




Linear Algebra for Machine Learning

Tony Shaska



Linear Algebra Shaska, T.

4

https://leanpub.com/lin-alg/
https://leanpub.com/u/shaska


Contents

Preface 4

1 Euclidean spaces, linear systems 11
1.1 Vectors in Physics and Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Euclidean n- space Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.3 Matrices and their algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
1.4 Linear systems of equations, Gauss method . . . . . . . . . . . . . . . . . . . . . 51
1.5 Inverses of matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2 Vector Spaces 69
2.1 Definition of vector spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.2 Bases and dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.3 Linear maps between vector spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 82
2.4 Direct sums and direct products . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
2.5 Quotient spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
2.6 Bilinear maps and the dual space . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3 Linear Maps Between Finite Dimensional Vector Spaces 109
3.1 Matrices Associated to Linear Maps . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.2 Nullspace and rank of a matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
3.3 Change of basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
3.4 Change of Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
3.5 Linear transformations in geometry . . . . . . . . . . . . . . . . . . . . . . . . . 143

4 Determinants, eigenvalues, eigenvectors 155
4.1 Multilinear Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
4.2 Eigenvalues, eigenvectors, and eigenspaces . . . . . . . . . . . . . . . . . . . . . 169
4.3 Similar matrices, diagonalizing matrices, eigendecomposition . . . . . . . . . . 177
4.4 Cramer’s rule and adjoint matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 185
4.5 Resultants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

5 Inner Spaces and Orthogonality 201
5.1 Inner products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
5.2 Orthogonal bases, Gram-Schmidt orthogonalization . . . . . . . . . . . . . . . . 209

5



Linear Algebra Shaska, T.

5.3 Orthogonal transformations and orthogonal matrices . . . . . . . . . . . . . . . 213
5.4 QR-factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
5.5 Schur decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
5.6 Sylvester’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

6 Symmetric matrices 237
6.1 Quadratic forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
6.2 Symmetric matrices, Spectral theorem . . . . . . . . . . . . . . . . . . . . . . . . 245
6.3 Quadratic surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
6.4 Positive definite matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
6.5 The Cholesky Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
6.6 Singular values and singular value decomposition . . . . . . . . . . . . . . . . . 273
6.7 Data compression and SVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

7 Optimization 285
7.1 Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
7.2 Backpropagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
7.3 Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
7.4 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
7.5 Optimization Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

8 Probability and Statistics for Linear Algebra 289
8.1 Random Variables and Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
8.2 Probability Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
8.3 Mean, Variance, and Covariance . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
8.4 The Multivariate Gaussian Distribution . . . . . . . . . . . . . . . . . . . . . . . 290
8.5 Maximum Likelihood Estimation (MLE) . . . . . . . . . . . . . . . . . . . . . . . 290

9 Dimensionality Reduction 291
9.1 Principal Component Analysis (PCA) . . . . . . . . . . . . . . . . . . . . . . . . 291
9.2 Linear Discriminant Analysis (LDA) . . . . . . . . . . . . . . . . . . . . . . . . . 291
9.3 t-SNE and UMAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

10 Linear Models 293
10.1 The method of least squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
10.2 Linear regression and its Connection to Least Squares . . . . . . . . . . . . . . . 302
10.3 Polynomial Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
10.4 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

11 Tensors 317
11.1 Tensor Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
11.2 Tensor Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

6

https://leanpub.com/lin-alg/
https://leanpub.com/u/shaska


Shaska, T. Linear Algebra

12 Introduction to Machine Learning 325
12.1 Supervised vs. Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . . . 325
12.2 The Bias-Variance Tradeoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
12.3 Model Selection and Evaluation (Cross-Validation) . . . . . . . . . . . . . . . . . 326
12.4 A Very High-Level Introduction to Other ML Algorithms . . . . . . . . . . . . . 326

13 Neural Networks: A Linear Algebra Perspective 329
13.1 Neural Network Layers as Linear Transformations . . . . . . . . . . . . . . . . . 329
13.2 Activation Functions: Introducing Non-linearity . . . . . . . . . . . . . . . . . . 330
13.3 Multi-Layer Networks: Composing Linear Transformations . . . . . . . . . . . 330
13.4 Backpropagation: The Chain Rule in Action . . . . . . . . . . . . . . . . . . . . . 330
13.5 Optimization Algorithms: Minimizing the Loss . . . . . . . . . . . . . . . . . . 331
13.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

Index 332

Bibliography 332

7

https://leanpub.com/u/shaska
https://leanpub.com/lin-alg/


Linear Algebra Shaska, T.

8

https://leanpub.com/lin-alg/
https://leanpub.com/u/shaska


Preface

Linear algebra is one of the cornerstones of modern mathematics, with profound applications
in computer science, engineering, physics, and the social sciences. It serves as the language
of transformations, optimizations, and high-dimensional spaces, making it indispensable not
only for pure mathematicians but also for practitioners in fields such as artificial intelligence,
data science, and machine learning.

Traditionally, linear algebra is introduced at the sophomore level as the first rigorous en-
counter with vector spaces, linear transformations, and matrices. However, the way it is
taught often varies. Some textbooks emphasize applications at the expense of mathematical
depth, leaving students with a collection of computational techniques but little insight into the
underlying structures. Others focus on the formal mathematical framework, avoiding com-
putations and real-world connections. This book aims to strike a balance by presenting both
the theoretical foundations and computational techniques of linear algebra while maintaining
a strong geometric perspective.

One of the distinguishing features of this book is its integration of geometry throughout.
The transformations of conic sections, for example, illustrate how diagonalizing a matrix corre-
sponds to changing the basis of a vector space, revealing the deep connection between algebra
and geometry. The notion of invariants—quantities that remain unchanged under transfor-
mations—appears repeatedly in discussions on eigenvalues, singular value decomposition,
and other fundamental topics.

Beyond its traditional applications in physics and engineering, linear algebra has become
an essential tool in artificial intelligence and data science. Machine learning algorithms, at
their core, rely on linear algebraic structures. The representation of data as high-dimensional
vectors, the optimization of loss functions, and the efficient computation of gradients in deep
learning frameworks are all built on fundamental linear algebraic operations. Techniques
such as Principal Component Analysis (PCA) for dimensionality reduction, singular value
decomposition (SVD) for data compression, and gradient descent for optimization all rely on
a solid understanding of linear algebra. Even neural networks, often perceived as highly non-
linear systems, can be analyzed as compositions of linear transformations with nonlinearity
introduced via activation functions.

This book provides a comprehensive introduction to linear algebra while preparing stu-
dents for more advanced applications in modern computational sciences. In later chapters,
we explore optimization techniques, probability, statistics, and linear models—key topics for
machine learning practitioners. The final chapters introduce neural networks from a linear al-
gebraic perspective, offering insights into how matrices, vectors, and transformations underlie
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deep learning architectures.
A wide range of exercises is provided, from fundamental problems reinforcing key concepts

to more challenging ones that connect to broader areas of mathematics. While this book
assumes familiarity with calculus and basic discrete mathematics, no prior knowledge of
linear algebra is required.

The material in this book has been shaped by years of teaching at the University of Cali-
fornia, Irvine; the University of Idaho; the University of Vlora; and Oakland University. I am
grateful to my students, whose engagement and curiosity have influenced this text. It is my
hope that this book not only equips students with the mathematical tools necessary for their
fields but also inspires an appreciation for the elegance and power of linear algebra.

Tony Shaska
Rochester, 2018
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Chapter 1

Euclidean spaces, linear systems

We start this chapter with the familiar notion of Euclidean spaces R2 and R3 from previous
lecture. Intuition from R2 and R3 will be used to generalize concepts for Rn including the
norm, dot product of vectors, angles among vectors, and the geometry of R2 and R3.

In Sec. 1.3, we introduce the matrices and their algebra. Using matrices to solve linear
systems of equations involves computing the row-echelon form and the reduced row-echelon
form of matrices. These are the so-called Gauss algorithm and Gauss - Jordan algorithm
and are studied in Sec. 1.4. In Sec. 1.5 we study the inverses of matrices and algorithms of
computing such matrices.

1.1 Vectors in Physics and Geometry

We will denote by R2 the xy-plane and by R3 the coordinate system in space. For any two
given points P and Q, an directed line segment (P,Q) is the segment PQ. We call P the
initial point and Q the terminal point. Two directed line segments (A,B) and (C,D) are called
equipollent when the points A,B,D,C, in this order, form a parallelogram.

1.1.1 The plane R2

Every point in xy-plane is represented uniquely by an ordered pair (x, y). For any two points
P1(x1, y1) and P2(x2, y2) their distance is given by

d(P1,P2) =
√

(x2−x1)2+ (y2− y1)2.

Let’s denote the set of all directed line segments inR2 by S. In
this set S we define the following relation: (P1,Q1) ∼ (P2,Q2)
if the following hold

(i) lines P1Q1 and P2Q2 are parallel
(ii) d(P1,Q1) = d(P2,Q2)

(iii) directed line segments (P1,Q1) and (P2,Q2) have the
same direction

Figure 1.1: A Euclidean vector
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Exercise 1. Prove that ∼ is an equivalence relation.

A vector is called an equivalence class from the above relation. Geometrically two directed
line segments (A,B) and (C,D) are equivalent when they are equipollent. The equivalence
class of the (A,B) will be denoted by

−→
AB. The magnitude (or length) of the vector

−→
AB is simply

the distance
d(A,B) =

√
(x2−x1)2+ (y2− y1)2 (1.1)

and from now on will be denoted by
∥∥∥∥−→AB

∥∥∥∥.
Denote the set of all such equivalence classes by V := S/ ∼. Hence, V the set of all vectors

from the xy-plane. Moreover, the above three conditions are geometrically equivalent with
moving the vector

−−−→
P1Q1 in a parallel way over

−−→
OP, where O is the origin of the coordinate

system. So we can assume that all vectors of V start at the origin O by picking for each
equivalence class the representative that starts at the origin O. Elements of V will be denoted
by bold letters throughout these lectures. Hence we have the following:

Lemma 1.1. Thus, there is a one-to-one correspondence between the set of elements of V and points of
the xy-plane, namely for any P(x, y)

u =
−−→
OP←→ P = (x, y)

Proof. Exercise □

Figure 1.2: Vectors in R2

Hence, a vector u =
−−→
OP is identified with an ordered pair (x, y) and will be denoted by

u =
[
x
y

]
, in order to distinguish it from the point P(x, y). Because of the above correspondence,

from now on we will identify V =R2. We say that x and y are the coordinates of u.
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Example 1.1. Let P(1,2) and Q(3,7) be given in R2. Find the coordinates of vectors
−−→
PQ and

−−→
QP.

Next we will see the addition and scalar multiplication of vectors. Most likely the reader
is not new to such concepts since they are studied in a first course in elementary physics. We
will focus on the algebraic and geometric point of view.

For any two vectors u =
[
u1
u2

]
, v =

[
v1
v2

]
in V define the addition and scalar multiplication as

u+v :=
[
u1+v1
u2+v2

]
, and r ·u :=

[
ru1
ru2

]
, (1.2)

where r ∈ R. Geometrically scalar multiplication ru is described as in Fig. 1.3, where ru is a
new vector with the same direction as u and length r-times the length of u.

u⃗

r⃗u

u⃗

Figure 1.3: Multiplying by a scalar

Addition of two vectors u and v geometrically is described in Fig. 1.4.

v⃗ u⃗+ v⃗

u⃗

u⃗

v⃗ u⃗+ v⃗
v⃗

u⃗

Figure 1.4: Addition of vectors

Exercise 2. Prove that such definitions agree with addition and scalar multiplication defined in Eq. (1.2)

The following exercise is elementary, but very interesting when we discuss determinants
of matrices in coming lectures.

Exercise 3. Given two vectors

u =
[
u1
u2

]
and v =

[
v1
v2

]
in R2 we can assume that both start at the origin.

13
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(i) Prove that the area of the parallelogram determined by these two vectors is A = |u1v2−u2v1 |.
(ii) Prove that the lines determined by u and v are perpendicular if and only if u1v1 = u2v2.

(iii) Determine the angle between u and v.

The following exercises explore further the geometry of the vectors in R2.

Exercises:

1. If A, B, C are vertices of a triangle, find
−→
AB+

−→
BC+

−−→
CA.

2. Let c a positive real number and O1, O2 points
on the xy-plane with coordinates (c,0) and (−c,0)
respectively. Find the equation of all points P such
that ∥∥∥∥−−−→PO1

∥∥∥∥+ ∥∥∥∥−−−→PO2

∥∥∥∥ = 2a,

for a > c.

3. Let △ ABC be a given triangle and θ the angle
between AB and AC. Prove the Law of Cosines

BC2 = AB2+AC2
−2AB ·AC · cosθ (1.3)

4. Let a and b sides of a parallelogram and d1, d2
its diagonals. Prove that

d2
1+d2

2 = 2(a2+b2).

5. Prove that the diagonals of a parallelogram are
perpendicular if and only if all sides are equal.

6. Prove that the distance d of a point P = (x0, y0)
from the line

ax+by+ c = 0

is given by

d =

∣∣∣ax0+ by0+ c
∣∣∣

√

a2+ b2
.
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1.1.2 The space R3

Next we review briefly the geometry of the space and vectors in R3. Definition of vectors in
R3 goes exactly the same with their definition in R2, by adding a third coordinate.
Recall that R3 is the Cartesian product

R×R×R = {(x, y,z) |x, y,z ∈R}

and a point P in R3 is represented by an ordered triple
(x0, y0,z0) as shown in Fig. 1.5.

Let be given two points P1(x1, y1,z1) and P2(x2, y2,z2)
inR3. We will show that the distance |P1P2| between the
two points is

∥P1P2∥ =

√
(x2−x1)2+ (y2− y1)2+ (z2− z1)2

To verify this formula we construct a parallelepiped
where the points P1 and P2 are vertices across from each
other as in Fig. 1.6. If A(x2, y1,z1) and B(x2, y2,z1) are the
other vertices as in Fig. 1.6, then

|P1A| = |x2−x1|, |AB| = |y2− y1|, |BP2| = |z2− z1|

Since the triangles△P1BP2 and△P1AB are right triangles,
from the Pythagorean theorem we have

|P1B|2 = |P1A|2+ |AB|2 and |P1P2|
2 = |P1B|2+ |BP2|

2

x

y

z

P

Qy0

x0

S

R

z0

Figure 1.5: Coordinates of P(x, y,z).

Combining the two equations we have

∥P1P2∥
2 = ∥P1A∥2+ | ∥AB∥2+ ∥BP2∥

2

= ∥x2−x1∥
2+

∥∥∥y2− y1
∥∥∥2
+ ∥z2− z1∥

2

= (x2−x1)2+ (y2− y1)2+ (z2− z1)2

Thus,

|P1P2| =

√
(x2−x1)2+ (y2− y1)2+ (z2− z1)2 (1.4)

The distance between a point P(x, y,z) and the origin is∥∥∥∥−−→OP
∥∥∥∥ = √

x2+ y2+ z2.

Example 1.2. Let P(1,2,3) and Q(4,2,1). Find the coordinates and the magnitude of the vector
−−→
PQ

Solution: The coordinates of
−−→
PQ are

−−→
PQ= [3,0,−2]t and its magnitude

∥∥∥∥−−→PQ
∥∥∥∥= √

32+02+ (−2)2 =
√

13. □

15
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Figure 1.6: Distance between two points

P1

x

y

z

P2

∣∣∣y2− y1
∣∣∣ |x2−x1|

|z2− z1|

Every point in 3d-space is represented uniquely by an ordered triple (x, y,z). For any
two points P1(x1, y1,z1) and P2(x2, y2,z2) a Euclidean vector (or simply a vector) is frequently
represented by a ray (a line segment with a definite direction), or graphically as an arrow
connecting an initial point P1 with a terminal point P2, and denoted by

−−−→
P1P2 .

The magnitude (or length) of
−−−→
P1P2 is simple the distance∥∥∥∥−−−→P1P2

∥∥∥∥ = √
(x2−x1)2+ (y2− y1)2+ (z2− z1)2

Let’s denote the set of all ’vectors’ in R3 by S. In this set S we define the following relation:
−−−→
P1Q1 ∼

−−−→
P2Q2 if the following hold

(i) lines P1Q1 and P2Q2 are parallel

(ii)
∥∥∥∥−−−→P1Q1

∥∥∥∥ = ∥∥∥∥−−−→P2Q2

∥∥∥∥
(iii)

−−−→
P1Q1 and

−−−→
P2Q2 have the same direction

Exercise 4. Prove that ∼ is an equivalence relation.

Denote the set of all such equivalence classes by V := S/ ∼. Hence, V the set of all equiva-
lence classes of vectors from the xy-plane. Moreover, the above three conditions are geometri-
cally equivalent with moving the vector

−−−→
P1Q1 in a parallel way over

−−→
OP, where O is the origin

of the coordinate system.
Then, a vector is called an equivalence class from the above relation. So we can assume that

all vectors of V start at the origin O by picking for each equivalence class the representative
that starts at the origin O. Elements of V will be denoted by bold letters throughout these
lectures.

16
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Lemma 1.2. Thus, there is a one-to-one correspondence between the set of elements of V and points of
the 3d-space, namely for any P(x, y,x)

u =
−−→
OP←→ P = (x, y,z)

Proof. Exercise □

Figure 1.7: Representatives of the equivalence classes

Hence, a vector u =
−−→
OP is identified with an ordered triple (x, y,z) and will be denoted by

u=

xyz
, in order to distinguish it from the point P(x, y,z). Because of the above correspondence,

from now on we will identify V =R3. We say that x, y and z are the coordinates of u.

For any two vectors u =

u1
u2
u3

 and v =

v1
v2
v3

 we define the addition and scalar multiplication

as in R2, namely

u+v :=

u1+v1
u2+v2
u3+v3

 , r ·u :=

ru1
ru2
ru3

 .
where r ∈ R. Since any two generic lines determine a plane, the geometric interpretation of
addition and scalar multiplication of R2 is still valid in R3.

Sometimes it is more convenient to write vectors as row vectors. The transpose of the

vector u =

xyz
 is the row vector ut =

[
x, y,z

]
and the transpose of the row vector

[
x, y,z

]
is

the column vector

xyz
. With these conventions the vector u =

xyz
 will also be denoted by

u =
[
x, y,z

]t.

Exercise 5. Find the coordinates of the vector
−−−→
P1P2 when P1(1,1,2) and P2(2,4,6).

17

https://leanpub.com/u/shaska
https://leanpub.com/lin-alg/


Linear Algebra Shaska, T.

Exercise 6. Find v+w, v−w, ∥v∥ and ∥v−w∥, ∥v+w∥, and−2v, if v= [1,2,3]t and w= [−1,2,−3]t.

Exercise 7. Find v+w, v−w, ∥v∥ and ∥v−w∥, ∥v+w∥, and−2v, if v= [1,0,1]t and w= [−1,−2,2]t

Properties of vector addition and multiplying by a scalar we can summarize below:

Theorem 1.1. If u,v,w are three vectors in R3 and c,d ∈R are scalars, then the following hold:
(i) u+v = v+u

(ii) u+ (v+w) = (u+v)+w
(iii) u+0 = u
(iv) u+ (−u) = 0
(v) c(u+v) = cu+ cv

(vi) (c+d)u = cu+du
(vii) (cd)u = c(du)

(viii) 1u = u

Proof. The proof is left as an exercise for the reader.
□

Let’s denote by V3 the set of all vectors in the 3-dimensional spaceR3. Three vectors which
play a special role in V3 are

i =

100
 , j =

010
 , k =

001
 .

These vectors are called vectors of the standard basis. We will explain this terminology in
more detail in the coming sections.

Exercise 8. Prove that every vector in R3 is expressed in terms of vectors i, j, k. In other words, if

u =

abc
, then we have

u == ai+ bj+ ck.

A vector u is called a unit vector if it has length 1. For example, vectors i, j, k are unit
vectors. A unit vector which has the same direction with a given vector u is a vector 1

∥u∥ u= u
∥u∥ .

In the next section we will formalize such definitions to the case of Rn. The reader should
make sure to fully understand the concepts from R2 and R3 before proceeding to Rn.

Exercise 9. Let v = [x0, y0,z0]t be a fixed vector in R3. Describe the set of all points P(x, y,z) which
satisfy ∥u−v∥ = 1, where u = [x, y,z]t.

Equation of the sphere

Using the distance formula above we can easily determine the equations of some simple
geometric objects. The equation of the sphere with center at the point with coordinates
(x0, y0,z0) and radius r is

(x−x0)2+ (y− y0)2+ (z− z0)2 = r2
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y

z

x

0

(x, y,z)

(a) Radius r, center (0,0,0)

y

z

x
0

r

(x, y,z)

(x0, y0,z0)

(b) Radius r, center (x0, y0,z0)

Figure 1.8: Spheres in R3

To prove this we just need the definition of the sphere, which is the set of all points P(x, y,z)

equidistant from the fixed point Q(x0, y0,z0) with a distance r from it. Thus,
∥∥∥∥−−→QP

∥∥∥∥= r. Squaring

both sides we have
∥∥∥∥−−→QP

∥∥∥∥2
= r2 or

(x−x0)2+ (y− y0)2+ (z− z0)2 = r2

So the sphere with center at Q is the set of all terminal points of vectors with initial point at Q
and magnitude r. When the center of the sphere is at the origin we have x2+ y2+ z2 = r2 and
in this case the sphere is the set of all terminal points of vectors with magnitude r and initial
point at the origin.

However, not every sphere has an equation as above. Consider the following example:

Example 1.3. Prove that the following equation represent a sphere and find its radius and its center

4x2+4y2+4z2
−8x+16y = 1.

Solution: Complete squares for 4x2
−8x, 4y2+16y, and we have

(x−1)2+ (y+2)2+ z2 =
21
4

Thus the equation represents a sphere with center (1,−2,0) and radius
√

21
4 .

□

Remark 1.1. Notice that the process of completing the square in each variable x, y,z gets complicated
when the equation has cross terms xy, xz, and yz. We will learn how to handle such equations in later
chapters.
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An equation in variables x and y represents a curve inR2

and a surface in R3. We illustrate with an easy example
for which we construct the graph in both R2 and R3.

Example 1.4. Construct the graph of x2+ y2 = 4 in R2 and
R3

Solution: In R2 this equation represents a circle with
radius 2 and center at the origin.

InR3, the graph is all points P(x, y,z), where x2+y2 = 4
and the z-coordinate takes any value z ∈ R. Hence, it is
a right cylinder with radius r = 2 and exists the z-axis as
in Fig. 1.9 □

Figure 1.9: x2+ y2 = 4 in R3

1.1.3 Dot product

In R2, the dot product of two vectors u = [u1,u2]t and v = [v1,v2]t is defined as follows

u ·v = u1 v1+u2 v2

For every two given vectors in R3, u = [u1,u2,u3]t and v = [v1,v2,v3]t, dot product is called
the real number u ·v given by

u ·v = u1v1+u2v2+u3v3

Example 1.5. Find the dot product in each case:
(i) u = 3 i+2 j, v = i−2 j

(ii) u = [3,0,−1]t, v = [2,1,7]t.

Solution: We have
i) u ·v = 3 ·1+2 · (−2) = 3−4 = −1
ii) u ·v = 3 ·2+0 ·1+ (−1) ·7 = 6+0−7 = −1.

□
The proof of the following is left as an exercise.

Theorem 1.2. For every three vectors u,v,w in V3 and r ∈R we have
(i) u ·u = ∥u∥2

(ii) u ·v = v ·u,
(iii) (ru) ·v = u · (rv)
(iv) u ·0 = 0 = 0 ·u
(v) u · (v+w) = u ·v+u ·w

Definition 1.1. The angle between two vectors u and v in R3 is called the smallest angle between
them measured counterclockwise.

Theorem 1.3. If we denote by θ the angle between u and v, then

u ·v = ∥u∥ · ∥v∥ · cosθ
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Proof. Using the cosine formula for the triangle OAB we have

∥AB∥2 = ∥OA∥2+ ∥OB∥2−2 ∥OA∥ · ∥OB∥ · cosθ (1.5)

Since ∥OA∥ = ∥u∥ , ∥OB∥ = ∥v∥ , and ∥BA∥ = ∥u−v∥,
Eq. (1.5) becomes

∥u−v∥2 = ∥u∥2+ ∥v∥2−2∥u∥∥v∥cosθ (1.6)

The expression ∥v−w∥, can be re-written as

∥u−v∥2 = (u−v) · (u−v)

= u ·u−u ·v−v ·u+v ·v = ∥u∥2−2u ·v+ ∥v∥2

Figure 1.10

Substituting in Eq. (1.6), we have

∥v∥2−2v ·w+ ∥w∥2 = ∥v∥2+ ∥w∥2−2∥v∥ · ∥w∥cosθ

which implies −2v ·w = −2∥v∥ · ∥w∥cosθ and finally v ·w = ∥v∥ · ∥w∥cosθ. □

Corollary 1.1. The angle θ between two vectors v and w is given by

cosθ =
v ·w
∥v∥ · ∥w∥

.

Example 1.6. Find the angle between the vectors v = [1,−2,2]t and w = [2,−2,−1]t.

Solution: First ∥v∥ =
√

1+4+4 =
√

9 = 3 and ∥w∥ =
√

4+4+1 =
√

9 = 3. Also, v ·w = 1(2)+
(−2)(−2)+ 2(−1) = 4. Then cosθ = v·w

∥v∥·∥w∥ =
4

3·3 =
4
9 and the angle between two vectors is

θ = cos−1
(

4
9

)
.

□
Dy vectors are called orthogonal if the angle between them is θ = π/2. Thus, we have a

corollary of Thm. 1.3, which gives an if and only if condition to determine if two vectors are
orthogonal.

Corollary 1.2. Two nonzero vectors v and w are orthogonal if and only if v ·w = 0.

For orthogonal vectors we use the notation v⊥w.

Example 1.7. Determine if vectors v = [1,−5,2]t and w = [3,1,1]t are orthogonal.

Solution: We have v ·w = 1 ·3+ (−5) ·1+2 ·1 = 0, so vectors w,w are orthogonal. □
Since cosθ > 0, for 0 ≤ θ ≤ π/2 and cosθ < 0 for π/2 ≤ θ ≤ π, we have another corollary of

Thm. 1.3

Corollary 1.3. If θ is the angle between two vectors v and w, then

v ·w =


> 0 for 0 ≤ θ < π/2
0 for θ = π/2
< 0 for π/2 < θ ≤ π

(1.7)
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Directional angles of a nonzero vector u are the angles α, β, γ of this vector with the
major axes of the coordinate system as in Fig. 1.11. The cosine functions of these angles,
cosα,cosβ,cosγ, are called directional cosines of the vector u.
Using Cor 1.1 we have

cosα =
u · i
∥u∥ · ∥i∥

=
u1

∥u∥
(1.8)

and similarly for the other two angles

cosβ =
u · j

∥u∥ ·
∥∥∥j

∥∥∥ = u2

∥u∥
cosγ =

u · k
∥u∥ · ∥k∥

=
u3

∥u∥
(1.9)

Using equations Eq. (1.8) and Eq. (1.9) , we square them and
get

cos2α+ cos2β+ cos2γ = 1 (1.10)

For u=

u1
u2
u3

we have u=

u1
u2
u3

=
∥u∥cosα
∥u∥cosβ
∥u∥cosγ

= ∥u∥
cosα
cosβ
cosγ

. Then,
Figure 1.11: Directional angles

1
∥u∥

u =

cosα
cosβ
cosγ

 (1.11)

So, the directional cosines of the vector u are the components of a unit vector with the same
direction as u.

Example 1.8. Determine directional cosines and directional angles for the vector u = [2,1,−4]t

Solution: First ∥u∥ =
√

4+1+16 =
√

21 then from Eq. (1.8) and Eq. (1.9), we have cosα = 2
√

21
,

cosβ = 1
√

21
, cosγ = −4

√
21

and respectively α = 1.119, β = 1.351, γ = 2.632. □

1.1.4 Cross product

Given vectors u = [u1,u2,u3]t and v = [v1,v2,v3]t, then their cross product is defined as

u×v =

u2v3−u3v2
u3v1−u1v3
u1v2−u2v1


Another way to remember this formula is as the determinant of the 3 by 3 matrix

u×v =

∣∣∣∣∣∣∣∣
i j k

u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣u2 u3
v2 v3

∣∣∣∣∣ i−
∣∣∣∣∣u1 u3
v1 v3

∣∣∣∣∣ j+
∣∣∣∣∣u1 u2
v1 v2

∣∣∣∣∣ k

= (u2v3−u3v2) i+ (u3v1−u1v3) j+ (u1v2−u2v1)k

(1.12)
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Let us see an example.

Example 1.9. For vectors u = [2,1,−1]t and v = [−3,4,1]t, find u×v and v×u.

Solution: From the definition we have

u×v =

∣∣∣∣∣∣∣∣
i j k
2 1 −1
−3 4 1

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣1 −1
4 1

∣∣∣∣∣ i−
∣∣∣∣∣ 2 −1
−3 1

∣∣∣∣∣ j+
∣∣∣∣∣ 2 1
−3 4

∣∣∣∣∣ k = (1+4) · i− (2−3) · j+ (8+3) · k = 5 · i+ j+11 ·k

Also, v×u

v×u =

∣∣∣∣∣∣∣∣
i j k
−3 4 1
2 1 −1

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣4 1
1 −1

∣∣∣∣∣ i−
∣∣∣∣∣−3 1

2 −1

∣∣∣∣∣ j+
∣∣∣∣∣−3 4

2 1

∣∣∣∣∣ k = (−4−1) i− (3−2) j+ (−3−8)k = −5 i− j−11k

□

Theorem 1.4. If θ is the angle between the vectors u and v, (0 ≤ θ ≤ π), then

∥u×v∥ = ∥u∥ · ∥v∥ · sinθ. (1.13)

Proof. From the definition we have:

∥u×v∥2 = (u2v3−u3v2)2+ (u3v1−u1v3)2+ (u1v2−u2v1)2

= u2
2v2

3−2u2u3v2v3+u2
3v2

2+u2
3v2

1−2u1u3v1v3+u2
1v2

3 +u2
1v2

2−2u1u2v1v2+u2
2v2

1

= (u2
1+u2

2+u2
3)(v2

1+v2
2+v2

3)− (u1v1+u2v2+u3v3)2

= ∥u∥2 ∥v∥2−∥u∥2 ∥v∥2 cos2θ = ∥u∥2 ∥v∥2 (1− cos2θ) = ∥u∥2 ∥v∥2 sin2θ

taking square roots of both sides and keeping in mind that
√

sin2θ = sinθ because sinθ ≥ 0
when 0 ≤ θ ≤ π, we have

∥u×v∥ = ∥u∥ · ∥v∥ · sinθ

□

Corollary 1.4. Two nonzero vectors u and v are parallel if and only if u×v = 0.

The geometric interpretation of Thm. 1.4 is the area of the parallelogram determined by
vectors u and v. If u and v, have the same initial point then they define a parallelogram with
base ∥u∥ and height ∥v∥ sinθ. Its area is

S = ∥u∥ · ∥v∥ · sinθ = ∥u×v∥ (1.14)

Thus, geometrically the magnitude of the cross product of vectors u and v is the area of the
parallelogram defined by u and v.
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Example 1.10. Find the area of the parallelogram determined by the points P= (1,4,6), Q= (−2,5,−1),
and R = (1,−1,1).

Solution: From the discussion above in Thm. 1.4, we have
−−→
PQ =

−1−2
5−4
−1−6

 =
−3

1
−7

 and
−→
PR = 1−1

−1−4
1−6

 =
 0
−5
−5

. Their cross product is

−−→
PQ×

−→
PR =

∣∣∣∣∣∣∣∣
i j k
−3 1 −7
0 −5 −5

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣ 1 −7
−5 −5

∣∣∣∣∣ i−
∣∣∣∣∣−3 −7

0 −5

∣∣∣∣∣ j+
∣∣∣∣∣−3 1

0 −5

∣∣∣∣∣ k = −40 i−15 j+15k

and its magnitude
∥∥∥∥−−→PQ×

−→
PR

∥∥∥∥ = √
(−40)2+ (−15)2+ (152) = 5

√
82. □

Theorem 1.5. The cross product of two nonzero vectors u and v is orthogonal with the vectors u and
v.

Proof. To show that u×v is orthogonal with u, it is enough to show that their dot product is
zero. So

(u×v) ·u =

u2v3−u3v2
u3v1−u1v3
u1v2−u2v1

 ·
u1
u2
u3

 = u2v3u1−u3v2u1+u3v1u2−u1v3u2+u1v2u3−u2v1u3 = 0

Similarly (u×v) ·v = 0. Thus the cross product is orthogonal with vectors u and v.
□

In the picture it is illustrated the right hand rule of determin-
ing the direction of the cross product.

Example 1.11. If a plan is defined by the points A(1,0,0),
B(2,−1,3) and C = (1,1,1), find a vector orthogonal with it.

Solution: We take

−→
AB =

 2−1
−1−0
3−0

 =
 1
−1
3

 and
−−→
AC =

1−1
1−0
1−0

 =
011

 .
Figure 1.12: Cross product

The cross product is

−→
AB×

−−→
AC =

∣∣∣∣∣∣∣∣
i j k
1 −1 3
0 1 1

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣−1 3

1 1

∣∣∣∣∣ i−
∣∣∣∣∣1 3
0 1

∣∣∣∣∣ j+
∣∣∣∣∣1 −1
0 1

∣∣∣∣∣ k = −4 i− j+k

Thus, the vector −4 i− j+2k is orthogonal to the plane passing through A, B, and C □

Theorem 1.6. For any vectors u,v,w in V3, and r ∈R, the following are true:

24

https://leanpub.com/lin-alg/
https://leanpub.com/u/shaska


Shaska, T. Linear Algebra

(i) u×v = −v×u
(ii) u× (v+w) = u×v+u×w

(iii) (u+v)×w = u×w+v×w
(iv) (ru)×v = u× (rv) = r(u×v)
(v) u×0 = 0×u = 0

(vi) u×u = 0
(vii) u · (v×w) = (u×v) ·w

(viii) u× (v×w) = (u ·w)v− (u ·v)w

Proof. We will only prove vii), since the rest are easy exxercises. If u= [u1,u2,u3]t, v= [v1,v2,v3]t

and w = [w1,w2,w3]t, then

u · (v×w) = u1(v2w3−v3w2)+u2(v3w1−v1w3)+u3(v1w2−v2w1)
= u1v2w3−u1v3w2+u2v3w1−u2v1w3+u3v1w2−u3v2w1

= (u2v3−u3v2)w1+ (u3v1−u1v3)w2+ (u1v2−u2v1)w3 = (u×v) ·w
(1.15)

This completes the proof. □

1.1.5 Mixed product

Given vectors u,v,w ∈R3 with coordinates u= [u1,u2,u3]t, v= [v1,v2,v3]t, and w= [w1,w2,w3]t.
The mixed product of u,v,w is called expression u · (v×w). From Eq. (1.15) we notice that

u · (v×w) =

∣∣∣∣∣∣∣∣
u1 u2 u3
v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣∣∣ (1.16)

The geometric interpretation is that the absolute value of the mixed product is: the volume of
the parallelepiped defined by vectors u,v,w . Thus

V = |u · (v×w)| (1.17)

Example 1.12. Find the volume of the parallelepiped defined by vectors u = [2,1,3]t, v = [−1,3,2]t

and w = [1,1,−2]t.

Solution: We have

u · (v×w) =

∣∣∣∣∣∣∣∣
2 1 3
−1 3 2
1 1 −2

∣∣∣∣∣∣∣∣ = 2
∣∣∣∣∣3 2
1 −2

∣∣∣∣∣−1
∣∣∣∣∣−1 2

1 −2

∣∣∣∣∣+3
∣∣∣∣∣−1 3

1 1

∣∣∣∣∣ = 2(−8)−1(0)+3(−4) = −28

So V = |u · (v×w)| = |−28| = 28. □

Example 1.13. Prove that vectors u = [1,4,−7]t, v = [2,−1,4]t and w = [0,−9,18]t lie on the same
plane.
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Solution: We have

u · (v×w) =

∣∣∣∣∣∣∣∣
1 4 −7
2 −1 4
0 −9 18

∣∣∣∣∣∣∣∣ = 1
∣∣∣∣∣−1 4
−9 18

∣∣∣∣∣−4
∣∣∣∣∣2 4
0 18

∣∣∣∣∣−7
∣∣∣∣∣2 −1
0 −9

∣∣∣∣∣ = 0

Since the volume is zero, then the vectors lie on the same plane. □

Exercises:

7. For given vectors find their cross product and
verify if the vectors are orthogonal.

(i) u = [5,2,−1]t, v = [7,2,−10]t

(ii) u = [4,4,−3]t, v = [2,6,4]t

(iii) u = [1,2,0]t, v = [1,0,3]t

(iv) u = [5,1,−1]t, v = [−1,0,2]t

(v) u = 3 i+2 j+4k, v = i−2 j−3k
(vi) u = − i+2 j+ k, v = −3 i+6 j+3k

8. Find u×v and v×u, for vectors u = [0,1,3]t

and v = [1,1,2]t

9. For vectors u= [3,1,2]t, v= [−1,1,0]t, and w=
[0,0,−4]t, prove that u× (v×w) , (u×v)×w.

10. Find the area of the triangle determined by
(i) P = (5,1,−2), Q = (4,−4,3), R = (2,4,0)

(ii) P = (4,0,2), Q = (2,1,5), R = (−1,0,−1).

11. Find a unit vector which is orthogonal with
vectors u = [1,0,1]t and v = [1,3,5]t.

12. Prove that 0×u = u×0 for every vector u in
V3.

13. Prove that (u×v) ·v = 0 for all vectors in V3.

14. Find the area of the parallelogram with ver-
tices:

(i) A(2,1,3), B(1,4,5), C(2,5,3), D(3,2,1).
(ii) A(−2,2), B(1,4), C(6,6), and D(3,0).

(iii) A(1,2,3), B(1,3,6), C(3,7,3), D(3,8,6).

15. Find ( i× j)× k and ( i+ j)× ( i− j).

16. Prove that u× (v×w) = (u ·w)v− (u ·v)w.

17. The angle between two vectors u and v is π/6
and ∥u∥ = 2, ∥v∥ = 3. Find ∥u×v∥.

18. Find a vector which is orthogonal to the plane
passing through P,Q,R, and find the area of the
triangle PQR.

(i) P(3,0,6), Q(2,1,5), R(−1,3,4).
(ii) P(1,2,3), Q(1,0,1), R(−1,3,1).

(iii) P(2,0,−3), Q(5,2,2), R(3,1,0).

19. Find the volume of the parallelepiped deter-
mined by the vectors

(i) u = [1,1,3]t, v = [2,1,4]t, w = [5,1,−2]t

(ii) u = [1,3,2]t, v = [7,2,−10]t, w = [1,0,1]t.

20. For the given vectors compute u · (v×w) and
u× (v×w).

(i) u = [1,1,1]t, v = [3,0,2]t, w = [2,2,2]t.
(ii) u = [1,0,2]t, v = [−1,0,3]t, w = [2,0,−2]t.

21. Show that vectors u = 2 i+ 3 j+ k, v = i− j,
and w = 7 i = 3 j+2k are coplanar.

22. If v and w are unit vectors in V3, when is the
vector v×w also a unit vector?

23. Prove that if u× v = 0 for all v in V3, then
v = 0.

24. Prove that for all vectors v,w in V3:

∥v×w∥+ |v ·w| = ∥v∥2 · ∥w∥2 .

25. Given u,v,x ∈R3 such that u×x = v, where
u , 0. Prove that

(i) u ·v = 0
(ii) x = v×u

∥u∥2
+λu is a solution of the equation

u×x = v for every scalar λ ∈R.

26. Prove the Jacobi identity

u× (v×w)+v× (w×u)+w× (u×v) = 0.
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27. For all vectors a,b,c,d in V3, prove that

(a×b)× (c×d) = (d · (a×b))c− (c · (a×b))d

1.1.6 Equation of lines

A line inR3 is uniquely determined when it passes through a point P and has a given direction.

Let P = (x0, y0,z0) a point in R3, and v =

abc
 a nonzero vector.

Denote by L the line passing through P and is parallel to a

vector v; Fig. 1.13. Denote by r0 =

x0
y0
z0

 the vector O⃗P. The

vector
r(t) := r0+ t ·v, for t ∈R (1.18)

determines every point of the line L. Hence, Figure 1.13: Equation of lines

Lemma 1.3. For a given point P = (x0, y0,z0) and a nonzero vector v ∈ R3, the line L which passes
through P and is parallel with the vector v has equation

r(t) = r0+ t ·v, for r0 =

x0
y0
z0

 and t ∈ (−∞,∞) (1.19)

Notice the correspondence between a the vector and its endpoint. Since v =

abc
, then its

endpoint r(t) = r0+ tv is the point (
x0+ at, y0+bt,z0+ ct

)
.

Hence, we have a parametric representation of the line L in terms of the parameter t:

For a point P(x0, y0,z0) and a nonzero vector v =

abc
, the line L, passing through P and

parallel v, consists in all points (x, y,z) such that

x = x0+ at, y = y0+ bt, z = z0+ ct, for − ∞ < t < ∞ (1.20)

Notice that in the above two interpretations, the point P is obtained when t = 0. Coordinates

a,b,c are called directional numbers and the vector v =

abc
 is called the directional vector of

the line L.
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If in Eq. (1.20), we have that a , 0, then solving for t, we have: t = x−x0
a . We can also solve

for y or z with the condition that b or c are nonzero. So we have t = y−y0
b or t = z−z0

c . Hence,

x−x0

a
=

y− y0

b
=

z− z0

c
(1.21)

If a = 0 then x = x0+ at, hence x = x0+0 · t = x0. Then, we have

x = x0
y− y0

b
=

z− z0

c
(1.22)

Hence, the line L is on the plane x = x0. Similarly for b = 0, or c = 0.

Example 1.14. Find the equation of the line L passing through P(2,3,5) and parallel to the vector

v =

 4
−1
6

, in all three forms. Find two points of L different from P.

Solution: Denote by r0 =

235
, and from Eq. (1.19), the line L has equation

r(t) = r0+ t ·v =

235
+ t

 4
−1
6

 , for − ∞ < t < ∞.

