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Abstract. A pathway from one vertex of a quiver to another is a reduced

path. We modify the classical definition of quiver representations and we prove
that semi-invariant polynomials for filtered quiver representations come from
diagonal entries if and only if the quiver has at most two pathways between any

two vertices. Such class of quivers includes finite ADE-Dynkin quivers, affine

ÃD̃Ẽ-Dynkin quivers, star-shaped and comet-shaped quivers. Next, we explic-
itly write all semi-invariant generators for filtered quiver representations for

framed quivers with at most two pathways between any two vertices; this result
may be used to study constructions analogous to Nakajima’s affine quotient

and quiver varieties, which are, in special cases, MF•
0 (n, 1) := µ−1

B (0)//B and

MF•
(n, 1) := µ−1

B (0)s/B, respectively, where µB : T ∗(b× Cn) → b∗ ∼= gl∗n/u,
B is the set of invertible upper triangular n× n complex matrices, b = Lie(B),
and u ⊆ b is the biggest unipotent subalgebra.

1. Introduction

As separating a G-space into invariant (or weight) spaces or constructing
polynomials invariant under a group action is a fundamental and important pro-
cedure in mathematics, Schofield–van den Bergh ([26]), Derksen–Weyman ([5]),
and Domokos–Zubkov ([6]) are a few mathematicians who have explicitly given
strategies on producing (semi)-invariant polynomials for all quiver representations.

In recent years, quiver varieties have been emerging in the study of machine
learning, cf. [17, 1, 12, 16]. Additionally, see [7] for the emergence of topological
quantum field theories, topological quantum neural networks, and certain quiver
representations in the context of information processing. In this paper, we modify the
classical construction of quiver representations in such a way that our construction
is related to the Grothendieck–Springer resolution ([2], [9], [13], [14], [15], [24]),
Khovanov–Lauda and Rouquier (KLR) algebras ([18], [19], [25], [27]), universal
quiver Grassmannians and universal quiver flag varieties ([3]), and Lusztig’s upper
half U+ of the universal enveloping algebra of a Kac-Moody algebra ([20], [21], [22]),
but such details will not be elaborated here. Instead, we describe the modification
of quiver representations, which is as follows. Consider a sequence of vector spaces
over each vertex of a quiver and restrict to the subspace of quiver representations
that preserve this fixed sequence of vector spaces; we call such space filtered quiver
representations. Furthermore, there is a unique largest unipotent subgroup of the
set of complex invertible matrices over each vertex which preserves the filtration
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of vector spaces and acts as a change-of-basis. Thus, considering the product of
these unipotent groups acting on the filtered quiver representation space, we give
an explicit description of the ring of invariant polynomials.

Let Q = (Q0, Q1) be a finite, connected, nonframed quiver and β ∈ ZQ0

≥0 be a
dimension vector. Assume F • is a filtration of vector spaces at each vertex and
F • Rep(Q, β) is a subspace of Rep(Q, β) whose representations preserve F •; the
product Uβ of largest unipotent subgroups of a parabolic group acts on F • Rep(Q, β)

as a change-of-basis. A framed quiver Q† = (Q†
0, Q

†
1) is obtained from Q by

adding a single new vertex i′ to Q0 together with an arrow from i′ to i. Let

β† = (β1, . . . , βQ0 ,m) ∈ ZQ
†
0

≥0 be the dimension vector for the framed quiver. We
define

F • Rep(Q†, β†) := F • Rep(Q, β)⊕Mβi×m,

where Mβi×m is the space of all βi ×m complex matrices.
Throughout this paper, assume β = (n, . . . , n), a uniform dimension vector, and

F • is the complete standard filtration of vector spaces at each (nonframed) vertex of
Q. A reason why we are using a uniform dimension vector is because this problem
becomes significantly difficult if we are using a more general dimension vector. Let
tn be the set of complex diagonal matrices in the set gln of n× n complex matrices.

The definition of a pathway between two vertices is given in Definition 2.2.

Theorem 1.1. Q is a quiver with at most two distinct pathways between any
two vertices if and only if C[F • Rep(Q, β)]Uβ ∼= C[t⊕Q1 ].

Remark 1.2. Quivers satisfying Theorem 1.1 include ADE-Dynkin quivers,

affine ÃD̃Ẽ-quivers, star-shaped and comet-shaped quivers ([13]).

Theorem 1.1 has a number of important consequences, including if Uβ-invariants
for filtered quiver representations only come from diagonal blocks (i.e., the semisimple
part), then Q has at most two pathways between any two vertices. Furthermore,
this implies that Domokos-Zubkov’s technique is applicable to the filtered quiver
representation space if the quiver has at most two pathways between any two
vertices. It is, in fact, shown in [13] that off-diagonal entries contribute as invariant
polynomials if Q has more than two pathways between some of its vertices. We note
that Theorem 1.1 could easily be generalized if we take the filtration of vector spaces
at each (nonframed) vertex i ∈ Q0 to be G•

i : C0 ⊆ Cγ1 ⊆ Cγ2 ⊆ . . . ⊆ Cγk = Cn;
in such setting, only the Levi subalgebra components in the filtered representation
space contribute Uβ-invariant polynomials.

