p21

p11 + p21 + p12 + p22
) log (1 −

p11 + p21
p11 + p21 + p12 + p22

))

=�����
(p11 + p21) (−

p11

((((p11 + p21
log (

p11
p11 + p21

) −
p21

((((p11 + p21
log (

p21
p11 + p21

))

+�����
(p12 + p22) (−

p12

((((p12 + p22
log (

p12
p12 + p22

) −
p22

((((p12 + p22
log (

p22
p12 + p22

))

+
((((((((((
(p11 + p21 + p12 + p22)(−

p11 + p21

(((((((((
p11 + p21 + p12 + p22

log (
p11 + p21

p11 + p21 + p12 + p22
)

−
p12 + p22

(((((((((
p11 + p21 + p12 + p22

log (
p12 + p22

p11 + p21 + p12 + p22
))

= −p11 log (
p11

p11 + p21
) − p21 log (

p21
p11 + p21

) − p12 log (
p12

p12 + p22
) − p22 log (

p22
p12 + p22

)

− (p11 + p21) log (
p11 + p21

p11 + p21 + p12 + p22
) − (p12 + p22) log (

p12 + p22
p11 + p21 + p12 + p22

)

= −p11 log(p11) − p21 log(p21) +(((((((((((
(p11 + p21) log(p11 + p21)

− p12 log(p12) − p22 log(p22) +(((((((((((
(p12 + p22) log(p12 + p22)

−
(((((((((((
(p11 + p21) log (p11 + p21) −(((((((((((

(p12 + p22) log(p12 + p22)

+ (p11 + p21 + p12 + p22
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

1

) log(p11 + p21 + p12 + p22
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

1

)
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= −p11 log(p11) − p21 log(p21) − p12 log(p12) − p22 log(p22) =H(pX , pY ).

□

More generally, we have the following:

Theorem 4.3. Let p1, . . . , pn and q1, . . . , qm be finite probability distributions on
finite sets X = {x1, . . . , xn} and Y = {y1, . . . , ym}, respectively. Let pij = P (pi, qj),
the probability of obtaining pi and qj. Then

(4.4) H(pX , pY ) =
n

∑
i=1

m−1
∑
k=1
⟨

k

∑
j=1

pij , pi,j+1⟩ +
n−1
∑
k=1
⟨

k

∑
i=1

m

∑
j=1

pij ,
m

∑
ℓ=1

piℓ⟩.

The proof of Theorem 4.3 is a direct calculation, similar to the proof of Propo-
sition 3.6 and Proposition 4.2. We give a diagrammatical calculus perspective of
entropy in Section 5, which originated in [12]. Using this, one can easily prove
Theorem 4.3.

4.2. Entropy for u random variables. One may extend (4.1) as follows.
Consider the finite set Xi = {xi1 , . . . , xiki

}, where 1 ≤ i ≤ u. Let pXi be a prob-
ability distribution on Xi that associates probabilities pi1 , . . . , piki

to the points

xi1 , . . . , xiki
, respectively, where the sum

ki

∑
j=1

pij = 1, 0 < pij < 1, 1 ≤ i ≤ u.

Write

IJ ∶= 1j12j2⋯uju , J ∶= (j1, j2, . . . , ju), and K ∶= (k1, . . . , ku).

Let the joint probability for random variables X1, . . . ,Xu be

pIJ = p1j12j2⋯uju
= P (X1 = p1j1 ,X2 = p2j2 , . . . ,Xu = puju

).

We obtain the joint entropy

(4.5) H(pX1 , . . . , pXu) = −
k1

∑
j1=1

k2

∑
j2=1
⋯

ku

∑
ju=1

p1j12j2⋯uju
log(p1j12j2⋯uju

),

or more compactly, we write

(4.6) H(pX1 , . . . , pXu) = −
K

∑
J=1

pIJ log(pIJ ).

Proposition 4.4. Under the conditions as above, we have

(4.7) ⟨pIJ , pIJ′ ⟩ = (pIJ + pIJ′ )H (
pIJ

pIJ + pIJ′
) ,

which satisfies symmetry, scaling, and the 2-cocycle relation for J(k) in Section 2.1.

The proof of Proposition 4.4 is similar to the proof of Lemma 3.3.

4.3. Rescaling a finite probability distribution by a scalar. Rescaling
the pair of symbols ⟨cp1, cp2⟩ = c⟨p1, p2⟩ corresponds to rescaling entropy. In our
diagrammatic story, it will correspond to a red wavy line, which is to the left of our
graphical network.



DIAGRAMMATICS OF INFORMATION 13

additive

lines

⟨a, b⟩

a + b

a b

−⟨a, b⟩

a b

a + b

virtual

crossing

b a

a b

ca

a

c

c merging of

multiplicative

lines

c1c2

c1 c2
c

c−1
swapping the

co-orientation

Figure 5.0.1. Upper left: Whenever two black additive lines
merge, we evaluate ⟨a, b⟩ at the additive vertex. Upper middle:
whenever two additive lines split, we evaluate −⟨a, b⟩. Upper right:
we are allowed to have virtual crossing whenever two additive lines
cross but the intersection of these two lines is virtual, so there is
no corresponding evaluation for these two additive lines. Bottom
left: whenever a red line is to the left of a black line, then we
rescale the value a of the additive line by c ∈ k∗ of the multiplica-
tive line. Bottom middle: multiplicative lines can merge, resulting
in multiplication of their weights. Bottom right: we may have a
red vertex on the multiplicative network, resulting in the swapping
of co-orientations of the multiplicative line.