For the parametric form , L consists of all points (x, y,z) such that

x = 2+4t, y = 3− t, z = 5+6t, for − ∞ < t < ∞

The symmetric equation of L is all points (x, y,z) such that

x−2
4
=

y−3
−1
=

z−5
6

Taking t = 2 and t = 3 we get (10,1,17) and (14,0,23) in L. □
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The line going through two points

Given P1 = (x1, y1,z1) and P2 = (x2, y2,z2) two distinct
points in R3 and L the line going through them. De-
note by

r1 =

x1
y1
z1

 and r2 =

x2
y2
z2


two vectors with endpoints P1 and P2. Then, from
Fig. 1.14, r2 − r1 is the vector from P1 to P2. Thus,
−−−→
P1P2 = r2− r1. If we multiply r2− r1 with a scalar t, and
add that to the vector r1, we will have the line L for all
values of t in R. Thus points of the line are given by

r(t) = r1+ t(r2− r1),

for t ∈ R. Then, the vector, parametric, or symmetric,
equation of the line passing through P1 and P2 are.

Figure 1.14: Equation of the line

Vector equation:
r(t) = r1+ t(r2− r1), for − ∞ < t < ∞ (1.23)

Parametric equation:

x = x1+ (x2−x1) · t, y = y1+ (y2− y1) · t, z = z1+ (z2− z1) · t, for− ∞ < t < ∞ (1.24)

Symmetric equation:

x−x1

x2−x1
=

y− y1

y2− y1
=

z− z1

z2− z1
for x1 , x2, y1 , y2, and z1 , z2 (1.25)

1.1.7 Planes

Let n = [a,b,c]t be a nonzero vector which is orthogonal
to the plane P. Such vector is called normal vector of
the plane. Let (x, y,z) be a point of P. Then, the vector

r =

x−x0
y− y0
z− z0

 is on the plane P; see Fig. 1.15.

Thus if r , 0, then r ⊥ n, and so n · r = 0. If r = 0 then we
have r ·n = 0. Conversely, if (x, y,z) is a point in R3 such

that r =

x−x0
y− y0
z− z0

 , 0 and n · r = 0, then r⊥ n and (x, y,z) is

in P. Thus, we have: Figure 1.15: A normal vector with the
plane
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Lemma 1.4. Let P be a plane and (x0, y0,z0) a point in P. Let n= [a,b,c]t be a nonzero vector orthogonal
to the plane P. Then, the plane P consists of all points (x, y,z) such that

n · r = 0 (1.26)

where r =

x−x0
y− y0
z− z0

; or

a(x−x0)+b(y− y0)+ c(z− z0) = 0 (1.27)

Eq. (1.26) is called vector equation of the plane and Eq. (1.27) is called scalar equation of
the plane. Expanding Eq. (1.27) we get

ax+ by+ cz+d = 0 (1.28)

where d = −(ax0+ by0+ cz0). Eq. (1.28) is called linear equation of the plane.

Example 1.15. Find the equation of the plane passing through Q(1,3,2), R(3,−1,6) and S(5,2,0).

Solution: Vectors
−−→
QR and

−→
QS are given by

−−→
QR = [2,−4,4]t and

−→
QS = [4,−1,−2]t.

Since these vectors are on the plane, their cross product is
orthogonal to the plane and it is a normal vector of the plane.
Thus

n =
−−→
QR×

−→
QS =

∣∣∣∣∣∣∣∣
i j k
2 −4 4
4 −1 −2

∣∣∣∣∣∣∣∣ = 12 i+20 i+14k

With the point Q and normal vector n, the equation of the
plane is

12(x−1)+20(y−3)+14(z−2) = 0

Thus 6x+10y+7z = 50. □ Figure 1.16
Two planes are parallel if their normal vectors are parallel . If planes are not parallel , then

they intersect along a line. The angle between two planes is called the angle between their
normal vectors.
Example 1.16. (i) Find the angle between two planes x+y+z=

1 and x−2y+3z = 1.
(ii) Find the equation of the line of intersection between these two

planes.

Solution: i) Normal vectors are n1 =

[
1 1
1

]
and n2 =

 1
−2
3

 Then

the angle is

cosθ =
n1 ·n2

∥n1∥ · ∥n2∥
=

2
√

42
.

Thus, θ = cos−1
(

2
√

42

)
. Part ii) is left as an exercise. □

Figure 1.17
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1.1.8 The distance between a point and a plane

The distance between a point and a plane is the length of the orthogonal line from the given
point to the point of intersection with the plane.

Lemma 1.5. Let P1(x1, y1,z1) be a point and P a plan with equation l ax+ by+ cz+d = 0, which does
not contain P1. Then, the distance of P1 from P is:

D =
|ax1+by1+ cz1+d|
√

a2+b2+ c2
(1.29)

Proof. Let P0(x0, y0,z0) be a point of the plane P, and
denote by v the corresponding vector

−−−→
P0P1. Then,

v =

x1−x0
y1− y0
z1− z0


From Fig. 1.18 we can see that the distance D from
P1 to the plane P, is the magnitude of the projection
of v over the normal vector n = [a,b,c]t.

Figure 1.18: Distance of the point to the
plane

Thus

d =
∥∥∥projv(n)

∥∥∥ = n ·v
∥n∥
=

∣∣∣a(x1−x0)+b(y1− y0)+ c(z1− z0)
∣∣∣

√

a2+ b2+ c2
=

∣∣∣(ax1+by1+ cz1)− (ax0+by0+ cz0)
∣∣∣

√

a2+ b2+ c2

Since P0 is in the plane, then it satisfies the equation of the plane. Hence, ax0+by0+ cz0+d = 0,
from which we have (ax0+ by0+ cz0) = −d. Therefore, the distance D is

d =
|ax1+by1+ cz1+d|
√

a2+b2+ c2

□

Example 1.17. Find the distance of the point (2,4,−5) to the plane 5x−3y+ z−10 = 0.

Solution: Using the above formula we have

D =
|5(2)−3(4)+1(−5)−10|√

52+ (−3)2+12
=
| −17|
√

35
=

17
√

35
≈ 2.87

□

Example 1.18. Find the distance between the two planes 10x+2y−2z = 5 and 5x+ y− z = 1
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Solution: Normal vectors of these two planes are

10
2
−2

 and

 5
1
−1

. They are parallel, and

therefore planes are parallel . To find the distance, it is enough to take a point in one of the
planes and find its distance to the other plane using the formula (1.29).

Take the point
(

1
2 ,0,0

)
in the first plane. Then we have

D =

∣∣∣5 · 1
2 +1 ·0−1

∣∣∣√
52+12+ (−1)2

=
3
2

3
√

3
=

√
3

6

□
Two lines which are not in the same plane and do not intersect ate called skew lines
Example 1.19. Given two lines with parametric equations as fol-
lows

L1 : x = 1+ t, y = −2+3t, z = 4− t
L2 : x = 2s, y = 3 = s, z = −3+4s

Prove that these are skew lines. Find the distance between them.

Solution: The lines are not parallel because their directional
vectors

u =

 1
3
−1

 and v =

214
 ,

are not parallel . They also do not intersect because the system
1+ t = 2s

−2+3t = 3+ s
4− t = −3+4s

has no solutions. Thus, these are skew lines.
Since they do not intersect we can consider them in two parallel planes, say P1 and P2. The

distance between L1 and L2 is is the same as the distance between P1 and P2, which can be
found as follows.

A normal vector with these two planes must be orthogonal with vectors u and v. Thus a
normal vector could be their cross product. Thus,

n = u×v =

∣∣∣∣∣∣∣∣
i j k
1 3 −1
2 1 4

∣∣∣∣∣∣∣∣ = 13 i−6 j−5k

Now we can find the equation of each plane, say P2.
Take a point in L2 by choosing s = 0. Then the point (0,3,−3) is in L2 and therefore in P2.

Thus, the equation for P2 is

13(x−0)−6(y−3)−5(z+3) = 0
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or 13x−6y−5z+3= 0. Taking t= 0 in the equation for L1 we find the point (1,−2,4) in P1. Thus
the distance between the lines L1 and L2 is the same as the distance from the point (1,−2,4) to
the plane 13−6y−5z+3 = 0. From above we have

D =
|13 ·1−6(−2)−5 ·4+3|

132+ (−6)2+ (−5)2 =
8
√

230
.

□

Exercises:

28. Determine if the lines L1 and L2 are parallel,
intersect, or are skew lines.

(i) L1 : u(t)=

 1
3
−1

+ t

110
 , L2 : v(t)=

000
+ t

145


(ii) L1 : u(t) =

102
+ t ·

−1
−1
2

 , L2 : v(t) =

442
+ t · 2

2
−4


29. Is the line passing through points P1(−4,−6,1)
and P2(−2,0,−3) parallel to the line passing
through the points Q1(10,18,4) and Q2(5,3,14)?

30. Find a and c such that the point (a,1,c) is on
the line passing through the points P(0,2,3) and
Q(2,7,5).

31. Find the equation of the plane which contains
the point (−1,2,−3) and is orthogonal to the vector
[4,5,−1]t.

32. Find the equation of the plane which contains
the point (6,3,2) and is orthogonal to the vector
[−2,1,5]t.

33. Find the equation of the plane which contains
the point (4,0,−3) and has normal vector j+2k.

34. Find the equation of the plane which con-
tains the point (5,1,−2) and has normal vector
[4,−4,3]t.

35. Find the equation of the plane which passes
through the point (−2,8,10) and is orthogonal with
the line x = 1 = t, y = 2t,z = 4−3t.

36. Find the equation of the plane which passes
through the point (4,−2,3) and is parallel with the
plane 3x−7z = 12.

37. Find the equation of the plane which passes
through points (1,1,0), (1,0,1), and (0,1,1).

38. Find the equation of the plane which passes
through points (1,0,3), (2,01), and (3,3,1).

39. Find the equation of the plane which contains

the point (1,0,0) and the line

102
+ t

321
.

40. Find the equation of the plane which passes
through the origin and is orthogonal to the plane
x+ y− z = 2.

41. Find the equation of the plane which passes
through the point −1,2,1 and contains the inter-
section line of the two planes x = y− z = 2 and
2x− y+3z = 1.

42. Find the intersection line of the two planes:
(i) x+3y−3z−6 = 0 and 2x− y+ z+2 = 0.

(ii) 3x+ y−5z = 0 and x+2y+ z+4 = 0.

43. Find point of intersection of the line x−6
4 =

y+3 = z with the plane x+3y+2z−6 = 0.

44. Find point of intersection of the line x= y−1=
2z with the plane 4x− y+3z = 8.

33

https://leanpub.com/u/shaska
https://leanpub.com/lin-alg/


Linear Algebra Shaska, T.

45. Find point of intersection of the line x = 1+
2t, y = 4t,z = 2−3t with the plane x+2y−z+1 =
0.

46. How can we find the the angle between two
planes? Find the angle between the two planes
x+ y+ z = 2 and x+2y+3z = 8.

47. Find cosine of the angle between two planes
x+ y+ z = 0 and x+2y+3z = 1.

48. Find the lengths of the sides of the triangle
with vertices A(3,−2,1), B(1,2,−3), C(3,4,−2).
Determine if this triangle is regular.

49. Finds the distance of the point (−5,3,4) from
each coordinate plane.

50. Find the magnitude of the force which has
its projections on the coordinate axis as x = −6,
y = −2, and z = 9.

51. Prove that the triangle with vertices A(1,−2,1)
B(3,−3,1) and C(4,0,3) is a right triangle.

52. Find the equation of the sphere with center at
the point (4,−2,3) and radius r =

√
3.

53. Find the equation of the sphere with center at
the point (−1,3,2) and radius r =

√
3.

54. Find the equation of the sphere with center at
the point (2,3,4) and radius 5. Where does the
sphere intersect the coordinate planes?

55. Find the equation of the sphere which passes
through the point (4,3,−1) and has the center at
(3,8,1).

56. Prove that the following equations represent a
sphere, find its center and its radius.

(i) x2+ y2+ z2
−6x+4y+2z = −17

(ii) x2+ y2+ z2 = 4x−2y
(iii) x2+ y2+ z2 = x+ y+ z
(iv) x2+ y2+ z2+2x+8y−4z = 28
(v) 16x2+16y2+16z2

−96x+32y = 5

57. (a) Prove that the middle of the segment
which is determined by the points A(a1,b1,c1) and
B(a2,b2,c2) is the point with coordinates(

a1+ a2

2
,
b1+ b2

2
,
c1+ c2

2

)
(b) Find the lengths of the three medians of the tri-
angle with vertices A(4,1,5), B(1,2,3), C(−2,0,5).

Determine the inequalities which determine
the following regions.

58. The region between the plane xy and z = 5.

59. The region which consists of all points between
spheres of radii r and R with center at the origin,
where r < R.

60. Find the equation of the sphere with has the
same center with x2 + y2 + z2

− 6x+ 4z− 36 = 0
and passes through the point (2,5,−7).

61. Prove that the set of all points whose dis-
tance from A(−1,5,3) is twice the distance from
B(6,2,−2), is a sphere.

62. Determine an equation for the set of points
equidistant from A(−1,5,3) and B(6,2,−2).

63. Draw the vector
−→
AB, when A and B are given

as below and find its equivalent with the initial
point at the origin.

(i) A = (0,3,1), B = (2,3,−1)
(ii) A = (4,0,−2), B = (4,2,1)

(iii) A = (2,0,3), B = (3,4,5)
(iv) A = (0,3,−2), B = (2,4,−1)

64. Find a + b, 2a − 3b, ∥a∥ and ∥a−b∥, if
a = [5,−12]t and b = [3,6]t.

65. Find a−b, a+ 2b, ∥a∥ and ∥a−b∥, if a =
[1,2,−3]t and b =]−2,−1,5]t.

66. Find a + b, 3a − 2b, ∥a∥ and ∥a−b∥, if
a = [2,−4,4]t and b = [0,2,−1]t.

67. Find v+w, v−w, ∥v∥ and ∥v−w∥, ∥v+w∥,

and −2v, if v =
[
1
3

]
and w =

[
−1
−5

]
.
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68. Find the unit vector which has the same direc-
tion with the vector −3 i+7 j.

69. Find the unit vector which has the same direc-
tion with the vector 2 i− j+3k.

70. Find the unit vector which has the same direc-

tion with the vector

 2
3
−2

.
71. Find a vector which has the same direction with

the vector

321
, but has length 3

72. Find a vector which has the same direction with

the vector u =

−2
4
2

, but has length 6.

73. Let be given the vectors v =

−1
5
−2

 and w =

311
.

(i) Find the vector u such that u+v+w = i.
(ii) Find the vector u such that u + v +w =

2 j+ k.

74. If A,B,C are vertices of a triangle, find
−→
AB+

−→
BC+

−−→
CA.

75. Draw the vectors u =
[
3
2

]
, v =

[
2
−1

]
and

w =
[
7
1

]
. Determine graphically if there exist the

scalars s and t such that w = su+ tv. Find the
values for s and t.

76. Let be given u and v two nonzero vectors not
parallel in R2. Prove that if w is any vector in
R2, then there exist two scalars s and t such that
w = su+ tv.

77. Is the property from the previous problem true
for R3? Explain.

78. Let a=
[
x
y

]
, a1 =

[
x1
y1

]
, and a2 =

[
x2
y2

]
. Describe

the set of all points (x, y,z) which satisfy

∥a−a1∥+ ∥a−a2∥ = λ,

where λ > ∥a1−a2∥.

1.2 Euclidean n- space Rn

Let Rn be the following Cartesian product

Rn := {(x1, . . . ,xn) | xi ∈R}

A vector u in Rn will be defined as an ordered tuple

(u1, . . . ,un) for ui ∈R, i = 1, . . . ,n and denoted by u =


u1
...

un

.
For any u,v ∈Rn such as u =


u1
...

un

 and v =


v1
...

vn

 we define

the vector addition and scalar multiplication as follows:

u+v :=


u1+v1
...

un+vn

 , rv :=


rv1
...

rvn

 . (1.30)

y

z

x

plane-yz

plane-xy

pla
ne-

xz

Figure 1.19: Euclidean space R3.
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A Euclidean n-space is the set of vectors together with vector addition and scalar multi-
plication defined as above. Elements of Rn are called vectors and all r ∈R are called scalars.

The vector 0 =


0
...
0

 is called the zero vector. By a vector u we usually mean a column vector

unless otherwise stated. The row vector [u1, . . . ,un] is called the transpose of u and denoted
by

ut = [u1, . . . ,un]

For the addition and scalar multiplication we have the following properties.

Theorem 1.7. Let u,v,w be vectors in Rn and r,s scalars in R. The following are satisfied:
(i) (u+v)+w = u+ (v+w),

(ii) u+v = v+u,
(iii) 0+u = u+0 = u,
(iv) u+ (−u) = 0,
(v) r (u+v) = ru+ rv,

(vi) (r+ s)u = ru+ su,
(vii) (rs)u = r (su),

(viii) 1u = u.

Proof. Exercise.
□

Two vectors v and u are called parallel if there exists an r ∈R such that v = ru.

Definition 1.2. Given vectors v1, . . . ,vs ∈Rn and r1, . . . ,rs ∈R, the vector

r1v1+ · · ·+ rsvs

is called a linear combination of vectors v1, . . . ,vs.

Definition 1.3. Let v1, . . . ,vs be vectors inRn. The span of these vectors, denoted by Span (v1, . . . ,vs),
is the set in Rn of all linear combinations of v1, . . . ,vs.

Span (v1, . . . ,vs) =
{
r1v1+ · · ·+ rsvs | ri ∈R, i = 1, . . . ,s

}

Exercise 10. Let V =R3 be the 3-dimensional Euclidean space and

i =

100
 , j =

010
 , k =

001


vectors in V. Determine Span (i, j). What about Span (i, j,k)?
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Figure 1.20: Standard basis for R2 and R3

Proof. If v =

abc
, then

v =

abc
 =

a00
+

0b0
+

00c
 = a

100
+b

010
+ c

001
 = a i+b j+ ck

Hence, every vector inR3 can be expressed as a linear combination of vectors i, j,k. Therefore,
Span (i, j,k) =R3. □

Definition 1.4. Vectors u1, . . . ,un are called linearly independent if

r1u1+ · · ·+ rnun = 0

implies that
r1 = · · · = rn = 0,

otherwise, we say that u1, . . . ,un are linearly dependent.

Exercise 11. Prove that i, j,k, given above, are linearly independent.

In the coming sections we will see that the concept of linear independence is one of the
most important concepts of linear algebra. Our strategy will be to try to generalize all concepts
of R2 or R3 to Rn. Of course the geometric interpretation in Rn doesn’t make sense, but this
will not deter us to assign the same names to abstract concepts inRn as we had forR2 andR3.

1.2.1 Subspaces of Rn

A subset U ⊂Rn is called a subspace of Rn if the following hold:
(i) 0 ∈U

(ii) ∀u,v ∈U, u+v ∈U
(iii) ∀λ ∈R, ∀u ∈U, we have that λu ∈U.
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Property ii) is usually referred to as U is closed under addition and property iii) as U is
closed under scalar multiplication. A subspace U ofRn is called proper if U , {0} and U ,Rn.
The concept of a subspace is very important and we will study it in detail in the next chapter.

Exercise 12. Prove that every line and every plane in R3 which passes through the point O(0,0,0) is
a subspace.

Lemma 1.6. Let u1, . . . ,un ∈Rn. Prove that Span (u1, . . . ,un) is a subspace of Rn.

Proof. The zero vector 0 is in Span (u1, . . . ,un) since it can be written as

0 = 0u1+ · · ·+0,un.

Let v1,v2 ∈ Span (u1, . . . ,un). Then exist scalar r1, . . .rn and s1 . . .sn such that

v1 = r1u1+ · · ·rnun and v2 = s1u1+ · · ·snun

Thus
v1+v2 = (r1+ s1)u1+ · · ·+ (rn+ sn)un

is also a vector in Span (u1, . . . ,un). Hence, Span (u1, . . . ,un) is closed under addition. Similarly
we show that it is also closed under scalar multiplication.

□

Exercise 13. Let P be a plane in R3 with equation

ax+ by+ cz = d.

Determine the values of a,b,c,d such that the set of points of P forms a subspace of R3.

Solution: For P to be a subspace the vector 0 must be in P. Hence, point O(0,0,0) must be in
P. This implies that d = 0. The plane P is closed under addition and scalar multiplication since
the sum of any two vectors is on the same plane determined by the two vectors (similarly for
the multiplication by a scalar).

□

Exercise 14. From Exe. 10 we know that every vector u ∈ R2, such that u =
[
u1
u2

]
, can be written as

u = u1 i+u2 j. Using this fact, can you determine all subspaces of R2?

1.2.2 Norm and dot product

In this section we study two very important concepts of Euclidean spaces; that of the dot
product and the norm. The concept of the dot product will be generalized later to that of inner
product for any vector space.

Definition 1.5. Let u :=


u1
...

un

 ∈Rn. The norm of u, denoted by ∥u∥, is defined as

∥u∥ =
√

u2
1+ · · ·+u2

n
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The norm has the following properties:

Theorem 1.8. For any vectors u,v ∈Rn and any scalar r ∈R the following are true:
(i) ∥u∥ ≥ 0 and ∥u∥ = 0 if and only if u = 0

(ii) ∥ru∥ = |r| ∥u∥
(iii) ∥u+v∥ ≤ ∥u∥+ ∥v∥

Proof. The proof of i) and ii) are easy and left as exercises. The proof of iii) is completed in
Lem. 1.9

□
A unit vector is a vector with norm 1. Notice that for any nonzero vector u the vector u

∥u∥
is a unit vector. Let

u :=


u1
...

un

 , v :=


v1
...

vn


be vectors in Rn. The dot product of u and v (sometimes called the inner product) is defined
as follows:

u ·v := u1v1+ · · ·+unvn, (1.31)

or sometimes denoted by ⟨u,v⟩. Notice the identity ∥v∥2 = v ·v, which is very useful.

Lemma 1.7. The dot product has the following properties:
(i) u ·v = v ·u

(ii) u · (v+w) = u ·v+u ·w
(iii) r (u ·v) = (ru) ·v = u · (rv)
(iv) u ·u ≥ 0, and u ·u = 0 if and only if u = 0

Proof. Use the definition of the dot product to check all i) through iv).
□

Two vectors u,v ∈Rn are called perpendicular if u ·v = 0.

Lemma 1.8 (Cauchy-Schwartz inequality). Let u and v be any vectors in Rn. Then

|u ·v| ≤ ∥u∥ · ∥v∥

Proof. If one of the vectors is the zero vector, then the inequality is obvious. So we assume
that u,v are nonzero. For any r,s ∈Rn we have ∥rv+ su∥ ≥ 0. Then,

∥rv+ su∥2 = (rv+ su) · (rv+ su) = r2 (v ·v)+2rs (v ·u)+ s2 (u ·u) ≥ 0

Take r = u ·u and s = −v ·u. Substituting in the above we have:

∥rv+ su∥2 = (u ·u)2 (v ·v)−2(u ·u) (v ·u)2+ (v ·u)2 (u ·u)

= (u ·u)
[
(u ·u)(v ·v)− (v ·u)2

]
≥ 0

Since (u ·u) = ∥u∥2 > 0 then
[
(u ·u)(v ·v)− (v ·u)2

]
≥ 0. Hence,

(v ·u)2
≤ (u ·u) (v ·v) = ∥u∥2 · ∥v∥2
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and |u ·v| ≤ ∥u∥ · ∥v∥.
□

Lemma 1.9 (Triangle inequality). For any two vectors u,v in Rn the following hold

∥u+v∥ ≤ ∥u∥+ ∥v∥

Proof. We have

∥u+v∥2 = (u+v) · (u+v)

= (u ·u)+2(u ·v)+ (v ·v) = ∥u∥2+2(u ·v)+ ∥v∥2 ≤ ∥u∥2+2 |u ·v|+ ∥v∥2

≤ ∥u∥2+2 · ∥u∥ · ∥v∥+ ∥v∥2 = (∥u∥+ ∥v∥)2

Hence, ∥v+u∥ ≤ ∥v∥+ ∥u∥.
□

Example 1.20. Let u and v be two given vectors and θ the angle between them. Prove that

u ·v = ∥u∥ · ∥v∥ cosθ

Hence, we have the following definition. The angle between two vectors u and v is defined
to be

θ := cos−1
( u ·v
∥u∥ · ∥v∥

)
From Lem. 1.8 we have that

−1 ≤
u ·v
∥u∥ · ∥v∥

≤ 1

Hence, the angle between two vectors is well defined.

Example 1.21. Find the angle between u =

 2
−1
2

 and v =

−1
−1
1

.
Solution: Using the above formula we have θ = cos−1

(
(2,−1,2)·(−1,−1,1)

√
9·
√

3

)
= cos−1

( √
3

9

)
. Then θ ≈ 1.377

radians or θ ≈ 78.90◦. □

Let P(x1, . . . ,xn) and Q(y1, . . . , yn) be points in Rn. The Euclidean distance between P and
Q is defined as

d(P,Q) :=
∥∥∥∥−−→PQ

∥∥∥∥ = √
(x1− y1)2+ · · ·+ (xn− yn)2

The distance between two vectors
−−→
OP and

−−→
OQ is defined as the distance between P and Q.

Exercise 15. Prove that the distance d(u,v) between u and v is d(u,v) = ∥u−v∥.
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Consider now a subspace V in Rn. The distance between P and V is defined as

d(P,V) := min
{
d(
−−→
OP,v) | v ∈ V

}
The concept of the distance on Euclidean spaces is widely used in communication theory and
more specifically coding theory. A linear code C is a subspace of a vector space Fn, where F
is a finite field. Its minimum distance is

d(C) := min v,0

{
d(0,v) | v ∈ C

}
Then we say that this is an [n,d] code. One of the classical results of coding theory is that we
can detect up to (d−1) errors and can correct up to

[
d−1

2

]
of them.

1.2.3 Projections

Consider vectors u and v in R2 having the same
initial point. The projection vector of v onto u, denoted
by proju(v) is the vector with initial point the same as
that of v and terminal point obtained by dropping a
perpendicular from the terminal point of v on the line
determined by u. Thus,∥∥∥proju(v)

∥∥∥ :=
∥∥∥∥−−→AO

∥∥∥∥= ∥v∥·cos(CÂB)= ∥v∥·
u ·v
∥u∥ · ∥v∥

=
u ·v
∥u∥

.

We can multiply by the unit vector u
∥u∥ to get

proju(v) =
u ·v
∥u∥
·

u
∥u∥
=

u ·v
u2 u (1.32)

v

u

u−vw

projuv
A

B

C

Figure 1.21: The projection of v onto
u

If we want a vector perpendicular to u we have

w = v−proju(v) = v−
u ·v
u2 u. (1.33)

We will see later in the course how this idea is generalized inRn to the process of orthogonal-
ization.

Exercise 16. The above discussion provides a method that for any two given vectors u and v we can
determine a vector w which is perpendicular to u. Can you devise a similar argument for three vectors
u1,u2,u3? In other words, determine v and w from u1,u2,u3 such that the set of vectors {u1,v,w} are
pairwise perpendicular.

Exercise 17. Show that the distance from a point P = (x0, y0) to a line L : ax+ by+ c = 0 is given by
d = |ax0+by0+c|

√

a2+b2
.
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Solution: The line L intersect the y-axis at A
(
0,− c

b

)
and the x-axis at B

(
−

c
a ,0

)
. Let u =

−→
AB = c

[
−

1
a

1
b

]
and v =

−→
AP =

[
x0

y0+
c
b

]
. Then the distance d from the point P to the line L is

d =
∥∥∥v−proju(v)

∥∥∥. Use the formula from Eq. (1.33) to prove the result. □

Exercise 18. Let u,v ∈R3. Prove that the formulas Eq. (1.32) and Eq. (1.33) still hold.

Next we consider the problem of finding the projection of a
vector w on the plane P determined by two vectors u,v ∈R3.
Denote by n = u×v

∥u×v∥ the unit normal vector to the plane P,

say n =

abc
. Then the plane has equation ax+ by+ cz = 0. The

projection of w onto the plane P is

projP(w) =w−projn(w) =w−
n ·w
n2 n =w− (n ·w)n, (1.34)

since n is a unit vector. Summarizing, we have: Figure 1.22: Projection on a plane

Lemma 1.10. Let u,v ∈ R3 and U = Span (u,v). If u and v are not co-linear then the projection of
any vector w ∈R3 onto the space U is given by the formula

projU(w) =w− (n ·w)n, (1.35)

where n is a unit vector perpendicular to both u and v.

Before we generalize this result to Rn let us see a computational example.

Example 1.22. Let u =

122
, v =

 2
2
−3

 and w =

−1
−1
−1

 be vectors inR3. Find the projection of u onto the

vw-plane.

Solution: The normal vector for the vw-plane is∣∣∣∣∣∣∣∣
i j k
2 2 −3
−1 −1 −1

∣∣∣∣∣∣∣∣ = −5i+5j+0k = −5i+5j

We normalize this vector as n = 1
√

2

−1
1
0

. From the above formula we have

projP(u) = u− (u ·n)n = u−
1
√

2
n =

122
− 1

2

−1
1
0

 = 1
2

332
 .
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□
In Lem. 1.11 we give another formula for projP(x), which does not include the normal

vector n. While the Lemma has a very simple proof, its generalization toRn is quite important
as we will see in Lem. 1.10 and Lem. 5.1.

Lemma 1.11. Let V be a subspace ofR3 such that V = Span (v1,v2), where v1 and v2 are unit vectors
and perpendicular to each other. Prove that

projV(x) = (v1 ·x) ·v1+ (v2 ·x) ·v2. (1.36)

Solution: This is a simple geometry problem. Let P denote the endpoint of the vector x and
Q the endpoint of the vector projV(x). Denote by a and b the projections of Q on v1 and v2
respectively. Then

projV(x) = ∥a∥
v1

∥v1∥
+ ∥b∥

v2

∥v2∥
= ∥a∥ v1+ ∥b∥ v2,

since ∥v1∥ = ∥v2∥ = 1 However, since a = projv1
(x) and b = projv2

(x). we have

∥a∥ =
v1 ·x
∥v1∥ · ∥x∥

·x =
v1 ·x
∥v1∥

= v1 ·x.

Similarly ∥b∥ = v2 ·x. This completes the proof. □

Exercise 19. Let V be a subspace in R3 and P a point in R3. The distance d(P,V) between P and the
subspace V is called the shortest distance between P and all points of V. In other words,

d(P,V) = min {d(P,Q) |
−−→
OP ∈ V}

Prove that
d(P,V) =

∥∥∥∥−−→OP−projV(
−−→
OP)

∥∥∥∥
We will generalize the concept of the projection to a subspace of Rn in coming lectures

when we study projections; see Lem. 5.1. Projection formulas will be used in the so called
Gram-Schmidt algorithm and in the QR-factorization of matrices and will be generalized to
any positive definite inner product; see Chap. 5.

Exercises:

79. Show that the formal definitions of the addi-
tion and scalar multiplication inR2 agree with the
geometric interpretations.

80. Let u,v,w given as v =

 3
5
−1

, u =

117
, and

w =

034
. Compute 2u+3v−w.

81. Let v =

 1
2
−1

, u =

 3
6
−6

. Compute 2u+3v.

82. Let v =
[
3
5

]
and u =

[
5
6

]
. Find scalars r,s such

that

rv+ su =
[

5
11

]
.

83. What does it mean for two vectors u,v ∈R2 to
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be linearly dependent?

84. What is the span of
[
0
1

]
and

[
1
0

]
in R2?

85. Let u,v, and w be given vectors as below

u =

120
 , v =

340
 , w =

111
 .

Can w be a linear combination of u and v? What
is geometrically the span of u and v?

86. Find the area of the triangle determined by the
vectors

u =

122
 and v =

 2
2
−3

 .
87. Use vectors to decide whether the triangle
with vertices A = (1,−3,−2), B = (2,0,−4), and
C = (6,−2,−5) is right angled.

88. Prove that the triangle with vertices
A(−2,4,0), B(1,2,−1) and C(−1,1,2) is regular.

89. In the third octant find the point P the dis-
tances of which from the three coordinate axis are
dx =

√
10, dy =

√
5, dz =

√
13.

90. Show that for any two vectors u and v the
following is true

(v−w) · (v+w) = 0 ⇐⇒ ∥v∥ = ∥w∥

91. Find the angle between the vectors u=

122
 and

v =

 2
2
−3

 and the area of the triangle determined

by them.

92. Let u be the unit vector tangent to the graph
of y = x2 + 1 at the point (2,5). Find a vector v
perpendicular to u.

93. For what values of t are the vectors u=

10t
 and

v =

 t
−t
t2

 perpendicular?

94. Let the vectors u,v,w ∈R3 and coordinates

u =

122
 , v =

 2
2
−3

 , and w =

−1
−1
−1

 .
Compute the volume of the parallelepiped deter-
mined by u,v,w.

95. Let the vectors u,v ∈∈ R3 be given as [u =
[1,2,2]t and v = [1,2,−3]t. Find the projection of
u on v.

96. Let u = [1,2,2]t, v = [2,2,−3]t, and w =
[−1,−1,−1]t. Find the projection of u onto the
vw-plane.
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1.3 Matrices and their algebra

A matrix is a list of vectors. Consider for example vectors ui ∈R
m, for i = 1, . . . ,n. An ordered

list of such vectors, say
A = [u1 | . . . |un]

is called a matrix. If each ui is given by ui =


ai,1
ai,2
...

ai,m

, then A is a m by n table of scalars from R.

In general an m×n matrix A is an array of numbers which consists of m rows and n columns
and is represented as follows:

A = [ai, j] =



a1,1 a1,2 a1,3 . . . a1,n
a2,1 a2,2 a2,3 . . . a2,n
a3,1 a3,2 a3,3 . . . a3,n

·

·

·

am,1 am,2 am,3 . . . am,n


(1.37)

The i-th row of A is the vector Ri := [ai,1, . . . ,ai,n] and the j-th column is the vector u j :=


a1, j
...

an, j

.
Let A = [ai, j] be an m×n matrix and B = [bi, j] be a n× s matrix. The matrix product AB is the
m× s matrix C = [ci, j] such that

ci, j := Ri(A) ·C j(B)

is the dot product of the i-th row vector of A and the j-th column vector of B.

a11 · · · a1k · · · a1n

...
...

...
ai1 · · · aik · · · ain

...
...

...
am1 · · · amk · · · amn




·

b11 · · · b1 j · · · b1p

...
...

...
bk1 · · · bkj · · · bkp

...
...

...
bn1 · · · bnj · · · bnp




=

c11 · · · c1 j · · · c1p

...
...

...
ci1 · · · ci j · · · cip

...
...

...
cm1 · · · cmj · · · cmp




For example, in the case that A and B are 3×3 matrices

we will have

AB =

r⃗1 · c⃗1 r⃗1 · c⃗2 r⃗1 · c⃗3
r⃗2 · c⃗1 r⃗2 · c⃗2 r⃗2 · c⃗3
r⃗3 · c⃗1 r⃗3 · c⃗2 r⃗3 · c⃗3


Example 1.23. Find AB and BA, where A =

[
1 2 3
2 0 1

]
and B =

1 1
2 3
1 1

.
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Figure 1.23: Matrix multiplication

The matrix addition is defined as

A+B = [ai, j+bi, j],

and the multiplication by a scalar r ∈R is defined to be the matrix the matrix rA := [rai, j]. The
m×n zero matrix, denoted by 0, is the m×n matrix which has zeroes in all its entries. An m
by n matrix A is called a square matrix if m = n. If A = [ai, j] is a square matrix then all entries
ai,i form the main diagonal of A. A diagonal matrix is a matrix that has nonzero entries only
in its mail diagonal.

Example 1.24. The matrix

M =


7 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 1 0
0 0 0 0 2


is a diagonal matrix.

The n by n identity matrix, denoted by In, is the matrix which has 1’s in the main diagonal
and zeroes elsewhere. A matrix that can be written as rI is called a scalar matrix. Two matrices
are called equal if their corresponding entries are equal.

Notice that the arithmetic of matrices is not the same as the arithmetic of numbers. For
example, in general AB, BA, or AB= 0 does not imply that A= 0 or B= 0. We will study some
of these properties in detail in the next few sections. Next we state the main properties of the
algebra of matrices.

Theorem 1.9. Let A,B,C be matrices of sizes such that the operations below are defined. Let r,s be
scalars. Then the following hold:

(i) A+B = B+A
(ii) (A+B)+C = A+ (B+C)

(iii) A+0 = 0+A = A
(iv) r(A+B) = rA+ rB
(v) (r+ s)A = rA+ sA

(vi) (rs)A = r(sA)
(vii) (rA)B = A(rB) = r(AB)

(viii) A(BC) = (AB)C
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(ix) IA = A = AI
(x) A(B+C) = AB+AC

(xi) (A+B)C = AC+BC

Proof. Most of the proofs are elementary and we will leave them as exercises for the reader.
□

The trace of a square matrix A = [ai, j] is the sum of its diagonal entries:

tr(A) := a11+ · · ·+ ann.

The trace will be used in the coming lectures. Some of its properties are quite useful and easy
to prove.

Lemma 1.12. The following hold:
(i) tr(A+B) = tr(A)+ tr(B),

(ii) tr(AB) = tr(BA).

Proof. The first part is obvious. We prove only part ii). Let A = [ai, j] and B = [bi, j] be n×n
matrices. Denote AB = C = [ci, j] and BA =D = [di, j]. Then

ci,i = Ri(A) ·Ci(B) = Ci(B) ·Ri(A) = di,i,

where Ri(A) is the i-th row of A and Ci(B) is the i-th column of B. This completes the proof. □

Example 1.25. For matrices A and B given below

A =

 4 2 2
0 3 1

21 10 −2

 , B =

 1 2 61
3 −3 1

31 2 1


compute the following tr(A), tr(B), tr(A+B), tr(AB), and tr(BA).
Solution: It is clear that tr(A) = 5, tr(B) = −1. Then, tr(A+B) = 4. We have

AB =

 74 6 248
41 −7 4
−13 8 1289

 .
Hence, tr(AB) = tr(BA) = 1356. □

Given the matrix A = [ai, j] its transpose is defined to be the matrix

At := [a j,i].

A is called symmetric if A = At. Note that for a square matrix A its transpose is obtained by
simply rotating the matrix along its main diagonal.

Lemma 1.13. For any matrix A the following hold
(i) (At)t = A,

(ii) (A+B)t = At+Bt,
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(iii) (AB)t = BtAt.

Proof. Parts i) and ii) are easy. We prove only part iii). Let A = [ai, j] and B = [bi, j]. Denote
AB = [ci, j]. Then, (AB)t = [c j,i] where

c j,i = R j(A) ·Ci(B) = C j(At) ·Ri(Bt) = Ri(Bt) ·C j(At).

This completes the proof. □

Remark 1.2. Notice that for a vector u, its transpose ut is a row vector. Moreover, its norm is given by

∥u∥2 = ut⋆u,

where ⋆ is the matrix multiplication.

Example 1.26. For matrices A and B given below

A =

 4 2 2
0 3 1

21 10 −2

 , B =

 1 2 61
3 −3 1

31 2 1


compute the following At, Bt, (A+B)t, (AB)t, and (BA)t.
Solution: We have

At =

4 0 21
2 3 10
2 1 −2

 , Bt =

 1 3 31
2 −3 2

61 1 1

 .
Computing (A+B)t, (AB)t, and (BA)t is left as an exercise for the reader. □

Let A be a square matrix. If there is an integer n such that An = I then we say that A has
finite order, otherwise A has infinite order. The smallest integer n such that An = I is called
the order of A.

A submatrix of a matrix A is called any matrix that is obtained by deleting a number of
rows or columns of A. A principal submatrix is a square submatrix obtained by removing the
last few rows and columns.

A square matrix A that is equal to its transpose, that is, A = At, is a symmetric matrix. If
instead, A is equal to the negative of its transpose, that is, A=−At, then A is a skew-symmetric
matrix.

In complex matrices, symmetry is often replaced by the concept of Hermitian matrices,
which satisfy A∗ =A, where the star or asterisk denotes the conjugate transpose of the matrix,
that is, the transpose of the complex conjugate of A.

A square matrix is called upper triangular if all entries below the mail diagonal are zero.

Exercise 20. What is the sum and product of upper triangular matrices? Justify your answer.

A square matrix is called lower triangular if all entries above the mail diagonal are zero.

Exercise 21. What is the sum and product of lower triangular matrices?

Let V :=Matn×n(R) be the set of all n×n matrices with entries in R, W1 the set of all upper
triangular matrices of V, and W2 the set of all lower triangular matrices of V.

Exercise 22. What is the intersection W1∩W2?
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1.3.1 Groups of Matn(F)

Understanding the structure of Matn(F) is a very important part of linear algebra and other
parts of mathematics. In the coming lectures we will learn about some very important subsets
of Matn(F), namely invertible matrices, special linear group, orthogonal matrices, etc.

Figure 1.24: Linear groups

Exercises:

97. Find the trace of the matrices A, B, A+B, and
A−B, where A and B are

A =

 4 2 2
0 3 1
21 10 −1

 , B =

 1 2 6
3 −3 1

31 0 13


98. We call a matrix A idempotent if A2 = A.
Find a 2 by 2 idempotent matrix A not equal to the
identity matrix I2. Using A, give an example of
two matrices B,C such that BC = 0, but B , 0 and
C , 0.

99. Let

A =
[
cosθ −sinθ
sinθ cosθ

]

Find A2. What about An?

100. A square matrix A is said to be nilpotent
if there is an integer r ≥ 1 such that Ar = 0.
Let A,B be matrices such that AB = BA, A2 = 0
and B2 = 0. Show that AB and A+B are nilpotent.

101. Let

A =

4 2 2
0 3 1
2 0 1


If possible, find a matrix B such that AB = 2A.

102. Prove that:
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(i) For any matrix A, the matrix AAt is sym-
metric

(ii) If A is a square matrix then A+At is sym-
metric.

103. Let A be a square matrix. Show that (An)t =
(At)n.

104. Prove or disprove the identity

(A+B)2 = A2+2AB+B2,

for any two m×n matrices A and B.

105. Let A and B be two matrices such that
AB = BA. Prove that

(A−B)(A+B) = A2
−B2.

106. Let A and B be two matrices such that
AB = BA. Prove that

(A−B)(A2+AB+B2) = A3
−B3.

