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Abstract. The intersection of deep learning and symbolic mathematics has

seen rapid progress in recent years, exemplified by the work of Lample and

Charton [23]. They demonstrated that effective training of machine learn-
ing models for solving mathematical problems critically depends on high-

quality, domain-specific datasets. In this paper, we address the computation
of Gröbner basis using Transformers. While a dataset generation method

tailored to Transformer-based Gröbner basis computation has previously been

proposed [21], it lacked theoretical guarantees regarding the generality or qual-
ity of the generated datasets. In this work, we prove that datasets generated

by the previously proposed algorithm are sufficiently general, enabling one

to ensure that Transformers can learn a sufficiently diverse range of Gröbner
bases. Moreover, we propose an extended and generalized algorithm to system-

atically construct datasets of ideal generators, further enhancing the training

effectiveness of Transformer. Our results provide a rigorous geometric founda-
tion for Transformers to address a mathematical problem, which is an answer

to Lample and Charton’s idea of training on diverse or representative inputs.

1. Introduction

In recent years, the practical success of machine learning models has sparked
extensive research into their capabilities across diverse problem domains. This pa-
per specifically examines the potential of Transformer-based models [35] for solving
complex mathematical problems. Notably, previous research, such as on symbolic
integration [23], has demonstrated that Transformers can outperform traditional
mathematical software in terms of computational speed and efficiency. Such findings
underscore the potential value of investigating how machine learning models, par-
ticularly Transformers, perform on other mathematical challenges. These promising
results highlight the importance of exploring the effectiveness of Transformer-based
models on other computationally demanding mathematical challenges, particularly
those with substantial implications in cryptography. One significant area of in-
terest is the Learning With Errors (LWE) problem [32], known to be computa-
tionally challenging in certain worst-case scenarios involving lattice problems. The
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complexity of the LWE problem underpins the security of contemporary lattice-
based cryptographic schemes, such as CRYSTALS-Kyber [3] and CRYSTALS-
Dilithium [28], both recently standardized by the U.S. NIST as post-quantum
cryptographic standards [30]. Recent advancements, exemplified by the SALSA
project [37, 27, 26], further illustrate the emerging capability of Transformers
in addressing LWE-related challenges. There is another recent work by Alfarano,
Charton, and Hayat [1], which introduced a Transformer-based model capable of
computing Lyapunov functions for dynamical systems, a longstanding open problem
in mathematics. Lyapunov functions are essential for determining system stability,
yet there has been no known deterministic algorithm to find them for general sys-
tems for over a century. Remarkably, their Transformers model rapidly identified
Lyapunov functions for multiple previously unsolved systems, drastically reducing
computation time from an average of 16 minutes (traditional numerical methods)
to mere seconds. This emerging line of work highlights the growing potential of
machine learning models to address mathematically complex and cryptographi-
cally relevant problems efficiently. A common thread among these advancements
is the potential of machine learning, particularly Transformers models, to address
mathematical problems generally considered to be NP-hard or similarly complex.

However, achieving this potential critically depends on the availability of high-
quality datasets carefully designed to incorporate domain-specific knowledge tai-
lored to each particular mathematical problem area. In their paper, Lample and
Charton [23] emphasize the importance of generating training data that adequately
spans the problem space. They argue that a mixture of BWD and IBP leads to
datasets that better represent the diversity of the problem space, implicitly aim-
ing for a kind of “density” over the input distribution, albeit without a formal
topological or algebraic framework.

Based on this background, we address problems in computational algebra using
machine learning approaches, specifically focusing on the notion of Gröbner bases.
Given an ideal I generated by a polynomial system F , a set G = ⟨g1, g2, . . . , gt⟩ of
generators of I is called a Gröbner basis with respect to a fixed monomial ordering
if the following equation

LT(I) = ⟨LT(g1),LT(g2), · · · ,LT(gt)⟩

holds. Here, LT(h) (resp. LT(I)) denote the leading term of a polynomial h (resp.
the set of all leading terms of polynomials in I) and the brackets around · in ⟨·⟩
denote the ideal generated by ·. Intuitively, a Gröbner basis provides a canoni-
cal form for representing the elements of I. A fundamental property of Gröbner
bases is their ability to facilitate polynomial division, ensuring a unique remain-
der. This feature underpins their algorithmic effectiveness in numerous computa-
tional tasks within algebraic geometry, polynomial system solving, and related areas
[17, 11, 9, 10]. Gröbner bases have significant applications, notably in simplify-
ing and solving systems of multivariate polynomial equations [9]. Additionally,
they are central to various cryptographic constructions. Similar to lattice-based
problems, the computational difficulty associated with Gröbner bases serves as the
security foundation for cryptographic primitives and protocols, including block ci-
phers [6], stream ciphers [8], and multivariate cryptographic schemes [22, 13]. The
applicability of Gröbner bases extends even further, impacting diverse fields such
as inverse kinematics and path planning in robotics [9, 38], control engineering [2],
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and biological system modeling [25]. Consequently, developing more efficient algo-
rithms for Gröbner basis computation holds considerable promise for advancements
across a wide spectrum of scientific and engineering domains. The Gröbner basis
computation problem, finding a Gröbner basis for a given polynomial ideal, is clas-
sically known to be NP-hard [29]. Recent work [21] has explored machine learning
approaches for tackling this challenge. Leveraging purely algebraic insights, they
developed a method for training Transformers to compute Gröbner bases, demon-
strating experimentally the potential for significant computational speed-ups. In
several examples of polynomial systems, the model for computing Gröbner bases
demonstrated a performance increase of up to 100 times compared to traditional
methods, such as Buchberger’s algorithm and the F4 algorithm [5, 12]. They
devised an algorithm to generate datasets consisting of polynomial ideals paired
with their corresponding Gröbner bases for model training. Considering that the
quality of these datasets directly influences the performance of the learned models,
it is essential to investigate their adequacy. However, the original method lacked
theoretical guarantees regarding the generality or quality of the generated datasets.

