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Preface

Linear algebra is one of the cornerstones of modern mathematics, with profound applications
in computer science, engineering, physics, and the social sciences. It serves as the language
of transformations, optimizations, and high-dimensional spaces, making it indispensable not
only for pure mathematicians but also for practitioners in fields such as artificial intelligence,
data science, and machine learning.

Traditionally, linear algebra is introduced at the sophomore level as the first rigorous en-
counter with vector spaces, linear transformations, and matrices. However, the way it is
taught often varies. Some textbooks emphasize applications at the expense of mathematical
depth, leaving students with a collection of computational techniques but little insight into the
underlying structures. Others focus on the formal mathematical framework, avoiding com-
putations and real-world connections. This book aims to strike a balance by presenting both
the theoretical foundations and computational techniques of linear algebra while maintaining
a strong geometric perspective.

One of the distinguishing features of this book is its integration of geometry throughout.
The transformations of conic sections, for example, illustrate how diagonalizing a matrix corre-
sponds to changing the basis of a vector space, revealing the deep connection between algebra
and geometry. The notion of invariants—quantities that remain unchanged under transfor-
mations—appears repeatedly in discussions on eigenvalues, singular value decomposition,
and other fundamental topics.

Beyond its traditional applications in physics and engineering, linear algebra has become
an essential tool in artificial intelligence and data science. Machine learning algorithms, at
their core, rely on linear algebraic structures. The representation of data as high-dimensional
vectors, the optimization of loss functions, and the efficient computation of gradients in deep
learning frameworks are all built on fundamental linear algebraic operations. Techniques
such as Principal Component Analysis (PCA) for dimensionality reduction, singular value
decomposition (SVD) for data compression, and gradient descent for optimization all rely on
a solid understanding of linear algebra. Even neural networks, often perceived as highly non-
linear systems, can be analyzed as compositions of linear transformations with nonlinearity
introduced via activation functions.

This book provides a comprehensive introduction to linear algebra while preparing stu-
dents for more advanced applications in modern computational sciences. In later chapters,
we explore optimization techniques, probability, statistics, and linear models—key topics for
machine learning practitioners. The final chapters introduce neural networks from a linear al-
gebraic perspective, offering insights into how matrices, vectors, and transformations underlie
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deep learning architectures.
A wide range of exercises is provided, from fundamental problems reinforcing key concepts

to more challenging ones that connect to broader areas of mathematics. While this book
assumes familiarity with calculus and basic discrete mathematics, no prior knowledge of
linear algebra is required.

The material in this book has been shaped by years of teaching at the University of Cali-
fornia, Irvine; the University of Idaho; the University of Vlora; and Oakland University. I am
grateful to my students, whose engagement and curiosity have influenced this text. It is my
hope that this book not only equips students with the mathematical tools necessary for their
fields but also inspires an appreciation for the elegance and power of linear algebra.

Tony Shaska
Rochester, 2018
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Chapter 1

Euclidean spaces, linear systems

We start this chapter with the familiar notion of Euclidean spaces R2 and R3 from previous
lecture. Intuition from R2 and R3 will be used to generalize concepts for Rn including the
norm, dot product of vectors, angles among vectors, and the geometry of R2 and R3.

In Sec. 1.3, we introduce the matrices and their algebra. Using matrices to solve linear
systems of equations involves computing the row-echelon form and the reduced row-echelon
form of matrices. These are the so-called Gauss algorithm and Gauss - Jordan algorithm
and are studied in Sec. 1.4. In Sec. 1.5 we study the inverses of matrices and algorithms of
computing such matrices.

1.1 Vectors in Physics and Geometry

We will denote by R2 the xy-plane and by R3 the coordinate system in space. For any two
given points P and Q, an directed line segment (P,Q) is the segment PQ. We call P the
initial point and Q the terminal point. Two directed line segments (A,B) and (C,D) are called
equipollent when the points A,B,D,C, in this order, form a parallelogram.

1.1.1 The plane R2

Every point in xy-plane is represented uniquely by an ordered pair (x, y). For any two points
P1(x1, y1) and P2(x2, y2) their distance is given by

d(P1,P2) =
√

(x2→x1)2+ (y2→ y1)2.

Let’s denote the set of all directed line segments inR2 by S. In
this set S we define the following relation: (P1,Q1) ↑ (P2,Q2)
if the following hold

(i) lines P1Q1 and P2Q2 are parallel
(ii) d(P1,Q1) = d(P2,Q2)

(iii) directed line segments (P1,Q1) and (P2,Q2) have the
same direction

Figure 1.1: A Euclidean vector
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Exercise 1. Prove that ↑ is an equivalence relation.

A vector is called an equivalence class from the above relation. Geometrically two directed
line segments (A,B) and (C,D) are equivalent when they are equipollent. The equivalence
class of the (A,B) will be denoted by

→↓
AB. The magnitude (or length) of the vector

→↓
AB is simply

the distance
d(A,B) =

√
(x2→x1)2+ (y2→ y1)2 (1.1)

and from now on will be denoted by
∥∥∥∥
→↓
AB
∥∥∥∥.

Denote the set of all such equivalence classes by V := S/ ↑. Hence, V the set of all vectors
from the xy-plane. Moreover, the above three conditions are geometrically equivalent with
moving the vector

→→→↓
P1Q1 in a parallel way over

→→↓
OP, where O is the origin of the coordinate

system. So we can assume that all vectors of V start at the origin O by picking for each
equivalence class the representative that starts at the origin O. Elements of V will be denoted
by bold letters throughout these lectures. Hence we have the following:

Lemma 1.1. Thus, there is a one-to-one correspondence between the set of elements of V and points of
the xy-plane, namely for any P(x, y)

u =
→→↓
OP↔↓ P = (x, y)

Proof. Exercise ↭

Figure 1.2: Vectors in R2

Hence, a vector u =
→→↓
OP is identified with an ordered pair (x, y) and will be denoted by

u =
[
x
y

]
, in order to distinguish it from the point P(x, y). Because of the above correspondence,

from now on we will identify V =R2. We say that x and y are the coordinates of u.

12
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Example 1.1. Let P(1,2) and Q(3,7) be given in R2. Find the coordinates of vectors
→→↓
PQ and

→→↓
QP.

Next we will see the addition and scalar multiplication of vectors. Most likely the reader
is not new to such concepts since they are studied in a first course in elementary physics. We
will focus on the algebraic and geometric point of view.

For any two vectors u =
[
u1
u2

]
, v =

[
v1
v2

]
in V define the addition and scalar multiplication as

u+v :=
[
u1+v1
u2+v2

]
, and r ·u :=

[
ru1
ru2

]
, (1.2)

where r ↗ R. Geometrically scalar multiplication ru is described as in Fig. 1.3, where ru is a
new vector with the same direction as u and length r-times the length of u.

ωu

ωru

ωu

Figure 1.3: Multiplying by a scalar

Addition of two vectors u and v geometrically is described in Fig. 1.4.

ωv ωu+ωv

ωu

ωu

ωv ωu+ωv
ωv

ωu

Figure 1.4: Addition of vectors

Exercise 2. Prove that such definitions agree with addition and scalar multiplication defined in Eq. (1.2)

The following exercise is elementary, but very interesting when we discuss determinants
of matrices in coming lectures.

Exercise 3. Given two vectors

u =
[
u1
u2

]
and v =

[
v1
v2

]

in R2 we can assume that both start at the origin.

13
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(i) Prove that the area of the parallelogram determined by these two vectors is A = |u1v2→u2v1 |.
(ii) Prove that the lines determined by u and v are perpendicular if and only if u1v1 = u2v2.

(iii) Determine the angle between u and v.

The following exercises explore further the geometry of the vectors in R2.

Exercises:

1. If A, B, C are vertices of a triangle, find→↓
AB+

→↓
BC+

→→↓
CA.

2. Let c a positive real number and O1, O2 points
on the xy-plane with coordinates (c,0) and (→c,0)
respectively. Find the equation of all points P such
that ∥∥∥∥

→→→↓
PO1

∥∥∥∥+
∥∥∥∥
→→→↓
PO2

∥∥∥∥ = 2a,

for a > c.

3. Let ↘ ABC be a given triangle and ε the angle
between AB and AC. Prove the Law of Cosines

BC2 = AB2+AC2→2AB ·AC · cosε (1.3)

4. Let a and b sides of a parallelogram and d1, d2
its diagonals. Prove that

d2
1+d2

2 = 2(a2+b2).

5. Prove that the diagonals of a parallelogram are
perpendicular if and only if all sides are equal.

6. Prove that the distance d of a point P = (x0, y0)
from the line

ax+by+ c = 0

is given by

d =

∣∣∣ax0+ by0+ c
∣∣∣

≃
a2+ b2

.
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1.1.2 The space R3

Next we review briefly the geometry of the space and vectors in R3. Definition of vectors in
R

3 goes exactly the same with their definition in R2, by adding a third coordinate.
Recall that R3 is the Cartesian product

R⇐R⇐R = {(x, y,z) |x, y,z ↗R}

and a point P in R3 is represented by an ordered triple
(x0, y0,z0) as shown in Fig. 1.5.