5. Diagrammatics of Shannon entropy

Let k = R and let k∗ be the set of units in k. In this section, we discuss a new
perspective of entropy using diagrammatics, as introduced in [12].

We decorate the boundary of a network of lines from values in k. Figure 5.0.1
gives us the properties of black and red (network) lines. Black lines are additive
and take values in k while red wavy lines are multiplicative and take values in k∗.
Whenever two additive (black) lines merge (at the intersections of additive lines),
we evaluate at the additive vertex using the two symbols ⟨a, b⟩, see Figure 5.0.1 top
left. Whenever two additive lines split, we evaluate at the additive vertex the pair
of symbols ⟨a, b⟩, but with a negative sign: −⟨a, b⟩, see Figure 5.0.1 top middle. We
can also have a virtual crossing, where two lines cross but their intersection is said to
be virtual, see Figure 5.0.1 top right. In the second row of Figure 5.0.1, we see that
red wavy (multiplicative) lines have a conormal direction. In particular, whenever
an additive line passes through a multiplicative line of weight c ∈ k∗, we rescale
the additive line from a ↦ ca, see Figure 5.0.1 bottom left. Similar to the additive
lines, whenever multiplicative lines merge, we multiply the two weights, Figure 5.0.1
bottom middle. Finally, we introduce a red dot to represent the switching of normal
co-orientations, see Figure 5.0.1 bottom right.
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a b

a + b

=

a b

a + b

=

a b

a + b

⟨a, b⟩

a + b

a b

=

a + b

a b

=

a + b

a b

−⟨a, b⟩

Figure 5.0.2. When additive lines are pointing downwards, we
rotate the additive vertices in the network whilst fixing the bound-
ary points so that the orientations at the additive vertices are up-
wards. Top row: the additive vertex in each of the figures gives
the contribution of ⟨a, b⟩. Bottom row: the additive vertices give
−⟨a, b⟩.

When additive lines are oriented downwards, we keep the vertices to stay the
same but rotate the additive vertex clockwise or counterclockwise, resulting in a
contribution of ⟨a, b⟩ or −⟨a, b⟩. See Figure 5.0.2.

Additive and multiplicative lines satisfy natural isotopy relations, as well as the
Cathelineau’s 2-cocycle relation in (3). The relation ⟨a, b + c⟩ + ⟨b, c⟩ = ⟨a + b, c⟩ +
⟨a, b⟩ is satisfied by Figure 5.0.3 top left by summing over the additive vertices.
Figure 5.0.3 top right satisfies the symmetry relation ⟨a, b⟩ = ⟨b, a⟩. Figure 5.0.3
bottom left satisfies the scaling relation ⟨ca, cb⟩ = c⟨a, b⟩ since the additive vertex on
the left-hand side of the diagram contributes ⟨ca, cb⟩ since the additive lines have
weights ca and cb while the additive vertex on the right-hand side of the diagram
contributes ⟨a, b⟩, which we then rescale by the scalar c. For Figure 5.0.3 bottom
right, the diagrams show that we can pull apart additive and multiplicative lines
that have crossed virtually.

Furthermore, in Figure 5.0.3 top left, if the values a, b, c sum to 1, i.e., a+b+c = 1,
then we get Shannon entropy if all the lines in a diagram merge and we sum over
all the additive vertex contributions. That is, consider Figure 5.0.4. Although
Proposition 5.1 holds for n strands merging into one, we first prove the case for
three additive lines.

Proposition 5.1. Each side in the equality in Figure 5.0.4 evaluates to Shan-
non entropy in (3.1).

Proof. Recall from [12] that a relation between diagrammatics and scaled
entropy is (3.6). The additive vertex in the blue circle gives a contribution of
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a + b + c

a + b

a b c

=

a + b + c

b + c

a b c

b a

a + b

a b

=

a + b

a b

ca + cb

a b

c

=

c(a + b)

a b

c

a

c

ca

=

a

c

Figure 5.0.3. Top left: This diagram represents the 2-cocycle
condition (3) in Cathelineau’s k-vector space. Top right: Two lines
crossing is virtual, but the additive vertex contributes ⟨b, a⟩ = ⟨a, b⟩.
Bottom left: the additive vertex on the left hand side gives ⟨ac, bc⟩
while the additive vertex on the right hand side gives c⟨a, b⟩. This
cobordism implies that they are equal. Bottom right: These two
isotopies imply that one may pull the red multiplicative line away
from black additive line.

p1 + p2 + p3

p1 + p2

p1 p2 p3

=

p1 + p2 + p3

p2 + p3

p1 p2 p3

Figure 5.0.4. When k = R and p1 + p2 + p3 = 1, each diagram on
the left and the right evaluates to Shannon entropy.

⟨p1, p2⟩. The additive vertex in the dotted orange circle gives a contribution of
⟨p1 + p2, p3⟩. So the sum of the two additive vertices gives ⟨p1, p2⟩ + ⟨p1 + p2, p3⟩.

On the other hand, the additive vertex in the purple dashed-dotted circle pro-
vides ⟨p2, p3⟩. The additive vertex in the green dotted circle contributes ⟨p1, p2+p3⟩.
Combining the two additive vertices on the right hand side, we have ⟨p2, p3⟩+⟨p1, p2+
p3⟩. We see that

⟨p1, p2⟩ + ⟨p1 + p2, p3⟩ = ⟨p2, p3⟩ + ⟨p1, p2 + p3⟩,
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which is the 2-cocycle condition for Cathelineau’s vector space. So by the proof of
Lemma 3.3, each side sums to H(pX). □

Now consider Figure 5.0.5.