In this paper, assuming a heuristic we prove that the dataset construction al-
gorithm presented in [21] yields datasets with sufficient generality; see Problem 2.1
for the precise formulation. Furthermore, we introduce a novel algorithm designed
to generate an even broader class of datasets. In contrast to the empirical notion
of representativeness [23], our work formalizes a method of dataset construction
in which the generated examples are Zariski dense in the target space of Gröbner
bases. Zariski density, a concept from algebraic geometry, implies that the training
data are not confined to a special subset but are instead topologically dense in the
space of interest. In particular, our result ensures that any non-trivial algebraic
property satisfied on the dataset extends to the full output space, and the trained
model can, in principle, generalize to all generic inputs that define the same al-
gebraic structure. This complements the design for constructing training datasets
of Lample and Charton by providing a rigorous geometric foundation for the idea
of training on diverse or representative inputs. Density is a geometrical concept
that describes the generality of elements. A subset of a topological space is said
to be dense if its closure coincides with the entire space. In the field of algebraic
geometry, the generality of given elements is often assessed by examining the den-
sity of the subset comprising those elements. Following a conventional approach,
we represent the set of polynomial systems as a union of affine spaces, where the
coordinates correspond to the coefficients of the polynomial systems. The primary
question addressed in this study is whether the dataset generated by the algorithm
introduced in [21] is dense.

2. Problems and main results

This work aims to provide a theoretical explanation for the high learning ac-
curacy observed in the Gröbner basis computation experiments over the field of
rational numbers, as reported in [21]. In particular, we demonstrate that the train-
ing data generated by the algorithm satisfies a certain notion of density, which
ensures a rich and diverse set of examples conducive to effective learning. Our re-
sult suggests that the empirical success in the rational setting is not incidental but
supported by an underlying mathematical structure. While models perform less
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accurately over finite fields, possibly due to the absence of such density, our find-
ings offer a structural perspective that can guide future theoretical investigations;
see also Remark 2.5.

2.1. A problem concerning datasets. In the training of machine learning
models for the computation of Gröbner bases, it is necessary to prepare a large-scale
training dataset consisting of the pairs (F,G), with F = (f1, . . . , fm) a generating
set of an ideal that serves as an input of the model, and G = (g1, . . . , gn) a Gröbner
basis of the ideal generated by F . Since Gröbner basis computation is NP-hard in
general, it is difficult to construct such a dataset on a large scale. In the algorithm
[21] for computing the Gröbner basis, the output of Transformers is restricted
to a certain class, called shape position Gröbner basis, parameterized freely by
the coefficients of non-leading terms. Using shape position Gröbner bases, they
constructed a large training dataset by creating polynomial systems that generate
the same ideals as a given Gröbner basis (see section 3 for more detail).

Let us consider an algorithm; for a given uniformly random set of Gröbner
basis {G1, . . . , GN} belonging to a certain class G of Gröbner basis 1, it outputs a
random training dataset

{(F1, G1), . . . , (FN , GN )}
following the uniform distribution over the set

{(F,Gi) | F is a polynomial system with ⟨F ⟩ = ⟨Gi⟩}.
For each Gröbner basis Gi, such an algorithm should be capable of outputting any
pair (F,Gi) such that F could potentially be an input of the model. We connect
this latter property of an algorithm to the notion of density in an algebraic variety.

For example, let R = K[x1, . . . , xr] be a polynomial ring over a field K. Fix
integers m,n with m ≥ n = r, noting that the number of elements in a shape
position Gröbner basis is equals to the number of variables, and since the ideal ⟨G⟩
generated by G is 0-dimensional, the number of generators of I is greater than or
equal to the number of variables. The model considered in [21] took input-output
pairs (F,G), a shape position Gröbner basis G = (g1, . . . , gn), and a polynomial
system F = (f1, . . . , fm) consisting of m elements that generate the same ideal as
G. The ideal algorithm for generating a generic training dataset, as envisioned in
this work, should be capable of producing pairs (F,G) such that F is an arbitrary
generic element of the set

F := {F = (f1, . . . , fm) ∈ Rm | ⟨G⟩ = ⟨F ⟩}
where G is a fixed Gröbner basis in a specified shape position.

To construct a generic learning dataset, we focus on sets that are dense within
a topological space. Informally, a subset A of a topological space X is dense if every
point in X lies arbitrarily close to some point in A. Thus, if a given learning dataset
is dense in the topological space comprising all possible learning objects, we may
conclude that the dataset is generic with respect to the given topology. In this study,
we examine dense sets in F under a specific topology, namely the Zariski topology
[20]. The Zariski topology puts a very coarse “algebraic” topology on a variety
by declaring the common zeros of any family of polynomials to be closed, which
introduces few open sets. This unusual topology nevertheless perfectly encodes

1For example, G = {G | G is a shape position Gröbner basis}.
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algebraic relationships as geometric ones, making it the fundamental bridge between
algebra and geometry. It allows us to discuss continuity, closure, and irreducibility
in purely algebraic terms.

More precisely, this paper aims to solve the following problem.

Problem 2.1. Provide an algorithm that, for a given set of polynomials G =
(g1, . . . , gn) as input, randomly outputs an element F of F such that the set of all
possible outputs

F0 := {F ∈ F | F is an output of the algorithm}

is a dense subset of F for the Zariski topology.