107. Let Q be the following set of complex matrices:

±

[
1 0
0 1

]
, ±

[
i 0
0 −i

]
, ±

[
0 1
−1 0

]
, ±

[
0 i
i 0

]
such that i2 = −1. Further, let

I =
[
1 0
0 1

]
, i =

[
i 0
0 −i

]
, j =

[
0 1
−1 0

]
, k =

[
0 i
i 0

]
.

Prove the following statements i2 = j2 = k2 = −I
and

ij = k, jk = i, ji = −k, kj = −i, ik = −j.

These matrices are sometimes called quaternions.
Show that ±i, ±j, ±k have order 4.

108. Let A ∈Matn(R) such that tr(AB) = 0 for all
B ∈Matn(R). Can we conclude that A is the zero
matrix?
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1.4 Linear systems of equations, Gauss method

In this section we will study the classical problem of solving linear systems of equations. In
high school we have learned how to solve small systems of equations by using substitutions,
adding equations side by side and eliminating variables, etc. Now we want to streamline this
process so we can solve any systems of linear equations no matter how large. Think of it as
we want to write a computer program that should work for any linear system.

Recall that by a vector x ∈Rn we denote a column vector. Let a linear system of m equations
with n unknowns be given as follows:

a1,1x1+ · · ·+ a1,nxn = b1

a2,1x1+ · · ·+ a2,nxn = b2

. . . . . . . . . . . . . . . . . . . . . . . .

am,1x1+ · · ·+ am,n xn = bm

We write this system in the matrix form as

A ·x = b

where

A = [ai, j] =



a1,1 a1,2 a1,3 . . . a1,n
a2,1 a2,2 a2,3 . . . a2,n
a3,1 a3,2 a3,3 . . . a3,n

·

·

·

am,1 am,2 am,3 . . . am,n


, x =



x1
x2
x3

xm


, b =



b1
b2
b3

bm


.

We want to use matrices and design an algorithm which can determine if such a system has a
solution and in the case it does, find that solution. Since all the data for the system is contained
in A and b, the new matrix [A | b] denotes the following matrix

[A | b] :=



a1,1 a1,2 a1,3 . . . a1,n b1
a2,1 a2,2 a2,3 . . . a2,n b2
a3,1 a3,2 a3,3 . . . a3,n b3

· · .
· · .
· · .

am,1 am,2 am,3 . . . am,n bm


and is called the augmented matrix of the corresponding systemAx = b.

1.4.1 Elementary row operations

We would like to manipulate the augmented matrix [A | b] such that the solution set of the
linear system does not change. As learned in elementary mathematics the solution to any
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system does not change if we changed the order of the equations, we multiply any equation
by any nonzero constant, or replacing any equation by a sum of any other two. These rules
motivate the following definition.

We define as elementary row operations performed on a matrix the following operations:

• Interchange the i-th row with the j-th row (denoted by Ri −→ R j)

• Multiply the i-th row by a nonzero scalar r (denoted by Ri→ rRi)

• Add the i-th row to r times the j-th row (denoted by Ri→ Ri+ rR j)

It is obvious that such operations on the augmented matrix do not change the solution set
of the system. If the matrix B is obtained by performing row operations on A then matrices A
and B are called row equivalent

1.4.2 Row-echelon form of a matrix

Definition 1.6. A matrix is in row echelon form if:
• All rows containing all zeroes are below rows with nonzero entries.
• The first nonzero entry in a row appears in a column to the right of the first nonzero entry in any

preceding row.
For a matrix in row-echelon form, the first nonzero entry in a row is the pivot for that row.

A row echelon form of a matrix A will be denoted by ref A.

Example 1.27. Using row operations find the row echelon form of the matrix A =

1 2 3
2 0 1
3 2 2

.
Solution: We perform the following row operations:

A =

1 2 3
2 0 1
3 2 2

 R2→ 1
2 R2

−→

1 2 3
1 0 1

2
3 2 2

 R2→R1−R2
−→

1 2 3
0 2 5

2
3 2 2


R3→

1
3 R3
−→


1 2 3
0 2 5

2
1 2

3
2
3

 R3→R1−R3
−→


1 2 3
0 2 5

2
0 4

3
7
3

 R3→R2−
3
2 R3

−→

1 2 3
0 2 5

2
0 0 −1


□

Row operations are fast and inexpensive operations. Below we summarize the algorithm.

Algorithm 1. Computing the row-echelon form

Input: A matrix A.
Output: The row-echelon form ref (A).
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(i) Start with the first column which has nonzero entries.
(ii) By row interchange get a pivot p in the first row of this column. Make entries in this

column below the pivot all zeroes.
(iii) Continue this way with the next column.

The row-echelon form of matrices is used to solve linear systems of equations. Let Ax = b, be
a linear equation. We create the augmented matrix [A | b] and find its row-echelon form, say
[H | c]. Using back substitution we solve the system

Hx = c.

We illustrate with an example.

Example 1.28. Solve the linear system
x2−3x3 = −5

2x1+3x2−x3 = 7
4x1+5x2−2x3 = 10

Solution: Then

[A | b] =

 0 1 -3 -5
2 3 -1 7
4 5 -2 10

⇝ [H | c] =

 2 3 -1 7
0 1 -3 -5
0 0 -3 -9


by performing the operations R1 −→ R2, R3→ R3 − 2R1, R3→ R3 +R2. Thus the linear system is
equivalent with the following system 

2x1+3x2−x3 = 7
x2−3x3 =−5
−3x3 =−9

By back substitution we have x = [−1,4,3]t. □

This method is known as the Gauss method.

Theorem 1.10. Let Ax = b be a linear system, and denote by

[H | c] := ref ([A | b]).

Then one of the following hold:
(i) Ax = b has no solution if and only if H has a row of all zeroes and in the same row c has a

nonzero entry.
(ii) If Ax = b has solutions then one of the following holds:

i) it has a unique solution if every column of H contains a pivot
ii) it has infinitely many solutions if some column of H contains no pivot
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Proof. We recall from elementary algebra that a linear equation ax = b has no solution if and
only if a = 0 and b , 0. It has a unique solution if and only if a , 0 and b , 0 and infinitely
many solutions if and only if a = b = 0.

If H has a row of all zeroes and in the same row c has a nonzero entry cn , 0 then the
equation 0 ·xn = cn has no solution and therefore the linear system Ax = b has no solution. The
converse also hold from the definition of the row-echelon form. Parts 2, i) and 2, ii) follow
similarly. □

Example 1.29. Find how many solutions the following system has:{
2x+5y = 3
6x+15y = 9

Solution: The augmented matrix is

[A | b] =
[

2 5 3
6 15 9

]
⇝ [H | c] =

[
2 5 2
0 0 0

]
From the above theorem the system has infinitely solutions. Of course, this is easy to see since the
second equation of the system is obtained by multiplying the first equation by 3. □

The above theorem can be interpreted geometrically in the case of a 2 by 2 or a 3 by 3
coefficient matrix. For example in the case of a linear system of 2 equations and 2 variables
we have the well known situation of two lines on the plane. It is known from geometry that
two lines intersect in one point, no points, or infinitely many points.

1.4.3 Reduced row-echelon form, Gauss-Jordan method

Let [A | b] be a matrix in row-echelon form. Can we manipulate [A | b] even further so that the
solution of the corresponding system is read directly from the matrix equation? This leads to
the following definition

Definition 1.7. A matrix is in reduced row-echelon form if it is in row-echelon form, all pivots are
1, and all terms above the pivots are 0.

As we will see, once the coefficient matrix is in the reduced row-echelon form then the
solution of the corresponding linear system is read directly in the last column of the augmented
matrix. We illustrate with an example.

Example 1.30. Let [H | c] be the matrix in row-echelon form as in the Exa. 1.29:

[H | c] =

 2 3 -1 7
0 1 -3 -5
0 0 -3 -9

 .
Find its reduced row-echelon form.
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Solution: To find the reduced row-echelon form we perform the following row-operations

[H | c] =

 2 3 -1 7
0 1 -3 -5
0 0 -3 -9

 R1→
1
2 R1, R3→−

1
3 R3

−→

 1 3
2 - 1

2
7
2

0 1 -3 -5
0 0 1 3

 R1→R1−
3
2 R2

−→

 1 0 4 11
0 1 -3 -5
0 0 1 3

 R2→3R3+R2
−→

 1 0 4 11
0 1 0 4
0 0 1 3

 R1→R1−4R3
−→

 1 0 0 -1
0 1 0 4
0 0 1 3


Hence, we can directly conclude that the solution to the corresponding system is x = [−1,4,3]t, as
concluded previously. □

Remark 1.3. Notice that the reduced row-echelon form of a matrix A, on contrary to the row-echelon
form, is unique.

The method that transforms the augmented matrix to the reduced row-echelon form is
called the Gauss-Jordan method.

Remark 1.4. Even though the Gauss-Jordan method gives the solution in a "nicer" form, it is not
necessarily better than the Gauss method. For large linear systems the number of operations performed
becomes significant. Using the Gauss-Jordan method, it takes roughly 50% more arithmetic operations
than using the Gauss method.

Example 1.31. Find the reduced row-echelon form of the matrix.

[A | b] =

 2 1 -2 1
-2 1 1 2
-2 -1 2 2


Show all the row operations. What are the solutions of the corresponding system Ax = b?
Solution: The reduced row-echelon form is

[H | c] =

 1 0 −
3
4 0

0 1 −
1
2 0

0 0 0 1


Hence, the system has no solutions.

Example 1.32. Determine values of b such that the following system has one solution, infinitely many
solutions, or no solutions 

x1+2x2−x3 = b
x1+x2+2x3 = 1
2x1−x2+x3 = 2

Solution: The augmented matrix is

[A | b] =

1 2 −1 b
1 1 2 1
2 −1 1 2


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and its reduced row-echelon form is:

[H | c] =


1 0 0 b+3

4
0 1 0 b−1

4
0 0 1 b−1

4


The system has a solution for any b.

1.4.4 Homogenous systems

A linear system is called a homogenous system if it is in the form

Ax = 0. (1.38)

Clearly x = 0 is a solution of such systems and is called the trivial solution. The augmented
matrix for such systems is [A | 0] and its row-echelon form will be [H | 0]. The system has
nontrivial solutions if there is a row of H with no pivots.

Lemma 1.14. A homogenous system Ax = 0 which has a non-trivial solution has infinitely many
solutions. This occurs if and only if the row-echelon form of A has at least a row with no pivots.

The set of solutions of Eq. (1.38) is called the nullspace of A and denoted by Null(A).

Example 1.33. If the matrix A has an inverse, then Null(A) = {0}.

Solution: Indeed, if A−1 exists then

A−1(Ax) = A−10 =⇒ x = 0.

□

Example 1.34. Let A ∈Mat2×2(R) and assume that Null(A) is not trivial. Denote its columns by u1
and u2. Give a geometric interpretation of the Null(A).

In the coming lectures we will determine exactly which matrices have trivial nullspace.

Example 1.35. Determine the set of solutions of the homogenous linear system Ax = 0 when

A =


3 −1 1 1
0 1 1 1
0 0 0 0
0 0 0 0


Solution: In this case, the matrix is already in the row-echelon form. We can think of the system as

3x1−x2+x3+x4 = 0
x2+x3+x4 = 0
0 ·x3+0 ·x4 = 0

0 ·x4 = 0
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Starting from the last equation 0x4 = 0, this is satisfied for any value of x4. Let say x4 = t for any t ∈R.
Then the third equation becomes 0 ·x3+0 · t = 0, which is satisfied for any value of x3, say x3 = s, for
any s ∈R. So now we have {

3x1−x2+ s+ t = 0
x2+ s+ t = 0

which implies x2 = −s− t and x1 =
1
3 (x2− s− t) = 1

3 (−2s−2t) = −2
3s− 2

3 t. Finally the solution is

x =


x1
x2
x3
x4

 =

−

2
3s− 2

3 t
−s− t

s
t

 = s


−

2
3
−1
1
0

+ t


−

2
3
−1
0
1


Hence, the set of solutions is Span (v1,v2), where v1 =

[
−

2
3 ,−1,1,0

]t
and v2 =

[
−

2
3 ,−1,0,1

]t
. □

We will use such method in Sec. 3.2 to determine the nullspace and in Chap. 4 to determine
eigenspaces of matrices.

Exercises:

Solve the linear systems using the Gauss
method with back substitution.

109. {
x+5y = 2
3x+2y = 9

110. 
2x+ y−3z = 0
6x+ y−8z = 0
2x− y+5z = −4

111. 
y−2z = 3
x+2y−3z = 2
5x−3y+ z = −1

Find the row-echelon form of the following
matrices.

112.

0 1 −3 −5
0 3 0 1
4 5 −2 10


113.


0 0 0 0
1 1 −3 −3
1 3 0 0
2 5 −2 1



114. Determine all values of b1,b2 such that the
following system has solutions{

x1+11x2 = b1

3x1+33x2 = b2

115. Determine all values of b1,b2 such that the
following system has no solutions{

x1+2x2 = b1

−2x1−4x2 = b2

116. Find a, b, and c such that the parabola
y = ax2+ bx+ c passes through the points (1,−4),
(−1,0), and (2,3).

117. Find a, b, c and d such that the quartic
y = ax4 + bx3 + cx2 + d passes through the points
(3,2), (−1,6), and (−2,38), and (2,6).

118. Find a polynomial function going through the
points (3,1,−2), (1,4,5), and (2,1,−4).

119. Find ref A and solve the linear system Ax =

0, for A =

1 2 3
2 0 1
3 2 2

.
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120. Find ref A and solve the linear system Ax =

0, for A =

0 1 −3 −5
0 3 0 1
4 5 −2 10

.
121. Find ref A and solve the linear system Ax =

0, for A =


0 0 0 0
1 1 −3 −3
1 3 0 0
2 5 −2 1

.
122. Solve the following system using the Gauss-
Jordan method

x1+2x2−x3 = 1
x1+x2+2x3 = 3
2x1−x2+x3 = −2

123. Solve the following system using the Gauss
method 

5x1+3x2−x3 = −2
2x1+2x2+2x3 = 3
−x1−x2+x3 = 6

124. Solve the following system using the Gauss-
Jordan method

11x1+12x2−3x3 = 2
−x1+3x2+2x3 = 3
2x1+3x2+x3 = −2

125. Prove that the reduced row-echelon form of a
matrix is unique.

126. Let Ax = 0 be a homogenous system which
has no nontrivial solutions. What is the reduced
row-echelon form of A?

127. Find a,b, and c such that the parabola

y = ax2+ bx+ c

passes through the points (1,2), (-1,1), and (2,3).

128. Find a,b,c and d such that the quartic

y = ax4+bx3+ cx2+d

passes through the points (3,2), (-1,6), and (-2,1),
and (0,0).
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Johann Carl Friedrich Gauss (1777 - 1855)

Carolus Fridericus Gauss; 30 April 1777 – 23 February
1855) was a German mathematician and physicist who made
significant contributions to many fields in mathematics and
science. Sometimes referred to as the Princeps mathematico-
rum (Latin for ’"the foremost of mathematicians"’) and "the
greatest mathematician since antiquity", Gauss had an excep-
tional influence in many fields of mathematics and science,
and is ranked among history’s most influential mathemati-
cians.

Johann Carl Friedrich Gauss was born on 30 April 1777
in Brunswick (Braunschweig), in the Duchy of Brunswick-
Wolfenbüttel (now part of Lower Saxony, Germany), to poor,
working-class parents. His mother was illiterate and never
recorded the date of his birth, remembering only that he had
been born on a Wednesday, eight days before the Feast of
the Ascension (which occurs 39 days after Easter). Gauss
later solved this puzzle about his birthdate in the context of
finding the date of Easter, deriving methods to compute the
date in both past and future years. He was christened and
confirmed in a church near the school he attended as a child.

Gauss was a child prodigy. In his memorial on Gauss, Wolfgang Sartorius von Walter-
shausen says that when Gauss was barely three years old he corrected a math error his father
made; and that when he was seven, he confidently solved an arithmetic series problem (com-
monly said to be 1 + 2 + 3 + ... + 98 + 99 + 100) faster than anyone else in his class of 100
students. Many versions of this story have been retold since that time with various details
regarding what the series was the most frequent being the classical problem of adding all the
integers from 1 to 100. There are many other anecdotes about his precocity while a toddler,
and he made his first groundbreaking mathematical discoveries while still a teenager. He
completed his magnum opus, Disquisitiones Arithmeticae, in 1798, at the age of 21 though it
was not published until 1801. This work was fundamental in consolidating number theory as
a discipline and has shaped the field to the present day.

Gauss’s intellectual abilities attracted the attention of the Duke of Brunswick, who sent
him to the Collegium Carolinum (now Braunschweig University of Technology), which he
attended from 1792 to 1795, and to the University of Göttingen from 1795 to 1798. While at
university, Gauss independently rediscovered several important theorems. His breakthrough
occurred in 1796 when he showed that a regular polygon can be constructed by compass and
straightedge if the number of its sides is the product of distinct Fermat primes and a power of
2. This was a major discovery in an important field of mathematics; construction problems had
occupied mathematicians since the days of the Ancient Greeks, and the discovery ultimately
led Gauss to choose mathematics instead of philology as a career. Gauss was so pleased with
this result that he requested that a regular heptadecagon be inscribed on his tombstone. The
stonemason declined, stating that the difficult construction would essentially look like a circle.
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The year 1796 was productive for both Gauss and number theory. He discovered a con-
struction of the heptadecagon on 30 March. He further advanced modular arithmetic, greatly
simplifying manipulations in number theory. On 8 April he became the first to prove the
quadratic reciprocity law. This remarkably general law allows mathematicians to determine
the solvability of any quadratic equation in modular arithmetic. The prime number theorem,
conjectured on 31 May, gives a good understanding of how the prime numbers are distributed
among the integers.

Gauss also discovered that every positive integer is representable as a sum of at most three
triangular numbers on 10 July and then jotted down in his diary the note:

EYPHKA! num = ∆+∆′+∆”.

On 1 October he published a result on the number of solutions of polynomials with coefficients
in finite fields, which 150 years later led to the Weil conjectures.
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1.5 Inverses of matrices

In this section we study the important concept of the inverse of a matrix. Let A = [ai, j] be a
n×n square matrix. A is called invertible if there exists an n×n matrix A−1 such that

AA−1 = A−1A = In.

A−1 is called the inverse of A. If A is not invertible then it is called singular. Consider if A is
invertible and we want to solve the linear system Ax = b. Then A−1(Ax) = (A−1A)x = Inx = x.
Hence the solution to the system would be x = A−1b.

Theorem 1.11 (Uniqueness of the inverse). Let A be an invertible matrix. Then, its inverse is
unique.

Proof. Suppose that A has two inverses C and D. Then, AC = I = AD and CA = I =DA. Then
we have D(AC) =DI =D and D(AC) = (DA)C = IC = C. Hence, C =D. □

We also have the following useful result.

Exercise 23. Let A, B be invertible matrices. Prove that AB is invertible and (AB)−1 = B−1A−1.

Any matrix that can be obtained from the identity matrix In by one row operation is called
an elementary matrix.

Theorem 1.12. Let A be an m×n matrix and E an m×m elementary matrix. Then EA affects the
same row operation on A as the one performed in In to obtain E.

Proof. Let E be the elementary matrix obtained as

Im
Ri←→R j
−→ E.

Then the new Ri(E) = (0, . . . ,0,1,0, . . .0) where 1 is in the j-th position. Hence, the entries of
Ri(EA) are

Ri(E) ·Cr(A), for r = 1, . . .n

and Ri(EA) = R j(A). Similarly, R j(EA) = Ri(A). The cases in which E is obtained by a row-
scaling and row-addition go similarly and are left as exercises to the reader. □

Exercise 24. Find the inverse of the matrix A =

1 2 3
2 1 3
3 1 1

.
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1.5.1 Computing the inverses using the row-echelon form

Let A be a given matrix. We want to find its inverse A−1 if it exists. Consider first the
elementary matrices.

Let E be an elementary row matrix obtained by one row-interchange of I. Then performing
the same row-interchange to E would give us back I. Hence, EE = I and the inverse of E is E
itself. If E is obtained by multiplying a row by a scalar then we divide that row with the same
scalar to get back I. If E is obtained by Ri → Ri + rR j then performing Ri → Ri − rR j would
result in I. Hence, we have the following:

Lemma 1.15. Elementary matrices are invertible

Proof. Let E1 be an elementary matrix. Then E1 is obtained by some row operation on the
identity I. Since every row-operation can be undone then we can perform a new row-operation
on E1 to obtain I. The second row operation corresponds to another elementary matrix E2
such that E2E1 = I; see the previous theorem. Thus, E1 has an inverse. □

Example 1.36. Let E be given as below

E =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


Find its inverse.
Solution: E is obtained by interchanging rows R2←→R4 of the identity matrix. So E is an elementary
matrix and therefore invertible. Its inverse is E since E2 = I.

□

Lemma 1.16. Let A,B be n×n matrices. Then, AB = In if and only if BA = In.

Proof. It is enough to show that if AB = In then BA = In, the other direction goes by symmetry
of A and B. Hence, we assume that AB= In. Let b be any vector inRn. Then ABb= b. Thus the
system Ax = b has always a solution (namely x = Bb). By Thm. 1.10 the reduced row-echelon
form of A is In. Hence, there are E1, . . . ,Ek such that

Ek · · ·E1A = In (1.39)

Multiplying both sides on the right by B we have

Ek · · ·E1 (AB) = B.

But AB = In, hence Ek · · ·E1 = B. Thus, Eq. (1.39) we have BA = In.
□

Now, we go back to the main question of this section, that of computing inverses. In
general we proceed as follows. Let A = [ai, j] be given. To find A−1 we have the following
algorithm:
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Algorithm 2. Computing the inverse of a matrix

Input: A square matrix A.
Output: Determines if A−1 exists and finds it in that case.

(i) Form the augmented matrix [A | I]
(ii) Apply the Gauss-Jordan method to reduce [A | I] to [I |C]. If this is possible then C=A−1,

otherwise A−1 does not exist.

Example 1.37. Find the inverse of the following matrix

A =


−1 1 0 2
0 2 1 0
0 1 −2 1
0 −1 −1 0


Solution: Create the matrix [A | I]. Then its reduced row-echelon form is:

[I | C] =


1 0 0 0 -1 -5 2 -9
0 1 0 0 0 1 0 1
0 0 1 0 0 -1 0 -2
0 0 0 1 0 -3 1 -5


Hence,

A−1 = C =


−1 −5 2 −9
0 1 0 1
0 −1 0 −2
0 −3 1 −5


□

Example 1.38. Find the inverse of

A =


1 0 0 −1
1 1 1 0
−1 1 1 0
0 0 −1 −1


Solution: Create [A | I] and find its reduced row-echelon form

[A | I] =


1 0 0 -1 1 0 0 0
1 1 1 0 0 1 0 0
-1 1 1 0 0 0 1 0
0 0 -1 -1 0 0 0 1

⇝ [I | A−1] =


1 0 0 0 0 1

2 - 1
2 0

0 1 0 0 -1 1 0 1
0 0 1 0 1 - 1

2
1
2 -1

0 0 0 1 -1 1
2 - 1

2 0


□

Remark 1.5. We have illustrated above how to find the inverse of a matrix. However, such an inverse
does not always exist. In the next chapter we will study some necessary and sufficient conditions such
that the inverse of a matrix exists.
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Example 1.39. (i) Let A be a square matrix such that A2 = 0. Find the inverse of I−A.
(ii) Let A be a square matrix such that A2+2A+ I = 0. Find the inverse of A.

(iii) Let A be a square matrix such that A3
−A+ I = 0. Find the inverse of A.

(iv) Let A be a square matrix such that An = 0. Find the inverse of I−A.

Solution: i) Notice that since A2 = 0 then I2
−A2 = I. However, I2

−A2 = (I−A)(I+A). Hence,
the inverse of (I−A) is (I+A).

ii) Since A2+2A+ I = 0 then I = −(A2+2A) = −(A+2I)A. Hence, A−1 = −(A+2I).
iii) Since A3

−A+ I = 0 then I = A−A3 = A(I−A2). Hence, A−1 = I−A2.
iv) Since An = 0 then In

−An = 0. From Calculus you should remember the formula for the
geometric sum

1−xn = (1−x)(xn−1+xn−2+ · · ·x+1).

This suggests that
I−An = (I−A)

(
An−1+An−2+ · · ·A2+A+ I

)
This can be easily verified by multiplying the right hand side to get

(I−A)
(
An−1+An−2+ · · ·A2+A+ I

)
=(An−1+An−2+ · · ·A2+A+ I)−An

−An−1
− · · ·−A2

−A

=I−An

Hence, (I−A)−1 = An−1+An−2+ · · ·A2+A+ I. □

Example 1.40. For any matrices A and B such that the product BAB−1 is defined, prove that

tr(A) = tr
(
BAB−1

)
.

Solution: Recall from Lem. 1.12 that tr(AB) = tr(BA) for any two matrices A and B. Hence

tr
(
BAB−1

)
= tr

(
AB−1B

)
= trA

□

Example 1.41. Let

A =

1 2 −1
0 3 1
2 0 1


If possible, find a matrix B such that AB = 2I.

Solution: Then we have
1
2

AB = I

which implies that B is invertible. Hence, B =
(

1
2A

)−1
= 2A−1. □

Exercises:
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129. Find the inverse of

A =
[
1 a
0 1

]

Does A have an inverse for any value of a?

130. For what values of a,b,c,d does the inverse of

A =
[
a b
c d

]
exist? Find the inverse for such values of a,b,c,d.

131. Solve the linear system

Ax = b

when A is invertible.

132. Find the inverse of the following

A =


5 2 0 2
3 2 1 0
3 1 −2 4
2 4 −1 2

 .
133. Let

A =

 1 2 3
−2 1 2
3 2 1

 , B =

3 0 1
2 0 2
0 2 1

 ,
be given. Find the following: tr(A), tr(B), At, AB,
BtAt, tr(BAB−1).

134. Show that if A is invertible then so is At.

135. Let r be a positive integer and A an invertible
matrix. Is Ar necessarily invertible? Justify your
answer.

136. Find the reduced row-echelon form of the ma-
trix. Show all the row operations. 4 2 3 3

−2 1 1 2
3 −1 2 1



137. Find the angle between the vectors u =

123


and v =

518
.

138. Determine all values of b1 and b2 such that
the following system has no solutions

x1+2x2−x3 = b1

−2x1−4x2+2x3 = b2

x1−x2+x3 = 2

139. Find the area of the triangle between the three
points (1,2), (3,4), (5,6).

140. Let the matrices

A =

 3 2 3
−2 1 2
0 1

 , B =

2 −2 1
2 0 2
0 2 2

 ,
be given. Find the following: tr(A), tr(B), At, AB,
BtAt, tr(BAB−1).

141. Show that if AB is invertible then so are A
and B.

142. Let A be a 3 by 2 matrix. Show that there is
a vector b such that the linear system

Ax = b

is unsolvable.

143. Let A be an m×n matrix with m > n. Show
that there exists a b such that the linear system
Ax = b is unsolvable.

144. Let A be a m×n matrix and B an n×m ma-
trix, where m > n. Use the above result to show
that the row-echelon form of the matrix AB has at
least one row of all zeroes.

145. Find all matrices B such that

i)
[
0 1
0 2

]
B =

[
0 0
0 0

]
ii)

[
0 1
0 2

]
B =

[
0 0 1
0 0 2

]
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146. Find all matrices which commute with[
0 1
0 2

]
147. Show that if A commutes with B then At

commutes with Bt.

148. Let V be the set of all m by n matrices with
entries in R. Show that scalar matrices commute
with all matrices from V. Are there any other
matrices which commute with all matrices of V?

149. Let a, b, c, d be real number not all zero. Show
that the following system has exactly one solution

ax1+bx2+ cx3+dx4 = 0
bx1− ax2+dx3− cx4 = 0
cx1−dx2− ax3+ bx4 = 0
dx1+ cx2−bx3− ax4 = 0

150. For what value of λ does the following system
has a solution:

2x1−x2+x3+x4 = 1
x1+2x2−x3+4x4 = 2
x1+7x2−4x3+11x4 = λ

151. The following system has a unique solution:
ay+ bx = c
cx+ az = b
bz+ cy = a.

Show that abc, 0. Find the solution of the system.

152. Find the following:[
1 1
0 1

]n

,

[
1 0
1 1

]n

,

[
1 1
1 1

]n

153. Let

A =
[
a b
c d

]
,

such that A2 = I. Show that the following relation
is satisfied when x is substituted by A:

x2
− (a+d)x+ (ad−bc) = 0.

154. Let A be a 3 by 3 matrix. Can you generalize
the above problem in that case? What about if A is
an n by n matrix?

155. Find the order of the following matrices[
1 −1
1 0

]
,

[
1 −1
0 1

]
,

[
−1 1
0 1

]
,

[
1 −1
−1 0

]
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Paul Gordan: The King of Invariant Theory

Paul Albert Gordan (April 27, 1837 – December 21,
1912) was a towering figure in 19th-century German
mathematics, renowned especially for his mastery of in-
variant theory. His epithet, "the king of invariant theory,"
speaks to his profound contributions and his dominant
influence in this field.

Born in Breslau, Germany (now Wroclaw, Poland),
Gordan’s academic journey began at the University of
Königsberg, where he studied under the tutelage of the
eminent Carl Gustav Jacobi. He earned his Ph.D. from
the University of Breslau in 1862 and subsequently em-
barked on a distinguished professorial career at the Uni-
versity of Erlangen-Nuremberg. He remained there for
the rest of his life, contributing significantly to estab-
lishing Erlangen as a global center for mathematical re-
search.

Figure 1.25: Paul Albert Gordan

Gordan’s most celebrated achievement was proving the finite generation of the ring of
invariants of binary forms of a fixed degree. This was a monumental task, achieved through
intricate and laborious calculations, a hallmark of Gordan’s approach to mathematics. He was
a master of computational techniques, often undertaking complex calculations by hand. A
testament to this dedication is his computation of all 70 invariants of binary sextics – a feat of
remarkable perseverance and skill.

His collaboration with Alfred Clebsch led to the development of the now-famous Clebsch-
Gordan coefficients, which are crucial in representation theory and quantum mechanics. These
coefficients arise in the decomposition of tensor products of representations and have far-
reaching applications in physics and other areas.

Gordan’s influence extended beyond his own research. He played a key role in making
Erlangen a leading mathematical center, working alongside Felix Klein and Max Noether. This
trio fostered a vibrant intellectual environment that attracted mathematicians from around the
world.

One of Gordan’s most significant legacies is his role as the doctoral advisor to Emmy
Noether, one of the most important mathematicians of the 20th century. He recognized her
exceptional talent and guided her early research, even though her later work in abstract
algebra eventually diverged significantly from his own computational focus.

A well-known anecdote, often repeated, involves Gordan and David Hilbert’s ground-
breaking proof of Hilbert’s basis theorem. This theorem, which drastically generalized Gor-
dan’s work on invariants, demonstrated the existence of a finite basis for invariants in a much
broader context using non-constructive methods. The quote attributed to Gordan, "This is
not mathematics; this is theology," reflects the initial shock and perhaps skepticism that some
mathematicians felt towards Hilbert’s abstract, existence-based approach, which contrasted
sharply with the constructive, computational methods prevalent at the time.

However, the historical accuracy and intended meaning of this quote are debated. The
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earliest known reference to it appears long after the events and Gordan’s death. Furthermore,
the narrative of Gordan as being opposed to Hilbert’s work is largely a myth. In reality,
Gordan recognized the power of Hilbert’s methods, used them in his own research, and
even supported Hilbert’s publications. It’s likely that the quote, if indeed Gordan uttered it,
was meant as a humorous or nuanced observation, not as a categorical rejection of Hilbert’s
approach. Gordan himself acknowledged the significance of Hilbert’s work, and the two
mathematicians maintained a professional respect for each other.

Paul Gordan’s legacy is multifaceted. He was a master of classical invariant theory, a key
figure in the development of Erlangen’s mathematical school, and a mentor to one of the most
influential mathematicians of the 20th century. While the anecdote about Hilbert persists, it’s
crucial to understand it in the context of the evolving mathematical landscape of the late 19th
century and to recognize Gordan’s own contributions to and acceptance of the new, more
abstract mathematics that was emerging.
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Chapter 2

Vector Spaces

In this chapter we formally define vector spaces. After discussing Euclidean spaces in the
previous chapter, the concept of the vector space here will be more intuitive. Throughout this
chapter F denotes a field. For our purposes F is always one of the following: Q, R, C, or Fq.

2.1 Definition of vector spaces

In this section we generalize the concept of Euclidean spaces studied in the previous chapter to
a more abstract object, that of a vector space. Let V be a given set and ′′+′′ a binary operation
defined as

”+” : V×V→ V
(u,v)→ u+v

(2.1)

Let F be a field ′′∗′′ be another binary operation

” ∗” : F×V→ V
(r,u)→ r ∗u

(2.2)

Definition 2.1. The set V together with the binary operations above, denoted by (V,+,∗), is a vector
space over the field of scalars F if the following are satisfied:

(i) (u+v)+w = u+ (v+w), ∀u,v,w ∈ V
(ii) u+v = v+u, ∀u,v ∈ V

(iii) ∃0 ∈ V, s.t. 0+u = u+0 = u, ∀u ∈ V
(iv) ∀u ∈ V, there is −u ∈ V such that u−u = 0
(v) ∀r ∈ F,∀u,v ∈ V, r ∗ (u+v) = r ∗u+ r ∗v

(vi) ∀r,s ∈ F,u ∈ V, (r+ s) ∗u = r ∗u+ s ∗u
(vii) ∀r,s ∈ F,u ∈ V, (rs) ∗u = r ∗ (s ∗u)

(viii) ∃1 ∈ F,s.t.∀u ∈ V, 1 ∗u = u

Property 1) and 2) say that addition is associative and commutative. By property 3) we
have an additive identity and by property 8) a multiplicative identity. Property 4) assures
there is an additive inverse normally called the opposite. Elements r,s ∈ F are called scalars.
From now on we will suppress ′∗′.
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Exercise 25. Every field is a vector space over itself.

Elements of a vector space are called vectors. From now on V/Fwill denote a vector space
over some field F. When there is no confusion we will simply use V. Next we give some
examples of some classical vector spaces.

Exercise 26. Prove that R is a vector space over Q. If F and K are fields such that F ⊂ K, prove that
K is a vector space over F.

Example 2.1 (Euclidean spaces Rn). Show that Rn is a vector space over the field of scalar R, with
the usual vector addition and scalar multiplication. What is the additive and multiplicative identity?

Example 2.2 (The space of polynomials with coefficients in F). Let F[x] denote the set of
polynomials

f (x) = anxn+ an−1xn−1+ · · ·+ a1x+ a0

where a0, . . . ,an ∈ F. We define the sum and the scalar product of two polynomials to be

( f + g)(x) := f (x)+ g(x)
(r f )(x) := r f (x)

(2.3)

for any r ∈F. Then, F[x] is a vector space over F. F[x] is also called the polynomial ring of univariate
polynomials; see Chapter 4 for more details.

Example 2.3 (The space of n× n matrices). The set of n× n matrices with entries in a field F,
together with matrix addition and scalar multiplication forms a vector space. We denote this space by
Matn×n(F).

Example 2.4 (The space of functions from R to R). Let L(R) denote the set of all functions

f :R −→R

We define the sum and the scalar product of two functions to be

( f + g)(x) := f (x)+ g(x)
(r f )(x) := r f (x)

(2.4)

for any r ∈R. Show that L(R) is a vector space over R.

We can generalize the above example as follows:

Example 2.5 (Function Spaces). Let S denote a set and F a field. A function is called F-valued if

f : S −→ F

Let V denote the set of all F-valued functions. We define the sum and the scalar product of two
functions in V to be

( f + g)(x) := f (x)+ g(x)
(r f )(x) := r f (x)

(2.5)

for any r ∈ F. Then V is a vector space over F.
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Exercise 27. Prove that the set of integrable functions over R is a vector space. It is denoted by
L1(R).

Example 2.6 (Square-integrable functions). A real-valued function f : R→ R is called a square-
integrable function if ∫

∞

−∞

∣∣∣ f (x)
∣∣∣2 dx <∞

Let L2(R denote the space of square-integrable functions. Show that L2(R) is a vector space. Moreover,
L2(R) is a Hilbert space and comes with an inner product which we will see in coming chapters.

Exercise 28 (Complex numbers as a vector space). Prove that C together with the addition and
scalar multiplication defined ?? form a vector space over R.

Exercise 29 (Binary quadratics). A degree two homogenous polynomial in two variables

f (x, y) = ax2+bxy+ cy2,

with coefficients a,b,c,∈ R is called a binary quadratic over R. Let V2(R) be the space of all
binary quadratics with coefficients in R. Prove that V2(R) together with addition of polynomials and
multiplication by a constant forms a vectors space over R.

Example 2.7. A binary form of degree d≥ 2 with coefficients from a fieldF is a homogenous polynomial

f (x, y) = adxd+ ad−1xd−1y+ · · ·a1xyd−1+ a0yd,

where ai ∈ F for all i = 0, . . . ,d. Let Vd be the set of binary forms of degree d ≥ 2 with coefficients from
a field F. Prove that Vd together with the addition and multiplying by a scalar for polynomials form a
vectors space over F.

2.1.1 Subspaces

There are some subsets of a vector space V which are of special importance.

Definition 2.2. A subset W ⊂V is called a subspace (or a linear subspace) of V if it is a vector space
by itself. Next we see some examples of subspaces of a vector space.

Example 2.8. Let V =R3. Then every v ∈V is a triple (x, y,z), which we have denoted by v= [x, y,z]t.
Let W be the set of vectors v ∈ V such that the last coordinate is 0,

W =
{
v = [x, y,0]t

| v ∈ V
}
.

Then W is R2 which is also a vector space. Hence, W is a subspace of V. The reader can provide a
formal proof of this based on the definition above.

A set S of V is called closed under addition if for every u,v ∈ S we have u+v ∈ S. It is
called closed under scalar multiplication if for every u ∈ S and r ∈ Fwe have ru ∈ S.

Lemma 2.1. Any subset W ⊂ V is a vector space if and only if it is closed under addition, scalar
multiplication, and contains 0.
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Proof. Exercise

Example 2.9. Let V = R3 and P be the plane determined by the vectors u and v going through the
origin. This plane is a vector space because: it contains the zero vector, every sum of two vectors in P
is again in P, and every vector in P multiplied by a scalar is again in P.

Exercise 30. Let V =Matn×n(F) matrices with entries from a field of scalar F. Above we showed that
V is a vector space over F. Let V1 be the set of all upper triangular matrices from V and V2 the set of
all lower triangular matrices from V. Prove that:

(i) V1 is a subspace of V
(ii) V2 is a subspace of V

(iii) V1∩V2 is a subspace of V

Example 2.10 (The nullspace of a matrix:). Let A be a given matrix. Consider the set of all vectors
in Rn which satisfy the equation Ax = 0. We call this set the nullspace of A and denoted by Null(A).
Hence,

Null(A) := {x ∈Rn
| Ax = 0}

Prove that Null(A) is a subspace of Rn.

Definition 2.3. Let V be a vector space over F and v1, . . .vn ∈ V. Then, v is a linear combination of
v1, . . .vn if it can be written as

v = r1v1+ · · ·+ rnvn

where r1, . . . ,rn ∈ F.

As in Def. 1.3 we define Span (v1, . . . ,vn) as the set of all linear combinations of v1, . . .vn ∈V.

Lemma 2.2. Let V be a vector space and v1, . . . ,vn ∈ V. The set W = Span (v1, . . . ,vn) is a subspace
of V.

Proof. Indeed, let W = Span (v1, . . . ,vn) be the set of all linear combinations. Obviously 0 ∈W
since 0 can be written as a linear combination of v1, . . . ,vn by taking all scalars 0. Thus we
have to show that W is closed under addition and multiplication by a scalar. Both are easily
checked. □

For an arbitrary set S ⊂V (not necessary finite), the linear closure of S is defined as the set
of all linear combinations of elements from S and denoted by Span (S).

Exercise 31. Prove that Span (S) is a subspace of V and the intersection of all subspaces of V containing
S.

2.1.2 Linear independence

Let V be a vector space and u1, . . . ,un vectors in V.

Definition 2.4. Vectors u1, . . . ,un are called linearly independent if

r1u1+ · · ·+ rnun = 0

implies that r1 = · · · = rn = 0, otherwise, we say that u1, . . . ,un are linearly dependent.
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Hence, a set of vectors u1, . . . ,un are linearly dependent if one of them is expressed as a
linear combination of the other ones. First we see what linear independence means in Rn,

Example 2.11. Show that u1 =

231
, u2 =

121
, and u3 =

111
 are linearly independent in R3.

Solution: We want to find if there exist r1,r2,r3, not all zero such that r1u1+r2u2+r3u3 = 0. We have 2r1+ r2+ r3
3r1+2r2+ r3
r1+ r2+ r3

 =
000


The augmented matrix and its reduced row-echelon form are

[A | 0] =

 2 1 1 0
3 2 1 0
1 1 1 0

⇝ [H | ]̧ =

 1 0 0 0
0 1 0 0
0 0 1 0


Since every row has a pivot then the system has a unique solution (r1,r2,r3) = (0,0,0). This concludes
that u1,u2,u3 are linearly independent. □

The approach of the above example can be generalized for any set of vectors in Rn.

Lemma 2.3. v1,v2, . . . ,vs ∈ Rn are linearly independent if and only if the raw-echelon form of the
matrix

A = [v1 | v2 | . . . | vs]

has a pivot in every column.

Proof. Assume that there are scalars r1, . . . ,rn ∈R such that

r1v1+ . . .rnvn = 0.

We want to determine r1, . . . ,rn by solving the system Ax = 0, where x = [r1, . . . ,rn]t and A =
[v1| . . . |vn]. From Lem. 1.14, we know that it has a unique solution if and only if every column
of the row-echelon form ref(A) has a pivot. In that case, the solution is 0 and therefore
r1 = . . . = rn = 0.

□
The following example should be familiar to students who have had a course in differential

equations:

Example 2.12. Let L(R) be the vector space of all real-valued functions in t. Show that the following
pair of functions sin t,cos t are linearly independent.
Solution: Let r1,r2 ∈R such that

r1 sin t+ r2 cos t = 0

for every t ∈R. Take t = 0, then r2 = 0. If we take t = π
2 then r1 = 0. Hence sin t and cos t are linearly

independent.
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Exercise 32. Interpret geometrically what it means for two vectors u and v to be linearly independent
in R2. What about R3? Prove that:

(i) Any two vectors u,v ∈ R3 are linearly independent if and only if they are not parallel to each
other.