Proposition 5.2. Figure 5.0.5 corresponds to entropy H(pX) = −p1 log ∣p1∣ −
p2 log ∣p2∣ − p3 log ∣p3∣ − p4 log ∣p4∣.

Proof. Here, we will compute only the left hand side in Figure 5.0.5, where
−p1 log p1−p2 log p2−p3 log(p3)−p4 log p4 =H(pX). We will leave the other diagrams
as an exercise for the reader. From bottom to top, the additive vertices contribute

⟨p1, p2⟩ = (p1 + p2)H (
p1

p1 + p2
)

⟨p1 + p2, p3⟩ = (p1 + p2 + p3)H (
p1 + p2

p1 + p2 + p3
)

⟨p1 + p2 + p3, p4⟩ = (p1 + p2 + p3 + p4)H (
p1 + p2 + p3

p1 + p2 + p3 + p4
) ,

respectively. Combining the three equations above gives

⟨p1, p2⟩ + ⟨p1 + p2, p3⟩ + ⟨p1 + p2 + p3, p4⟩

= (p1 + p2)H (
p1

p1 + p2
) + (p1 + p2 + p3)H (

p1 + p2
p1 + p2 + p3

)

+ (p1 + p2 + p3 + p4)H (
p1 + p2 + p3

p1 + p2 + p3 + p4
)

= (p1 + p2) (−
p1

p1 + p2
log ∣

p1
p1 + p2

∣ − (1 −
p1

p1 + p2
) log ∣1 −

p1
p1 + p2

∣)

+ (p1 + p2 + p3) (−
p1 + p2

p1 + p2 + p3
log ∣

p1 + p2
p1 + p2 + p3

∣

−(1 −
p1 + p2

p1 + p2 + p3
) log ∣1 −

p1 + p2
p1 + p2 + p3

∣)

+ (p1 + p2 + p3 + p4) (−
p1 + p2 + p3

p1 + p2 + p3 + p4
log ∣

p1 + p2 + p3
p1 + p2 + p3 + p4

∣

−(1 −
p1 + p2 + p3

p1 + p2 + p3 + p4
) log ∣1 −

p1 + p2 + p3
p1 + p2 + p3 + p4

∣)

=����
(p1 + p2) (−

p1

����p1 + p2
log ∣

p1
p1 + p2

∣ −
p2

����p1 + p2
log ∣

p2
p1 + p2

∣)

+((((((
(p1 + p2 + p3) (−

p1 + p2

((((((p1 + p2 + p3
log ∣

p1 + p2
p1 + p2 + p3

∣

−
p3

((((((p1 + p2 + p3
log ∣

p3
p1 + p2 + p3

∣)

+((((((((
(p1 + p2 + p3 + p4) (−

p1 + p2 + p3

(((((((
p1 + p2 + p3 + p4

log ∣
p1 + p2 + p3

p1 + p2 + p3 + p4
∣

−
p4

(((((((
p1 + p2 + p3 + p4

log ∣
p4

p1 + p2 + p3 + p4
∣)

= −p1 log ∣
p1

p1 + p2
∣ − p2 log ∣

p2
p1 + p2

∣ − (p1 + p2) log ∣
p1 + p2

p1 + p2 + p3
∣ − p3 log ∣

p3
p1 + p2 + p3

∣

− (p1 + p2 + p3) log ∣
p1 + p2 + p3

p1 + p2 + p3 + p4
∣ − p4 log ∣

p4
p1 + p2 + p3 + p4

∣
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p1 p2 p3 p4

p1 + p2 + p3 + p4

=

p1 p2 p3 p4

p1 + p2 + p3 + p4

=

p1 p2 p3 p4

p1 + p2 + p3 + p4

Figure 5.0.5. All possible ways of network of additive lines merg-
ing into one additive line.

⋯

p1 p2 . . . pn

p1 + p2 + . . . + pn

=

⋯

p1 p2 . . . pn

p1 + p2 + . . . + pn

=

⋯

p1 p2 . . . pn

p1 + p2 + . . . + pn

Figure 5.0.6. Various diagrams depicting entropy.

= −p1 log ∣p1∣ − p2 log ∣p2∣ +(((((((((
(p1 + p2) log ∣p1 + p2∣ −(((((((((

(p1 + p2) log ∣p1 + p2∣ − p3 log ∣p3∣

+
(((((((((((((
(p1 + p2 + p3) log ∣p1 + p2 + p3∣ −

(((((((((((((
(p1 + p2 + p3) log ∣p1 + p2 + p3∣

− p4 log ∣p4∣ + (p1 + p2 + p3 + p4
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

1

) log ∣p1 + p2 + p3 + p4
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

1

∣

= −p1 log ∣p1∣ − p2 log ∣p2∣ − p3 log ∣p3∣ − p4 log ∣p4∣ =H(pX).

This concludes the proof. □

Proposition 5.3. For each diagram in Figure 5.0.6, the additive vertices sum
to Shannon entropy.

The proof of Proposition 5.3 is analogous to Propositions 5.1 and 5.2.
Now, recall equation (3.6) and Cathelineau’s symmetry relation (1). They give

us the following correspondence:

(5.1) ⟨a, b⟩ = ⟨b, a⟩⇔ (a + b)H (
a

a + b
) = (a + b)H (

b

a + b
) .

In particular, in (5.1), take a = p and b = 1 − p to obtain

⟨p,1 − p⟩ = ⟨1 − p, p⟩⇔H(p) =H(1 − p).