Theorem 1.3. Let Q† be a framed quiver with at most two distinct pathways

between any two vertices. Let β = (n, . . . , n,m) ∈ ZQ
†
0 be a dimension vector, where

m is associated to the framed vertex. Then C[F • Rep(Q†, β†)]Uβ ∼= C[t⊕Q1 ]⊗CC[{f}],
where

(1) f =
∑
ν

gν((α)ast)(Jν |Iν)ΦΨ···Γ ,

where gν((α)ast) ∈ C[t⊕Q1 ] and (Jν |Iν)ΦΨ···Γ is the block standard bideterminant
given in Definition 4.10.
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2. Background

We refer to the author’s doctoral thesis ([13]), Crawley-Boevey ([4]) and
Ginzburg ([10]) for background on quivers and their representations.

Definition 2.1. Let Q be a quiver. Let p = ak · · · a2a1 be a path where ai ∈ Q1

are arrows. If p is a cycle, then we define pm to be the path composed with itself m
times, i.e.,

pm := p ◦ p ◦ · · · ◦ p = (ak · · · a2a1) · · · (ak · · · a2a1)︸ ︷︷ ︸
m

= (ak · · · a2a1)m.

A path p is reduced if [p] ̸= 0 in CQ/⟨q2 : q ∈ CQ, l(q) ≥ 1⟩.

Definition 2.2. A pathway from vertex i to vertex j is a reduced path from i
to j. We define pathways of a quiver Q to be the set of all pathways from vertex i
to vertex j, where i, j ∈ Q0.

Note that pathways (of a quiver Q) include trivial paths and they form a finite
set since Q is a finite quiver. We will now give an example of Definition 2.2.

Example 2.3. Consider the 2-Jordan quiver:

1• a1.dd
a2

$$

Then a22a1 is a path but not a pathway since it is not reduced. However, the path
a2a1 is a pathway.

Next, we make a distinction between quiver varieties and quiver representations.
When one refers to quiver varieties, one usually means Nakajima quiver varieties,
i.e., the Hamiltonian reduction of a (double) framed quiver representation space
twisted by a nontrivial character ([23]). In this paper, we will only work with quiver
representations.

2.1. Filtered quiver representations. We give the construction of filtered
quiver representations in the general setting. Let Q be a quiver and let β =

(β1, . . . , βQ0
) ∈ ZQ0

≥0, a dimension vector. Let F • : 0 ⊆ Cγ1 ⊆ Cγ2 ⊆ . . . ⊆ Cβ be a

filtration of vector spaces such that the filtration F •
i : 0 ⊆ Cγ1

i ⊆ Cγ2
i ⊆ . . . ⊆ Cβi of

vector spaces is fixed at vertex i for each i ∈ Q0. Let Rep(Q, β) be the representation
space in the classical sense (without the filtration of vector spaces imposed). Then
F • Rep(Q, β) is a subspace of Rep(Q, β) whose linear maps preserve the filtration
of vector spaces at every level. Let Ui ⊆ GLβi(C) be the largest unipotent group

preserving the filtration of vector spaces at vertex i. Then the product Uβ :=
∏
i∈Q0

Ui

of unipotent groups acts on F • Rep(Q, β) as a change-of-basis.
We will say a representation (or a matrix) is general if it has indeterminates or

zero in its entries.
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3. Proof of Theorem 1.1

Proof. First, we will prove from right to left. Assume C[F • Rep(Q, β)]Uβ ∼=
C[t⊕Q1 ]. We will prove that Q has at most two distinct pathways between any two
vertices. For a contradiction, suppose Q has 3 or more pathways at some vertices.
There are two cases to consider:

[1] Q has 3 or more pathways from a vertex to itself, e.g., •:: dd,
[2] Q has 3 or more pathways from vertex i to vertex j, where i ̸= j, e.g.,

i• ((// 66
j
• or

i• ((
66
j
• dd or

i• ((
66 • ((

66
j
• or

i• // •DD
((
66
j
• .

Consider Case [1]. Without loss of generality, relabel the vertex with 3 or more
pathways as 1 and label the distinct pathways from vertex 1 to itself as

a1 = pi1 · · · piα , a2 = pj1 · · · pjβ , . . . , am = pk1 · · · pkγ ,

where m ≥ 2 and each al is not the trivial path. Write a general representation
of a1, . . . , am as A1, . . . , Am, each of which is in b with polynomial entries. Let
A1 = ((1)aij) and A2 = ((2)aij), and consider the polynomial

f(A1, . . . , Am) = ((1)a11 − (1)a22)(2)a12 − ((2)a11 − (2)a22)(1)a12.