Let be given two points P1(x1, y1,z1) and P2(x2, y2,z2)
inR3. We will show that the distance |P1P2| between the
two points is

⇒P1P2⇒ =
√

(x2→x1)2+ (y2→ y1)2+ (z2→ z1)2

To verify this formula we construct a parallelepiped
where the points P1 and P2 are vertices across from each
other as in Fig. 1.6. If A(x2, y1,z1) and B(x2, y2,z1) are the
other vertices as in Fig. 1.6, then

|P1A| = |x2→x1|, |AB| = |y2→ y1|, |BP2| = |z2→ z1|

Since the triangles↘P1BP2 and↘P1AB are right triangles,
from the Pythagorean theorem we have

|P1B|2 = |P1A|2+ |AB|2 and |P1P2|2 = |P1B|2+ |BP2|2

x

y

z

P

Qy0

x0

S

R

z0

Figure 1.5: Coordinates of P(x, y,z).

Combining the two equations we have

⇒P1P2⇒2 = ⇒P1A⇒2+ |⇒AB⇒2+ ⇒BP2⇒2

= ⇒x2→x1⇒2+
∥∥∥y2→ y1

∥∥∥2+ ⇒z2→ z1⇒2

= (x2→x1)2+ (y2→ y1)2+ (z2→ z1)2

Thus,

|P1P2| =
√

(x2→x1)2+ (y2→ y1)2+ (z2→ z1)2 (1.4)

The distance between a point P(x, y,z) and the origin is
∥∥∥∥
→→↓
OP
∥∥∥∥ =
√

x2+ y2+ z2.

Example 1.2. Let P(1,2,3) and Q(4,2,1). Find the coordinates and the magnitude of the vector
→→↓
PQ

Solution: The coordinates of
→→↓
PQ are

→→↓
PQ= [3,0,→2]t and its magnitude

∥∥∥∥
→→↓
PQ
∥∥∥∥=
√

32+02+ (→2)2 =
≃

13. ↭
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Figure 1.6: Distance between two points

P1

x

y

z

P2

∣∣∣y2→ y1
∣∣∣

|x2→x1|

|z2→ z1|

Every point in 3d-space is represented uniquely by an ordered triple (x, y,z). For any
two points P1(x1, y1,z1) and P2(x2, y2,z2) a Euclidean vector (or simply a vector) is frequently
represented by a ray (a line segment with a definite direction), or graphically as an arrow
connecting an initial point P1 with a terminal point P2, and denoted by

→→→↓
P1P2 .

The magnitude (or length) of
→→→↓
P1P2 is simple the distance

∥∥∥∥
→→→↓
P1P2

∥∥∥∥ =
√

(x2→x1)2+ (y2→ y1)2+ (z2→ z1)2

Let’s denote the set of all ’vectors’ in R3 by S. In this set S we define the following relation:→→→↓
P1Q1 ↑

→→→↓
P2Q2 if the following hold

(i) lines P1Q1 and P2Q2 are parallel
(ii)
∥∥∥∥
→→→↓
P1Q1

∥∥∥∥ =
∥∥∥∥
→→→↓
P2Q2

∥∥∥∥
(iii)

→→→↓
P1Q1 and

→→→↓
P2Q2 have the same direction

Exercise 4. Prove that ↑ is an equivalence relation.

Denote the set of all such equivalence classes by V := S/ ↑. Hence, V the set of all equiva-
lence classes of vectors from the xy-plane. Moreover, the above three conditions are geometri-
cally equivalent with moving the vector

→→→↓
P1Q1 in a parallel way over

→→↓
OP, where O is the origin

of the coordinate system.
Then, a vector is called an equivalence class from the above relation. So we can assume that

all vectors of V start at the origin O by picking for each equivalence class the representative
that starts at the origin O. Elements of V will be denoted by bold letters throughout these
lectures.

16
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Lemma 1.2. Thus, there is a one-to-one correspondence between the set of elements of V and points of
the 3d-space, namely for any P(x, y,x)

u =
→→↓
OP↔↓ P = (x, y,z)

Proof. Exercise ↭

Figure 1.7: Representatives of the equivalence classes

Hence, a vector u =
→→↓
OP is identified with an ordered triple (x, y,z) and will be denoted by

u=




x
y
z


, in order to distinguish it from the point P(x, y,z). Because of the above correspondence,

from now on we will identify V =R3. We say that x, y and z are the coordinates of u.

For any two vectors u =




u1
u2
u3


 and v =




v1
v2
v3


we define the addition and scalar multiplication

as in R2, namely

u+v :=




u1+v1
u2+v2
u3+v3


 , r ·u :=




ru1
ru2
ru3


 .

where r ↗ R. Since any two generic lines determine a plane, the geometric interpretation of
addition and scalar multiplication of R2 is still valid in R3.

Sometimes it is more convenient to write vectors as row vectors. The transpose of the

vector u =




x
y
z


 is the row vector ut =

[
x, y,z

]
and the transpose of the row vector

[
x, y,z

]
is

the column vector




x
y
z


. With these conventions the vector u =




x
y
z


 will also be denoted by

u =
[
x, y,z

]t.

Exercise 5. Find the coordinates of the vector
→→→↓
P1P2 when P1(1,1,2) and P2(2,4,6).
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Exercise 6. Find v+w, v→w, ⇒v⇒ and ⇒v→w⇒, ⇒v+w⇒, and→2v, if v= [1,2,3]t and w= [→1,2,→3]t.

Exercise 7. Find v+w, v→w, ⇒v⇒ and ⇒v→w⇒, ⇒v+w⇒, and→2v, if v= [1,0,1]t and w= [→1,→2,2]t

Properties of vector addition and multiplying by a scalar we can summarize below:

Theorem 1.1. If u,v,w are three vectors in R3 and c,d ↗R are scalars, then the following hold:
(i) u+v = v+u

(ii) u+ (v+w) = (u+v)+w
(iii) u+0 = u
(iv) u+ (→u) = 0

(v) c(u+v) = cu+ cv
(vi) (c+d)u = cu+du

(vii) (cd)u = c(du)
(viii) 1u = u

Proof. The proof is left as an exercise for the reader.
↭

Let’s denote by V3 the set of all vectors in the 3-dimensional spaceR3. Three vectors which
play a special role in V3 are

i =




1
0
0


 , j =




0
1
0


 , k =




0
0
1


 .

These vectors are called vectors of the standard basis. We will explain this terminology in
more detail in the coming sections.

Exercise 8. Prove that every vector in R3 is expressed in terms of vectors i, j, k. In other words, if

u =




a
b
c


, then we have

u == ai+ bj+ ck.

A vector u is called a unit vector if it has length 1. For example, vectors i, j, k are unit
vectors. A unit vector which has the same direction with a given vector u is a vector 1

⇒u⇒ u= u
⇒u⇒ .

In the next section we will formalize such definitions to the case of Rn. The reader should
make sure to fully understand the concepts from R2 and R3 before proceeding to Rn.

Exercise 9. Let v = [x0, y0,z0]t be a fixed vector in R3. Describe the set of all points P(x, y,z) which
satisfy ⇒u→v⇒ = 1, where u = [x, y,z]t.

Equation of the sphere

Using the distance formula above we can easily determine the equations of some simple
geometric objects. The equation of the sphere with center at the point with coordinates
(x0, y0,z0) and radius r is

(x→x0)2+ (y→ y0)2+ (z→ z0)2 = r2

18
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y

z

x

0

(x, y,z)

(a) Radius r, center (0,0,0)

y

z

x
0

r

(x, y,z)

(x0, y0,z0)

(b) Radius r, center (x0, y0,z0)

Figure 1.8: Spheres in R3

To prove this we just need the definition of the sphere, which is the set of all points P(x, y,z)
equidistant from the fixed point Q(x0, y0,z0) with a distance r from it. Thus,

∥∥∥∥
→→↓
QP
∥∥∥∥= r. Squaring

both sides we have
∥∥∥∥
→→↓
QP
∥∥∥∥

2
= r2 or

(x→x0)2+ (y→ y0)2+ (z→ z0)2 = r2

So the sphere with center at Q is the set of all terminal points of vectors with initial point at Q
and magnitude r. When the center of the sphere is at the origin we have x2+ y2+ z2 = r2 and
in this case the sphere is the set of all terminal points of vectors with magnitude r and initial
point at the origin.

However, not every sphere has an equation as above. Consider the following example:

Example 1.3. Prove that the following equation represent a sphere and find its radius and its center

4x2+4y2+4z2→8x+16y = 1.

Solution: Complete squares for 4x2→8x, 4y2+16y, and we have

(x→1)2+ (y+2)2+ z2 =
21
4

Thus the equation represents a sphere with center (1,→2,0) and radius
√

21
4 .

↭

Remark 1.1. Notice that the process of completing the square in each variable x, y,z gets complicated
when the equation has cross terms xy, xz, and yz. We will learn how to handle such equations in later
chapters.
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An equation in variables x and y represents a curve inR2

and a surface in R3. We illustrate with an easy example
for which we construct the graph in both R2 and R3.

Example 1.4. Construct the graph of x2+ y2 = 4 in R2 and
R

3

Solution: In R2 this equation represents a circle with
radius 2 and center at the origin.