We may also introduce the 0-line. See Figures 5.0.7, 5.0.8, and 5.0.9.
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x1 x2

x1 x2

0

q −q

p −p

=

q −q

p −p p −p

0

0

Figure 5.0.7. Left: the evaluation of this cobordism is ⟨x1, x2⟩ −

⟨x1, x2⟩ = 0. So the entropy of this system is 0. Middle: 0-lines can
be erased. Right: the 0-line can be extended from a ⟨p,−p⟩-line.

−p

p

=

−p

p

0

0

p −p

0

0

=

p −p

Figure 5.0.8. We introduce a dot to represent reversal of orien-
tation. Left: we can erase the 0-line. The 0-line can go in or out,
to the top or bottom boundary. Right: we have ⟨p,−p⟩ = 0.

p −p

=

p −p

Figure 5.0.9. We introduce a dot to represent reversal of orien-
tation. Left: the 0-line has been erased. Right: we have ⟨p,−p⟩ = 0.

We will now introduce black defects (dots) on additive networks, where when-
ever we insert a black dot on an additive network, we need to insert another de-
fect on the additive network and reverse orientations on the portion of the addi-
tive network connecting these defects. The contribution from Figure 5.0.10 left

is ⟨p − q,1 − p⟩ = (1 − q)H (p−q
1−q ). The contribution in Figure 5.0.10 center is

⟨q − 1, p− q⟩+ ⟨p− 1,1− p⟩− ⟨q − 1,1− q⟩ = (p− 1)H ( q−1
p−1). Finally, the contribution

in Figure 5.0.10 right is ⟨p − q, q − 1⟩ + ⟨1 − p, p − 1⟩ − ⟨1 − q, q − 1⟩ = (p − 1)H (p−q
p−1).
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1 − q

p − q 1 − p

=
q − 1

0

p −
1

1 − q

p − q 1 − p

=
q − 1

p − q
0 p − 1

1 − q

p − q 1 − p

Figure 5.0.10. A local symmetry transformation around a triva-
lent vertex, i.e., change cyclic order at vertex and 2 orientation
reversals at a vertex and insert the 0-line in the middle and right
figures.

a b

a + b

=

a + b

(a + b) [
a

a + b
]

b 1 − b

0

a − b b − a

1

=
[b]

1

Figure 6.0.1. Left: the blue boundary wall absorbs the additive
defect on the a-line and b-line, emitting a floating point labeled

(a + b) [
a

a + b
]. Right: The three additive vertices are absorbed,

emitting one vertex with the label [b].

They show that entropy also satisfies

(1 − q)H (
p − q

1 − q
) = (p − 1)H (

q − 1

p − 1
) = (p − 1)H (

p − q

p − 1
) .

6. Boundary wall

In this section, we introduce a boundary wall, depicted using a blue line at
the base of a cobordism. Also see [12, Section 2]. The blue horizontal line in a
cobordism is called a boundary wall. It absorbs additive vertices and inserts a
labeled floating dot to the left of the network. That is, if two lines weighted a and b
merge at an additive vertex, the vertex gets absorbed by the boundary wall and the

boundary wall emits a floating defect with the label (a+b) [
a

a + b
]. See Figure 6.0.1

left. We can also absorb an additive vertex that is connected to the 0-edge (this
will give a contribution of 0 so we can draw a vertex with weight 0 or we do not
need to draw the 0-vertex). See Figure 6.0.1 right.

In Figure 6.0.2, although the network initially appears complicated, after all
additive vertices have been absorbed by the boundary wall, we are left with one
line weighted 1 and one vertex with appropriate weight.
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b a − b b − a 1 − b

a 1 − a

1

= a [
b

a
] + (1 − a) [

1 − b

1 − a
] + [a] 1

Figure 6.0.2. The three additive vertices are absorbed by the
blue boundary wall, emitting three floating vertices with the

weights a [
b

a
], (1 − a) [

1 − b

1 − a
], and [a]. Since the floating ver-

tices are additive, we can replace three floating vertices with one

floating vertex with the label as the sum a [
b

a
]+(1−a) [

1 − b

1 − a
]+[a].

⋯

1

p1 p2 ⋯ pn

=
H(pX)

1

H(pX) = −
n

∑
i=1

pi log pi

p1 + p2 + . . . + pn = 1

Figure 6.0.3. If p1 + p2 + . . . + pn = 1, the blue boundary wall
absorbs all additive vertices, giving us entropy.

In Figure 6.0.3, we can separate the one additive vertex by using appropriate
isotopies, resulting in one floating defect with the weight given by the right-hand
side of (3.8), which is Shannon entropy H(pX).

In Figure 6.0.4, we have a more global picture of our cobordisms. That is,
inside the purple dashed ellipse, we have classical physics, involving entropy and
information theory. In the larger blue dotted ellipse, we have the theory of proba-
bility. When networks turn around, pointing downwards, and when we can rescale
the additive lines, we have a larger depiction in the theory of information theory.
We are yet to interpret the additive and multiplicative networks outside the blue
ellipse, but we believe these observables may have an important interpretation in
(quantum) physics.

