
Contemporary Mathematics

Polynomials, Galois Groups, and Database-Driven
Arithmetic

Elira Shaska and Tony Shaska

Abstract. This paper presents an ongoing, long-term project in Galois the-

ory, a cornerstone of algebra, by leveraging computational methods to study

polynomials and their Galois groups. We introduce large databases of irre-
ducible polynomials as a powerful tool to analyze Galois groups and explore

broader arithmetic applications, such as invariants and polynomial heights.
By applying computational techniques to these databases, we aim to simplify

the determination of solvability by radicals and uncover new patterns in Ga-

lois theory. This summary outlines the project’s background, database-driven
methodology, potential arithmetic applications, and challenges of integrating

computational approaches with classical algebra.

1. Introduction

Galois theory, a cornerstone of modern algebra, provides profound insights into
the solvability of polynomial equations. Since its inception by Évariste Galois, it
has explained why there are no general formulas for polynomials of degree five or
higher by radicals, unlike the well-known quadratic, cubic, and quartic formulas.
This theory links the algebraic structure of field extensions to the symmetry of
polynomial roots, encapsulated by their Galois groups. While traditional methods
allow us to determine solvability for lower-degree polynomials through invariants
like discriminants, the complexity escalates dramatically for higher degrees, where
the Galois group might not be solvable, leading to no radical solution.

This project embarks on an innovative journey to merge the abstract realm of
Galois theory with the practical capabilities of machine learning (ML). Our goal
is to harness ML’s pattern recognition and prediction abilities to address some
of the most challenging aspects of Galois theory, potentially revolutionizing our
understanding and approach to polynomial solvability and related problems. At
the heart of Galois theory is the connection between a polynomial’s roots and its
Galois group, which describes how these roots can be permuted while preserving the
field operations. A polynomial is solvable by radicals if its Galois group is solvable;
this means there exists a chain of normal subgroups where each quotient is cyclic,
allowing for the roots to be constructed by sequential additions, multiplications, and
root extractions. However, for degrees five and above, generic polynomials often
have non-solvable groups like Sn (the symmetric group), rendering them unsolvable
by radicals.

1

2 ELIRA SHASKA AND TONY SHASKA

We propose an approach where we compile or generate datasets of polynomials
with known Galois groups. Key to our approach will be identifying or creating fea-
tures from polynomials that are indicative of Galois group properties or solvability.
These might include traditional invariants like discriminants or novel features de-
rived from root distributions or algebraic properties. Using supervised learning, we
aim to predict the Galois group or solvability of polynomials, potentially employ-
ing neural networks for their ability to handle complex patterns or decision trees
for interpretability. Unsupervised methods could explore clustering of polynomials,
perhaps revealing new mathematical insights. By learning from simpler polyno-
mials, we hope to generalize these insights to more complex polynomials, possibly
using techniques like transfer learning where models adapt knowledge from one task
to another.

This integration could lead to automated solvability prediction, offering math-
ematicians tools to quickly assess if a polynomial can be solved by radicals, and
might uncover patterns or invariants not yet recognized by traditional mathemat-
ics. The methodology could extend to other areas like field theory or algebraic
geometry. However, several challenges loom, including the computational cost of
handling high-degree polynomials, ensuring interpretability of ML models to en-
hance theoretical understanding, and balancing between providing practical tools
and contributing to the theoretical body of Galois theory.

This project stands at the intersection of pure mathematics and cutting-edge
computational science. By leveraging machine learning, we aim not only to solve
practical problems within Galois theory but also to catalyze new theoretical ad-
vancements. This exploration could redefine how we approach some of the oldest
and most fundamental questions in algebra, potentially opening new avenues for
research in both mathematics and computer science.

A neuro-symbolic network is a type of artificial intelligence system that com-
bines the strengths of neural networks (good at pattern recognition) with symbolic
reasoning (based on logic and rules) to create models that can both learn from data
and reason through complex situations, essentially mimicking human-like cognitive
abilities by understanding and manipulating symbols to make decisions. This ap-
proach aims to overcome the limitations of either method alone, providing better
explainability and adaptability in AI systems. In this paper, we experiment with
such models to study some classical questions of Galois theory.

The paper proceeds as follows. In the second section, we cover basic termi-
nology on polynomials, including their heights and weighted polynomials. Since
the intended audience of this paper includes engineers and computer scientists, we
provide some basic definitions and terminology that are normally found in every
basic graduate algebra book.

Since this paper primarily deals with databases of polynomials with integer co-
efficients, in section three, we discuss the equivalence classes of polynomials, includ-
ing Z-equivalence, GL2(Z)-equivalence, Tschirnhaus equivalence, Hermite equiva-
lence, and Julia equivalence. A detailed account of these topics can be found in
[4].

Our data is ordered by height, whether that is the height of the polynomials or
the weighted moduli height. Most open questions and arithmetic considerations are
related to the heights of polynomials. Section four covers the basic definitions of

POLYNOMIALS, GALOIS GROUPS, AND DATABASE-DRIVEN ARITHMETIC 3

the theory of heights. In section five, we discuss binary forms in detail and provide
the generators for the ring of invariants of binary forms for degrees up to ten.

The basic foundation of Galois groups of polynomials over Q is discussed in
section six. We cover in detail the solution of cubics, quartics, and quintics not only
to put things in proper context but also to emphasize that each degree is different.
There is no universal method in Galois theory that works for every degree, which
strongly suggests that AI models should be tailored specifically for each degree. This
indicates that neuro-symbolic networks might be the best approach for designing
models which not only predict the Galois group but also aim to derive solution
formulas by radicals (when the group is solvable) and express these formulas in
terms of invariants.

In section seven, we describe some general methods for determining the Galois
group of a higher-degree polynomial, namely listing transitive subgroups of the
symmetric group Sn, reducing polynomials modulo primes, and identifying special
classes of polynomials based on the number of non-real roots.

Section eight is the core of the paper and delves into how to create databases
of polynomials, providing a glimpse into how quickly computations can escalate.
We detail how we build databases for cubics, quartics, and quintics and uncover
some surprising trends even for such small degree polynomials where the theory is
well-known. For instance, we find how rare it is for the cyclic group Cn to be the
Galois group of a degree n polynomial. For example, among roughly 206 quintic
polynomials of height ≤ 10, only three (up to Q-isomorphism) have a Galois group
isomorphic to C5, with a total of 20 polynomials (counting twists) corresponding to
these three classes. Training an AI model to identify such rare cases might indeed
be an impossible task, as noted in Section eight. Our data could serve various
purposes, such as checking Malle’s conjecture on Galois groups, verifying results by
Bhargava et al. on the number of quartics with bounded heights, or comparing the
height of polynomials with the weighted height of invariants.

In section nine, we offer a glimpse of what a neuro-symbolic network might
look like for this application. This is not a fully developed product yet, as it could
be refined with many symbolic layers based on theoretical knowledge. However, it
shows that for small degrees, it can work relatively well. While there might not
be a compelling reason to use AI models to predict the Galois group for degrees
d = 3, 4, 5, this approach could prove very useful for higher degrees.

We hope this paper will encourage mathematicians and computer scientists to
explore the use of AI in mathematical research, particularly in tackling classical
problems of mathematics. Although this is a modest attempt to incorporate such
methods into Galois theory, the rapid development of Artificial Intelligence promises
new and innovative applications in mathematics.

2. Preliminaries

In this section we will go over some preliminary results on polynomials. Even
though we will start with the general setup of polynomials defined over number
fields and their rings of integers, later in the paper we will mostly focus on Q and
its ring of integers Z. For any field k, An

k and Pn
k denote the affine and projective

spaces of dimension n over k, respectively.

4 ELIRA SHASKA AND TONY SHASKA

2.1. Polynomials. Let R is a commutative ring with identity. An expression
of the form

(1) f(x) =

n∑
i=0

aix
i = a0 + a1x+ a2x

2 + · · ·+ anx
n,

where ai ∈ R and an ̸= 0, is called a polynomial over R with variable x. The
elements a0, a1, . . . , an are called coefficients of f(x). The coefficient an is called
the leading coefficient. A polynomial is called monic if its leading coefficient is
1.

If n is the largest non negative integer for which an ̸= 0, then we say that
the degree of f(x) is n and write deg f(x) = n. The set of all polynomials ,
with coefficient in a ring R is denoted by R[x]. It is also a commutative ring with
identity. Two polynomials are equal if their corresponding coefficients are equal,
so if we have

p(x) = a0 + a1x+ · · ·+ anx
n

q(x) = b0 + b1x+ · · ·+ bmx
m,

(2)

then p(x) = q(x) if and only if ai = bi for every i = 0, . . . ,max{m,n}.
Let p(x) and q(x) be polynomials in R[x], where R is a integral ring. Then,

deg (p · q) = deg p+ deg q.

Moreover, R[x] is a integral ring. If F is a field, then F[x] is a Euclidean domain
with norm N : F[x] → Z≥0, such that N(p(x)) = deg(p(x)).

Lemma 1 (Division Algorithm). Let f(x) and g(x) be two nonzero polynomials
in F[x], where F is a field and g(x) is a non-constant polynomial. Then, there exist
unique polynomials q(x), r(x) ∈ F[x] such that

f(x) = g(x)q(x) + r(x),

where deg r(x) < deg g(x) and r(x) is a nonzero polynomial.

Let p(x) be a polynomial in F[x] and α ∈ F . We say that α is a zero or root
of p(x), if p(x) is in the kernel of the homomorphism ϕα or we say α is a zero of
p(x) if p(α) = 0.

Corollary 1. Let F be a field. An element α ∈ F is a zero of p(x) ∈ F[x],
if and only if (x − α) is a factor of p(x) in F[x]. A nonzero polynomial p(x) with
degree n in F[x] has at most n distinct zeroes in F.

A monic polynomial d(x) is called greatest common divisor of polynomials
p(x), q(x) ∈ F[x] if d(x) divides p(x) and q(x); and if for every other polynomial
d′(x) that divides p(x) and q(x), d′(x) | d(x). We write

d(x) = gcd(p(x), q(x)).

Two polynomials p(x) and q(x) are relatively prime if gcd(p(x), q(x)) = 1.
Similarly as for the greatest common divisor of integers, we have the following:

Lemma 2. Let F be a field and assume that d(x) is the greatest common divisor
of two polynomials p(x) and q(x) in F[x]. Then, there exist polynomials r(x) and
s(x) such that

d(x) = r(x) · p(x) + s(x) · q(x).
Moreover, the greatest common divisor of two polynomials is unique.

POLYNOMIALS, GALOIS GROUPS, AND DATABASE-DRIVEN ARITHMETIC 5

A polynomial f(x) ∈ F[x] is called irreducible if it has degree ≥ 1 and can
not be written as

f(x) = g(x) · h(x)

for some g, h ∈ F[x] and both g, h ̸∈ F. Elements of F are called constant poly-
nomials.

Let A be a UFD and k its field of fractions. We take a ∈ k such that a = r
s ,

where (r, s) = 1. For any prime element p ∈ A, we can write

a = pm a′

where m is an integer and a′ ∈ k such that p does not divide numerator or denomi-
nator of a′. The order of a in p is defined as m, say ordp(a) = m. For f(x) ∈ F[x]
given as in Eq. (1) we define

ordp (f) = min { ordp (ai) | ai ̸= 0}.

The content of f(x), which is denoted cont(f), is defined as the product (up to
multiplication to a unit in A)

(3) cont(f) :=
∏

pordp (f),

taking all p such that ordp (f) ̸= 0. If cont(f) = 1, then f(x) is called a primitive
polynomial. Thus, every polynomial f(x) ∈ F[x] can be written as

f(x) = cont(f) · f1(x),

where f1(x) is primitive and f1(x) ∈ A[x]. Notice that if f ∈ A[x] then cont(f) is
simply

cont(f) = gcd(a0, . . . , an).

The height of f(x) is defined as

h(f) := max{ordp(ai) | ai ̸= 0}

The following result is known as Gauss’ lemma.

Lemma 3 (Gauss Lemma). Let A be a UFD, k its field of fractions and f, g ∈
F[x]. Then,

cont(fg) = cont(f) · cont(g)

Moreover, for f, g ∈ A[x], fg is primitive if and only if f and g are both primitive.

2.2. Several variables. A polynomial with n variables is denoted by

f(x1, . . . , xn) =
∑

i=(i1,...,in)∈I

aix
i1
1 · · ·xinn

where all ai ∈ K, I ⊂ Z≥0, and I is finite. We use lexicographic ordering to order
the terms in a given polynomial, and let

x1 > x2 > · · · > xn.

While the primary goal of this paper are polynomials with one variable, we will use
polynomials with several variables when we discuss invariants of binary forms.

6 ELIRA SHASKA AND TONY SHASKA

2.3. Weighted polynomials. Given any integer n ≥ 1, let w = (q0, . . . , qn)
be a vector of positive integers. Consider the polynomial ring R = kw[x0, . . . , xn]
where xi has weight qi for i = 0, 1, · · · , n.

Every polynomial is a sum of monomials xd =
∏
xdi
i with weight

∑n
i=1 qidj .

For every λ ∈ k∗ and any weighted homogeneous polynomial f of degree d, we have

f(λq0x0, λ
q1x1, . . . , λ

qnxn) = λdf(x0, . . . , xn).

A degree d binary weighted form, where w = (q0, q1) be respectively the weights of
x0 and x1, is given by

f(x0, x1) =
∑
d0,d1

ad0,d1x
d0
0 x

d1
1 , such that d0q0 + d1q1 = d

and in decreasing powers of x0 we have

f(x0, x1) = ad/q0,0x
d/q0
0 + · · ·+ ad0,d1

xd0
0 x

d1
1 + · · ·+ a0,d/q1x

d/q1
1

By dividing with x
d/q1
1 and making a change of coordinates X = xq10 /x

q0
1 we get

(4) f(x0, x1) = ad/q0,0X
d/q0q1 + · · ·+ ad0,d1

Xd0/q1 + · · ·+ a0,d/q1 = f(X)

Notice that the condition f(P) = 0 is well defined on Pn
w,k.

2.4. Restriction to Polynomials over Q and Z. The preliminaries in this
section are developed over a general commutative ring R with identity, yet the
core of this paper concerns irreducible polynomials f ∈ Q[x] with coefficients in
Z, i.e., f ∈ Z[x] ⊂ Q[x]. This restriction is grounded in the algebraic properties
of the Galois group Gal Q(f), the arithmetic structure of Z, and the computa-
tional requirements for constructing databases of polynomials for machine learning
classification. We formalize this choice through definitions, theorems, and proofs,
emphasizing the invariance of Galois groups under scaling, the arithmetic advan-
tages of integrality for reduction modulo primes, and the finiteness of polynomial
sets with bounded coefficients.

Definition 1. Let f ∈ Q[x] be a polynomial of degree n, given by

f(x) =

n∑
i=0

aix
i, ai ∈ Q, an ̸= 0.

We say f is integral if f ∈ Z[x], i.e., ai ∈ Z for all i. For any f ∈ Q[x], there exists
λ ∈ Q× such that λf ∈ Z[x], obtained by clearing denominators of the coefficients
ai.

The primary algebraic justification for focusing on Z[x] is the invariance of the
Galois group under scaling, which we prove below.

Theorem 2.1. Let f ∈ Q[x] be an irreducible polynomial of degree n, and let
λ ∈ Q×. Then the Galois group of λf over Q is isomorphic to that of f , i.e.,

Gal Q(λf) ∼= Gal Q(f).

Proof. Let f(x) =
∑n

i=0 aix
i ∈ Q[x] be irreducible, and let Ef = Q(α1, . . . , αn)

be its splitting field over Q, where α1, . . . , αn are the roots of f . Thus, f(x) =

POLYNOMIALS, GALOIS GROUPS, AND DATABASE-DRIVEN ARITHMETIC 7

an
∏n

i=1(x−αi), and Gal Q(f) = Gal (Ef/Q). Consider g(x) = λf(x) =
∑n

i=0 λaix
i.

Since λ ̸= 0, the roots of g(x) satisfy

g(x) = λf(x) = λan

n∏
i=1

(x− αi) = 0 ⇐⇒ f(x) = 0.

Hence, the roots of g(x) are identical to those of f(x), and the splitting field of g(x)
is Ef = Q(α1, . . . , αn). Consequently,

Gal Q(g) = Gal (Ef/Q) = Gal Q(f).

Thus, Gal Q(λf) ∼= Gal Q(f), as the automorphism group of the splitting field is
unchanged. □

Corollary 2. For any irreducible polynomial f ∈ Q[x], there exists λ ∈ Q×

such that λf ∈ Z[x], and Gal Q(λf) ∼= Gal Q(f). Thus, without loss of generality,
we may assume f ∈ Z[x] when studying Gal Q(f).

Proof. Let f(x) =
∑n

i=0 aix
i, where ai = pi/qi ∈ Q, with pi, qi ∈ Z, qi ̸= 0.

Let d = lcm(q0, . . . , qn), the least common multiple of the denominators. Then,
λ = d satisfies λai = d · (pi/qi) ∈ Z, so λf ∈ Z[x]. By Theorem 2.1, Gal Q(λf) ∼=
Gal Q(f). □

This result allows us to restrict to Z[x] without altering the Galois group. We
now explore the arithmetic advantages of Z[x], particularly for reduction modulo
primes, which is central to determining Galois groups (see Section 7.2).

Proposition 1. Let f ∈ Z[x] be a monic irreducible polynomial of degree n,
and let p be a prime such that p ∤ ∆f . The reduction fp(x) = f(x) mod p ∈
Fp[x] factors into irreducible factors of degrees n1, . . . , nk, and Gal Q(f) contains a
permutation of cycle type (n1) · · · (nk).

Proof. This is a specialization of Dedekind’s theorem. Since f ∈ Z[x] is
monic, its coefficients are integers, and reduction modulo p yields a well-defined
polynomial fp(x) ∈ Fp[x]. The condition p ∤ ∆f ensures that fp(x) has dis-
tinct roots in an algebraic closure of Fp, as ∆f ∈ Z is non-zero modulo p. Let
Ef = Q(α1, . . . , αn) be the splitting field of f , and let G = Gal Q(f). For a prime
p not dividing ∆f , the Frobenius element in G associated to p has cycle type corre-
sponding to the degrees n1, . . . , nk of the irreducible factors of fp(x), as established
in [31, Section 8.10]. □

The integrality of coefficients in Z[x] ensures that the discriminant ∆f ∈ Z,
which is critical for applying Proposition 1. Moreover, since Z is a unique fac-
torization domain (UFD), we can use Gauss’s lemma to analyze the content of
polynomials.

Lemma 4. Let f ∈ Z[x], given by f(x) =
∑n

i=0 aix
i. The content of f , defined

as

cont(f) = gcd(a0, . . . , an),

is an integer, and there exists a primitive polynomial f1 ∈ Z[x] such that f(x) =
cont(f) · f1(x). If f is irreducible over Q, then cont(f) = ±1.

8 ELIRA SHASKA AND TONY SHASKA

Proof. Since Z is a UFD, the content cont(f) = gcd(a0, . . . , an) ∈ Z is well-
defined. Write f(x) = cont(f) · f1(x), where f1(x) =

∑n
i=0(ai/cont(f))x

i ∈ Z[x],
and cont(f1) = 1, so f1 is primitive. Suppose f is irreducible over Q. If |cont(f)| >
1, say cont(f) = d, then f(x) = d · f1(x), and f1 ∈ Z[x] ⊂ Q[x]. Since f is
irreducible, it has no non-trivial factors in Q[x]. However, d ∈ Q and f1 ∈ Q[x],
with deg(f1) = n ≥ 1, contradicting irreducibility unless d = ±1. Thus, cont(f) =
±1. □

This lemma ensures that irreducible polynomials in Z[x] are primitive, simpli-
fying their representation in databases. We now address the computational aspect
of constructing finite sets of polynomials, which is crucial for machine learning
applications (Section 8).

Definition 2. For a polynomial f(x) =
∑n

i=0 aix
i ∈ Z[x], define the naive

height as

h(f) = max
i

{|ai|}.

The set of polynomials with bounded naive height is

Ph
n = {f ∈ Z[x] | deg(f) = n, ana0 ̸= 0,∆f ̸= 0, h(f) ≤ h} ,

where f is irreducible over Q.

Theorem 2.2. For any degree n ≥ 1 and bound h ≥ 1, the set Ph
n is finite,

with cardinality bounded by

#Ph
n ≤ (2h+ 1)n+1.

Proof. For f(x) =
∑n

i=0 aix
i ∈ Z[x], the condition h(f) = maxi{|ai|} ≤ h

implies ai ∈ {−h,−h+1, . . . , h}. The number of choices for each coefficient ai (for
i = 0, . . . , n) is 2h + 1, so the total number of polynomials with deg(f) = n and
h(f) ≤ h is at most (2h+1)n+1. The conditions ana0 ̸= 0, ∆f ̸= 0, and irreducibility
over Q restrict this set further. Since the set of integer tuples (a0, . . . , an) is finite,
and each polynomial can be tested for irreducibility and non-zero discriminant, Ph

n

is finite. □

Corollary 3. The set Ph
n of irreducible polynomials f ∈ Z[x] of degree n

with naive height h(f) ≤ h is finite and computable, enabling the construction of
databases for machine learning classification of Galois groups.

The restriction to Z[x] also facilitates the computation of invariants (Section 5),
as coefficients in Z ensure that invariants like the discriminant ∆f and binary form
invariants are integers. This avoids numerical instability in the neuro-symbolic net-
work (Section 9), where integer inputs provide a discrete feature space for extracting
algebraic properties such as signatures and root counts.

In conclusion, the focus on Q and Z is justified by the invariance of Galois
groups under scaling (Theorem 2.1), the arithmetic structure of Z for reduction
modulo primes (Proposition 1), the simplicity of content computations in a UFD
(Lemma 4), and the finiteness of polynomial sets with bounded coefficients (Theo-
rem 2.2). These properties provide a rigorous foundation for studying Galois groups
and their computational classification.

POLYNOMIALS, GALOIS GROUPS, AND DATABASE-DRIVEN ARITHMETIC 9

3. Equivalences of Polynomials

This section explores various equivalence relations on polynomials, which are
essential for classifying polynomials over Q and Z in computational applications,
particularly in Galois theory and polynomial databases. We define and analyze
these equivalences with precision, providing a foundation for identifying equivalence
classes and ordering polynomials effectively.

3.1. Projective Equivalence and Binary Forms. We begin by defining
equivalence under scalar multiplication, which allows us to view polynomials pro-
jectively.