For u ∈ U ∼= U × In
Q0−1 ⊆ Uβ where u acts on the restricted tuple (A1, . . . , Am)

of the filtered representation space via u.(A1, . . . , Am) = (uA1u
−1, . . . , uAmu

−1)
and In is the n × n identity matrix, the coordinates change as (l)a12 7→ (l)a12 +
u12((l)a22 − (l)a11) under the group action. A restricted tuple means we ignore
and suppress all other components of F • Rep(Q, β) for simplicity as they are not
currently relevant. So

u.f(A1, . . . , Am)

= ((1)a11 − (1)a22)((2)a12 + u12((2)a22 − (2)a11))− ((2)a11 − (2)a22)((1)a12 + u12((1)a22 − (1)a11))

= ((1)a11 − (1)a22)(2)a12 − ((2)a11 − (2)a22)(1)a12

+ u12((1)a11 − (1)a22)((2)a22 − (2)a11)− u12((2)a11 − (2)a22)((1)a22 − (1)a11)

= f(A1, . . . , Am).

This implies C[F • Rep(Q, β)]Uβ ⊋ C[t⊕Q1 ], which is a contradiction.
Now consider Case [2]. Suppose

a1 = pi1 · · · piα , a2 = pj1 · · · pjβ , . . . , ak = pl1 · · · plγ

are distinct pathways from vertex i to vertex j, where i ̸= j, k ≥ 3, and each al is
not the trivial path. Write a general representation of the pathways a1, . . . , ak as
A1 = ((1)aij), . . . , Ak = ((k)aij) ∈ b. Consider the Uβ-action on F • Rep(Q, β). In

particular, consider In
Q0−2 ×U2 acting locally on b⊕k via

(In, . . . , In, u, v).(A1, . . . , Ak) = (uA1v
−1, . . . , uAkv

−1).

Consider the polynomial

g(A1, . . . , Ak) = ((1)a11(2)a22 − (1)a22(2)a11)(3)a12 + ((3)a11(1)a22 − (3)a22(1)a11)(2)a12

+ ((2)a11(3)a22 − (2)a22(3)a11)(1)a12.
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Then

(In, . . . , In, u, v).g(A1, . . . , Ak) = ((1)a11(2)a22 − (1)a22(2)a11)((3)a12 − (3)a22u12 + (3)a11v12)

+ ((3)a11(1)a22 − (3)a22(1)a11)((2)a12 − (2)a22u12 + (2)a11v12)

+ ((2)a11(3)a22 − (2)a22(3)a11)((1)a12 − (1)a22u12 + (1)a11v12)

= g(A1, . . . , Ak) + ((1)a11(2)a22 − (1)a22(2)a11)(−(3)a22u12 + (3)a11v12)

+ ((3)a11(1)a22 − (3)a22(1)a11)(−(2)a22u12 + (2)a11v12)

+ ((2)a11(3)a22 − (2)a22(3)a11)(−(1)a22u12 + (1)a11v12) = g(A1, . . . , Ak).

This implies that g is an invariant polynomial, which contradicts that C[F • Rep(Q, β)]Uβ ∼=
C[t⊕Q1 ]. Thus, Q is a quiver with at most two pathways between any two vertices.

Now suppose Q is a quiver with at most two distinct pathways between any
two vertices. We first define a notion of total ordering on pairs of integers and then
choose the least pair. We then list all possible local models of arrows of Q at a
fixed vertex. Writing an invariant polynomial which depends on this least pair, we
carefully choose a subgroup of Uβ and show that the invariant polynomial must only
depend on diagonal coordinates of each general matrix in the filtered representation
space. We will now give the full proof.

We label the arrows of Q as a1, a2, . . ., aQ1 . Since it is clear that C[t⊕Q1 ] ⊆
C[F • Rep(Q, β)]Uβ , we will prove the other inclusion. Consider a general representa-
tion of F • Rep(Q, β), which is a tuple of matrices. We define a total ordering ≤ on
pairs (i, j), where 1 ≤ i ≤ j ≤ n, by defining (i, j) ≤ (i′, j′) if either

• i < i′ or
• i = i′ and j > j′.

Let f ∈ C[F • Rep(Q, β)]Uβ . For each (i, j), we can write
(2)

f =
∑

|K|≤d

aKij fij,K , where fij,K ∈ C[{(α)ast : (s, t) ̸= (i, j)}], aKij :=
∏
α∈Q1

(α)a
kα
ij , and |K| =

Q1∑
α=1

kα.

Fix the least pair (under ≤) (i, j) with i < j for which there exists K ̸= (0, . . . , 0)
with fij,K ≠ 0; we will continue to denote it by (i, j). If no such (i, j) exists, then
f ∈ C[(α)aii] and we are done. Let K = (k1, . . . , kQ1

). Let m ≥ 1 be the least
integer satisfying the following: for all p < m, if some component kp in K is strictly
greater than 0, then fij,K = 0. Relabel the head of the arrow corresponding to a
general representation Am of arrow am as vertex m (this is the same m as in the
previous sentence).