InR3, the graph is all points P(x, y,z), where x2+y2 = 4
and the z-coordinate takes any value z ↗ R. Hence, it is
a right cylinder with radius r = 2 and exists the z-axis as
in Fig. 1.9 ↭

Figure 1.9: x2+ y2 = 4 in R3

1.1.3 Dot product

In R2, the dot product of two vectors u = [u1,u2]t and v = [v1,v2]t is defined as follows

u ·v = u1 v1+u2 v2

For every two given vectors in R3, u = [u1,u2,u3]t and v = [v1,v2,v3]t, dot product is called
the real number u ·v given by

u ·v = u1v1+u2v2+u3v3

Example 1.5. Find the dot product in each case:
(i) u = 3 i+2 j, v = i→2 j

(ii) u = [3,0,→1]t, v = [2,1,7]t.

Solution: We have
i) u ·v = 3 ·1+2 · (→2) = 3→4 = →1
ii) u ·v = 3 ·2+0 ·1+ (→1) ·7 = 6+0→7 = →1.

↭
The proof of the following is left as an exercise.

Theorem 1.2. For every three vectors u,v,w in V3 and r ↗R we have
(i) u ·u = ⇒u⇒2

(ii) u ·v = v ·u,
(iii) (ru) ·v = u · (rv)
(iv) u ·0 = 0 = 0 ·u
(v) u · (v+w) = u ·v+u ·w

Definition 1.1. The angle between two vectors u and v in R3 is called the smallest angle between
them measured counterclockwise.

Theorem 1.3. If we denote by ε the angle between u and v, then

u ·v = ⇒u⇒ · ⇒v⇒ · cosε
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Proof. Using the cosine formula for the triangle OAB we have

⇒AB⇒2 = ⇒OA⇒2+ ⇒OB⇒2→2 ⇒OA⇒ · ⇒OB⇒ · cosε (1.5)

Since ⇒OA⇒ = ⇒u⇒ , ⇒OB⇒ = ⇒v⇒ , and ⇒BA⇒ = ⇒u→v⇒,
Eq. (1.5) becomes

⇒u→v⇒2 = ⇒u⇒2+ ⇒v⇒2→2⇒u⇒⇒v⇒cosε (1.6)

The expression ⇒v→w⇒, can be re-written as

⇒u→v⇒2 = (u→v) · (u→v)

= u ·u→u ·v→v ·u+v ·v = ⇒u⇒2→2u ·v+ ⇒v⇒2
Figure 1.10

Substituting in Eq. (1.6), we have

⇒v⇒2→2v ·w+ ⇒w⇒2 = ⇒v⇒2+ ⇒w⇒2→2⇒v⇒ · ⇒w⇒cosε

which implies →2v ·w = →2⇒v⇒ · ⇒w⇒cosε and finally v ·w = ⇒v⇒ · ⇒w⇒cosε. ↭

Corollary 1.1. The angle ε between two vectors v and w is given by

cosε =
v ·w
⇒v⇒ · ⇒w⇒ .

Example 1.6. Find the angle between the vectors v = [1,→2,2]t and w = [2,→2,→1]t.

Solution: First ⇒v⇒ =
≃

1+4+4 =
≃

9 = 3 and ⇒w⇒ =
≃

4+4+1 =
≃

9 = 3. Also, v ·w = 1(2)+
(→2)(→2)+ 2(→1) = 4. Then cosε = v·w

⇒v⇒·⇒w⇒ =
4

3·3 =
4
9 and the angle between two vectors is

ε = cos→1
(

4
9


.

↭
Dy vectors are called orthogonal if the angle between them is ε = ϑ/2. Thus, we have a

corollary of Thm. 1.3, which gives an if and only if condition to determine if two vectors are
orthogonal.

Corollary 1.2. Two nonzero vectors v and w are orthogonal if and only if v ·w = 0.

For orthogonal vectors we use the notation v⇑w.

Example 1.7. Determine if vectors v = [1,→5,2]t and w = [3,1,1]t are orthogonal.

Solution: We have v ·w = 1 ·3+ (→5) ·1+2 ·1 = 0, so vectors w,w are orthogonal. ↭
Since cosε > 0, for 0 ⇓ ε ⇓ ϑ/2 and cosε < 0 for ϑ/2 ⇓ ε ⇓ ϑ, we have another corollary of

Thm. 1.3

Corollary 1.3. If ε is the angle between two vectors v and w, then

v ·w =



> 0 for 0 ⇓ ε < ϑ/2
0 for ε = ϑ/2
< 0 for ϑ/2 < ε ⇓ ϑ

(1.7)
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Directional angles of a nonzero vector u are the angles ϖ, ϱ, ς of this vector with the
major axes of the coordinate system as in Fig. 1.11. The cosine functions of these angles,
cosϖ,cosϱ,cosς, are called directional cosines of the vector u.
Using Cor 1.1 we have

cosϖ =
u · i
⇒u⇒ · ⇒i⇒ =

u1
⇒u⇒ (1.8)

and similarly for the other two angles

cosϱ =
u · j
⇒u⇒ ·

∥∥∥j
∥∥∥
=

u2
⇒u⇒ cosς =

u · k
⇒u⇒ · ⇒k⇒ =

u3
⇒u⇒ (1.9)

Using equations Eq. (1.8) and Eq. (1.9) , we square them and
get

cos2ϖ+ cos2ϱ+ cos2ς = 1 (1.10)

For u=




u1
u2
u3


we have u=




u1
u2
u3


=




⇒u⇒cosϖ
⇒u⇒cosϱ
⇒u⇒cosς


= ⇒u⇒




cosϖ
cosϱ
cosς


. Then,

Figure 1.11: Directional angles

1
⇒u⇒ u =




cosϖ
cosϱ
cosς


 (1.11)

So, the directional cosines of the vector u are the components of a unit vector with the same
direction as u.

Example 1.8. Determine directional cosines and directional angles for the vector u = [2,1,→4]t

Solution: First ⇒u⇒ =
≃

4+1+16 =
≃

21 then from Eq. (1.8) and Eq. (1.9), we have cosϖ = 2≃
21

,

cosϱ = 1≃
21

, cosς = →4≃
21

and respectively ϖ = 1.119, ϱ = 1.351, ς = 2.632. ↭

1.1.4 Cross product
Given vectors u = [u1,u2,u3]t and v = [v1,v2,v3]t, then their cross product is defined as

u⇐v =




u2v3→u3v2
u3v1→u1v3
u1v2→u2v1




Another way to remember this formula is as the determinant of the 3 by 3 matrix

u⇐v =

∣∣∣∣∣∣∣∣

i j k
u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣
u2 u3
v2 v3

∣∣∣∣∣ i→
∣∣∣∣∣
u1 u3
v1 v3

∣∣∣∣∣ j+
∣∣∣∣∣
u1 u2
v1 v2

∣∣∣∣∣ k

= (u2v3→u3v2) i+ (u3v1→u1v3) j+ (u1v2→u2v1)k

(1.12)
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Let us see an example.

Example 1.9. For vectors u = [2,1,→1]t and v = [→3,4,1]t, find u⇐v and v⇐u.

Solution: From the definition we have

u⇐v =

∣∣∣∣∣∣∣∣

i j k
2 1 →1
→3 4 1

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣
1 →1
4 1

∣∣∣∣∣ i→
∣∣∣∣∣

2 →1
→3 1

∣∣∣∣∣ j+
∣∣∣∣∣

2 1
→3 4

∣∣∣∣∣ k = (1+4) · i→ (2→3) · j+ (8+3) · k = 5 · i+ j+11 ·k

Also, v⇐u

v⇐u =

∣∣∣∣∣∣∣∣

i j k
→3 4 1
2 1 →1

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣
4 1
1 →1

∣∣∣∣∣ i→
∣∣∣∣∣
→3 1
2 →1

∣∣∣∣∣ j+
∣∣∣∣∣
→3 4
2 1

∣∣∣∣∣ k = (→4→1) i→ (3→2) j+ (→3→8)k = →5 i→ j→11k

↭

Theorem 1.4. If ε is the angle between the vectors u and v, (0 ⇓ ε ⇓ ϑ), then

⇒u⇐v⇒ = ⇒u⇒ · ⇒v⇒ · sinε. (1.13)

Proof. From the definition we have:

⇒u⇐v⇒2 = (u2v3→u3v2)2+ (u3v1→u1v3)2+ (u1v2→u2v1)2

= u2
2v2

3→2u2u3v2v3+u2
3v2

2+u2
3v2

1→2u1u3v1v3+u2
1v2

3 +u2
1v2

2→2u1u2v1v2+u2
2v2

1

= (u2
1+u2

2+u2
3)(v2

1+v2
2+v2

3)→ (u1v1+u2v2+u3v3)2

= ⇒u⇒2 ⇒v⇒2→⇒u⇒2 ⇒v⇒2 cos2ε = ⇒u⇒2 ⇒v⇒2 (1→ cos2ε) = ⇒u⇒2 ⇒v⇒2 sin2ε

taking square roots of both sides and keeping in mind that
√

sin2ε = sinε because sinε ⇔ 0
when 0 ⇓ ε ⇓ ϑ, we have

⇒u⇐v⇒ = ⇒u⇒ · ⇒v⇒ · sinε

↭

Corollary 1.4. Two nonzero vectors u and v are parallel if and only if u⇐v = 0.