Here, we equip Rm and F with the Zariski topology as follows; for a non-
negative integer D, let R≤D := {f ∈ R | deg f ≤ D} be the subset consisting of
elements in R of total degree less than or equal to D. The set R≤D is a vector
space over K with a basis

{xα = xα1
1 · · ·xαr

r | |α| = α1 + · · ·+ αr ≤ D}

of monomials in the r variables. In general, a vector space over K with a basis
{e1, . . . , eN} can be identified with the affine space

AN
K = SpecK[X1, . . . , XN ].

Then we identify R≤D with the affine space K[Xα | |α| ≤ D]. In this paper,
the Zariski topology of Rm is defined as the canonical topology of the union of
topological spaces

(R≤0)
m ⊂ (R≤1)

m ⊂ · · · ⊂ (R≤D)m ⊂ · · · ⊂ Rm =

∞⋃
D=0

(R≤D)m.

Namely, a subset U of R is open if and only if U is the union of open subsets
UD ⊂ (R≤D)m. This identification on the set of polynomial systems is a traditional
way in the area of research about the generality of properties of polynomial systems,
for example, semi-regular sequence [31], and comprehensive Gröbner bases [36, 34].

2.2. Main results. In this paper, we solve Problem 2.1 assuming a heuristic.
We propose an algorithm (Algorithm 1) that randomly outputs a set of generators
F = (f1, . . . , fm) of ⟨G⟩ for a given set of polynomials G = (g1, . . . , gn).

Algorithm 1: Algorithm to compute random generators of ⟨G⟩ (See Al-
gorithm 2 for a detailed version).

input : G = (g1, . . . , gn)
T ∈ Rn×1, m ≥ n.

output: F = (f1, . . . , fm)T ∈ Rm×1 such that ⟨F ⟩ = ⟨G⟩.
1 Pick a finite product U of random elementary matrices;

2 return F = AG where

A = U

(
En

O(m−n)×n

)
.
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Here we denote by En the identity matrix of size n, and by O(m−n)×n the
(m− n)× n zero matrix. Let us recall

F := {F ∈ Rm | ⟨G⟩ is generated by F},
F0 := {F ∈ F | F is an output of Algorithm 1}

=

{
U

(
En

O(m−n)×n

)
G

∣∣∣∣U is a finite product of

elementary matrices

}
.

Our heuristic assumption concerns the irreducibility of an algebraic set.

Heuristic 2.2. Let us consider a block representation of B ∈ Rn×m and A ∈
Rm×n:

B = (B1|B2), A =

(
A1

A2

)
,

where B1, A1 ∈ Rn×n, B2 ∈ Rn×(m−n) and A2 ∈ R(m−n)×n. For given D ≥ 0 and
G = (g1, . . . , gn), the algebraic set

X≤D =

{
(B,A) ∈ Rn×m

≤D ×Rm×n
≤D

∣∣∣∣∣(BA− En)G = On×1,

B1A1 ∈ Rn×n
≤D

}
in the affine space Rn×m

≤D ×Rm×n
≤D is irreducible.

Here, our main theorem asserts the density in F of

F̃≤D := {F ∈ Rm×1 | ⟨F ⟩ = ⟨G⟩, ∃ (B,A) ∈ X≤D, F = AG}.

Theorem 2.3 (Corollary 4.12). Using the same notation as Problem 2.1, as-
sume that the base field K is a Hilbertian field and m ≥ 2n ≥ 3. Then, under
Heuristic 2.2 for D and G, the set F0 ∩ F̃≤D is dense for the relative Zariski topol-

ogy of F̃≤D.

Here we say a field K is a Hilbertian field if Hilbert’s irreducibility theorem
(Theorem 4.7, [14, Theorem 14.4.2]) holds for K. For example, number fields are
Hilbertian.

Corollary 2.4. Assume that the same hypothesis in Theorem 2.3 holds. If
Heuristic 2.2 is true for sufficiently large integers D ≥ 0 and a given G, then F0 is
Zariski dense in F .

Proof. By Prop. 4.3 and the definition of X≤D, there exists an ascending
chain of subsets

F̃≤D ⊂ F̃≤(D+1) ⊂ · · · ⊂ F =
⋃

D′≥D

F̃≤D′ .

Let V be the Zariski closure of F0 in F . It follows that V ∩ F̃≤D = F̃≤D for all
sufficiently large D ≥ 0 from the hypothesis and Theorem 2.3. Therefore, we have

V = V ∩ F = V ∩
⋃

D′≥D

F̃≤D′ =
⋃

D′≥D

V ∩ F̃≤D′ =
⋃

D′≥D

F̃≤D′ = F .

□

The organization of this paper is as follows. In Section 3, we provide elementary
definitions and notations, and recall the method proposed in [21] for constructing
the dataset, which we call the left regular matrix method. As a generalization, we
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introduce a new algorithm (Algorithm 2). In Section 4, we study the density of the
set

F0 =

{
U

(
En

O(m−n)×n

)
G

∣∣∣∣U ∈ E(m)

}
,

consisting of all possible outputs of Algorithm 2, in

F = {F ∈ Rm | ⟨F ⟩ = ⟨G⟩}.

First, we examine the algebraic aspects of F and F0 using the Quillen-Suslin theo-
rem (Theorem 4.1). Subsequently, we show that F0 is Zariski dense in F . Our main
tool is Hilbert’s irreducibility theorem (Theorem 4.7), which asserts that the irre-
ducibility of a generic irreducible polynomial is preserved, even after specialization
by variable transformations under certain assumptions.