Let Uij be the subgroup of matrices of the form uij := (In, . . . , In, ûm, In, . . . , In),
where ûm is the matrix with 1 along the diagonal, the variable u in the (i, j)-entry,
and 0 elsewhere. Let u−1

ij := (In, . . . , In, û
−1
m , In, . . . , In). Then since u−1

ij acts on f
via

u−1
ij .f(A1, . . . , AQ1) = f(uij .(A1, . . . , AQ1))

=


f(A1, . . . , ûmAm′ , . . . , AQ1

) whenever vertex m is a sink of arrow am′ ,

f(A1, . . . , Am′ û−1
m , . . . , AQ1

) whenever vertex m is a source of arrow am′ ,

f(A1, . . . , ûmAm′ û−1
m , . . . , AQ1

) whenever arrow am′ is a loop at vertex m,
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(3)

u−1
ij .(α)ast =


(m′)aij + (m′)ajju if α = m′, (s, t) = (i, j), and m is a sink to am′ ,

(m′)aij − (m′)aiiu if α = m′, (s, t) = (i, j), and m is a source to am′ ,

(m′)aij + ((m′)ajj − (m′)aii)u if α = m′, (s, t) = (i, j), and am′ is a loop at m,

(α)ast if s > i or s = i and t < j.

Locally at vertex m, Q has one of the following local models:

(1)
v1• a1 //

m•

ck

��

c2
''

c1
** vl•aljj

v2•

a2

77

. . . ..
. w2•

vl−1•

al−1

OO

wk•

(2)
v1•

a1

$$

wk•

v2•
a2
//
m•

ζ

		

c2

##

c1

��

ck
::

...

...
w2•

vl•

al

DD

w1•

(3)
v1•

a1

��

w1•

...
...

vl• al //
m•

ck

��

ck′+2

��

c1

88

c2

CC

ck′
++

ck′+1

33
wk′′•

wk′′′• · · ·
wk′′+1•

(4)
vl′•

al′

��

vl′+1•

al′+2

yy

al′+1

��

...
...

v1• a1 //
m•

c1

��

ck

��

vl′′•
al

jj

al−1

tt

w1• · · · wk•

The following argument holds for all four cases. Relabel the arrows in the
following way: write a1, . . . , al if hai = m, c1, . . . , ck if tcj = m, and ζ if ζ is the
loop at m. Let {qϕ}0≤ϕ≤Q1−l−k−1 (or {qϕ}0≤ϕ≤Q1−l−k if there is no loop at vertex
m) be all the other arrows of Q, where q0 := ∅. Write general representations of
aα as Aα = ((α)ast), cγ as Cγ = ((γ)cst), and ζ as Ξ = (ζst), and let ((ϕ)qst) be a
general representation of qϕ. Write

f =
∑

ρ+|K′|+|Γ|≤d

ζρij

l∏
α=1

(α)a
kα
ij

k∏
γ=1

(γ)c
µγ
ij fij,ρ,K′,Γ,

where K ′ = (k1, . . . , kl), Γ = (µ1, . . . , µk), |K ′| =

l∑
α=1

kα, |Γ| =

k∑
γ=1

µγ , and

fij,K′,Γ ∈ C[{(α)ast, (γ)cst, ζst, (ϕ)qst : (s, t) ̸= (i, j) and α ̸∈ {1, . . . , l} and
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γ ̸∈ {1, . . . , k}}] =: R1. Then

0 = u−1
ij .f − f =

∑
ρ+|K′|+|Γ|≤d

(ζij + (ζjj − ζii)u)
ρ

l∏
α=1

((α)aij + (α)ajju)
kα

k∏
γ=1

((γ)cij − (γ)ciiu)
µγfij,ρ,K′,Γ

−
∑

ρ+|K′|+|Γ|≤d

ζρij

l∏
α=1

(α)a
kα
ij

k∏
γ=1

(γ)c
µγ
ij fij,ρ,K′,Γ

=
∑

1≤ρ+|K′|+|Γ|≤d

∑
τ≤ρ

rα≤kα,sγ≤µγ

(
ρ

τ

)(
k1
r1

)(
k2
r2

)
· · ·

(
kl
rl

)(
µ1

s1

)(
µ2

s2

)
· · ·

(
µk
sk

)
·

· ζρ−τij

l∏
α=1

(α)a
kα−rα
ij

k∏
γ=1

(γ)c
µγ−sγ
ij · uτ+|R|+|S|(ζjj − ζii)