7. Connections from diagrammatics to J(k)

Now, we may want to ask ourselves how do we go from the diagrammatics in
Section 5 to elements in the vector space J(k). Given a cobordism (diagram) γ,
define ȷ ∶ Diagrams→ J(k), where

(7.1) ȷ(γ) = ∑
p∈add(γ)

s(p)ω(p, γ)⟨ap, bp⟩ ∈ J(k),

where we sum over all the additive vertices in γ. The coefficient s(p) equals 1 if
the vertex p is a merge, and −1 if the additive vertex p is a split. We denote ap and
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c2

c1

c−12 c1
c3

pj
pk

pℓ

pk + pℓ

p1 p2 . . . . . . pn pn+1 . . . pm . . .

probability for

classical physics
n

∑
i=1

pi = 1

probability

Figure 6.0.4. The diagram shows a morphism (cobordism).
Small purple ellipse encloses a part of the morphism that admits an
interpretation in earlier categorical approaches to entropy. Larger
blue ellipse encloses a part of the diagram that can be interpreted
in classical probability. Parts of the diagram that include wavy
(red) multiplicative lines, U-turns of additive lines and additive
lines pointing down or closing upon themselves make sense in a
larger category, but not in the familiar classical probability, since
rescaling is involved and one could remove the renormalization to
1. Multiplicative lines scale labels of additive lines.

bp the two lines weighted a and b, respectively, at point p. The coefficient ω(p, γ)
is the product of all the multiplicative red lines as we virtually move the additive
vertex p far to the left as possible, crossing over any multiplicative lines and taking
into account the conormal direction of these lines.

The value ȷ(γ) encodes contribution from additive vertices. It computes 2-
cocycles and it is an invariant under isotopies. So to a diagrammatic morphism
γ, assign element ȷ(γ) of J(k). Generating objects of this monoidal category are
labelled by a ∈ k (endpoints of additive networks) and c ∈ k∗ (endpoints of multi-
plicative networks).

From [12, Section 5], we have the following:

Proposition 7.1 (Im–Khovanov). The invariant ȷ(γ) depends only on the
source and target objects of the morphism γ.
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p1 p2

q2

q1

p12 + p22
p11 + p21

p12 p22

p11 p21

p11 + p21 + p12 + p22 = 1

Figure 8.0.1. Joint entropy for two random variables X and Y
with probabilities p1 and p2 and q1 and q2, respectively.

Because ȷ(γ) only depends on the source and the target objects of morphism
γ, and not on any of the interior network, ȷ is an invariant. We leave it as future
work to explore other invariants of these cobordisms.

8. Diagrammatics of conditional entropy

Let H(Y ∣X) be the conditional entropy of a discrete random variable Y given
the random variable X. In terms of probability, conditional entropy is defined to
be

(8.1) H(X ∣Y ) = −
n

∑
i=1

m

∑
j=1

P (Xi, Yj) logP (Xi∣Yj),

where

(8.2) H(X,Y ) =H(Y ∣X) +H(X).

This is reminiscent of an additive version of the ordinary chain rule.
Diagram associated to Proposition 4.2 is Figure 8.0.1. In order to understand

conditional entropy in terms of joint entropy (8.2) using diagrammatics, we provide
the diagrammatics for

(8.3) H(Y ∣X) =H(X,Y ) −H(X).

In Figure 8.0.2, we give an example of how conditional entropy of two random
variables can be interpreted. In Figure 8.0.3, we provide two different ways to
obtain entropy of two random variables: H(X,Y ) =H(X ∣Y )+H(Y ) andH(X,Y ) =
H(Y ∣X)+H(X). In Figure 8.0.4, the morphism simplifies to the identity cobordism.

We see that one can draw diagrammatics for the information content, i.e., self-
information, which is I(X) = log 1

pX
. In terms of entropy, it can be reinterpreted

as H(pX) = E[I(X)]. We leave it as an exercise to draw the diagrams for mutual
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p1 p2 p3

q2

q1

y2 ∶= p12 + p22 + p32

p12 + p22

p11 + p21

y1 ∶= p11 + p21 + p31

p12

p22

p32

p11 p21 p31

Figure 8.0.2. A diagrammatic for the conditional entropy
H(X ∣Y ) = H(X,Y ) − H(Y ). That is, we group along Y ’s, but
we do not group the Y ’s themselves.

information:

I(X,Y ) =H(X) −H(X ∣Y ) =H(Y ) −H(Y ∣X)

=H(X) +H(Y ) −H(X,Y )

=H(X,Y ) −H(X ∣Y ) −H(Y ∣X).

(8.4)

9. Additional properties of J(k)

From Im–Khovanov in [12], we saw that the two symbols ⟨⋅, ⋅⟩ in Cathelineau’s
k-vector space is related to H(pX) via the equation

⟨a, b⟩ = (a + b)H (
a

a + b
)

if a+ b /= 0; otherwise, ⟨a, b⟩ = 0. This shows that rescaling the two symbols by a+ b
gives us a rescaled entropy:

(9.1)
1

a + b
⟨a, b⟩ =H (

a

a + b
) =H (

b

a + b
) .

In particular, when a = b, then

(9.2) ⟨a, a⟩ = 2aH (
1

2
) ,

or equivalently,
1

2a
⟨a, a⟩ =H (

1

2
) or

1

2
⟨1,1⟩ =H (

1

2
) .

Although this is an interesting observation, length or norm does not make
sense since the formal pair ⟨⋅, ⋅⟩ of symbols is not linear. Perhaps there may be
other interesting properties about Cathelineau’s vector space that could easily be
observed from the diagrammatics.
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1

p1 p2 p3 . . . pk

X

1

q1 q2 q3 . . . qm

Y

p1 p2 p3

q2

q1

1

y2 ∶= p12 + p22 + p32

p12 + p22

p11 + p21

y1 ∶= p11 + p21 + p31

p12

p22

p32

p11 p21 p31

H(Y )

H(X,Y ) −H(Y )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

H(X ∣Y )

p1 p2 p3

q2

q1

1

x1 + x2

x1 ∶= p11 + p12
x2 ∶= p21 + p22

x3 ∶= p31 + p32

p12 p22 p32

p11 p21 p31

H(X)

H(X,Y ) −H(X)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

H(Y ∣X)

Figure 8.0.3. Let {p1, p2, p3} be probabilities for the random
variable X and {q1, q2, q3} be probabilities for the random vari-
able Y . Let pij ∶= (pi, qj). Top left: random variable X with
probabilities {p1, p2, . . . , pk}. Top right: random variable Y with
probabilities {q1, q2, . . . , qm}. Middle: absorbing all the additive
vertices gives us H(X,Y ). Absorbing all the additive vertices ex-
cept the top one gives H(X,Y ) −H(Y ). Bottom: absorbing all
the additive vertices except the top one gives H(X,Y ) −H(X).