Remark 2.5. In the learning experiments on Gröbner basis computation con-
ducted in [21], an intriguing phenomenon was observed: the learning accuracy
varied significantly depending on the choice of the coefficient field. When the co-
efficient field was the field of rational numbers, the model achieved an accuracy of
approximately 90%. In contrast, when the coefficient field was a finite field, the
model’s accuracy ranged from 50% to 70%. In general, low learning accuracy in
machine learning models can result from the intrinsic complexity of the task or the
nature of the training data. Empirical studies have shown that Transformers exhibit
difficulties when learning operations over finite fields [18, 15, 19]. This suggests
that the challenge of learning coefficients in Gröbner basis computation may arise
from the same underlying and yet-to-be-understood mathematical mechanisms that
govern computation over finite fields. On the other hand, when the coefficients are
drawn from the field of rational numbers, it is plausible that the task of computing
Gröbner bases becomes relatively more tractable, and that the training data covers
a broader and more expressive range of instances, thereby enabling higher learn-
ing accuracy. In our study, we have theoretically demonstrated a certain notion of
density in the construction of training datasets generated by the algorithm in [21].
This density result implies that, over the field of rational numbers, the learning
data exhibits sufficient richness and diversity to support high-accuracy learning.
Conversely, over finite fields, such density may not hold—or may be inherently
limited—due to structural constraints, potentially explaining the lower empirical
accuracy observed. In this sense, our result serves as a kind of theoretical jus-
tification for the empirical performance gap between the rational and finite field
settings, suggesting that the success over the rationals is not incidental but backed
by underlying mathematical guarantees.

Remark 2.6. In the experiments of [21], a constraint of m ≤ n+2 is imposed
between the number of elements n of G and the number of elements m of F , due to
the input length limitations of the vanilla Transformer architecture. Since the main
theorem of this paper assumes m ≥ 2n, the case n = 2 is the only setting, while
they conjecture that high accuracy can still be achieved over the field of rational
numbers even when m > n + 2, and the main theorem of this paper provides
theoretical support for this belief.

Acknowledgment. The authors would like to express their gratitude to Yuki
Ishihara, Kazuhiro Yokoyama, and Hiroshi Kera for their many comments and
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fellowship granted to the second author.

Notation and convention

• Let K be a field, and r,m, n be integers ≥ 1 with m ≥ n.
• Let R = K[x1, . . . , xr] be the polynomial ring in r variables over K. For a
vector of non-negative integers α = (α1, . . . , αr) ∈ Zr

≥0, we denote by xα

the monomial

xα := xα1
1 . . . xαr

r

of total degree |xα| =
∑r

i=1 αi using multi-index. For a polynomial f ∈ R,
we define its total degree, denoted by deg f, to be the maximum among
the total degrees of monomials appearing in f.

• As stated in the Introduction, let

R≤D := {f ∈ R | deg f ≤ D} =

 ∑
|α|≤D

cαx
α

∣∣∣∣∣∣ {cα}|α|≤D ⊂ K

 .

We denote by ND the number of monomials in R≤D. Note that we have

ND =
∑D

d=0

(
r+d
d

)
.

• For a tuple of polynomials F = (f1, . . . , fm) ∈ Rm, we denote by ⟨F ⟩ =
⟨f1, . . . , fm⟩ the ideal generated by f1, . . . , fm.

In this paper, we do not recall the elementary notions of Gröbner basis theory
since we will not assume that the given polynomial set G is a (shape position)
Gröbner basis in our results. The interested reader may refer to [9] for an intro-
duction to Gröbner basis theory.

3. Algorithm for constructing a training dataset

3.1. Left regular matrix methods. To obtain a large-scale set of Gröbner
basis, in [21], the authors restricted to the case of shape position Gröbner bases.
This is the generic case for Gröbner bases of zero-dimensional radical ideals.

Proposition 3.1 ([16, Proposition 1.6]). Let I be a 0-dimensional radical ideal
in K[x1, . . . , xn] with the lexicographic order x1 > · · · > xn. If K is of characteristic
0 or a finite field having large enough cardinality, then a random linear coordinate
change puts I in shape position. In other words, the reduced Gröbner basis of I
consists of g1, · · · , gn so that

g1 = x1 − h1(xn),

...

gn−1 = xn−1 − hn−1(xn),

gn = gn(xn),

where h1, h2, . . . , hn−1 and gn are polynomials in xn.

We call a Gröbner basis in the above form a shape position Gröbner basis.
The set of all shape position Gröbner basss of degree D is parameterized by the
affine space (AD

K)n (parameterizing the coefficients of the non-leading terms of the
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gi’s). Thus we can easily construct a large dataset of shape position Gröbner bases
following a given distribution.

Throughout this paper, we are supposed to have an algorithm for producing
a large dataset G consisting of Gröbner bases contained in a class of the target
of the model. It follows that we only focus on algorithms for constructing sets of
generators F such that ⟨F ⟩ = ⟨G⟩ for a given element G ∈ G. The basic idea in
[21] for constructing such an algorithm is the following. Let

G = (g1, . . . , gn)
T =

g1
...
gn

 ∈ Rn×1

be a tuple of polynomials. If another tuple of polynomials

F = (f1, . . . , fm)T =

 f1
...
fm

 ∈ Rm×1

satisfies fi ∈ ⟨G⟩ for any i, then there exists a polynomial matrix A ∈ Rm×n with

F = AG.

In this setting, if A has a left inverse matrix B ∈ Rn×m, then F is a set of generators
of ⟨G⟩ since BF = BAG = G. Let us work on such matrices.

Definition 3.2. We say a matrix A ∈ Rm×n is a left regular matrix over R if
there exists a left inverse matrix B ∈ Rn×m. We simply say A is regular over R if
A is left regular and m = n.

To construct a left regular matrix A ∈ Rm×n over R efficiently, one can consider
the Bruhat-like decomposition

A = U1S

(
U2

O(m−n)×n

)
.