(ii) If u,v are linearly independent then Span (u,v) is the plane passing through the origin and
determined by u and v.

(iii) Any three vectors u,v,w ∈R3 are linearly independent if and only if they are not coplanar.
(iv) If u,v,w are linearly independent then Span (u,v,w) is all of R3.

Exercises:

156. Let U,W be subspaces of V. Define the sum
of subspaces of U and W by

U+W := {u+w |u ∈U, w ∈W}.

Show that U∩W and U+W are subspaces of V.

157. Let u ∈V =Rn and Wu := {v ∈V |u ·v = 0}.
Show that Wu is a subspace of V.

158. Let S be a set and V a vector space over the
field F. Show that the set of functions

f : S→ F,

under function addition and multiplication by a
constant is a vector space over F.

159. LetL(R) be the vector space of all real-valued
functions in t. Show that the following pairs are
linearly independent.

i) t,et

ii) sin t,cos2t
iii) tet,e2t

iv) t,sin t.

160. An upper triangular matrix is a matrix
A = [ai, j] such that ai, j = 0 for all i < j. Show
that the space of upper triangular matrices is a
subspace of Matn×n(R).

161. Prove that F[x] is a vector space over the field
F.

162. Let F be a field and A := F[x] the polynomial
ring. Denote by An the set of polynomials in A
of degree n. Is An a subspace of A? Justify your
answer.

163. Let F be a field and A := F[x] the polynomial
ring. Denote by Pn the set of polynomials in A of
degree ≤ n. Is Pn a subspace of A? Justify your
answer.

164. Let Q be the set of rational numbers and

Q(
√

2) := {a+b
√

2 | a,b ∈Q}.

Prove thatQ(
√

2) is a vector space overQwith the
usual addition and scalar multiplication.

165. The following are the simplest and most clas-
sical examples of vector spaces.

(i) Is R a vector space over Q with the usual
addition and scalar multiplication? Prove
your answer.

(ii) The set of complex numbers C is given by

C := {a+bi | a,b ∈R}

where i =
√
−1. Is C a vector space over R

with the usual addition and scalar multipli-
cation?

166. Let V be the set of 2 by 2 matrices of the form[
0 x
y 0

]
where x, y ∈R. Is V a vector space overR?

74

https://leanpub.com/lin-alg/
https://leanpub.com/u/shaska


Shaska, T. Linear Algebra

2.2 Bases and dimension

In this section we will study two very fundamental concepts in the theory of vector spaces
that of basis and dimension. Let V be a vector space over F and B := {v1, . . . ,vn} ⊂ V. Denote
by W = Span (v1, . . . ,vn) the set of all linear combinations of v1, . . . ,vn in V. We say that W is
generated by v1, . . . ,vn.

Definition 2.5. Let V be a vector space over F and B := {v1, . . . ,vn} ⊂ V. Then B is a basis of V if
the following hold:

(i) V = Span (v1, . . . ,vn)
(ii) v1, . . . ,vn are linearly independent.

Example 2.13. Let V = R2. A basis of this vector space is B = {i, j}, where i = [1,0]t and j = [0,1]t.
Indeed, we know from Chap. 1 that every vector v ∈R2 can be written as a linear combination of i and
j as v = r1i+ r2 j, for some real numbers r1, r2. This is called the standard basis of R2. The standard
basis for R3 is B = {i, j,k}. □

Figure 2.1: Standard basis for R2 and R3

Theorem 2.1. Let V be a vector space over F and B := {v1, . . . ,vn} be a basis of V. If

x1v1+ · · ·+xnvn = y1v1+ · · ·+ ynvn, (2.6)

then xi = yi, for i = 1, . . . ,n.

Proof. From Eq. (2.6) we get that

(x1− y1)v1+ · · ·+ (xn− yn)vn = 0.

Since B := {v1, . . . ,vn} is a basis of V then v1, . . . ,vn are linearly independent. Hence xi = yi, for
i = 1, . . . ,n.

□
Hence, once a basis B is fixed for a vector space V, the above theorem says that the

expression of any vector v ∈ V as a linear combination of elements of B is unique up to the
reordering of elements of B.
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2.2.1 Ordered bases and coordinates

The theorem motivates the following definition:

Definition 2.6. Let V be a vector space, B := {v1, . . . ,vn} a basis of V with a fixed ordering v1 < v2 <
· · · < vn, and u ∈ V given by

u := x1v1+ · · ·+xnvn.

Then x1, . . . ,xn are called the coordinates of u with respect to B and the above ordering.

2.2.2 Cardinality of the basis, dimension of V

Theorem 2.2. Let V be a vector space over the field F and B1 and B2 bases for V such that |B1 | =m
and |B2 | = n. Then, m = n.

Proof. Let the bases B1 and B2 be

B1 = {v1, . . . ,vm} and B2 = {w1, . . . ,wn}

and assume that m < n. Since {v1, . . . ,vm} is a basis then there exist x1, . . . ,xn ∈ F such that

w1 = x1v1+ · · ·+xmvm.

We know that w1 , 0 since B2 is a basis, thus at least one of x1, . . . ,xm is , 0. Without loss of
generality we may assume that x1 , 0. Then we have

x1v1 =w1−x2v2− · · ·−xmvm

Hence,

v1 =
1
x1

w1−
x2

x1
v2− · · ·−

xm

x1
vm.

The subspace W = Span (w1,v2, . . . ,vm) contains v1. Hence, W =V. We continue this procedure
until we replace all v2, . . . ,vm by w2, . . .wm. Thus, we have that the set. {w1, . . . ,wm} generates
V. Then for each i>m we have wi as a linear combination of w1, . . . ,wm. This is a contradiction
because w1, . . . ,wn are linearly independent since B2 is a basis. Hence, m ≥ n. Interchanging
the roles of B1 and B2 we get m = n.

□
Hence, we have the following definition.

Definition 2.7. Let V be a vector space and B a basis of V. The cardinality |B| is called is called the
dimension of V and denoted by dim(V) := |B|.

Vector spaces with a finite dimension are called finite dimensional. In this book we will
primarily study finite dimensional vector spaces.

Let V be a vector space. For analogy with the case V =R3, a subspace W of V of dimension
dim(W) = 1 is called a line and a subspace of dimension 2 is called a plane.

Theorem 2.3. If dim(V) = n and {v1, . . . ,vn} is a set of linearly independent elements in V, then
{v1, . . . ,vn} is a basis for V.
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Proof. Exercise. □

Corollary 2.1. Let V be a vector space and W a subspace of V. If dim(W) = dim(V) then W = V.

Proof. Take a basis B = {w1, . . .wn} of W. Hence, w1, . . . ,wn are linearly independent. Then
from the above theorem they generate V. □

Corollary 2.2. Let V be a vector space and W a subspace of V. Then dim(W) ≤ dim(V).

Proof. Exercise. □

Example 2.14. Let u =
[
1
3

]
and v =

[
2
7

]
be vectors in V =R2. What is the space W = Span (u,v)?

Solution: From the previous examples we know that dim(V) = 2. Then from the previous corollary.
dim(W) ≤ 2. Since u and v are not multiples of each other then they are independent. Hence,
dim(W) = 2. From Cor 2.1 we have that W =R2. □

2.2.3 Finding a basis of a subspace in Fn

Let w1, . . . ,wm be vectors in Rn and W = Span (w1, . . . ,wm). By Lem. 2.2, W is a subspace of
Rn. We want to find a basis for W. So first we need to check if w1, . . . ,wm are independent.
Hence, we would like to find scalars r1, . . . ,rm ∈R such that

r1w1+ · · ·+ rmwm = 0.

Let w1, . . . ,wm be as below

w1 =


w1,1
...

w1,n

 , w2 =


w2,1
...

w2,n

 , . . . . . .wm =


wm,1
...

wm,n

 (2.7)

Then
r1w1+ · · ·+ rmwm = 0

implies 
w1,1r1+w2,1r2+ · · ·+wm,1rm = 0
w1,2r1+w2,2r2+ · · ·+wm,2rm = 0
. . . . . . . . . . . . . . . . . . . . . . . .

w1,nr1+w2,nr2+ · · ·+wm,n rm = 0

Hence we have the system


w1,1 w2,1 . . . wm,1

w1,2 w2,2 . . . wm,2

. . . . . . . . . . . .

w1,n w2,n . . . wm,n

 ·


r1
r2
r3

rm


=



0
0
0

0


.
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which can be written as
[w1 |w2 | · · · |wm ] · [r1,r2, . . . ,rm]t = 0.

To solve this system we find the row-echelon form of the matrix

A = [w1 | w2 | . . . | wm].

If the row-echelon form has a pivot in every column then w1, . . . ,wm are linearly independent,
otherwise they are linearly dependent. The vectors which form a basis in this case are the
ones corresponding to columns with pivots. So we have the following algorithm:

Algorithm 3. Finding a basis of Span (w1, . . . ,wm) in Fn

Input: A subspace W = Span w1, . . . ,wm in Fn.
Output: A basis of W

(i) Form the matrix A = [w1 | w2 | . . . | wm]
(ii) Find the row-echelon form of A

(iii) The columns with pivots come from wi’s which form a basis for W.

Hence, we have the following:

Theorem 2.4. Let W = Span (v1,v2. . . . ,vs) be a subspace in Rn. Let A = [v1| . . . |vs]. Then a basis
for Col (A) is also a basis for W.

Proof. Exercise □

Example 2.15. Let W = Span (w1,w2,w3,w4) ⊂R4 such that

w1 =


1
2
3
1

 , w2 =


−1
3
1
5

 , w3 =


2
4
2
6

 , w4 =


3
3
1
5

 (2.8)

Find a basis for W.
Solution: We form the matrix A = [w1, . . . ,wn] and then find ref (A) which gives

A =


1 −1 2 3
2 3 4 3
3 1 2 1
1 5 6 5

 ref (A) =


5 0 0 −2
0 5 0 −3
0 0 5 7
0 0 0 0


Thus, the basis of W is B = {w1,w2,w3}. □

Theorem 2.5. dim(Rn) = n

Proof. Take the set

B =




1
0
0
...
0

 ,

0
1
0
...
0

 , . . . ,

0
...
0
0
1




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of elementary vectors. Obviously this set generatesRn since every vector inRn can be written
as a linear combination of elements in B.

Create the matrix A= [w1, . . . ,wn]. Then A= I so it is already in reduced row-echelon form.
Since every column has a pivot, then elements of B are linearly independent. □
The basis B is called the standard basis of Rn.

Example 2.16. Let P4 be the vector space of polynomials with real coefficients and degree≤ 4. Determine
whether { f1, f2, f3, f4, f5} given as below

f1 = 2x4
−x3+2x2

−1, f2 = x4
−x, f3 = x4+x3+x2+x+1, f4 = x2

−1, f5 = x−1

form a basis for P4.

Solution: We take the basis B = {x4,x3,x2,x,1} for P4. The reader should verify that this is a basis for
P4. Then the coordinates of f1, f2, f3, f4, f5 with respect to the basis B are

f1 =


2
−1
2
0
−1

 , f2 =


1
0
0
−1
0

 , f3 =


1
1
1
1
1

 , f4 =


0
0
1
0
−1

 , f5 =


0
0
0
1
−1

 .
We can determine whether the polynomials are independent by determining whether the corresponding
coordinate vectors in R5 are independent. The corresponding matrix is

A =
[

f1 | f2 | f3 | f4 | f5
]
=


2 1 1 0 0
−1 0 1 0 0
2 0 1 1 0
0 −1 1 0 1
−1 0 1 −1 −1


and its reduced row-echelon form is the identity matrix I5. Since every column has a pivot then the
vectors are independent in R5 and therefore f1, . . . f5 are independent in P4. The dimension of P4 is
dimP4 = 5. Hence, the set { f1, f2, f3, f4, f5} forms a basis for P4. □

Exercise 33. We have seen that for any field F, the set of polynomials F[x] with coefficients from F
forms a vector space over F. Find a basis for F[x].

2.2.4 A basis for Matn×n(R)

So far our examples of bases are from the spaces Rn. However, the above results hold for any
vector space. So what is a basis and the dimension of Matn×n(R)?

Example 2.17. Let V =Mat2×2(R). Find a basis for V and its dimension.

Solution: First we notice that every matrix A =
[
a b
c d

]
∈ V can be written as

A =
[
a b
c d

]
= a

[
1 0
0 0

]
+b

[
0 1
0 0

]
+ c

[
0 0
1 0

]
+d

[
0 0
0 1

]
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Hence, the set B = {M1,M2,M3,M4} where

M1 =

[
1 0
0 0

]
, M2 =

[
0 1
0 0

]
, M3 =

[
0 0
1 0

]
, M4 =

[
0 0
0 1

]
,

generates all of V. Are M1,M2,M3,M4 linearly independent? If

r1M1+ r2M2+ r3M3+ r4M4 = 0,

then [
r1 r2
r3 r4

]
=

[
0 0
0 0

]
which gives r1 = r2 = r3 = r4 = 0. Hence, B is a basis of V and dim(V) = 4. □

Remark 2.1. In general, one can find a basis of Matn×n(F) as above and show that the dimension is
n2.

2.2.5 Quaternions

A quaternion is an expression of the form

a+ b i+ c j+dk ,

where a,b,c,d ∈R are real numbers, and i, j,k are symbols that can be interpreted as unit-vectors
pointing along the three spatial axes. In practice, if one of a,b,c,dis 0, the corresponding term
is omitted; if a,b,c,d are all zero, the quaternion is the zero quaternion, denoted 0; if one of
b,c,d equals 1, the corresponding term is written simply i, j, or k.

Hamilton describes a quaternion q = a+b i+ c j+dk, as consisting of a scalar part and a
vector part. The quaternion

b i+ c j+dk

is called the vector part (sometimes imaginary part) of q, and a is the scalar part (sometimes
real part) of q. A quaternion that equals its real part (that is, its vector part is zero) is called
a scalar or real quaternion, and is identified with the corresponding real number. That is, the
real numbers are embedded in the quaternions. (More properly, the field of real numbers is
isomorphic to a subset of the quaternions. The field of complex numbers is also isomorphic
to three subsets of quaternions.) A quaternion that equals its vector part is called a vector
quaternion.

The set of quaternions is made a 4 dimensional vector space over the real numbers, with
basis B =

{
1, i, j,k

}
and by the component wise addition

(a1+b1 i+ c1 j+d1 k)+ (a2+ b2 i+ c2 j+d2 k) = (a1+ a2)+ (b1+b2) i+ (c1+ c2) j+ (d1+d2)k ,

and the component wise scalar multiplication

λ(a+ b i+ c j+dk) = λa+ (λb) i+ (λc) j+ (λd)k.
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A multiplicative group structure, called the Hamilton product, denoted by juxtaposition, can
be defined on the quaternions in the following way:

The real quaternion 1 is the identity element. The real quaternions commute with all other
quaternions, that is aq = qa for every quaternion q and every real quaternion a. In algebraic
terminology this is to say that the field of real quaternions are the center of this quaternion
algebra. The product is first given for the basis elements (see next subsection), and then
extended to all quaternions by using the distributive property and the center property of
the real quaternions. The Hamilton product is not commutative, but is associative, thus the
quaternions form an associative algebra over the reals. Additionally, every nonzero quaternion
has an inverse with respect to the Hamilton product:

(a+ b i+ c j+dk)−1 =
1

a2+b2+ c2+d2 (a− b i− c j−dk).

Exercises:

167. Let V be a vector space over F. If a set of
vectors is linearly independent in V, prove that the
set does not contain the zero vector.

168. Consider the set of all vectors x∈Rn, x=


x1
x2
...

xn

,
such that

∑n
i=1 xi = 0. Show that this set is a vector

space and find a basis for it.

169. Let W = Span (w1,w2,w3) ⊂R4 such that

w1 =


1
2
3
1

 , w2 =


−1
3
1
5

 , w3 =


1
4
0
6


Find a basis for W.

170. Let W = Span (w1,w2) ⊂R6 such that

w1 = [1,2,3,1,9,5]t,

w2 = [2,4,6,2,18,10]t

w3 = [4,8,12,4,36,20]t

Find a basis for W.

171. Prove that any setB ⊂Rn of n non-zero vec-
tors which are mutually perpendicular form a basis
for Rn.

172. Let V =Mat3×3(R). Find a basis for V and
its dimension.

173. Let V = F[x]. Show that f1 = x6 + x4 and
f2 = x6+3x4

−x are linearly independent.

174. Let F be a field and V := F[x] the vector
space of polynomials in x. Denote by Pn the space
of polynomials in V of degree ≤ n. Find a basis for
Pn.

175. Let V be the vector space of functions f :R→
R. Let W be the subspace of V such that

W := Span (sin2 x, cos2 x).

Show that W contains all constant functions.

176. Let V be the vector space of functions f :R→
R. Show that the set

{1,sinx,sin2x, . . . ,sinnx}

is an independent set of vectors in V.

177. Let V be the vector space of functions
f : R → R. Find a basis of the subspace
W = Span (3 − sinx,2sin2x − sin3x,3sin2x −
sin4x,sin5x− sin2x}.

178. Let V be the set of all matrices A ∈Matn(R)
such that tr(A) = 0. Prove that V is a vector space
and find its dimension.

81

https://leanpub.com/u/shaska
https://leanpub.com/lin-alg/


Linear Algebra Shaska, T.

2.3 Linear maps between vector spaces

In this section we will study maps between vector spaces. We are interested in maps which
will preserve the operations on the vector space. Let V and W be vector spaces over the same
field F.

Definition 2.8. A map T : U→ V is called a linear map over F if the following hold:
(i) ∀u1,u2 ∈U, T(u1+u2) = T(u1)+T(u2),

(ii) ∀r ∈ F, ∀u ∈U, T(r ·u) = r ·T(u)

We see some examples:

Example 2.18. Let V = Rn and A ∈Matn×n(F) be an n× n matrix. We define the following map
TA : V −→ V such that

T(x) = A ·x

From the properties of matrices it is easily checked that this is a linear map. □

Exercise 34. Let U and V be vector spaces over F. Denote the set of all linear maps L : U→ V by

L(U,V) := {L : U→ V | L is linear }

We define an addition in L(U,V) as the usual addition of functions and the scalar multiplication will
be the multiplication by a constant from F. In other words,

(L+T)(u) = L(u)+T(u) and r ∗L(u) = r ·L(u)

Prove that L(U,V) is an F-vector space.

From the above discussion, T : U→ V is a linear map between the vector spaces U and V
is equivalent as saying that T ∈ L(U,V). From now on we will use both notations.

Lemma 2.4. Let T : U→V be a linear map between the F-vector spaces U and V. Then the following
hold:

(i) T(0U) = 0V.
(ii) ∀u ∈U, T(−u) = −T(u).

Proof. The proof is straight forward since

T(0U) = T(u−u) = T(u)+T(−u) = T(u)−T(u) = 0W

Part ii) is obvious. □

Definition 2.9. Let T : U→ V be a linear map between the vector spaces U and V. The kernel of T,
denoted by ker (T), is defined to be the following subset of U;

ker (T) := {u ∈U | T(u) = 0W}

The image of T is defined to be following subset of V;

Img(T) := {v ∈ V | ∃u ∈U,T(u) = v}

A graphical interpretation of the kernel and the image of T is given in Fig. 2.2.
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U

ImgT

kerT

V

0

Figure 2.2: Kernel and image of a linear map

Exercise 35. Let T : U→ V be a linear map. Then,
(i) ker (T) is a subspace of U

(ii) Img(T) is a subspace of V.

The following lemma is helpful in checking whether a liner map is injective or not.

Lemma 2.5. Let T ∈ L(U,V). Then ker (T) = {0V} if and only if T is injective.

Proof. Assume that ker (T) = {0V}. Then, for every v1,v2 ∈ V such that T(v1) = T(v2) we have

T(v1)−T(v2) = 0 =⇒ T(v1−v2) = 0 =⇒ (v1−v2) ∈ ker (T)

which means that v1−v2 = 0 or v1 = v2.
Assume that T is injective and let v ∈ ker (T). Then T(v)= T(0V)= 0W implies that v= 0V. □

Exercise 36. Let A = [ai, j] ∈Matn×n(F) and tr(A) denote its trace. Show that the following map

tr : Matn×n(F) −→ F
A −→ tr(A)

is a linear map.

Example 2.19. Let C(R) denote the vector space all differentiable functions f :R→R. Consider the
map

D : C(R)→ C(R)
f (x)→D( f (x)) = f ′(x)

where f ′(x) is the derivative of f (x). Show that D is a linear map. □

Exercise 37. Let L : Rn
→Rn be a linear map such that L(x) = Ax, for some matrix A ∈Matn×n(R).

Prove that ker (L) =Null(A).

Theorem 2.6. Let T : V→W be an injective linear map. If v1, . . . ,vn are linearly independent elements
in V, then T(v1), . . . ,T(vn) are linearly independent elements in W.
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Proof. Let
y1T(v1)+ · · ·+ ynT(vn) = 0W

for y1, . . . , yn scalars. Then
T(y1v1)+ · · ·+T(ynvn) = 0W

which implies that
T(y1v1+ · · ·+ ynvn) = 0W

Since T is injective then ker (T) = {0} and

y1v1+ · · ·+ ynvn = 0V

This implies that y1 = . . .= yn = 0, since v1, . . . ,vn are linearly independent. Thus T(v1), . . . ,T(vn)
are linearly independent elements in W. □

Theorem 2.7. If V is a finite dimensional vector space over F and T ∈ L(V,W), then

dimV = dim ker (T)+dim Img(T)

Proof. Let B = {u1, . . . ,um} be a basis for ker (T). Then we can extend this to a basis for V, say
B′ = {u1, . . . ,um,v1, . . . ,vn}. Hence, dimV =m+n. Now it is enough to prove that dimImg(T) =
n.

Let u ∈U. Then
u = a1u1+ · · ·+ amum+b1v1+ · · ·+ bnvn

which implies that
T(u) = b1T(v1)+ · · ·+ bnT(vn),

since u1, . . .um ∈ker (T). Hence, T(v1), . . . ,T(vn) span Img(T). From the above theorem T(v1), . . . ,T(vn)
are linearly independent. Therefore, {T(v1), . . . ,T(vn)} is a basis for Img(T) and dimImg(T) = n.

□

Theorem 2.8. Let T : V→W be a linear map and dimV = dimW. If ker (T) = {0} or Img(T) =W,
then T is bijective.

Proof. If ker (T)= {0} then T is injective and dim Img(T)≥ dimV = dimW. Thus ImgT =W and
T is surjective. If Img(T) =W then T is surjective and dimker (T) = 0. Thus ker (T) = {0V} and
T is also injective. □

Exercise 38. If V and W are finite dimensional vector spaces such that dimV > dimW, then no linear
map from V to W is injective.

Exercise 39. If V and W are finite dimensional vector spaces such that dimV < dimW, then no linear
map from V to W is surjective.

Example 2.20. Let A =

−1 2 3
4 5 6
7 8 9

 and LA the linear map LA : R3
−→ R3 such that LA(x) = A · x.

Determine whether the map LA is bijective.
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Solution: We determine first ker (LA). More precisely we want to find all x ∈ R3 such that LA(x) =
Ax = 0. Hence ker (LA) =Null(A). To find the nullspace we proceed as before The reduced row-echelon

form is ref (A) =

1 0 0
0 1 0
0 0 1

. Hence rank (A) = 3, null (A) = 0 and nullspace of A is Null(A) = {0}.

Thus, ker (LA)= {0} and LA is injective. From the previous theorem we conclude that LA is bijective. □

2.3.1 Composition of linear maps, inverse maps, isomorphisms

It is natural to ask whether the composition of two linear maps is linear or if the inverse of a
linear map is linear.

Theorem 2.9. Let U, V, W be vector spaces over some field F and

U
f
−→ V

g
−→W

be linear maps. Then the composition map

g◦ f : U −→W

is also linear.

Proof. Let u1,u2 ∈U. Then

(g◦ f )(u1+u2) = g
(

f (u1+u2)
)

= g
(

f (u1)+ f (u2)
)

= (g◦ f )(u1)+ (g◦ f )(u2)

and

(g◦ f )(r ·u) = g
(

f (r ·u
)

= g(r · f (u)) = r · (g◦ f )(u)

Hence, g◦ f is linear. □

Example 2.21. Let A and B be matrices of dimension m×n and n× s respectively and LA,LB be the
linear maps

Rm LA
−→Rn LB

−→Rs

such that LA(x) = Ax and LB(x) = Bx. The composition map LB ◦LA : Rm
−→Rs is given by

(LB ◦LA)(x) = (BA) x

and it is easily verified to be linear. □

Exercise 40. Let U,V be vector spaces over a field F and f : U −→ V be a linear map which has an
inverse f−1 : V −→U. Then, f−1 is linear.
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Definition 2.10. Let U,V be vector spaces over the field F and

L : U −→ V

a linear map which has an inverse. Then, L is called an isomorphism and U and V are called
isomorphic spaces.

Let us see an example of an isomorphism.

Example 2.22. Let U = R2 which is a vector space over R and take its standard basis B = {i, j}. Let
V = P1 the space of degree one polynomials with real coefficients. We have seen that P1 is a vector space
of dimension two over R and a basis of P1 can be taken as B′ = {1,x}. Define a map L : U→ V such
that

L(ai+ bj) = a+bx

Check that this is an isomorphism.

Exercise 41. Let L :R2
→R2 be any invertible linear transformation. Show that the image of the unit

circle under L is an ellipse E. Hence, isomorphisms do not necessarily preserve geometric shapes. In
the coming chapters we will discuss in detail those linear maps which do preserve geometry.

We assume that F is a field of characteristic 0 and V,W are vector spaces over F.

Theorem 2.10. Any two finite dimensional vector spaces V and W over F are isomorphic if and only
if they have the same dimension.

Proof. If V and W are isomorphic, then there exists a bijective linear map ϕ : V→W. Since ϕ
is an isomorphism, it preserves linear independence and spanning sets. That is:

- If {v1, . . . ,vn} is a basis of V, then {ϕ(v1), . . . ,ϕ(vn)} is a linearly independent set in W.
- Since ϕ is surjective, {ϕ(v1), . . . ,ϕ(vn)} spans W.

Thus, {ϕ(v1), . . . ,ϕ(vn)} is a basis for W, meaning W has dimension n, so dimW = dimV.
Assume that V and W are vector spaces over F with the same finite dimension, say

dimV = dimW = n. By the definition of dimension, there exist bases

BV = {v1,v2, . . . ,vn} for V, BW = {w1,w2, . . . ,wn} for W.

We define a map ϕ : V→W by specifying how it acts on the basis elements:

ϕ(vi) = wi, for i = 1,2, . . . ,n.

Since any vector in V can be uniquely expressed as a linear combination of basis elements, say

v = a1v1+ a2v2+ · · ·+ anvn,

we define ϕ on general vectors by

ϕ(v) = a1w1+ a2w2+ · · ·+ anwn.

This map is linear because for any v,v′ ∈ V and scalars α,β ∈ F, we have

ϕ(αv+βv′) = αϕ(v)+βϕ(v′).
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Moreover, ϕ is bijective because
- Injectivity: Suppose ϕ(v) = 0, meaning

a1w1+ a2w2+ · · ·+ anwn = 0.

Since {w1, . . . ,wn} is a basis, the only solution is a1 = a2 = · · ·= an = 0, which implies v= 0. Hence,
ker (ϕ) = {0}, so ϕ is injective.

- Surjectivity: Any element w ∈W can be written as

w = b1w1+b2w2+ · · ·+bnwn

for some scalars b1, . . . ,bn. But then

w = ϕ(b1v1+ b2v2+ · · ·+ bnvn),

which shows that w is in the image of ϕ, meaning ϕ is surjective.
Since ϕ is a bijective linear map, it is an isomorphism, so V �W. This completes the

proof. □

Corollary 2.3. Any n-dimensional vector space over F is isomorphic to Fn.

Exercises:

179. Let T : R→ R such that T(x) = sinx. Is T
an isomorphism? Explain.

180. Let L([0,1],R) denote the set of integrable
functions on the interval [0,1]. Check whether the
map

ϕ : L([0,1],R) −→L(R)

such that

f (x) =
∫ 1

0
f (x) dx

is a linear map.

181. Let T : Rn
→ Rn be a linear map given by

T(x) = Ax for some n × n invertible matrix A.
Show that T is a bijection.

182. Let P4 be the vector space of degree ≤ 4 poly-
nomials with real coefficients. Show that P4 is
isomorphic to R5. Generalize this result. In other
words, prove that Pn is isomorphic to Rn+1.

183. Can you find two vector spaces over the same
field of finite dimension which are not isomorphic?
Explain.

184. We know thatC is a vector space overR. De-
fine the map T : C→ C, such that T(z) = z, where
z is the complex conjugate of z; see ??. Is T a linear
map?

185. Let T :C→C, such that T(z) = z+z0, where
z0 is a fixed complex number. Is T an isomorphism?

186. Let T : C→ C, such that

T(z) =


1
z

for z , 0

0 for z = 0

Is T an isomorphism? Explain.

187. Let L : Rn
→ Rn be a linear map such that

L(x) = Ax. Then L is an isomorphisms if and only
if A is invertible.
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2.4 Direct sums and direct products

Let is start by recalling some basic facts about subspaces.

Exercise 42. Let U and W be subspaces of a vector space V.
(i) Show that U∩W ⊂U∪W ⊂U+W.

(ii) When is U∪W a subspace of V?
(iii) What is the smallest subspace of V containing U∪W?

Let V be a finite dimensional vector space and U,W its subspaces. We define the sum U+W
of subspaces U and W as follows

U+W := {u+w | u ∈U,w ∈W}

This set U+W is a subspace of V; see Problem 156 at the end of this section.

Lemma 2.6. Let V be a finite dimensional vector space and U and W subspaces of V. Then U+W is
a subspace of V of dimension

dim(U+W) = dimU+dimW−dim(U∩W).

Proof. Let us show first that U+W is a subspace. Clearly 0 ∈U+W since 0 ∈U and 0 ∈W. Let
v1,v2 ∈U+W. Then exists u1,u2 ∈U and w1,w2 ∈W such that

v1 = u1+w1 and v2 = u2+w2.

Hence,
v1+v2 = (u1+w1)+ (u1+w2) = (u1+u2)+ (w1+w2) ∈U+W.

Hence U+W is closed under addition. Similarly we show that U+W is closed under multi-
plying with a scalar. Thus, U+W is a subspace.

Let dimU = m and dimW = n. Since U ∩W is a subspace of V, then U ∩W is finite
dimensional, say dim(U∩W) = s.

□

Example 2.23. Consider V = R3, U = Span (u), and W = Span (v). Hence, U (resp. W) contains
all vectors parallel to u (resp. parallel to v). Therefore a vector x ∈U+W will be written as

x = λ1u+λ2v, for λ1,λ2 ∈R.

Therefore, the sum of U+W is the uv-plane.

2.4.1 Direct sums

We say that V is a direct sum of U and W, denoted by V = U⊕W, if every element v in V is
expressed uniquely as a sum v = u+w, for some u ∈U and w ∈W.

Theorem 2.11. Let U,W be subspaces of the vector space V. If V =U+W and U∩W = {0}, then

V =U⊕W.
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Proof. Let v in V and v = u+w for some u ∈ U and w ∈W. To prove that V is a direct sum
we must show that u and w are uniquely determined. Assume that exist u′ and w′ such that
v = u′+w′. Then,

v−v = (u−u′)+ (w−w′) = 0

Hence, u−u′ =w′−w. Since u−u′ ∈U and w−w′ ∈W, then

(u−u′) = (w′−w) ∈U∩W = {0}

Therefore, u = u′ and w =w′. This completes the proof. □

Theorem 2.12. Let V be a finite dimensional vector space over F and W a subspace of V. Then, there
is a subspace U ⊂ V such that

V =U⊕W

Proof. Let dimV= n and dimW = r where r< n. LetB= {b1, . . . ,bn}be a basis for V. Then we can
pick r elements of B which form a basis for W, say b1, . . . ,br. Let U := {br+1, . . . ,bn} Obviously
V =U+W. Also U∩W = {0}, otherwise b1, . . . ,bn would not be linearly independent.

□
The subspace U is called the complement of W in V.

Example 2.24. Let V = R3 and B = {i, j,k} its standard basis. Let U := Span (i, j). Then, from the
above theorem,

V :=U⊕W

where W = Span (k). Thus R3 = Span (i, j)⊕ Span (k). □

The next result is an immediate consequence of Lem. 2.6. We also provide a direct proof.

Theorem 2.13. Let V be a finite dimensional vector space over F such that V =U⊕W. Then,

dim(V) = dim(U)+dim(W)

Figure 2.3: A subspace in R3

89

https://leanpub.com/u/shaska
https://leanpub.com/lin-alg/


Linear Algebra Shaska, T.

Proof. Let B1 and B2 be bases for U and W respectively. Say

B1 = {u1, . . . ,ur} and B2 = {w1, . . . ,ws}

Then every element of U can be written as a unique linear combination

u = x1u1+ · · ·+xrur

and every element of W can be written as a unique linear combination

w = y1w1+ · · ·+ yswr

Hence, every element of V can be written as a unique linear combination

v = x1u1+ · · ·+xrur+ y1w1+ · · ·+ yswr

Thus the set {u1, . . . ,ur,w1, . . . ,ws} forms a basis for V. □
The definition of the direct sum can be generalized to several summands. We say that

V =
n⊕

i=1

Vi = V1⊕ · · ·⊕Vn

if every element in V can be written uniquely as a sum

v = v1+ · · ·+vn, with vi ∈ Vi.

2.4.2 Direct products

The notion of direct products is based on the Cartesian products. We review some of the
standard terminology. Let U and W be vector spaces over some field F. We let U×W be the
set of all ordered pairs (u,w) such that u ∈U and w ∈W, i.e.,

U×W := {(u,w) | u ∈U,w ∈W}

We define the addition of any two pairs (u1,w1) and (u2,w2) as follows

(u1,w1)+ (u2,w2) = (u1+u2,w1+w2)

The scalar multiplication is defined as follows: for every r ∈ F,

r (u,w) = (ru,rw)

Exercise 43. Show that U×W with this addition and scalar multiplication is a vector space over F.

Definition 2.11. The vector space U×W is called the direct product of U and W.

Lemma 2.7. Let U and W be finite dimensional vector spaces over some field F. Then,

dim(U×W) = dimU+dimW (2.9)
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Proof. Assume that B1 = {u1, . . . ,un} is a basis for U and B2 = {w1, . . . ,wm} a basis for W.
Consider the set

B = {(u1,0W), (u2,0W), . . . , (un,0W), (0U,w1), (0U,w2), . . . , (0U,wm).},

It is easy to show that B is a linearly independent set. Let (u,w) ∈U×W. Then

u = x1u1+ . . .+xnun and w = y1w1+ · · ·+ ymwm,

for some scalars x1, . . . ,xn, y1, . . . , ym ∈ F. Hence (u,w) can be expressed as a linear combination
of elements in B via

(u,w) =
(
x1u1+ . . .+xnun, y1w1+ · · ·+ ymwm

)
= (x1u1+ . . .+xnun,0W)+

(
0U, y1w1+ · · ·+ ymwm

)
= (x1u1,0W)+ . . .+ (xnun,0W)+ (0U, y1w1)+ · · ·+ (ymwm)
= x1(u1,0W)+ · · ·+xn(un,0W)+ y1(0U,w1)+ · · ·+ ym(0U,wm)

This completes the proof.
□

Example 2.25. The simplest illustration of the idea of the proof above is when we take U = R and
W =R. Take B1 =B2 = {1}. then,

B = {(1,0), (0,1)},

which is our standard bases {i, j}.

The definition of the direct product can be generalized to several factors. For example

V :=
n∏

i=1

Vi = V1× · · ·×Vn

is the set of n-tuples where addition and scalar multiplication are defined coordinate-wise.
Using the lemma above we can prove that

dim

 n∏
i=1

Vi

 = dim(V1)+ · · ·+dim(Vn)

Exercise 44. Prove that:
(i) Rn is a direct product Rn =R× · · ·×R

(ii) Rn
×Rm is a vector space of dimension m+n.
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Exercises:

188. Let V =R2 and W be the subspace generated

by w =
[
2
3

]
. Let U be the subspace generated by

u =
[
1
1

]
. Show that V is the direct sum of W and

U. Can you generalize this to any two vectors u
and w?

189. Let V =R3. Let W be the space generated by

w =

100
, and let U be the subspace generated by

u1 =

110
 and u2 =

011
. Show that V is the direct

sum of W and U.

190. Let u and v be two nonzero vectors in R2.
If there is no c ∈ R such that u = cv, show that
{u,v} is a basis of R2 and that R2 is a direct sum
of the subspaces generated by U = Span (u) and
V = Span (v) respectively.

191. Let U and W be subspaces of V. What are
U+U, U+V? Is U+W =W+U?

192. Let U,W be subspaces of a vector space V.
Show that

dimU+dimW = dim(U+W)+dim(U∩W)

193. Let F be a field, V =Mat2×2(F),

U :=
{[

a b
−b a

]
| a,b ∈ F

}
and

W :=
{[

a b
b −a

]
| a,b ∈ F

}
.

Show that:
(i) U and W are subspaces of V.

(ii) V =U⊕W

194. Let V be a vector space over F and S the set
of all subspaces of V.

(i) Consider the operation of subspace addition
in S. Show that there is a zero in S for this
operation and that the operation is associa-
tive.

(ii) Consider the operation of intersection in S.
Show that this operation is associative. Is
there an identity for this operation (i.e., there
is an E ∈ S such that A∩E = A for all E in
S)?

195. Let A be an invertible 3 by 3 matrix. Prove
that B = {u,v,w} is a basis for R3 if and only if
B′ = {Au, Av, Aw} is a basis for R3.

196. Let Ax = b be a linear system of n equations
and n unknowns. How many solutions has this
system if rank (A) = n? What if rank (A) < n ?
Explain.

197. Find a basis for Span (w1,w2,w3,w4) inR4

where w1, . . . ,w4 are given as below:

w1 =


1
0
3
1

 , w2 =


−1
3
1
5

 , w3 =


1
4
2
1

 , w4 =


3
0
1
5


198. Let V = R2, W = Span

([
2
3

])
, and U =

Span
([
−1
1

])
. Show that V is the direct sum of

W and U.

199. Let B := {u,v,w} such that

u =

123
 , v =

 1
−1
1

 , w =

131


Is B a basis for R3? Justify your answer.

200. Let V = Matn(R). Find the matrices that
commute with every element of V.

201. Let GL2(F) denote the set of matrices in
Mat2(F) which have an inverse. Is GL2(F) a sub-
space of Mat2(F)? Justify your answer.
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2.5 Quotient spaces

In many mathematical contexts, we often encounter situations where we want to study a
space by identifying elements that differ by some well-defined structure. Quotient spaces
provide a natural way to do this in linear algebra by “collapsing” a subspace to a single point
and considering the resulting structure. This concept plays a fundamental role in simplifying
problems, defining new spaces, and understanding the relationship between vector spaces
and their subspaces.

Let V be a vector space over a field F and W be a subspace of V. We define an equivalence
relation ∼ on V by stating that

x ∼ y if x−y ∈W

Exercise 45. Prove that this is an equivalence relation as defined in ??

Denote the set of all equivalence classes of this relation by V/W. The equivalence class (or,
in this case, the coset) of x is often denoted by

[x] = x+W

since it is given by
[x] = {x+w : w ∈W} .

Definition 2.12. The quotient space V/W is then defined as V/ ∼, the set of all equivalence classes
over V by ∼. Scalar multiplication and addition are defined on the equivalence classes by

[x]+ [y] = [x+ y]
α[x] = [αx],

for all α ∈ F.

Lemma 2.8. These operations are well-defined (i.e. do not depend on the choice of representative of the
equivalence class).

Proof. To show that the operations are well-defined, we need to prove that the choice of
representatives does not affect the results of addition and scalar multiplication.

Let x, y ∈ V and suppose x′ ∼ x and y′ ∼ y, meaning that there exist w1,w2 ∈W such that
x′ = x+w1 and y′ = y+w2. We show that addition is well-defined:

[x′]+ [y′] = [x+w1]+ [y+w2] = [(x+w1)+ (y+w2)] = [x+ y+ (w1+w2)].

Since w1 +w2 ∈W (because W is a subspace), it follows that [x+ y] = [x′ + y′], proving that
addition is well-defined.

For scalar multiplication, let α ∈ F. Then,

α[x′] = α[x+w1] = [αx+αw1].

Since αw1 ∈W (again because W is a subspace), it follows that [αx] = [αx′], proving that scalar
multiplication is well-defined. □
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Lemma 2.9. The V/W together with above operations is a vector space over F.

Proof. To verify that V/W is a vector space, we need to check that it satisfies the vector space
axioms.

1. Closure under addition and scalar multiplication: This follows directly from the definition
of the operations and the proof that they are well-defined.

2. Associativity of addition: Given [x], [y], [z] ∈ V/W, we have

([x]+ [y])+ [z] = [x+ y]+ [z] = [(x+ y)+ z] = [x+ (y+ z)] = [x]+ [y+ z] = [x]+ ([y]+ [z]).

3. Commutativity of addition: Since addition in V is commutative, we have [x]+ [y] = [x+ y] =
[y+x] = [y]+ [x].

4. Existence of an additive identity: The set [0] (i.e., the equivalence class of the zero vector)
serves as the additive identity since [x]+ [0] = [x+0] = [x].

5.Existence of additive inverses: For each [x], its inverse is given by [−x], since [x]+ [−x] =
[x−x] = [0].

6. Distributive properties: The distributive laws follow from those in V:

α([x]+ [y]) = α[x+ y] = [α(x+ y)] = [αx+αy] = [αx]+ [αy],

(α+β)[x] = [(α+β)x] = [αx+βx] = [αx]+ [βx].

7. Associativity of scalar multiplication: For α,β ∈ F,

(αβ)[x] = [(αβ)x] = [α(βx)] = α[βx].

8. Identity in scalar multiplication: Since 1x = x in V, we have 1[x] = [1x] = [x].
Since all vector space axioms are satisfied, V/W is a vector space over F. □

□
The mapping that associates to v ∈ V the equivalence class [v] is known as the quotient

map or the canonical projection of V onto W. The concept of a quotient space is fundamental
in mathematics.