τ
l∏

α=1

((α)ajj)
rα

k∏
γ=1

(−(γ)cii)
sγfij,ρ,K′,Γ,

where |R| =
l∑

α=1

rα and |S| =
k∑
γ=1

sγ , and we see that

{
ζρ−τij

l∏
α=1

(α)a
kα−rα
ij

k∏
γ=1

(γ)c
µγ−sγ
ij uτ+|R|+|S| : τ ≤ ρ, rα ≤ kα, sγ ≤ µγ ∀ 1 ≤ α ≤ l, 1 ≤ γ ≤ k

}
is linearly independent over R1. This implies that fij,ρ,K′,Γ = 0 whenever |K ′| ≥ 1,
|Γ| ≥ 1, or ρ ≥ 1, which contradict our choices of (i, j) and m. We conclude that
f ∈ C[t⊕Q1 ]. □

4. Proof of Theorem 1.3

Let λ = (λ1 ≥ λ2 ≥ . . . ≥ λl ≥ 0) be a partition of size |λ| =
∑l
i=1 λi. One

identifies to λ a left-justified shape of l rows of boxes of length λ1, λ2, . . ., λl, which
is called the Young diagram associated to λ. A (Young) filling or a Young tableau of
λ assigns a positive integer to each box of Young diagram.

Example 4.1. Associated to λ = (5, 3, 3, 1) is the Young diagram

and a Young tableau
4 1 2 3 3

3 4 5

2 5 6

1

.

Definition 4.2. A Young tableau is normal if the entries in each row are
strictly increasing from left to right. It is called standard if it is normal and the
entries in each column are nondecreasing from top to bottom. A bitableau J |I is a
pair of Young tableaux J and I having the same shape, and the bitableau is called
standard if both J and I are standard Young tableaux.
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Remark 4.3. In Fulton and Harris ([8]), a Young tableau is called standard
if the entries in each row and column are strictly increasing from left to right and
from top to bottom, and a Young tableau is called semistandard if the entries in
each row are nondecreasing from left to right while the entries in each column are
strictly increasing from top to bottom. We will not use their definition in this paper.

The bideterminant (J |I) of a bitableau is defined in the following way: the
positive integer entries in J in a fixed row correspond to the rows of a matrix while
the positive integer entries in I in the same row correspond to the columns of a
matrix. Take the determinant of these minors of a matrix and repeat for each row
in J |I to obtain the bideterminant (J |I).

Note that the bideterminant (J |I) associated to a bitableau J |I is a product
of minors of a matrix, where J are the row indices and I are the column indices.
Furthermore, a matrix (or a product of matrices) must be specified when calculating
the bideterminant associated to a bitableau; such specification will be denoted on
the lower-right corner of each row of the bitableau (and the bideterminant), i.e., see
(5) and (6).

Example 4.4. Consider the two Young tableaux:

J =
1 2 4

2 4

1 4

and I =
1 2 4

2 4

2 5

.

The tableau J is normal but not standard (since the entries in the first column are
not nondecreasing when reading from top to bottom), while I is standard.

From this point forward, we will not draw a box around each entry of a Young
(bi)tableau or the bideterminant of a bitableau.

Let Q† be a quiver with one framed vertex labelled as 1′ and all other nonframed
vertices labelled as 1, 2, . . ., |Q0|, and the arrows labelled as a0, a1, . . ., a|Q1|,
where ta0 = 1′ and ha0 = 1. Let Aϕu be a general representation of the arrow
aϕu . The product Aϕ1Aϕ2 · · ·A0 of general matrices is associated to the quiver
path aϕ1aϕ2 · · · a0, which begins at the framed vertex. Moreover, Aϕ1Aϕ2 · · ·A0 is
uniquely associated to the sequence

(4) Φ := [ϕ1, ϕ2, . . . , 0]

of integers obtained by reading the indices of Aϕ1
Aϕ2

· · ·A0. Consider all Φ whose
quiver paths begin at the framed vertex; we will fix a partial ordering ≤ on these
finite sequences of nonnegative integers. We say

Φ := [ϕ1, ϕ2, . . . , 0] ≤ [ψ1, ψ2, . . . , 0] =: Ψ

if the number of components in Φ is less than the number of components in Ψ, or if
the number of components in Φ equals the number of components in Ψ and the
right-most nonzero entry in Ψ−Φ is positive when subtracting component-wise.
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Definition 4.5. The sth row of the bitableau

(5)

j
(ϕ)
1 j

(ϕ)
2 . . . j

(ϕ)
v1 |i(ϕ)1 i

(ϕ)
2 . . . i

(ϕ)
v1 Aϕ1 ···A0

j
(ψ)
1 j

(ψ)
2 . . . j

(ψ)
v2 |i(ψ)1 i

(ψ)
2 . . . i

(ψ)
v2 Aψ1

···A0

...
...