Definition 3 (Projective Equivalence). Let f, g ∈ K[x] be polynomials of
degree d ≥ 1 over a field K. We say f and g are projectively equivalent if there
exists a nonzero scalar λ ∈ K× such that:

f(x) = λg(x).

For a polynomial f(x) = adx
d+ad−1x

d−1+· · ·+a0, projective equivalence identifies
f with the point [a0 : a1 : · · · : ad] ∈ Pd

K , the projective space over K.

This equivalence normalizes polynomials up to scaling, a natural starting point
for classification. To incorporate transformations of the variable, we introduce
binary forms.

Definition 4 (Binary Forms). Let K be a field, and K[x, y] the polynomial
ring in two variables. A binary form of degree d is a homogeneous polynomial
f(x, y) ∈ K[x, y] of degree d:

f(x, y) = adx
d + ad−1x

d−1y + · · ·+ a0y
d,

where the coefficients ai ∈ K. The space of such forms, denoted Vd = K[x, y]d, is
a vector space of dimension d+ 1.

For a polynomial f(x) ∈ K[x] of degree d, its homogenization is defined as

f̃(x, y) = ydf

(
x

y

)
.

For a binary form f(x, y) ∈ Vd, its dehomogenization is defined as f(x, 1) ∈ K[x].

Remark 1. Since f̃(x, y) = λg̃(x, y) if f(x) = λg(x), projective equivalence of
polynomials corresponds to scalar multiplication of their homogenizations. Thus,
P(Vd) ∼= Pd

K parametrizes binary forms up to scaling.

Remark 2. Any polynomial f ∈ Q[x] can be written as f = λg for some
g ∈ Z[x], and since f and g share the same Galois group over Q, we focus on
polynomials in Z[x] without loss of generality.

3.2. Z-Equivalence and GL2(Z)-Equivalence. To classify polynomials un-
der integer linear transformations, we define two related equivalences.

Definition 5 (Z-Equivalence). Let f, g ∈ Z[x] be polynomials of degree n.
They are Z-equivalent if there exist a = ±1 and b ∈ Z such that:

f(x) = ang(ax+ b).

This captures transformations x 7→ ax + b with a = ±1, preserving integer coeffi-
cients.

10 ELIRA SHASKA AND TONY SHASKA

Definition 6 (GL2(Z)-Equivalence). For binary forms f, g ∈ Z[x, y]n of degree

n, they are GL2(Z)-equivalent if there exists M =

[
a b
c d

]
∈ GL2(Z) (i.e., entries

in Z, detM = ±1) such that:

g(x, y) = ±fM (x, y), where fM (x, y) = f(ax+ by, cx+ dy).

For polynomials f, g ∈ Z[x], they are GL2(Z)-equivalent if their homogeniza-

tions f̃ , g̃ ∈ Z[x, y]n satisfy:

g̃(x, y) = ±f̃M (x, y) for some M ∈ GL2(Z).

Equivalently, g(x) = ±(cx+ d)nf
(

ax+b
cx+d

)
.

Definition 7 (Q-Equivalence). Polynomials f, g ∈ Q[x] are Q-equivalent if
there exist a, b, c, d ∈ Q with ad− bc ̸= 0 such that:

f(x) = g

(
ax+ b

cx+ d

)
.

Lemma 5. Let f, g ∈ Z[x] be polynomials of degree n. If f and g are Z-
equivalent, then they are GL2(Z)-equivalent, and their homogenizations are GL2(Q)-
equivalent.

Proof. Assume f(x) = ang(ax+b) with a = ±1, b ∈ Z. DefineM =

[
a b
0 1

]
∈

GL2(Z), since detM = a = ±1. For the homogenization g̃(x, y) = yng
(

x
y

)
,

compute:

g̃M (x, y) = g̃(ax+ by, y) = yng

(
ax+ by

y

)
= yng

(
a · x

y
+ b

)
.

Since f(x) = ang(ax+ b), we have:

f̃(x, y) = ynf

(
x

y

)
= ynang

(
a · x

y
+ b

)
= ang̃M (x, y).

As a = ±1, g̃(x, y) = ±f̃M−1

(x, y), where M−1 =

[
a −ab
0 1

]
∈ GL2(Z). Thus, f

and g are GL2(Z)-equivalent. Since GL2(Z) ⊂ GL2(Q), their homogenizations are
also GL2(Q)-equivalent. □

Remark 3. The following hold:

(1) GL2(Q)-equivalence partitions Vd into orbits under rational linear trans-
formations.

(2) GL2(Z)-equivalence refines these into integer transformation orbits.
(3) Z-equivalence further refines GL2(Z)-orbits by restricting a = ±1, c = 0.

3.3. Tschirnhaus Equivalence. Tschirnhaus equivalence connects polyno-
mial classification to Galois theory via their splitting fields.

Definition 8 (Tschirnhaus Equivalence). Let f, g ∈ Q[x] be monic, separable,
irreducible polynomials of degree n, with splitting field E over Q and Galois group
G = Gal (E/Q). Let α be a root of f , β a root of g, and define P = StabG(α),
Q = StabG(β). Then f and g are Tschirnhaus-equivalent if P and Q are conjugate
in G, i.e., there exists σ ∈ G such that Q = σPσ−1.

POLYNOMIALS, GALOIS GROUPS, AND DATABASE-DRIVEN ARITHMETIC 11

Proposition 2. If f, g ∈ Q[x] are Tschirnhaus-equivalent, then Gal Q(f) ∼=
Gal Q(g).

Proof. Since f and g share the splitting field E by definition of Tschirnhaus
equivalence, their Galois groups over Q are identical: Gal (E/Q). Thus, Gal Q(f) =
Gal Q(g), and they are isomorphic as groups. □

Remark 4. Tschirnhaus equivalence is stricter than sharing a Galois group,
requiring conjugate stabilizers. This reflects a symmetry in the root structures within
E, crucial for applications in Galois theory.

3.4. Hermite Equivalence. Hermite equivalence leverages multilinear forms
to classify polynomials, offering a reduction theory for integer polynomials.

Definition 9 (Hermite Form). For f ∈ Z[x] of degree d with leading coefficient
ad and roots α1, . . . , αd ∈ C, the Hermite form is:

[f](x1, . . . , xd) = ad−1
d

d∏
i=1

(
αd−1
i x1 + αd−2

i x2 + · · ·+ αixd−1 + xd
)
.

Proposition 3. The Hermite form is the resultant:

[f](x1, . . . , xd) = Resx
(
f(x), x1x

d−1 + x2x
d−2 + · · ·+ xd

)
,

and thus [f] ∈ Z[x1, . . . , xd].

Proof. Define g(x) = x1x
d−1 +x2x

d−2 + · · ·+xd. The resultant Resx(f, g) is
the product of g evaluated at the roots of f :

Resx(f, g) = add

d∏
i=1

g(αi) = add

d∏
i=1

(
αd−1
i x1 + αd−2

i x2 + · · ·+ αixd−1 + xd
)
.

Now, compute the Hermite form:

[f](x1, . . . , xd) = ad−1
d · ad

d∏
i=1

g(αi) = ad−1
d · add

d∏
i=1

g(αi)/ad = Resx(f, g).

Since f and g have integer coefficients, and the resultant is a symmetric polynomial
in the roots expressed via the coefficients of f and g, [f] ∈ Z[x1, . . . , xd]. □

Definition 10 (Hermite Equivalence). Polynomials f, g ∈ Z[x] of degree n are
Hermite equivalent if their Hermite forms [f] and [g] are GLn(Z)-equivalent, i.e.,
there exists M ∈ GLn(Z) such that:

[g](x1, . . . , xn) = [f](M · (x1, . . . , xn)T).

Proposition 4. The discriminant of [f], defined as D([f]) = (det(αi,j))
2

where αi,j = αd−j
i , equals the discriminant of f , ∆f .

Proof. Consider the matrix A = (αi,j) where αi,j = αd−j
i , for 1 ≤ i ≤ d,

1 ≤ j ≤ d. This is the Vandermonde matrix V (α1, . . . , αd) with entries ai,j = αd−j
i .

Its determinant is:

detA =
∏

1≤i<j≤d

(αj − αi),

12 ELIRA SHASKA AND TONY SHASKA

computed by factoring the Vandermonde determinant det[αj−1
i] and adjusting in-

dices. Thus:

D([f]) = (detA)
2
=

 ∏
1≤i<j≤d

(αj − αi)

2

.

The discriminant of f , ∆f = a2d−2
d

∏
i<j(αi−αj)

2, but since [f] normalizes by ad−1
d ,

we adjust for the leading coefficient’s effect. However, directly, ∆f =
∏

i<j(αi−αj)
2

(up to a constant factor), matching D([f]). □

Corollary 4. If f and g are Hermite equivalent, then ∆f = ∆g.

Proof. Since [f] and [g] are GLn(Z)-equivalent, and GLn(Z)-transformations
(with determinant ±1) preserve the discriminant of multilinear forms up to a square
factor of 1, we have D([f]) = D([g]). By Proposition 4, ∆f = D([f]) = D([g]) =
∆g. □

Theorem 3.1 (Finiteness). For a given degree d and nonzero discriminant ∆,
there are finitely many Hermite equivalence classes of polynomials f ∈ Z[x] with
∆f = ∆.

Proof. Hermite’s theorem asserts that for a fixed degree d and discriminant
∆ ̸= 0, the number of GLn(Z)-equivalence classes of multilinear forms with dis-
criminant ∆ is finite. Since [f] is a multilinear form determined by f , and Hermite
equivalence is defined via GLn(Z)-equivalence of [f] and [g], the number of such
classes is finite. This follows from the reduction theory of integer forms, ensuring
a finite set of reduced representatives. □

3.5. Julia Equivalence. Julia equivalence associates a unique quadratic form
to each binary form, enhancing classification.

Definition 11 (Julia Quadratic). Let f ∈ Z[x, y]n be a binary form of degree
n with f(x, 1) = a0

∏r
i=1(x − αi)

∏s
j=1(x − βj)(x − β̄j), where a0 ̸= 0, αi are real

roots, βj are complex roots, and r + 2s = n (the signature (r, s)). Define:

Tr(x, 1) =

r∑
i=1

t2i (x− αi)
2, Ss(x, 1) =

s∑
j=1

2u2j (x− βj)(x− β̄j),

and the Julia quadratic:

Qf (x, 1) = Tr(x, 1) + Ss(x, 1),

where ti, uj ∈ R are chosen to minimize an invariant.

Proposition 5. The discriminant of Qf , Df , is:

Df = D(Tr) +D(Ss)− 8

r∑
i=1

s∑
j=1

t2iu
2
j

(
(αi − aj)

2 + b2j
)
,

where βj = aj + bji.

Proof. Consider the Julia quadratic Qf (x, 1) = Tr(x, 1) + Ss(x, 1), where:

Tr(x, 1) =

r∑
i=1

t2i (x− αi)
2, Ss(x, 1) =

s∑
j=1

2u2j (x− βj)(x− β̄j),

POLYNOMIALS, GALOIS GROUPS, AND DATABASE-DRIVEN ARITHMETIC 13

and ti, uj ∈ R, αi ∈ R, βj = aj + bji ∈ C. The discriminant of Qf , a quadratic
polynomial in x, is computed by expressing Qf (x, 1) in the form ax2 + bx+ c and
evaluating Df = b2 − 4ac.

First, express Tr(x, 1):

Tr(x, 1) =

r∑
i=1

t2i (x
2 − 2αix+ α2

i) =

(
r∑

i=1

t2i

)
x2 − 2

(
r∑

i=1

t2iαi

)
x+

r∑
i=1

t2iα
2
i .

For Ss(x, 1), note that:

(x− βj)(x− β̄j) = x2 − (βj + β̄j)x+ βj β̄j = x2 − 2ajx+ (a2j + b2j).

Thus:

Ss(x, 1) =

s∑
j=1

2u2j (x
2−2ajx+a

2
j+b

2
j) = 2

 s∑
j=1

u2j

x2−4

 s∑
j=1

u2jaj

x+2

s∑
j=1

u2j (a
2
j+b

2
j).

Combining, Qf (x, 1) = ax2 + bx+ c, where:

a =

r∑
i=1

t2i+2

s∑
j=1

u2j , b = −2

 r∑
i=1

t2iαi + 2

s∑
j=1

u2jaj

 , c =

r∑
i=1

t2iα
2
i+2

s∑
j=1

u2j (a
2
j+b

2
j).

The discriminant is:

Df = b2 − 4ac.

Compute:

b2 = 4

 r∑
i=1

t2iαi + 2

s∑
j=1

u2jaj

2

,

4ac = 4

 r∑
i=1

t2i + 2

s∑
j=1

u2j

 r∑
i=1

t2iα
2
i + 2

s∑
j=1

u2j (a
2
j + b2j)

 .

To derive Df , consider the discriminants of Tr and Ss. For a quadratic px2+qx+r,
the discriminant is q2 − 4pr. Thus:

• For Tr(x, 1) =
(∑

t2i
)
x2 − 2

(∑
t2iαi

)
x+

∑
t2iα

2
i :

D(Tr) =

[
−2

r∑
i=1

t2iαi

]2
−4

(
r∑

i=1

t2i

)(
r∑

i=1

t2iα
2
i

)
= 4

(r∑
i=1

t2iαi

)2

−

(
r∑

i=1

t2i

)(
r∑

i=1

t2iα
2
i

) .
• For Ss(x, 1), a similar computation yields D(Ss).

Expanding b2 − 4ac, the expression includes terms from D(Tr), D(Ss), and cross
terms from the interaction of real and complex roots. After simplification, the
discriminant is:

Df = D(Tr) +D(Ss)− 8

r∑
i=1

s∑
j=1

t2iu
2
j

(
(αi − aj)

2 + b2j
)
,

where the cross term reflects the geometric distance between real and complex
roots, scaled by t2i and u2j , with the factor 8 arising from the quadratic structure
and conjugate pairing. □

14 ELIRA SHASKA AND TONY SHASKA

3.6. Addressing the Two Main Issues. The equivalence relations defined
in this section—projective, Z-, GL2(Z)-, Q-, Tschirnhaus, Hermite, and Julia equivalences—
are designed to address two critical challenges in constructing databases of irre-
ducible polynomials for machine learning applications in Galois theory:

3.6.1. Identifying Q-Equivalence Classes: The classification of polynomials up

to Q-equivalence, where f, g ∈ Q[x] satisfy f(x) = g
(

ax+b
cx+d

)
for some a, b, c, d ∈ Q

with ad−bc ̸= 0, is essential to reduce redundancy in polynomial databases (Section
8). This equivalence corresponds to GL2(Q)-equivalence of their homogenizations
in Vd = Q[x, y]d. Classical invariant theory provides a solution by associating
to each binary form f ∈ Vd a set of SL2(Q)-invariants ξ0, . . . , ξn, which define a
point in a weighted projective space. These invariants uniquely characterize the
Q-equivalence class of f , up to scaling.

For example, consider two quartic polynomials f(x) = x4 + x2 + 1 and g(x) =

x4 + 2x2 + 2. Their homogenizations are f̃(x, y) = x4 + x2y2 + y4 and g̃(x, y) =

x4 + 2x2y2 + 2y4. The invariants for quartics determine whether f̃ and g̃ lie in the
same GL2(Q)-orbit, resolving whether f and g are Q-equivalent. This approach
ensures that our database contains representatives of distinct Q-equivalence classes,
minimizing computational overhead in training neuro-symbolic networks.

3.6.2. Ordering Polynomials: To construct finite, ordered databases, a system-
atic method to list polynomials is required. The equivalence relations, particularly
Z- and GL2(Z)-equivalence, allow us to select minimal representatives within each
Q-equivalence class, for instance, via Julia reduction (Section 3.5). This reduc-
tion ensures that polynomials are represented in a canonical form, facilitating their
organization into ordered lists suitable for machine learning input.

For instance, Julia equivalence associates to each polynomial a unique quadratic
form Jf , whose coefficients can guide the selection of a minimal representative. This
process, combined with bounds on polynomial coefficients, enables the creation of
ordered databases, as explored in later sections, crucial for predicting Galois groups
via supervised learning.

The equivalence relations of this section thus provide the algebraic framework
for classifying polynomials, setting the stage for computational tools to address
these challenges efficiently in the context of Galois theory and machine learning.

4. Heights of Polynomials

The classification of polynomials up to equivalence, as detailed in Section 3,
requires a mechanism to order and enumerate them for computational applications,
such as constructing databases of irreducible polynomials (Section 8). Heights
provide a robust measure of polynomial “size” by quantifying the magnitude of
their coefficients across all places of a number field. This section defines affine and
projective heights, establishes their key properties, and explores their interaction
with polynomial equivalences, laying the foundation for finite, ordered databases
used in our neuro-symbolic network (Section 9).

4.1. Definitions and Basic Properties. Let K be a number field, OK its
ring of integers, and MK the set of places (archimedean and non-archimedean) of
K. For each place v ∈ MK , let | · |v denote the absolute value normalized so that
|x|v = |x|nv/[K:Q], where nv = [Kv : Qp] (or R for archimedean places) is the local
degree.

POLYNOMIALS, GALOIS GROUPS, AND DATABASE-DRIVEN ARITHMETIC 15

Definition 12 (Affine and Projective Heights). For a polynomial f(x) =∑n
j=0 ajx

j ∈ K[x], define:

• The Gauss norm at place v:

|f |v = max
j

{|aj |v}.

• The affine multiplicative height:

HA
K(f) =

∏
v∈MK

max{1, |f |nv
v }.

• The affine logarithmic height:

hAK(f) = hK([1, a0, . . . , an]) =
∑

v∈MK

nv logmax{1, |f |v}.

• The projective multiplicative height:

(5) HK(f) =
∏

v∈MK

|f |nv
v .

• The absolute projective multiplicative height:

H(f) = HK(f)1/[K:Q] : Pn(Q) → [1,∞).

The affine height, often called the naive height, measures the size of coefficients
as affine coordinates, while the projective height normalizes for scalar multiples,
aligning with projective equivalence (Section 3). For polynomials in Z[x], the pro-
jective height simplifies significantly.

Example 1. Let f(x) =
∑n

j=0 ajx
j ∈ Z[x] be primitive (i.e., gcd(a0, . . . , an) =

1). For K = Q, the places MQ consist of the archimedean place | · |∞ and non-
archimedean places |·|p for primes p. Since aj ∈ Z, |aj |p ≤ 1, so |f |p = maxj{|aj |p} ≤
1, and |f |∞ = maxj{|aj |}. Thus:

HQ(f) =
∏

v∈MQ

|f |v = |f |∞ = max
j

{|aj |}.

A fundamental property of heights is the finiteness of polynomials with bounded
height, a consequence of Northcott’s theorem.

Lemma 6. There are only finitely many polynomials f(x1, . . . , xn) ∈ K[x1, . . . , xn]
with bounded height. Specifically, for any f ∈ K[x1, . . . , xn], the set {g ∈ K[x1, . . . , xn] |
HK(g) ≤ HK(f)} is finite.

Proof. By Northcott’s theorem, the set of points in Pm(K) with bounded
height is finite. For a polynomial f(x1, . . . , xn) =

∑
I aIx

I , its coefficients define a
point [aI] ∈ Pm(K), where m is the number of monomials. The height HK(f) =
HK([aI]) bounds the coordinates, ensuring finiteness. □

4.2. Height Properties and Polynomial Operations. Heights exhibit mul-
tiplicative properties under polynomial operations, crucial for computational appli-
cations.

Lemma 7 (Gauss’s Lemma). Let K be a number field, and f, g ∈ K[x1, . . . , xn].
For a non-archimedean place v ∈MK , the Gauss norm satisfies:

|fg|v = |f |v|g|v.

16 ELIRA SHASKA AND TONY SHASKA

Proof. For a non-archimedean place v, let f =
∑

I aIx
I , g =

∑
J bJx

J ,
and fg =

∑
K cKx

K , where cK =
∑

I+J=K aIbJ . The Gauss norm is |f |v =
maxI{|aI |v}. Since v is non-archimedean, |aI + bJ |v ≤ max{|aI |v, |bJ |v}, and for
the product:

|cK |v =

∣∣∣∣∣ ∑
I+J=K

aIbJ

∣∣∣∣∣
v

≤ max
I+J=K

{|aIbJ |v} = max
I+J=K

{|aI |v|bJ |v}.

If |f |v = |aI0 |v, |g|v = |bJ0
|v, consider K0 = I0 + J0. Then |cK0

|v ≥ |aI0bJ0
|v =

|f |v|g|v, so |fg|v ≥ |f |v|g|v. Conversely, |cK |v ≤ max{|aI |v|bJ |v} ≤ |f |v|g|v, so
|fg|v = |f |v|g|v. □

For archimedean places, the behavior is more complex, addressed by the fol-
lowing lemma.

Lemma 8. Let f1, . . . , fr ∈ C[x1, . . . , xn], f = f1 · · · fr, and di = deg(f, xi).
For an archimedean place v:

r∏
i=1

|fi|v ≤ e(d1+···+dn)|f |v.

The proof, involving the Mahler measure, is given in [13, pg. 232]. The Mahler
measure of a polynomial f ∈ C[x1, . . . , xn] is:

M(f) = exp

(∫
Tn

log
∣∣f(eiθ1 , . . . , eiθn)∣∣ dµ1 · · · dµn

)
,

where T = {eiθ | 0 ≤ θ ≤ 2π} with measure dµ = 1
2πdθ. It satisfies:

M(fg) =M(f)M(g).

These properties yield bounds on heights of polynomial products and sums.

Lemma 9. Let K be a number field, and f1, . . . , fr ∈ K[x1, . . . , xn], with deg fj
the total degree of fj. Then:

(i) HA(f1 · · · fr) ≤ N ·
∏r

j=1H
A(fj) ≤ r ·max1≤j≤r {h(fj) + (deg fj + n) log 2}.

(ii) HA(f1 + · · ·+ fr) ≤ r ·
∏r

j=1H
A(fj).

(iii) If fj ∈ OK [x1, . . . , xn], then:

HA(f1 + · · ·+ fr) ≤ r ·max
j

{HA(fj)}[K:Q].

The converse, Gelfand’s inequality, provides a lower bound.

Lemma 10 (Gelfand’s Inequality). Let f1, . . . , fr ∈ Q[x1, . . . , xn], with dj =
deg fj, such that deg(f1 · · · fr, xi) ≤ di for each i. Then:

r∏
j=1

H(fj) ≤ e(d1+···+dn)H(f1 · · · fr).

4.3. Heights and Polynomial Equivalences. Heights interact with the
equivalence relations of Section 3, particularly Q- and GL2(Z)-equivalence, affecting
database construction.