Theorem 2.14 (Isomorphism Theorem). Let U, V be vector spaces over a scalar fieldF andϕ : U→V
a linear map. Then the quotient space U/kerϕ is isomorphic to Imgϕ,

U/kerϕ � Imgϕ

Proof. Define a mapΨ : U/kerϕ→ Imϕ by

Ψ([u]) = ϕ(u),

where [u] denotes the equivalence class of u in U/kerϕ.
Suppose u′ ∼ u, meaning u′−u ∈ kerϕ. Then

ϕ(u′)−ϕ(u) = ϕ(u′−u) = 0,

so ϕ(u′) = ϕ(u), ensuring thatΨ([u′]) =Ψ([u]). Thus,Ψ is well-defined.
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For any [u1], [u2] ∈U/kerϕ and α ∈ F,

Ψ([u1]+ [u2]) =Ψ([u1+u2]) = ϕ(u1+u2) = ϕ(u1)+ϕ(u2) =Ψ([u1])+Ψ([u2]).

Similarly,
Ψ(α[u]) =Ψ([αu]) = ϕ(αu) = αϕ(u) = αΨ([u]).

Thus,Ψ is linear.
SupposeΨ([u]) = 0, i.e., ϕ(u) = 0. This means u ∈ kerϕ, so its equivalence class is [0]. Thus,

[u] = [0], proving injectivity.
By definition, the image ofΨ is Imϕ, makingΨ surjective.
SinceΨ is a bijective linear map, it is an isomorphism. □

Lemma 2.10. Let U be a finite-dimensional vector space over a field F, and let W be a subspace of U.
If {w1,w2, . . . ,wm} is a basis for W, then there exist vectors {um+1,um+2, . . . ,un} in U such that

{w1,w2, . . . ,wm,um+1,um+2, . . . ,un}

forms a basis of U. The set
{[um+1], [um+2], . . . , [un]}

forms a basis of the quotient space U/W, and

dimU/W = dimU−dimW.

Proof. Since W is a subspace of U, we can extend the basis {w1, . . . ,wm} of W to a basis of U by
adding vectors {um+1, . . . ,un} so that

{w1, . . . ,wm,um+1, . . . ,un}

forms a basis for U. This implies that every vector in U can be uniquely expressed as

m∑
i=1

αiwi+

n∑
j=m+1

β ju j,

where αi,β j ∈ F.
Now, consider the quotient space U/W. The elements of U/W are cosets of the form

[x] = x+W.

We claim that the set of cosets
{[um+1], [um+2], . . . , [un]}

forms a basis of U/W.
Any coset in U/W has a representative of the form

x =
m∑

i=1

αiwi+

n∑
j=m+1

β ju j.
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Since elements of W are identified with zero in U/W, we have

[x] =

 n∑
j=m+1

β ju j

 = n∑
j=m+1

β j[u j].

Thus, every coset is a linear combination of [um+1], . . . , [un].
Suppose there exist scalars γm+1, . . . ,γn such that

∑n
j=m+1γ j[u j] = 0. This means that∑n

j=m+1γ ju j ∈W. Since the vectors {um+1, . . . ,un} are linearly independent from W in U, it
follows that all γ j = 0. Thus, the cosets [um+1], . . . , [un] are linearly independent.

Since these cosets are linearly independent and span U/W, they form a basis of U/W. The
number of these basis elements is

n−m = dimU−dimW.

Thus, dimU/W = dimU−dimW. □

Theorem 2.15. Let V be an n-dimensional vector space over F and W a subspace of V. Then

dimV = dimW+dimV/W

Proof. Let B = {v1, . . . ,vn} be a basis of V. If all v1, . . . ,vn ∈W then V =W and the theorem is
trivial. Without loss of generality assume v1, . . . ,vr <W and vr+1, . . . ,vn ∈W. Then vr+1, . . . ,vn
form a basis for W. Hence, dimW = n− r.

Let π : V→ V/W be the natural projection. From Lem. 2.10 the elements π(v1), . . . ,π(vr)
form a basis of V/W. Thus, dimV/W = r. This completes the proof. □

A subspace W of V is said to have co-dimension r if V/W has dimension r.

Exercises:

202. Let V =R3 and W = Span



100



.

1. Describe the cosets of W in V geometrically.

2. Give three different column vectors that be-
long to the same coset in V/W.

3. Is the coset


234


 the same as the coset


254


?

Explain.

203. Let V =Rn and W be a subspace of V. What
does the quotient space V/W "look like" geomet-
rically? (Hint: Think about the case where W

is a line or a plane in R3 represented by column
vectors.)

204. Consider V =Z (integers) as a vector space
over Q (rationals) and W = 5Z (multiples of 5).
The equivalence relation is x ∼ y if x− y ∈ 5Z.
Work through the well-definedness proof for addi-
tion and scalar multiplication in this specific ex-
ample. What goes wrong if we try to define scalar
multiplication with real numbers instead of ratio-
nals?

205. Let T : V →W be a linear transformation.
Explain how the Isomorphism Theorem relates the
quotient space V/kerT to the image of T. Give a
concrete example with specific vector spaces (using
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column vector notation) and a linear transforma-
tion (represented by a matrix).

206. Let V = R2 and W = Span
{{[

1
1

]}}
. De-

scribe the quotient map π : V→ V/W. What is

π

([
2
3

])
?

207. Let V = R4 and W = Span




1
0
1
0

 ,

0
1
0
1



.

Find a basis for V/W. Express your basis vectors
as cosets.

208. Let V=R3 and W =


xyz

 ∈ V : x+ y+ z = 0

.

Construct an explicit isomorphism between V/W
and R.

209. Let V be a finite-dimensional vector space and
W1,W2 be subspaces of V. Prove that

dim(W1+W2)=dimW1+dimW2−dim(W1∩W2).

(Hint: Consider the quotient space (W1 +
W2)/W2.)

210. Let V be a finite-dimensional vector space
and W be a subspace of V. The annihilator of
W, denoted W0, is the set of all linear functionals
f : V→ F such that f (w) = 0 for all w ∈W. Prove
that (V/W)∗ �W0 where ∗ denotes the dual space.

211. Let V be a vector space and W be a subspace.
Prove the following universal property: If U is any
vector space and T : V→U is a linear transforma-
tion such that T(w)= 0 for all w ∈W, then there ex-
ists a unique linear transformation T̄ : V/W→U
such that T̄ ◦π = T, where π : V→ V/W is the
canonical projection.

212. Let V be a vector space, and W and U be
subspaces of V such that U ⊆ W. Prove that
V/U/W/U � V/W.

213. Explore the relationship between exact se-
quences of vector spaces and quotient spaces. For
example, if 0→ U→ V→W→ 0 is an exact se-
quence, how do the dimensions of U, V, and W
relate?

97

https://leanpub.com/u/shaska
https://leanpub.com/lin-alg/


Linear Algebra Shaska, T.

2.6 Bilinear maps and the dual space

This section introduces bilinear maps and the dual space, two interconnected concepts that are
fundamental in advanced linear algebra and have significant applications in various fields, in-
cluding machine learning, physics, and engineering. Understanding these concepts provides
a deeper understanding of vector spaces and lays the groundwork for more sophisticated
mathematical tools.

Bilinear maps generalize the familiar dot product and provide a powerful way to study
relationships between vector spaces. They are essential for understanding quadratic forms,
tensor products, and other important mathematical objects. The dual space, closely related
to bilinear forms, provides a new perspective on vector spaces by considering the set of
all linear functionals defined on them. This perspective is crucial in functional analysis and
optimization, and it plays a subtle but important role in machine learning, particularly in areas
like kernel methods and regularization. This section will not only define these concepts but
also motivate their importance and illustrate their connections to previously studied topics,
preparing you for their use in more advanced contexts.

2.6.1 Bilinear maps

Let U, V and W be three vector spaces over the same base field F. A bilinear map is a function
ϕ : U×V→W such that it satisfies the following properties.

(i) For any λ ∈ F, ϕ(λu,v) = ϕ(v,λu) = λ(ϕ(u,v)
(ii) For any u1,u2 ∈U and v1,v2 ∈ V ϕ(u1+u2,v) = ϕ(u1,v)+ϕ(u2,v) and

If U = V and we have ϕ(u,v) = ϕ(v,u) for all u,v ∈ U, then we say that ϕ is symmetric. If
W =F, then the map is called a bilinear form. We will study bilinear form again in the coming
lectures. First let us see an example which captures the heart of this topic.

Example 2.26. Let A ∈Matm×n(F), say A = [ai, j]. Define a map

ϕA : Fm
× Fn

→ F

(u,v)→ utAv

Then ϕ is bilinear. We will call ϕA the associated map of A. Thus,

ϕA(u,v) = [u1, . . . ,un]


a1,1 . . . a1,n
a2,1 . . . a2,n
...

...
...

an,1 . . . an,n



v1
v2
...

vn


Remark 2.2. Notice that the properties of the bilinear maps are very similar to those of the dot product.
We will explore this similarity further in the coming lectures.

Exercise 46. Let A be an n×n symmetric matrix. Show that the map

ϕA : Fn
× Fn

→ F

(u,v)→ utAv
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satisfies
ϕA(u,v) = ϕA(v,u)

and therefore has the properties of the dot product.

Exercise 47. Prove the converse of the above statement.

Lemma 2.11. Let U, V, and W be vector spaces over F. The set of bilinear maps Bil(U×V,W) is a
vector space.

Proof. To prove that Bil(U×V,W) is a vector space, we need to show that it satisfies the vector
space axioms. We will focus on the key axioms, as the others follow similarly.

Let ϕ1,ϕ2 ∈ Bil(U×V,W). We need to show that ϕ1+ϕ2 is also a bilinear map, where the
addition is defined pointwise:

(ϕ1+ϕ2)(u,v) = ϕ1(u,v)+ϕ2(u,v) ∀u ∈U,v ∈ V.

We must verify bilinearity. For any scalar λ ∈ F and vectors u,u′ ∈U and v,v′ ∈ V:

(ϕ1+ϕ2)(λu,v) = ϕ1(λu,v)+ϕ2(λu,v) = λϕ1(u,v)+λϕ2(u,v) = λ(ϕ1(u,v)+ϕ2(u,v)) = λ(ϕ1+ϕ2)(u,v)
(ϕ1+ϕ2)(u,λv) = ϕ1(u,λv)+ϕ2(u,λv) = λϕ1(u,v)+λϕ2(u,v) = λ(ϕ1(u,v)+ϕ2(u,v)) = λ(ϕ1+ϕ2)(u,v)

(ϕ1+ϕ2)(u+u′,v) = ϕ1(u+u′,v)+ϕ2(u+u′,v) = ϕ1(u,v)+ϕ1(u′,v)+ϕ2(u,v)+ϕ2(u′,v)
= (ϕ1+ϕ2)(u,v)+ (ϕ1+ϕ2)(u′,v)

(ϕ1+ϕ2)(u,v+v′) = ϕ1(u,v+v′)+ϕ2(u,v+v′) = ϕ1(u,v)+ϕ1(u,v′)+ϕ2(u,v)+ϕ2(u,v′)
= (ϕ1+ϕ2)(u,v)+ (ϕ1+ϕ2)(u,v′)

Thus, ϕ1+ϕ2 is bilinear.
Let ϕ ∈ Bil(U×V,W) and λ ∈ F. We need to show that λϕ is also a bilinear map, where the

scalar multiplication is defined pointwise:

(λϕ)(u,v) = λϕ(u,v) ∀u ∈U,v ∈ V.

Again, we verify bilinearity:

(λϕ)(µu,v) = λϕ(µu,v) = λµϕ(u,v) = µ(λϕ)(u,v)
(λϕ)(u,µv) = λϕ(u,µv) = λµϕ(u,v) = µ(λϕ)(u,v)

(λϕ)(u+u′,v) = λϕ(u+u′,v) = λ(ϕ(u,v)+ϕ(u′,v)) = (λϕ)(u,v)+ (λϕ)(u′,v)
(λϕ)(u,v+v′) = λϕ(u,v+v′) = λ(ϕ(u,v)+ϕ(u,v′)) = (λϕ)(u,v)+ (λϕ)(u,v′)

Thus, λϕ is bilinear.
The zero map ζ : U×V→W defined by ζ(u,v) = 0W for all u ∈ U,v ∈ V is clearly bilinear

and serves as the zero element in Bil(U×V,W).
The remaining axioms (associativity of addition, existence of additive inverses, distribu-

tivity) follow directly from the corresponding properties of vector addition and scalar multi-
plication in W. Therefore, Bil(U×V,W) is a vector space. □
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Theorem 2.16. Given a bilinear map ϕ : Fm
×Fn

→ F, there exists a unique matrix A such that

ϕ(u,v) = utAv.

which we denote it by ϕA := ϕ. The set of all bilinear maps of Fm
×Fn into F is a vector space, denoted

by Bil(Fm
×Fn,F) and the correspondence

A→ ϕA

is an isomorphism between Matm×n(F) and Bil(Fm
×Fn,F).

Proof. Let e1, . . . ,em be the standard basis for Fm and f1, . . . ,fn be the standard basis for Fn.
Define the entries of the matrix A ∈Matm×n(F) as ai j = ϕ(ei,f j) for 1 ≤ i ≤m and 1 ≤ j ≤ n.

Now, let u =
∑m

i=1 uiei ∈ F
m and v =

∑n
j=1 v jf j ∈ F

n be arbitrary vectors. By the bilinearity of
ϕ:

ϕ(u,v) = ϕ

 m∑
i=1

uiei,
n∑

j=1

v jf j

 = m∑
i=1

n∑
j=1

uiv jϕ(ei,f j) =
m∑

i=1

n∑
j=1

uiv jai j = utAv.

Thus, the matrix A with entries ai j = ϕ(ei,f j) satisfies the desired property.
Suppose there are two matrices A and B such that ϕ(u,v) = utAv = utBv for all u ∈ Fm and

v ∈ Fn. Then ut(A−B)v = 0 for all u and v. Choosing u = ei and v = f j, we get (A−B)i j = 0 for
all i and j. Therefore, A−B = 0, which implies A = B.

We have already shown in the previous lemma that Bil(Fm
×Fn,F) is a vector space.

The correspondence A→ ϕA is a linear map. Let A,B ∈ Matm×n(F) and λ ∈ F. Then
(λA)→ ϕλA, and

ϕλA(u,v) = ut(λA)v = λ(utAv) = λϕA(u,v).

Also, (A+B)→ ϕA+B, and

ϕA+B(u,v) = ut(A+B)v = utAv+utBv = ϕA(u,v)+ϕB(u,v).

The correspondence is injective (one-to-one) because of the uniqueness of A, and it is surjective
(onto) because of the existence of A for any bilinear map ϕ. Therefore, the correspondence
A→ ϕA is an isomorphism.

Thus, we have shown that there is a one-to-one correspondence between matrices in
Matm×n(F) and bilinear maps in Bil(Fm

×Fn,F), and this correspondence is an isomorphism.
□

Exercises:

Here are some exercises on bilinear maps, ranging from basic to more challenging:

1. Verification of Bilinearity: Determine if the following functions are bilinear maps:

(a) f :R2
×R2

→R defined by f (x,y) = x1y2−x2y1, where x = (x1,x2) and y = (y1, y2).
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(b) g :R2
×R2

→R2 defined by g(x,y) = (x1y1,x2y2).

(c) h :R2
×R2

→R defined by h(x,y) = x1+ y1.

(d) k : P2(R)×P2(R)→Rdefined by k(p(x),q(x))=
∫ 1

0 p(x)q(x)dx, where P2(R) is the space
of polynomials of degree at most 2.

2. Matrix Representation: Find the matrix A associated with the following bilinear maps:

(a) f :R2
×R2

→R defined by f (x,y) = 2x1y1−x1y2+3x2y1+ y2x2

(b) g :R3
×R2

→R defined by g(x,y) = x1y1+x2y2+x3y1.

3. Bilinear Map from a Matrix: Given the matrix A =
[

1 2
−1 3

]
, find the associated bilinear

map ϕA :R2
×R2

→R.

1. Symmetric Bilinear Forms: Determine if the bilinear forms in Exercise 1(a) and 2(a) are
symmetric.

2. Change of Basis: Let ϕ : R2
×R2

→ R be a bilinear map with matrix representation A
with respect to the standard basis. Find the matrix representation of ϕ with respect to a
new basis {v1,v2} for R2.

3. Bilinear Maps and Linear Transformations: Let T : U→ V and S : W → Z be linear
transformations. If ϕ : V ×W → F is a bilinear map, show that the composition ψ :
U×Z→ F defined by ψ(u,z) = ϕ(T(u),S(z)) is also a bilinear map.

4. Isomorphism: Let U,V be finite-dimensional vector spaces over F. Prove that the set of
bilinear maps from U×V to F, denoted by Bil(U×V,F), is isomorphic to the vector space
of linear transformations from U to V∗, the dual space of V.

1. Rank of a Bilinear Form: Define the rank of a bilinear form ϕ : U×V→ F as the rank
of its matrix representation with respect to any bases of U and V. Show that the rank is
well-defined (i.e., it doesn’t depend on the choice of bases).

2. Tensor Product (Introduction): Let U,V,W be vector spaces over F. A tensor product
of U and V is a vector space U⊗V together with a bilinear map ⊗ : U×V→U⊗V such
that for any bilinear map ϕ : U×V→W, there exists a unique linear map ϕ̃ : U⊗V→W
such that ϕ = ϕ̃◦⊗. (This is a universal property definition). While a full exploration of
tensor products is beyond the scope of basic exercises, try to understand the definition
and its implications. Think about how it relates to bilinear maps. We will see tensors in
more detail in Chap. 11.
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2.6.2 The dual space

The dual space, denoted V∗, is a vector space formed by all linear functionals on V. A *linear
functional* is simply a linear map from V to the underlying field F. While this might seem
abstract at first, the dual space provides a powerful new way to understand vectors and linear
transformations. It allows us to "see" vectors not just as arrows or tuples of numbers, but
also as functions that act on other vectors. This perspective is essential in many areas of
mathematics and its applications, including optimization, functional analysis, and machine
learning (especially in areas like kernel methods and regularization). In this section, we will
define the dual space, explore its properties, and see how it connects back to the vector spaces
we are already familiar with. We will also introduce the concept of a dual basis, which allows
us to represent linear functionals in a concrete way.

Let V be a vector space over the field F.

Definition 2.13. The dual space of V is the vector space (over F)

V∗ :=L(V,F)

of all linear maps L : V −→ F. Elements of the dual space are called functionals.

Example 2.27. Let V = Fn. The simple examples of functionals are coordinate functions

ϕi(x1, . . . ,xn) = xi

We leave it to the reader to verify that these are functionals.

Theorem 2.17. Let V be a vector space of finite dimension. Then, dimV = dimV∗.

Theorem 2.18. Let V be a vector space of finite dimension. Then, dimV = dimV∗.

Proof. Let V be a finite-dimensional vector space over a field F. Let n = dimV, and let
B = {v1,v2, . . . ,vn} be a basis for V. We want to show that the dual space V∗ also has dimension
n.

Define the linear functionals ϕi ∈ V∗ for i = 1,2, . . . ,n as follows:

ϕi(v j) =

1, if i = j
0, if i , j

We claim that the set B∗ = {ϕ1,ϕ2, . . . ,ϕn} forms a basis for V∗. If we can show this, then
dimV∗ = n, and the theorem will be proved.

Suppose we have a linear combination of the ϕi that equals the zero functional:
n∑

i=1

ciϕi = 0,

where ci ∈ F. This means that for all v ∈ V, we have
∑n

i=1 ciϕi(v) = 0. In particular, we can
evaluate this at the basis vectors v j for j = 1,2, . . . ,n:

n∑
i=1

ciϕi(v j) = 0.
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Since ϕi(v j) = δi j (the Kronecker delta), this simplifies to c j = 0. This holds for all j = 1,2, . . . ,n.
Therefore, all the coefficients ci must be zero, which means that the set B∗ is linearly indepen-
dent.

Let ϕ ∈ V∗ be an arbitrary linear functional. For any vector v =
∑n

j=1 x jv j ∈ V, we have:

ϕ(v) = ϕ

 n∑
j=1

x jv j


=

n∑
j=1

x jϕ(v j)

=

n∑
j=1

x jϕ

 n∑
i=1

ϕi(v j)vi


=

n∑
j=1

x j

n∑
i=1

ϕi(v j)ϕ(vi)

=

n∑
i=1

ϕ(vi)
n∑

j=1

x jϕi(v j)

=

n∑
i=1

ϕ(vi)ϕi

 n∑
j=1

x jv j

 = n∑
i=1

ϕ(vi)ϕi(v)

This shows that ϕ =
∑n

i=1ϕ(vi)ϕi, which means that any linear functional ϕ can be written as a
linear combination of the ϕi in B∗. Thus, B∗ spans V∗.

Since B∗ is linearly independent and spans V∗, it is a basis for V∗. Therefore, dimV∗ = n =
dimV. □

Definition 2.14. The basis {ϕ1, . . . ,ϕn} of V∗ is called the dual basis.

The dual space is a very important concept in linear algebra. Below we give a few more
examples of functionals which are important in different areas of mathematics.

Example 2.28. Let V be a vector space over F with scalar product ⟨·, ·⟩. Fix an element u ∈ V. The
map V −→ F, such that

v −→ ⟨v,u⟩

is a functional. □

Example 2.29. Let V be a vector space of continuous real-valued functions on the interval [0,1]. Define
δ : V −→R, such that δ( f ) = f (0). Then δ is a functional called the Dirac functional. □

Theorem 2.19. Let V be a finite dimensional vector space over F with a non-degenerate scalar product
⟨·, ·⟩. The map

Φ : V −→ V∗

v 7→ Lv
(2.10)
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where Lv(u) = ⟨u,v⟩ for all u ∈ V, is an isomorphism.

Proof. To prove that Φ is an isomorphism, we need to show that it is a linear map, injective
(one-to-one), and surjective (onto).

Let v1,v2 ∈V and α,β ∈F. We need to show thatΦ(αv1+βv2)= αΦ(v1)+βΦ(v2). This means
showing that Lαv1+βv2 = αLv1 +βLv2 . For any u ∈ V:

Lαv1+βv2(u) = ⟨u,αv1+βv2⟩

= ⟨u,αv1⟩+ ⟨u,βv2⟩ (by linearity of the inner product)
= α⟨u,v1⟩+β⟨u,v2⟩

= αLv1(u)+βLv2(u)
= (αLv1 +βLv2)(u).

Since this holds for all u ∈ V, we have Lαv1+βv2 = αLv1 +βLv2 , so Φ(αv1+βv2) = αΦ(v1)+βΦ(v2).
Thus, Φ is linear.

Suppose Φ(v1) = Φ(v2), which means Lv1 = Lv2 . Then, for all u ∈ V, we have Lv1(u) = Lv2(u),
so ⟨u,v1⟩= ⟨u,v2⟩, or ⟨u,v1−v2⟩= 0. Since the inner product is non-degenerate, if ⟨u,v1−v2⟩= 0
for all u ∈ V, then v1−v2 = 0, which implies v1 = v2. Therefore, Φ is injective.

Since V is finite-dimensional, V∗ is also finite-dimensional, and dimV = dimV∗. We have
shown that Φ is a linear map from V to V∗ and that it is injective. For finite-dimensional
vector spaces, an injective linear map between spaces of the same dimension is also surjective.
Therefore, Φ is surjective.

Since Φ is linear, injective, and surjective, it is an isomorphism. □

Theorem 2.20 (Bilinear Forms and Dual Spaces). Let V be a finite-dimensional vector space. There
is a one-to-one correspondence between bilinear forms on V×V and linear maps from V to V∗.

Proof. We will establish this one-to-one correspondence by defining maps in both directions
and showing they are inverses of each other.

Let B : V×V→ F be a bilinear form on V. Define a map TB : V→ V∗ as follows:

TB(v)(w) = B(v,w) for all v,w ∈ V.

We need to show that TB(v) is a linear functional for each v ∈ V and that TB is a linear map.
For any w1,w2 ∈ V and α,β ∈ F:

TB(v)(αw1+βw2) = B(v,αw1+βw2)
= αB(v,w1)+βB(v,w2) (by bilinearity of B)
= αTB(v)(w1)+βTB(v)(w2).

Thus, TB(v) is a linear functional, so TB(v) ∈ V∗.

104

https://leanpub.com/lin-alg/
https://leanpub.com/u/shaska


Shaska, T. Linear Algebra

For any v1,v2 ∈V and α,β ∈ F, we need to show that TB(αv1+βv2) = αTB(v1)+βTB(v2). This
means showing that for all w ∈ V:

TB(αv1+βv2)(w) = B(αv1+βv2,w)
= αB(v1,w)+βB(v2,w) (by bilinearity of B)
= αTB(v1)(w)+βTB(v2)(w)
= (αTB(v1)+βTB(v2))(w).

Thus, TB(αv1+βv2) = αTB(v1)+βTB(v2), and TB is a linear map.
Let T : V→ V∗ be a linear map. Define a map BT : V×V→ F as follows:

BT(v,w) = T(v)(w) for all v,w ∈ V.

We need to show that BT is a bilinear form.
For any v1,v2,w ∈ V and α,β ∈ F:

BT(αv1+βv2,w) = T(αv1+βv2)(w)
= (αT(v1)+βT(v2))(w) (by linearity of T)
= αT(v1)(w)+βT(v2)(w)
= αBT(v1,w)+βBT(v2,w).

Similarly, for any v,w1,w2 ∈ V and α,β ∈ F:

BT(v,αw1+βw2) = T(v)(αw1+βw2)
= αT(v)(w1)+βT(v)(w2) (because T(v) ∈ V∗ is a linear functional)
= αBT(v,w1)+βBT(v,w2).

Thus, BT is bilinear.
To show that these maps are inverses of each other we have for any v,w ∈ V:

BTB(v,w) = TB(v)(w) = B(v,w).

Also, for any v,w ∈ V:
TBT(v)(w) = BT(v,w) = T(v)(w).

Therefore, the maps B→ TB and T→ BT are inverses of each other, establishing a one-to-one
correspondence between bilinear forms on V×V and linear maps from V to V∗. □

Here are some further problems related to dual spaces, building on the concepts from your
existing questions:

Exercises:

1. Dual Basis Calculation: Let V =R3. Given the basis B = {(1,0,0), (1,1,0), (1,1,1)} for V,
find the dual basis B∗ for V∗.
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2. Annihilator: Let W be a subspace of a finite-dimensional vector space V. The annihilator
of W, denoted W0, is the set of all linear functionals ϕ ∈ V∗ such that ϕ(w) = 0 for all
w ∈W. Prove that W0 is a subspace of V∗.

3. Annihilator and Dimension: Let V be a finite-dimensional vector space and W be a
subspace of V. Prove that dim(W0) = dim(V)−dim(W).

4. Dual of a Subspace: Let W be a subspace of V. Is (W∗) naturally isomorphic to a
subspace of V∗? If so, how?

1. Double Dual: Let V be a finite-dimensional vector space. The double dual of V is
(V∗)∗, denoted V∗∗. Define a natural map ι : V→ V∗∗ by ι(v)(ϕ) = ϕ(v) for all v ∈ V and
ϕ ∈ V∗. Prove that ι is a linear isomorphism. (This shows that V and V∗∗ are "naturally"
isomorphic.)

2. Dual of a Linear Transformation: Let T : V→W be a linear transformation between
finite-dimensional vector spaces. Define the dual map (or transpose) T∗ : W∗ → V∗ by
T∗(ψ) = ψ◦T for all ψ ∈W∗.

(a) Prove that T∗ is a linear transformation.

(b) If A is the matrix representation of T with respect to bases BV and BW, what is the
matrix representation of T∗ with respect to the dual bases B∗W and B∗V?

3. Relationship between Range and Annihilator: Let T : V→W be a linear transformation
between finite-dimensional vector spaces. Prove that (Im(T))0 =Ker(T∗). Also show that
Im(T∗) = (Ker(T))0.

1. Reflexivity: A vector space V is called reflexive if the natural map ι : V→ V∗∗ (defined
in problem 5) is an isomorphism. Prove that every finite-dimensional vector space is
reflexive. (Note: Infinite-dimensional vector spaces are not always reflexive.)

2. Bilinear Forms and Dual Spaces: Let V be a finite-dimensional vector space. Show that
there is a one-to-one correspondence between bilinear forms on V×V and linear maps
from V to V∗.

Exercises:

214. Let V =Matn×n(R). Describe V∗. 215. Let V =R2n. Describe V∗.
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David Hilbert

(23 January 1862 – 14 February 1943) was a German math-
ematician and one of the most influential and universal math-
ematicians of the 19th and early 20th centuries. Hilbert dis-
covered and developed a broad range of fundamental ideas in
many areas, including invariant theory, the calculus of vari-
ations, commutative algebra, algebraic number theory, the
foundations of geometry, spectral theory of operators and its
application to integral equations, mathematical physics, and
foundations of mathematics (particularly proof theory).

Hilbert adopted and warmly defended Georg Cantor’s
set theory and transfinite numbers. A famous example of
his leadership in mathematics is his 1900 presentation of a
collection of problems that set the course for much of the
mathematical research of the 20th century.

Hilbert’s 1888 work on invariant functions led to his famous finiteness theorem. Two
decades earlier, Paul Gordan had shown the finiteness of generators for binary forms through
intricate calculations, but struggles emerged when extending this to functions with more
variables. To tackle what was known as Gordan’s Problem, Hilbert took a novel approach,
leading to the Hilbert’s Basis Theorem. This theorem proved the existence of a finite set of
generators for invariants in any number of variables, though in an abstract, non-constructive
manner relying on the law of excluded middle.

Hilbert submitted his findings to the Mathematische Annalen, where Gordan, the expert
on invariants, rejected it, criticizing its exposition as insufficiently comprehensive, famously
saying, "Das ist nicht Mathematik. Das ist Theologie." However, Felix Klein recognized the
work’s importance, ensuring its publication. Encouraged, Hilbert extended his method in a
second paper, estimating the maximum degree of generators. Klein hailed this as "the most
important work on general algebra" published by the Annalen. Gordan later acknowledged
the merit in Hilbert’s approach.

Despite these successes, Hilbert’s non-constructive proof method stirred controversy, align-
ing with Kronecker’s constructivist criticisms. This discord persisted, influencing the intu-
itionist school led by Brouwer, which opposed Hilbert’s use of the Law of Excluded Middle
over infinite sets. This philosophical divide even affected Hilbert personally, as his student
Weyl was drawn to intuitionism, prompting Hilbert’s retort, "Taking the Principle of the Ex-
cluded Middle from the mathematician ... is the same as ... prohibiting the boxer the use of
his fists."
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Chapter 3

Linear Maps Between Finite Dimensional
Vector Spaces

This chapter will guide you through the process of constructing matrix representations for
linear maps. We will start by defining the matrix associated with a linear map with respect
to given bases. Then, we will show how to use this matrix to compute the transformation of
a vector. We will explore how the matrix representation changes when we change bases, and
we will discuss the connection between the properties of a linear map and the properties of
its matrix representation. Finally, we will illustrate these concepts with examples, showing
how linear maps and their matrix representations can be used to solve problems in various
contexts.

By the end of this chapter, you will be able to:

• Construct the matrix representation of a linear map with respect to given bases.

• Use the matrix representation to compute the transformation of a vector.

• Understand how the matrix representation changes when the bases are changed.

• Apply these concepts to solve problems involving linear maps.

This chapter is not just about manipulating matrices; it’s about understanding the deep
interplay between linear maps and matrices. This understanding will empower you to tackle
a wide range of problems in mathematics, science, and engineering.

3.1 Matrices Associated to Linear Maps

One of the most powerful tools in linear algebra is the ability to represent linear maps as
matrices, and vice-versa. This connection allows us to translate the abstract world of linear
transformations into the concrete world of matrix operations, enabling efficient computation,
analysis, and manipulation. In this section, we will explore how to construct the matrix
associated with a given linear map.
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Let U and V be finite-dimensional vector spaces over the field F, and let L : U→ V be a
linear map. Let B1 = {u1, . . . ,un} and B2 = {v1, . . . ,vm} be bases for U and V, respectively. The
vectors L(u1), . . . ,L(un) can be expressed as linear combinations of the basis vectors in B2:

L(u1) = a11v1+ a21v2+ · · ·+ am1vm

L(u2) = a12v1+ a22v2+ · · ·+ am2vm
...

L(un) = a1nv1+ a2nv2+ · · ·+ amnvm

The scalars ai j ∈ F are the coordinates of L(ui) with respect to the basis B2. The matrix
associated with the linear map L with respect to the bases B1 and B2, denoted by MB2

B1
(L) or

simply M(L) when the bases are clear from context, is the m×n matrix A = [ai j], where ai j is
the coefficient of vi in the expansion of L(u j). That is,

M(L) =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


The j-th column of M(L) consists of the coordinates of L(u j) with respect to the basis B2. That
is, the columns of M(L) are formed by the vectors L(u1)B2 ,L(u2)B2 , . . . ,L(un)B2 .

Now, let x ∈U be any vector. We can express x in terms of the basisB1 as x= x1u1+ · · ·+xnun,

where x =


x1
...

xn

 represents the coordinate vector of x with respect to B1. Then,

L(x) = x1L(u1)+ · · ·+xnL(un)

= x1

m∑
i=1

ai1vi+x2

m∑
i=1

ai2vi+ · · ·+xn

m∑
i=1

ainvi

=

m∑
i=1

 n∑
j=1

ai jx j

vi

Thus, the coordinates of L(x) with respect to the basis B2, denoted by L(x)B2 , are given by
the matrix-vector product:

L(x)B2 =


∑n

j=1 a1 jx j∑n
j=1 a2 jx j
...∑n

j=1 amjx j

 =

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn



x1
x2
...

xn

 =M(L)x
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Therefore, for any linear map L : U→ V, there is a matrix M(L) such that L(x)B2 =M(L)x. We
can write M(L) as:

M(L) =
[
L(u1)B2 | L(u2)B2 | · · · | L(un)B2

]
where each L(ui)B2 is the coordinate vector of L(ui) with respect to the basis B2 of V.

Example 3.1. Let L : R2
→ R3 be the linear map given by L

([
x
y

])
=

 x− y
2x−3y
x−3y

. Find the matrix

associated with L with respect to the standard bases.

Solution: The standard basis for R2 is B1 = {i, j} =
{[

1
0

]
,

[
0
1

]}
. Then L(i) =

121
 and L(j) =

−1
−3
−3

 with

respect to the standard basis of R3. Hence, the associated matrix of L is M =

1 −1
2 −3
1 −3

. with respect to

the standard bases of R2 and R3. □

Example 3.2. Let T :R2
→R2 such that

T
([

x
y

])
=

[
x cosθ− y sinθ
x sinθ+ y cosθ

]
for some fixed angle θ ∈R.

The reader should show that T is a linear map. It is an exercise in trigonometry to show that this
map rotates every point of R2 by the angle θ. What is the matrix associated to T with respect to the
standard basis of R2?

Solution: We have

T
([

1
0

])
=

[
cosθ
sinθ

]
, f

([
0
1

])
=

[
−sinθ
cosθ

]
Then, the associated matrix is:

A :=M(T) =
[
cosθ −sinθ
sinθ cosθ

]
Prove that geometrically the map T : R2

→ R2 rotates every point of the plane by an angle

θ counterclockwise. Then An =

[
cosnθ −sinnθ
sinnθ cosnθ

]
. since rotating n-times by θ is the same as

rotating by the angle nθ. □
We now will see an example when neither of the bases B1, B2 is a standard basis.

Example 3.3. Let T :R3
−→R4 be the map between sets given by

T
(
x, y,z

)
=

(
x+ y, y+ z,x− y, y− z

)
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Consider now R3 and R4 as R-vector spaces and fix bases

B1 =


111

 ,
210

 ,
311


 = {u1,u2,u3}, and B2 =



1
0
0
1

 ,

1
2
0
0

 ,

2
3
2
1

 ,

0
0
0
2


 = {v1,v2,v3,v4}

of R3 and R4 respectively. Find the associated matrix of L with respect to B1 and B2.

Solution: It can be easily checked that this is a linear map if we consider R3 and R4 as vector
spaces over R. Then

T(u1) = [2,2,0,0]t =: w1, T(u2) = [3,1,1,1]t =: w2, T(u3) = [4,2,2,0]t =: w3

Now we need to express the vectors w1,w2,w3 with respect to the basisB2. Each one of them
must be expressed as

r1v1+ r2v2+ r3v3+ r4v4 = (r1+ r2+2r3,2r2+3r3,2r3,r1+ r3+2r4).

Thus we have (with respect to B2)

w1 =
[
1,1,0,−

1
2

]t
, w2 =

[9
4
,−

1
4
,
1
2
,
1
2

]t
, w3 =

[3
2
,−

1
2
,1,0

]t

The associated matrix is

MB2
B1
=


1 9

4
3
2

1 −
1
4 −

1
2

0 −
1
2 1

−
1
2

1
2 0

 .
□

The following theorem makes precise the relation between matrices and linear maps. Let U
and V be vector spaces over F and B1, B2 their bases respectively. From now on when there
is no confusion for a linear map f : U→ V we will simply use M f instead of MB2

B1
( f ).

Theorem 3.1. Let U and V be vector spaces over F and B1, B2 their respective bases. For any
f , g ∈ L(U,V) the following hold:

(i) M f+g =M f +Mg.
(ii) Mr f = rM f , for any scalar r ∈ F.

(iii) M f◦g =M f ·Mg.

Proof. The proof is straight forward from the properties of matrix addition and multiplication
by a scalar. The third item is true since

M f◦g =M f (g(x)) =M f Mgx =M f ·
(
Mgx

)
= (M f ·Mg)x

□
The following theorem shows that not only to every linear map we can associate a matrix

but that the converse also holds for finite dimensional vector spaces.
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Theorem 3.2 (Isomorphism Theorem of Linear Algebra). Let U and V be vector spaces over F of
dimension n and m respectively. Fix bases B1, B2 of U and V. Further, let L(U,V) be the space of
linear maps T : U→ V. Then

Φ :L(U,V) −→Matm×n(F)

such that Φ(T) =M(T), is an isomorphism.

Proof. The previous theorem shows that Φ is a linear map. First we show that Φ is injective.
Let f , g ∈ L(U,V) such that Φ( f ) = Φ(g). Thus, M( f ) =M(g). Hence, for every x ∈U we have

M( f )x =M(g)x

which means that f (x) = g(x). Therefore, f = g and Φ is injective.
Let A ∈Matm×n(F). Define LA : U −→ V such that LA(x) = Ax. Then, LA ∈ L(U,V). Hence,

Φ is surjective.
□

Some special linear maps L : U→ V are the ones when the corresponding matrix ML is a
diagonal matrix. Such maps are called diagonal linear maps.

Example 3.4. Consider the linear map L :R2
→R2 such that[

x
y

]
→

[
a 0
0 b

][
x
y

]
=

[
ax
by

]
.

Geometrically, such map shrinks the x-coordinate by a and the y-coordinate by b.

We will discuss diagonal maps in more detail in the coming lectures. Moreover, we will
see that every linear map L : U→V, under certain conditions, by picking the right bases for U
and V can be diagonalized.

Exercises:

216. Check whether the map T : R3
−→ R3 such

that T(x, y,z) = (x−2y, y−x,x+ y) is linear. If it
is linear then find its associated matrix.

217. Find the associated matrix for the linear map
T :R3

→R4 such that T(x, y,z) = (x− y+2z, y+
z,3x−2y− z,7y+ z) and find a basis for ker (T).

218. Find the associated matrix for the linear map
T :R4

→R4 such that

T(x, y,z,w)= (x−y+z,2x−2y+2z,x+y−z−b,2x−w)

and find a basis for ker (T).

219. Find the standard matrix representation of the
rotation of the xy-plane counterclockwise about the
origin with an angle:

(i) 45◦

(ii) 60◦

(iii) 15◦

220. Let T :R2
→R2 be the rotation counter clock-

wise by the angle θ = π
3 . Find T(0,1), T(1,1),

T(−1,1).

221. Find the rank and nullity, and bases for the
column space, row space, and the nullspace of the

matrix A =


1 2 3 1
−2 1 1 2
−1 3 4 3
−1 3 4 3


222. LetL1(R) be the vector space of differentiable
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functions from R to R. Let

V := Span (sinx,cosx)

and D : L1(R)→L1(R) the differentiation map.
The restriction of this map to V gives a linear map
DV : V → V. Find the matrix representation of
DV for B1 =B2 = {sinx,cosx}.

223. Let Pn denote the vector space overR of poly-
nomials with coefficients inR and degree≤ n. Dif-
ferentiation of polynomials is a linear map on this
space. Find its matrix representation for

B1 =B2 = {1,x, . . . ,xn
}.

224. Let u =
[
1
2

]
∈R2 and T :R2

→R2 such that

T(x) = u+x. Find the matrix representation of T
with respect to the standard basis of R2.

225. Let T :R2
→R2 be the transformation which

rotates every point counterclockwise by the angle
θ. Find its matrix representation with respect to
the standard basis.

226. Let T : R2
→ R2 be the transformation of

the plane which sends every point to its symmet-
ric point with respect to the x-axis (i.e., T(x, y) =
T(x,−y)). Find the matrix representation of T with
respect to the standard basis.

227. Find the standard matrix representation for
the reflection of the xy-plane with respect to the
line y = x+2.

228. Check whether the map T : R3
−→ R4 such

that T(x, y,z) = (x+2, y−x,x+ y) is linear. If it is
linear then find its associated matrix.

229. Find the associated matrix with respect to the
standard bases to the map T :R3

−→R4 such that
T(x, y,z) = (x, y,x+ y+ z).

230. Find the associated matrix with respect to the
standard bases to the map T :R2

−→R3 such that
T(x, y) = (x+ y,3y,7x+2y).

231. Find the associated matrix with respect to the
standard bases to the map T :R5

−→R5 such that
T(x1, . . . ,x5) = (x1,x2,x3,x4,x5).
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3.2 Nullspace and rank of a matrix

Let A be a m×n matrix over F. Consider all the rows Ri of A. These are vectors in Fn. The
span of row vectors of A is called a row space of A. Similarly the column vectors of A are
vectors in Fm and the span of column vectors is called the column space of A. As before the
nullspace of A, denoted by Null(A), will be the solution set of Ax = 0.