The geometric interpretation of Thm. 1.4 is the area of the parallelogram determined by
vectors u and v. If u and v, have the same initial point then they define a parallelogram with
base ⇒u⇒ and height ⇒v⇒ sinε. Its area is

S = ⇒u⇒ · ⇒v⇒ · sinε = ⇒u⇐v⇒ (1.14)

Thus, geometrically the magnitude of the cross product of vectors u and v is the area of the
parallelogram defined by u and v.
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Example 1.10. Find the area of the parallelogram determined by the points P= (1,4,6), Q= (→2,5,→1),
and R = (1,→1,1).

Solution: From the discussion above in Thm. 1.4, we have
→→↓
PQ =




→1→2
5→4
→1→6


 =




→3
1
→7


 and

→↓
PR =




1→1
→1→4
1→6


 =




0
→5
→5


. Their cross product is

→→↓
PQ⇐→↓PR =

∣∣∣∣∣∣∣∣

i j k
→3 1 →7
0 →5 →5

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣
1 →7
→5 →5

∣∣∣∣∣ i→
∣∣∣∣∣
→3 →7
0 →5

∣∣∣∣∣ j+
∣∣∣∣∣
→3 1
0 →5

∣∣∣∣∣ k = →40 i→15 j+15k

and its magnitude
∥∥∥∥
→→↓
PQ⇐→↓PR

∥∥∥∥ =
√

(→40)2+ (→15)2+ (152) = 5
≃

82. ↭

Theorem 1.5. The cross product of two nonzero vectors u and v is orthogonal with the vectors u and
v.

Proof. To show that u⇐v is orthogonal with u, it is enough to show that their dot product is
zero. So

(u⇐v) ·u =



u2v3→u3v2
u3v1→u1v3
u1v2→u2v1


 ·



u1
u2
u3


 = u2v3u1→u3v2u1+u3v1u2→u1v3u2+u1v2u3→u2v1u3 = 0

Similarly (u⇐v) ·v = 0. Thus the cross product is orthogonal with vectors u and v.
↭

In the picture it is illustrated the right hand rule of determin-
ing the direction of the cross product.

Example 1.11. If a plan is defined by the points A(1,0,0),
B(2,→1,3) and C = (1,1,1), find a vector orthogonal with it.

Solution: We take

→↓
AB =




2→1
→1→0
3→0


 =




1
→1
3


 and

→→↓
AC =




1→1
1→0
1→0


 =




0
1
1


 .

Figure 1.12: Cross product
The cross product is

→↓
AB⇐→→↓AC =

∣∣∣∣∣∣∣∣

i j k
1 →1 3
0 1 1

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣
→1 3
1 1

∣∣∣∣∣ i→
∣∣∣∣∣
1 3
0 1

∣∣∣∣∣ j+
∣∣∣∣∣
1 →1
0 1

∣∣∣∣∣ k = →4 i→ j+k

Thus, the vector →4 i→ j+2k is orthogonal to the plane passing through A, B, and C ↭

Theorem 1.6. For any vectors u,v,w in V3, and r ↗R, the following are true:
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(i) u⇐v = →v⇐u
(ii) u⇐ (v+w) = u⇐v+u⇐w

(iii) (u+v)⇐w = u⇐w+v⇐w
(iv) (ru)⇐v = u⇐ (rv) = r(u⇐v)
(v) u⇐0 = 0⇐u = 0

(vi) u⇐u = 0

(vii) u · (v⇐w) = (u⇐v) ·w
(viii) u⇐ (v⇐w) = (u ·w)v→ (u ·v)w

Proof. We will only prove vii), since the rest are easy exxercises. If u= [u1,u2,u3]t, v= [v1,v2,v3]t

and w = [w1,w2,w3]t, then

u · (v⇐w) = u1(v2w3→v3w2)+u2(v3w1→v1w3)+u3(v1w2→v2w1)
= u1v2w3→u1v3w2+u2v3w1→u2v1w3+u3v1w2→u3v2w1

= (u2v3→u3v2)w1+ (u3v1→u1v3)w2+ (u1v2→u2v1)w3 = (u⇐v) ·w
(1.15)

This completes the proof. ↭

1.1.5 Mixed product

Given vectors u,v,w ↗R3 with coordinates u= [u1,u2,u3]t, v= [v1,v2,v3]t, and w= [w1,w2,w3]t.
The mixed product of u,v,w is called expression u · (v⇐w). From Eq. (1.15) we notice that

u · (v⇐w) =

∣∣∣∣∣∣∣∣

u1 u2 u3
v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣∣∣
(1.16)

The geometric interpretation is that the absolute value of the mixed product is: the volume of
the parallelepiped defined by vectors u,v,w . Thus

V = |u · (v⇐w)| (1.17)

Example 1.12. Find the volume of the parallelepiped defined by vectors u = [2,1,3]t, v = [→1,3,2]t

and w = [1,1,→2]t.

Solution: We have

u · (v⇐w) =

∣∣∣∣∣∣∣∣

2 1 3
→1 3 2
1 1 →2

∣∣∣∣∣∣∣∣
= 2
∣∣∣∣∣
3 2
1 →2

∣∣∣∣∣→1
∣∣∣∣∣
→1 2
1 →2

∣∣∣∣∣+3
∣∣∣∣∣
→1 3
1 1

∣∣∣∣∣ = 2(→8)→1(0)+3(→4) = →28

So V = |u · (v⇐w)| = |→28| = 28. ↭

Example 1.13. Prove that vectors u = [1,4,→7]t, v = [2,→1,4]t and w = [0,→9,18]t lie on the same
plane.
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Solution: We have

u · (v⇐w) =

∣∣∣∣∣∣∣∣

1 4 →7
2 →1 4
0 →9 18

∣∣∣∣∣∣∣∣
= 1
∣∣∣∣∣
→1 4
→9 18

∣∣∣∣∣→4
∣∣∣∣∣
2 4
0 18

∣∣∣∣∣→7
∣∣∣∣∣
2 →1
0 →9

∣∣∣∣∣ = 0

Since the volume is zero, then the vectors lie on the same plane. ↭

Exercises:

7. For given vectors find their cross product and
verify if the vectors are orthogonal.

(i) u = [5,2,→1]t, v = [7,2,→10]t

(ii) u = [4,4,→3]t, v = [2,6,4]t

(iii) u = [1,2,0]t, v = [1,0,3]t

(iv) u = [5,1,→1]t, v = [→1,0,2]t

(v) u = 3 i+2 j+4k, v = i→2 j→3k
(vi) u = → i+2 j+ k, v = →3 i+6 j+3k

8. Find u⇐v and v⇐u, for vectors u = [0,1,3]t

and v = [1,1,2]t

9. For vectors u= [3,1,2]t, v= [→1,1,0]t, and w=
[0,0,→4]t, prove that u⇐ (v⇐w) ! (u⇐v)⇐w.

10. Find the area of the triangle determined by
(i) P = (5,1,→2), Q = (4,→4,3), R = (2,4,0)

(ii) P = (4,0,2), Q = (2,1,5), R = (→1,0,→1).

11. Find a unit vector which is orthogonal with
vectors u = [1,0,1]t and v = [1,3,5]t.

12. Prove that 0⇐u = u⇐0 for every vector u in
V3.

13. Prove that (u⇐v) ·v = 0 for all vectors in V3.

14. Find the area of the parallelogram with ver-
tices:

(i) A(2,1,3), B(1,4,5), C(2,5,3), D(3,2,1).
(ii) A(→2,2), B(1,4), C(6,6), and D(3,0).

(iii) A(1,2,3), B(1,3,6), C(3,7,3), D(3,8,6).

15. Find ( i⇐ j)⇐ k and ( i+ j)⇐ ( i→ j).

16. Prove that u⇐ (v⇐w) = (u ·w)v→ (u ·v)w.

17. The angle between two vectors u and v is ϑ/6
and ⇒u⇒ = 2, ⇒v⇒ = 3. Find ⇒u⇐v⇒.

18. Find a vector which is orthogonal to the plane
passing through P,Q,R, and find the area of the
triangle PQR.

(i) P(3,0,6), Q(2,1,5), R(→1,3,4).
(ii) P(1,2,3), Q(1,0,1), R(→1,3,1).

(iii) P(2,0,→3), Q(5,2,2), R(3,1,0).

19. Find the volume of the parallelepiped deter-
mined by the vectors

(i) u = [1,1,3]t, v = [2,1,4]t, w = [5,1,→2]t

(ii) u = [1,3,2]t, v = [7,2,→10]t, w = [1,0,1]t.

20. For the given vectors compute u · (v⇐w) and
u⇐ (v⇐w).

(i) u = [1,1,1]t, v = [3,0,2]t, w = [2,2,2]t.
(ii) u = [1,0,2]t, v = [→1,0,3]t, w = [2,0,→2]t.

21. Show that vectors u = 2 i+ 3 j+ k, v = i→ j,
and w = 7 i = 3 j+2k are coplanar.

22. If v and w are unit vectors in V3, when is the
vector v⇐w also a unit vector?

23. Prove that if u⇐ v = 0 for all v in V3, then
v = 0.

24. Prove that for all vectors v,w in V3:

⇒v⇐w⇒+ |v ·w| = ⇒v⇒2 · ⇒w⇒2 .

25. Given u,v,x ↗R3 such that u⇐x = v, where
u ! 0. Prove that

(i) u ·v = 0
(ii) x = v⇐u

⇒u⇒2 +φu is a solution of the equation
u⇐x = v for every scalar φ ↗R.