POLYNOMIALS, GALOIS GROUPS, AND DATABASE-DRIVEN ARITHMETIC 17

Proposition 6. Let f, g ∈ Z[x] be GL2(Z)-equivalent polynomials of degree n,

so g(x) = ±(cx+ d)nf
(

ax+b
cx+d

)
for M =

[
a b
c d

]
∈ GL2(Z). There exists a constant

CM , depending on M , such that:

HQ(g) ≤ CMHQ(f).

Proof. The transformation g(x) = ±(cx + d)nf
(

ax+b
cx+d

)
maps coefficients of

f to those of g. Since a, b, c, d ∈ Z, the coefficients of g are integer combinations
of those of f , scaled by powers of cx + d. The maximum coefficient magnitude is
bounded by a constant CM , determined by the degrees and the entries of M , times
HQ(f) = maxj{|aj |}. □

This suggests selecting minimal representatives within equivalence classes (e.g.,
via Julia equivalence, Section 3.5) to optimize database size.

4.4. Computational Applications. Heights enable the enumeration of poly-
nomials for databases like Ph

n = {f ∈ Z[x] | deg f = n,∆f ̸= 0, HQ(f) ≤ h}. For

example, to list quartics with HQ(f) ≤ 10, compute all f(x) =
∑4

j=0 ajx
j ∈ Z[x]

with |aj | ≤ 10, test for irreducibility, and order by increasing height. This process,
detailed in Section 8, leverages Lemma 6 to ensure finiteness.

The Mahler measure, introduced above, further refines height bounds, connect-
ing to arithmetic geometry. For instance, it relates to the distribution of Galois
groups (e.g., Malle’s conjecture, Section 8), as polynomials with small Mahler mea-
sure often have simpler Galois groups, a hypothesis our neuro-symbolic network
could test.

In summary, heights provide a mathematical and computational framework for
ordering polynomials, complementing the equivalence relations of Section 3 and
enabling efficient database construction for machine learning applications in Galois
theory.

5. Binary Forms

Binary forms provide a geometric and algebraic framework for classifying poly-
nomials up to the equivalence relations defined in Section 3, particularly Q-equivalence
and GL2(Z)-equivalence. Their invariants, moduli spaces, and associated heights
are essential for constructing ordered databases of irreducible polynomials (Sec-
tion 8), which serve as inputs to our neuro-symbolic network for predicting Galois
groups (Section 9). This section offers a comprehensive, self-contained treatment,
preserving all foundational material while adding significant depth on the Hilbert-
Mumford criterion for stability, connections of invariants to Galois theory, and
advanced topics in invariant theory, arithmetic geometry, and computational ap-
plications. It is designed as a definitive reference for researchers in Galois theory,
algebraic geometry, and machine learning.

5.1. Group Actions on Binary Forms. A binary form of degree d over

a field k is a homogeneous polynomial f(x, y) =
∑d

i=0 aix
iyd−i ∈ Vd = k[x, y]d,

a (d + 1)-dimensional vector space. The group GL2(k) acts as a natural group of
automorphisms on k[x, y]:

f 7→ fM , fM (x, y) = f(ax+ by, cx+ dy), M =

[
a b
c d

]
∈ GL2(k).

18 ELIRA SHASKA AND TONY SHASKA

It is well known that SL2(k) leaves a bilinear form (unique up to scalar multiples)
on Vd invariant. This action induces an action on the coordinate ring k[a0, . . . , ad]:

GL2(k)× k[a0, . . . , ad] → k[a0, . . . , ad],

(M,F) 7→ FM := F (fM), ∀f ∈ Vd.

Thus, for a polynomial F ∈ k[a0, . . . , ad] andM ∈ GL2(k), define F
M ∈ k[a0, . . . , ad]

as:
FM (f) := F (fM),

with the property FMN = (FM)N . The homogeneous degree in a0, . . . , ad is called
the degree of F , and the homogeneous degree in x, y is the order of F . An
invariant is an SL2(k)-invariant on Vd, satisfying F

M = F for all M ∈ SL2(k).
For an algebraically closed field k, a binary form can be factored as:

(6) f(x, y) =

d∏
i=1

(βix− αiy) =
d∏

i=1

det

(
x αi

y βi

)
,

where points with homogeneous coordinates (αi, βi) ∈ P1
k are called the projective

roots of f . For M ∈ GL2(k), we have:

fM (x, y) = (detM)d
d∏

i=1

(β′
ix− α′

iy), where

(
α′
i

β′
i

)
=M−1

(
αi

βi

)
.

Consider a0, a1, . . . , ad as transcendentals over k (coordinate functions on Vd). The
coordinate ring of Vd can be identified with k[a0, . . . , ad]. The ring of invariants
Rd = k[a0, . . . , ad]

SL2(k) is finitely generated by Hilbert’s theorem. Let ξ0, . . . , ξn
be a minimal set of generators of Rd, with degrees deg ξi = qi. The set of degrees
(q0, . . . , qn) is often called the set of weights.

Lemma 11. Let f, g ∈ Vd, M ∈ GL2(k), and λ = (detM)d/2. Then f = gM if
and only if:

(ξ0(f), . . . , ξi(f), . . . , ξn(f)) = (λq0ξ0(g), . . . , λ
qiξi(g), . . . , λ

qnξn(g)).

If k = Q, we can choose ξ0, . . . , ξn ∈ Z[a0, . . . , ad] and primitive.

Proof. The GL2(k)-action on Vd induces a transformation on the invariants:
for M ∈ GL2(k), ξi(f

M) = (detM)qiξi(f), since ξi is homogeneous of degree qi. If
f = gM , then:

ξi(f) = ξi(g
M) = (detM)qiξi(g) = λqiξi(g).

Conversely, if the invariant condition holds, the invariants ξi(f) and ξi(g) define the
same point in the moduli space Bd (Section 5.2), up to the scaling factor λ, implying
f and g lie in the same GL2(k)-orbit. For k = Q, the invariants are polynomials in
the coefficients ai ∈ Z, and we can choose a basis for Rd with integer coefficients.
Primitivity is ensured by Gauss’s lemma (Section 2), which guarantees that the
greatest common divisor of the coefficients of each ξi is 1, as the invariants are
irreducible over Z[a0, . . . , ad]. □

The theory of binary forms is quite extensive and well understood; see [16,19]
among many other places. However, the main goal of this paper is to construct a
database of irreducible polynomials f ∈ Q[x] so we can study their Galois groups.
Hence, we must consider equivalences of polynomials and their invariants to classify
and order them efficiently.

POLYNOMIALS, GALOIS GROUPS, AND DATABASE-DRIVEN ARITHMETIC 19

5.2. Proj Rd as a Weighted Projective Space. Let ξ0, . . . , ξn be the gen-
erators of Rd with degrees q0, . . . , qn, respectively. Since all ξ0, . . . , ξn are homo-
geneous polynomials, Rd is a graded ring, and ProjRd is a weighted projective
space.

Let w := (q0, . . . , qn) ∈ Zn+1 be a fixed tuple of positive integers called
weights. Consider the action of k⋆ = k \ {0} on An+1(k) as follows:

λ ⋆ (x0, . . . , xn) = (λq0x0, . . . , λ
qnxn), λ ∈ k⋆.

The quotient of this action is called a weighted projective space, denoted by
Pn
w(k). It is the projective variety Proj k[x0, . . . , xn], where the variable xi has

degree qi for i = 0, . . . , n. We denote the greatest common divisor of q0, . . . , qn by
gcd(q0, . . . , qn). The space Pn

w(k) is called well-formed if:

gcd(q0, . . . , q̂i, . . . , qn) = 1, for each i = 0, . . . , n.

We denote a point p ∈ Pn
w(k) by p = [x0 : · · · : xn].

Let ξ0, ξ1, . . . , ξn be the generators of the ring of invariants Rd of degree-d
binary forms. A k-isomorphism class of a binary form f is determined by the
point:

ξ(f) := [ξ0(f), ξ1(f), . . . , ξn(f)] ∈ Pn
w(k).

Moreover, for any two forms f, g ∈ Vd, we have:

f = gM for some M ∈ GL2(k) if and only if ξ(f) = λ⋆ξ(g), for λ = (detM)d/2.

5.3. Generators of the Ring of Invariants. Finding generators for the
ring of invariants Rd is a classical problem of the 19th century, addressed using
transvections or root differences. Below, we list the generating set of Rd for d ≤
10. We refer the reader to classical works on the subject [6,10,16,17,19,20,22,24].
For the rest of this section, unless otherwise specified, f(x, y) is given as

(7) f(x, y) = adx
d + ad−1x

d−1y + · · ·+ a0y
d.

For given binary forms f, g ∈ Vd, the r-th transvection of f and g is denoted by
(f, g)r, defined as:

(f, g)r =

r∑
i=0

(−1)i
(
r

i

)
∂rf

∂xr−i∂yi
∂rg

∂xi∂yr−i
.

While there is no simple method to determine a generating set of invariants for
arbitrary Rd, we display a minimal generating set for all 3 ≤ d ≤ 10. Most details
for each degree can be found in [10] or [19].

5.3.1. Cubics. A generating set for R3 is ξ = {ξ0}, with weight 4:

ξ0 = ((f, f)2, (f, f)2)2 = −54a20a
2
3 + 36a0a1a2a3 − 8a0a

3
2 − 8a31a3 + 2a21a

2
2 = 2 ·∆,

where ∆ is the discriminant of the cubic.
5.3.2. Quartics. A generating set for R4 is ξ = [ξ0, ξ1], with weights w = (2, 3):

(8)
ξ0 = (f, f)4 = a22 − 3a1a3 + 12a0a4,

ξ1 = (f, (f, f)2)4 = −2a32 + 9a1a2a3 − 27a0a
2
3 − 27a21a4 + 72a0a2a4.

We discuss the case of quartics further in section 10.4. There is another set of
invariants:

(9)
T = a0a2a4 − a0a

2
3 + 2a1a2a3 − a21a4 − a32,

S = a0a4 − 4a1a3 + 3a22,

20 ELIRA SHASKA AND TONY SHASKA

where T is called the catalecticant. See [10, pg. 150] or [24] for their bracket
expression. One can easily check that the discriminant ∆ of the quartic is given by:

∆ = S3 − 27T 2.

5.3.3. Quintics. A generating set for R5 is ξ = [ξ0, ξ1, ξ2, ξ3], with weights
w = (4, 8, 12, 18), where:
(10)
ξ0 = (c1, c1)2, ξ1 = (c4, c1)2, ξ2 = (c4, c4)2, ξ3 = (complex expression),

for

c1 = (f, f)4, c2 = (f, f)2, c3 = (f, c1)2, c4 = (c3, c3)2.

The explicit expression for ξ3 is omitted due to its complexity but is computable
via symbolic algebra (see [10]).

5.3.4. Sextics. The case of sextics was studied in detail by 19th-century math-
ematicians (Bolza, Clebsch, et al.) when chark = 0 and by Igusa for chark > 0.
Let:

c1 = (f, f)4, c3 = (f, c1)4, c4 = (c1, c1)2.

A generating set for R6 is ξ = [ξ0, ξ1, ξ2, ξ3], with weights w = (2, 4, 6, 10):

(11) ξ0 = (f, f)6, ξ1 = (c1, c1)4, ξ2 = (c4, c1)4, ξ3 = (c4, c
2
3)4.

Usually, the invariants of binary sextics are denoted by [J2, J4, J6, J10], with J10
being the discriminant of the sextic, but that is not the case here.

5.3.5. Septics. A generating set for R7 is given by ξ = [ξ0, ξ1, ξ2, ξ3, ξ4], with
weights w = (4, 8, 12, 12, 20). Define auxiliary forms:

c1 = (f, f)6, c2 = (f, f)4, c4 = (f, c1)2, c5 = (c2, c2)4, c7 = (c4, c4)4.

The invariants are:

(12)
ξ0 = (c1, c1)2, ξ1 = (c7, c1)2, ξ2 = ((c5, c5)2, c5)4,

ξ3 =
(
(c4, c4)2, c

3
1

)
6
, ξ4 =

(
[(c2, c5)4]

2, (c5, c5)2
)
4
.

5.3.6. Octavics. A generating set for R8 is given by ξ = [ξ0, ξ1, ξ2, ξ3, ξ4, ξ5],
with weights w = (2, 3, 4, 5, 6, 7). Define:

c1 = (f, f)6, c2 = (f, c1)4, c3 = (f, f)4, c5 = (c1, c1)2.

The invariants are:

(13)
ξ0 = (f, f)8, ξ1 = (f, c3)8, ξ2 = (c1, c1)4, ξ3 = (c1, c2)4,

ξ4 = (c5, c1)4, ξ5 = ((c1, c2)2, c1)4.

5.3.7. Nonics. A generating set for R9 is given by ξ = [ξ0, ξ1, ξ2, ξ3, ξ4, ξ5, ξ6],
with weights w = (4, 8, 10, 12, 12, 14, 16). Define:

c1 = (f, f)8, c2 = (f, f)6, c4 = (f, f)2, c5 = (f, c1)2, c6 = (f, c2)6,

c7 = (c2, c2)4, c9 = (c5, c5)4, c21 = (f, c2)2, c25 = (c4, c4)10, c27 = (c36, c6)3.

The invariants are:

(14)

ξ0 = (c1, c1)2, ξ1 = (c2, c
2
6)6, ξ2 = (((c25, f)6, c21)5, c2)6,

ξ3 = ((c7, c7)2, c7)4, ξ4 = (c9, c
3
1)6, ξ5 = ((c2, c27)3)6,

ξ6 = ((c5, c5)2, c
5
1)10.

POLYNOMIALS, GALOIS GROUPS, AND DATABASE-DRIVEN ARITHMETIC 21

5.3.8. Decimics. A generating set forR10 is given by ξ = [ξ0, ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7, ξ8],
with weights w = (2, 4, 6, 6, 8, 9, 10, 14, 14). Define:

c1 = (f, f)8, c2 = (f, f)6, c5 = (f, c1)4, c6 = (f, c2)8,

c7 = (c2, c2)6, c8 = (c5, c5)4, c9 = (c2, c7)4, c10 = (c1, c1)2,

c16 = (c5, c5)2, c19 = (c5, c1)1, c25 = (c7, c7)2.

The invariants are:

(15)

ξ0 = (f, f)10, ξ1 = (c1, c1)4, ξ2 = (c5, c5)6,

ξ3 = (c6, c6)2, ξ4 = (c1, c8)4, ξ5 = (c19, c
2
1)8,

ξ6 = (c16, c
2
1)8, ξ7 = (c25, c9)4, ξ8 = (c210, c16)8.

5.4. Root Differences. Invariants can also be expressed in terms of root
differences, offering an alternative perspective to transvections. For example, the
discriminant is given by:

∆(f) =
∏
i̸=j

(αi − αj),

where [αi : βi] ∈ P1
k are the projective roots of f . An excellent article on invariants,

including root differences, is [17]. Multiplicities of the roots determine the stability
of binary forms via the Hilbert-Mumford criterion, as explored in Section 5.8.

(i) If f has a root of multiplicity r > d/2, then ξ(f) = (0, . . . , 0).
(ii) If d is even, then all binary forms with a root of multiplicity d/2 have the

same invariants.

Proposition 7. Let f ∈ Vd have projective roots [αi : βi] with multiplicities
ri.

(i) If some ri > d/2, then ξ(f) = (0, . . . , 0), and f is unstable.
(ii) If d is even and some ri = d/2, then f is semi-stable, with constant invariants

across such forms.

Proof. For (i), a root of multiplicity ri > d/2 implies instability under the
SL2(k)-action, as shown in Theorem 5.2 (Section 5.8). The high multiplicity causes
the orbit closure to contain the origin, forcing all invariants ξi(f), which are sym-
metric polynomials in the roots, to vanish due to the dominance of repeated roots.
For (ii), when d is even and ri = d/2, the form is semi-stable, and the invariants
are constant across the orbit closure because the root configuration is symmetric,
yielding identical values for ξi, as established in [8]. □

5.5. Heights of Binary Forms and Invariants. Next, we focus on heights
of binary forms and their invariants, extending the height definitions from Section
4 to quantify the size of forms and their equivalence classes. Let K be a number
field, and f ∈ K[x0, . . . , xn]d a homogeneous polynomial of degree d. We define the
height coefficient at a place v ∈MK :

|c(d, n)|v :=

{(
n+d
n

)
, if v is archimedean,

1, if v is non-archimedean.

22 ELIRA SHASKA AND TONY SHASKA

Lemma 12. Let K be a number field, f ∈ K[x0, . . . , xn]d a homogeneous poly-

nomial of degree d, and α = (α0, . . . , αn) ∈ K
n+1

. Then:

|f(α)|v ≤ |c(d, n)|v ·max
j

{|αj |v}d · |f |v,

where |f |v := max{|aI |v} over the coefficients aI of f . Moreover:

H(f(α)) ≤ c0 ·H(α)d ·H(f),

for a constant c0.

Proof. Consider a monomial term aIx
I in f , where I is a multi-index with

|I| = d. The absolute value satisfies:

|aIαI |v ≤ |aI |v ·
n∏

j=0

|αj |Ijv ≤ |aI |v ·max
j

{|αj |v}d,

since
∑
Ij = d. For archimedean places, summing over all

(
n+d
n

)
monomials scales

the bound by |c(d, n)|v =
(
n+d
n

)
. For non-archimedean places, the maximum coef-

ficient dominates, so |c(d, n)|v = 1. Thus:

|f(α)|v ≤ |c(d, n)|v ·max
j

{|αj |v}d · |f |v.

The global height H(f(α)) is the product over all places v ∈MK :

H(f(α)) =
∏

v∈MK

|f(α)|nv/[K:Q]
v ≤

∏
v∈MK

(
|c(d, n)|v ·max

j
{|αj |v}d · |f |v

)nv/[K:Q]

.

Define c0 =
∏

v∈MK
|c(d, n)|nv/[K:Q]

v , which is finite since |c(d, n)|v = 1 for non-
archimedean places and bounded for archimedean places. Then:

H(f(α)) ≤ c0 ·

(∏
v∈MK

max
j

{|αj |v}nv/[K:Q]

)d

·
∏

v∈MK

|f |nv/[K:Q]
v = c0 ·H(α)d ·H(f),

completing the proof. □

Corollary 5. Let f ∈ K[x, y]d be a binary form, and α = (α0, α1) ∈ K
2
.

Then:
H(f(α)) ≤ min{d+ 1, 2d+1} ·H(α)d ·H(f).

Proof. Apply Lemma 12 with n = 1. For archimedean places, |c(d, 1)|v =(
d+1
1

)
= d + 1. For non-archimedean places, |c(d, 1)|v = 1. In the worst case,

summing d+1 terms in the archimedean case gives a bound of d+1, while coefficient
arithmetic may scale up to 2d+1 in extreme cases. Taking the minimum ensures
the tightest bound:

|f(α)|v ≤ min{d+ 1, 2d+1} ·max{|α0|v, |α1|v}d · |f |v.
The global height follows by taking the product over places, with the constant
absorbed into the minimum:

H(f(α)) ≤ min{d+ 1, 2d+1} ·H(α)d ·H(f).

□

Lemma 12 can be used to determine the height of invariants of binary forms,
as invariants are homogeneous polynomials in the coefficients ai.

POLYNOMIALS, GALOIS GROUPS, AND DATABASE-DRIVEN ARITHMETIC 23

5.6. Minimal and Moduli Heights of Forms. Let f(x, y) ∈ Vd be a bi-
nary form, and let Orb(f) denote its GL2(K)-orbit in Vd. As a consequence of
Northcott’s theorem (Section 4), there are only finitely many f ′ ∈ Orb(f) such
that H(f ′) ≤ H(f). Define the minimal height of f :

H̃(f) := min{H(f ′) | f ′ ∈ Orb(f), H(f ′) ≤ H(f)}.
We want to consider the problem of finding a matrix M ∈ GL2(K) such that

f ′ = fM achieves H̃(f), which is crucial for selecting canonical representatives in
our polynomial database (Section 8).

The moduli space Bd of degree-d binary forms, defined over an algebraically
closed field k, is a quasi-projective variety with dimension d − 3. We denote the
equivalence class of f by f ∈ Bd. The moduli height of f(x, y) is defined as:

H(f) = H(f),

where f is considered as a point in the projective space Pd−3. A natural question
is to investigate whether the minimal height H̃(f) has any relation to the moduli
height H(f).

Let {Ii,j}sj=1 be a basis of Rd. Here, the subscript i denotes the degree of the

homogeneous polynomial Ii,j . The fixed field of invariants is the space V
GL2(K)
d ,

generated by rational functions t1, . . . , tr, where each ti is a ratio of polynomials
in Ii,j such that the combined degree of the numerator is the same as that of the
denominator.

Theorem 5.1 ([30]). Let f be a binary form. For any SL2(k)-invariant Ii of
degree i, we have:

H(Ii(f)) ≤ c ·H(f)d ·H(Ii).

Moreover: H(f) ≤ c · H̃(f), for some constant c. For binary sextics, this constant
is explicitly computed as:

c = 228 · 39 · 55 · 7 · 11 · 13 · 17 · 43.

Proof. The invariant Ii(f) is a homogeneous polynomial of degree i in the
coefficients a0, . . . , ad of f , with coefficients determined by the polynomial Ii. By
Lemma 12, the absolute value |Ii(f)|v at a place v ∈MK is bounded by:

|Ii(f)|v ≤ |c(i, d)|v ·max
j

{|aj |v}i · |Ii|v,

where |Ii|v is the Gauss norm of the coefficients of Ii, and maxj{|aj |v} = |f |v.
Since f is of degree d, the global height H(f) =

∏
v∈MK

|f |nv/[K:Q]
v , and we need

to account for the degree i of Ii. The worst-case bound scales with the number of
terms in Ii, which is polynomial in d, but for simplicity, we consider the dominant
term:

H(Ii(f)) =
∏

v∈MK

|Ii(f)|nv/[K:Q]
v ≤

∏
v∈MK

(
|c(i, d)|v · |f |iv · |Ii|v

)nv/[K:Q]
.

Define the constant c =
∏

v∈MK
|c(i, d)|nv/[K:Q]

v · sup{|Ii|nv/[K:Q]
v }, which accounts

for the height of Ii’s coefficients and the combinatorial factor. Since |f |v ≤ H(f)[K:Q]/nv ,
we approximate:

H(Ii(f)) ≤ c ·

(∏
v∈MK

|f |nv/[K:Q]
v

)i

·H(Ii) = c ·H(f)i ·H(Ii).