Theorem 3.3. Let A be an m×n matrix. The dimension of the row space is the same as the dimension
of the column space. This common dimension is equal to the number of pivots in the row-echelon form
rref(A) of A.

Proof. We use the previous procedure to find the dimension in both cases. This dimension is
the number of pivots.

□
This common dimension is called the rank of A and is denoted by rank (A). The dimension
of the nullspace is called the nullity of A and is denoted by null (A).

Theorem 3.4 (Rank-Nullity Theorem). Let A be an m×n matrix and ref(A) its row-echelon form
(i) rank (A) = number of pivots of ref(A)

(ii) null (A)= number of columns without a pivot
Moreover,

rank (A)+null (A) = n

Proof. (i) The rank of A is defined as the dimension of its row space (or column space). The
row space of A is unchanged by elementary row operations, so the row space of A has the same
dimension as the row space of ref(A). The nonzero rows of ref(A) are linearly independent,
and they form a basis for the row space of ref(A). Therefore, the dimension of the row space of
ref(A) (and thus the row space of A) is equal to the number of nonzero rows in ref(A), which
is the number of pivot columns. Thus, rank (A) is equal to the number of pivot columns in
ref(A).

(ii) The nullspace of A is the set of all vectors x ∈ Fn such that Ax = 0. Solving the
homogeneous system Ax = 0 is equivalent to solving the system ref(A)x = 0. Each column of
A corresponds to either a pivot variable or a free variable in the solution to this system. The
number of free variables is equal to the number of columns without a pivot in ref(A). Each
free variable corresponds to a parameter in the general solution to the homogeneous system.
The solutions to ref(A)x = 0 (and therefore Ax = 0) can be written as linear combinations of
vectors, where each vector corresponds to a free variable. These vectors form a basis for the
nullspace of A. Thus, the dimension of the nullspace of A, which is (A), is equal to the number
of columns without pivots in ref(A).

Finally, we have n columns in the matrix A. Each column corresponds to either a pivot
variable or a free variable. The number of pivot variables is rank (A), and the number of free
variables is (A). Therefore, the total number of columns is the sum of these two:

rank (A)+ (A) = n.

This completes the proof.
□
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Algorithm: Finding a Basis for the Nullspace of a Matrix

Input: An m×n matrix A.
Output: A basis for Null(A).

Steps:

1. Reduce A to Row-Echelon Form:

Use Gaussian elimination (row operations) to transform A into its reduced row-echelon
form, denoted as ref(A).

2. Identify Free Variables:

Determine the columns in ref(A) that do not have a leading 1 (pivot). These columns
correspond to the free variables in the system Ax = 0.

3. Express Solutions in Terms of Free Variables:

Solve the system ref(A)x = 0. Write the solutions in parametric form, where the free vari-
ables are the parameters. Express each basic variable (corresponding to pivot columns)
in terms of the free variables.

4. Construct Basis Vectors:

For each free variable, create a vector by setting that free variable to 1 and all other
free variables to 0. The entries of the vector are the corresponding values of the basic
variables from the parametric solution. The set of vectors constructed in this way forms
a basis for Null(()A).

Let us see an example.

Example 3.5. Let’s find a basis for the nullspace of the matrix:

A =

1 2 1 0
2 4 1 1
3 6 2 1


Reduce to row-echelon form:

ref(A) =

1 2 0 1
0 0 1 −1
0 0 0 0


Free variables are x2 and x4. From ref(A), we have

x1 = −2x2−x4

x3 = x4
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The general solution is:

x =


−2x2−x4

x2
x4
x4

 = x2


−2
1
0
0

+x4


−1
0
1
1


The set

{v1,v2} =



−2
1
0
0

 ,

−1
0
1
1




is a basis for Null(A).

Thus, the row-echelon form of a matrix has all the information that we need about the
column space of the matrix, the row space, and the nullspace. In the next example we see how
we can find a basis for each one of such spaces.

Example 3.6. Find the rank, nullity, a basis for the row space, a basis for the column space, and a basis
for the nullspace of the matrix

A =

 2 1 1
3 2 2
1 1 1


Solution: We start by finding the reduced row-echelon form of A.

A =

 2 1 1
3 2 2
1 1 1

⇝H =

 1 0 1
0 1 1
0 0 0


Then rank (A) = 2 and null (A) = 1. A basis for the column space is B1 =


231

 ,
121


. To find a basis

of the row-space we use the rows from H which contains pivots. So we have B2 =


101

 ,
011


. To find a

basis for the nullspace we have to solve the system ref(A)x = 0. The augmented matrix is:

[rref(A) | 0] =

 1 0 1 0
0 1 1 0
0 0 0 0


Thus, x3 is a free variable and x2+x3 = 0 and x1+x3 = 0. The solution is

x =

 -x3
-x3
x3

 = x3

 - 1
-1
1


So a basis for the nullspace is B3 =

{
[−1,−1,1]t

}
. □
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3.2.1 Finding a basis for the row-space, column-space, and nullspace of a
matrix.

Given a m×n matrix A, we would like to find the bases of spaces associated with it. We have
the following algorithm.

Algorithm 4. Finding a basis for spaces of a matrix

Input: An m×n matrix A
Output: A basis for the row-space, column-space, and nullspace Null(A) of A

i) Find a reduced row-echelon form ref (A) of A
ii) The columns of A corresponding to the columns of ref (A) with pivots, form a basis for

the column space.
iii) The nonzero rows of ref (A) form a basis for the row space.
iv) Use back substitution to solve ref (A)x = 0 and determine Null(A).

Example 3.7. Find bases for the spaces associated with A =

1 2 −1 3
1 1 2 1
2 −1 1 2

.
Solution: A reduced row-echelon form is ref (A) =

1 0 0 3/2
0 1 0 1/2
0 0 1 −1/2

. A basis for the column space is

B=


112

 ,
 2

1
−1

 ,
−1

2
1


. The rank of A is rank (A)= 3 and null (A)= 1. Thus, there is one free variable

which we denote by x4. Solving rref(A)x = 0 we have

x =


−

3
2 x4
−

1
2 x4

1
2 x4
x4

 = x4


−

3
2
−

1
2

1
2
1

 = x4

[
−

3
2
,−

1
2
,
1
2
,1

]t

A basis of the nullspace Null(()A) isB =
{[
−

3
2 ,−

1
2 ,

1
2 ,1

]t
}
. For a basis of the row space we take all three

rows of H. □

Example 3.8. For the matrix A =

 4 2 3 3
−2 1 1 2
3 −1 2 1

 find its rank (A), null (A), and bases for Col (A),

Row (A), Null(A).

Solution: The reduced row-echelon form of A is ref (A) =


1 0 0 −

6
23

0 1 0 9
23

0 0 1 25
23

. Then, rank (A) = 3 and

null (A) = 1. For the basis of the column space we have


 4

-2
3

 ,
 2

1
-1

 ,
 3

1
2


. For the basis of the
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row-space we take all three rows of A since each one of them contains a pivot. Next we find a basis for
the nullspace. Hence, we have to solve the system Hx = 0. The solution is

x =


- 6

23
9
23
25
23
1

 ·x4 =


- 6
9

25
23

 · t,
for some free variable t. Hence, a basis is B =

{
[−6,9,25,23]t

}
. □

The next theorem relates some of the previous topics to this section.

Theorem 3.5. Let A be an n×n matrix. The following are equivalent:
(i) Ax = b has a unique solution for every b ∈Rn.

(ii) A is row equivalent to In.
(iii) A is invertible.
(iv) The column vectors of A form a basis for Rn.

Proof. We will demonstrate that each statement implies each of the others, thus proving their
equivalence:

(i) ⇒ (ii): If Ax = b has a unique solution for every b ∈ Rn, then A must have a pivot in
every row and every column when reduced to row-echelon form; see Lem. 1.14. Thus, the
row-echelon form of A must be In, meaning A is row equivalent to In.

(ii) ⇒ (iii): If A is row equivalent to In, then there exists an elementary matrix E such
that EA = In. Since E is invertible (as elementary matrices are invertible), this means A has an
inverse, namely A−1 = E. Therefore, A is invertible.

(iii) ⇒ (i): If A is invertible, then for any b ∈ Rn, Ax = b⇒ x = A−1b. Hence for every
b, there is exactly one x (since A−1b is unique), thus Ax = b has a unique solution for every
b ∈Rn.

(iii)⇒ (iv): If A is invertible, then:
- The columns of A are linearly independent because if Ax = 0, then x = A−10 = 0, so no

non-trivial linear combination of the columns equals zero.
- The columns also span Rn because, for any b ∈ Rn, we can write b = A(A−1b), meaning

any vector in Rn can be expressed as a linear combination of the columns of A.
Thus, the columns of A form a basis for Rn.
(iv)⇒ (iii): If the columns of A form a basis for Rn, then:
- There are n linearly independent columns in A, implying that A has full rank (n).
- Since A has n columns and they spanRn, A must mapRn ontoRn in a one-to-one fashion,

which means A is invertible.
(iv)⇒ (i): If the columns of A form a basis for Rn, then:
- There’s a unique representation of any vector b as a combination of the basis vectors

(columns of A), which means Ax = b has a unique solution for every b ∈Rn.
(i)⇒ (iv): We’ve already shown (i)⇒ (ii)⇒ (iii)⇒ (iv), so this is covered by transitivity.
This completes the proof of the equivalence of all four statements. □

The following result is quite useful when checking for inverses.
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Corollary 3.1. Let A be an n×n matrix. Then A is invertible if and only if rank (A) = n.

Exercise 48. Find the rank, a basis for the row space, and a basis for the column space, a basis for the
nullspace for the following matrices. 2 3 2 1

1 1 0 1
2 3 1 -1

 ,
 1 1 1

1 2 3
3 4 5

 ,
 1 2 3

4 5 6
7 8 9


Exercises:

232. Let A be a square matrix. Show that

null (A) = null (At).

233. Let A,B be matrices such that the product AB
is defined. Show that rank (AB) ≤ rank (A).

234. Give an example of two matrices A,B such
that

rank (AB) < rank (A).

235. Let A be an m×n matrix. Prove that

rank (AAt) = rank (A).

236. Let u and v be linearly independent column
vectors in R3 and A an invertible 3× 3 matrix.
Prove that the vectors Au and Av are linearly in-
dependent.

237. Generalize the above problem to Rn. Let
u1, . . . ,un be linearly independent column vectors
inRn and A an invertible n×n matrix. Prove that
the vectors Au1, . . . ,Aun are linearly independent.

238. Let u and v be column vectors in R3 and A
an invertible 3×3 matrix. Prove that if vectors Au
and Av are linearly independent then u and v are
linearly independent.

239. Generalize the above problem to Rn. Let
u1, . . . ,un be column vectors in Rn and A an
invertible n × n matrix. Prove that if vec-
tors Au1, . . . ,Aun are linearly independent then
u1, . . . ,un are linearly independent.

240. Let

A =
[
cosθ −sinθ
sinθ cosθ

]
for some angle θ. Take any vector u ∈ R2 and
compare it with the vector Au. What happens ge-
ometrically?

241. Let A be as in the previous exercise and {u,v}
a basis in R2. Show that {Au,Av} is a basis for
R2. You might want to look at the nullspace of A.

120

https://leanpub.com/lin-alg/
https://leanpub.com/u/shaska


Shaska, T. Linear Algebra

3.3 Change of basis

Sometimes we have to deal with two different bases for the same vector space. The above
discussion gives a way of finding the coordinates of a vector with respect to a given basis.

Let V be a vector space and B,B′ two bases of V given by

B = {b1, . . . ,bn}, B
′ = {b′1, . . . ,b

′
n},

where both B and B′ are ordered bases of dimension n. Consider the linear map T : V→ V
defined by T(bi) = b′i for each i = 1, . . . ,n. This map T transforms vectors from the basis B to
the basis B′.

We denote the associated matrix of T with respect to the basis B by MB
′

B
and call it the

transformation matrix from B to B′. The matrix MB
′

B
is constructed by expressing each b′i as

a linear combination of the vectors in B. Specifically,

MB
′

B
=

[
b′1 | · · · |b

′
n

]
,

where b′i denotes the coordinate vector of b′i with respect to the basis B. This means the i-th
column of MB

′

B
contains the coefficients when b′i is written as b′i =

∑n
j=1 m jib j, where m ji are

the entries of MB
′

B
.

Intuitively, MB
′

B
provides a way to convert the coordinates of any vector v ∈ V from the

basisB to the basisB′. If vB is the coordinate vector of v with respect toB, then the coordinate
vector vB′ with respect to B′ is given by

vB′ =MB
′

B
vB,

assuming the standard convention where the transformation matrix maps old coordinates to
new coordinates.

We now provide the following algorithm for computing the transformation matrix.

Algorithm 5. Input: A vector space V and two bases B1 = {u1, · · · ,un} and B2 = {v1, · · · ,vn} of V.
Output: The transformation matrix MB2

B1
, such that MB2

B1
·vB1 = vB2 for any v ∈ V.

i) Create the matrix
A = [v1 | . . . |vn |u1 | . . . |un ] ,

where the first n columns are the vectors of B2 and the last n columns are the vectors of B1, all
expressed as coordinates in some common basis (e.g., the standard basis if V =Rn).

ii) Transform A by row operations to the matrix
[
I |MB2

B1

]
, where I is the n×n identity matrix,

and MB2
B1

is the desired transformation matrix.

Example 3.9. Let V = R2 and B1 =

{[
1
1

]
,

[
1
0

]}
, B2 =

{[
1
2

]
,

[
−1
1

]}
be two bases of V. Find the

transformation matrix MB2
B1

. Given vectors u,v with coordinates u =
[
3
4

]
and v =

[
−2
3

]
with respect to

the B1 basis, find their coordinates with respect to B2.
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Solution: We first create the matrix A = [B2|B1] =
[
1 −1 1 1
2 1 1 0

]
. By row operations we transform

A to a row echelon form

ref (A) =
[

1 0 2
3

1
3

0 1 - 1
3 - 2

3

]
Then MB2

B1
= 1

3 ·

[
2 1
−1 −2

]
,

uB2 =MB2
B1
·

[
3
4

]
=

1
3

[
10

-11

]
, and vB2 =MB2

B1
·

[
−2
3

]
= −

1
3

[
1
4

]
□

Example 3.10. Let u ∈R3 with coordinates in the standard basis uB =

123
. Find the transformation

matrix MB
′

B
from the standard basis to the basisB′ =


111

 ,
201

 ,
311


, and use it to find the coordinates

of u with respect to B′.
Solution: We first create the matrix

A = [B′|B] =

1 2 3 | 1 0 0
1 0 1 | 0 1 0
1 1 1 | 0 0 1

 ,
where the first three columns are the vectors of B′ and the last three columns are the standard basis
vectors. By row operations, we compute the row echelon form:

ref (A) =

1 0 0 | −
1
2

1
2 1

0 1 0 | 0 −1 1
0 0 1 |

1
2

1
2 −1

 .
Then the transformation matrix is

MB
′

B
=

−
1
2

1
2 1

0 −1 1
1
2

1
2 −1

 ,
and the coordinates of u with respect to B′ are

uB′ =MB
′

B
uB =

−
1
2

1
2 1

0 −1 1
1
2

1
2 −1


123

 =


7
2
1
−

3
2

 .
□
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The next result considers the simplest case when the linear map is from V to itself (L : V→
V).

Proposition 3.1. Let V be a finite-dimensional vector space, and let B and B′ be bases of V. Let
L : V→ V be a linear transformation, and let MB(L) and MB′(L) be the matrices representing L with
respect to basesB andB′ respectively. Let M :=MB

′

B
be the change of basis matrix fromB toB′, which

is invertible since B and B′ are bases of the same space. Then,

MB′(L) =M−1
·MB(L) ·M.

VB
MB(L)

��

M=MB
′

B // VB′

MB′ (L)
��

VB
M=MB

′

B

// VB′

Figure 3.1: Commutative diagram for the change of basis and matrix representation of a linear
transformation

Proof. Let B = {b1,b2, . . . ,bn} and B′ = {b′1,b
′

2, . . . ,b
′
n}. The change of basis matrix M =MB

′

B
is

defined as
M =

[
(b′1)B | (b′2)B | . . . | (b′n)B

]
,

where (b′i )B denotes the coordinate vector of b′i with respect to the basis B.
Let v ∈ V. We can express v in terms of B and B′ as

vB =
n∑

i=1

ribi and vB′ =
n∑

i=1

sib′i ,

where vB =


r1
r2
...

rn

 and vB′ =


s1
s2
...

sn

 are the coordinate vectors with respect toB andB′, respectively.

The coordinate vectors are related by the change of basis: since MvB′ = vB, it follows that
vB′ =M−1vB.

Applying the linear transformation L to v expressed in both bases, we get:

L(v) =
n∑

i=1

riL(bi) =MB(L)vB,
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where MB(L) is the matrix of L with respect to B. Similarly,

L(v) =
n∑

i=1

siL(b′i ) =MB′(L)vB′ ,

where MB′(L) is the matrix of L with respect to B′.
Substituting vB′ =M−1vB into the second equation, we obtain:

MB′(L)vB′ =MB′(L)M−1vB.

Since L(v) =MB(L)vB and this must equal MB′(L)vB′ when expressed in B′ coordinates, we
have:

MB′(L)M−1vB =MB(L)vB.

This equation holds for all v ∈ V, and thus for all vB. Therefore, MB′(L)M−1 =MB(L), and
rearranging gives the desired result:

MB′(L) =M−1MB(L)M.

This completes the proof. □

Example 3.11. Let T :R3
−→R4 be the map defined by

T(x, y,z) = (x− y+2z, y+ z,3x−2y− z,7y+ z).

Check if T is linear. If it is linear, find the associated matrix for the linear map and find a basis for
ker (T).
Solution: First, we verify linearity. For u = (u1,u2,u3) and v = (v1,v2,v3) in R3 and scalar c ∈R,

T(u+v) = T(u1+v1,u2+v2,u3+v3) = ((u1+v1)− (u2+v2)+2(u3+v3), . . .) = T(u)+T(v),

and T(cu) = cT(u), which holds by direct computation (omitted for brevity). Thus, T is linear.
The associated matrix M(T) is found by applying T to the standard basis vectors of R3:

T


100


 =


1
0
3
0

 , T


010


 =


−1
1
−2
7

 , T


001


 =


2
1
−1
1

 .
Thus,

M(T) =


1 −1 2
0 1 1
3 −2 −1
0 7 1

 ,
a 4×3 matrix. Its reduced row-echelon form is:

ref (M) =


1 0 0
0 1 0
0 0 1
0 0 0

 ,
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indicating a rank of 3 (since there are 3 pivot columns). By the rank-nullity theorem, the nullity is

3− rank = 0, so the only solution to M(T)x = 0 is x =

000
. Hence, ker (T) = {0}. □

Example 3.12. Let V := Span (ex,xex). Find the transformation matrix from basis B1 := {ex,xex
} to

basis B2 = {2xex,4ex
}.

Solution: A vector v ∈ V can be expressed in B1 coordinates as

v = aex+bxex, vB1 =

[
a
b

]
.

We need to express v in terms ofB2 = {2xex,4ex
}. Since 2xex and 4ex are scalar multiples of the original

basis vectors, we solve for the coefficients:

v = c(2xex)+d(4ex).

Equating to the B1 expression, aex+bxex = d(4ex)+ c(2xex), we match coefficients:
- Coefficient of ex: a = 4d =⇒ d = a

4 .
- Coefficient of xex: b = 2c =⇒ c = b

2 .
Thus,

vB2 =

[
c
d

]
=

[
b
2
a
4

]
=

[
0 1

2
1
4 0

][
a
b

]
=

[
0 1

2
1
4 0

]
vB1 .

Hence, the transformation matrix from B1 to B2 is

M =
[
0 1

2
1
4 0

]
.

□

We can generalize the above theorem to any map T : U→ V.

Theorem 3.6. Let U and V be F-vector spaces with bases B1 and B2 respectively, and let

T : U→ V

be a linear map with MB2
B1

(T) as its associated matrix. Let M
B′1
B1

(respectively M
B′2
B2

) be the matrix
corresponding to the change of basis from B1 to B′1 for U (respectively from B2 to B′2 for V). Then,

M
B′2
B′1

(T) = (M
B′1
B1

)−1MB2
B1

(T)M
B′2
B2
.

Proof. Let u ∈ U. The coordinate vector of u with respect to the basis B′1 is related to its
coordinate vector with respect to the basis B1 by:

uB′1 = (M
B′1
B1

)−1uB1 ,
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UB1

M
B′1
B1 ��

MB2
B1

(T)
// VB2

M
B′2
B2��

UB′1
M
B′2
B′1

(T)

// VB′2

Figure 3.2: Commutative diagram illustrating the change of basis and matrix representation
of a linear transformation T : U→ V

since M
B′1
B1

uB′1 = uB1 .
The coordinate vector of T(u) with respect to the basis B2 is given by:

(T(u))B2 =MB2
B1

(T)uB1 .

The coordinate vector of T(u) with respect to the basis B′2 is related to its coordinate vector
with respect to the basis B2 by:

(T(u))B′2 =M
B′2
B2

(T(u))B2 .

Substituting the expression for (T(u))B2 , we get:

(T(u))B′2 =M
B′2
B2

MB2
B1

(T)uB1 .

Now, using the change of basis for u, substitute uB1 =M
B′1
B1

uB′1 :

(T(u))B′2 =M
B′2
B2

MB2
B1

(T)M
B′1
B1

uB′1 .

By definition, the matrix M
B′2
B′1

(T) satisfies:

(T(u))B′2 =M
B′2
B′1

(T)uB′1 .

Comparing the expressions, we conclude that:

M
B′2
B′1

(T) =M
B′2
B2

MB2
B1

(T)M
B′1
B1
,

which, noting that uB1 =M
B′1
B1

uB′1 implies the inverse relationship, corrects to:

M
B′2
B′1

(T) = (M
B′1
B1

)−1MB2
B1

(T)M
B′2
B2
.

□
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Algorithm 6. Input: Vector spaces U,V, bases B1,B2, linear map T with matrix MB2
B1

(T), new bases

B′1,B
′

2. Output: The matrix M
B′2
B′1

(T).

i) Compute M
B′1
B1

using row operations on the augmented matrix [B′1 |B1] reduced to [I |M
B′1
B1

].

ii) Compute (M
B′1
B1

)−1 using row operations on the augmented matrix [M
B′1
B1
| I] reduced to [I |

(M
B′1
B1

)−1].

iii) Compute M
B′2
B2

using row operations on the augmented matrix [B′2 |B2] reduced to [I |M
B′2
B2

].

iv) Compute the product M
B′2
B′1

(T) = (M
B′1
B1

)−1
·MB2
B1

(T) ·M
B′2
B2

by sequential matrix multiplication or
further row operations:

First, compute (M
B′1
B1

)−1
·MB2
B1

(T) by row operations on [M
B′1
B1
|MB2
B1

(T)] reduced to [I | (M
B′1
B1

)−1
·

MB2
B1

(T)].

Then, compute the result from the previous step multiplied by M
B′2
B2

by row operations on [I |

result ·M
B′2
B2

], but since the left is I, the right is the product directly.

To compute M
B′2
B′1

(T) using row operations directly, form the augmented matrix

[B′1 | (T(B′1))B′2],

where (T(B′1))B′2 are the coordinates of T(b) for each b ∈B′1 with respect toB′2. Reduce the left

part to the identity matrix; the right part will be M
B′2
B′1

(T).

To find the coordinates (T(b))B′2 , compute T(b) in the standard basis (assuming B1 =B2 =

standard), then solve M
B′2
B2

[
c
]
= T(b), or use row operations on [ M

B′2
B2
| T(B′1)] reduced to [ I |

coordinates ].
This method is efficient for small dimensions and reinforces the concept of basis changes.

Let us just verify the above theorem with the following example.

Example 3.13. Let U =R3 and V =R3. Define the linear map T : U→ V by

T

xyz
 =

 x+ y
2x− z
y+3z

 .
Denote by B1 =B2 = {i, j,k} the standard bases for U and V, and

B′1 =


110

 ,
−1

1
0

 ,
001


 , B′2 =


100

 ,
110

 ,
111




bases for U and V, respectively. We want to compute M
B′2
B′1

(T).
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Solution: Step 1: Find MB2
B1

(T).

T

100
 =

120
 , T

010
 =

101
 , T

001
 =

 0
−1
3

 ,
so

MB2
B1

(T) =

1 1 0
2 0 −1
0 1 3

 .
Step 2: Change-of-basis matrices.

M
B′1
B1
=

1 −1 0
1 1 0
0 0 1

 , (M
B′1
B1

)−1 =


1
2

1
2 0

−
1
2

1
2 0

0 0 1

 ,
M
B′2
B2
=

1 1 1
0 1 1
0 0 1

 , (M
B′2
B2

)−1 =

1 −1 0
0 1 −1
0 0 1

 .
Step 3: Apply the theorem (correct order).

M
B′2
B′1

(T) = (M
B′2
B2

)−1 MB2
B1

(T)M
B′1
B1
=

1 −1 0
0 1 −1
0 0 1


1 1 0
2 0 −1
0 1 3


1 −1 0
1 1 0
0 0 1

 =
0 2 1
1 −3 −4
1 1 3

 .
Step 4: Direct check (optional). Solve (M

B′2
B2

)x = T(b) for each b ∈B′1:

T

110
 =

221
⇒ x =

011
 ,

T

−1
1
0

 =
 0
−2
1

⇒ x =

 2
−3
1

 ,
T

001
 =

 0
−1
3

⇒ x =

 1
−4
3

 ,
which reproduces the columns of M

B′2
B′1

(T) above. □

Exercises:
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242. Let B1 = {1,x,x2,x3
} be a basis for P3. Show

that

B2 = {2x−1,x2
−x+1,x3

−x,x3+x−2}

is also a basis. Find the transformation matrix
MB2
B1

.
Hint: Use the determinant of the change-of-

basis matrix to check linear independence.

243. Let V := Span (ex,e−x). Find the coordinates
of f (x) = sinhx and g(x) = coshx with respect to
B = {ex,e−x

}.
Hint: Express sinhx and coshx using ex and

e−x.

244. Let B1 := {i, j} be the standard basis of R2,
and let u,v be the vectors obtained by rotating i, j
counterclockwise by angle θ, respectively. Clearly
B2 := {u,v} is a basis for R2. Find MB2

B1
.

Hint: Use rotation matrices with cosθ and
sinθ.

245. Let V = M2×2(R) with basis B1 ={(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)}
. Define B2 ={(

1 1
0 0

)
,

(
0 1
1 0

)
,

(
0 0
1 1

)
,

(
1 0
0 −1

)}
. Find the

transformation matrix MB2
B1

.
Hint: Express each matrix in B2 as a linear

combination of B1.

246. Let T :R2
→R2 be the shear transformation

T
[
x
y

]
=

[
x+ y

y

]
. Find the matrix MB2

B1
(T) where

B1 = {i, j} and B2 =

{[
1
1

]
,

[
0
1

]}
, and interpret the

result in the context of machine learning feature
scaling.

Hint: Compute T on B1 vectors and adjust
forB2 coordinates; consider how shear affects data
alignment.
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3.4 Linear transformations in geometry

Linear transformations are fundamental to understanding geometric operations in various
fields, including computer graphics, physics, and engineering. This chapter explores how
linear algebra provides the tools to describe and analyze these transformations mathematically.
Real-world examples include:

i) Computer graphics where linear transformations are used to manipulate images, render
3D objects, and create animations. For example, rotating, scaling, and shearing images can be
achieved through matrix multiplications representing linear transformations.

ii) Physics where linear transformations describe rotations, reflections, and dilations of
physical objects. They are essential in areas like mechanics, optics, and crystallography.

iii) Engineering where linear transformations are used in robotics to model movements
and in computer-aided design (CAD) to manipulate designs. They are also crucial in signal
processing and data analysis.

3.4.1 Linear transformations in Rn

Let us consider again one of the questions that was raised in ?? and more specifically in ??. So
what kind of transformations of Rn will preserve most (or all) of geometric properties of the
objects and in the same time keep the algebraic structure of Rn?

There are two algebraic operations in Rn, namely the vector addition and the scalar mul-
tiplication. How should a map look like, which preserves both of these operations? Do such
maps preserve the geometric properties of the objects?

If L :Rn
7→Rm is a linear map, then implicitly we are implying that Rn and Rm are vector

spaces. Hence, elements of the Rn,Rm are vectors. Therefore the notation

L



x1
...

xn


 =


y1
y2
...

ym


If L :Rn

7→Rm is considered as a map among sets Rn and Rm, then the notation L(x1, . . . ,xn) =
(y1, y2, . . . , ym) must be used. Both notations are used in the literature. We will stick to the
column vectors notation whenever possible.

Example 3.14. Let Lθ :R2
→R2 be the counterclockwise notation of vectors on the plane by the angle

θ. Prove that this is a linear map.

Example 3.15. The only constant linear map L :R2
→R2 is the zero map. In other words, if a liner

map L :R2
→R2 is given by (L(u) = u0, where u0 is a constant vector, then u0 = 0.

A natural question is to consider what happens to the shape of an object under a linear
map. Is the geometrical shape preserved?
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Example 3.16. Let L :R2
→R2 be a linear transformation given by

L
([

x
y

])
=

[
2x+2y
2x+3y

]
Let C : x2+ y2 = 1 be the unit circle. The image L(C) is the set of all points such that

L(C) : (2x+2y)2+ (2x+3y)2 = 1

This is an ellipse with equation 8x2+20xy+13y2 = 1 as shown Fig. 3.5.

Figure 3.3: Mapping the unit circle to an ellipse

While graphing the above ellipse might be complicated and requires methods that we will
learn in the coming chapters, you should be able to easily verify the following.

Example 3.17. Let L :R2
→R2 be a linear transformation given by

L
([

x
y

])
=

[
2x
3y

]
Let C : x2+ y2 = 36 be the circle with center at the origin and radius r = 6. The image L(C) is the set of
all points such that

L(C) : 4x2+9y2 = 36

This is an ellipse with equation x2

9 +
y2

4 = 1.

Exercise 49. Consider T : R2
→ R2 a nonzero linear transformation. Prove that every line L is

transformed to a line L′.
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3.4.2 Scalings: scalar matrices

A scaling is a linear transformation which scales the unit vectors. In other words,

T
([

x
y

])
=

[
rx
ry

]
,

for some scalar r > 0. The corresponding matrix is A =
[
r 0
0 r

]
= r I. When r > 1 it is called a

dilation and when r < 1 a contraction.

3.4.3 Rotations

We already have seen what happens to a rotation with an angle θ counterclockwise around
the origin. It is given by [

x
y

]
→

[
cosθ −sinθ
sinθ cosθ

][
x
y

]
,

which equivalently says that it is a matrix
[
a −b
b a

]
with a2+ b2 = 1. A rotation combined with

a scaling has a matrix [
x
y

]
→ r

[
cosθ −sinθ
sinθ cosθ

][
x
y

]
Lemma 3.1. A matrix of the form

[
a −b
b a

]
represents a rotation by θ combined with a scaling r > 0,

where r and θ are the polar coordinates of the vector
[
a
b

]
.

3.4.4 Shears

A horizontal shear is given by the matrix
[
1 r
0 1

]
. Hence we have

[
x′

y′

]
=

[
1 r
0 1

][
x
y

]
=

[
x+ ry

y

]

A vertical shear by the matrix
[
1 0
k 1

]
and the transformation is

[
x′

y′

]
=

[
1 0
k 1

][
x
y

]
=

[
x

kx+ y

]

Exercise 50. Let A =
[
1 2
0 1

]
. Find what happens to the ellipse x2+4y2 = 1 under the shear transfor-

mation given by A.
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3.4.5 Projections

Let us consider now a problem that we have already seen in Fig. 3.6, finding a projection of a
vector v over a vector u. We already know the formula for proju(v). Is this a linear map? Can
we find its matrix if that’s the case?

Consider vectors u and v in R2 as in the Fig. 3.6. The projection vector of v on u, denoted
by proju(v) is the vector obtained by dropping a perpendicular from the vertex of v on the line
determined by u.

We found its formula in Eq. (1.32)

proju(v) =
u ·v
∥u∥
·

u
∥u∥
=

u ·v
u2 u

Let us try to express this in terms of the coordinates of

x =
[
x1
x2

]
when the unit vector u =

[
u1
u2

]
is given. So we

have

v

u

u−vw

projuv
A

B

C

Figure 3.4: The projection of v onto u

proju(x) = (x ·u)u = (x1u1+x2u2)
[
u1
u2

]
=

[
u2

1x1+u−1u2x2
u1u2x1+u2

2x2

]
=

[
u2

1 u1u2
u1u2 u2

2

] [
x1
x2

]
=

[
u2

1 u1u2
u1u2 u2

2

]
x

Hence, the projection is a linear map since it is given by multiplication by a matrix.
Consider now if we have a line L going through the origin with equation y = ax. A

directional vector for L is w =
[
1
a

]
, which we can normalize as

u =
w
∥w∥

=
1

√

a2+1

[
1
a

]
. (3.1)

Then we have the linear transformation

T
([

x
y

])
=

1
a2+1

[
1 a
a a2

] [
x
y

]
.

In the above discussion it was not necessary to assume that the vector u be a unit.

Exercise 51. For any given vector w =
[
w1
w2

]
the projection map T(x) = projw(x) is a linear map with

matrix

P =
1

w2
1+w2

2

[
w2

1 w1w2
w1w2 w2

2

]
.
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Example 3.18. Find the matrix P of the projection map onto the line L generated by w =
[
1
2

]
.

From the Lemma above we have

P =
1

w2
1+w2

2

[
w2

1 w1w2
w1w2 w2

2

]
=

1
5

[
1 2
2 4

]
Example 3.19. Given a line L with equation y = ax+ b. Find the formula for the projection of a point
P(x, y) onto this line. Is this map linear?

3.4.6 Reflections

We continue our discussion of the previous section but now with the goal of finding the
symmetric point of B with respect to the line AC. First we consider the case when the point
A is the point (0,0) in R2. So the problem is the same as before but now we want to find the
vector refuv as in Fig. 3.7.

Consider vectors u and v in R2 as in the Fig. 3.6. The reflection vector of v with respect
to u, denoted by refuv is the vector obtained by reflecting the vector v with respect to the line
determined by u.

Hence,

refuv = proju(v)−w = proju(v)−
(
v−proju(v)

)
= 2proju(v)−v = 2Pv−v = (2P− I2) v

Let us try to express this in terms of the coordinates of

x =
[
x1
x2

]
when the unit vector u =

[
u1
u2

]
is given. So we

have the matrix of the reflection as

S = 2P− I2 =

[
2u2

1−1 2u1u2
2u1u2 2u2

2−1

]
Consider now, as in the case of projections, the line L
with equation y = ax. Then the unit vector u is given by
Eq. (3.1). Thus the matrix S becomes

S = 2P− I2 =
1

a2+1

[
1− a2 2a

2a a2
−1

]

v

refuv

u

w

w′
projuv

O

B

B’

C

Figure 3.5: Reflection of v with re-
spect to u

Lemma 3.2. The reflection with respect to a line L going through the origin with equation y = ax is a
linear map given by the matrix

S =
1

a2+1

[
1− a2 2a

2a a2
−1

]
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Can we generalize this solution to a general line? Let L be a line in R2 with equation

y = ax+ b. (3.2)

Consider the map T :R2
→R2 such that it takes every point P(x, y) to its reflection P′. Determine

explicit formulas for this map and check whether it is linear. The following is a high school
problem in analytic geometry.

Lemma 3.3. The reflection map refLx :R2
→R2 with respect to a general line L : y = ax+ b is given

by (
x, y

)
→

( 1
a2+1

(1− a2)x+2ay−2ab,
1

a2+1
2ax+ (a2

−1)y+2b
)

Proof. Let P(x1, y1) be a point. The line L′ going through P and perpendicular to L has equation

y = −
1
a

x+
(
y1+

x1

a

)
. (3.3)

The point of intersection has x-coordinate given by(
a+

1
a

)
x = −b+ y1+

x1

a
.

So we have x = x1+ay1−ab
a2+1 . If we denote Q(x2, y2) the reflection point then x = x1+x2

2 . Therefore,

x2 = 2x−x1 = 2
x1+ ay1− ab

a2+1
−x1 =

(1− a2)x1+2ay1−2ab
a2+1

Substituting x2 in Eq. (3.3) we get

y2 =
2ax1+ (a2

−1)y1+2b
a2+1

This completes the result. □

Remark 3.1. Notice that the above map is not linear. There is a way to extend this map to a map
T′ : R3

→R3 such that T′ is linear, but we will consider that later.

3.4.7 Linear Geometric Transformations in R3

Linear geometric transformations inR3 involve operations that transform vectors in 3-dimensional
space while preserving certain geometric properties like the origin, straight lines, and ratios
along lines. Here are the key types of transformations:
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Scaling

• Uniform Scaling: Multiplies all coordinates by the same scalar k. The transformation
matrix is: k 0 0

0 k 0
0 0 k


• Non-uniform Scaling: Different scales for different axes kx,ky,kz:kx 0 0

0 ky 0
0 0 kz


Defining a Rotation in R3 as a Linear Transformation

A rotation inR3 that is also a linear transformation must be about an axis that passes through
the origin. This is because all linear transformations fix the origin. We begin by specifying a
unit vector u = (u1,u2,u3) that represents the direction of the axis of rotation. Since the axis
goes through the origin, this vector defines the entire axis. We choose u such that

• u is a unit vector, meaning ∥u∥ = 1 or u2
1+u2

2+u2
3 = 1.

• The direction of u determines the orientation of the axis in space.

We specify an angle θ which represents the amount of rotation about the axis on a plane
perpendicular to u. We’ll assume a counterclockwise rotation when looking down the axis
from a point further along it.

The rotation matrix R corresponding to this rotation is given by the Rodrigues’ rotation
formula:

R = I+ sin(θ)K+ (1− cos(θ))K2

where I is the 3× 3 identity matrix and K is the skew-symmetric matrix associated with the
axis vector u:

K =

 0 −u3 u2
u3 0 −u1
−u2 u1 0


Expanded on K2: Since K is skew-symmetric, K2 is symmetric, and you can compute it as:

K2 =


−u2

2−u2
3 u1u2 u1u3

u1u2 −u2
1−u2

3 u2u3
u1u3 u2u3 −u2

1−u2
2


This matrix K2 has the effect of projecting vectors onto the plane perpendicular to u and then
scaling them by a factor related to θ.

For any vector v inR3, the transformed vector after rotation around u by angle θwould be
v′ = Rv. This method allows for an elegant and precise mathematical description of rotations
in 3D space, useful in fields like computer graphics, robotics, and physics.
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Exercise 52. Show that

• Around x-axis by angle θ (counterclockwise looking towards positive x):1 0 0
0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)


• Around y-axis by angle θ (counterclockwise looking towards positive y): cos(θ) 0 sin(θ)

0 1 0
−sin(θ) 0 cos(θ)


• Around z-axis by angle θ (counterclockwise looking towards positive z):cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0
0 0 1


Reflection

Consider now a reflection to a plane. This is the symmetric of a point A with respect to a
plane P, not to be confused with mirror reflection of light. For example the reflection of the
point P(5,1,3) with respect to the x = y plane in Fig. 3.8 is the point Px=y(1,5,3). However, its
reflection with respect to the z = 0 plane is the point Pz=0(5,1,−3).

Figure 3.6: Reflection of a point with respect to a plane
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Exercise 53. Let P be a plane in R3 going through the origin. Then P has equation

ax+by+ cz = 0

Find the formulas for the reflection map refPx with respect to the plane P. Show that this is a linear
map. Find its matrix.

Exercise 54. Prove the following formulas for reflections in these spacial cases:

• Reflection across the xy-plane: 1 0 0
0 1 0
0 0 −1


• Reflection across the xz-plane: 1 0 0

0 −1 0
0 0 1


• Reflection across the yz-plane: −1 0 0

0 1 0
0 0 1


Shear

Shearing transformations shift one coordinate in proportion to another. For example, shearing
along x by y: 1 k 0

0 1 0
0 0 1


Here, k determines how much the x-coordinate is shifted due to y.

Exercises:

247. Let L be a line inR3 such that it contains the

unit vector u =

u1
u2
u3

. Find the matrix of the linear

transformation T(x) = projL(x). What is the trace
of this matrix?

248. Let L be a line inR3 such that it contains the

unit vector u =

u1
u2
u3

. Find the matrix of the linear

transformation T(x) = refLx.
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Carl Gustav Jacobi (1804-1851)

Carl Gustav Jacob Jacobi (10 December 1804 – 18 February
1851) was a German mathematician, who made fundamental
contributions to elliptic functions, algebraic geometry, dy-
namics, differential equations, and number theory. His name
is occasionally written as Carolus Gustavus Iacobus Iacobi
in his Latin books, and his first name is sometimes given as
Karl.

One of Jacobi’s greatest accomplishments was his the-
ory of elliptic functions and their relation to the elliptic theta
function. This was developed in his great treatise Funda-
menta nova theoriae functionum ellipticarum (1829), and in
later papers in Crelle’s Journal. Theta functions are of great
importance in mathematical physics because of their role in
the inverse problem for periodic and quasi-periodic flows.
The equations of motion are integrable in terms of Jacobi’s
elliptic functions in the well-known cases of the pendulum,
the Euler top, the symmetric Lagrange top in a gravitational
field and the Kepler problem (planetary motion in a central
gravitational field).

He also made fundamental contributions in the study of
differential equations and to rational mechanics, notably the
Hamilton – Jacobi theory.

It was in algebraic development that Jacobi’s peculiar power mainly lay, and he made
important contributions of this kind to many areas of mathematics, as shown by his long
list of papers in Crelle’s Journal and elsewhere from 1826 onwards. One of his maxims was:
’Invert, always invert’ (’man muss immer umkehren’), expressing his belief that the solution
of many hard problems can be clarified by re-expressing them in inverse form.

In his 1835 paper, Jacobi proved the following basic result classifying periodic (including
elliptic) functions: If a univariate single-valued function is multiply periodic, then such a
function cannot have more than two periods, and the ratio of the periods cannot be a real
number. He discovered many of the fundamental properties of theta functions, including the
functional equation and the Jacobi triple product formula, as well as many other results on
q-series and hypergeometric series.