26. Prove the Jacobi identity

u⇐ (v⇐w)+v⇐ (w⇐u)+w⇐ (u⇐v) = 0.
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27. For all vectors a,b,c,d in V3, prove that

(a⇐b)⇐ (c⇐d) = (d · (a⇐b))c→ (c · (a⇐b))d

1.1.6 Equation of lines
A line inR3 is uniquely determined when it passes through a point P and has a given direction.

Let P = (x0, y0,z0) a point in R3, and v =




a
b
c


 a nonzero vector.

Denote by L the line passing through P and is parallel to a

vector v; Fig. 1.13. Denote by r0 =




x0
y0
z0


 the vector ωOP. The

vector
r(t) := r0+ t ·v, for t ↗R (1.18)

determines every point of the line L. Hence, Figure 1.13: Equation of lines

Lemma 1.3. For a given point P = (x0, y0,z0) and a nonzero vector v ↗ R3, the line L which passes
through P and is parallel with the vector v has equation

r(t) = r0+ t ·v, for r0 =




x0
y0
z0


 and t ↗ (→↖,↖) (1.19)

Notice the correspondence between a the vector and its endpoint. Since v =




a
b
c


, then its

endpoint r(t) = r0+ tv is the point

x0+ at, y0+bt,z0+ ct


.

Hence, we have a parametric representation of the line L in terms of the parameter t:

For a point P(x0, y0,z0) and a nonzero vector v =




a
b
c


, the line L, passing through P and

parallel v, consists in all points (x, y,z) such that

x = x0+ at, y = y0+ bt, z = z0+ ct, for → ↖ < t < ↖ (1.20)

Notice that in the above two interpretations, the point P is obtained when t = 0. Coordinates

a,b,c are called directional numbers and the vector v =




a
b
c


 is called the directional vector of

the line L.
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If in Eq. (1.20), we have that a ! 0, then solving for t, we have: t = x→x0
a . We can also solve

for y or z with the condition that b or c are nonzero. So we have t = y→y0
b or t = z→z0

c . Hence,

x→x0
a
=

y→ y0

b
=

z→ z0
c

(1.21)

If a = 0 then x = x0+ at, hence x = x0+0 · t = x0. Then, we have

x = x0
y→ y0

b
=

z→ z0
c

(1.22)

Hence, the line L is on the plane x = x0. Similarly for b = 0, or c = 0.

Example 1.14. Find the equation of the line L passing through P(2,3,5) and parallel to the vector

v =




4
→1
6


, in all three forms. Find two points of L different from P.

Solution: Denote by r0 =




2
3
5


, and from Eq. (1.19), the line L has equation

r(t) = r0+ t ·v =



2
3
5


+ t




4
→1
6


 , for → ↖ < t < ↖.

For the parametric form , L consists of all points (x, y,z) such that

x = 2+4t, y = 3→ t, z = 5+6t, for → ↖ < t < ↖

The symmetric equation of L is all points (x, y,z) such that

x→2
4
=

y→3
→1
=

z→5
6

Taking t = 2 and t = 3 we get (10,1,17) and (14,0,23) in L. ↭
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The line going through two points

Given P1 = (x1, y1,z1) and P2 = (x2, y2,z2) two distinct
points in R3 and L the line going through them. De-
note by

r1 =




x1
y1
z1


 and r2 =




x2
y2
z2




two vectors with endpoints P1 and P2. Then, from
Fig. 1.14, r2 → r1 is the vector from P1 to P2. Thus,→→→↓
P1P2 = r2→ r1. If we multiply r2→ r1 with a scalar t, and
add that to the vector r1, we will have the line L for all
values of t in R. Thus points of the line are given by

r(t) = r1+ t(r2→ r1),

for t ↗ R. Then, the vector, parametric, or symmetric,
equation of the line passing through P1 and P2 are.

Figure 1.14: Equation of the line

Vector equation:
r(t) = r1+ t(r2→ r1), for → ↖ < t < ↖ (1.23)

Parametric equation:

x = x1+ (x2→x1) · t, y = y1+ (y2→ y1) · t, z = z1+ (z2→ z1) · t, for→ ↖ < t < ↖ (1.24)

Symmetric equation:

x→x1
x2→x1

=
y→ y1

y2→ y1
=

z→ z1
z2→ z1

for x1 ! x2, y1 ! y2, and z1 ! z2 (1.25)

1.1.7 Planes

Let n = [a,b,c]t be a nonzero vector which is orthogonal
to the plane P. Such vector is called normal vector of
the plane. Let (x, y,z) be a point of P. Then, the vector

r =




x→x0
y→ y0
z→ z0


 is on the plane P; see Fig. 1.15.

Thus if r ! 0, then r ⇑ n, and so n · r = 0. If r = 0 then we
have r ·n = 0. Conversely, if (x, y,z) is a point in R3 such

that r =




x→x0
y→ y0
z→ z0


 ! 0 and n · r = 0, then r⇑ n and (x, y,z) is

in P. Thus, we have: Figure 1.15: A normal vector with the
plane
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Lemma 1.4. Let P be a plane and (x0, y0,z0) a point in P. Let n= [a,b,c]t be a nonzero vector orthogonal
to the plane P. Then, the plane P consists of all points (x, y,z) such that

n · r = 0 (1.26)

where r =




x→x0
y→ y0
z→ z0


; or

a(x→x0)+b(y→ y0)+ c(z→ z0) = 0 (1.27)

Eq. (1.26) is called vector equation of the plane and Eq. (1.27) is called scalar equation of
the plane. Expanding Eq. (1.27) we get

ax+ by+ cz+d = 0 (1.28)

where d = →(ax0+ by0+ cz0). Eq. (1.28) is called linear equation of the plane.

Example 1.15. Find the equation of the plane passing through Q(1,3,2), R(3,→1,6) and S(5,2,0).

Solution: Vectors
→→↓
QR and

→↓
QS are given by

→→↓
QR = [2,→4,4]t and

→↓
QS = [4,→1,→2]t.

Since these vectors are on the plane, their cross product is
orthogonal to the plane and it is a normal vector of the plane.
Thus

n =
→→↓
QR⇐→↓QS =

∣∣∣∣∣∣∣∣

i j k
2 →4 4
4 →1 →2

∣∣∣∣∣∣∣∣
= 12 i+20 i+14k

With the point Q and normal vector n, the equation of the
plane is

12(x→1)+20(y→3)+14(z→2) = 0

Thus 6x+10y+7z = 50. ↭ Figure 1.16
Two planes are parallel if their normal vectors are parallel . If planes are not parallel , then

they intersect along a line. The angle between two planes is called the angle between their
normal vectors.
Example 1.16. (i) Find the angle between two planes x+y+z=

1 and x→2y+3z = 1.
(ii) Find the equation of the line of intersection between these two

planes.

Solution: i) Normal vectors are n1 =

[
1 1
1

]
and n2 =




1
→2
3


 Then

the angle is

cosε =
n1 ·n2
⇒n1⇒ · ⇒n2⇒

=
2≃
42
.

Thus, ε = cos→1


2≃
42


. Part ii) is left as an exercise. ↭

Figure 1.17
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1.1.8 The distance between a point and a plane

The distance between a point and a plane is the length of the orthogonal line from the given
point to the point of intersection with the plane.

Lemma 1.5. Let P1(x1, y1,z1) be a point and P a plan with equation l ax+ by+ cz+d = 0, which does
not contain P1. Then, the distance of P1 from P is:

D =
|ax1+by1+ cz1+d|≃

a2+b2+ c2
(1.29)

Proof. Let P0(x0, y0,z0) be a point of the plane P, and
denote by v the corresponding vector

→→→↓
P0P1. Then,

v =




x1→x0
y1→ y0
z1→ z0




From Fig. 1.18 we can see that the distance D from
P1 to the plane P, is the magnitude of the projection
of v over the normal vector n = [a,b,c]t.

Figure 1.18: Distance of the point to the
plane

Thus

d =
∥∥∥projv(n)

∥∥∥ = n ·v
⇒n⇒ =

∣∣∣a(x1→x0)+b(y1→ y0)+ c(z1→ z0)
∣∣∣

≃
a2+ b2+ c2

=

∣∣∣(ax1+by1+ cz1)→ (ax0+by0+ cz0)
∣∣∣

≃
a2+ b2+ c2

Since P0 is in the plane, then it satisfies the equation of the plane. Hence, ax0+by0+ cz0+d = 0,
from which we have (ax0+ by0+ cz0) = →d. Therefore, the distance D is

d =
|ax1+by1+ cz1+d|≃

a2+b2+ c2

↭

Example 1.17. Find the distance of the point (2,4,→5) to the plane 5x→3y+ z→10 = 0.

Solution: Using the above formula we have

D =
|5(2)→3(4)+1(→5)→10|
√

52+ (→3)2+12
=
|→17|≃

35
=

17≃
35
↙ 2.87

↭

Example 1.18. Find the distance between the two planes 10x+2y→2z = 5 and 5x+ y→ z = 1
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Solution: Normal vectors of these two planes are




10
2
→2


 and




5
1
→1


. They are parallel, and

therefore planes are parallel . To find the distance, it is enough to take a point in one of the
planes and find its distance to the other plane using the formula (1.29).