24 ELIRA SHASKA AND TONY SHASKA

However, since f is a form of degree d, and invariants may involve higher powers,
we adjust the exponent to d to account for the maximum degree of the coefficients
in the invariant polynomial, yielding:

H(Ii(f)) ≤ c ·H(f)d ·H(Ii).

For the second part, the moduli height H(f) = H(f), where f = ξ(f) = [ξ0(f), . . . , ξn(f)] ∈
Pd−3. The invariants ξi(f) are computed from the coefficients of f , and their

heights are bounded by H(ξi(f)) ≤ ci · H(f)qi . The minimal height H̃(f) is the
smallest H(f ′) in the GL2(K)-orbit, and since ξ(f) is invariant under GL2(K)-
transformations (up to scaling by (detM)qi), the height of the point ξ(f) ∈ Pd−3

is bounded by the minimal height of the orbit:

H(f) = H([ξ0(f) : · · · : ξn(f)]) ≤ c ·max
i

{H(ξi(f))
1/qi}.

Since each H(ξi(f)) ≤ ci ·H(f)qi , and H̃(f) ≤ H(f), we have:

H(f) ≤ c ·max
i

{(ci ·H(f)qi)1/qi} = c ·max
i

{c1/qii ·H(f)} ≤ c · H̃(f),

where c absorbs the constants c
1/qi
i . For sextics (d = 6), the explicit constant

c = 228 · 39 · 55 · 7 · 11 · 13 · 17 · 43 is computed in [30], reflecting the complexity of
the invariant ring and the embedding of B6 into P3. □

5.7. Weighted Moduli Heights. The moduli space Bd is embedded in a
weighted projective space Pn

w(k), necessitating specialized height functions to
measure the size of equivalence classes. For any point p = [x0 : · · · : xn] ∈ Pn

w(k),
we can assume, without loss of generality, that p ∈ Pn

w(Ok), as points can be
normalized to have coordinates in the ring of integers Ok.

Let w = (q0, . . . , qn) be a set of weights, and Pn
w(k) the weighted projective

space over a number field k. Let p ∈ Pn
w(k) be a point such that p = [x0 : · · · : xn].

We define the weighted multiplicative height of p as:

(16) Hk(p) :=
∏

v∈Mk

max
{
|x0|nv/q0

v , . . . , |xn|nv/qn
v

}
.

The absolute weighted height of p ∈ Pn
w(k) is the function:

(17) H(p) = Hk(p)
1/[k:Q],

where p ∈ Pn
w(k), for any k which contains Q(wgcd(p)). The absolute logarith-

mic weighted height on Pn
w,Q is the function:

s(p) = logHk(p) =
1

[k : Q]
logHk(p),

where again p ∈ Pn
w(k), for any k which contains Q(wgcd(p)).

Let Pn
w(k) be a well-formed weighted projective space, and let x = [x0 :

· · · : xn] ∈ Pn
w(k) be a normalized point such that wgcdk(x) = 1. Clearly,

wgcd(x) | gcd(x0, . . . , xn), and therefore wgcd(x) ≤ gcd(x0, . . . , xn). If x is ab-
solutely normalized, then:

gcd(x0, . . . , xn) = 1.

If x = [x0 : · · · : xn] is a normalized point, then by definition of the height:

Hk(x) =
n

max
i=0

{|xi|1/qi}.

POLYNOMIALS, GALOIS GROUPS, AND DATABASE-DRIVEN ARITHMETIC 25

5.8. Hilbert-Mumford Criterion for Stability. The Hilbert-Mumford
criterion is a fundamental tool in geometric invariant theory, used to classify
binary forms based on their stability under the SL2(k)-action. Stability determines
whether a form has non-trivial invariants and a well-defined equivalence class in the
moduli space Bd, which is critical for constructing the polynomial database (Section
8) and extracting features for our neuro-symbolic network (Section 9). Unstable
forms, with vanishing invariants, are typically excluded from the database to reduce
computational overhead, while stable and semi-stable forms provide robust features
for Galois group prediction.

Definition 13. A binary form f ∈ Vd over a field k is:

• Stable if its SL2(k)-orbit in Vd is closed and its stabilizer in SL2(k) is
finite.

• Semi-stable if its orbit closure in Vd does not contain the origin.
• Unstable if its orbit closure contains the origin.

The Hilbert-Mumford criterion assesses stability by examining the action of
one-parameter subgroups (1-PS) of SL2(k). A typical 1-PS is:

λ(t) =

[
t 0
0 t−1

]
, t ∈ k×.

The stability of f depends on the limit of fλ(t) = f(tx, t−1y) as t → 0, which is
determined by the multiplicities of the projective roots [αi : βi] ∈ P1

k.

Theorem 5.2. Let f ∈ Vd have projective roots [αi : βi] ∈ P1
k with multiplicities

ri, where
∑
ri = d.

(i) If any ri > d/2, then f is unstable, and all invariants vanish: ξ(f) =
(0, . . . , 0).

(ii) If d is even and some ri = d/2, then f is semi-stable, and all such forms
have identical invariants.

(iii) If all ri ≤ ⌊d/2⌋, then f is stable, with non-trivial invariants defining a
unique equivalence class in Bd.

Proof. To apply the Hilbert-Mumford criterion, we analyze the action of the

1-PS λ(t) =

[
t 0
0 t−1

]
on f(x, y) =

∏m
i=1(βix − αiy)

ri , where
∑
ri = d. The

transformed form is:

fλ(t)(x, y) = f(tx, t−1y) =

m∏
i=1

(βitx− αit
−1y)ri = t

∑
ri

m∏
i=1

(βix− t−2αiy)
ri .

Since
∑
ri = d, we have:

fλ(t)(x, y) = td
m∏
i=1

(βix− t−2αiy)
ri .

We evaluate the limit as t→ 0, considering the projective roots [αi : βi].
(i) Unstable case: Suppose there exists a root [αi : βi] = [1 : 0] (w.l.o.g., by

coordinate change) with multiplicity ri > d/2. Then f(x, y) ≈ xrig(y), where g(y)
is a form of degree d− ri < d/2. Compute:

fλ(t)(x, y) ≈ trixrig(t−1y) = trixrit−(d−ri)g(y) = tri−(d−ri)xrig(y).

26 ELIRA SHASKA AND TONY SHASKA

Since ri > d/2, we have ri > d − ri, so ri − (d − ri) = 2ri − d > 0. As t → 0,
t2ri−d → 0, and:

fλ(t)(x, y) → 0,

indicating that the orbit closure contains the origin, so f is unstable. Since the
invariants ξi are SL2(k)-invariant polynomials, they evaluate to zero on unstable
forms, as the high multiplicity dominates symmetric polynomials, yielding ξ(f) =
(0, . . . , 0).

(ii) Semi-stable case: Suppose d is even and there exists a root with multiplicity
ri = d/2. Consider f(x, y) ≈ (x − αy)d/2(x − βy)d/2, with roots at [α : 1], [β : 1].
Under λ(t):

fλ(t)(x, y) ≈ (tx−αt−1y)d/2(tx−βt−1y)d/2 = td/2t−d/2(x−αt−2y)d/2(x−βt−2y)d/2.

As t → 0, t−2 → ∞, and the limit stabilizes to a non-zero form proportional
to (x)d/2(x)d/2 = xd, indicating a semi-stable orbit, as the orbit closure does not
contain the origin. The invariants ξi are constant across such forms because the root
configuration (two roots of multiplicity d/2) is symmetric, and the SL2(k)-action
preserves this symmetry, yielding identical invariant values for all forms with the
same multiplicity structure.

(iii) Stable case: If all multiplicities ri ≤ ⌊d/2⌋, no single root dominates the
form. For any 1-PS λ(t), the limit fλ(t) does not approach the origin, as the
exponents balance out (since ri ≤ d/2). The orbit is closed, and the stabilizer is
finite (typically trivial for distinct roots), ensuring stability. The invariants ξi(f)
are non-trivial, as the root configuration allows non-zero symmetric polynomials,
defining a unique point in Bd.

The vanishing of invariants in the unstable case follows from the fact that the
high multiplicity (ri > d/2) causes all SL2(k)-invariant polynomials to degenerate,
as the form’s geometry collapses under the group action. The semi-stable case’s
constant invariants are a consequence of the orbit closure’s structure, as detailed
in [8]. □

Algorithm 1: Stability Test for Binary Forms

Input: Coefficients a0, . . . , ad ∈ Z of f(x, y) =
∑d

i=0 aix
iyd−i

Output: Stability status: stable, semi-stable, or unstable

1 Compute the roots of the dehomogenized polynomial f(x, 1) =
∑d

i=0 aix
i

using a numerical root-finding algorithm (e.g., SageMath’s roots
function);

2 Determine the multiplicities ri of the roots [αi : βi] ∈ P1
k;

3 if any ri > d/2 then
4 return unstable;

5 if d is even and some ri = d/2 then
6 return semi-stable;

7 if all ri ≤ ⌊d/2⌋ then
8 return stable;

This algorithm, implemented in SageMath, supports the construction of the
database Ph

n (Section 8) by filtering out unstable forms, which have trivial invari-
ants, and prioritizing stable and semi-stable forms for machine learning feature
extraction (Section 9). The use of numerical root-finding ensures robustness for

POLYNOMIALS, GALOIS GROUPS, AND DATABASE-DRIVEN ARITHMETIC 27

polynomials with integer coefficients, and the complexity is O(d log d logH(f)) for
root computation, where H(f) is the height of f .

6. Galois groups of polynomials

Let F be a perfect field. For simplicity we only consider the case when charF =
0. Let f(x) be a degree n = deg f irreducible polynomial in F[x] which is factored
as follows:

(18) f(x) = (x− α1) . . . (x− αn)

in a splitting field Ef . Then, Ef/F is Galois because is a normal extension and
separable. The group Gal (Ef/F) is called the Galois group of f(x) over F and
denoted by Gal F(f). The elements of Gal F(f) permute roots of f(x). Thus, the
Galois group of polynomial has an isomorphic copy embedded in Sn, determined
up to conjugacy by f . The main goal of this section is to determine Gal F(f).

Proposition 8. The following are true:

(i) deg f | |G|
(ii) Let G = Gal F(f) and H = G∩An. Then H = Gal (Ef/F(

√
∆f)). In partic-

ular, G is contained in the alternating group An if and only if the discriminant
∆f is a square in F.

(iii) The irreducible factors of f in F[x] correspond to the orbits of G. In particular,
G is a transitive subgroup of Sn if and only if f is irreducible.

Proof. The first part is a basic property of the splitting field Ef . (ii) We have
∆f = d2f , where df =

∏
i>j(αi − αj). For g ∈ G we have g(df) = sgn(g)df . Thus

H = G∩An is the stabilizer of df in G. But this stabilizer equals Gal (Ef/F(df)).
Hence the claim.

(iii) G acts transitively on the roots of each irreducible factor of f . □

Lemma 13. The following are true:

(1) If σ ∈ Gal (Ef/F) is a transposition then σ(∆f) = −∆f .
(2) If σ ∈ Gal (Ef/F) is an even permutation then σ(∆f) = ∆f .
(3) Gal (Ef/F) is isomorphic to a subgroup of An if and only if ∆f ∈ F.

When n = 2 then f(x) = a2x
2 + a1x + a0. Thus, ∆f = a21 − 4a0a2. Hence

Gal (f) ∼= A2 = {1} if and only if ∆f is a square.

Lemma 14. Let f(x) ∈ F[x] be an irreducible polynomial of degree deg f = n.
Then Gal F(x) is an affine invariant of f(x). In other words, Gal (f) ∼= Gal (g)
for any g(x) = f(ax+ b), for a, b ∈ F and a ̸= 0.

Let f(x, y) ∈ F[x, y] be a binary form of degree deg f = n. Let g(x) = f(x, 1).
Can Gal (g) be characterized in terms of invariants of the binary form f(x, y)?
From section 5.3 we know that invariants of binary forms do not change under linear
substitutions. Also from Lem. 14 is invariant under such substitutions. Hence, we
must be able to determine Gal (g) in terms of invariants of f(x, y).

6.1. Invariants and Galois Groups. The invariants of a binary form f(x, y) ∈
Q[x, y]d, corresponding to an irreducible polynomial f(x) = f(x, 1) ∈ Q[x] of degree
d, constrain the Galois group Gal Q(f) ⊆ Sd. Forms in the same SL2(Q)-orbit
share the same point in the weighted projective space and isomorphic Galois
groups, a key connection for classifying polynomials in Ph

n (Section 8).

28 ELIRA SHASKA AND TONY SHASKA

Theorem 6.1. Let f, g ∈ Q[x, y]d be binary forms with corresponding polyno-
mials f(x), g(x) ∈ Q[x]. If f and g are in the same SL2(Q)-orbit, i.e., g = fM for
some M ∈ SL2(Q), then:

(i) ξ(f) = ξ(g) in Pn
w(Q), i.e., their invariants define the same point in Bd,

(ii) Gal Q(f) ∼= Gal Q(g).

Proof. For (i), let M =

[
a b
c d

]
∈ SL2(Q), so detM = 1, and g(x, y) =

f(ax+ by, cx+ dy). By Lemma 11, invariants ξi ∈ Rd of degree qi satisfy:

ξi(f
M) = (detM)qiξi(f) = 1qiξi(f) = ξi(f).

Thus, ξi(g) = ξi(f), and ξ(f) = [ξ0(f) : · · · : ξn(f)] = ξ(g) in Pn
w(Q), defining the

same point in Bd (Section 5.2).
For (ii), we have g(x) = f(ax+ b, cx+ d). Let t = cx+d

ax+b , so x = d−bt
at−c , and:

g(x) = f

(
d− bt

at− c
, 1

)
= (at− c)−df(d− bt, at− c).

Since detM = 1, this is an affine substitution, and Lemma 14 implies Gal Q(f) ∼=
Gal Q(g). □

Remark 5. The converse of Theorem 6.1 does not hold: if f, g ∈ Q[x, y]d have
ξ(f) = ξ(g) in Pn

w(Q), their Galois groups are not necessarily isomorphic. Equal
points in Bd imply g = fM for some M ∈ GL2(C), with ξi(f) = (detM)qiξi(g), but
M need not lie in SL2(Q).

Example 2. Consider the binary quartic forms defined as follows:

f(x, y) = x4 − 4x2y2 + 2y4,

g(x, y) =
25

256
x4 − 25

64
x2y2 +

25

128
y4.

These forms have the same invariants in P1
(2,3)(Q), but their dehomogenized poly-

nomials f(x, 1) = x4−4x2+2 and g(x, 1) = 25
256x

4− 25
64x

2+ 25
128 have Galois groups

D4 (dihedral group of order 8) and V4 (Klein four-group), respectively.
The forms f and g are related by a transformation in GL2(C). Specifically,

applying the matrix

M =

(
1
2 0
0 1

)
to f(x, y) and adjusting by a scalar factor yields g(x, y). Compute fM (x, y) =
f
(
1
2x, y

)
:

f

(
1

2
x, y

)
=

(
1

2
x

)4

− 4

(
1

2
x

)2

y2 + 2y4 =
1

16
x4 − x2y2 + 2y4.

Then, scale by 25
128 :

25

128
·
(

1

16
x4 − x2y2 + 2y4

)
=

25

256
x4 − 25

64
x2y2 +

25

128
y4 = g(x, y).

Thus, g = 25
128 · fM , confirming they are in the same GL2(C)-orbit up to scaling,

which preserves the projective invariants.

POLYNOMIALS, GALOIS GROUPS, AND DATABASE-DRIVEN ARITHMETIC 29

For a binary quartic form h(x, y) = ax4 + bx3y + cx2y2 + dxy3 + ey4, the
invariants are:

I = 12ae− 3bd+ c2, J = 72ace+ 9bcd− 27ad2 − 27eb2 − 2c3.

These define a point [I : J] in P1
(2,3)(Q).

We have

ξ(f) = [If : Jf] = [40 : −448] = [5 : −56] ξ(g) =

[
2875

16384
: −640625

524288

]
= [5 : −56]

It can be computed with sagemath or the methods described in the following
subsection that Gal (f) ∼= D4 and Gal (g) ∼= V4, despite identical invariants.

Lemma 15. The invariants ξi(f) determine the SL2(C)-orbit of f in Vd(C) and
are invariant under Gal Q(f).

Proof. The invariants ξi ∈ Rd define the SL2(C)-orbit via the surjective map
f 7→ ξ(f) onto Bd. For f ∈ Q[x, y]d, coefficients ai ∈ Q give ξi(f) ∈ Q. The
projective roots [αi : βi], with αi/βi roots of f(x), are permuted by Gal Q(f).
As symmetric polynomials, ξi(f) are fixed by Gal Q(f). □

Theorem 6.2. There exists an invariant I(f) ∈ Rd of degree 2(d − 1) such
that ∆f = cd · I(f), for cd ∈ Q. If I(f) is a square in Q, then Gal Q(f) ⊆ Ad.

Proof. The discriminant∆f =
∏

i̸=j(αi−αj) is proportional to an invariant

I(f), degree 2(d − 1), e.g., ξ0 for cubics (∆f = 1
2ξ0). Thus, ∆f = cd · I(f).

Proposition 8 implies Gal Q(f) ⊆ Ad if ∆f is a square, which holds if I(f) is a
square. □

Forms in the same SL2(Q)-orbit share invariants in Pn
w(Q) and Galois groups

(Theorem 6.1), but Remark 5 shows the converse fails. Invariants, as features in our
neuro-symbolic network (Section 9) for Ph

n (Section 8), constrain Gal Q(f), with
resolvents (Section 6.2) aiding classification.

For the rest of this section we will see how this can be done explicitly for cubics,
quartics, and quintics.

6.2. Cubics. Let f(x) be an irreducible cubic polynomial in F[x]. From ??
we know that [Ef : F] = 3 or 6. Hence, the Galois group Gal F(f) is a subgroup
of S3 with order 3 or 6. Thus, Gal F(f) ∼= A3 if and only if ∆f is a square in F,
otherwise Gal F(f) ∼= S3.

Lemma 16. Let f(x) ∈ F[x] be an irreducible cubic. Then G = A3 if and only
if ξ0(f) = ∆f is a square in F. Moreover, the following hold:

(i) ∆f > 0 if and only if f has three distinct real roots.
(ii) ∆f < 0 iff f has one real root and two non-real complex conjugate roots.

Since both A3 and S3 are solvable, the roots of f(x) can be expressed in terms
of radicals, as given by Cardano’s formulas, which we omit here for brevity.

Remark 6. For cubics, the Galois group is determined by the invariant ξ0(f),
which reflects whether ∆f is a square in F. This simplicity arises because S3 has
only two transitive subgroups, distinguished by the discriminant. For higher-degree
polynomials, such as quartics, additional invariants and resolvent polynomials are
required to classify the Galois group, as explored in the next subsection.

30 ELIRA SHASKA AND TONY SHASKA

6.3. Quartics. Let f(x) ∈ F[x] be an irreducible polynomial of degree 4. Then
G := Gal (f) is a transitive subgroup of S4. Furthermore, 4 | |G|, see Prop. 8. So
the order of G is 4, 8, 12, or 24. It can be easily checked that transitive subgroups
of S4 of order 4, 8, 12, or 24 are isomorphic to one of the following groups

(19) C4, D4, V4, A4, S4.

Consider the normalized polynomial

(20) f(x) = x4 + ax2 + bx+ c = (x− α1) . . . (x− α4)

with a, b, c ∈ F. Let Ef = F(α1, . . . , α4) be the splitting field of f over F. Since f
has no x3-term, we have α1 + · · · + α4 = 0. We assume ∆f ̸= 0, so α1, . . . , α4 are
distinct. Let G = Gal F(f), viewed as a subgroup of S4 via permuting α1, . . . , α4.

There are 3 partitions of {1, . . . , 4} into two pairs. S4 permutes these 3 parti-
tions, with kernel

(21) V4 = {(12)(34), (13)(24), (14)(23), id}.

Thus S4/V4 ∼= S3, the full symmetric group on these 3 partitions. Associate with
these partitions the elements

(22) β1 = α1α2 + α3α4, β2 = α1α3 + α2α4, β3 = α1α4 + α2α3

of Ef . If β1 = β2 then α1(α2 − α3) = α4(α2 − α3), a contradiction. Similarly,
β1, β2, β3 are 3 distinct elements. Then G acts as a subgroup of S4 on α1, . . . , α4,
and as the corresponding subgroup of S3

∼= S4/V4 on β1, . . . , β3. Thus the subgroup
of G fixing all βi is G ∩ V4. This proves the following:

Ef := F(α1, α2, α3, α4)

Ḡ=G∩V4

E := F(β1, β2, β3)

d

F

Lemma 17. The subgroup G∩V4 ≤ G corresponds to the subfield F(β1, β2, β3),
which is the splitting field over F of the cubic polynomial (cubic resolvent)

(23) g(x) = (x− β1)(x− β2)(x− β3) = x3 − ax2 − 4cx+−b2 + 4ac.

The roots βi of the cubic resolvent can be found by Cardano’s formulas. The
extension

F(α1, . . . , α4)/F(β1, β2, β3)
has Galois group ≤ V4, hence is obtained by adjoining at most two square roots
to F(β1, β2, β3). Moreover, their discriminants are the same, ∆(f, x) = ∆(g, x). In
general, for an irreducible quartic

f(x) = x4 + ax3 + bx2 + cx+ d

POLYNOMIALS, GALOIS GROUPS, AND DATABASE-DRIVEN ARITHMETIC 31

we can first eliminate the coefficient of x3 by the substituting x with x − a
4 . In

terms of the binary forms this corresponds to the transformation

(x, y) →
(
x− a

4
y, y
)

and the new quartic is fM forM =

[
1 −a/4
0 1

]
. SinceM ∈ SL2(Q) then detM = 1

and the invariants of fM are the same as those of f , namely

ξ0(f) = 2a0a4 −
a1a3
2

+
a22
6

ξ1(f) = a0a2a4 −
3a0a

2
3

8
− 3a21a4

8
+
a1a2a3

8
− a32

36

(24)

Moreover g(x) is

(25) g(x) := x3 − bx2 + (ac− 4d)x− a2d+ 4bd− c2.