The solution of the Jacobi inversion problem for the hyperelliptic Abel map by Weierstrass
in 1854 required the introduction of the hyperelliptic theta function and later the general
Riemann theta function for algebraic curves of arbitrary genus. The complex torus associated
to a genus g algebraic curve, obtained by quotienting Cg by the lattice of periods is referred to
as the Jacobian variety. This method of inversion, and its subsequent extension by Weierstrass
and Riemann to arbitrary algebraic curves, may be seen as a higher genus generalization of
the relation between elliptic integrals and the Jacobi, or Weierstrass elliptic functions

Jacobi was the first to apply elliptic functions to number theory, for example proving of
Fermat’s two-square theorem and Lagrange’s four-square theorem, and similar results for 6
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and 8 squares. His other work in number theory continued the work of Gauss: new proofs of
quadratic reciprocity and introduction of the Jacobi symbol; contributions to higher reciprocity
laws, investigations of continued fractions, and the invention of Jacobi sums.

He was also one of the early founders of the theory of determinants; in particular, he
invented the Jacobian determinant formed from the n2 differential coefficients of n given
functions of n independent variables, and which has played an important part in many
analytical investigations. In 1841 he reintroduced the partial derivative ∂notation of Legendre,
which was to become standard. Students of vector fields and Lie theory often encounter the
Jacobi identity, the analog of associativity for the Lie bracket operation.
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Chapter 4

Determinants, eigenvalues, eigenvectors

The theory of determinants was developed in the 17-th and 18-th centuries. It started mainly
with Cramer and continued further with Bezout, Vandermonde, Laplace, Cauchy, et al. With
the development of modern algebra and new concepts that came with it as multilinear forms,
permutation groups, etc, the concept of the determinant was put in a firm foundation.

4.1 Multilinear Forms

Let V1, . . . ,Vn, and W be vector spaces over a field F. A map

ϕ : V1× · · ·×Vn→W

is called multilinear if for all i = 1, . . .n and r ∈ F the following hold:

(i) ϕ(v1, . . . , vi−1, v+u,vi+1, . . . ,vn) = ϕ(v1, . . . ,vi−1,v,vi+1, . . . ,vn)+ϕ(v1, . . . ,vi−1,u,vi+1, . . . ,vn)
(ii) ϕ(v1, . . . , vi−1, rv,vi+1, . . . ,vn) = rϕ(v1, . . . ,vi−1,v,vi+1, . . . ,vn)

where v,u ∈ Vi.
A multilinear map ϕ : Vn

→W (where Vn denotes the Cartesian product V× · · · ×V of n
copies of V) is called an n-multilinear function. If W = F, the map ϕ is called a multilinear
form.

Definition 4.1. An n-multilinear function ϕ : Vn
→W is called alternating if for all i = 1, . . . ,n the

following holds:
vi = vi+1 =⇒ ϕ(v1, . . . , vi,vi+1, . . . ,vn) = 0.

It is called symmetric if interchanging any two arguments (or coordinates) does not change the value
of the function ϕ.
Exercise 55. Show that a 2-multi-linear map is a bilinear map.

Solution: Let ϕ : V1×V2→W be a 2-multilinear map. We want to show that ϕ is bilinear. A
map is bilinear if it is linear in each argument.

Let v1,u1 ∈ V1 and r ∈ F. We need to show that
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(a) ϕ(v1+u1,v2) = ϕ(v1,v2)+ϕ(u1,v2)

(b) ϕ(rv1,v2) = rϕ(v1,v2)

These follow directly from the definition of 2-multilinearity (with n = 2 and i = 1):

(a) ϕ(v1+u1,v2) = ϕ(v1,v2)+ϕ(u1,v2) (by property (i) of multilinearity)

(b) ϕ(rv1,v2) = rϕ(v1,v2) (by property (ii) of multilinearity)

Let v2,u2 ∈ V2 and r ∈ F. We need to show that

(a) ϕ(v1,v2+u2) = ϕ(v1,v2)+ϕ(v1,u2)

(b) ϕ(v1,rv2) = rϕ(v1,v2)

These also follow directly from the definition of 2-multilinearity (with n = 2 and i = 2):

(a) ϕ(v1,v2+u2) = ϕ(v1,v2)+ϕ(v1,u2) (by property (i) of multilinearity)

(b) ϕ(v1,rv2) = rϕ(v1,v2) (by property (ii) of multilinearity)

Since ϕ is linear in both its arguments, it is bilinear. □

4.1.1 The Signature of a Permutation

A transposition is a permutation that swaps two elements and leaves the others fixed. Any
permutation can be written as a composition (product) of transpositions. This decomposition
is not unique, but the *number* of transpositions in any decomposition of a given permutation
is either always even or always odd.

Definition 4.2. The signature (or sign) of a permutation σ, denoted sgn(σ), is defined as:

sgn(σ) =

1, if σ can be written as a product of an even number of transpositions
−1, if σ can be written as a product of an odd number of transpositions

A permutation is called even if its signature is 1, and odd if its signature is -1.

Proposition 4.1. Let ϕ be an n-multi-linear alternating function on V. Then,
(i) the value of ϕ on an n-tuple is negated if two adjacent components are interchanged.

(ii) for each σ ∈ Sn,
ϕ(vσ(1), . . . ,vσ(n)) = sgn(σ)ϕ(v1, . . . ,vn)

(iii) if vi = v j for any i , j then ϕ(v1, . . . ,vn) = 0.
(iv) if vi is replaced by vi+λ v j, in (v1, . . . ,vn) for any i , j and λ ∈ F, then the value ϕ(v1, . . . ,vn) is

not changed.
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Proof. Let ϕ : Vn
→W be an n-multi-linear alternating function.

(i) Let’s interchange two adjacent vectors vi and vi+1:

ϕ(v1, . . . ,vi+1, vi, . . . ,vn) = ϕ(v1, . . . , vi+ (vi+1−vi ) , vi+1− (vi+1−vi) , . . . ,vn)
= ϕ(v1, . . . ,vi, vi+1, . . . ,vn) − ϕ(v1, . . . ,vi, (vi+1−vi), . . . ,vn)
+ϕ(v1, . . . ,vi+1, vi+1, . . . ,vn) +ϕ(v1, . . . ,vi+1, vi, . . . ,vn)
−ϕ(v1, . . . ,vi+1, vi+1, . . . ,vn)
= −ϕ(v1, . . . ,vi, vi+1, . . . ,vn)

The terms involving ϕ(. . . ,vi+1,vi+1, . . . ) are zero because ϕ is alternating.
(ii) Any permutation σ ∈ Sn can be written as a product of transpositions. Let σ = τ1τ2 · · ·τk,

where each τ j is a transposition. Then

ϕ(vσ(1), . . . ,vσ(n)) = ϕ(vτ1(τ2(...τk(1))), . . . ,vτ1(τ2(...τk(n))))
= sgn(τ1)ϕ(vτ2(...τk(1)), . . . ,vτ2(...τk(n)))
= sgn(τ1)sgn(τ2)ϕ(vτ3(...τk(1)), . . . ,vτ3(...τk(n)))
· · ·

= sgn(τ1)sgn(τ2) · · ·sgn(τk)ϕ(v1, . . . ,vn)
= sgn(σ)ϕ(v1, . . . ,vn)

because the sign of a product of permutations is the product of their signs.
(iii) If vi = v j for i , j, we can swap adjacent vectors to bring vi and v j next to each other.

By (i), each swap negates the value of ϕ. After a certain number of swaps, vi and v j will be
adjacent. Since ϕ is alternating, ϕ(. . . ,vi,vi, . . . ) = 0.

(iv)

ϕ(. . . ,vi+λv j, . . . ,v j, . . . ) = ϕ(. . . ,vi, . . . ,v j, . . . )+λϕ(. . . ,v j, . . . ,v j, . . . )

= ϕ(. . . ,vi, . . . ,v j, . . . )+λ ·0

= ϕ(. . . ,vi, . . . ,v j, . . . )

□

Proposition 4.2. Assume that ϕ is an n-multi-linear alternating function on V and that for some
v1, . . . ,vn ∈ V, w1, . . . ,wn ∈ V we have

w1 = a11v1+ · · ·+ an1vn

. . .

wn = a1nv1+ · · ·+ annvn

Then,
ϕ(w1, . . . ,wn) =

∑
σ∈Sn

sgn(σ)aσ(1)1 · · ·aσ(n) nϕ(v1, . . . ,vn)
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Proof. We proceed by substituting the expressions for wi into ϕ(w1, . . . ,wn) and using the
multilinearity of ϕ:

ϕ(w1, . . . ,wn) = ϕ

 n∑
i1=1

ai11vi1 , . . . ,
n∑

in=1

ainnvin


=

n∑
i1=1

n∑
i2=1

. . .
n∑

in=1

ai11ai22 . . .ainnϕ(vi1 ,vi2 , . . . ,vin)

Now, because ϕ is alternating, if any two indices i j and ik are equal (where j , k), the term
ϕ(vi1 , . . . ,vin) will be zero. Thus, the only terms that survive in the sum are those where the
indices i1, i2, . . . , in are all distinct. This means that the set {i1, i2, . . . , in} must be a permutation
of the set {1,2, . . . ,n}. We can therefore rewrite the sum using permutations σ ∈ Sn:

ϕ(w1, . . . ,wn) =
∑
σ∈Sn

aσ(1)1aσ(2)2 . . .aσ(n)nϕ(vσ(1),vσ(2), . . . ,vσ(n))

Sinceϕ is alternating, we know that swapping two arguments negates the result. Therefore,
if we reorder the vectors in ϕ(vσ(1), . . . ,vσ(n)) to be in the standard order (v1, . . . ,vn), we pick up
a factor of sgn(σ), the sign of the permutation σ:

ϕ(w1, . . . ,wn) =
∑
σ∈Sn

aσ(1)1aσ(2)2 . . .aσ(n)nsgn(σ)ϕ(v1,v2, . . . ,vn)

=

∑
σ∈Sn

sgn(σ)aσ(1)1aσ(2)2 . . .aσ(n)n

ϕ(v1,v2, . . . ,vn)

The term in the parentheses is precisely the definition of the determinant of the matrix
A = [ai j]. Thus, we have

ϕ(w1, . . . ,wn) = det (A)ϕ(v1, . . . ,vn)

where det (A) =
∑
σ∈Sn sgn(σ)aσ(1)1 · · ·aσ(n)n. □

4.1.2 Determinants

The determinant is a crucial function associated with square matrices, providing a single
number that reveals key properties of the matrix and the linear transformation it represents.
We define the determinant function by focusing on its essential characteristics: how it scales
with respect to changes in the matrix’s columns, and how it reflects the effect of column
swaps. Specifically, we require the determinant to be a multilinear function of the columns,
meaning it behaves linearly with respect to each column individually. The alternating property
captures the idea that swapping two columns negates the determinant, reflecting the change
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in orientation. Finally, we normalize the determinant by requiring it to be 1 for the identity
matrix, ensuring a consistent scale. These properties, taken together, uniquely specify the
determinant and allow us to compute it using Leibniz’s formula.

Definition 4.3. An n×n determinant function on F is called any function

det : Matn×n(F)→ F

which satisfies the following:
(i) it is a n-multi-linear alternating form onFn, where n-tuples are (A1, . . .An) n-columns of matrices

A in Fn.
(ii) det (In) = 1

So we have

Matn×n(F)→ Fn
→ F

A = [v1 |v2 | . . . |vn]→ (v1,v2, . . . ,vn)→ ϕ(v1, . . . ,vn)

The following is known as the Leibniz’s formula.

Theorem 4.1 (Leibniz’s formula). There is a unique n×n determinant function on F and it can be
computed for any n×n matrix A = [ai, j] by

det (A) =
∑
σ∈Sn

sgn(σ) ·
n∏

i=1

aσ(i),i,

where sgn(σ) is the sign of the permutation σ ∈ Sn.

Proof. We will prove both existence and uniqueness.
Existence:
We define the function D : Matn×n(F)→ F by

D(A) =
∑
σ∈Sn

sgn(σ)
n∏

i=1

aσ(i),i.

We need to show that D is an n-multilinear alternating form and that D(In) = 1.
1. n-multilinearity: Consider the k-th column of A, say ak = (a1k,a2k, . . . ,ank)T. We want

to show that D is linear with respect to this column. Let ak = αu+ βv for some vectors
u = (u1, . . . ,un)T and v = (v1, . . . ,vn)T and scalars α,β ∈ F. Then aik = αui+βvi for all i.

D(A) =
∑
σ∈Sn

sgn(σ)aσ(1),1 · · ·aσ(k),k · · ·aσ(n),n

=
∑
σ∈Sn

sgn(σ)aσ(1),1 · · · (αuσ(k)+βvσ(k)) · · ·aσ(n),n

= α
∑
σ∈Sn

sgn(σ)aσ(1),1 · · ·uσ(k) · · ·aσ(n),n+β
∑
σ∈Sn

sgn(σ)aσ(1),1 · · ·vσ(k) · · ·aσ(n),n
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This shows that D is linear with respect to the k-th column. Since k was arbitrary, D is
n-multilinear.

2. Alternating property: Suppose two columns of A are identical, say the k-th and l-th
columns (k , l). Then aik = ail for all i. Consider the sum for D(A). We can pair up terms
corresponding to permutations σ and τ, where τ is obtained from σ by swapping the k-th and
l-th entries. Then sgn(τ) = −sgn(σ). The terms in the sum corresponding to σ and τ are

sgn(σ)
n∏

i=1

aσ(i),i+ sgn(τ)
n∏

i=1

aτ(i),i = sgn(σ)
n∏

i=1

aσ(i),i− sgn(σ)
n∏

i=1

aτ(i),i

= sgn(σ)

 n∏
i=1

aσ(i),i−

n∏
i=1

aτ(i),i

 = 0,

because the only difference between the products is the order of the factors aik and ail, which
are equal. Since all terms cancel in pairs, D(A) = 0.

3. D(In) = 1: When A = In, the only permutation σ for which the product
∏n

i=1 aσ(i),i is
non-zero is the identity permutation, for which sgn(σ) = 1 and the product is 1. All other
terms are zero because ai j = 0 if i , j. Thus, D(In) = 1.

Uniqueness:
Suppose D′ is another n×n determinant function. Since D′ is n-multilinear and alternating,

by the previous proposition, we have:

D′(A) =
∑
σ∈Sn

sgn(σ)aσ(1),1 · · ·aσ(n),nD′(In) =D(A)D′(In).

Since D′(In) = 1, we have D′(A) =D(A) for all A. Thus, the determinant function is unique. □

Example 4.1. Let A =
[
2 3
1 2

]
. Compute its determinant by the above formula.

Solution: The permutation group is S2 = {σ1 = id,σ2 = (12)}. Then

det A = ξ(σ1)a1,1a2,2+ξ(σ2)aσ2(1),1aσ2(2),2 = 1 ·2 ·2+ (−1) ·1 ·3 = 1

□

Exercise 56. Let A =

2 3 1
1 2 1
0 1 3

. Compute its determinant by the Leibnitz formula.

Corollary 4.1. The determinant is an n-multi-linear function on the rows of A ∈Matn×n(F). Moreover,
det (A) = det (At).
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4.1.3 Expansion by minors

Definition 4.4. Let A = [ai j] be an n×n matrix. For each (i, j) let Ai j be the (n−1)× (n−1) matrix
obtained by deleting its i-th row and j-column. Then, Ai, j is called a minor of A, and

āi, j = (−1)i+ jdet
(
Ai, j

)
is called a cofactor of A.

Theorem 4.2. Let A = [ai j] be an n×n matrix. Then for a fixed i = 1, . . .n the determinant of A is
defined to be:

det (A) :=
n∑

j=1

(−1)i+ j
· ai, j ·det (Ai, j) =

n∑
j=1

ai, j · āi, j

and is independent on the choice of i.

Remark 4.1. In most elementary linear algebra books the determinant is defined as in Thm. 4.2. For
the rest of these lectures we will use Thm. 4.2 as the main way to compute the determinant of a matrix.

The definition of the determinant as above is called the expansion by minors along the
i-th row.

Example 4.2. Let A =
[

a b
c d

]
be a 2×2 matrix. For i = 1 we have the determinant

det (A) =
a b
c d = (−1)2a ·d+ (−1)3b · c = ad−bc.

For i = 2 we have
det (A) = (−1)3c ·b+ (−1)4d · a = ad−bc.

Hence, no matter what row that we pick we get the same result. □

The above theorem allows us to pick the row or column with more zeroes when we compute
the determinant of a matrix. The determinant of a matrix A

A :=



a1,1 a1,2 a1,3 . . . a1,n
a2,1 a2,2 a2,3 . . . a2,n
a3,1 a3,2 a3,3 . . . a3,n

· ·

· ·

· ·

am,1 am,2 am,3 . . . am,n


is denoted by det (A) =

a1,1 a1,2 a1,3 . . . a1,n
a2,1 a2,2 a2,3 . . . a2,n
a3,1 a3,2 a3,3 . . . a3,n

· ·

· ·

· ·

am,1 am,2 am,3 . . . am,n

Example 4.3 (Laplace’s formula). Let A =
[
ai, j

]
be a 3×3 matrix Then its determinant is

det (A) = a1,1
a2,2 a2,3
a3,2 a3,3

− a1,2
a2,1 a2,3
a3,1 a3,3

+ a1,3
a2,1 a2,2
a3,1 a3,2

= a1,1a2,2a3,3+ a1,2a2,3a3,1+ a2,1a3,2a1,3− a3,1a2,2a1,3− a3,2a2,3a1,1− a2,1a1,2a3,3

□
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Example 4.4. Compute the determinant of the matrix

A =


1 2 0 4 0
0 2 0 0 1
2 1 2 1 2
1 1 2 4 5
0 2 1 2 0


Solution: Since the second row has three zeroes we expand along that row. So we have

det (A) = 2 ·

1 0 4 0
2 2 1 2
1 2 4 5
0 1 2 0

−1 ·

1 2 0 4
2 1 2 1
1 1 2 4
0 2 1 2

We let

A1 :=


1 0 4 0
2 2 1 2
1 2 4 5
0 1 2 0

 , A2 =


1 2 0 4
2 1 2 1
1 1 2 4
0 2 1 2


Then

det (A1) = 1 ·
2 1 2
2 4 5
1 2 0

+4 ·
2 2 2
1 2 5
0 1 0

= (5+8−8−20)+4(2−2 ·5) = −15−32 = −47 (4.1)

det (A2) =
1 2 1
1 2 4
2 1 2

−2 ·
2 2 1
1 2 4
0 1 2

−4 ·
2 1 2
1 1 2
0 2 1

= (4+16+1−4−4−4)−2(8+1−4−8)−4(2+4−8−1)
= 9−2 · (−3)−4 · (−3) = 27

Hence, det (A) = 2 · (−47)−27 = −121.
□

Lemma 4.1. det (A) = det (At)

Proof. Let A = [ai j] be given. We prove the Lemma by induction. For n = 1 the proof is
trivial. Assume that the lemma holds for n < r. We want to show that it holds for n = r. The
determinant of A is

det (A) = a11|A11| − a12|A12|+ · · ·+ (−1)r+1a1r|A1r|

Denote by B := At. Then

det (B) = b11|B11| −b21|B21|+ · · ·+ (−1)r+1br1|B1r|.

However, a1 j = b j1 and B j1 = At
1 j. By the induction hypothesis we have |A1 j| = |B j1|. Hence

det (A) = det (B) = det (At).
□
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Remark 4.2. The determinant of a triangular matrix is the product of its diagonal entries.

We illustrate with an upper triangular matrix.

Example 4.5. Let A be a triangular matrix

A :=



a1,1 a1,2 a1,3 . . . a1,n
0 a2,2 a2,3 . . . a2,n
0 0 a3,3 . . . a3,n

· ·

· ·

· ·

0 0 0 . . . am,n


Solution: We find the determinant by expanding along the first column. It is obvious that
det (A) =

∏n
i=1 ai,i.

□
We now see some properties of determinants.

Lemma 4.2. Let A be an n×n matrix. The row operations have the following effect on the determinant:
(i) If Ri←→ R j is performed on a matrix A then the determinant of the resulting matrix A′ is

det (A′) = −det (A)

(ii) If two rows of A are the same then
det (A) = 0

(iii) If Ri→ rRi then the determinant of the resulting matrix A′ is

det (A′) = r ·det (A)

(iv) The operation R j→ rRi+R j does not change the determinant.

Proof. i) We proceed by induction. The proof for n = 2 is trivial. Assume that the property
holds for all matrices of size smaller then n. Let B denote the matrix obtained after performing
the operation Ri ←→ R j on A. Compute the determinant by expansion along the s-th row,
where s , i and s , j. Then

det (A) = as1|As1| − as2|As2|+ · · ·+ (−1)s+nasn|Asn|.

For each 1 ≤ r ≤ n we have
(−1)s+r

|Asr| = −(−1)s+r
|Brs|.

Thus, by induction hypothesis, |Brs| = −|Asr|. Hence, det (B) = −det (A).
Part ii) is an immediate consequence of part i) and iii) is immediate fromf the definition.

To prove iv) let B denote the matrix obtained after performing the operation R j→ rRi+R j on
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A. Then,

det (B) = b j1|B j1|+ · · ·+ (−1) j+nb jn|B jn|

= (rai1+ a j1)|B j1|+ · · ·+ (−1) j+n(rain+ a jn)|B jn|

=
(
rai1|B j1|+ · · ·+ (−1) j+nrain|B jn|

)
+

(
a j1|B j1|+ · · ·+ (−1) j+na jn|B jn|

)
= rdet (C)+det (A)

where C is obtained by interchanging the rows of A. Hence, det (C) = 0 and det (B) = det (A).
□

Theorem 4.3. A matrix A is invertible if and only if det (A) , 0.

Proof. Let A be given. Compute the row echelon form of A. Then det (A) = r ·det (H), for some
constant r , 0. The matrix A is invertible if and only if H has pivots in every row. Since H is
triangular then its determinant is the product of this pivots. Hence, A is invertible if and only
if det (H) , 0. Therefore, A is invertible if and only if det (A) , 0. □

Lemma 4.3. Let A,B ∈Matn×n(F). If det (A) = 0 then det (AB) = 0.

Theorem 4.4. Let A,B ∈Matn×n(F). Then

det (AB) = det (A) ·det (B)

Proof. First we assume that A is diagonal. Then, to obtain the matrix AB, each row of B is
multiplied by Ai,i. Hence,

det (AB) = (a11 · · ·ann) ·det (B) = det (A) ·det (B).

Without loss of generality assume that A is invertible (otherwise the theorem is true from
Lem. 4.3). Then, A can be converted in a diagonal form D by row operations (no multiplying
by constants is allowed). Thus, D = EA for some elementary matrix E where E corresponds
to row interchanges and row-additions. Hence, det (A) = (−1)r

·det (D), for some r. Then,
E(AB) = (EA)B =DB. Therefore, we have

det (AB) = (−1)r
·det (DB) = (−1)r

·det (D) ·det (B) = det (A) ·det (B).

This completes the proof. □

Example 4.6. Find the determinant of the matrix AB when

A :=


1 0 0 0
2 2 0 0
9 2 4 0

12 10 2 5

 , B =


3 0 0 0
2 1 0 0

21 -7 2 0
13 2 31 2


Solution: Since both are triangular matrices and det (AB)= det (A) ·det (B) we have det (AB)=
(1 ·2 ·4 ·5) · (3 ·1 ·2 ·2) = 480. □
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4.1.4 Computation of Determinants

Computing the determinant by cofactor expansion (expansion of minors) is a computation-
ally expensive process, especially for larger matrices, as it is recursive. While conceptually
important, it’s rarely the most efficient method for practical calculations. We can significantly
speed up the computation by leveraging elementary row operations.

The following is an immediate corollary of Lem. 4.2

Corollary 4.2. Let A ∈Mn×n(F) and rref(A) be its row-echelon form. Then

det (A) = c ·det (rref(A))

for some constant c ∈ F. Moreover, det (A) = 0 if and only if det (rref(A)) = 0.

Then we have the following lgorithm.

Algorithm 1 Computing the Determinant using Row Operations

Input: A square matrix A ∈Mn×n(F)
Output: The determinant of A, det (A)
1. Reduction to Row-Echelon Form: Reduce A to row-echelon form, denoted rref(A), using
only elementary row operations of the following types:

• Row addition: Adding a multiple of one row to another row.

• Row interchange: Swapping two rows.

• (Avoid) Scalar multiplication of a row: Multiplying a row by a non-zero scalar. While
permissible, we want to track the effect of scalar multiplication separately.

2. Determinant Calculation:
if during the reduction, a row of all zeros is encountered then return det (A) = 0
else

Let p1,p2, . . . ,pn be the pivots (leading entries) of rref(A).
Let r be the total number of row interchanges performed.
Let s1,s2, ...,sk be the non-zero scalars by which rows were multiplied, if any. return

det (A) = (−1)r
·

(∏n
i=1 pi

)
·

(∏k
j=1

1
s j

)
(Note: if no scalar multiplication, the second product is

1)
end if

Example 4.7. Let A =

2 1 1
4 3 3
8 7 9

.
1. Subtract 2 times row 1 from row 2:

2 1 1
0 1 1
8 7 9

 (no change in determinant).

2. Subtract 4 times row 1 from row 3:

2 1 1
0 1 1
0 3 5

 (no change in determinant).
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3. Subtract 3 times row 2 from row 3:

2 1 1
0 1 1
0 0 2

 (no change in determinant).

The row-echelon form is upper triangular with pivots 2, 1, and 2. No row interchanges were
performed (r = 0). Thus, det (A) = (−1)0

· (2 ·1 ·2) = 4.

Recall from Sec. 1.4.4 that a linear system Ax = 0 is called a homogenous system. Then we
have the following.

Lemma 4.4. A homogenous system Ax = 0 has a nonzero solution if and only if det (A) = 0.

Proof. The homogenous system Ax = 0 have a nonzero solution if and only if ref (A) has a row
of all zeroes, which is equivalent with det ref (A) = 0. □

Figure 4.1: The area of the parallelogram

Exercise 57. Given two vectors u,v ∈R2, say u =
[
u1
u2

]
and v =

[
v1
v2

]
. Let us form the matrix

M = [u |v] =
[
u1 v1
u2 v2

]
.

Then det (M) = u1v2−u2v1. The area of the parallelogram determined by u and v is A = ∥u∥ · ∥w∥,
where w is the height vector given in Eq. (5.4). Hence, we have

A = ∥u∥ ·
∥∥∥v−proju(v)

∥∥∥ = ∥u∥ · ∥∥∥∥∥v−
u ·v
u2 u

∥∥∥∥∥
So we have

v−
u ·v
u2 u =

[
v1
v2

]
−

u1v1+u2v2

u2
1+u2

2

[
u1
u2

]
=

1
u2

1+u2
2

[
−u2(u1v2−u2v1)
u1(u1v2−u2v2)

]
=

u1v2−u2v2

u2
1+u2

2

[
−u2
u1

]
=

det M

∥u∥2

[
−u2
u1

]
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Then ∥∥∥v−proju(v)
∥∥∥ = det M

∥u∥2

√
(u2

2+u2
1) =

det M
∥u∥

.

Substituting above we have

A = ∥u∥ ·
det M
∥u∥

= det M.

We illustrate in Fig. 4.1.

Exercise 58. Compute the area of the parallelogram determined by points P(1,2), Q(3,5), and R(−2,9).

Solution: The area is A = |det M|, where M is

M =
[−−→
PQ |

−→
PR

]
=

[
2 −3
3 7

]
Hence, area is A = |det M| = 23. □

Corollary 4.3. Two vectors u,v ∈R2 are parallel if and only if det (A) = 0, where A = [u |v].

We have a similar result in R3.

Lemma 4.5. Let u,v,w ∈R3 and A= [u |v |w]. Prove that the volume of the parallelepiped determined
by u, v, w is V = |det (A)|.

Proof. The area of the parallelogram formed by u and v is ∥u× v∥. The height h of the
parallelepiped is the projection of w onto the normal vector n = u×v, thus

h =
∣∣∣∣∣w · ( u×v

∥u×v∥

)∣∣∣∣∣ = |w · (u×v)|
∥u×v∥

.

The volume V is the product of the base area and the height:

V = ∥u×v∥ ·h = |w · (u×v)|.

The scalar triple product w · (u×v) is defined as det([u |
v | w]). Therefore,

V = |det([u |v | w])|.

□
More generally, in Rn, the absolute value of the determinant of an n×n matrix formed by

n vectors represents the n-dimensional volume of the parallelepiped (or hyperparallelepiped)
spanned by those vectors.

Exercises:

249. Let A be a (n×n) invertible matrix. Show
that

det (A−1) =
1

det(A)

250. Find the determinants of

A =

1 1 1
1 1 1
2 0 1

 , B =

2 1 3
2 −1 0
4 0 3


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Figure 4.2: The volume of the parallelepiped

251. Find the determinants of

A =

1 0 1
0 1 0
2 0 1

 , B =

 2 1 3
2 −1 0
−1 0 5


252. Find the determinants of

A =


5 −1 0 2
1 2 1 0
3 1 −2 4
0 4 −1 2

 , B =


5 2 0 2
3 2 1 0
3 1 −2 4
2 4 −1 2


and use the result to find det (A−1) and det (B−1).

253. Let A be a matrix such that det (A), 0. Does
the system Ax = b have any solutions?

254. Let A be given as

A =
[
a b
c d

]
What is the condition on a,b,c,d such that A has
an inverse? Find the inverse.

255. Let C be an invertible matrix. Prove that

det (A) = det (C−1AC).

256. The determinant of an n × n matrix A is
det (A)= 3. Find det (2A), det (−A), and det (A3).

257. Let A be an n×n matrix. If every row of A
adds to 0 prove that det (A) = 0.

258. Let A be an n× n matrix. If every row of
A adds to 1 prove that det (A− I) = 0. Does this
imply that det (A) = 0 ?

259. Let A be an n×n matrix with integer entries.
Show that A−1 exists and has integer entries if and
only if |A| = ±1.

260. Using raw operations compute the determi-
nant of

M =


7 0 0 −2

0 6 −3 0

0 −3 6 0

−2 0 0 7


and show that it is det M = 1215.

261. Let v1,v2,v3 be vectors in R3 such that

v1 =

123
 , v2 =

110
 , v3 =

310


Find the volume of the parallelepiped defined by
v1,v2,v3.
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4.2 Eigenvalues, eigenvectors, and eigenspaces

In linear algebra, diagonal matrices hold a special appeal due to their remarkable simplicity.
Computations involving diagonal matrices are significantly easier than those with general
matrices. For instance, the determinant of a diagonal matrix is simply the product of its
diagonal entries; solving a linear system with a diagonal coefficient matrix involves only
division; and powers of a diagonal matrix are obtained by simply raising the diagonal entries to
the desired power. These computational advantages make diagonal matrices highly desirable
in various applications.

This raises a natural and crucial question: Can a given matrix be "transformed" into a
diagonal matrix? If so, we could potentially simplify many computations by working with
this diagonal form. The concepts of eigenvalues and eigenvectors, which we introduce in
this section, are central to answering this question. They provide the key to understanding
when and how a matrix can be diagonalized (or, more generally, brought into a simpler,
canonical form). Moreover, eigenvalues and eigenvectors have a deep geometric significance,
revealing intrinsic properties of the linear transformation represented by the matrix. Their
importance extends far beyond just diagonalization, playing a crucial role in areas like dif-
ferential equations, stability analysis, and many other applications, as we will see in the next
section.

When we have a matrix, we can think of it as representing a linear transformation. This
transformation takes vectors as input and spits out other vectors as output. In general, when
we apply this transformation to a vector, both the direction and the magnitude of the vector
change.

Figure 4.3: Eigenvalues and eigenvectors

However, there are some special vectors, called eigenvectors, which only change in mag-
nitude (or stay the same) when the transformation is applied. Their direction remains un-
changed. It’s like they’re "eigen" to the transformation, meaning they belong or are character-
istic to it.

Imagine stretching or squashing space along certain axes. Eigenvectors point along these
special axes, the ones that don’t rotate. The eigenvalue associated with an eigenvector tells us
how much the vector is stretched or squashed in that direction.

Visualizing this can be tricky in 3D, but in 2D, imagine a vector that, when transformed,
stays on the same line through the origin, though it might get longer or shorter. That’s an
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eigenvector!
Why do we care? Well, these eigenvectors reveal a lot about the transformation itself.

They give us a set of "natural" coordinates for understanding what the transformation does.
They are also crucial in many applications, like solving differential equations and analyzing
vibrations, because they represent stable states or modes of a system.

Let A be an n×n matrix. A scalar λ ∈ F is called an eigenvalue if there exists a nonzero
vector v such that

Av = λv

The vector v is called an eigenvector corresponding to λ.

Proposition 4.3. The following are equivalent:
(i) λ is an eigenvalue of A

(ii) det (λI−A) = 0

Proof. In order to compute such eigenvalues and eigenvectors we notice that

Av = λv =⇒ (A−λI)v = 0

Hence, an eigenvalue is a scalar λ for which the system

(A−λI)x = 0

has a non trivial solution. The system has a nontrivial solution if and only if det (A−λI) = 0;
see Lem. 4.4. Thus, we want to find λ such that det (A−λI) = 0. This completes the proof. □

Let A = [ai, j] be a given matrix. Then the above equation can be written as

det (A−λI) =

a1,1−λ a1,2 a1,3 . . . a1,n
a2,1 a2,2−λ a2,3 . . . a2,n
a3,1 a3,2 a3,3−λ . . . a3,n

· ·

· ·

· ·

an,1 an,2 an,3 . . . an,n−λ

Computing this determinant we get a polynomial in λ of degree at most n. This is called
the characteristic polynomial of A, which we denote by char (A,λ). Finding the eigenvalues
of A is equivalent to finding the roots of the polynomial char (A,λ).

Corollary 4.4. λ is an eigenvalue if and only if it is a root of the characteristic polynomial.

Recall from algebra that a polynomial of degree n can have at most n roots. Hence an n×n
matrix can have at most n eigenvalues.

The multiplicity of an eigenvalue as a root of the characteristic polynomial is called the
algebraic multiplicity of the eigenvalue.

Example 4.8. Prove that the eigenvalues of a triangular matrix are entries in the main diagonal.

Example 4.9. Prove that A =
[
1 0
0 1

]
and B =

[
1 1
0 1

]
have the same eigenvalues with the same multi-

plicities.
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4.2.1 Eigenspaces

For a fixed eigenvalue λ the corresponding eigenvectors are given by the solutions of the
system

(A−λI)x = 0

Equivalently we have called such a space the nullspace of the coefficient matrix (A−λI).

Definition 4.5. If λ is an eigenvalue of A, the set

Eλ := {v ∈ V | Av = λv}

is called the eigenspace of A corresponding to λ. The dimension of the eigenspace is called the
geometric multiplicity of the eigenvalue λ which we will denote by geom (λ).

Lemma 4.6. Let A be a square matrix and λ any eigenvalue of A. The following are true:
i) geom (λ) = null (A−λI)
ii) geom (λ) ≤ alg (λ).

Proof. Part i) is simply by definition of the geometric multiplicity.
Part ii)

□
Finding the eigenvalues requires solving a polynomial equation which can be difficult for

high degree polynomials. Once the eigenvalues are found then we use the linear system

(A−λI)x = 0

to find a basis for the corresponding eigenspace Eλ. A basis of Eλ is usually called an
eigenbasis.

We illustrate below.

Example 4.10. Find the characteristic polynomial and the eigenvalues of the matrix A =
[
1 2
5 4

]
.

Solution: The characteristic polynomial is

char (A,λ) = det (A−λI) =
1−λ 2

5 4−λ = (1−λ)(4−λ)−5 ·2 = λ2
−5λ−6 = (λ+1)(λ−6)

The eigenvalues are λ1 = −1 and λ2 = 6. Both of them have algebraic multiplicity 1. If λ1 = −1 the
system becomes: [

2 2
5 5

]
x = 0

and its solution is v1 =

[
−1
1

]
. Its eigenspace is Eλ1 = ⟨v1⟩. It has dimension 1 and therefore the

geometric multiplicity of λ1 = −1 is also 1. For λ2 = 6 the system becomes:[
-5 2
5 -2

]
x = 0
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and its solution is v2 =

[
1
5
2

]
. Its eigenspace is Eλ2 = ⟨v2⟩. This eigenspace also has dimension 1 and

therefore the geometric multiplicity of λ2 = 6 is also 1.
□

Example 4.11. Find the eigenvalues and their multiplicities for the matrix

A :=


1 0 2 1
2 1 0 -1
0 0 2 0
0 0 1 -2


Solution: The characteristic polynomial is

char (A,x) = (x−1)2 (x−2)(x+2)

Hence there are three eigenvalues, namely λ1 = 1, λ2 =−2, λ3 = 2. The eigenvalue λ1 = 1 has algebraic
multiplicity 2 and the others have algebraic multiplicity 1.

To find the geometric multiplicities for λ1,λ2,λ3 we have to find their corresponding eigenvectors.
By solving the corresponding systems we have

v1 =


0
1
0
0

 , v2 =


1

- 5
3

0
-3

 , v3 =


9

17
4
1


Thus the geometric multiplicities for λ1,λ2,λ3 are respectively 1, 1, 1.

□

Next we will see an example when the algebraic and geometric multiplicities are the same
for each eigenvalue.

Example 4.12. Find the eigenvalues and their multiplicities for the matrix

A :=


1 0 0 1
0 1 0 2
1 -1 2 3
0 0 0 -2


Solution: The characteristic polynomial is

char (A,x) = (x−1)2 (x−2)(x+2)

Hence there are three eigenvalues, namely λ1 = 1, λ2 =−2, λ3 = 2. The eigenvalue λ1 = 1 has algebraic
multiplicity 2 and the others have algebraic multiplicity 1.

To find the geometric multiplicities for λ1,λ2,λ3 we have to find their corresponding eigenvectors.
By solving the corresponding systems we have:

158

https://leanpub.com/lin-alg/
https://leanpub.com/u/shaska


Shaska, T. Linear Algebra

For λ = 1 the eigenvectors are

u1 =


1
1
0
0

 , u2 =


-1
0
1
0


Hence the geometric multiplicity of λ1 = 1 is 2.

For λ2 and λ3 the eigenvectors are respectively v2 and v3 as below:

v2 =


1
2
5
2
-3

 , v3 =


0
0
1
0


Hence, the geometric multiplicity for λ2 and λ3 is 1.

□

Example 4.13. Find the eigenvalues and the corresponding eigenbasis for the matrix

M =



3 0 0 0 0

4 −1 0 4 0

0 0 3 0 0

0 0 0 3 0

−4 0 −4 −4 −1


Solution: The characteristic polynomial is

char (M,λ) = (λ+1)2 (λ−3)3

Denote by λ1 = 3 and λ2 =−1. The reader should determine an eigenbasis for each. For λ1 = 3,
the geometric multiplicity is 3 and an eigenbasis B1 = {v1,v2,v3}, where

v1 =


−1
−1
0
0
1

 , v2 =


−1
0
0
1
0

 , v3


−1
−1
1
0
0

 .
For λ2 = −1 the geometric multiplicity is 2 and an eigenbasis B2 = {u1,u2}, where

u1 =


0
0
0
0
1

 , u2 =


0
1
0
0
0

 .
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□
We will see in the next chapter that the above two examples illustrate two classes of

matrices. We will learn how to deal with each of these classes separately.

Exercises:

262. If A has eigenvaluesλ1, . . . ,λn then show that
A2 has eigenvalues λ2

1, . . . ,λ
2
n.

263. If A and B are n×n matrices, then show that
AB and BA have the same eigenvalues.

264. Let A be a diagonal n× n matrix such that
det (A) , 0. Assume that all entries in the diag-
onal are distinct. How many distinct eigenvalues
has A and what are their multiplicities?

265. Let A be a 2 by 2 matrix with trace T and de-
terminant D. Find a formula that gives the eigen-
values of A in terms of T and D.

266. Let A and B be given as below:

A =


5 −1 0 2
1 2 1 0
3 1 −2 4
0 4 −1 2

 , B =


5 2 0 2
3 2 1 0
3 1 −2 4
2 4 −1 2


Find their eigenvalues. In each case compute the
sum and product of eigenvalues and compare it
with the trace and determinant of the matrix.

267. Prove that a square matrix is invertible if and
only if no eigenvalue is zero.

268. Let A be a 3 by 3 matrix. Can you find a
formula which determines the eigenvalues of A if
you know the trace and determinant of A?

269. Find the characteristic polynomial, eigenval-
ues, and eigenvectors of the matrix

A =

−1 −1 0
1 1 1
3 1 −2


270. Compute the eigenvalues and their multiplic-
ities of the matrix A3, where A is as in the previous
example.

271. Find the eigenvalues and their algebraic and
geometric multiplicities for each of the matrices

A =


5 −1 0 2
1 2 1 0
3 1 −2 4
0 4 −1 2

 , B =


5 2 0 2
3 2 1 0
3 1 −2 4
2 4 −1 2


272. Let A be a diagonal n×n matrix given by

A =


1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4


What are its eigenvalues and their multiplicities?

273. Find all the eigenvalues of a n×n matrix with
all diagonal entries equal to a and all other entries
equal to b.

274. If A is a symmetric matrix prove that the al-
gebraic multiplicity for each eigenvalue is equal to
its geometric multiplicity.
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Nils Abel (1802-1829)

Niels Henrik Abel, (born August 5, 1802, island of Finney,
near Stavanger, Norway–died April 6, 1829, Froland), Nor-
wegian mathematician, a pioneer in the development of sev-
eral branches of modern mathematics.

Abel’s father was a poor Lutheran minister who moved
his family to the parish of Gjerstad, near the town of Risor
in southeast Norway, soon after Niels Henrik was born. In
1815 Niels entered the cathedral school in Oslo, where his
mathematical talent was recognized in 1817 with the arrival
of a new mathematics teacher, Bernt Michael Holmboe, who
introduced him to the classics in mathematical literature and
proposed original problems for him to solve. Abel studied the
mathematical works of the 17th-century Englishman Sir Isaac
Newton, the 18th-century German Leonhard Euler, and his
contemporaries the Frenchman Joseph-Louis Lagrange and
the German Carl Friedrich Gauss in preparation for his own
research.

Abel’s father died in 1820, leaving the family in straitened circumstances, but Holmboe
contributed and raised funds that enabled Abel to enter the University of Christiania (Oslo)
in 1821. Abel obtained a preliminary degree from the university in 1822 and continued his
studies independently with further subsidies obtained by Holmboe.