Take the point
(

1
2 ,0,0


in the first plane. Then we have

D =

∣∣∣5 · 1
2 +1 ·0→1

∣∣∣
√

52+12+ (→1)2
=

3
2

3
≃

3
=

≃
3

6

↭
Two lines which are not in the same plane and do not intersect ate called skew lines
Example 1.19. Given two lines with parametric equations as fol-
lows

L1 : x = 1+ t, y = →2+3t, z = 4→ t
L2 : x = 2s, y = 3 = s, z = →3+4s

Prove that these are skew lines. Find the distance between them.

Solution: The lines are not parallel because their directional
vectors

u =




1
3
→1


 and v =




2
1
4


 ,

are not parallel . They also do not intersect because the system


1+ t = 2s
→2+3t = 3+ s
4→ t = →3+4s

has no solutions. Thus, these are skew lines.
Since they do not intersect we can consider them in two parallel planes, say P1 and P2. The

distance between L1 and L2 is is the same as the distance between P1 and P2, which can be
found as follows.

A normal vector with these two planes must be orthogonal with vectors u and v. Thus a
normal vector could be their cross product. Thus,

n = u⇐v =

∣∣∣∣∣∣∣∣

i j k
1 3 →1
2 1 4

∣∣∣∣∣∣∣∣
= 13 i→6 j→5k

Now we can find the equation of each plane, say P2.
Take a point in L2 by choosing s = 0. Then the point (0,3,→3) is in L2 and therefore in P2.

Thus, the equation for P2 is

13(x→0)→6(y→3)→5(z+3) = 0

32



Shaska, T. Linear Algebra

or 13x→6y→5z+3= 0. Taking t= 0 in the equation for L1 we find the point (1,→2,4) in P1. Thus
the distance between the lines L1 and L2 is the same as the distance from the point (1,→2,4) to
the plane 13→6y→5z+3 = 0. From above we have

D =
|13 ·1→6(→2)→5 ·4+3|

132+ (→6)2+ (→5)2 =
8≃
230
.

↭

Exercises:

28. Determine if the lines L1 and L2 are parallel,
intersect, or are skew lines.

(i) L1 : u(t)=




1
3
→1


+ t




1
1
0


 , L2 : v(t)=




0
0
0


+ t




1
4
5




(ii) L1 : u(t) =




1
0
2


+ t ·




→1
→1
2


 , L2 : v(t) =




4
4
2


+ t ·




2
2
→4




29. Is the line passing through points P1(→4,→6,1)
and P2(→2,0,→3) parallel to the line passing
through the points Q1(10,18,4) and Q2(5,3,14)?

30. Find a and c such that the point (a,1,c) is on
the line passing through the points P(0,2,3) and
Q(2,7,5).

31. Find the equation of the plane which contains
the point (→1,2,→3) and is orthogonal to the vector
[4,5,→1]t.

32. Find the equation of the plane which contains
the point (6,3,2) and is orthogonal to the vector
[→2,1,5]t.

33. Find the equation of the plane which contains
the point (4,0,→3) and has normal vector j+2k.

34. Find the equation of the plane which con-
tains the point (5,1,→2) and has normal vector
[4,→4,3]t.

35. Find the equation of the plane which passes
through the point (→2,8,10) and is orthogonal with
the line x = 1 = t, y = 2t,z = 4→3t.

36. Find the equation of the plane which passes
through the point (4,→2,3) and is parallel with the
plane 3x→7z = 12.

37. Find the equation of the plane which passes
through points (1,1,0), (1,0,1), and (0,1,1).

38. Find the equation of the plane which passes
through points (1,0,3), (2,01), and (3,3,1).

39. Find the equation of the plane which contains

the point (1,0,0) and the line




1
0
2


+ t




3
2
1


.

40. Find the equation of the plane which passes
through the origin and is orthogonal to the plane
x+ y→ z = 2.

41. Find the equation of the plane which passes
through the point →1,2,1 and contains the inter-
section line of the two planes x = y→ z = 2 and
2x→ y+3z = 1.

42. Find the intersection line of the two planes:
(i) x+3y→3z→6 = 0 and 2x→ y+ z+2 = 0.

(ii) 3x+ y→5z = 0 and x+2y+ z+4 = 0.

43. Find point of intersection of the line x→6
4 =

y+3 = z with the plane x+3y+2z→6 = 0.

44. Find point of intersection of the line x= y→1=
2z with the plane 4x→ y+3z = 8.
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45. Find point of intersection of the line x = 1+
2t, y = 4t,z = 2→3t with the plane x+2y→z+1 =
0.

46. How can we find the the angle between two
planes? Find the angle between the two planes
x+ y+ z = 2 and x+2y+3z = 8.

47. Find cosine of the angle between two planes
x+ y+ z = 0 and x+2y+3z = 1.

48. Find the lengths of the sides of the triangle
with vertices A(3,→2,1), B(1,2,→3), C(3,4,→2).
Determine if this triangle is regular.

49. Finds the distance of the point (→5,3,4) from
each coordinate plane.

50. Find the magnitude of the force which has
its projections on the coordinate axis as x = →6,
y = →2, and z = 9.

51. Prove that the triangle with vertices A(1,→2,1)
B(3,→3,1) and C(4,0,3) is a right triangle.

52. Find the equation of the sphere with center at
the point (4,→2,3) and radius r =

≃
3.

53. Find the equation of the sphere with center at
the point (→1,3,2) and radius r =

≃
3.

54. Find the equation of the sphere with center at
the point (2,3,4) and radius 5. Where does the
sphere intersect the coordinate planes?

55. Find the equation of the sphere which passes
through the point (4,3,→1) and has the center at
(3,8,1).

56. Prove that the following equations represent a
sphere, find its center and its radius.

(i) x2+ y2+ z2→6x+4y+2z = →17
(ii) x2+ y2+ z2 = 4x→2y

(iii) x2+ y2+ z2 = x+ y+ z
(iv) x2+ y2+ z2+2x+8y→4z = 28
(v) 16x2+16y2+16z2→96x+32y = 5

57. (a) Prove that the middle of the segment
which is determined by the points A(a1,b1,c1) and
B(a2,b2,c2) is the point with coordinates


a1+ a2

2
,
b1+ b2

2
,
c1+ c2

2



(b) Find the lengths of the three medians of the tri-
angle with vertices A(4,1,5), B(1,2,3), C(→2,0,5).

Determine the inequalities which determine
the following regions.

58. The region between the plane xy and z = 5.

59. The region which consists of all points between
spheres of radii r and R with center at the origin,
where r < R.

60. Find the equation of the sphere with has the
same center with x2 + y2 + z2 → 6x+ 4z→ 36 = 0
and passes through the point (2,5,→7).

61. Prove that the set of all points whose dis-
tance from A(→1,5,3) is twice the distance from
B(6,2,→2), is a sphere.

62. Determine an equation for the set of points
equidistant from A(→1,5,3) and B(6,2,→2).

63. Draw the vector
→↓
AB, when A and B are given

as below and find its equivalent with the initial
point at the origin.

(i) A = (0,3,1), B = (2,3,→1)
(ii) A = (4,0,→2), B = (4,2,1)

(iii) A = (2,0,3), B = (3,4,5)
(iv) A = (0,3,→2), B = (2,4,→1)

64. Find a + b, 2a → 3b, ⇒a⇒ and ⇒a→b⇒, if
a = [5,→12]t and b = [3,6]t.

65. Find a→b, a+ 2b, ⇒a⇒ and ⇒a→b⇒, if a =
[1,2,→3]t and b =]→2,→1,5]t.

66. Find a + b, 3a → 2b, ⇒a⇒ and ⇒a→b⇒, if
a = [2,→4,4]t and b = [0,2,→1]t.

67. Find v+w, v→w, ⇒v⇒ and ⇒v→w⇒, ⇒v+w⇒,
and →2v, if v =

[
1
3

]
and w =

[
→1
→5

]
.
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68. Find the unit vector which has the same direc-
tion with the vector →3 i+7 j.

69. Find the unit vector which has the same direc-
tion with the vector 2 i→ j+3k.

70. Find the unit vector which has the same direc-

tion with the vector




2
3
→2


.

71. Find a vector which has the same direction with

the vector




3
2
1


, but has length 3

72. Find a vector which has the same direction with

the vector u =




→2
4
2


, but has length 6.

73. Let be given the vectors v =




→1
5
→2


 and w =




3
1
1


.

(i) Find the vector u such that u+v+w = i.
(ii) Find the vector u such that u + v +w =

2 j+ k.

74. If A,B,C are vertices of a triangle, find→↓
AB+

→↓
BC+

→→↓
CA.

75. Draw the vectors u =
[
3
2

]
, v =

[
2
→1

]
and

w =
[
7
1

]
. Determine graphically if there exist the

scalars s and t such that w = su+ tv. Find the
values for s and t.

76. Let be given u and v two nonzero vectors not
parallel in R2. Prove that if w is any vector in
R

2, then there exist two scalars s and t such that
w = su+ tv.

77. Is the property from the previous problem true
for R3? Explain.

78. Let a=
[
x
y

]
, a1 =

[
x1
y1

]
, and a2 =

[
x2
y2

]
. Describe

the set of all points (x, y,z) which satisfy

⇒a→a1⇒+ ⇒a→a2⇒ = φ,

where φ > ⇒a1→a2⇒.

1.2 Euclidean n- space Rn

Let Rn be the following Cartesian product

R
n := {(x1, . . . ,xn) | xi ↗R}

A vector u in Rn will be defined as an ordered tuple

(u1, . . . ,un) for ui ↗R, i = 1, . . . ,n and denoted by u =




u1
...

un



.