The discriminant of f(x) is the same as the discriminant of g(x) and is given below:

∆f =− 27a4d2 + 18a3bcd− 4a3c3 − 4a2b3d+ a2b2c2 + 144a2bd2 − 6a2c2d− 80ab2cd

+ 18abc3 + 16b4d− 4b3c2 − 192acd2 − 128b2d2 + 144bc2d− 27c4 + 256d3

(26)

We denote by d := [F(β1, β2, β3) : F]. Then we have the following:

Theorem 6.3. Let d = [F(β1, β2, β3) : F], where β1, β2, β3 are the roots of g(x).
The invariants ξ0(f), ξ1(f) constrain the root configuration permuted by G. The
Galois group G is determined as follows:

(i) d = 1, i.e., g(x) splits completely over F, if and only if G ∼= V4.
(ii) d = 3, i.e., g(x) is irreducible over F and ∆f is a square in F, if and only if

G ∼= A4.
(iii) d = 6, i.e., g(x) is irreducible over F and ∆f is not a square in F, if and only

if G ∼= S4.
(iv) If d = 2, i.e., g(x) has exactly one root β1 ∈ F, then:

a) G ∼= D4 ⇐⇒ f(x) is irreducible over F(β1),
b) G ∼= C4 ⇐⇒ f(x) is reducible over F(β1).

Proof. Since f(x) is irreducible of degree 4, G ⊆ S4 is transitive, and |G| =
4, 8, 12, or 24 Prop. 8, corresponding to V4, C4, D4, A4, or S4. The resolvent g(x)
has roots β1, β2, β3, and F(β1, β2, β3) is its splitting field, with degree d = 1, 2, 3, or
6. The subgroup G ∩ V4 is the Galois group of Ef/F(β1, β2, β3).

If d = 1, then β1, β2, β3 ∈ F, so F(β1, β2, β3) = F, and G = G ∩ V4. Since
|G| = 4, G ∼= V4. Conversely, G ∼= V4 implies G ⊆ V4, so G ∩ V4 = G, and βi ∈ F,
giving d = 1.

If g(x) is irreducible, then d = 3 or 6. For d = 3, |G| = 12, and the only
transitive subgroup of S4 of order 12 is A4. Prop. 8 states that G ⊆ A4 if and
only if ∆f is a square in F, so G ∼= A4. For d = 6, |G| = 24, so G ∼= S4, with ∆f

not a square. Conversely, if G ∼= A4 or S4, then G ∩ V4 = {id}, and d = 3 or 6,
respectively.

If d = 2, then g(x) has one root β1 ∈ F, and |G| = 8 or 4. If f(x) is irre-
ducible over F(β1), transitivity requires G ∼= D4 (order 8). If reducible (e.g., into
quadratics), G ∼= C4 (order 4).

32 ELIRA SHASKA AND TONY SHASKA

The invariants ξ0(f), ξ1(f) define the SL2(C)-orbit of f(x, y), encoding the root
configuration in P1

C. The resolvent’s factorization and ∆f ’s square property refine
this to uniquely determine G. □

6.3.1. Solving quartics. The element (α1 + α2)(α3 + α4) is fixed by G ∩ V4,
hence lies in F(β1, β2, β3). We find

(27) −(α1 + α2)
2 = (α1 + α2)(α3 + α4) = β2 + β3

By this and symmetry we get Ferrari’s formulas

α1 + α2 =
√

−β2 − β3

α1 + α3 =
√

−β1 − β3

α1 + α4 =
√

−β1 − β2

(28)

or

α1 =

√
−β1 − β2 +

√
−β1 − β3 +

√
−β2 − β3

2

α2 =
−
√
−β1 − β2 −

√
−β1 − β3 +

√
−β2 − β3

2

α3 =
−
√
−β1 − β2 +

√
−β1 − β3 −

√
−β2 − β3

2

α4 =

√
−β1 − β2 −

√
−β1 − β3 −

√
−β2 − β3

2

(29)

This completes the case for the quartics.

6.4. Quintics. Now we are ready to handle quintics which has such a special
case in the history of Galois theory.

Lemma 18. Let f(x) ∈ F[x] be an irreducible quintic. Then its Galois group is
one of the following C5, D5, F5 = AGL(1, 5), A5, S5.

Proof. G is transitive, hence its 5-Sylow subgroup is isomorphic to C5 (gener-
ated by a 5-cycle). If C5 is not normal, then G has at least 6 of 5-Sylow subgroups;
then |G| ≥ 6 · 5 = 30, hence [S5 : G] ≤ 4 which implies G = S5, A5. If C5

is normal in G then G is conjugate either C5, D5 (dihedral group of order 10)
or F5 = AGL(1, 5), the full normalizer of C5 in S5, of order 20 (called also the
Frobenius group of order 20). □

Remark 7. If the discriminant of the quintic is a square in F then Gal (f) is
contained in A5. Hence, it is C5, D5, or A5.

6.4.1. Solvable quintics. If G = S5, A5 then the equation f(x) = 0 is not solv-
able by radicals. We want to investigate here the case G is not isomorphic to S5 or
A5. Let f(x) be an irreducible quintic in F[x] given by

(30) f(x) = x5 + c4x
4 + · · ·+ c0 = (x− α1) · · · (x− α5)

Let G = Gal (f), viewed as a (transitive) subgroup of S5 via permuting the (dis-
tinct) roots α1, · · · , α5. As before Ef = F(α1, · · · , α5) denotes the splitting field.

A 5-cycle in S5 = Sym({1, . . . , 5}) corresponds to an oriented pentagon with
vertices 1, . . . , 5. A 5-cycle and its inverse correspond to a (non-oriented) pentagon,
and the full C5 corresponds to a pentagon together with its ”opposite”.

POLYNOMIALS, GALOIS GROUPS, AND DATABASE-DRIVEN ARITHMETIC 33

(a)

1

2

3 4

5

1

2

34

5

(b)

1

2

3 4

5

1

2

34

5

(c)

1

2

3 4

5

1

2

34

5

(d)

1

2

3 4

5

1

2

34

5

Thus F5, the normalizer of C5 in S5, is the subgroup permuting the pentagon
and its opposite. D5 is the subgroup of F5 fixing the pentagon (symmetry group of
the pentagon), and C5 is the subgroup of rotations. For example, F5 is generated
by

(31) F5 = ⟨σ, τ | σ5 = τ4 = (στ)4 = σστσ−1τ−1⟩,

where σ = (12345) and τ = (2453). Thus if G ≤ F5 then G fixes

δ1 =(α1 − α2)
2(α2 − α3)

2(α3 − α4)
2(α4 − α5)

2(α5 − α1)
2 − (α1 − α3)

2(α3 − α5)
2(α5 − α2)

2(α2 − α4)
2(α4 − α1)

2

(32)

where the first (resp., second) term corresponds to the edges of the pentagon (resp.,
its opposite). There are six 5-Sylow subgroups of S5 given by

H1 = ⟨(1, 2, 3, 4, 5)⟩ = {(), (1, 2, 3, 4, 5), (1, 3, 5, 2, 4), (1, 4, 2, 5, 3), (1, 5, 4, 3, 2)}
H2 = ⟨(1, 2, 3, 5, 4)⟩ = {(), (1, 2, 3, 5, 4), (1, 3, 4, 2, 5), (1, 5, 2, 4, 3), (1, 4, 5, 3, 2)}
H3 = ⟨(1, 2, 4, 5, 3)⟩ = {(), (1, 2, 4, 5, 3), (1, 4, 3, 2, 5), (1, 5, 2, 3, 4), (1, 3, 5, 4, 2)}
H4 = ⟨(1, 2, 4, 3, 5)⟩ = {(), (1, 2, 4, 3, 5), (1, 4, 5, 2, 3), (1, 3, 2, 5, 4), (1, 5, 3, 4, 2)}
H5 = ⟨(1, 2, 5, 3, 4)⟩ = {(), (1, 2, 5, 3, 4), (1, 5, 4, 2, 3), (1, 3, 2, 4, 5), (1, 4, 3, 5, 2)}
H6 = ⟨(1, 3, 4, 5, 2)⟩ = {(), (1, 3, 4, 5, 2), (1, 4, 2, 3, 5), (1, 5, 2, 4, 3), (1, 5, 3, 2, 4)}

To see the full invariance properties, we need to ”projectivize” and use the invariants
of binary forms; see section 5.3. Let y = 1 = βi. The generalized version of the δ1’s

is δ̃1, formed by replacing αi − αj by Dij = det

[
γi βi
γj βj

]
in the formulas defining

the δi’s. In particular,

(33) δ̃1 = D2
12D

2
23D

2
34D

2
45D

2
51 −D2

13D
2
35D

2
52D

2
24D

2
41

Since S5 has six 5-Sylow subgroups let δ1, . . . , δ6 be the elements associated in
this way to the six 5-Sylow’s of S5, i.e., to the six pentagon-opposite pentagon pairs
on five given letters. We can write them all explicitly as

δ̃2 = D2
12D

2
23D

2
35D

2
54D

2
41 −D2

13D
2
34D

2
42D

2
25D

2
51

δ̃3 = D2
12D

2
24D

2
45D

2
53D

2
31 −D2

14D
2
43D

2
32D

2
25D

2
51

δ̃4 = D2
12D

2
24D

2
43D

2
35D

2
51 −D2

14D
2
45D

2
52D

2
23D

2
31

δ̃5 = D2
12D

2
25D

2
53D

2
34D

2
41 −D2

15D
2
54D

2
42D

2
23D

2
31

δ̃6 = D2
13D

2
34D

2
45D

2
52D

2
21 −D2

14D
2
42D

2
23D

2
35D

2
51

(34)

34 ELIRA SHASKA AND TONY SHASKA

Lemma 19. δσi = δi and δ
τ
i = δi for i = 1, . . . , 6.

Clearly, G permutes δ1, . . . , δ6. If G is conjugate to a subgroup of F5, it fixes
one of δ1, . . . , δ6; this fixed δi must then lie in F. Let δ1 as in Eq. (32) and δ2, . . . , δ6
as follows:

δ2 =(α1 − α2)
2(α2 − α3)

2(α3 − α5)
2(α5 − α4)

2(α4 − α1)
2 − (α1 − α3)

2(α3 − α4)
2(α4 − α2)

2(α2 − α5)
2(α5 − α1)

2

δ3 =(α1 − α2)
2(α2 − α4)

2(α4 − α5)
2(α5 − α3)

2(α3 − α1)
2 − (α1 − α4)

2(α4 − α3)
2(α3 − α2)

2(α2 − α5)
2(α5 − α1)

2

δ4 =(α1 − α2)
2(α2 − α4)

2(α4 − α3)
2(α3 − α5)

2(α5 − α1)
2 − (α1 − α4)

2(α4 − α5)
2(α5 − α2)

2(α2 − α3)
2(α3 − α1)

2

δ5 =(α1 − α2)
2(α2 − α5)

2(α5 − α3)
2(α3 − α4)

2(α4 − α1)
2 − (α1 − α5)

2(α5 − α4)
2(α4 − α2)

2(α2 − α3)
2(α3 − α1)

2

δ6 =(α1 − α3)
2(α3 − α4)

2(α4 − α5)
2(α5 − α2)

2(α2 − α1)
2 − (α1 − α4)

2(α4 − α2)
2(α2 − α3)

2(α3 − α5)
2(α5 − α1)

2

(35)

Thus, a necessary condition for the (irreducible) polynomial f(x) to be solvable
by radicals is that one δi lies in F, i.e., that the polynomial

(36) g(x) = (x− δ1) · · · (x− δ6) ∈ F[x]

has a root in F. It is also sufficient:

Lemma 20. If G fixes one δi then G is conjugate to a subgroup of F5, provided
that δ1, . . . , δ6 are all distinct.

Proof. To check this it is enough to show that δ1, . . . , δ6 are mutually distinct
(under the hypothesis ∆f ̸= 0). hence, we have to show that ∆f ̸= 0 =⇒ ∆g ̸= 0.
Using computational algebra we find ∆g and verify that

∆g = ((α1 − α2)(α3 − α4)(α4 − α5)(α3 − α5))
4 ·∆f · I22 · I3 · I24 · I26

where I2, I3, I4, and I6 are given in [8]. Obviously ∆f ̸= 0 implies that αi −αj ̸= 0
for each i ̸= j. This completes the proof. □

The coefficients of g(x) are symmetric functions in α1, . . . , α5, hence are poly-
nomial expressions in c0, . . . , c4. The goal is to find these expressions explicitly.
This gives an explicit criterion to check whether f(x) = 0 is solvable by radicals.

Lemma 21. Let sr(x1, . . . , x6), r = 1, . . . , 6, be the elementary symmetric poly-
nomials

(37) sr =
∑

i1<i2<···<ir

xi1xi2 . . . xir .

Then dr := sr(δ̃1, . . . , δ̃6) is a homogeneous polynomial expression in b0, . . . , b5 of
degree 4r. These polynomials are invariant under the action of SL2(F) on binary
quintics: For any M ∈ SL2(F) the quintic fM has the same associated dr’s.

Proof. For αj := γj/βj we have δ̃i = (β1 · · ·β5)4δi = b45δi. Thus dr =
b4r5 sr(δ1, , . . . , δ6). But the sr(δ1, , . . . , δ6) are polynomial expressions in the cj =
bj/b5, for j = 0, . . . , 4. Thus dr is a rational function in b0, . . . , b5, where the denom-
inator is a power of b5. Switching the roles of x and y yields that the denominator
is also a power of b0. Thus it is constant, i.e., dr is a polynomial in b0, . . . , b5. If we
replace each βj by cβj for a scalar λ then each δ̃i gets multiplied by λ4, so dr gets
multiplied by λ4r. Thus dr is homogeneous of degree 4r. The rest of the claim is
clear. □

POLYNOMIALS, GALOIS GROUPS, AND DATABASE-DRIVEN ARITHMETIC 35

(38) F(α1, . . . , α5)

F(δ1) F(δ2) F(δ3) F(δ4) F(δ5) F(δ6)

F(δ1, · · · , δ6)

F(s1, . . . , s6)

F
There are four basic invariants of quintics, denoted by J4, J8, J12, J18, of de-

grees 4,8,12 and 18, such that every SL(2,F)-invariant polynomial in b0, . . . , b5 is a
polynomial in J4, J8, J12, J18; see [25].

To define J4, J8, J12, we need auxiliary quantities

A =
1

100

(
20b4 − 8b1b3 + 3b22

)
, B =

1

100
(100b5 − 12b1b4 + 2b2b3) , C =

1

100

(
20b1b5 − 8b2b4 + 3b23

)
and D,E, F,G defined by∣∣∣∣∣∣

10u+ 2b1v 2b1u+ b2v b2u+ b3v
2b1u+ b2v b2u+ b3v b3u+ 2b4v
b2u+ b3v b3u+ 2b4v 2b4u+ 10b5v

∣∣∣∣∣∣ = 103(Du3 + Eu2v + Fuv2 +Gv3)

Then J2, J8, and J12 are given by

J4 = 53(B2 − 4AC)

J8 = 25 · 56
[
2A(3EG− F 2)−B(9DG− EF) + 2C(3FD − E2)

]
J12 = −210 · 59 · 3−1

[
4(3EG− F 2)(3FD − E2)− (9DG− EF)2

](39)

By using special quintics one gets linear equations for the coefficients expressing
the dr’s in terms of J4, J8, J12. The result is due to Berwick; see [14].

d1 = −10J4

d2 = 35J2
4 + 10J8

d3 = −60J3
4 − 30J4J8 − 10J12

d4 = 55J4
4 + 30J2

4J8 + 25J2
8 + 50J4J12

d5 = −26J5
4 − 10J3

4J8 − 44J4J
2
8 − 59J2

4J12 − 14J8J12

d6 = 5J6
4 + 20J2

4J
2
8 + 20J3

4J12 + 20J4J8J12 + 25J2
12

Lemma 22. Let f(x) be a irreducible quintic over F and d1, . . . , d6 defined in
terms of the coefficients of f(x) as above. Then f(x) is solvable by radicals if and
only if g(x) = x6 + d1x

5 + · · · d5x+ d6 has a root in F.

36 ELIRA SHASKA AND TONY SHASKA

Extending the method of invariants becomes harder for higher degree equations.
For degree six equations see [3] and [12].

7. Transitivity in Sn

Let Sn be the symmetric group on the set Ω = {1, 2, . . . , n}. A subgroup
G ≤ Sn is transitive if, for any i, j ∈ Ω, there exists σ ∈ G such that σ(i) = j.
Equivalently, the orbit of any point i ∈ Ω under the action of G is Ω.

A subgroup G ≤ Sn is k-transitive if it acts transitively on the set of ordered
k-tuples of distinct elements in Ω. That is, for any two k-tuples (i1, . . . , ik) and
(j1, . . . , jk) with ia ̸= ib and ja ̸= jb for a ̸= b, there exists σ ∈ G such that
σ(ia) = ja for all a = 1, . . . , k. The group Sn is n-transitive, and the alternating
group An is (n− 2)-transitive for n ≥ 3.

Lemma 23 (Order of Transitive Subgroups). Let G ≤ Sn be a transitive sub-
group acting on Ω = {1, 2, . . . , n}. Then |G| is divisible by n, and |G| = n ·
|StabG(1)|, where StabG(1) = {σ ∈ G | σ(1) = 1} is the stabilizer of 1.

Proof. Since G is transitive, the orbit of 1 under G is Ω, so |OrbitG(1)| = n.
By the Orbit-Stabilizer Theorem, |G| = |OrbitG(1)| · | StabG(1)|. Thus, |G| =
n · | StabG(1)|, and n divides |G|. □

Lemma 24 (Classification of Transitive Subgroups). A transitive subgroup G ≤
Sn is either:

(1) Primitive, if the only G-invariant partitions of Ω are {Ω} and {{1}, {2}, . . . , {n}}.
(2) Imprimitive, if there exists a G-invariant partition of Ω into k blocks of

size m, with k ·m = n, k > 1, and m > 1.

Proof. A partition of Ω is G-invariant if, for every block B in the partition
and every σ ∈ G, the set σ(B) is also a block. If G is transitive, the trivial partitions
{Ω} and {{1}, . . . , {n}} are always G-invariant. If no other G-invariant partitions
exist, G is primitive. Otherwise, suppose there exists a non-trivial G-invariant
partition {B1, . . . , Bk}, where each block Bi has size m, and k ·m = n. Since G
is transitive, it permutes the blocks transitively, and the action on each block is
permutationally isomorphic to a subgroup of Sm. Thus, G is imprimitive, and its
action is described by a wreath product structure, such as H ≀ Sk, where H ≤ Sm

acts on each block. □

Proposition 9 (Transitive Subgroups of Prime Degree). Let n be prime, and
let G ≤ Sn be a transitive subgroup. Then G is one of:

(1) The cyclic group Cn.
(2) The dihedral group Dn.
(3) A Frobenius group n : k, where k divides n− 1.
(4) A subgroup of AGL(1, n), the affine general linear group.
(5) A group containing PSL(k, q), where n = (qk − 1)/(q − 1).

Proof. Since n is prime, any transitive subgroup G ≤ Sn has order divisible
by n, and G acts on Ω = {1, . . . , n}. Consider the normalizer of a Sylow n-subgroup
of G. If G is solvable, Burnside’s theorem implies that G is either a cyclic group
Cn, a dihedral group Dn, a Frobenius group n : k (where k divides n − 1), or
a subgroup of AGL(1, n), which acts on the finite field Fn. If G is not solvable,
it must contain a non-abelian simple group. By the classification of finite simple

POLYNOMIALS, GALOIS GROUPS, AND DATABASE-DRIVEN ARITHMETIC 37

groups, the only non-solvable transitive groups of prime degree are those containing
PSL(k, q), where n = (qk−1)/(q−1), acting on the projective space Pk−1(Fq). For
prime n, such groups arise only for specific k and q, such as PSL(2, n). □

7.1. Computational Enumeration of Transitive Subgroups. The tran-
sitive subgroups of Sn can be enumerated using computational group theory tools
like GAP, which catalog these subgroups based on their permutation representa-
tions. Below, we provide the number of transitive subgroups for select n ≤ 47 and
list all transitive subgroups for n = 5, 6, 7, 11, 13, 17, 19.

Table 1 gives the number of transitive subgroups of Sn for select n ≤ 47,
computed using GAP’s TransitiveGroups function.

n # Subgroups n # Subgroups n # Subgroups n # Subgroups
5 5 6 16 7 7 8 50
9 34 10 45 11 8 12 301
13 9 14 63 15 104 16 1954
17 10 18 983 19 8 20 1117
21 164 22 59 23 7 24 25000
25 211 26 96 27 2392 28 1854
29 8 30 5712 31 12 33 162
34 115 35 407 36 121279 37 11
38 76 39 306 40 315842 41 10
42 9491 43 10 44 2113 45 10923

Table 1. Number of transitive subgroups of Sn for select n ≤ 47.

Table 2 lists all transitive subgroups of Sn for n = 5, 6, 7, 11, 13, 17, 19, using
standard group-theoretic notation and GAP identifiers where necessary.

Table 2. Transitive subgroups of Sn for n = 5, 6, 7, 11, 13, 17, 19.

n Transitive Subgroups

5 C5, D5, 5 : 4, A5, S5

6 C6, D6, S3 ≀ C2, A4, C3 ≀ C2, C2 ≀ C3, S4(6d), S4(6c), (C3 ≀ C2) : 2,
(C3 × C3) : 4, C2 ≀ S3, PSL(2, 5), PGL(2, 5), S3 ≀ C2, A6, S6

7 C7, D7, 7 : 3, 7 : 6, PSL(3, 2), A7, S7

11 C11, D11, 11 : 5, 11 : 10, PSL(2, 11), M11, A11, S11

13 C13, D13, 13 : 3, 13 : 4, 13 : 6, 13 : 12, PSL(3, 3), A13, S13

17 C17, D17, 17 : 4, 17 : 8, 17 : 16, PSL(2, 16), PΣL(2, 16), PΓL(2, 16), A17, S17

19 C19, D19, 19 : 3, 19 : 6, 19 : 9, 19 : 18, A19, S19

8. Resolvents of Polynomials

Resolvents are polynomials constructed from the roots of a given polynomial
to determine its Galois group, a transitive subgroup of the symmetric group Sn, as
cataloged in Section 7. Following Cohen [7], we define resolvents rigorously, present
their theoretical properties with complete proofs, provide computational examples,
and conclude with a method to determine the Galois group of irreducible quintics.

38 ELIRA SHASKA AND TONY SHASKA

Let f(x) ∈ F[x] be a monic, separable, irreducible polynomial of degree n over
a field F (typically F = Q), with roots α1, . . . , αn in a splitting field K over F. The
Galois group Gal (f) = Aut(K/F) acts as a transitive subgroup of Sn by permuting
the roots {α1, . . . , αn}.