j
(µ)
1 j

(µ)
2 . . . j

(µ)
vl |i(µ)1 i

(µ)
2 . . . i

(µ)
vl Aµ1 ···A0

is defined to be the bitableau associated to rows j
(ψ)
1 , j

(ψ)
2 , . . ., j

(ψ)
vs and columns i

(ψ)
1 ,

i
(ψ)
2 , . . ., i

(ψ)
vs in the product Aψ1

Aψ2
· · ·A0 of general matrices. The bideterminant

(6)

(j
(ϕ)
1 j

(ϕ)
2 . . . j

(ϕ)
v1 |i(ϕ)1 i

(ϕ)
2 . . . i

(ϕ)
v1 )Aϕ1 ···A0

(j
(ψ)
1 j

(ψ)
2 . . . j

(ψ)
v2 |i(ψ)1 i

(ψ)
2 . . . i

(ψ)
v2 )Aψ1

···A0

...
...

(j
(µ)
1 j

(µ)
2 . . . j

(µ)
vl |i(µ)1 i

(µ)
2 . . . i

(µ)
vl )Aµ1 ···A0

is the product of bideterminants of the form

(j
(ψ)
1 j

(ψ)
2 . . . j

(ψ)
vs |i(ψ)1 i

(ψ)
2 . . . i

(ψ)
vs )Aψ1

Aψ2
···A0

obtained by taking the determinant of minors of rows j
(ψ)
1 , j

(ψ)
2 , . . . , j

(ψ)
vs and columns

i
(ψ)
1 , i

(ψ)
2 , . . . , i

(ψ)
vs in the product Aψ1Aψ2 · · ·A0 of general matrices.

Note that the sth row of (5) is associated to the sequence Ψ of integers. We say
the bitableau (5) is in block standard form if the sequence Φ of integers associated
to each row of the bitableau is in nondecreasing order (with respect to the partial
ordering ≤ defined earlier in this section) when ascending down the rows, and in the
case the sequence Φ for multiple rows are identical, then these rows are in standard
form as defined in Definition 4.2. In the case that the bitableau (5) is in block
standard form, we will interchangeably say the bideterminant (associated to the
bitableau) is in block standard form.

Example 4.6. Let

A0 =

(
x11 x12
x21 x22

)
and A1 =

(
a11 a12
0 a22

)
.

Then
(2 | 1 )A0

(2 | 2 )A0

(1 2| 1 2 )A1A0

(2 | 1 )A1A0

is a bideterminant in block standard form, and the polynomial associated to the
bideterminant is

x21x22 det(A1A0) · (A1A0)2,1 = x21x22a11a22(x11x22 − x12x21)a22x21

= x221x22a11a
2
22(x11x22 − x12x21).

We recall [11, Theorem 13.1].

Theorem 4.7. Let R = C[{xij : 1 ≤ i ≤ n, 1 ≤ j ≤ m}]. Then bideterminants
of standard bitableaux form a basis of R over C.
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Lemma 4.8. Let the set B ⊆ GLn(C) of invertible upper triangular matrices act

on Mn×m via left translation. Consider the character χp(b) =

n∏
i=p

bii of B and let

f = (p p+ 1 · · ·n|i1 · · · in−p+1) ∈ C[Mn×m] where 1 ≤ i1 < i2 < . . . < in−p+1 ≤ m.
Then b.f = χp(b)f .

Proof. Write b = tu, where t = (tii) ∈ T and u ∈ U , T is the maximal torus

in B and U is the maximal unipotent subgroup of B. Then t.f =

n∏
i=p

tiif = χp(t)f

and for the subgroup Ui,j which has 1 along the main diagonal, the variable u in the
(i, j)-entry and 0 elsewhere, we will show that Ui,j fixes f . So let û ∈ Ui,j . Then
since û.f(x) = f(û−1.x) = f(û−1x),

û.xst =

{
xit − xjtu if s = i,

xst otherwise.

So û.f = f − u(p p+1 · · · j · · · j · · ·n|i1 · · · in−p+1) = f if p ≤ i and û.f = f if p > i.
This concludes the proof. □

The following lemma generalizes Lemma 4.8.

Lemma 4.9. Consider the equioriented (all arrows are pointing in the same
direction) quiver

1′◦ a0 //
1• a1 //

2• . . .
r• ar //

r+1• ,

where β1′ = m and βi = n for 1 ≤ i ≤ r+1. Let Uβ ⊆ Br+1 be the product of largest
unipotent subgroups and let Am be a general matrix associated to arrow am for each
0 ≤ m ≤ r. Then F • Rep(Q, β) =Mn×m ⊕ b⊕r and standard bideterminants of the
form

(7) (p p+ 1 · · · n | i1 i2 · · · in−p+1)Am···A0
, where 1 ≤ p ≤ n and 0 ≤ m ≤ r,

are Uβ-invariant polynomials.