DIAGRAMMATICS OF INFORMATION 25

p1 p2 p3

q2

q1

1

y2 ∶= p12 + p22 + p32

p12 + p22

p11 + p21

y1 ∶= p11 + p21 + p31

p12

p22

p32

p11 p21 p31

p1 p2 p3

q2

q1

p32p22p12

p31p21p11

x1 ∶= p11 + p12

x2 ∶= p21 + p22

x1 + x2

x3 ∶= p31 + p32

−(H(X,Y ) −H(X)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

H(Y ∣X)

)

−H(X)

H(Y )

H(X,Y ) −H(Y )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

H(X ∣Y )

0

Figure 8.0.4. Let {p1, p2, p3} be probabilities for the random
variable X and {q1, q2, q3} be probabilities for the random vari-
able Y . Let pij ∶= (pi, qj). Above is a diagrammatic of 0 since the
top and the bottom collections of boundary points in it are identi-
cal.

10. Deforming 5-term dilogarithm into 4-term infinitesimal dilogarithm

We refer to [2, Section 1.3] where Cathelineau derives the dilogarithm to infin-
itesimal dilogarithm. In this section, we give a completely written out derivation
of this deformation.

Let A be a unital commutative ring. Let PA be an abelian group generated by
{z}, where z and 1 − z are invertible in A, with relations

(1) {z} + { 1
z
} = 0,

(2) { 1
z
} − {1 − z} = 0,

(3) {z1} − {z2} + {
z2
z1
} − { 1−z2

1−z1 } + {
(1−z2)z1
(1−z1)z2 } = 0,

where the last relation (3) is called the 5-term dilogarithm equation. A homomor-
phism of unital rings A→ A′ induces a homomorphism of abelian groups PA → PA′ .
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We now specialize to the case when A = k[ε], where ε2 = 0, and A′ = k. Let

T̃P (k) ∶= ker(Pk[ε] → Pk), where the homomorphism k[ε] Ð→ k is identity on k
and ε↦ 0. This induces the short exact sequence

0 // T̃P (k) �
� / Pk[ε]

σ
vv

// // Pk
// 0

with the section σ given by

(10.1) σ({a + bε}) = {a + bε} − {a}, a /= 0,1.

The kernel T̃P (k) is also generated by the images of {a + bε} under σ as in (10.1)

over all a ∈ k∗∖{1} and b ∈ k. We also have k∗ acting on T̃P (k) via the translation
on the coefficient of ε:

c σ({a + bε}) = c({a + bε} − {a}) = {a + cbε} − {a} = σ({a + cbε}).

Let µ ∶ T̃P (k)→ k+∧Zk+ be a morphism of abelian groups, where µ({a+bε}−{a}) =
b
a
∧ b

1−a , or alternatively, µ({a+ 2bε}+ {a}− 2{a+ bε}) = 2 (
b
a
∧ b

1−a) /= 0. Let Nk be

the subgroup of T̃P (k) generated by expressions of the form

(10.2) {a + (b + b′)ε} + {a} − {a + bε} − {a + b′ε}.

In T̃P (k), we can view {a + bε} − {a} as equal to its deformation. That is, let

TP (k) ∶= T̃P (k)/Nk. Then in TP (k), we have:

{a + (b + b′)ε} − {a + b′ε} = {a + bε} − {a}.

Proposition 10.1. Let k be a field of characteristic 0. Then there exists an
isomorphism of vector spaces

(10.3) φ ∶ βk
≅
Ð→ TP (k), where φ([a]) = {a + a(1 − a)ε} − {a}.

This leads us to a commutative diagram with two short exact sequences:

0

��
Nk� _

�
0 // T̃P (k) �

� /

quotient by Nk

����

Pk[ε]

σ
xx

// // Pk
// 0

βk
≅ φ // TP (k)

��
0.

We will now prove Proposition 10.1.
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Proof. We will prove that φ is well-defined by checking compatibility with
the relation (2) in Section 2.2. Let

u = a + a(1 − a)ε, v = b + b(1 − b)ε.

Then

u(1 − v)

v(1 − u)
=
(a + a(1 − a)ε)(1 − (b + b(1 − b)ε))

(b + b(1 − b)ε)(1 − (a + a(1 − a)ε))

=
a − ab + a(1 − b)(1 − a − b)ε

b − ab + b(1 − a)(1 − a − b)ε

=
a�b����(1 − a)(1 − b)

b�2(1 − a)�2

=
a(1 − b)

b(1 − a)
.