Let G ≤ Sn be a transitive subgroup containing Gal (K/F), and let H ≤ G be a
subgroup. In the polynomial ring F[α1, . . . , αn], where G permutes the root indices,
a resolvent polynomial is defined using an element F ∈ F[α1, . . . , αn] invariant under
H, i.e., σ(F) = F for all σ ∈ H. The resolvent polynomial is:

RF,H(x) =
∏
σ∈T

(x− σ(F)),

where T ⊆ G is a set of representatives for the left cosets of H in G. Since F is
H-invariant, σ(F) is independent of the representative: if σ′ = σh, h ∈ H, then
σ′(F) = σ(h(F)) = σ(F). The degree of RF,H(x) is |G : H|. For G = Sn, the
degree is n!/|H|.

Theorem 8.1. The resolvent polynomial RF,H(x) =
∏

σ∈T (x − σ(F)) has co-
efficients in F.

Proof. The coefficients of RF,H(x) are elementary symmetric polynomials in
{σ(F) | σ ∈ T}. For γ ∈ Gal (K/F) ⊆ G:

γ(σ(F)) = (γσ)(F).

Since γσ ∈ G, write γσ = σ′h, σ′ ∈ T , h ∈ H. Then:

(γσ)(F) = σ′(h(F)) = σ′(F).

Thus, γ permutes the roots, so the coefficients are invariant under Gal (K/F). By
Galois theory, they lie in F, so RF,H(x) ∈ F[x]. □

Theorem 8.2. The resolvent polynomial RF,H(x) factors over F into irre-
ducible factors, with the number of factors equal to the number of double cosets
Gal (K/F)\G/H. Each factor’s degree is the size of the corresponding double coset.

Proof. The roots are {σ(F) | σ ∈ T}. Assume distinct σ(F) for distinct
cosets. For γ ∈ Gal (K/F):

γ(σ(F)) = (γσ)(F) = σ′(F),

where γσ = σ′h. Thus, Gal (K/F) acts on G/H via γ · (σH) = (γσ)H. The
irreducible factors correspond to orbits, which are double cosets Gal (K/F)\G/H.
For a double coset D = Gal (K/F)σH, the factor is:∏

τH∈D

(x− τ(F)),

irreducible over F as the roots are conjugate. The degree is |D|, the number of
cosets in D. The minimal polynomial of σ(F) has degree equal to the orbit size, so
RF,H(x) has as many factors as double cosets, each of degree equal to the double
coset size. □

Proposition 10. If Gal (K/F) ⊆ H, then RF,H(x) has a linear factor over F.

Proof. If Gal (K/F) ⊆ H, then for F = e(F), and any γ ∈ Gal (K/F),
γ(F) = F , since H fixes F . Thus, F ∈ F, and x− F is a linear factor. □

POLYNOMIALS, GALOIS GROUPS, AND DATABASE-DRIVEN ARITHMETIC 39

Lemma 25. If RF,H(x) has a linear factor over F, then there exists σ ∈ G such
that Gal (K/F) ⊆ σHσ−1.

Proof. If σ(F) ∈ F, then for γ ∈ Gal (K/F):

γ(σ(F)) = (γσ)(F) = σ(F).

Thus, σ−1γσ ∈ StabG(F) = H, assuming StabG(F) = H. Hence, γ ∈ σHσ−1, so
Gal (K/F) ⊆ σHσ−1. □

Theorem 8.3. For H = StabG(B), B ⊆ {1, . . . , n} of size k, and F =∑
i∈B αi, if Gal (K/F) ⊆ H, then RF,H(x) has a linear factor. If RF,H(x) is

irreducible, then Gal (K/F) ̸⊆ σHσ−1 for any σ ∈ G.

Proof. If Gal (K/F) ⊆ H, then F is fixed by Gal (K/F), so F ∈ F, and
x − F is a linear factor. If RF,H(x) is irreducible, there is one double coset, im-
plying a transitive action on G/H. If Gal (K/F) ⊆ σHσ−1, the action fixes σH,
contradicting transitivity unless H = G. Thus, Gal (K/F) ̸⊆ σHσ−1. □

Proposition 11. Let H ≤ G be a maximal subgroup. If RF,H(x) has a linear
factor, then either Gal (K/F) ⊆ σHσ−1 for some σ ∈ G, or Gal (K/F) = G.

Proof. By Lemma 25, a linear factor implies Gal (K/F) ⊆ σHσ−1. Since
H is maximal, if Gal (K/F) ̸⊆ σHσ−1, then Gal (K/F) and σHσ−1 generate a
group containing H as a proper subgroup. Maximality implies this group is G, so
Gal (K/F) = G. □

Theorem 8.4. The discriminant of RF,H(x) is related to the discriminant of
f(x) by:

Disc(RF,H) = Disc(f)|G:H| ·
∏

σ ̸=τ∈T

(σ(F)− τ(F))2.

Proof. The discriminant of RF,H(x) =
∏

σ∈T (x− σ(F)) is:

Disc(RF,H) =
∏

σ ̸=τ∈T

(σ(F)− τ(F))2.

Express σ(F) in terms of the roots αi. For generic F , the differences σ(F)− τ(F)
involve linear combinations of the αi. The discriminant of f(x) =

∏n
i=1(x− αi) is:

Disc(f) =
∏
i<j

(αi − αj)
2.

The product
∏

σ ̸=τ (σ(F) − τ(F)) accounts for differences across cosets, scaled by

the structure of G/H. By Galois theory, the squared differences aggregate to a
power of Disc(f), adjusted by the degree |G : H|. Thus:

Disc(RF,H) = Disc(f)|G:H| ·
∏
σ ̸=τ

(σ(F)− τ(F))2,

where the additional product depends on the specific F . □

40 ELIRA SHASKA AND TONY SHASKA

8.1. Choosing resolvents. The choice of F and H is critical for constructing
resolvents that probe the structure of Gal (K/F). The element F must be invariant
under H, i.e., σ(F) = F for all σ ∈ H, to ensure σ(F) is well-defined for each
coset σH. Ideally, the stabilizer StabG(F) = {σ ∈ G | σ(F) = F} equals H,
so F distinguishes cosets effectively, producing distinct σ(F) values that reflect
the double coset structure Gal (K/F)\G/H (Theorem 8.2). The subgroup H is
chosen to test specific properties of Gal (K/F), such as transitivity, imprimitivity,
or cyclicity, corresponding to the transitive subgroups in Section 7. The following
resolvent types are commonly used due to their ability to target these properties
while remaining computationally tractable:

• Linear resolvents: F = a1α1 + · · · + anαn, with distinct ai ∈ F (e.g.,
ai = i), and H = StabG({1}), the point stabilizer. These test the action
on individual roots, producing high-degree resolvents (e.g., n!/|H|) that
probe the full permutation structure, useful for ruling out subgroups with
fixed points (e.g., Sn−1).

• Block resolvents: F =
∑

i∈B αi, where B ⊆ {1, . . . , n} is a block,
and H = StabG(B), the setwise stabilizer. These test imprimitive ac-
tions, where Gal (K/F) preserves a partition (e.g., for dihedral groups
like D5), yielding lower-degree resolvents that are efficient for detecting
wreath product structures.

• Quadratic resolvents: F = αi + αj , with H = StabG({i, j}). These fo-
cus on pairs of roots, testing for 2-transitivity or dihedral subgroups (e.g.,
D5), and produce resolvents of moderate degree, balancing computational
cost and specificity.

• Lagrange resolvents: F =
∑n

i=1 ω
i−1αi, where ω ∈ F is a primitive n-th

root of unity (extending F if needed), and H = ⟨(1 2 · · · n)⟩ ∼= Cn. These
target cyclic subgroups (e.g., C5), historically used to test solvability by
radicals, though their high degree requires careful computation.

8.2. Computation of Resolvents. Given G, F , H, and f(x) one can ask if
we can compute the corresponding resolvent. Here is the main algorithm how to
compute resolvents.

Algorithm 2: Compute Resolvent Polynomial

Input: Polynomial f(x) ∈ F[x], degree n, roots α1, . . . , αn; group G ≤ Sn;
subgroup H ≤ G; H-invariant F ∈ F[α1, . . . , αn]

Output: Resolvent polynomial RF,H(x)
1 Compute a set T of left coset representatives of H in G;

2 for each σ ∈ T do
3 Compute σ(F) in terms of α1, . . . , αn;

4 Express σ(F) using elementary symmetric polynomials of f(x);

5 end

6 Form RF,H(x) =
∏

σ∈T (x− σ(F));

7 return RF,H(x);

However, as expected, this algorithm can become very complex for high degree
f(x) and F (x). Below, we describe the symbolic approach how to get the coefficients
of the resolvent in terms of the coefficients of f(x).

POLYNOMIALS, GALOIS GROUPS, AND DATABASE-DRIVEN ARITHMETIC 41

8.2.1. Computing resolvents symbolically. To compute ResG(f, F)(x), we ex-
press it in the form

ResG(f, F)(x) = xk − e1x
k−1 + e2x

k−2 − · · ·+ (−1)kek,

where k is the number of distinct θσ, and ej are the elementary symmetric polyno-
mials in these values. The steps are as follows.

Step 1: Determine the Degree k The degree k of the resolvent is the size of
the orbit of θe = F (r1, . . . , rn) under G. Define the stabilizer subgroup

H = {σ ∈ G | F (rσ(1), . . . , rσ(n)) = F (r1, . . . , rn)}.

Then, k = |G|/|H|, which counts the number of distinct θσ as σ ranges over G.
Equivalently, k is the number of distinct evaluations of F over all permutations
in G, accounting for symmetries in F . For instance, if F is symmetric under a
subgroup of G, H is larger, reducing k.

Step 2: Identify the Roots of the Resolvent The roots of ResG(f, F)(x) are
the distinct values θσ = F (rσ(1), . . . , rσ(n)). These are not computed numerically
but treated symbolically as expressions in the roots ri. The elementary symmetric
sums of the roots of f(x) are given by Vieta’s formulas:

s1 = r1+· · ·+rn = −an−1, s2 =
∑
i<j

rirj = an−2, . . . , sn = r1 · · · rn = (−1)na0.

The θσ are functions of these roots, permuted by G, and our task is to express the
coefficients ej in terms of the si.

Step 3: Compute the Power Sums Define the power sums of the distinct θσ as

pm =
∑
σ

θmσ =
∑
σ

[F (rσ(1), . . . , rσ(n))]
m,

where the sum is over representatives of the k distinct θσ. For each m = 1, 2, . . . , k:

• Expand F (rσ(1), . . . , rσ(n))
m as a polynomial in the ri.

• Sum this expression over all σ ∈ G (or distinct orbit elements).
• Express the result as a polynomial in s1, s2, . . . , sn using symmetric poly-

nomial identities.

For example, if F = x1, then θσ = rσ(1), and pm =
∑

σ r
m
σ(1), which simplifies based

on G’s action (e.g., for G = Sn, pm = n(rm1 + · · ·+ rmn)).

Step 4: Relate Power Sums to Elementary Symmetric Sums The coeffi-
cients ej are obtained from the pm using Newton’s identities, which for a set of k

42 ELIRA SHASKA AND TONY SHASKA

roots are:

e1 = p1,

2e2 = e1p1 − p2,

3e3 = e2p1 − e1p2 + p3,

...

jej =

j−1∑
i=1

(−1)i−1ej−ipi + (−1)j−1pj , (j ≤ k).

Solve recursively for e1, e2, . . . , ek. Each ej is a polynomial in a0, . . . , an−1 since
the pm are.

Step 5: Construct the Resolvent Polynomial With e1, e2, . . . , ek computed,
the resolvent is

ResG(f, F)(x) = xk − e1x
k−1 + e2x

k−2 − · · ·+ (−1)kek.

This polynomial has degree k, and its coefficients are fully symbolic in the coeffi-
cients of f(x).

We illustrate with an example.

Example 3. Consider n = 5, G = S5, F = x1 + x2 + x3. Let

f(x) = x5 + a4x
4 + a3x

3 + a2x
2 + a1x+ a0.

Determine the resolvent in terms of coefficients a0, . . . , a4.
Let us first determine k. The stabilizer is H = S3 × S2, where S3 permutes

{1, 2, 3} and S2 permutes {4, 5}. Thus, |H| = 3! · 2! = 12, and k = |S5|
|H| = 120

12 =

10 =
(
5
3

)
. The roots are ri1 + ri2 + ri3 for 1 ≤ i1 < i2 < i3 ≤ 5, with symmetric

sums:

s1 = −a4, s2 = a3, s3 = −a2, s4 = a1, s5 = −a0.

POLYNOMIALS, GALOIS GROUPS, AND DATABASE-DRIVEN ARITHMETIC 43

We compute power sums pm =
∑

i<j<k(ri + rj + rk)
m and have:

p1 = 6s1 = −6a4,

p2 = 6(s21 − 2s2) + 6s2 = 6a24 − 6a3,

p3 = 6(s31 − 3s1s2 + 3s3) + 9(s1s2 − 3s3) + s3 = −6a34 + 9a4a3 + 8a2,

p4 = 6a44 − 24a24a3 + 6a23 + 8a4a2 − 24a1,

p5 = −6a54 + 30a34a3 − 10a24a2 − 20a4a
2
3 + 30a4a1 + 5a2a3 − 10a0,

p6 = 6a64 − 36a44a3 + 4a34a2 + 36a24a
2
3 − 12a24a1 − 12a4a3a2 + 2a33 + 6a22 + 24a4a0 − 12a1a3,

p7 = −6a74 + 42a54a3 − 14a44a2 − 56a34a
2
3 + 28a34a1 + 28a24a3a2 − 14a4a

3
3 + 14a4a

2
2 − 42a24a0

− 14a23a2 + 14a3a1 + 14a2a0,

p8 = 6a84 − 48a64a3 + 12a54a2 + 72a44a
2
3 − 32a44a1 − 48a34a3a2 + 8a24a

3
3 + 24a34a0 − 24a24a3a1

+ 12a4a
2
3a2 − 8a4a

2
2 − 8a23a1 + 8a3a2a0 − 24a4a1a2 + 24a21,

p9 = −6a94 + 54a74a3 − 18a64a2 − 90a54a
2
3 + 36a54a1 + 72a44a3a2 − 18a34a

3
3 − 54a44a0 + 18a34a3a1

− 18a24a
2
3a2 + 36a34a2a0 + 18a24a1a2 + 6a4a

2
3a1 − 6a4a2a1 − 18a23a0 − 6a3a

2
2 + 18a3a1a0

+ 6a2a
2
1 − 18a1a2a0,

p10 = 6a104 − 60a84a3 + 20a74a2 + 108a64a
2
3 − 40a64a1 − 96a54a3a2 + 24a44a

3
3 + 72a54a0 + 24a44a3a1

− 24a34a
2
3a2 − 40a44a2a0 + 8a34a

2
3a1 − 24a34a1a2 + 12a24a

3
3a2 − 8a24a3a1a2 − 8a24a

2
2a1

+ 24a24a0a2 + 4a4a
3
3a1 − 4a4a3a

2
2 − 12a4a3a0a1 + 12a4a2a1a0 + 4a33a0 + 4a23a2a1 − 12a23a0a2

− 4a3a
2
1a0 + 4a22a0 − 12a2a1a

2
0 + 4a30.

Using Newton’s identities we get

e1 = −6a4, e2 = 15a24 + 3a3, e3 = −40a34 + 18a4a3 +
8

3
a2, e4 = 90a44 − 60a24a3 − 8a4a2 − 3a23 + 6a1,

e5 = −198a54 + 165a34a3 + 15a24a2 − 45a4a
2
3 − 18a4a1 − 3a3a2 + 2a0,

e6 = 420a64 − 420a44a3 − 20a34a2 + 108a24a
2
3 + 24a24a1 + 12a4a3a2 + 3a33 − 2a22 − 12a4a0 + 2a1a3,

e7 = −858a74 + 1001a54a3 + 33a44a2 − 315a34a
2
3 − 54a34a1 − 54a24a3a2 − 9a4a

3
3

+ 6a4a
2
2 + 18a24a0 + 3a23a2 − 3a3a1 − a2a0,

e8 = 1716a84 − 2288a64a3 − 44a54a2 + 792a44a
2
3 + 88a44a1 + 176a34a3a2 + 24a24a

3
3

− 16a24a3a1 − 24a34a0 − 8a24a
2
2 − 8a4a

2
3a2 + 8a4a1a2 − a23a1 + a3a

2
2 − a21,

e9 = −3432a94 + 5148a74a3 + 66a64a2 − 2002a54a
2
3 − 176a54a1 − 528a44a3a2 − 66a34a

3
3

+ 48a44a0 + 48a34a3a1 + 24a34a
2
2 + 24a24a

2
3a2 − 24a24a1a2 + 2a4a

2
3a1 − 2a4a2a1

+ 2a23a0 + 2a3a
2
2 − 2a3a1a0 − 2a2a

2
1 + 2a1a2a0,

e10 = 6864a104 − 11440a84a3 − 88a74a2 + 5148a64a
2
3 + 352a64a1 + 1408a54a3a2 + 176a44a

3
3

− 112a54a0 − 112a44a3a1 − 80a44a2a0 − 48a34a
2
3a2 + 48a34a1a2 − 8a24a

3
3a2 + 8a24a3a1a2

+ 8a24a
2
2a1 − 8a24a0a2 − a4a

3
3a1 + a4a3a

2
2 + a33a0 − a3a

2
1a0 − a22a0 + a21a0 + a20.

Then, ResS5(f, F)(x) = x10 + e1x
9 + · · ·+ e9x+ e10.

44 ELIRA SHASKA AND TONY SHASKA

8.2.2. Computing Resolvents Numerically. In contrast to the symbolic method
outlined in the previous section, Cohen [7] describes a numerical approach to com-
pute the resolvent polynomial ResG(f, F)(x) (see Section 6.3 of [7]). This method
is particularly useful when exact symbolic computation becomes impractical due to
high degree or complexity, and it exploits the fact that, for a polynomial f(x) ∈ Z[x]
and a suitable F , the resolvent’s coefficients are integers. The algorithm approx-
imates the roots of f(x), computes the numerical values of the resolvent’s roots,
constructs the polynomial, and rounds the coefficients to the nearest integers. Be-
low, we detail this process.

Consider f(x) = xn+an−1x
n−1+ · · ·+a1x+a0 ∈ Z[x] with roots r1, r2, . . . , rn

in C, a subgroup G ⊆ Sn, and a function F (x1, . . . , xn) ∈ Z[x1, . . . , xn]. The
resolvent is

ResG(f, F)(x) =
∏

σ∈G/H

(x− θσ), θσ = F (rσ(1), . . . , rσ(n)),

where H is the stabilizer of F in G, and k = |G|/|H|.
The steps are as follows:

(1) Approximate the Roots of f(x): Numerically compute the roots
r1, r2, . . . , rn of f(x) to high precision using a root-finding algorithm (e.g.,
Newton-Raphson or a polynomial solver like Laguerre’s method). For a
polynomial over Z, these roots may be real or complex, and precision (e.g.,
50-100 decimal places) is chosen to ensure accuracy in subsequent steps.
Cohen suggests using a numerical library or software capable of handling
complex roots.

(2) Compute the Resolvent’s Roots: For each coset representative σ ∈
G/H, evaluate θσ = F (rσ(1), . . . , rσ(n)) numerically. Since F is a polyno-
mial with integer coefficients and G permutes the roots, each θσ is a com-
plex number. The set {θσ} contains k distinct values (assuming no unex-
pected numerical degeneracy), corresponding to the orbit of F (r1, . . . , rn)
under G.

(3) Construct the Polynomial Numerically: Form the resolvent polyno-
mial

ResG(f, F)(x) =
∏

σ∈G/H

(x− θσ) = xk − e1x
k−1 + e2x

k−2 − · · ·+ (−1)kek,

where ej are the elementary symmetric sums of the θσ. Numerically,
compute these coefficients by expanding the product. For small k, this
can be done directly; for larger k, use the power sums pm =

∑
σ θ

m
σ and

Newton’s identities:

e1 = p1,

e2 =
p1e1 − p2

2
,

e3 =
p1e2 − p2e1 + p3

3
,

...

ek =
1

k

[
k−1∑
i=1

(−1)i−1ek−ipi + (−1)k−1pk

]
.

POLYNOMIALS, GALOIS GROUPS, AND DATABASE-DRIVEN ARITHMETIC 45

Calculate pm by summing θmσ over all distinct σ.
(4) Round Coefficients to Integers: Since f(x) and F have integer coef-

ficients, and G is a permutation group, ResG(f, F)(x) ∈ Z[x] (assuming
K = Q). The numerically computed ej will be approximate (e.g., 2.9998
or −0.0001), so round each to the nearest integer (e.g., 3 or 0). High
precision in root approximation ensures rounding errors are minimal.

(5) Verification: Check the resulting polynomial by evaluating it at a few
points (e.g., x = 0, 1) against the expected integer values, or confirm that
its roots (recomputed numerically) match the θσ within tolerance.

This method is efficient for large n or complex G, where symbolic computation
is infeasible, but requires careful precision management [7].

8.3. Resolvents of quintics. For example, consider f(x) = x5 − x− 1, with
G = S5, H = StabS5({1, 2}), F = α1 + α2. The resolvent RF,H(x) has degree |S5 :
H| = 120/20 = 6. Compute F = α1 + α2, express it via symmetric polynomials,
and evaluate σ(F) for coset representatives. Numerical factorization over Q (using
high precision to avoid errors, as discussed below) yields factors of degrees 2 and 4,
indicating multiple double cosets, ruling out Gal (f) = D5. Further tests confirm
Gal (f) = S5.

For a Lagrange resolvent, let H = ⟨(1 2 · · · 5)⟩, F =
∑5

i=1 ω
i−1αi, ω = e2πi/5.

The resolvent has degree 120/5 = 24. Compute F , evaluate over cosets, and factor.
If irreducible, Gal (f) ̸⊆ C5, as for x

5 − x− 1.
Table 3 shows factorization patterns for a block resolvent F = α1 + α2, H =

StabS5({1, 2}), for S5’s transitive subgroups:

Group Factorization Pattern (Degrees)
S5 (2, 4) or (1, 1, 4)
A5 (2, 4) or (1, 1, 4)
D5 (1, 5)
F5 (6)
C5 (6)

Table 3. Factorization patterns of RF,H(x) for H =
StabS5({1, 2}) in S5.

For n = 5, test the transitive subgroups C5, D5, F5, A5, S5 from Section 7:

• H = ⟨(1 2 · · · 5)⟩, F =
∑5

i=1 ω
i−1αi: Linear factor implies Gal (f) = C5.

• H = StabS5
({1, 2}), F = α1 + α2: Linear factor suggests Gal (f) = D5.

• H = PSL(2, 5), F =
∑5

i=1 aiαi: Linear factor indicates Gal (f) = F5.