Proof. For u = (u1, . . . , ur+1) ∈ Uβ and (A0, A1, . . . , Ar) ∈Mn×m ⊕ b⊕r,

u.(A0, A1, . . . , Ar) = (u1A0, u2A1u
−1
1 , . . . , uα+1Aαu

−1
α , . . . , ur+1Aru

−1
r ).

We will write the entries of the product Aα · · ·A0 of matrices as ((α)yst), where
((0)yst) = (xst) ∈Mn×m. Then for the subgroup Uij of Uβ which is

Uij = {uij = (In, . . . , ûm, . . . , In) : ûm is the matrix with the variable u in the (i, j)-entry, where i < j,

1 along the diagonal entries, and 0 elsewhere},

uij ∈ Uij acts on ((α)yst) ∈ Aα · · ·A1A0 as follows: Uij changes the coordinate
polynomial (α)yst via

uij .(α)yst =

{
(m−1)yit − (m−1)yjtu if α = m− 1 and s = i,

(α)yst otherwise.

So for f = (p p+ 1 · · · n|i1 i2 · · · in−p+1)Aα···A0
,

uij .f =

{
f − u(p p+ 1 · · · j · · · j · · · n|i1 i2 · · · in−p+1)Am−1···A0

= f if α = m− 1 and p ≤ i,

f otherwise.
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Thus standard bideterminants of the form (p p+ 1 · · · n | i1 i2 · · · in−p+1)Am···A0

are Uβ-invariant polynomials, where 1 ≤ p ≤ n and 0 ≤ m ≤ r. □

Definition 4.10. Assume β = (n, . . . , n,m) ∈ ZQ
†
0

≥0, where m is associated to
the framed vertex. Define

(8) (J |I)ΦΨ···Γ :=

(j1 j1 + 1 . . . n |i(ϕ)1 i
(ϕ)
2 . . . i

(ϕ)
n−j1+1)Aϕ1 ···A0

(j2 j2 + 1 . . . n |i(ψ)1 i
(ψ)
2 . . . i

(ψ)
n−j2+1)Aψ1

···A0

...
...

(jl jl + 1 . . . n |i(µ)1 i
(µ)
2 . . . i

(µ)
n−jl+1)Aµ1 ···A0

as the bideterminant in block standard form, where Aψ1
· · ·A0 is a general represen-

tation of the quiver path aψ1
· · · a0 which begins at the framed vertex.

Note that each sequence Φ of integers associated to each row of (8) corresponds
to a general representation of a quiver path that begins at the framed vertex (this is
important as this will imply the uniqueness of (8): if (J |I)ΦΨ···Γ = (J ′|I ′)Φ′Ψ′···Γ′

where (J |I)ΦΨ···Γ and (J ′|I ′)Φ′Ψ′···Γ′ are in block standard form, then J = J ′,
I = I ′, and Φ = Φ′, Ψ = Ψ′, . . ., Γ = Γ′). The following proof is a generalization
of the proof of Theorem 13.3 in [11].

Proof. By Theorem 1.1, it suffices to find all invariants for paths starting
at a framed vertex. Let (α)ast be the entries of a general matrix Aα and let xst
be the entries of a general matrix A0. Suppose f is a Uβ-invariant polynomial.
Without loss of generality, if f(xst, (α)ast) = g(xst, (α)ast) + h((α)aii), where all the

monomials of g are divisible by some xst for some s and t and h ∈ C[t⊕Q1 ], then we
only consider g by subtracting off h since we have already proved that h = h((α)aii)
is an invariant polynomial. By applying Lemma 4.9 to each row of (8), we see that
(1) is a Uβ-invariant polynomial. Now suppose there exists a polynomial not in
C[t⊕Q1 ] or not of the form (1) which is in C[F • Rep(Q, β)]Uβ . That is, suppose there
exists f ∈ C[F • Rep(Q, β)] fixed by Uβ with its monomials divisible by xst for some
s and t which cannot be written as (1). Let j ≤ n− 1 be the biggest integer which
satisfies the following:

there exists a Uβ-invariant F ∈ C[F • Rep(Q, β)] such that when F is written in
terms of the block standard basis, i.e., F =

∑
ν gν((α)ast)(Jν |Iν)ΦΨ···Γ with each

(Jν |Iν)ΦΨ···Γ a standard Young bideterminant in block standard form and each
gν ̸= 0, then there exists a v and a row in Jv where j is not followed by j + 1. Let

us label this choice of j as (†).