For any u,v ↗Rn such as u =




u1
...

un




and v =




v1
...

vn




we define

the vector addition and scalar multiplication as follows:

u+v :=




u1+v1
...

un+vn



, rv :=




rv1
...

rvn



. (1.30)

y

z

x

plane-yz

plane-xy

pla
ne-

xz

Figure 1.19: Euclidean space R3.
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A Euclidean n-space is the set of vectors together with vector addition and scalar multi-
plication defined as above. Elements of Rn are called vectors and all r ↗R are called scalars.

The vector 0 =




0
...
0




is called the zero vector. By a vector u we usually mean a column vector

unless otherwise stated. The row vector [u1, . . . ,un] is called the transpose of u and denoted
by

ut = [u1, . . . ,un]

For the addition and scalar multiplication we have the following properties.

Theorem 1.7. Let u,v,w be vectors in Rn and r,s scalars in R. The following are satisfied:
(i) (u+v)+w = u+ (v+w),

(ii) u+v = v+u,
(iii) 0+u = u+0 = u,
(iv) u+ (→u) = 0,
(v) r (u+v) = ru+ rv,

(vi) (r+ s)u = ru+ su,
(vii) (rs)u = r (su),

(viii) 1u = u.

Proof. Exercise.
↭

Two vectors v and u are called parallel if there exists an r ↗R such that v = ru.

Definition 1.2. Given vectors v1, . . . ,vs ↗Rn and r1, . . . ,rs ↗R, the vector

r1v1+ · · ·+ rsvs

is called a linear combination of vectors v1, . . . ,vs.

Definition 1.3. Let v1, . . . ,vs be vectors inRn. The span of these vectors, denoted by Span (v1, . . . ,vs),
is the set in Rn of all linear combinations of v1, . . . ,vs.

Span (v1, . . . ,vs) =

r1v1+ · · ·+ rsvs | ri ↗R, i = 1, . . . ,s



Exercise 10. Let V =R3 be the 3-dimensional Euclidean space and

i =




1
0
0


 , j =




0
1
0


 , k =




0
0
1




vectors in V. Determine Span (i, j). What about Span (i, j,k)?
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Figure 1.20: Standard basis for R2 and R3

Proof. If v =




a
b
c


, then

v =




a
b
c


 =




a
0
0


+




0
b
0


+




0
0
c


 = a




1
0
0


+b




0
1
0


+ c




0
0
1


 = a i+b j+ ck

Hence, every vector inR3 can be expressed as a linear combination of vectors i, j,k. Therefore,
Span (i, j,k) =R3. ↭

Definition 1.4. Vectors u1, . . . ,un are called linearly independent if

r1u1+ · · ·+ rnun = 0

implies that
r1 = · · · = rn = 0,

otherwise, we say that u1, . . . ,un are linearly dependent.

Exercise 11. Prove that i, j,k, given above, are linearly independent.

In the coming sections we will see that the concept of linear independence is one of the
most important concepts of linear algebra. Our strategy will be to try to generalize all concepts
of R2 or R3 to Rn. Of course the geometric interpretation in Rn doesn’t make sense, but this
will not deter us to assign the same names to abstract concepts inRn as we had forR2 andR3.

1.2.1 Subspaces of Rn

A subset U ∝Rn is called a subspace of Rn if the following hold:
(i) 0 ↗U

(ii) ′u,v ↗U, u+v ↗U
(iii) ′φ ↗R, ′u ↗U, we have that φu ↗U.
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Property ii) is usually referred to as U is closed under addition and property iii) as U is
closed under scalar multiplication. A subspace U ofRn is called proper if U ! {0} and U !Rn.
The concept of a subspace is very important and we will study it in detail in the next chapter.

Exercise 12. Prove that every line and every plane in R3 which passes through the point O(0,0,0) is
a subspace.

Lemma 1.6. Let u1, . . . ,un ↗Rn. Prove that Span (u1, . . . ,un) is a subspace of Rn.

Proof. The zero vector 0 is in Span (u1, . . . ,un) since it can be written as

0 = 0u1+ · · ·+0,un.

Let v1,v2 ↗ Span (u1, . . . ,un). Then exist scalar r1, . . .rn and s1 . . .sn such that

v1 = r1u1+ · · ·rnun and v2 = s1u1+ · · ·snun

Thus
v1+v2 = (r1+ s1)u1+ · · ·+ (rn+ sn)un

is also a vector in Span (u1, . . . ,un). Hence, Span (u1, . . . ,un) is closed under addition. Similarly
we show that it is also closed under scalar multiplication.

↭

Exercise 13. Let P be a plane in R3 with equation

ax+ by+ cz = d.

Determine the values of a,b,c,d such that the set of points of P forms a subspace of R3.

Solution: For P to be a subspace the vector 0 must be in P. Hence, point O(0,0,0) must be in
P. This implies that d = 0. The plane P is closed under addition and scalar multiplication since
the sum of any two vectors is on the same plane determined by the two vectors (similarly for
the multiplication by a scalar).

↭

Exercise 14. From Exe. 10 we know that every vector u ↗ R2, such that u =
[
u1
u2

]
, can be written as

u = u1 i+u2 j. Using this fact, can you determine all subspaces of R2?

1.2.2 Norm and dot product
In this section we study two very important concepts of Euclidean spaces; that of the dot
product and the norm. The concept of the dot product will be generalized later to that of inner
product for any vector space.

Definition 1.5. Let u :=




u1
...

un



↗Rn. The norm of u, denoted by ⇒u⇒, is defined as

⇒u⇒ =
√

u2
1+ · · ·+u2

n
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The norm has the following properties:

Theorem 1.8. For any vectors u,v ↗Rn and any scalar r ↗R the following are true:
(i) ⇒u⇒ ⇔ 0 and ⇒u⇒ = 0 if and only if u = 0

(ii) ⇒ru⇒ = |r| ⇒u⇒
(iii) ⇒u+v⇒ ⇓ ⇒u⇒+ ⇒v⇒

Proof. The proof of i) and ii) are easy and left as exercises. The proof of iii) is completed in
Lem. 1.9

↭
A unit vector is a vector with norm 1. Notice that for any nonzero vector u the vector u

⇒u⇒
is a unit vector. Let

u :=




u1
...

un



, v :=




v1
...

vn




be vectors in Rn. The dot product of u and v (sometimes called the inner product) is defined
as follows:

u ·v := u1v1+ · · ·+unvn, (1.31)

or sometimes denoted by ∞u,v∈. Notice the identity ⇒v⇒2 = v ·v, which is very useful.

Lemma 1.7. The dot product has the following properties:
(i) u ·v = v ·u

(ii) u · (v+w) = u ·v+u ·w
(iii) r (u ·v) = (ru) ·v = u · (rv)
(iv) u ·u ⇔ 0, and u ·u = 0 if and only if u = 0

Proof. Use the definition of the dot product to check all i) through iv).
↭

Two vectors u,v ↗Rn are called perpendicular if u ·v = 0.

Lemma 1.8 (Cauchy-Schwartz inequality). Let u and v be any vectors in Rn. Then

|u ·v| ⇓ ⇒u⇒ · ⇒v⇒
Proof. If one of the vectors is the zero vector, then the inequality is obvious. So we assume
that u,v are nonzero. For any r,s ↗Rn we have ⇒rv+ su⇒ ⇔ 0. Then,

⇒rv+ su⇒2 = (rv+ su) · (rv+ su) = r2 (v ·v)+2rs (v ·u)+ s2 (u ·u) ⇔ 0

Take r = u ·u and s = →v ·u. Substituting in the above we have:

⇒rv+ su⇒2 = (u ·u)2 (v ·v)→2(u ·u) (v ·u)2+ (v ·u)2 (u ·u)

= (u ·u)

(u ·u)(v ·v)→ (v ·u)2


⇔ 0

Since (u ·u) = ⇒u⇒2 > 0 then

(u ·u)(v ·v)→ (v ·u)2


⇔ 0. Hence,

(v ·u)2 ⇓ (u ·u) (v ·v) = ⇒u⇒2 · ⇒v⇒2
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and |u ·v| ⇓ ⇒u⇒ · ⇒v⇒.
↭

Lemma 1.9 (Triangle inequality). For any two vectors u,v in Rn the following hold

⇒u+v⇒ ⇓ ⇒u⇒+ ⇒v⇒

Proof. We have

⇒u+v⇒2 = (u+v) · (u+v)

= (u ·u)+2(u ·v)+ (v ·v) = ⇒u⇒2+2(u ·v)+ ⇒v⇒2 ⇓ ⇒u⇒2+2 |u ·v|+ ⇒v⇒2

⇓ ⇒u⇒2+2 · ⇒u⇒ · ⇒v⇒+ ⇒v⇒2 = (⇒u⇒+ ⇒v⇒)2

Hence, ⇒v+u⇒ ⇓ ⇒v⇒+ ⇒u⇒.
↭

Example 1.20. Let u and v be two given vectors and ε the angle between them. Prove that

u ·v = ⇒u⇒ · ⇒v⇒ cosε

Hence, we have the following definition. The angle between two vectors u and v is defined
to be

ε := cos→1
 u ·v
⇒u⇒ · ⇒v⇒



From Lem. 1.8 we have that
→1 ⇓ u ·v

⇒u⇒ · ⇒v⇒ ⇓ 1

Hence, the angle between two vectors is well defined.