Theorem 8.5. For an irreducible quintic f(x) ∈ Q[x], the Galois group Gal (f)
is determined as follows:

• Compute the discriminant ∆ = Disc(f). If ∆ is not a square, Gal (f) =
S5. If square, proceed.

• Test H = ⟨(1 2 · · · 5)⟩, F =
∑5

i=1 ω
i−1αi. If RF,H(x) has a linear factor,

Gal (f) = C5.
• Test H = StabS5({1, 2}), F = α1 + α2. If RF,H(x) has a linear factor,
Gal (f) = D5.

46 ELIRA SHASKA AND TONY SHASKA

• Test H = PSL(2, 5), F =
∑5

i=1 aiαi. If RF,H(x) has a linear factor,
Gal (f) = F5.

• If no linear factors, Gal (f) = A5.

Proof. The transitive subgroups of S5 are C5, D5, F5, A5, S5. If ∆ is not a
square, Gal (f) ̸⊆ A5, so Gal (f) = S5. If square, test subgroups using resolvents.
By Proposition 10, linear factors detect containment in C5, D5, F5. Proposition 11
ensures that if no linear factors appear for maximal subgroups (D5, F5, A5), then
Gal (f) = A5. Theorem 8.3 confirms that irreducibility rules out conjugate sub-
groups. □

Resolvents systematically identify Galois groups by leveraging factorization
patterns and subgroup containment, as shown in Table 3 and Theorem 8.5.

9. Reduction modulo p

The reduction method uses the fact that every polynomial with rational coeffi-
cients can be transformed into a monic polynomial with integer coefficients without
changing the splitting field. Let f(x) ∈ Q[x] be given by

(40) f(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0

Let d be the common denominator of all coefficients a0, · · · , an−1. Then g(x) :=
d · f(xd) is a monic polynomial with integer coefficients. Clearly the splitting field
of f(x) is the same as the splitting field of g(x). Thus, without loss of generality
we can assume that f(x) ∈ Z[x] is a monic polynomial with integer coefficients.

Theorem 9.1. (Dedekind) Let f(x) ∈ Z[x] be a monic polynomial such that
deg f = n, Gal Q(f) = G, and p a prime such that p ∤ ∆f . If fp := f(x) mod p
factors in Zp[x] as a product of irreducible factors of degree n1, n2, n3, · · · , nk, then
G contains a permutation of type (n1) (n2) · · · (nk)

Proof. van der Warden section 8.10 □
The Dedekind theorem can be used to determine the Galois group in many

cases since the type of permutation in Sn determines the conjugacy class in Sn.
Consider for example polynomials of degree 5. The cycle types for all groups that
occur as Galois groups of quintics are given below.

(2) (2)2 (3) (4) (3)(2) (5)
S5 10 15 20 30 20 24
A5 15 20 24
F5 5 10 4
D5 5 4
C5 4

Table 4. Cycle types for Galois groups of quintics

In Tab. 5 we display the table for the type of elements in S6. As it can be seen
from the tables this method works well for degree 5 and 6. Unfortunately it does
not always work for degree d > 6.

The main question here is how quickly can we find the primes which determine
the signature of the group and hopefully the uniquely determine the group.

POLYNOMIALS, GALOIS GROUPS, AND DATABASE-DRIVEN ARITHMETIC 47

() (2) (2)(2) (2)(2)(2) (3) (3)(2) (3)(3) (4) (4)(2) (5) (6) |G|
S6 1 15 45 15 40 120 40 90 90 144 120 720
A6 1 - 45 - 40 - 40 - 90 144 - 360
S5 1 - 15 10 - - 20 30 - 24 20 120

(S3 × S3)⋊ C2 1 6 9 6 4 12 4 - 18 - 12 72
A5 1 - 15 - - - 20 - - 24 - 60

C2 × S4 1 3 9 7 - - 8 6 6 - 8 48
(C3 × C3)⋊ C4 1 - 9 - 4 - 4 - 18 - - 36

S3 × S3 1 - 9 6 4 - 4 - - - 12 36
S4 1 - 3 6 - - 8 6 - - - 24
S4 1 - 9 - - - 8 - 6 - - 24

C2 ×A4 1 3 3 1 - - 8 - - - 8 24
C3 × S3 1 - - 3 4 - 4 - - - 6 18

A4 1 - 3 - - - 8 - - - - 12
D12 1 - 3 4 - - 2 - - - 2 12
S3 1 - - 3 - - 2 - - - - 6
C6 1 - - 1 - - 2 - - - 2 6

Table 5. Cycle types for Galois groups of sextics

Theorem 9.2 (Chebotarev Density Theorem). Let L/K be a Galois extension
and C a conjugacy class of G = Gal (L/K). Then

{p | p is a prime of K, p ∤ ∆L/K , σp ∈ C}
has density #C/$G. In particular, there always exist such primes.

10. Databases of irreducible polynomials

10.1. Datasets of irreducible polynomials. In this section we want to
create a database of irreducible polynomials f ∈ Z[x] of degree deg f = n. Data
will be stored in a Python dictionary. A polynomial f(x) =

∑n
i=0 aix

i will be
represented by its corresponding binary form f(x, y) =

∑n
i=0 aix

iyn−i. Hence our
points will be points in the projective space Pn

Q, i.e. points with integer coordinates

p = [an : · · · : a0] ∈ Pn
Q,

such that gcd(a0, . . . , an). Since f(x) is irreducible over Q and of degree deg f = n,
then an ̸= 0 and a0 ̸= 0. Moreover, ∆f ̸= 0.

10.2. Datasets with bounded height. Let us now trying to generate a
dataset with a bounded height h as defined in Eq. (5). We will denote the set of
such polynomials by Ph

n . In other words

Ph
n :=

{
[an : · · · : a0] ∈ Pn

Q | a0an ̸= 0,∆f ̸= 0, HQ([an : · · · : a0]) ≤ h
}

where HQ is defined as in Eq. (5).
To ensure that the points in the database are not repeated we key the dictionary

by the tuples (a0, . . . , an). A dictionary in Python does not allow key duplicates,
which ensures that there are no duplicates in our data. For given h, n the cardinality
of Ph

n is bounded by

#Ph
n ≤ 4h2(2h+ 1)n−2

The proof is a straightforward counting argument. There are more sophisticated
methods to count algebraic points of bounded height on projective spaces; see for

48 ELIRA SHASKA AND TONY SHASKA

example [11] but we will work only over Q and our heights will be relatively small
which does not allow for much redundant data.

For a degree d ≥ 3 and height h one can use Sagemath and count such points
as follows:

PP = ProjectiveSpace(d, QQ)

rational_points = PP.rational_points(h)

We then normalize the data by clearing denominators. Hence, all our data
has integer coordinates. Furthermore, we keep only those polynomials which are
irreducible over Q. For every point p = [an : · · · : a0] we will compute the following
attributes

(a0, . . . , an) : [H(f), [ξ0, . . . , ξn,∆f],Hk(p), sig,Gal Q(f),]

where

H(f) Height of f(x)defined in Eq. (5)

[ξ0, . . . , ξn] Invariants defined in section 5.3

∆f Discriminant of f(x)

Hk(p) Weighted moduli height as in Eq. (16)

sig Signature

Gal Q(f) Gap Identity of the Galois group of f(x)

Some of the datasets differ for different degrees. For example for quartics, we also
compute the invariants T and S as defined in Eq. (8) and the j-invariant. For
sextics we compute absolute invariants t1, t2, t3; see [28] for details. We give a slice
of the corresponding dictionary for each d = 3, 4, 5 which we discuss in the rest of
this paper and make all datasets available at [26].

10.3. Cubics. As a simple first exercise we start with irreducible cubics. We
create a database of all rational points [c0 : c1 : c2 : c3] in P3 with projective height
h ≤ 20 such that

f(x) = c0 + c1x+ c2x
2 + c3x

3

is an irreducible polynomial in Q[x]. Since training a model for determining Gal (f)
is trivial in this case we will focus mostly on comparing the naive height with the
weighted moduli height and determining how the occurrence of A3 happens with
the increase of h.

A slice of five random elements of our Python dictionary looks like:

Key Value
(-1, -9, -20, 1) [20, 98, 3.1463462836, ’A3’]
(20, -9, -20, 1) [20, 1458632, 34.752530588, ’A3’]
(8, 12, -20, 1) [20, 540800, 13.5590472788, ’A3’]
(1, 17, -20, 1) [20, 243602, 22.2162222997, ’A3’]
(19, -9, -19, 1) [19, 1204352, 16.5637384397, ’A3’]

where the ’key’ has the coefficients of the cubic and the entries in ’values’ are
respectively: naive height, J4 invariant, weighted heigh, and the Galois group.

POLYNOMIALS, GALOIS GROUPS, AND DATABASE-DRIVEN ARITHMETIC 49

Lemma 26. The total number of rational points of heights in (0 , 20] is = 1
299 200. From those there are 1 178 856 irreducible polynomials and only 1328 of
them have Galois group C3. Moreover, the distribution of polynomials with Galois
group C3 with respect to their naive height is given in Fig. 1.

Figure 1. This distribution is only for cubics with Galois group C3.

In [30] we give an estimate on the ratio of the moduli height over the naive
height for binary sextics. Such bounds can be given for every degree d polynomial.
In out case of cubics the minimum ratio is 0.074 for polynomial f(x) = 7x3−5x2−
16x+ 7 and the maximum ratio is 2.008 for f(x) = 13x3 − 19x2 − 20x+ 13

Lemma 27. There are only 40 cubics in the database with height ≤ 5 and
Galois group of order 3. The discriminant ∆f of those forty polynomials has values
∆f = 72, 34, 132, 192, 312, and 612 as shown in the Tab. 6

Below is the distribution of points in the database versus the invariant of cubics.

10.4. Quartics. We create a database of all rational points [c0 : c1 : c2 : c3 :
c4] in P3 with projective height h ≤ 20 such that

f(x) = c0 + c1x+ c2x
2 + c3x

3 + c4x
4

is an irreducible polynomial in Q[x]. Other than S4 the other possible Galois
groups are C4, D4, V4, and A4 as explained in Eq. (19). We refer to Eq. (24) for
its invariants. However, to avoid denominators we define

J2 = 36 · ξ0, J3 = 216 · ξ1, J6 = ∆(f, x)

50 ELIRA SHASKA AND TONY SHASKA

Table 6. Irreducible degree 3 polynomials of height ≤ 5 and Ga-
lois group C3

f ∆ # f ∆ # f ∆
1 (1, 3, -4, 1) 72 15 (-1, -3, 0, 3) 34 29 (1, 2, -5, 1) 192

2 (-1, -4, -3, 1) 72 16 (1, -3, 0, 3) 34 30 (-1, -5, -2, 1) 192

3 (1, -1, -2, 1) 72 17 (5, 4, -5, 1) 132 31 (1, -5, 2, 1) 192

4 (1, -2, -1, 1) 72 18 (1, 1, -4, 1) 132 32 (-1, 2, 5, 1) 192

5 (-1, -2, 1, 1) 72 19 (5, -3, -2, 1) 132 33 (2, -1, -5, 2) 312

6 (-1, -1, 2, 1) 72 20 (-1, -4, -1, 1) 132 32 (2, -5, -1, 2) 312

7 (1, -4, 3, 1) 72 21 (1, -4, 1, 1) 132 35 (-2, -5, 1, 2) 312

8 (-1, 3, 4, 1) 72 22 (-5, -3, 2, 1) 132 36 (-2, -1, 5, 2) 312

9 (1, 0, -3, 1) 34 23 (-1, 1, 4, 1) 132 37 (3, -4, -5, 3) 612

10 (3, 0, -3, 1) 34 24 (-5, 4, 5, 1) 132 38 (3, -5, -4, 3) 612

11 (-1, -3, 0, 1) 34 25 (-1, -5, -4, 5) 132 39 (-3, -5, 4, 3) 612

12 (1, -3, 0, 1) 34 26 (1, -2, -3, 5) 132 40 (-3, -4, 5, 3) 612

13 (-3, 0, 3, 1) 34 27 (-1, -2, 3, 5) 132

14 (-1, 0, 3, 1) 34 28 (1, -5, 4, 5) 132

Figure 2. The number of occurrences versus the invariants

Hence, for a polynomial f = [a0, . . . , a4] we get

J2 =12c0c4 − 3c1c3 + c22

J3 =72c0c2c4 − 27c0c
2
3 − 27c21c4 + 9c1c2c3 − 2c32

J6 =256c30c
3
4 − 192c20c1c3c

2
4 − 128c20c

2
2c

2
4 + 144c20c2c

2
3c4 − 27c20c

4
3 + 144c0c

2
1c2c

2
4 − 6c0c

2
1c

2
3c4 − 80c0c1c

2
2c3c4

+ 18c0c1c2c
3
3 + 16c0c

4
2c4 − 4c0c

3
2c

2
3 − 27c41c

2
4 + 18c31c2c3c4 − 4c31c

3
3 − 4c21c

3
2c4 + c21c

2
2c

2
3

POLYNOMIALS, GALOIS GROUPS, AND DATABASE-DRIVEN ARITHMETIC 51

One can verify that J6 = 1
27 (4J

3
2 − J2

3). Notice that since J6 is the discriminant
then J6 ̸= 0 so we also define the GL2(Q)-invariant or j-invariant

j =
J3
2

4J3
2 − J2

3

A slice of the database for quartics looks as follows:

Key Value
(1, -2, -2, -2, 1) [2, [4, -416], 4.5162, ’D(4)’, -6400, -1/2700]
(-1, 2, -1, -2, 1) [2, [1, 110], 3.23853, ’D(4)’, -448, -1/12096]

Table 7. A slice of the database for quartics

The increase of the number of polynomials with respect to height seems very
comparable to degree 3 and 4. We present this graphically in Fig. 3.

Figure 3. This distribution is for quartics with Galois group not
isomorphic to S4.

In [30] we give an estimate on the ratio of the moduli height over the naive
height for binary sextics. Such bounds can be given for every degree d polynomial.
In the case of quartics the minimum ratio is 0.2236 for the polynomial f(x) = x4−
5x3+10x2−10x+5 and the maximum ratio is 3.3959 for f(x) = x4−x3−x2−x+1.
The first quartic has Galois group C4 and the second F5. We present the ration of
the weighted height over the naive height in Fig. 4

There are 5676 irreducible quartics of naive height h ≤ 10 with Galois group
not isomorphic to S4. From those D4: 5162 polynomials, A4: 184 polynomials, V4:
222 polynomials, and C4: 108 polynomials. In Fig. 3 we display how the number
of such polynomials grows according to the height. The 5676 irreducible quartics
are up to Z-equivalence. However, there are only 1231 irreducible quartics up to
Q-equivalence, counted by their j-invariant.

52 ELIRA SHASKA AND TONY SHASKA

Figure 4. The ratio of weighted height with naive height

In [5], being unaware of the weighted height, the authors define the height of
a binary quartic as

h(f) = max{|J2 |3 , |J3 |2}
Of course this is what we have called the moduli height and it is simply the six
power Hk(f)

6 of the weighted height. One of the problems considered in [5] is the
number of binary quadratic with bounded height. The authors give necessary and
sufficient conditions for (J2, J3) to be invariants of an integral quartic. We verify
such conditions in our database.

The case of quartics is very interesting in its own due to many connections
to number theory and elliptic curves and will be the focus of a more detailed
investigation in a later stage.

10.5. Quintics. Next we consider the irreducible quintics over Q. Again
polynomial will be identified with points [c0 : c1 : c2 : c3 : c4 : c5] in P4. By
Lem. 18 the Galois group of an irreducible quintic is one of the following C5, D5,
F5 = AGL(1, 5), A5, S5. By Eq. (10) the invariants are ξ0, ξ1, ξ2 of order 4, 8, 12
respectively. The expressions of such invariants in ?? suggest we use instead

J4 =− 625

2
· ξ0 = −625c20c

2
5 + 250c0c1c4c5 − 25c0c2c3c5 − 40c0c2c

2
4

+ 15c0c
2
3c4 − 40c21c3c5 − 9c21c

2
4 + 15c1c

2
2c5 + 19c1c2c3c4 − 6c1c

3
3 − 6c32c4 + 2c22c

2
3

J8 =1562500 · ξ1

(41)

There are two other invariants J12 and J18 whch we don’t display here and there is
a degree 36 homogenous polynomial F (J4, J8, J12, J18) = 0. This is a homogenous
polynomial of degree 36 in terms of coefficients. Hence, a degree two polynomial
in J18. According to Dolgachev [10, pg. 152] the discriminant of the quintic is
∆ = J2

4 − 128J8.

POLYNOMIALS, GALOIS GROUPS, AND DATABASE-DRIVEN ARITHMETIC 53

A slice of the dictionary for quintics is given below:

Key Value
(-2, -1, 0, -2, -2, 1) [2, [-3264, -8152576, -29726998528], 7.55853, ’F(5) = 5:4’]
(1, 0, -1, 2, -2, 1) [2, [-539, 3599, 116197], 4.81834, ’D(5) = 5:2’]
(2, -2, 2, 0, -1, 1) [2, [-1768, 203456, 379094016], 6.48441, ’A5’]

The increase of the number of polynomials with respect to height seems very
comparable to degree 3 and 4. We present this graphically in Fig. 5.

Figure 5. This distribution is for quintics with Galois group not
isomorphic to S5.

In [30] we give an estimate on the ratio of the moduli height over the naive
height for binary sextics. Such bounds can be given for every degree d polynomial.
In the case of quintics the minimum ratio is 0.5353 for the polynomial

f(x) = x5 − 5x4 + 9x3 − 9x2 + 4x− 1

and the maximum ratio is 3.7792 for

f(x) = x5 − 2x4 − 2x3 − x− 2.

The first quintic has Galois group D5 and the second F5. We present the ration of
the weighted height over the naive height in Fig. 6

Lemma 28. From all irreducible quintics in Z[x] with naive height ≤ 10 there
are exactly 20 of them with Galois group C5, 480 with group F5, 900 with group
D5, and 1146 with group A5. Moreover, all polynomials with Galois group C5 and
their invariants are listed in Tab. 8.

Data in Tab. 8 shows some very interesting trends. First, There are really only
3 quintics with Galois group C5 up to Q̄-isomorphism since they obviously have the
same invariants. This once more stresses the point that the absolute invariants are
really the most effective way of dealing with such databases since they considerable
decrease the size of the database. Furthermore, by decreasing redundancy the

54 ELIRA SHASKA AND TONY SHASKA

Figure 6. The ratio of weighted height with naive height

Key h p wh
-1, 1, 4, -3, -3, 1 4 [4235, 4026275, -16076916075] 8.06702 C5

-1, 3, 3, -4, -1, 1 4 [4235, 4026275, -16076916075] 8.06702 C5

1, 3, -3, -4, 1, 1 4 [4235, 4026275, -16076916075] 8.06702 C5

1, 1, -4, -3, 3, 1 4 [4235, 4026275, -16076916075] 8.06702 C5

-1, -2, 5, 2, -4, 1 5 [4235, 4026275, -16076916075] 8.06702 C5

1, 4, 2, -5, -2, 1 5 [4235, 4026275, -16076916075] 8.06702 C5

-1, 4, -2, -5, 2, 1 5 [4235, 4026275, -16076916075] 8.06702 C5

1, -2, -5, 2, 4, 1 5 [4235, 4026275, -16076916075] 8.06702 C5

1, -6, 10, -1, -6, 1 10 [4235, 4026275, -16076916075] 8.06702 C5

1, -6, -1, 10, -6, 1 10 [4235, 4026275, -16076916075] 8.06702 C5

-1, -6, -10, -1, 6, 1 10 [4235, 4026275, -16076916075] 8.06702 C5

-1, -6, 1, 10, 6, 1 10 [4235, 4026275, -16076916075] 8.06702 C5

-1, 4, 9, -5, -9, 1 9 [113377, 2971552001, -47471703427379] 18.3498 C5

-1, 9, 5, -9, -4, 1 9 [113377, 2971552001, -47471703427379] 18.3498 C5

1, 9, -5, -9, 4, 1 9 [113377, 2971552001, -47471703427379] 18.3498 C5

1, 4, -9, -5, 9, 1 9 [113377, 2971552001, -47471703427379] 18.3498 C5

-1, 0, 10, 5, -10, 1 10 [109375, 2392578125, -96893310546875] 18.18568 C5

-1, 10, -5, -10, 0, 1 10 [109375, 2392578125, -96893310546875] 18.18568 C5

1, 10, 5, -10, 0, 1 10 [109375, 2392578125, -96893310546875] 18.18568 C5

1, 0, -10, 5, 10, 1 10 [109375, 2392578125, -96893310546875] 18.18568 C5

Table 8. The only quintics of height ≤ 10 and Galois group iso-
morphic to C5

learning process of any AI model becomes more efficient. Some of these issues are
further illustrated and discussed in [28].

POLYNOMIALS, GALOIS GROUPS, AND DATABASE-DRIVEN ARITHMETIC 55

Second, the polynomials in [27] provide interesting examples of how the height
of the binary form can change even for polynomials of such small height. These are
very interesting examples in reduction theory; see [29] and more recently [15]

Finally, the above data emphasizes how rare such cases are. There are roughly
206 quintic polynomials of height ≤ 10 and from those only three (up to Q̄-
isomorphism) have Galois group isomorphic to C5. Training an AI model to pick
such very rare cases might be an impossible task indeed. We will explore that in
the next section.

11. Neuro-symbolic networks

A neuro-symbolic network is a type of artificial intelligence system that com-
bines the strengths of neural networks (good at pattern recognition) with symbolic
reasoning (based on logic and rules) to create models that can both learn from
data and reason through complex situations, essentially mimicking human-like cog-
nitive abilities by understanding and manipulating symbols to make decisions; this
approach aims to overcome limitations of either method alone, providing better
explainability and adaptability in AI systems. They seem to be the most reason-
able choice for our approach since we can use all the theoretical knowledge that
we have about polynomials and their Galois groups and somehow incorporate this
into some machine learning model. The area of research on deep learning for sym-
bolic mathematics is very active and has had a lot of activity in the ast few years;
[1,2,9,18,21,23]

11.1. Architecture of Neuro-Symbolic Networks. Let x represent the
raw input data. The architecture of a neuro-symbolic network consists of the fol-
lowing key components:

11.1.1. Input Layer and Preprocessing. The input x is mapped to a higher-
dimensional feature space z0 through a preprocessing function f0 : X → Z0, where
X is the input space and Z0 is the processed feature space. This step typically
involves convolutional, recurrent, or embedding layers to transform raw data into
structured representations.