Now,

φ([a] − [b] + (1 − a) [
1 − b

1 − a
] + a [

b

a
])

= φ([a]) − φ([b]) + (1 − a)φ([
1 − b

1 − a
]) + aφ([

b

a
])

= {a + a(1 − a)ε} − {a} − ({b + b(1 − b)ε} − {b})

+ (1 − a) ({
1 − b

1 − a
+
1 − b

1 − a
(1 −

1 − b

1 − a
) ε} − {

1 − b

1 − a
}) + a({

b

a
+
b

a
(1 −

b

a
) ε} − {

b

a
})

= σ({a + a(1 − a)ε}) − σ({b + b(1 − b)ε}) + (1 − a)σ ({
1 − b

1 − a
+
1 − b

1 − a
(1 −

1 − b

1 − a
) ε})

+ aσ ({
b

a
+
b

a
(1 −

b

a
) ε})

= σ({u}) − σ({v}) + σ ({
1 − b

1 − a
+ (1 − b) (1 −

1 − b

1 − a
) ε}) + σ ({

b

a
+ b(1 −

b

a
) ε})

= σ({u}) − σ({v}) + σ ({
1 − b

1 − a
−
1 − b

1 − a
(a − b)ε}) + σ ({

b

a
+
b

a
(a − b) ε})

‡‡

= σ({u}) − σ({v}) + σ ({
b

a
+
b

a
(a − b)ε}) − σ ({

1 − b

1 − a
+
1 − b

1 − a
(a − b)ε})

+ {
a(1 − b)

b(1 − a)
} − {

a(1 − b)

b(1 − a)
}

= σ({u}) − σ({v}) + σ ({
b

a
+
b

a
(a − b)ε}) − σ ({

1 − b

1 − a
+
1 − b

1 − a
(a − b)ε})

+ σ ({
a(1 − b)

b(1 − a)
})

= σ ({u} − {v} + {
b

a
(1 + (a − b)ε)} − {

(1 − b) + (1 − b)(a − b)ε

1 − a
} + {

a(1 − b)

b(1 − a)
})

= σ ({u} − {v} + {
v

u
} − {

1 − v

1 − u
} + {

u(1 − v)

v(1 − u)
})
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since

v

u
=

b + b(1 − b)ε

a + a(1 − a)ε
=

b + b(1 − b)ε

a + a(1 − a)ε

a − a(1 − a)ε

a − a(1 − a)ε

=
ab + ab(a − b)ε

a2
=
b

a
+
b

a
(a − b)ε,

1 − v

1 − u
=

1 − (b + b(1 − b)ε)

1 − (a + a(1 − a)ε)
=

1 − b − b(1 − b)ε

1 − a − a(1 − a)ε

=
1 − b − b(1 − b)ε

1 − a − a(1 − a)ε

1 − a + a(1 − a)ε

1 − a + a(1 − a)ε

=
(1 − a)(1 − b) + (1 − a)(1 − b)(a − b)ε

(1 − a)2

=
(1 − b) + (1 − b)(a − b)ε

1 − a

=
1 − b

1 − a
+
1 − b

1 − a
(a − b)ε,

u(1 − v)

v(1 − u)
=
(a + a(1 − a)ε)(1 − (b + b(1 − b)ε))

(b + b(1 − b)ε)(1 − (a + a(1 − a)ε)

=
a(1 − b)(((((((((

(1 + (1 − (a + b))ε)

b(1 − a)(((((((((
(1 + (1 − (a + b))ε)

=
a(1 − b)

b(1 − a)
,

and for b′ = −b in (10.2), we have

{a + (b − b)ε} + {a} − {a + bε} − {a − bε} = {a} + {a} − {a + bε} − {a − bε}.

So in TP (k),

0 = σ({a} + {a} − {a + bε} − {a − bε})

= 2σ({a}) − σ({a + bε}) − σ({a − bε})

= 2({a} − {a}) − σ({a + bε}) − σ({a − bε})

= 0 − σ({a + bε}) − σ({a − bε}).

The equality ‡‡ holds in TP (k) since

−σ({a + bε}) = σ({a − bε}).

Now to prove that φ is injective, let

(10.4) ρ ∶ TP (k)Ð→ k∗ ⊗ k+, ρ({a + bε} − {a}) = a⊗
b

1 − a
+ (1 − a)⊗

b

a
,

be a map of vector spaces over k. Then we have a commutative diagram

βk
� � D /

φ

""

k∗ ⊗ k+,

TP (k)
, �

ρ

:



DIAGRAMMATICS OF INFORMATION 29

where D and ρ are injective. So φ is also injective. □

Remark 10.2. Note that in general, ρ may not be surjective, but D and ρ are
injective imply that TP (k) is not too small.

Second proof. We give a second argument that the 5-term dilogarithm de-
forms to the infinitesimal 4-term dilogarithm. Let k be a field, and let k♭ = k∗∖{1} =
k ∖ {0,1}.

Let β2(k) be the quotient of Q[k♭] by

[a] − [b] + [
b

a
] + [

1 − b−1

1 − a−1
] − [

1 − b

1 − a
] = 0,

with (1 − a)(1 − b) (1 − b
a
) ∈ k∗.

Let k2 ∶= k[t]/(t
2) be the ring of dual numbers. If a ∈ k♭, define

⟨a⟩ ∶= a + a(1 − a)t = a(1 + (1 − a)t) ∈ k2.

Note that (1 + ct)−1 = 1 − ct in k2 since t2 = 0. We see that this element ⟨a⟩ is
invertible in k2, with ⟨a⟩

−1 = a−1(1 − (1 − a)t).
Define the action of k∗ on the ring k2 of dual numbers as λ∗(b0+b1t) = b0+λb1t,

where λ ∈ k∗. That is, λ ∗ 1 = 1 and λ ∗ t = λt. So λ only translates the coefficient
of t.

Lemma 10.3. We have
⟨b⟩

⟨a⟩
= a ∗ ⟨

b

a
⟩.