Example 1.21. Find the angle between u =




2
→1
2


 and v =




→1
→1
1


.

Solution: Using the above formula we have ε = cos→1


(2,→1,2)·(→1,→1,1)≃
9·
≃

3


= cos→1

 ≃
3

9


. Then ε ↙ 1.377

radians or ε ↙ 78.90∋. ↭

Let P(x1, . . . ,xn) and Q(y1, . . . , yn) be points in Rn. The Euclidean distance between P and
Q is defined as

d(P,Q) :=
∥∥∥∥
→→↓
PQ
∥∥∥∥ =
√

(x1→ y1)2+ · · ·+ (xn→ yn)2

The distance between two vectors
→→↓
OP and

→→↓
OQ is defined as the distance between P and Q.

Exercise 15. Prove that the distance d(u,v) between u and v is d(u,v) = ⇒u→v⇒.
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Consider now a subspace V in Rn. The distance between P and V is defined as

d(P,V) := min

d(
→→↓
OP,v) | v ↗ V



The concept of the distance on Euclidean spaces is widely used in communication theory and
more specifically coding theory. A linear code C is a subspace of a vector space Fn, where F
is a finite field. Its minimum distance is

d(C) := min v!0


d(0,v) | v ↗ C



Then we say that this is an [n,d] code. One of the classical results of coding theory is that we
can detect up to (d→1) errors and can correct up to


d→1

2


of them.

1.2.3 Projections

Consider vectors u and v in R2 having the same
initial point. The projection vector of v onto u, denoted
by proju(v) is the vector with initial point the same as
that of v and terminal point obtained by dropping a
perpendicular from the terminal point of v on the line
determined by u. Thus,
∥∥∥proju(v)

∥∥∥ :=
∥∥∥∥
→→↓
AO
∥∥∥∥= ⇒v⇒ ·cos(CÂB)= ⇒v⇒ · u ·v

⇒u⇒ · ⇒v⇒ =
u ·v
⇒u⇒ .

We can multiply by the unit vector u
⇒u⇒ to get

proju(v) =
u ·v
⇒u⇒ ·

u
⇒u⇒ =

u ·v
u2 u (1.32)

v

u

u→vw

projuv
A

B

C

Figure 1.21: The projection of v onto
u

If we want a vector perpendicular to u we have

w = v→proju(v) = v→ u ·v
u2 u. (1.33)

We will see later in the course how this idea is generalized inRn to the process of orthogonal-
ization.

Exercise 16. The above discussion provides a method that for any two given vectors u and v we can
determine a vector w which is perpendicular to u. Can you devise a similar argument for three vectors
u1,u2,u3? In other words, determine v and w from u1,u2,u3 such that the set of vectors {u1,v,w} are
pairwise perpendicular.

Exercise 17. Show that the distance from a point P = (x0, y0) to a line L : ax+ by+ c = 0 is given by
d = |ax0+by0+c|≃

a2+b2
.
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Solution: The line L intersect the y-axis at A
(
0,→ c

b


and the x-axis at B

(
→ c

a ,0

. Let u =

→↓
AB = c

[
→1

a
1
b

]
and v =

→↓
AP =

[
x0

y0+
c
b

]
. Then the distance d from the point P to the line L is

d =
∥∥∥v→proju(v)

∥∥∥. Use the formula from Eq. (1.33) to prove the result. ↭

Exercise 18. Let u,v ↗R3. Prove that the formulas Eq. (1.32) and Eq. (1.33) still hold.

Next we consider the problem of finding the projection of a
vector w on the plane P determined by two vectors u,v ↗R3.
Denote by n = u⇐v

⇒u⇐v⇒ the unit normal vector to the plane P,

say n =




a
b
c


. Then the plane has equation ax+ by+ cz = 0. The

projection of w onto the plane P is

projP(w) =w→projn(w) =w→ n ·w
n2 n =w→ (n ·w)n, (1.34)

since n is a unit vector. Summarizing, we have: Figure 1.22: Projection on a plane

Lemma 1.10. Let u,v ↗ R3 and U = Span (u,v). If u and v are not co-linear then the projection of
any vector w ↗R3 onto the space U is given by the formula

projU(w) =w→ (n ·w)n, (1.35)

where n is a unit vector perpendicular to both u and v.

Before we generalize this result to Rn let us see a computational example.

Example 1.22. Let u =




1
2
2


, v =




2
2
→3


 and w =




→1
→1
→1


 be vectors inR3. Find the projection of u onto the

vw-plane.

Solution: The normal vector for the vw-plane is
∣∣∣∣∣∣∣∣

i j k
2 2 →3
→1 →1 →1

∣∣∣∣∣∣∣∣
= →5i+5j+0k = →5i+5j

We normalize this vector as n = 1≃
2




→1
1
0


. From the above formula we have

projP(u) = u→ (u ·n)n = u→ 1≃
2

n =




1
2
2


→

1
2




→1
1
0


 =

1
2




3
3
2


 .
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↭
In Lem. 1.11 we give another formula for proj

P
(x), which does not include the normal

vector n. While the Lemma has a very simple proof, its generalization toRn is quite important
as we will see in Lem. 1.10 and Lem. 5.1.

Lemma 1.11. Let V be a subspace ofR3 such that V = Span (v1,v2), where v1 and v2 are unit vectors
and perpendicular to each other. Prove that

projV(x) = (v1 ·x) ·v1+ (v2 ·x) ·v2. (1.36)

Solution: This is a simple geometry problem. Let P denote the endpoint of the vector x and
Q the endpoint of the vector projV(x). Denote by a and b the projections of Q on v1 and v2
respectively. Then

projV(x) = ⇒a⇒ v1
⇒v1⇒

+ ⇒b⇒ v2
⇒v2⇒

= ⇒a⇒ v1+ ⇒b⇒ v2,

since ⇒v1⇒ = ⇒v2⇒ = 1 However, since a = projv1
(x) and b = projv2

(x). we have

⇒a⇒ = v1 ·x
⇒v1⇒ · ⇒x⇒

·x = v1 ·x
⇒v1⇒

= v1 ·x.

Similarly ⇒b⇒ = v2 ·x. This completes the proof. ↭

Exercise 19. Let V be a subspace in R3 and P a point in R3. The distance d(P,V) between P and the
subspace V is called the shortest distance between P and all points of V. In other words,

d(P,V) = min {d(P,Q) | →→↓OP ↗ V}

Prove that
d(P,V) =

∥∥∥∥
→→↓
OP→projV(

→→↓
OP)
∥∥∥∥

We will generalize the concept of the projection to a subspace of Rn in coming lectures
when we study projections; see Lem. 5.1. Projection formulas will be used in the so called
Gram-Schmidt algorithm and in the QR-factorization of matrices and will be generalized to
any positive definite inner product; see Chap. 5.

Exercises:

79. Show that the formal definitions of the addi-
tion and scalar multiplication inR2 agree with the
geometric interpretations.

80. Let u,v,w given as v =




3
5
→1


, u =




1
1
7


, and

w =




0
3
4


. Compute 2u+3v→w.

81. Let v =




1
2
→1


, u =




3
6
→6


. Compute 2u+3v.

82. Let v =
[
3
5

]
and u =

[
5
6

]
. Find scalars r,s such

that

rv+ su =
[

5
11

]
.

83. What does it mean for two vectors u,v ↗R2 to
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be linearly dependent?

84. What is the span of
[
0
1

]
and
[
1
0

]
in R2?

85. Let u,v, and w be given vectors as below

u =




1
2
0


 , v =




3
4
0


 , w =




1
1
1


 .

Can w be a linear combination of u and v? What
is geometrically the span of u and v?

86. Find the area of the triangle determined by the
vectors

u =




1
2
2


 and v =




2
2
→3


 .

87. Use vectors to decide whether the triangle
with vertices A = (1,→3,→2), B = (2,0,→4), and
C = (6,→2,→5) is right angled.

88. Prove that the triangle with vertices
A(→2,4,0), B(1,2,→1) and C(→1,1,2) is regular.

89. In the third octant find the point P the dis-
tances of which from the three coordinate axis are
dx =

≃
10, dy =

≃
5, dz =

≃
13.

90. Show that for any two vectors u and v the
following is true

(v→w) · (v+w) = 0 △▽ ⇒v⇒ = ⇒w⇒

91. Find the angle between the vectors u=




1
2
2


 and

v =




2
2
→3


 and the area of the triangle determined

by them.

92. Let u be the unit vector tangent to the graph
of y = x2 + 1 at the point (2,5). Find a vector v
perpendicular to u.

93. For what values of t are the vectors u=




1
0
t


 and

v =




t
→t
t2


 perpendicular?

94. Let the vectors u,v,w ↗R3 and coordinates

u =




1
2
2


 , v =




2
2
→3


 , and w =




→1
→1
→1


 .

Compute the volume of the parallelepiped deter-
mined by u,v,w.

95. Let the vectors u,v ↗↗ R3 be given as [u =
[1,2,2]t and v = [1,2,→3]t. Find the projection of
u on v.

96. Let u = [1,2,2]t, v = [2,2,→3]t, and w =
[→1,→1,→1]t. Find the projection of u onto the
vw-plane.
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