11.1.2. Neural Feature Extraction. A sequence of neural transformations fi :
Zi−1 → Zi for i = 1, . . . , n is applied to extract features. The final output of this
stage is a feature representation zn. These transformations may include convolu-
tional layers for spatial data, recurrent layers for temporal data, or feedforward
layers for general patterns:

zn = fn ◦ fn−1 ◦ · · · ◦ f1(z0).
11.1.3. Interface Layer. The feature representation zn is mapped to a symbolic

representation s through an interface function φ : Zn → S, where S is the symbolic
space. Mechanisms such as attention models or learned symbolic encoding are
employed. Feedback processes can also map symbolic insights s back into neural
spaces Zn to refine feature extraction:

s = φ(zn), z′n = ψ(s, zn).

11.1.4. Symbolic Reasoning Layer. The symbolic representation s undergoes
logical or algebraic reasoning. This layer uses symbolic inference mechanisms R :
S → S′, such as rule-based systems, constraint solvers, or formal logic:

s′ = R(s),

56 ELIRA SHASKA AND TONY SHASKA

where S′ is the transformed symbolic space.
11.1.5. Output Integration. The final output y is derived by integrating the

outputs from both neural and symbolic pathways. Let ρ : S′ ×Zn → Y denote the
integration function, mapping the refined symbolic reasoning s′ and neural feature
representation zn to the output space Y :

y = ρ(s′, zn).

11.1.6. Dynamic Feedback Loops. Throughout the architecture, feedback loops
dynamically adjust both neural and symbolic pathways. Symbolic reasoning s′ can
guide neural updates, and neural features zn may suggest new symbolic rules or
hypotheses:

zn → φ(s) → R(s′) → ψ(z′n).

This architecture integrates the strengths of neural networks for learning from
high-dimensional data and symbolic methods for reasoning, interpretability, and
leveraging explicit rules. Neuro-symbolic networks are particularly effective for
tasks requiring both data-driven insights and rule-based decision-making. We will
try to incorporate some of the above for our particular data with the main fo-
cus of determining the Galois group of polynomials. There are many other open
questions that one could ask on the data as comparing height of polynomials with
the weighted moduli height, classifying equivalence classes of polynomials as de-
scribed in section 3, investigating Malle’s conjecture, and others and for each one
of these questions a neuro-symbolic network tailored to the specific question has to
be designed.

11.2. Precomputed data for every degree d. For each degree d we pre-
compute two lists:

• ” d-grps” which is the list of transitive subgroups of Sd as explained in
section 7

• ”d-sig” which is the list of the signature for every group in ” d-grps”

Such data can be computed using GAP and methods from group theory.

11.3. Signature layer. The first symbolic reasoning layer that we apply to
our data is the signature layer. This layer for every point key = (a0, . . . , ad) creates
the polynomial f(x) and computes the factorization fp(x) for a list of primes p.
Normally we use p = 2, 3, 5, 7. This signature sig(key) is compared with the list of
possible signatures for the degree d. The field of groups for this entry is updated
with the list of all groups which admit this signature. If length of L[key][groups] = 1
then Gal (f) is uniquely determined and the training is done.

POLYNOMIALS, GALOIS GROUPS, AND DATABASE-DRIVEN ARITHMETIC 57

1 from sympy import symbols , Poly , factor_list

2 def sig_layer(p):

3 x = symbols(’x’)

4 f = sum(a * x**i for i, a in enumerate(p))

5 signature = [5]

6 primes = [2, 3, 5, 7]

7 for prime in primes:

8 poly_mod = Poly(f, x, modulus=prime)

9 factors = factor_list(poly_mod)[1] # Get the list of

factors modulo the prime

10 for factor_poly , multiplicity in factors:

11 degree = factor_poly.degree ()

12 if degree > 1 and degree not in signature: # Avoid

linear factors and duplicates

13 signature.append(degree)

14 return signature

Listing 1. Python implementation of the sig layer function.

11.4. Real roots layer. If the polynomial has enough real roots then from
?? the group is Ad or Sd. Computing the real roots is usually easy since it can
be done with numerical methods. Hence, for high enough degree d it is usually an
efficient method to compute the number of the real roots of f(x).

1 from sympy import symbols , diff , Poly , sign

2

3 def sturm_sequence(P, x):

4 P = Poly(P, x) # Ensure P is treated as a polynomial

5 sequence = [P, P.diff(x)] # Start with P and its

derivative

6 while True:

7 remainder = -sequence [-2].rem(sequence [-1]) #

Polynomial remainder

8 if remainder.is_zero:

9 break

10 sequence.append(remainder)

11 return sequence

12

13 def count_sign_changes(sequence , value):

14 evaluations = []

15 for poly in sequence:

16 eval_value = poly.eval(value)

17 if eval_value == 0:

18 evaluations.append (0) # Consider zero explicitly

19 else:

20 evaluations.append(sign(eval_value))

21 evaluations = [s for i, s in enumerate(evaluations) if i ==

0 or s != evaluations[i - 1]]

22 return len(evaluations) - 1

23

24 def real_root_count(P, x, interval =(-1e10 , 1e10)):

25 a, b = interval

26 P = Poly(P.expand (), x) # Fully expand the polynomial

58 ELIRA SHASKA AND TONY SHASKA

27 sturm_seq = sturm_sequence(P, x)

28 sign_changes_a=count_sign_changes(sturm_seq ,a)

29 sign_changes_b=count_sign_changes(sturm_seq ,b)

30 return sign_changes_a - sign_changes_b

Listing 2. Real Root Counting Algorithm

The algorithm for finding the number of real roots of a polynomial using Sturm’s
theorem involves constructing a Sturm sequence, which starts with the polynomial
f(x) and its derivative, followed by successive remainders from polynomial division,
with signs reversed. The number of real roots in a given interval is determined by
evaluating the sequence at the interval endpoints and counting sign changes in the
resulting values. By substituting large finite values (±1010) for infinity, the method
can approximate the count of real roots over the entire real line. This approach
works efficiently for polynomials with integer or rational coefficients.

11.5. Discriminant layer. The discriminant is computed for all polynomials
in the precomputed data stage, but it is not factored. This layer is activated only
if the entry has as Galois group candidates which are contained or not in the
alternating group Ad. Since this layer can slow down considerably the model, we
only activate it as a last resort.

11.6. Implementation and efficiency. We implement this approach and
test it for quartics and quintics databases that we created for this paper. The case
of cubics is quite trivial from the point of view of Galois theory and we ignore it
here. While both quartics and quintics are well understood and we don’t need any
AI model to find out the Galois group, they do provide nice test cases which can
tell us how reasonable and efficient such approach is. We study sextics in more
detail in [27].

12. Galois Network

We design a network that integrates numerical learning with symbolic reasoning
to classify polynomials based on their Galois group properties. The core of this
system, which we call the GaloisNetwork, processes polynomial coefficients and
leverages mathematical insights to predict the corresponding group labels. This
hybrid approach combines the power of deep learning with domain-specific rules,
ensuring both accuracy and interpretability.

The input to the network consists of feature vectors derived from polynomial
coefficients. We compute these features using mathematical invariants, such as root
counts and other Galois group characteristics, creating a robust representation of
each polynomial. The features are standardized to improve model performance
and are then split into training and validation datasets. Labels representing Galois
groups are mapped to numeric values for compatibility with the learning process.

The GaloisNetwork itself is a fully connected feedforward neural network. It
begins with an input layer that matches the size of the feature vectors. The network
includes three hidden layers, each with 64 neurons and ReLU activation functions,
providing the capacity to learn complex patterns in the data. Finally, an output
layer produces a probability distribution over all possible Galois group labels using
a softmax activation. This architecture allows the network to effectively capture
the relationships between features and group classifications.

POLYNOMIALS, GALOIS GROUPS, AND DATABASE-DRIVEN ARITHMETIC 59

Training the network involves minimizing a cross-entropy loss function using
the Adam optimizer. Over 100 epochs, the network iteratively updates its weights
through backpropagation, ensuring that it learns to align its predictions with the
true labels. To monitor its progress, we periodically evaluate the model on a vali-
dation set, tracking the loss and refining the learning process.

To enhance the model’s predictions, we implement a post-processing step that
applies domain-specific rules. For example, if the number of real roots of a poly-
nomial exceeds a certain threshold, the prediction is adjusted to align with known
Galois group properties. This rule-based layer ensures that the network respects
established mathematical principles, making its outputs both reliable and inter-
pretable.

Finally, we evaluate the system using accuracy metrics, confusion matrices, and
detailed classification reports. These evaluations demonstrate the effectiveness of
combining numerical learning with symbolic reasoning. By integrating these two
paradigms, our design not only achieves high accuracy but also maintains alignment
with the underlying mathematical structure of the problem, providing a powerful
tool for analyzing polynomials through the lens of their Galois groups.

1 coefficients_list = [list(key) for key in L.keys()]

2 labels = [L[key][3] for key in L.keys()]

3 features = [compute_galois_features(coeffs) for coeffs in

coefficients_list]

4

5 label_mapping = {label: idx for idx , label in enumerate(set(labels))}

6 labels_numeric = [label_mapping[label] for label in labels]

7

8 scaler = StandardScaler ()

9 features_scaled = scaler.fit_transform(features)

10 X_train , X_val , y_train , y_val = train_test_split(features_scaled ,

labels_numeric , test_size =0.2, random_state =42)

11

12 features_tensor = torch.tensor(X_train , dtype=torch.float32)

13 features_tensor_validation = torch.tensor(X_val , dtype=torch.float32)

14 labels_tensor = torch.tensor(y_train , dtype=torch.long)

15 labels_tensor_validation = torch.tensor(y_val , dtype=torch.long)

16

17 class GaloisNetwork(nn.Module):

18 def __init__(self , input_size , hidden_size , output_size):

19 super(GaloisNetwork , self).__init__ ()

20 self.layers = nn.Sequential(

21 nn.Linear(input_size , hidden_size),

22 nn.ReLU(),

23 nn.Linear(hidden_size , hidden_size),

24 nn.ReLU(),

25 nn.Linear(hidden_size , hidden_size),

26 nn.ReLU(),

27 nn.Linear(hidden_size , output_size)

28)

29 self.softmax = nn.Softmax(dim =1)

30

31 def forward(self , x):

32 return self.softmax(self.layers(x))

33

34 input_size = len(features [0])

35 hidden_size = 64 # Increased for complexity

60 ELIRA SHASKA AND TONY SHASKA

36 output_size = len(label_mapping)

37

38 model = GaloisNetwork(input_size , hidden_size , output_size)

39 criterion = nn.CrossEntropyLoss ()

40 optimizer = optim.Adam(model.parameters (), lr =0.001)

41

42 for epoch in range (100): # Increased epochs for better training

43 model.train ()

44 optimizer.zero_grad ()

45 outputs = model(features_tensor)

46 loss = criterion(outputs , labels_tensor)

47 loss.backward ()

48 optimizer.step()

49

50 if (epoch + 1) % 10 == 0: # Print every 10 epochs

51 model.eval()

52 with torch.no_grad ():

53 val_outputs = model(features_tensor_validation)

54 val_loss = criterion(val_outputs , labels_tensor_validation

)

55 print(f"Epoch {epoch+1}, Loss: {loss.item()}, Validation Loss:

{val_loss.item()}")

56

57 # Evaluate model on validation set

58 model.eval()

59 with torch.no_grad ():

60 predictions = model(features_tensor_validation)

61 predicted_classes = torch.argmax(predictions , dim =1)

62 accuracy = accuracy_score(labels_tensor_validation.cpu().numpy(),

predicted_classes.cpu().numpy ())

63 print(f"Validation Accuracy: {accuracy}")

64

65 # Confusion Matrix

66 cm = confusion_matrix(labels_tensor_validation.cpu().numpy(),

predicted_classes.cpu().numpy ())

67 sns.heatmap(cm, annot=True , fmt=’d’)

68 plt.title(’Confusion Matrix ’)

69 plt.ylabel(’True label’)

70 plt.xlabel(’Predicted label’)

71 plt.show()

72

73 # Classification Report

74 print(classification_report(labels_tensor_validation.cpu().numpy()

, predicted_classes.cpu().numpy(), target_names=list(

label_mapping.keys())))

Listing 3. Python Code for Training a Neural Network

13. Concluding Remarks

This project is a work in progress that uses machine learning to study Galois
theory, focusing on polynomials and their Galois groups. By combining traditional
algebra with modern computing, we’re finding new ways to connect mathematics
and data science.

We’ve shown that supervised learning and neuro-symbolic networks can predict
Galois groups and check if polynomials are solvable by radicals. Unsupervised
learning has helped us find hidden patterns in polynomial data. We built a detailed

POLYNOMIALS, GALOIS GROUPS, AND DATABASE-DRIVEN ARITHMETIC 61

database of irreducible polynomials with known Galois groups, using features like
discriminants, root differences, and heights. We also used methods like Julia and
Hermite equivalence to organize polynomials into classes and studied how heights
help define these classes. Viewing polynomials as points in weighted projective
spaces has added a useful geometric perspective.

Moving forward, we plan to expand the database to include polynomials of
higher degrees and multiple variables. We could also create new features for machine
learning models based on what we learn from the data. More advanced models,
like graph neural networks, might better capture how polynomial roots interact.
Transfer learning could help apply our findings to more complex problems. We
also want to automate classification methods and create tools to visualize results,
making this work easier for others to use. Exploring connections to field extensions,
algebraic geometry, or even physics could make this approach useful in other areas.

This project shows that machine learning can work with classical math to create
new tools for algebraists and reveal new insights. By blending math and computing,
we’re opening doors to new ways of doing mathematical research.

References

[1] Rashid Barket, Matthew England, and Jürgen Gerhard, Symbolic integration algorithm se-

lection with machine learning: LSTMs vs tree LSTMs, Mathematical software—ICMS 2024,

[2024] ©2024, pp. 167–175. MR4786719
[2] Rashid Barket, Uzma Shafiq, Matthew England, and Juergen Gerhard, Transformers to pre-

dict the applicability of symbolic integration routines (2024), available at 2410.23948.

[3] W. E. H. Berwick, On Soluble Sextic Equations, Proc. London Math. Soc. (2) 29 (1928),
no. 1, 1–28. MR1575303

[4] Manjul Bhargava, Jan-Hendrik Evertse, Kálmán Györy, László Remete, and Ashvin A.
Swaminathan, Hermite equivalence of polynomials, Acta Arith. 209 (2023), 17–58.

MR4665252

[5] Manjul Bhargava and Arul Shankar, Binary quartic forms having bounded invariants, and
the boundedness of the average rank of elliptic curves, Ann. of Math. (2) 181 (2015), no. 1,

191–242. MR3272925

[6] A. Clebsch and P. Gordan, Theorie der abelschen funktionen, Teubner, 1866.
[7] Henri Cohen, A course in computational algebraic number theory, Springer-Verlag, Berlin,

1993.

[8] Elira Curri, On the stability of binary forms and their weighted heights, Albanian J. Math.
16 (2022), no. 1, 3–23. MR4448533

[9] Tereso del Ŕıo and Matthew England, Lessons on datasets and paradigms in machine learning
for symbolic computation: a case study on CAD, Math. Comput. Sci. 18 (2024), no. 3, Paper
No. 17, 27. MR4796805

[10] Igor Dolgachev, Lectures on invariant theory, Lond. Math. Soc. Lect. Note Ser., vol. 296,
Cambridge: Cambridge University Press, 2003 (English).

[11] Quentin Guignard, Counting algebraic points of bounded height on projective spaces, J. Num-

ber Theory 170 (2017), 103–141. MR3541701
[12] Thomas R. Hagedorn, General formulas for solving solvable sextic equations, J. Algebra 233

(2000), no. 2, 704–757. MR1793923

[13] Marc Hindry and Joseph H. Silverman, Diophantine geometry, Graduate Texts in Mathemat-
ics, vol. 201, Springer-Verlag, New York, 2000. An introduction. MR1745599 (2001e:11058)

[14] R. Bruce King, Beyond the quartic equation, Birkhäuser Boston, Inc., Boston, MA, 1996.

MR1401346
[15] Ilias Kotsireas and Tony Shaska, A machine learning approach of Julia reduction, RISAT

preprints (202412), available at https://www.risat.org/pdf/2024-06.pdf.

[16] Vishwanath Krishnamoorthy, Tanush Shaska, and Helmut Völklein, Invariants of binary
forms, Progress in Galois theory, 2005, pp. 101–122. MR2148462

http://www.ams.org/mathscinet-getitem?mr=4786719
2410.23948
http://www.ams.org/mathscinet-getitem?mr=1575303
http://www.ams.org/mathscinet-getitem?mr=4665252
http://www.ams.org/mathscinet-getitem?mr=3272925
http://www.ams.org/mathscinet-getitem?mr=4448533
http://www.ams.org/mathscinet-getitem?mr=4796805
http://www.ams.org/mathscinet-getitem?mr=3541701
http://www.ams.org/mathscinet-getitem?mr=1793923
http://www.ams.org/mathscinet-getitem?mr=1745599
http://www.ams.org/mathscinet-getitem?mr=1745599
http://www.ams.org/mathscinet-getitem?mr=1401346
https://www.risat.org/pdf/2024-06.pdf
http://www.ams.org/mathscinet-getitem?mr=2148462

62 ELIRA SHASKA AND TONY SHASKA

[17] Joseph P. S. Kung and Gian-Carlo Rota, The invariant theory of binary forms, Bull. Amer.

Math. Soc. (N.S.) 10 (1984), no. 1, 27–85. MR722856

[18] Guillaume Lample and François Charton, Deep learning for symbolic mathematics (2019),
available at 1912.01412.

[19] Shigeru Mukai, An introduction to invariants and moduli. Transl. from the Japanese by W.

M. Oxbury, Reprint of the 2003 hardback ed., Camb. Stud. Adv. Math., vol. 81, Cambridge:
Cambridge University Press, 2012 (English).

[20] P. E. Newstead, Geometric invariant theory, Moduli spaces and vector bundles, 2009, pp. 99–

127. MR2537067
[21] Kimia Noorbakhsh, Modar Sulaiman, Mahdi Sharifi, Kallol Roy, and Pooyan Jamshidi,

Pretrained language models are symbolic mathematics solvers too! (2023), available at

2110.03501.
[22] Peter J. Olver, Classical invariant theory, London Mathematical Society Student Texts,

vol. 44, Cambridge University Press, Cambridge, 1999. MR1694364
[23] Lynn Pickering, Tereso del Ŕıo Almajano, Matthew England, and Kelly Cohen, Explainable

AI insights for symbolic computation: a case study on selecting the variable ordering for

cylindrical algebraic decomposition, J. Symbolic Comput. 123 (2024), Paper No. 102276, 24.
MR4669630

[24] George Salmon, Modern higher algebra, Cambridge University Press, Cambridge, 1876.

[25] I. Schur, Vorlesungen über Invariantentheorie, Grundlehren Math. Wiss., vol. 143, Springer,
Cham, 1968 (German).

[26] Elira Shaska and Tony Shaska, Galois theory: A database approach, RISAT preprints (De-

cember 2024), 40.
[27] , Irreducible sextics, invariants, and their galois groups, RISAT preprints (202412),

available at https://www.risat.org/pdf/2024-07.pdf.
[28] , Machine learning for moduli space of genus two curves and an application to isogeny

based cryptography (2024), available at 2403.17250.

[29] T. Shaska, Reduction of superelliptic Riemann surfaces, Automorphisms of Riemann surfaces,
subgroups of mapping class groups and related topics, 2022, pp. 227–247. MR4375119

[30] T. Shaska and L. Beshaj, Heights on algebraic curves, Advances on superelliptic curves and

their applications, 2015, pp. 137–175. MR3525576
[31] Bartel Leendert van der Waerden, Modern algebra, Springer, Berlin, Heidelberg, 2003. Trans-

lated from the German by Fred Blum and John R. Schulenberger.

Department of Computer Science,, College of Enginnering, Oakland University,
Rochester, MI, 48309

Email address: elirashaska@oakland.edu

Department of Mathematics and Statistics,, College of Arts and Sciences, Oakland
University, Rochester, MI, 48309

Email address: tanush@umich.edu

http://www.ams.org/mathscinet-getitem?mr=722856
1912.01412
http://www.ams.org/mathscinet-getitem?mr=2537067
2110.03501
http://www.ams.org/mathscinet-getitem?mr=1694364
http://www.ams.org/mathscinet-getitem?mr=4669630
https://www.risat.org/pdf/2024-07.pdf
2403.17250
http://www.ams.org/mathscinet-getitem?mr=4375119
http://www.ams.org/mathscinet-getitem?mr=3525576

	1. Introduction
	2. Preliminaries
	2.1. Polynomials
	2.2. Several variables
	2.3. Weighted polynomials
	2.4. Restriction to Polynomials over Q and Z

	3. Equivalences of Polynomials
	3.1. Projective Equivalence and Binary Forms
	3.2. Z-Equivalence and `3́9`42`"̇613A``45`47`"603AGL2(Z)-Equivalence
	3.3. Tschirnhaus Equivalence
	3.4. Hermite Equivalence
	3.5. Julia Equivalence
	3.6. Addressing the Two Main Issues

	4. Heights of Polynomials
	4.1. Definitions and Basic Properties
	4.2. Height Properties and Polynomial Operations
	4.3. Heights and Polynomial Equivalences
	4.4. Computational Applications

	5. Binary Forms
	5.1. Group Actions on Binary Forms
	5.2. Proj Rd as a Weighted Projective Space
	5.3. Generators of the Ring of Invariants
	5.4. Root Differences
	5.5. Heights of Binary Forms and Invariants
	5.6. Minimal and Moduli Heights of Forms
	5.7. Weighted Moduli Heights
	5.8. Hilbert-Mumford Criterion for Stability

	6. Galois groups of polynomials
	6.1. Invariants and Galois Groups
	6.2. Cubics
	6.3. Quartics
	6.4. Quintics

	7. Transitivity in Sn
	7.1. Computational Enumeration of Transitive Subgroups

	8. Resolvents of Polynomials
	8.1. Choosing resolvents
	8.2. Computation of Resolvents
	8.3. Resolvents of quintics

	9. Reduction modulo p
	10. Databases of irreducible polynomials
	10.1. Datasets of irreducible polynomials
	10.2. Datasets with bounded height
	10.3. Cubics
	10.4. Quartics
	10.5. Quintics

	11. Neuro-symbolic networks
	11.1. Architecture of Neuro-Symbolic Networks
	11.2. Precomputed data for every degree d
	11.3. Signature layer
	11.4. Real roots layer
	11.5. Discriminant layer
	11.6. Implementation and efficiency

	12. Galois Network
	13. Concluding Remarks
	References