Here, U1 ∈ Rm×m and U2 ∈ Rn×n are upper triangle matrices with diagonal entries
all 1, O(m−n)×n is the zero matrix of size (m−n)×n, and S is a permutation square
matrix of size m. Clearly A has a left inverse matrix

B =
(
U−1
2 |On×(m−n)

)
S−1U−1

1 .

This matrix B is in Rn×m since detU1 = detU2 = detS = 1. Then the matrix A
is left regular over R.

In this paper, we first consider the generalization of the above. If V1 ∈ Rm×m

and V2 ∈ Rn×n are regular matrices over R, then

A = V1

(
V2

O(m−n)×n

)
is a left regular matrix over R. Moreover, from the transformation

A = V1

(
V2 On×(m−n)

O(m−n)×n E(m−n)×(m−n)

)(
En

O(m−n)×n

)
,

it is enough to consider the case of V2 = En, the identity matrix of size m × m.
Hence, the problem of constructing left regular matrices A ∈ Rm×n is reduced to
find regular matrices V ∈ Rm×m. Note that we will show that a polynomial matrix
A ∈ Rm×n is a left regular matrix over R if and only if A is in the above form
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(Proposition 4.2). Now, let us clarify the set of all regular matrices over R of size
m.

Proposition 3.3. A square matrix V ∈ Rm×m is a regular matrix over R if
and only if detV ∈ K \ {0}.

Proof. If V is regular, then there exists a polynomial matrix U ∈ Rm×m

such that UV = Em. Then the determinant detV is a unit of R. Since the set
of units of R is the set K \ {0}, the determinant detV is in K \ {0}. Conversely,

if detV ∈ K \ {0}, then the inverse V −1 = (detV )−1Ṽ , where Ṽ ∈ Rm×m is the
adjugate matrix of V , is in Rm×m. It implies that V is regular over R. □

Let V ∈ Rm×m be a regular matrix of size m. Consider the matrix

U = ((detV )−1e1, e2, . . . , em)V,

where ei is the i-th elementary vector in Rm. It is an element of the special linear
group

SL(Rm) := {U ∈ Rm×m | detU = 1}
over R. It follows that

{V ∈ Rm×m | V is regular over R} = ⟨GL(Km),SL(Rm)⟩
in Rm×m, where

GL(Km) := {C ∈ Km×m | detC ̸= 0}
is the general linear group over K, and ⟨GL(Km),SL(Rm)⟩ is the subgroup gener-
ated by GL(Km) and SL(Rm) in Rm×m. To describe this subgroup in detail, we
recall Suslin’s stability theorem claiming that elementary matrices generate it.

Definition 3.4. Let P be a m×m matrix over R. We say P is an elementary
matrix of size m if it has one of the following forms.

• A row permutation matrix:

P = (e1, . . . , ej , . . . , ei, . . . , em)

for some i < j.
• A row multiplication matrix for an element of K \ {0}:

P = (e1, . . . , cei, . . . , em)

for some c ∈ K \ {0} and i = 1, . . . ,m.
• A row addition matrix for an element of R:

P = (e1, . . . , ei + fej , . . . , em)

for some f ∈ R and i, j = 1, . . . ,m such that i ̸= j.

We denote by E(m) the subgroup of Rm×m generated by all elementary matrices
of size m.

Theorem 3.5 (Suslin’s stability theorem [33]). If m ≥ 3, then

E(m) = ⟨GL(Km),SL(Rm)⟩.

Note that, of course, even in the case of m < 3, we have

E(m) ⊂ ⟨GL(Km),SL(Rm)⟩.
How many matrices of E(m) are enough to obtain a given element of ⟨GL(Km),
SL(Rm)⟩ as their product has been studied in [7] with explicit bounds.
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These observations lead us to a new algorithm to construct random sets of
generators of the given ideal ⟨G⟩ with Algorithm 2. When picking at random in
the algorithm, we mean according to any reasonable distribution (e.g. non-atomic,
uniform . . . ).

Algorithm 2: Algorithm to construct random generators of ⟨G⟩
input : G = (g1, . . . , gn)

T ∈ Rn×1, m ≥ n.
output: F = (f1, . . . , fm)T ∈ Rm×1 such that ⟨F ⟩ = ⟨G⟩.

1 Pick a random integer s ≥ 1 ;

2 Pick random elementary matrices U1, U2, . . . , Us of size m ;

3 Compute the product U = U1U2 · · ·Us;

4 Compute the matrix

A = U

(
En

O(m−n)×n

)
;

5 return F = AG

Proposition 3.6. Algorithm 2 is correct. In other words, For any input G,
the output F generates the ideal ⟨G⟩.

Proof. Since a product of any elementary matrix is regular over R, the matrix
U in step 3 is regular over R. Then A is also left regular over R since it holds that

B = (En|On×(m−n))U
−1 ∈ Rn×m

and BA = En, which forces ⟨F ⟩ = ⟨G⟩. □

4. Density of the outputs

The goal of this section is to show that

F0 =

{
U

(
En

O(m−n)×n

)
G

∣∣∣∣U ∈ E(m)

}
is dense in

F = {F ∈ Rm | ⟨F ⟩ = ⟨G⟩}.

4.1. Algebraic aspects of F and F0. First, we show Proposition 4.2, as-
serting that F0 is the same as the set of generators F = AG whose A is a left
regular matrix over R.

Theorem 4.1 (Quillen-Suslin theorem, also known as Serre’s conjecture). A
finitely generated projective R-module is free.