Proof. The left hand side shows

⟨b⟩

⟨a⟩
=

b(1 + (1 − b)t)

a(1 + (1 − a)t)
=
b

a
(1 + ((1 − b) − (1 − a))t) =

b

a
(1 + (a − b)t).

On the other hand, the right hand side shows

a ∗ ⟨
b

a
⟩ = a ∗ (

b

a
(1 + (1 −

b

a
) t)) =

b

a
(1 + (1 −

b

a
)at) =

b

a
(1 +

a − b

a
at) =

b

a
(1 + (a − b)t).

□

Lemma 10.4. The relation

1 − ⟨b⟩

1 − ⟨a⟩
= (a − 1) ∗ ⟨

1 − b

1 − a
⟩

holds.

Proof. On the left hand side, we have

1 − ⟨b⟩

1 − ⟨a⟩
=

1 − b(1 + (1 − b)t)

1 − a(1 + (1 − a)t)

=
1 − b − b(1 − b)t

1 − a − a(1 − a)t
⋅
1 − a + a(1 − a)t

1 − a + a(1 − a)t

=
(1 − a)(1 − b) + (a(1 − a)(1 − b) − (1 − a)b(1 − b))t

(1 − a)2

=
����(1 − a)(1 − b) + (a − b)����(1 − a)(1 − b)t

(1 − a)�2

=
1 − b

1 − a
(1 + (a − b)t)
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while on the right hand side, we have

(a − 1) ∗ ⟨
1 − b

1 − a
⟩ = (a − 1) ∗

1 − b

1 − a
(1 + (1 −

1 − b

1 − a
) t) =

1 − b

1 − a
(1 + (1 −

1 − b

1 − a
) (a − 1)t) ,

which are indeed equal. □

Lemma 10.5. We have 1 − ⟨a⟩−1 = (1 − a−1)(1 − t).

Proof. Since

1 − ⟨a⟩−1 = 1 − a−1(1 + (1 − a)t)−1 = 1 − a−1(1 − (1 − a)t)

= 1 − a−1 + a−1(1 − a)t = 1 − a−1 + (a−1 − 1)t

= (1 − a−1)(1 − t),

the lemma holds. □

Lemma 10.6. The equation

1 − ⟨b⟩−1

1 − ⟨a⟩−1
=
1 − b−1

1 − a−1

holds.

Proof. The lemma is immediate since

1 − ⟨b⟩−1

1 − ⟨a⟩−1
=
(1 − b−1)���(1 − t)

(1 − a−1)���(1 − t)
=
1 − b−1

1 − a−1
.

□

Lemma 10.7. We have [b∗⟨c⟩] = b[⟨c⟩] where b ∈ k and c ∈ k2 and (−1)[⟨1−a⟩] =
−[⟨a⟩] and a[⟨a−1⟩] = −[⟨a⟩].

Proof. This is clear using the construction of β(k). □

Lemma 10.8. The 5-term dilogarithm

(10.5) [⟨a⟩] − [⟨b⟩] + [
⟨b⟩

⟨a⟩
] + [

1 − ⟨b⟩−1

1 − ⟨a⟩−1
] − [

1 − ⟨b⟩

1 − ⟨a⟩
] = 0

holds in the commutative ring β2(k2).

Proof. This is clear by the definition of the ring β2(k2). □

Proposition 10.9. Taking the limit as t→ 0, the 5-term dilogarithm in (10.5)
deforms to the 4-term infinitesimal dilogarithm

(10.6) [a] − [b] + a[
b

a
] + (1 − a)[

1 − b

1 − a
] = 0, a ∈ k ∖ {0,1}, b ∈ k∗.

Proof. We have [
⟨b⟩

⟨a⟩
] = [a ∗ ⟨

b

a
⟩] = a [⟨

b

a
⟩] by Lemmas 10.3 and 10.7. We

also have

[
1 − ⟨b⟩−1

1 − ⟨a⟩−1
] = [

(1 − b−1)���(1 − t)

(1 − a−1)���(1 − t)
] = [

1 − b−1

1 − a−1
]

by Lemma 10.6. Finally, we have

[
1 − ⟨b⟩

1 − ⟨a⟩
] = [(a − 1) ∗ ⟨

1 − b

1 − a
⟩] = (a − 1) [⟨

1 − b

1 − a
⟩]
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by Lemmas 10.4 and 10.7. Putting these together, we have

[⟨a⟩] − [⟨b⟩] + a [⟨
b

a
⟩] + [

1 − b−1

1 − a−1
] + (1 − a) [⟨

1 − b

1 − a
⟩] = 0.

The element [ 1−b
−1

1−a−1 ] is the zero element in

ker(β(k2)Ð→ β(k))/ ([a + (b + b′)t] + [a] − [a + bt] − [a + b′t]) .

We thus obtain

[⟨a⟩] − [⟨b⟩] + a [⟨
b

a
⟩] + (1 − a) [⟨

1 − b

1 − a
⟩] = 0,

which t-deforms to

[a] − [b] + a [
b

a
] + (1 − a) [

1 − b

1 − a
] = 0 for a /= b and a ∈ k♭.

□

11. Future Work

It would be interesting to extend the work of Im–Khovanov of diagrammatic
interpretation in [12] to Rényi entropy, which is a generalization of Shannon en-
tropy, von Neumann entropy, which is a quantized analogue of Gibbs entropy, and
relative entropy, which is also known as Kullback–Leibler divergence. There may
be a deeper interpretation if one were to extend the diagrammatics of entropy to
their higher-dimensional analogues.
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