Let aϕ be the arrow associated to a general representation Aϕ. Writing haϕ
to be the head of the arrow aϕ, let Uj,j+1 be the subgroup consisting of matrices
of the form uj,j+1 = (In, . . . , uhaϕ , . . . , In) where haϕ has diagonal entries 1, the
variable −u in (j, j+1)-entry, and 0 elsewhere. Let’s write the entries of the product
Aα · · ·A0 of matrices as yst. Then for uj,j+1 ∈ Uj,j+1,

uj,j+1.yst =

{
yjt + uyj+1,t if α = ϕ and s = j,

yst otherwise

since Aα · · ·A0 is a general representation of the quiver path aα · · · a0. To explain
further, if the path aα · · · a0 includes aϕ somewhere strictly in the middle of the path,
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i.e., aα · · · a0 = aα · · · aϕ · · · a0, then although uhaϕ acts by left multiplication on
Aϕ, uhaϕ acts by right (inverse) multiplication on the general representation of the
arrow in the path immediately following aϕ (this is the arrow which is immediately
to the left of aϕ in the concatenation of the arrows aα · · · a0). Thus, the action by
uhaϕ is canceled. So for any α, u fixes every minor of the form

(· · · j j + 1 · · · | · · · )ΦΨ···Γ .

Now let us write

F =
∑
ν

gν((α)ast)(Jν |Iν)ΦΨ···Γ +
∑
γ

gγ((α)ast)(Jγ |Iγ)ΦΨ···Γ ,

with the following properties:

• the gν are nonzero,
• there exists at least one row in each Jν which contains j but not j + 1,
• if j appears in any row of Jγ , then so does j + 1,
• the (Jν |Iν)ΦΨ···Γ and (Jγ |Iγ)ΦΨ···Γ are unique.

By Lemma 4.9, Uβ fixes each row of (Jγ |Iγ)ΦΨ···Γ . Since (Jγ |Iγ)ΦΨ···Γ is the
product of the rows in the bideterminant, Uβ fixes (Jγ |Iγ)ΦΨ···Γ , which in turn

fixes
∑
γ

gγ((α)ast)(Jγ |Iγ)ΦΨ···Γ . Among those rows with identical sequence Φ in

each Jν in block standard form, the only possible occurrences of j and j + 1 in its
rows are as follows:

(1) j is followed by j + 1,
(2) j is followed by an integer larger than j + 1,
(3) j ends in a row,
(4) j + 1 is preceded by an integer smaller than j,
(5) j + 1 starts a row.

Since Jν is in block standard form, all rows of type (i) must occur above all rows of
type (i+ 1) within each block.

After re-numbering the indices ν, let J1 have the greatest number of rows, say
M , of types (2) and (3). There may be other Young tableaux, say J2, . . . , JW in
(Jν |Iν)ΦΨ···Γ , with M rows of types (2) and (3), but we may ignore them because
of the uniqueness of (Jν |Iν)ΦΨ···Γ . We label the sequence Φ of integers associated
to the rows of (Jν |Iν)ΦΨ···Γ as Φ(ν) ≤ Ψ(ν) ≤ . . . ≤ Γ(ν). Let

Uj,j+1 := {uj,j+1 = (In, . . . , uhaϕ(1) , . . . , uhaµ(1) , . . . , In) : uhaϕ(1) = . . . = uhaµ(1) is the matrix with

1 along the diagonal, the same variable u in (j, j + 1)-entry, and 0 elsewhere}.
Applying uj,j+1 ∈ Uj,j+1 to F , we see that g1((α)ast)(J1|I1)ΦΨ···Γ gives a term

uMg1((α)ast)(J
′
1|I1)ΦΨ···Γ ,

where J ′
1 is obtained from J1 by replacing each j in rows of type (2) and (3) by

j + 1; furthermore, (J ′
1|I1)ΦΨ···Γ is block standard. Thus, the tableau J ′

1 uniquely
determines J1 for the following reasons: first, all rows of type (3) have been changed
to rows ending with j + 1; such rows must end with j + 1 in J1 by our choice of j.
Otherwise, to obtain J1, we change j + 1 to j in M rows of J ′

1 reading from top to
bottom (while ignoring those rows which contain both j and j + 1).

Now, in uj,j+1.F , any other occurrence of (J ′
1|I1)ΦΨ···Γ is with a coefficient

ukg′((α)ast) where k < M and g′ is a polynomial in (α)ast since j was carefully
chosen such that j is the biggest integer satisfying (†). Since F is a polynomial over
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a field of characteristic 0, the coefficient of (J ′
1|I1)ΦΨ···Γ depends on u. Thus, F

is not fixed by Uβ . This shows that j cannot appear in a row of Jν without j + 1,
which shows that Uβ-invariant polynomials must be of the form (1). Thus, if some
of the terms of a Uβ-invariant polynomial f are divisible by xst for some s and t,
then we write f as

f(xst, (α)ast) = g(xst, (α)ast) + h((α)ast),

where all the terms in g are divisible by xst for some s and t and h is a polynomial
in (α)ast. By the first part of this proof, h ∈ C[t⊕Q1 ] while g must be of the form
(1). It is immediate by the proof of Theorem 1.1 that if none of the terms in a
Uβ-invariant polynomial are divisible by xst for all 1 ≤ s ≤ n and 1 ≤ t ≤ m, then
the polynomial is in C[t⊕Q1 ]. This concludes our proof. □
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