Proof. See [24, XXI Theo. 3.7] □

Proposition 4.2. For any left regular matrix A ∈ Rm×n with m ≥ n ≥ 3,
there exists an element U ∈ E(m) such that

A = U

(
En

O(m−n)×n

)
.
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Proof. Let B ∈ Rn×m be a matrix such that BA = En. Let φA : Rn → Rm

and φB : Rm → Rn be the R-module morphisms defined by φA(C) = AC and
φB(C) = BC. The assumption on B implies that the sequence

(4.1) 0 → Ker(φB) → Rm φB→ Rn → 0

is a split exact sequence. The kernel Ker(φB) is projective. Indeed, this is a direct
summand of the free module Rm. Then, by Theorem 4.1, Ker(φB) is free. Moreover,
since Rn is projective over R, we have

Ext1R(R
n,Ker(φB)) = 0.

It follows that Ker(φB) is isomorphic to the free module R(m−n) and the sequence
(4.1) corresponds to the zero of the module Ext1R(R

n, R(m−n)), which forces that

0 → R(m−n) → Rn prn→ Rm → 0,

where prn is the projection to the first n coordinates. Hence there exist isomor-
phisms ρ : Rm → Rm and τ : Rn → Rn of R-modules making the diagram

Rm φB //

ρ

��

Rn

τ

��

Rm
prn // Rn

commutative. Let U , V , U ′, V ′ be matrices that represent ρ, τ , ρ−1, τ−1 respec-
tively. These are matrices with entries in R since ρ−1 and τ−1 are still R-module
morphisms. Then we have det(U),det(V ) ∈ R× = K \ {0} from Proposition 3.3.
Therefore we obtain

B = V −1(En|On×(m−n))U (V ∈ E(n), U ∈ E(m))

from Theorem 3.5. Taking a block matrix representation

UA =

(
A1

A2

)
for A1 ∈ Rn×n and A2 ∈ R(m−n)×n, we have

En = BA = BU−1UA = V −1A1.

It implies that

A = U−1

(
V
A2

)
= U−1

(
V On×(m−n)

A2 E(m−n)×(m−n)

)(
En

O(m−n)×n

)
.

By the row reduction, we can show that the matrix

U−1

(
V On×(m−n)

A2 E(m−n)×(m−n)

)
is an element in E(m). □

From Proposition 4.2, we obtain another representation of the subset F0 of the
all possible outputs of Algorithm 2 as

F0 =

{
U

(
En

O(m−n)×n

)
G

∣∣∣∣U ∈ E(m)

}
= {F = AG ∈ F | A ∈ Rm×n is left regular over R}.
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We will use this representation to construct a dense subset V ⊂ F0 consisting
of elements of the form F = AG with left regular matrices A (Proposition 4.6,
Theorem 4.11). Next, we analyze F = {F ∈ Rm×1 | ⟨F ⟩ = ⟨G⟩}.

Proposition 4.3. Let F = AG for A ∈ Rm×n. The tuple of polynomials F
is a generator of ⟨G⟩ if and only if there exists a matrix B ∈ Rn×m such that
(BA− En)G = On×1.

Proof. The polynomials F = AG is a set of generators of ⟨G⟩ if and only
if there exists a matrix B ∈ Rn×m such that G = BF = BAG. The latter is
rephrased as (BA− En)G = On×1. □

Definition 4.4. We call a polynomial row vector H = (h1, . . . , hn) ∈ R1×n a
syzygy of G if HG = h1g1 + · · ·+ hngn = 0. The set of all syzygies of G is denoted
by Syz(G) ⊂ R1×n. We also denote by Syz(G)m ⊂ Rm×n the set consisting of
matrices that all rows are a syzygy of G.

Namely,
Syz(G)m = {C ∈ Rm×n | CG = On×1}.

Using Proposition 4.3 and the syzygies of G, we will find enough condition for
F ∈ F to be in F ∈ F0.

Proposition 4.5. Assume that m ≥ n ≥ 3. Let us denote by

B = (B1|B2), A =

(
A1

A2

)
(B1, A1 ∈ Rn×n, B2 ∈ Rn×(m−n), A2 ∈ R(m−n)×n)

a block representations of B ∈ Rn×m and A ∈ Rm×n. Let F = AG ∈ F be a set
of generators of ⟨G⟩ and B a matrix such that W := BA − En ∈ Syz(G)n. If the
determinant of En + W − B2A2 is a non-zero irreducible polynomial in R, then
F ∈ F0.

Proof. We note that

En +W −B2A2 = B1A1.

The assumption on the determinant of En+W−B2A2 implies that detB1 ∈ K\{0}
or detA1 ∈ K \ {0}.

First suppose that detB1 ∈ K \ {0}. In this case, we have

A1 = B−1
1 (En +W −B2A2).

Let us consider a matrix

A′ :=

(
B−1

1 (En −B2A2)
A2

)
∈ Rm×n.

Then we have
BA′ = B1(B

−1
1 (En −B2A2)) +B2A2 = En

and

AG =

(
B−1

1 (En +W −B2A2)G
A2G

)
=

(
B−1

1 (En −B2A2)G
A2G

)
= A′G

since W ∈ Syz(G)n. Hence the set of generators F = AG = A′G is an element of
F0 by Proposition 4.2.

For the case of detA1 ∈ K \ {0}. putting
B′ := (A−1

1 | On×(m−n)) ∈ Rn×m,
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we have

B′A = (A−1
1 | On×(m−n))

(
A1

A2

)
= En.

Proposition 4.2 again concludes the claim. □

4.2. Geometric aspects of F and F0. Let us denote by

X := {(B,A) | B ∈ Rn×m, A ∈ Rm×n, (BA− En)G = On×1}

an algebraic set in the affine space Rn×m × Rm×n. Proposition 4.3 claims that
there exists a surjective continuous map

φ : X → F

(B,A) 7→ AG.

The goal of this subsection is to find a dense subset X0 of X such that φ(X0) ⊂
F0. The existence of such a subset implies that F0 is dense in F from the following
basic topological fact that the image of a dense subset of a topological space is also
dense under a continuous subjective map.

Let us consider a block representation of B ∈ Rn×m and A ∈ Rm×n:

B = (B1|B2), A =

(
A1

A2

)
,

where B1, A1 ∈ Rn×n, B2 ∈ Rn×(m−n) and A2 ∈ R(m−n)×n. According to these,
we shall define

p : X → Rn×n

(B,A) 7→ B1A1

and

δ : Rn×n → R

C 7→ det(C).

The following proposition is another version of Proposition 4.5 in the geomet-
rical context. Put

U := {f ∈ R \ {0} | f is irreducible}.

Proposition 4.6. Assume that m ≥ n ≥ 3. Then the following inclusion of
subsets in X is true:

(δ ◦ p)−1(U) ⊂ φ−1(F0).

Proof. Pick an element (B,A) ∈ (δ ◦ p)−1(U) ⊂ X . The image is

(δ ◦ p)(B,A) = det(B1A1).

Then similar to the proof of Proposition 4.5, (δ ◦ p)(B,A) ∈ U implies that AG =
φ(B,A) ∈ F0. □

From a well-known fact, which is so-called Hilbert’s irreducibility theorem, the
inverse image

δ−1(U) ∩Rn×n
≤D = {C ∈ Rn×n

≤D | det(C) is non-zero irreducible}

is Zariski dense in Rn×n
≤D = (AND

K )n×n over K.
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Theorem 4.7 (Hilbert’s irreducibility theorem). Let f(X1, . . . , Xr, Y1, . . . , Ys)
be an irreducible element in Q(X1, . . . , Xr)[Y1, . . . , Ys]. Then the set

{(a1, . . . , ar) ∈ Qr | f(a1, . . . , ar)(Y1, . . . , Ys) is irreducible}

is Zariski dense in Ar
Q.

Proof. See [14, Theorem 14.4.2]. □

As written in section 1, we say a field K is Hilbertian if Hilbert’s irreducibility
theorem holds when replacing Q to K. To apply Hilbert’s irreducibility theorem to
our situation, let us prove the following lemma on the irreducibility of the determi-
nant of a generic polynomial matrix.

Lemma 4.8. The polynomial

DET({cα,i,j}, {xk}) ∈ K[cα,i,j | xα ∈ R≤D, 1 ≤ i, j ≤ n][x1, . . . , xn]

corresponding to the map

δ : Rn×n
≤D → R

C =

 ∑
|α|≤D

cα,i,jx
α

 7→ detC = DET({cα,i,j}, {xk})

is irreducible in K(cα,i,j | xα ∈ R≤D, 1 ≤ i, j ≤ n)[x1, . . . , xn].

Proof. Let

Γ := DET({cα,i,j}, {xk}) ∈ K[cα,i,j | xα ∈ R≤D, 1 ≤ i, j ≤ n][x1, . . . , xn].

We first prove that Γ is irreducible in

K(x1, . . . , xn)[cα,i,j (xα ∈ R≤D, 1 ≤ i, j ≤ n)].

The proof can be understood as an extension of the classical proof of irreducibil-
ity of the determinant of a matrix of generic entries, see e.g. [4, p.176].

We recall Leibniz’s formula for determinants:

(4.2) Γ =
∑

σ∈Sn

sign(σ)

n∏
l=1

 ∑
|α|≤D

cα,l,σ(l)x
α

 .

Suppose Γ = fg for some polynomials

f, g ∈ K[cα,i,j (x
α ∈ R≤D, 1 ≤ i, j ≤ n), x1, . . . , xn].
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By (4.2), Γ has degree at most 1 with respect to any of the cα,i,j . For any α, i, j,
adequate substitutions of 0’s or 1’s prove that Γ can be evaluated to

det





1 0 · · · 0

0
. . .

1 0
0 0 1 0

1 0
...

. . .
...

0 1
0 cα,i,j 0 0

0 1
. . . 0

0 · · · 0 1





= ±cα,i,j .

Consequently, all the variables cα,i,j must appear in Γ.
Suppose that for some α, cα,1,1 appears in f. By consideration of degrees in

cα,1,1, it then can not appear in g. Leibniz’s formula (4.2) proves that there is no
term where cα,1,1cα,1,j can appear in Γ with j ̸= 1. It follows from the equality

(u1cα,1,1 + u2)(u3cα,1,j + u3) = u1u2cα,1,1cα,1,j + u1u3cα,1,1 + u2u3cα,1,j + u2u3,

that cα,1,j can not appear in g and must appear in f . Similarly, all the cα,i,1 must
appear in f and not in g. With the same argument applied for cα,i,1, we can prove
that all cα,i,j ’s must appear in f and not in g.

If we take some β ̸= α with |β| ≤ D, (4.2) proves that there is no term in
cα,1,1cβ,1,1 in Γ. Thus, cβ,1,1 must appear in f and not in g. Using the previous
argument, we gets that all the cβ,i,j must appear in f and not in g. Therefore, g
can not contain any cα,i,j for |α| ≤ D, 1 ≤ i, j ≤ n. Thus, g can only be a pure
polynomial in K[x1, . . . , xn] and Γ is then irreducible in K(x1, . . . , xn)[cα,i,j (x

α ∈
R≤D, 1 ≤ i, j ≤ n)].

As a polynomial in K[x1, . . . , xn][cα,i,j (x
α ∈ R≤D, 1 ≤ i, j ≤ n)], its content

has to be 1. Indeed, from (4.2), the coefficient of the monomial c0,1,1 · · · c0,n,n in Γ
is 1. By Gauss’s lemma, it implies that Γ is irreducible in K[x1, . . . , xn][cα,i,j (x

α ∈
R≤D, 1 ≤ i, j ≤ n)], and then, again by Gauss’s lemma, Γ is irreducible in K(cα,i,j |
xα ∈ R≤D, 1 ≤ i, j ≤ n)[x1, . . . , xn]. □

Lemma 4.9. The set δ−1(U)∩Rn×n
≤D is Zariski dense in the affine space Rn×n

≤D .

Proof. From Hilbert’s irreducibility theorem (Theorem 4.7), the set

{(cα,i,j) ∈ (KND )n×n | DET({cα,i,j}, {xk}) is non-zero irreducible},

which is equal to δ−1(U) ∩Rn×n
≤D , is Zariski dense in the affine space Rn×n

≤D . □

Let us summarize our situation in the following commutative diagram:

F̃≤D X≤D
φ

oo
p

// Rn×n
≤D

F0 ∩ F̃≤D

?�

O

(δ ◦ p)−1(U) ∩ X≤D
oo

?�

O

// δ−1(U) ∩Rn×n
≤D .

?�

dense

O
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Here we denote by

X≤D :=

{
(B,A) ∈ Rn×m

≤D ×Rm×n
≤D

∣∣∣∣∣(BA− En)G = On×1,

B1A1 ∈ Rn×n
≤D

}
,

F̃≤D := {F ∈ Rm×1 | ⟨F ⟩ = ⟨G⟩, ∃ (B,A) ∈ Xm×n
≤D F = AG}.

Thus, if the set (δ ◦ p)−1(U) ∩ X≤D is dense in X≤D, then the set F0 ∩ F̃≤D is

dense in F̃≤D. We use the following lemma that states that the preimage of a dense
subset under a flat morphism is still dense. Note that the flatness of a morphism
of schemes can be understood as the preservation of geometric properties by the
morphism. For more precise, see [20, III.9].

Lemma 4.10. Let f : Y → Z be a flat morphism of finite type between Noether-
ian schemes. Let V be a dense subset in Z. Then the preimage f−1(V) is dense in
Y .

Proof. It is enough to show that for any non-empty open subset U in Y , the
intersection U∩f−1(V) is not empty. In fact, a flat morphism of finite type between
Noetherian schemes is open [20, Exercise III.9.1]. Since f is open, the image f(U)
is a non-empty open subset in Z for any non-empty open subset U in Y . Then we
have f(U) ∩ V ̸= ∅, which forces U ∩ f−1(V) ̸= ∅. □

Theorem 4.11. Assume that

Y = {x ∈ X≤D | p is flat at x}
is not empty and X≤D is irreducible. Then (δ ◦ p)−1(U) ∩ X≤D is dense in X≤D.

Proof. Since Rn×n
≤D is an integral scheme, the flat locus Y is open in X≤D. In

particular, the restriction p|Y : Y → Rn×n
≤D is a flat morphism of finite type between

Noetherian schemes. By Lemma 4.10, the preimage

p−1(δ−1(U) ∩Rn×n
≤D ) ∩ Y

is dense in Y . Now let us show the density of (δ ◦ p)−1(U)∩X≤D in X≤D. For any
non-empty open subset W in X≤D, the intersection Y ∩ W is a non-empty open
subset in Y by our assumption. Then the intersection

(Y ∩W) ∩ (p−1(δ−1(U) ∩Rn×n
≤D ) ∩ Y ) = Y ∩W ∩ (δ ◦ p)−1(U)

is not empty. In particular,

(δ ◦ p)−1(U) ∩ X≤D ∩W ⊃ (δ ◦ p)−1(U) ∩ Y ∩W
is also not empty. Therefore (δ ◦ p)−1(U) ∩ X≤D is dense in X≤D. □

The main result of Section 2 and of this document can then be obtained as a
corollary.

Corollary 4.12 (Theorem 2.3). If m ≥ 2n ≥ 3 and X≤D is irreducible, then

the set F0 ∩ F̃≤D is dense in F̃≤D.

Proof. (also proof of Theorem 2.3). It is enough to show that Y in
Theorem 4.11 is not empty. First we shall construct a section ι : Rn×n

≤D → X≤D of

p : X≤D → Rn×n
≤D such that p ◦ ι = id. For any C ∈ Rn×n

≤D , let us consider matrices

B2 = (En | On×(m−2n)) ∈ Rn×(m−n), A2 =

(
En − C

O(m−2n)×n

)
∈ R(m−n)×n
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and put

B = (En | B2), A =

(
C
A2

)
.

Then we have

En −B2A2 = En − (En − C) = C, BA = C +B2A2 = En.

By defining ι(C) := (B,A), the pair (B,A) is an element of X≤D and it holds that
p(B,A) = C. Clearly, the map ι : Rn×n

≤D → X≤D is a morphism of schemes.

Now, we show that the flat locus Y is not empty. Let us consider Rn×n
≤D to

be the affine scheme SpecK[cα,i,j | xα ∈ R≤D, 1 ≤ i, j ≤ n]. Let L be the field
of fractions of K[cα,i,j | xα ∈ R≤D, 1 ≤ i, j ≤ n]. Then SpecL is isomorphic
to a non-empty open subscheme V in Rn×n

≤D . Since any module over L is flat, the

preimage p−1(V) is contained in Y . Therefore the surjectivity of p implies that Y
is not empty. □

Remark 4.13. Similar to the proof of Corollary 4.12, in any case, there exists
a non-empty open dense subscheme V ⊂ Rn×n

≤D so that

p : p−1(V) ∩ X≤D → Rn×n
≤D

is flat. If the flat locus Y is empty, then the image p(X≤D) is in the closed subscheme
Rn×n

≤D \ V, which is very rare case where p is a generic morphism of schemes and V
is a generic open dense subscheme. This is one reason we assumed Heuristic 2.2.
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