Abel’s first papers, published in 1823, were on functional equations and integrals; he was
the first person to formulate and solve an integral equation. His friends urged the Norwegian
government to grant him a fellowship for study in Germany and France. In 1824, while
waiting for a royal decree to be issued, he published at his own expense his proof of the
impossibility of solving algebraically the general equation of the fifth degree, which he hoped
would bring him recognition. He sent the pamphlet to Gauss, who dismissed it, failing to
recognize that the famous problem had indeed been settled.

Abel spent the winter of 1825–26 with Norwegian friends in Berlin, where he met August
Leopold Crelle, civil engineer and self-taught enthusiast of mathematics, who became his
close friend and mentor. With Abel’s warm encouragement, Crelle founded the Journal
für die Reine und Angewandte Mathematik ("Journal for Pure and Applied Mathematics"),
commonly known as Crelle’s Journal. The first volume (1826) contains papers by Abel,
including a more elaborate version of his work on the quintic equation. Other papers dealt
with equation theory, calculus, and theoretical mechanics. Later volumes presented Abel’s
theory of elliptic functions, which are complex functions (see complex number) that generalize
the usual trigonometric functions.

In 1826 Abel went to Paris, then the world centre for mathematics, where he called on
the foremost mathematicians and completed a major paper on the theory of integrals of
algebraic functions. His central result, known as Abel’s theorem, is the basis for the later
theory of Abelian integrals and Abelian functions, a generalization of elliptic function theory
to functions of several variables. However, Abel’s visit to Paris was unsuccessful in securing
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him an appointment, and the memoir he submitted to the French Academy of Sciences was
lost.

Abel returned to Norway heavily in debt and suffering from tuberculosis. He subsisted
by tutoring, supplemented by a small grant from the University of Christiania and, beginning
in 1828, by a temporary teaching position. His poverty and ill health did not decrease his
production; he wrote a great number of papers during this period, principally on equation
theory and elliptic functions. Among them are the theory of polynomial equations with
Abelian groups. He rapidly developed the theory of elliptic functions in competition with the
German Carl Gustav Jacobi. By this time Abel’s fame had spread to all mathematical centres,
and strong efforts were made to secure a suitable position for him by a group from the French
Academy, who addressed King Bernadotte of Norway-Sweden; Crelle also worked to secure
a professorship for him in Berlin.
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4.3 Similar matrices, diagonalizing matrices, eigendecompo-
sition

In this section we will study the concept of similarity of matrices. We will determine necessary
and sufficient conditions for a matrix to be similar to a diagonal matrix. When this is possible
we will provide an algorithm for determining this diagonal matrix.

Definition 4.6. Two matrices A and B are called similar if there exists a matrix C such that

A = CBC−1.

Two similar matrices A and B are denoted by A ∼ B.

Exercise 59. The similarity relation is an equivalence relation.

For a given square matrix A consider the following problem. Determine a matrix C such
that C−1AC is a diagonal matrix. The following theorem is the main result of this section.
Theorem 4.5. Let A ∈Matn×n(F) be a square matrix and λ1, . . . ,λs all distinct eigenvalues of A.
Suppose that for all i = 1, . . . ,s, the algebraic multiplicity of λi equals its geometric multiplicity, say

alg. mult.(λi) = geom. mult.(λi) = ei.

Then there exists an invertible matrix C and a diagonal matrix D such that D = C−1 AC. The matrix
D is given by

D =



λ1
. . .

λ1
λ2

. . .
λ2

. . .
λs

. . .
λs


where each λi appears ei times on the diagonal, and

C =
[
v1,1 . . . v1,e1 v2,1 . . . v2,e2 . . . vs,1 . . . vs,es

]
,

where vi,1, . . . ,vi,ei is a basis for the eigenspace Eλi .

Proof. For each eigenvalueλi, since the geometric multiplicity equals the algebraic multiplicity
(ei), we can find ei linearly independent eigenvectors associated with λi. Let these eigenvectors
be vi,1,vi,2, . . . ,vi,ei . These vectors form a basis for the eigenspace Eλi .

Form the matrix C by placing the eigenvectors as columns:

C =
[
v1,1,v1,2, . . . ,v1,e1 , | v2,1, . . . ,v2,e2 , . . . , | vs,1, . . . ,vs,es

]
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Form the diagonal matrix D with the eigenvalues on the diagonal, repeated according to their
algebraic multiplicity.

D =



λ1
. . .

λ1
λ2

. . .
λ2

. . .
λs

. . .
λs


We want to show that AC = CD. Consider the product AC. The j-th column of AC is given

by A times the j-th column of C. If the j-th column of C is an eigenvector vi,k corresponding to
eigenvalue λi, then Avi,k = λivi,k.

Now consider the product CD. The j-th column of CD is given by C times the j-th column
of D. If the j-th column of D has λi on the diagonal, then the j-th column of CD will be λi
times the j-th column of C, which is the eigenvector vi,k. Thus, the j-th column of AC is the
same as the j-th column of CD. Since this holds for all columns, we have AC = CD.

Since the eigenvectors corresponding to distinct eigenvalues are linearly independent, and
we have a total of e1+ e2+ · · ·+ es = n linearly independent eigenvectors (because the geometric
multiplicity equals the algebraic multiplicity for each eigenvalue), the matrix C formed by
these eigenvectors is invertible.

Since AC = CD and C is invertible, we can multiply both sides by C−1 on the left to get

C−1AC = C−1CD =D.

Therefore, A is similar to the diagonal matrix D. □
We call the matrix C above the transitional matrix of A associated with D. We illustrate

the above theorem with the following two examples.

Example 4.14. Let A be the 4×4 matrix as follows

A =


2 1 0 2

-1 0 -1 0
2 1 0 1
1 0 -1 1


Find a diagonal matrix similar to A and the transitional matrix.

Solution: The characteristic polynomial of A is

char (A,λ) = (λ2
−2λ+2)(λ2

−λ−1)
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The eigenvalues are 1±i, 1
2±

√
5

2 and their algebraic multiplicity is 1. We now find the geometric
multiplicity for each one of the eigenvalues.

Let λ = 1+ i. Then we solve the system A− (1+ i)In = 0. The solution space has dimension
1 and a basis for it is v1 where

v1 =


1
−1+ i

1
0


Similarly, if λ = 1− i then the eigenvector is:

v2 =


1
−1− i

1
0


If λ3 =

1
2 +

√
5

2 , λ4 =
1
2 +

√
5

2 , then the corresponding eigenvectors are

v3 =



−
13
2 +

5
2

√
5

1

6−3
√

5

15
2 −

7
2

√
5


, v4 =



−
13
2 −

5
2

√
5

1

6−3
√

5

15
2 −

7
2

√
5


Hence, since the algebraic multiplicity of each eigenvalue is the same with the geometric
multiplicity then A is similar to

D =


1+ i 0 0 0

0 1− i 0 0

0 0 1
2 +

√
5

2 0

0 0 0 1
2 −

√
5

2


The transitional matrix in this case is C = [v1,v2,v3,v4]. □

Lemma 4.7. Similar matrices have the same characteristic polynomial. Therefore, they have the same
eigenvalues with the same algebraic multiplicities.

Proof. Let A ∼ B, say
A = CBC−1

for some invertible matrix C. Then,

char (A,λ) = det (A−λ I) = det (A−λ I) ·det (C) ·det (C−1)

= det
(
C(A−λI)C−1

)
= det

(
CAC−1

−λCIC−1
)

= det
(
CAC−1

−λI
)
= det (B−λI) = char (B,λ).
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Thus, the characteristic polynomial is the same. Hence, A and B have the same eigenvalues. □
The converse of the lemma is not true. In other words there are matrices with the same

characteristic polynomial which are not similar.

Example 4.15. Consider the matrices A =
[
1 1
0 1

]
and I =

[
1 0
0 1

]
. Let us try to diagonalize A. Its

characteristic polynomial is
char (A,λ) = (λ−1)2.

Hence, there is only one eigenvalue λ = 1 of algebraic multiplicity 2. For this eigenvalue λ = 1 we have

A−λI = A−1 · I =
[
0 1
0 0

]
,

which is already in row-echelon form. Since there is only one pivot then the null (A− I)= 1 and therefre
the geometric myltiplicity of λ = 1 is 1. Hence, this matrix can not be diagonalized, which means it can
not be similar to a diagonal matrix. Therefore, A can not be similar to I. □

Remark 4.3. In the last chapter of this book we will learn how to determine all similarity classes of
matrices for a given characteristic polynomial.

Lemma 4.8. Let A be a n×n matrix and λ1, λ2, . . . ,λn its eigenvalues (not necessarily distinct) such
that the algebraic and geometric multiplicity are the same. Then,

tr(A) = λ1+λ2+ · · ·+λn.

Proof. Since the algebraic and geometric multiplicities of the eigenvalues of A are equal, A is
diagonalizable. This means there exists an invertible matrix P such that A can be written as:

A = PDP−1

where D is a diagonal matrix whose diagonal entries are the eigenvalues of A:

D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


The trace of a matrix has the property that tr(AB) = tr(BA). Using this property, we can write:

tr(A) = tr(PDP−1) = tr(P−1PD) = tr(ID) = tr(D)

Since I is the identity matrix, P−1P = I. The trace of a diagonal matrix is simply the sum of its
diagonal entries. Therefore,

tr(D) = λ1+λ2+ · · ·+λn

Thus, we have shown that:
tr(A) = λ1+λ2+ · · ·+λn

Therefore, the trace of matrix A is equal to the sum of its eigenvalues. □

Notice that this result is true even if we drop the assumption that algebraic and geometric
multiplicities are the same; see Thm. 5.7.
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4.3.1 Diagonalizing matrices

We want to consider the following: Given a matrix A, find a diagonal matrix D such that A
is similar to D. Further, find the matrix C which conjugates A and D. The theorem above
provides an algorithm for how this can be done.

Algorithm 7. Input: An n×n matrix A.
Output: Matrices C and D such that

D = C−1 AC

if A is diagonalizable, otherwise display ’A is not diagonalizable’.

Step:i) Compute the eigenvalues of A and their algebraic multiplicities.
Step:ii) For each eigenvalue λ1, compute the geometric multiplicity of λi and the correspond-
ing eigenvectors

vi,1, . . . ,vi,s

Step:iii) Create the matrix D and C as in the previous theorem.

Example 4.16. Let A =
[
2 1
1 2

]
. The eigenvalues are λ1 = 1 and λ2 = 3. Corresponding eigenvectors

are v1 =

[
−1
1

]
and v2 =

[
1
1

]
. Then

C =
[
−1 1
1 1

]
, D =

[
1 0
0 3

]
, C−1 =

[
−1/2 1/2
1/2 1/2

]
.

You can verify that A = CDC−1.

Example 4.17. Let A be the 4×4 matrix given below

A :=


9 0 0 0

-2 1 -3 -4
-6 0 6 0
4 4 3 11


Find out if this matrix is diagonalizable and in that case find a diagonal matrix D similar to A and the
transitional matrix C associated to D.
Solution: The characteristic polynomial of A is

char (A,x) = (x−3)(x−6)(x−9)2.

Thus, the eigenvalues areλ1 = 3, λ2 = 6, andλ3 = 9 with algebraic multiplicities 1, 1, and 2 respectively.
The corresponding eigenvectors of λ1,λ2,λ3 are respectively v1,v2, and w1,w2 as below

v1 :=


0
−2
0
1

 , v2 :=


0
1
−3
1

 , w1 :=


2
1
−4
0

 , w2 :=


1
0
−2
1

 .
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Hence, the geometric multiplicities are respectively 1,1, and 2. Therefore the matrix A is diagonalizable
and C and D are

D =


3 0 0 0
0 6 0 0
0 0 9 0
0 0 0 9

 , C :=


0 0 2 1

-2 1 1 0
0 -3 -4 -2
1 1 0 1


□

Example 4.18. Let A be a 3 by 3 matrix as below

A =

 2 1 0
0 2 0
0 0 3

 .
Check if A is similar to a diagonal matrix.
Solution: Then char (A,λ) = (λ−2)2(λ−3). For the eigenvalue λ = 2, the algebraic multiplicity is 2
and the eigenspace is given by

E2 =

t

010
 | t ∈Q


The geometric multiplicity is 1, hence A is not similar to the diagonal matrix of eigenvalues. □

Exercise 60. Let A be similar to a diagonal matrix D such that A = CDC−1. Prove that for every
positive integer n, An = CDn C−1.

Example 4.19. Diagonalize the matrix

M =


2 1 0 0 0
0 1 0 0 0
0 0 2 0 0
−1 −1 0 1 0
0 0 −1 0 1


Solution: The characteristic polynomial of M is

char (M,λ) = (λ−1)3(λ−2)2.

For λ = 1 the corresponding eigenbasis is B1 = {v1,v2v3} and for λ = 2 the eigenbasis is B2 =
{w1,w2} such that

C =
[
v1|v2|v3|w1|w2

]
=



0 0 −1 0 −1

0 0 1 0 0

0 0 0 −1 0

0 1 0 0 1

1 0 0 1 0


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Then

D =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 2 0

0 0 0 0 2


The reader can check that D = C−1 MC. □

Remark 4.4. Perhaps it is worth mentioning that to check that D = C−1 MC it is easier to check that
CD =MC. In this way we don’t have to compute C−1.

In later chapters we will see how we can pick the transitional matrix C differently.

Remark 4.5. It is often not a simple task to factorize the characteristic polynomial, especially if it is of
high degree. Moreover, solving high degree algebraic equations it can be quite difficult. In most exercises
we will give matrices whose characteristic polynomial can be easily factored or give the characteristic
polynomial in factored form.

Example 4.20. Diagonalize the matrix

M =



1 0 1 −1 1

1 2 −1 1 −1

0 0 2 0 0

1 0 −1 3 −1

1 0 −1 1 1


Solution: The characteristic polynomial of M is char (M,λ) = (λ− 1)(λ− 2)4. The eigenbasis
for Eλ=1 is B1 = {v1} and the eigenbasis for Eλ=2 is B2 = {u1,u2,u3,u4} and we get C and D as

C =
[
v1|u1|u2|u3|u4

]
=



−1 1 −1 1 0

1 0 0 0 1

0 0 0 1 0

1 0 1 0 0

1 1 0 0 0


, D :=



1 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 0 2 0

0 0 0 0 2


The reader can now verify that D = C−1MC. □

4.3.2 Eigendecomposition

The expression of a square matrix A as

A = CDC−1
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where D is a diagonal matrix formed from the eigenvalues of A, and the columns of C are the
corresponding eigenvectors, is called the eigendecomposition (or spectral decomposition) of
A.

An n×n matrix A has n complex eigenvaluesλ1, . . . ,λn (counted with algebraic multiplicity),
which form the diagonal entries of D. The corresponding eigenvectors v1, . . . ,vn form the
columns of C: C = [v1 v2 · · · vn]. This decomposition is equivalent to the equation AC = CD.

C is invertible if and only if A has n linearly independent eigenvectors (i.e., each eigen-
value’s geometric multiplicity equals its algebraic multiplicity). A sufficient (but not neces-
sary) condition for this is that all eigenvalues are distinct. In this case, A is diagonalizable.

Eigenvectors are often normalized to have length 1. This does not change the eigendecom-
position, as any scalar multiple of an eigenvector is still an eigenvector.

Exercises:

275. Let A be a n× n matrix with characteristic
polynomial

char (A,λ) = anλ
n+ an−1λ

n−1+ · · ·+ a1λ+ a0.

Show that tr(A) = (−1)n−1
· an−1.

276. Diagonalize (if possible) the matrix:

A =


3 1 4 2

-1 0 -1 0
2 1 0 1
1 0 -1 1


277. Let

A =


2 1 3 2
−1 0 −1 0
5 1 0 1
1 0 −1 3

 and B =


3 1 4 2
−1 0 −1 0
2 1 0 1
1 0 −1 1

 .
Determine if A and B are similar.

278. Let

A=


2 1 3 2
−1 0 −1 0
5 1 0 1
1 0 −1 3

 and B=


−10 −2 2 3
11 7 −5 1
−15 −2 5 4
−15 −4 5 3

 .
Determine if A and B are similar.

279. Let A =
[
8 2
2 5

]
. Find its eigenvalues and

their geometric and algebraic multiplicities. For
each eigenspace determine a basis. Find the matri-
ces C and D such that CA =DC.

280. Let

A =

1 2 4
3 5 2
2 6 9


Find the eigenvalues of A and determine a basis
for each eigenspace. Determine matrices C and D
such that D = C−1AC. Compute A11.

281. Let A be the 4 by 4 matrix

A :=


−2 −5 −2 −1

3
2

7
2

3
2 0

1
2

−1
2

−3
2 −1

−5
2

−7
2

−1
2 1


Show that D = C−1AC where

C :=


1 2 1 1
1 1 -1 0

-1 1 1 2
1 1 0 -1

 , D :=


-1 0 0 0
0 -1 0 0
0 0 1 0
0 0 0 2


Compute A6.

282. Compute Ar for A =
[
−3 5
−2 4

]
, where r is a

positive integer.
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4.4 Cramer’s rule and adjoint matrices

Until now we have solved linear systems using the Gauss method. In this section we will see
a different method which implies a formula for solving linear systems. Let a linear system
A ·x = b be given where

A = [ai, j] =



a1,1 a1,2 a1,3 . . . a1,n
a2,1 a2,2 a2,3 . . . a2,n
a3,1 a3,2 a3,3 . . . a3,n

·

·

·

am,1 am,2 am,3 . . . am,n


, x =



x1
x2
x3

xm


, b =



b1
b2
b3

bm


.

For each k = 1, . . . ,n, we define the matrix Bk to be the matrix obtained by replacing the
F-column of A by the vector b as below:

Bk =



a1,1 a1,2 a1,3 . . . b1 . . . a1,n
a2,1 a2,2 a2,3 . . . b2 . . . a2,n
a3,1 a3,2 a3,3 . . . b3 . . . a3,n

· . . . . . . .
· . . . . . . .
· . . . bi . . .
· . . . . . . .
· . . . . . . .

am,1 am,2 am,3 . . . bn . . . am,n


Theorem 4.6 (Cramer). If A is an invertible matrix then the linear system Ax = b has a unique
solution given by

xk =
det (Bk)
det (A)

, f or k = 1, . . . ,n.

Proof. The solution is x = A−1b. Expand det Bk in cofactors of the k-th column. We have

det Bk = b1A1k+ · · ·+ bnAnk.

Multiplying by 1
det A

, this is exactly the k-th component of the vector x. □

Example 4.21. Solve the following system using Cramer’s rule{
2x+3y = 5
5x− y = 7

Solution: Then A =
[
2 3
5 −1

]
, B1 =

[
5 3
7 −1

]
, and B2 =

[
2 5
5 7

]
. Hence,

det (A) = −17, det (B1) = −26, det (B2) = −11

and x1 =
26
17 and x2 =

11
17 . □
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We now illustrate with a linear system with five equations and five unknowns.

Example 4.22. Solve the linear system Ax = b, where A is as in Exa. 4.4, and b = [1,0,0,−1,0]t.
Solution: As shown in Exa. 4.4 the determinant of A is det (A) = −121. Further, we compute

det (B1) = −61, det (B2) = −14, det (B3) = 44, det (B4) = −8, det (B5) = 28

Then, the solution of the system is x =
[

61
121 ,

14
121 ,−

4
11 ,

8
121 ,−

28
121

]t
. □

4.4.1 Adjoints of matrices

The existence of the inverse of a matrix depends on whether or not the determinant of the
matrix is 0. Naturally one would like to find a formula for the inverse in terms of the determi-
nant. The concept of the adjoint (or conjugate transpose) of a matrix plays a fundamental role
in linear algebra, particularly in inner product spaces, optimization, and functional analysis.
It generalizes the notion of the transpose for real matrices and arises naturally in various
applications

Definition 4.7. Let A be a n×n matrix with entries in C given by A = [ai, j]. For each entry ai, j the
corresponding cofactor is denoted by ci, j. Create the matrix C = [ci, j]. Let

C̄ := [ c̄i, j ],

where C̄i, j = [c̄i, j] contains the conjugates of elements ci, j; see ??. The matrix

adj (A) := (C̄)t

is called the adjoint of A.

Hence, given a complex matrix A ∈ Cm×n, its adjoint (also called the Hermitian transpose
or conjugate transpose) is denoted by A∗ and is defined as

A∗ = A
T
, (4.2)

where A represents the entrywise complex conjugate of A, and AT is the usual transpose. For
a real matrix A ∈Rm×n, the adjoint reduces to the ordinary transpose: A∗ = AT.

Example 4.23. Find the adjoint of the matrix A =

i+1 2 i−1
0 2i 0
i 1 −1

.
Solution: Then we find C =

 −2i 0 2
−1− i 0 1− i

4 0 −2+2i

. Hence,

C̄ =

 2i 0 2
−1+ i 0 1+ i

4 0 −2−2i

 and adj (A) =

−2i −1− i 4
0 0 0
2 1− i −2+2i


□
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Remark 4.6. Notice that if the matrix has entries in R then it is not necessary to take the conjugates
of ci, j since the conjugates of real numbers are the numbers themselves. That is why in most textbooks
which treat only the matrices with entries from R the definition of the adjoint does not contain taking
conjugates.

Lemma 4.9. The adjoint operation satisfies several important properties:

1. Involution Property: (A∗)∗ = A.

2. Reversal of Products: (AB)∗ = B∗A∗ for any conformable matrices A,B.

3. Sum Property: (A+B)∗ = A∗+B∗.

4. Scalar Multiplication: (λA)∗ = λA∗ for any scalar λ ∈ C.

5. Self-Adjoint Matrices: If A∗ = A, the matrix is called Hermitian and has real eigenvalues.

6. Unitary Matrices: If A∗A = AA∗ = I, then A is unitary, meaning it preserves inner products
and norms.

Theorem 4.7. Let A be an invertible matrix and adj(A) its adjoint. Then

A ·adj(A) = adj(A) ·A = det (A) · In

Proof. Let A = [ai j] be an n×n matrix. The adjoint of A, denoted adj(A), is the transpose of the
cofactor matrix of A. The cofactor Ci j of the element ai j is given by (−1)i+ jMi j, where Mi j is the
determinant of the submatrix obtained by deleting the i-th row and j-th column of A. Thus,
adj(A) = [C ji].

We want to show that A · adj(A) = det (A) · In. The (i, j)-entry of the product A · adj(A) is
given by:

(A ·adj(A))i j =

n∑
k=1

aikC jk

We consider two cases:
Case 1: i = j. Then the (i, i)-entry of A ·adj(A) is:

(A ·adj(A))ii =

n∑
k=1

aikCik

This is the cofactor expansion of the determinant of A along the i-th row. Therefore,

(A ·adj(A))ii = det (A)

Case 2: i , j. Then the (i, j)-entry of A ·adj(A) is:

(A ·adj(A))i j =

n∑
k=1

aikC jk
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This sum represents the cofactor expansion of the determinant of a matrix A′ where the j-th
row of A′ is identical to the i-th row of A, and all other rows are the same as in A. Since A′ has
two identical rows, its determinant is zero. Therefore,

(A ·adj(A))i j = 0

Combining these two cases, we have:

(A ·adj(A))i j =

det (A) if i = j
0 if i , j

This means that A ·adj(A) = det (A) · In.
Similarly, we can show that adj(A) ·A = det (A) · In. The (i, j)-entry of adj(A) ·A is:

(adj(A) ·A)i j =

n∑
k=1

Ckiakj

If i= j, this is the cofactor expansion along the i-th *column*, which also equals det (A). If i, j,
this represents the determinant of a matrix with two identical columns, which is 0. Therefore,
adj(A) ·A = det (A) · In.

Thus, we have shown that A ·adj(A) = adj(A) ·A = det (A) · In. □
From the above theorem we conclude that for a given matrix A such that det (A) , 0 we

have
A−1 =

1
det (A)

adj (A)

Example 4.24. Find the adjoint of A A =

1 2 3
4 5 6
7 8 9

.
Solution: Check that the adjoint is

adj (A) =

−3 6 −3
6 −12 6
−3 6 −3


Notice that det (A) = 0 so this matrix does not have an inverse. □

Exercises:

283. Compute the inverse of the matrix

A =
[
2 −1
1 3

]
using the adjoint method.

284. Show that if A is an invertible 3×3 matrix, then A−1 = 1
det (A)

adj (A).
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285. Let

A =
[

2 i
−i 3

]
.

Find its adjoint matrix A∗.

286. Determine whether the matrix

A =

1 2 3
4 5 6
7 8 9


is invertible using the determinant criterion.

287. Prove that for any square matrix A, det ( adj (A)) = (det A)n−1.

288. Prove that if A is an n×n invertible matrix, then the solution to Ax = b given by Cramer’s rule
is unique.

289. Show that if A is a singular n×n matrix, then at least one of the determinant expressions in
Cramer’s rule is undefined.

290. Prove that if A is an invertible n×n matrix, then adj (A) satisfies the equation A · adj (A) =
(det A)In.

291. Let A be a 3×3 matrix. Show that adj (A) satisfies the matrix equation A · adj (A) = (det A)I3
explicitly by computing both sides.

292. If A is a diagonal matrix, show that its adjugate matrix is also diagonal, and find a general formula
for adj (A) in terms of the diagonal entries of A.

293. Prove that for any invertible n×n matrix A, we have adj (A−1) = ( adj (A))−1.

294. Show that if A is an upper triangular or lower triangular matrix, then adj (A) is also upper
triangular or lower triangular, respectively.

295. If A is an n×n matrix with integer entries and det (A) = ±1, prove that all entries of adj (A) are
also integers.

296. Let A be an n×n matrix. Prove that if A is invertible, then det ( adj (A)) = (det A)n−1.

297. For an arbitrary n×n matrix A, prove that adj ( adj (A)) = (det A)n−2A.
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4.5 Resultants

The study of resultants is fundamental in polynomial algebra, as it provides a powerful
criterion for detecting common roots between two polynomials. Given two polynomials
f (x) and g(x), their resultant encodes information about whether they share a nontrivial
common factor. This concept is particularly useful in elimination theory, where we seek to
eliminate variables from systems of polynomial equations, and in computational algebra,
where resultants appear in algorithms for solving polynomial systems. The construction of
the Sylvester matrix offers an explicit and systematic way to compute the resultant, leveraging
linear algebra techniques to transform a problem in polynomial factorization into a problem
of matrix determinants. This approach not only deepens our understanding of polynomial
structure but also has far-reaching applications in areas such as algebraic geometry, number
theory, and symbolic computation.

Let f (x) and g(x) be polynomials of degree n and m given as follows:

f (x) = anxn+ an−1xn−1+ · · ·+ a1x+ a0

g(x) = bmxm+bm−1xm−1+ · · ·+ b1x+ b0
(4.3)

with coefficients in F. Consider vector spaces Pn and Pm of polynomials of degree ≤ n and ≤m
respectively with coefficients in F. Let Pn×Pm be the direct product as in Def. 2.11 and define

φ : Pn×Pm→ Pn+m

(p,q)→ f q+ gp

Lemma 4.10. φ is a linear map and the corresponding matrix is then (n+m)-square matrix

Mφ =



an bm
an−1 an bm−1 bm
an−2 an−1 . bm−2 bm−1 .
. an−2 . . . . . .
. . . . an . . . . bm

a1 . . . an−1 b0 . . . bm−1
a0 a1 . . an−2 b0 . . .

a0 . . . . . .
. . . .
. . .

a0 b0



(4.4)

Proof. The reader can check that φ is a well defined map. Consider (p1,q1) and (p2, ,q2) points
in Pn×Pm. Then

φ
(

(p1,q1)+ (p2,q2)
)
= φ

(
p1+p2,q1+ q2

)
= f (q1+q2)+ g(p1+p2)

=
(

f q1+ gp1
)
+

(
f q2+ gp2

)
= φ(p1,q1)+φ(p2,q2)

Similarly for the scalar multiplication. Hence φ is linear.
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From Lem. 2.7 we have dim(Pn ×Pm) = n+m. Hence, there is a (n+m)-square matrix
associated to φ. Pick a basis B1 = {xn−1, . . . ,x,1} for Pn and B2 = {xm−1, . . . ,x,1} for Pm.

□
The matrix Mφ is called the Sylvester matrix of f (x) and g(x) and denoted by Syl( f , g,x).

Definition 4.8. The resultant of f (x) and g(x), denoted by Res( f , g,x), is

Res( f , g,x) := det (Syl( f , g,x)).

The following is a basic fact in the algebra of polynomials.

Lemma 4.11. The polynomials f (x) and g(x) have a common factor inF[x] if and only if Res( f , g,x)= 0.

The proof is part of a course in computational algebra.

Example 4.25. Consider the polynomials:

f (x) = x2+ ax+b

g(x) = x+ c

We will compute the resultant Res( f , g,x) using the Sylvester matrix.
Step 1: Construct the Sylvester Matrix
The Sylvester matrix is formed by writing down the coefficients of f (x) and g(x) in a structured

way.
For the given polynomials:

f (x) = 1x2+ ax+b = [1,a,b]

g(x) = 1x+ c = [1,c]

The Sylvester matrix is:

S =
[
1 a b
0 1 c

]
Step 2: Compute the Determinant

Res( f , g,x) = det
[
1 a b
0 1 c

]
Expanding the determinant:

Res( f , g,x) = (1 ·1) · c− (0 · a) ·b = c− ac+b.

Thus, the resultant is:
Res( f , g,x) = c− ac+b.

This resultant tells us that f (x) and g(x) share a common root if and only if Res( f , g,x) = 0.
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4.5.1 The Discriminant

Let f (x) be a degree n polynomial given as

f (x) = anxn+ an−1xn−1+ · · ·+ a1x+ a0

where the coefficients ai are in R. The discriminant of a polynomial encodes important
information about its roots, especially their multiplicities.

Geometric Interpretation

Intuitively, the discriminant measures how "clustered" or "spread out" the roots of f (x) are. If
f (x) has distinct roots, they contribute nonzero factors to the product defining the discriminant.
However, when two or more roots coincide, a factor in the product vanishes, causing the
discriminant to be zero. This provides a powerful way to detect whether a polynomial has
multiple roots without explicitly solving for them.

From the Fundamental Theorem of Algebra, every degree n polynomial has precisely n
complex roots, which we denote by

α1,α2, . . . ,αn ∈ C.

The discriminant ∆ f of f (x) is defined as

∆ f :=
∏
i< j

(αi−α j)2.

This product runs over all pairs of distinct roots, capturing how "spread apart" the roots are.

Lemma 4.12. The polynomial f (x) has a multiple root if and only if ∆ f = 0.

Proof. If f (x) has a multiple root αk, then there exists some j , k such that α j = αk, making one
of the terms in the product zero. Conversely, if ∆ f = 0, then at least one term (αi−α j)2 must
be zero, which implies that some roots coincide. □

While the discriminant is naturally defined in terms of the roots, it can also be expressed
purely in terms of the coefficients of f (x). A key result in classical algebra states that:

Lemma 4.13. The discriminant of a polynomial

f (x) = anxn+ an−1xn−1+ · · ·+ a1x+ a0

is given by

∆ f :=
(−1)

n(n−1)
2

an
Res( f , f ′,x).

Proof. The proof follows from the properties of resultants and is usually covered in an abstract
algebra or computational algebra course. It relies on the fact that the resultant of f (x) and its
derivative f ′(x) is zero precisely when f (x) and f ′(x) share a common root, which happens if
and only if f (x) has a multiple root. □
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Example 4.26. Let us compute the discriminant of a quadratic polynomial

f (x) = ax2+ bx+ c.

First, compute the derivative:
f ′(x) = 2ax+b.

The roots of f (x) are given by the quadratic formula:

α1,α2 =
−b±

√

b2−4ac
2a

.

Applying the definition of the discriminant:

∆ f = (α1−α2)2 =

2
√

b2−4ac
2a

2

=
(b2
−4ac)2

4a2 .

From the formula using the resultant, we obtain:

∆ f = b2
−4ac.

Thus, for a quadratic polynomial, the discriminant is precisely the well-known expression under the
square root in the quadratic formula.

Example 4.27. Find the discriminant of a cubic polynomial:

f (x) = x3+px+ q.

Using the formula:
∆ f = −4p3

−27q2.

This expression determines when the cubic polynomial has a multiple root.

Exercises:

Exercise 61. Find the discriminant of f (x) = x2+bx+ c, f (x) = x3+ bx+ c, and f (x) = x4+bx2+ c.

Exercise 62. Determine whether the polynomial f (x) = 6x4
−23x3

−19x+4 has multiple roots in C.

Exercise 63. Show that for a monic polynomial of degree n, the discriminant is a homogeneous
polynomial of degree 2(n−1) in its coefficients.

4.5.2 Elimination Theory

Resultants have a fundamental application in elimination theory, which concerns the process
of eliminating variables from a system of polynomial equations. This is particularly useful
in solving nonlinear algebraic systems, computing implicit equations, and understanding
geometric projections.
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Basic Idea

Assume we have a system of two nonlinear algebraic equations in three variables:

F1(x, y,z) = 0 and F2(x, y,z) = 0.

In many situations, we are interested in eliminating one of the variables—say, z—to obtain
an equation purely in terms of x and y. Geometrically, this corresponds to determining the
projection of the intersection of two surfaces in R3 onto the xy-plane.

Since both F1 and F2 are polynomials in z, we can compute their resultant:

Res(F1,F2,z) = 0.

This resultant is a polynomial in x and y alone, and its zero set describes the projection of
the intersection onto the xy-plane. More generally, elimination theory provides methods for
systematically removing variables from polynomial systems to derive useful implicit relation-
ships.

Generalization to More Variables

The method of elimination extends beyond two equations and three variables. Given a system
of n polynomial equations in n+1 variables:

F1(x1, . . . ,xn,xn+1) = 0, . . . , Fn(x1, . . . ,xn,xn+1) = 0,

we can iteratively compute resultants to eliminate xn+1, then xn, and so on, eventually obtaining
a single equation in a reduced set of variables.

This process underlies many algorithms in computational algebra, including Gröbner basis
methods, and plays a role in algebraic geometry.

Applications of Elimination Theory

Elimination theory has applications across mathematics, engineering, and computer science.
Some key areas include:

• Geometric Modeling: Implicitization of parametric curves and surfaces, such as con-
verting a Bézier or B-spline representation into a polynomial equation.

• Kinematics and Robotics: Solving equations for the motion of mechanical systems by
eliminating intermediate variables.

• Computer Vision: Computing epipolar constraints in stereo vision problems using
polynomial equations from projective geometry.

• Artificial Intelligence: In symbolic AI and automated reasoning, elimination methods
can be used for solving constraint systems and algebraic inference.

• Cryptography: Some cryptographic protocols, such as multivariate public key cryp-
tosystems, rely on solving systems of polynomial equations where elimination tech-
niques are useful.

180

https://leanpub.com/lin-alg/
https://leanpub.com/u/shaska


Shaska, T. Linear Algebra

Example: Eliminating a Variable

Consider the system:

F1(x, y,z) = x+ y+ z−1 = 0, F2(x, y,z) = x2+ y2+ z2
−1 = 0.

To eliminate z, we compute:
Res(F1,F2,z).

Solving for z in F1, we substitute z = 1−x− y into F2:

x2+ y2+ (1−x− y)2
−1 = 0.

Expanding and simplifying:

x2+ y2+1−2x−2y+x2+2xy+ y2
−1 = 0.

2x2+2y2+2xy−2x−2y = 0.

Dividing by 2:
x2+ y2+xy−x− y = 0.

This equation describes the projection of the intersection of the two surfaces onto the xy-plane.

Exercises

Exercise 64. Use resultants to eliminate z from the system:

F1(x, y,z) = xz+ y2
−1, F2(x, y,z) = z2+xy−2.

Exercise 65. Find the implicit equation in x and y for the parametric curve:

x = t2+1, y = 2t+3.

(Hint: Use elimination to eliminate t.)

181

https://leanpub.com/u/shaska
https://leanpub.com/lin-alg/


Linear Algebra Shaska, T.

Exercises:

298. Let the curve

A+By+Cx+Dy2+Exy+x2 = 0

be given. It passes through the points
(x1, y1), . . . , (x5, y5). Determine the A,B,C,D, and
E. This was the original problem that Cramer
was concerned with when he discovered his
formula.

299. Using Cramer’s rule solve the system Ax = b⃗
where

A =


5 −1 0 2
1 2 1 0
3 1 −2 4
0 4 −1 2

 , b⃗ =


5
3
3
2


300. Let A be the following matrix.

A :=


1 2 0 -1
0 2 0 0
2 1 -1 1
1 1 2 -1


301. Find the adjoint of

A =

1 0 1
0 1 0
2 0 1

 , B =

 2 1 3
2 −1 0
−1 0 5


and use the result to find A−1 and B−1.

302. Find the adjoint of

A =


5 −1 0 2
1 2 1 0
3 1 −2 4
0 4 −1 2

 , B =


5 2 0 2
3 2 1 0
3 1 −2 4
2 4 −1 2


and use the result to find A−1 and B−1.

303. Determine if the matrix

A :=


1 0 0 -1
0 1 0 0
2 1 -1 1
1 0 2 -1


is invertible.

304. Let

F(t) = u(1+ t2)− t2

G(t) = v(1+ t2)− t3 (4.5)

Find Res(F,G, t).

305. Let

f (x) = x5
−3x4

−2x3+3x2+7x+6

g(x) = x4+x2+1
(4.6)

Find Res( f , g,x).

306. Find b such that

f (x) = x4
−bx+1

has a double root in C.

307. Find p such that

f (x) = x3
−px+1

has a double root in C.
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Review exercises

308. Let A and B be two matrices which have the
same eigenvalues. Are A and B necessarily simi-
lar? Explain your answer.

309. For any matrix M, show that M = 0 if and
only if tr(MtM) = 0.

310. Prove that if A is similar to a diagonal matrix,
then A is similar to At.

311. Let M be a square matrix such that the sum
of entries in each row is equal to 1. Prove that
if MMt =MtM then the sums of entries in each
column is equal to 1.

312. Let A, B, C, D be n × n matrices such

that the matrix
[
A B
C D

]
has rank n. Show that

det (AD) = det (BC).

313. Let A and B be n × n matrices such that
rank (AB) = rank (B). Prove that for any matri-
ces X and Y the following holds: ABX =ABY =⇒
BX = BY.

314. Let A be an n×n matrix such that rank (A)=
rank (A2). Prove that rank (A) = rank (Ai), for
any positive integer i.

315. Let A and B be n × n matrices such that
AB = 0. Prove that rank (A)+ rank (B) ≤ n.

316. Find the eigenvalues and their algebraic and
geometric multiplicities for the matrix

A =


1 1 0 2
1 2 1 0
1 1 2 4
0 1 −1 2


Determine if the matrix is diagonalizable and if so
find the matrices C and D such that A = CDC−1.

317. Find the eigenvalues and their algebraic and
geometric multiplicities for the matrix

B =


2 2 0 1
1 1 1 0
1 1 −2 1
1 4 −1 2


Determine if the matrix is diagonalizable and if so
find the matrices C and D such that A = CDC−1.

318. Diagonalize the matrices M =
1 0 0 0 0
0 −1 0 1 0
0 1 1 0 1
0 0 0 1 0
0 0 0 −1 −1

 and N =


0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

 .
Are they similar?

319. Find two 3 by 3 matrices with the same char-
acteristic polynomial which are not similar to each
other.

320. Let A be a matrix as follows

A =


−1 0 6 2 −8
0 −1 2 −2 0
0 0 3 2 −6
0 0 2 3 −6
0 0 2 2 −5


(i) Find the characteristic polynomial of A.

(ii) Find the eigenvalues and their algebraic mul-
tiplicities

(iii) Compute a basis for each eigenspace.
(iv) Determine matrices C and D such that A =

CDC−1.
(v) Find A12. Complete the multiplication and

give an exact answer

321. Find the sum of the eigenvalues of the matrix
A

A =


1 2 1 2 1
0 1 0 0 0
0 1 −1 1 1
0 4 0 −1 0
0 2 0 3 −1


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322. Let T :R3
→R3 be the linear transformation

given by

T


x1
x2
x3


 =

 x1+x2−x3
−5x1+13x2−x3
−7x1+16x2+x3


(i) Fid a basis for the kernel ker (T)

(ii) Fid a basis for the image Img(T)
(iii) Determine if T is injective, surjective, bijec-

tive

323. Let B and B′ be bases for R3 such that B =
{u1,u2,u3},B′ = {v1,v2,v3}, where u1 = [3,1,1]t,
u2 = [5,2,0]t. u3 = [1,1,1]t and v1 = [1,0,−1]t,
v2 = [−1,2,2]t, v3 = [0,1,2]t

(i) Find the change of basis matrix MB
′

B
.

(ii) Given the vector X with coordinates of B as
xB = [1,1,1]t find its coordinates in B′. In
other words, find xB′ =?.
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Paul Gordan: The King of Invariant Theory

Paul Albert Gordan (April 27, 1837 – December 21,
1912) was a towering figure in 19th-century German
mathematics, renowned especially for his mastery of in-
variant theory. His epithet, "the king of invariant theory,"
speaks to his profound contributions and his dominant
influence in this field.

Born in Breslau, Germany (now Wroclaw, Poland),
Gordan’s academic journey began at the University of
Königsberg, where he studied under the tutelage of the
eminent Carl Gustav Jacobi. He earned his Ph.D. from
the University of Breslau in 1862 and subsequently em-
barked on a distinguished professorial career at the Uni-
versity of Erlangen-Nuremberg. He remained there for
the rest of his life, contributing significantly to estab-
lishing Erlangen as a global center for mathematical re-
search.

Figure 4.4: Paul Albert Gordan

Gordan’s most celebrated achievement was proving the finite generation of the ring of
invariants of binary forms of a fixed degree. This was a monumental task, achieved through
intricate and laborious calculations, a hallmark of Gordan’s approach to mathematics. He was
a master of computational techniques, often undertaking complex calculations by hand. A
testament to this dedication is his computation of all 70 invariants of binary sextics – a feat of
remarkable perseverance and skill.

His collaboration with Alfred Clebsch led to the development of the now-famous Clebsch-
Gordan coefficients, which are crucial in representation theory and quantum mechanics. These
coefficients arise in the decomposition of tensor products of representations and have far-
reaching applications in physics and other areas.

Gordan’s influence extended beyond his own research. He played a key role in making
Erlangen a leading mathematical center, working alongside Felix Klein and Max Noether. This
trio fostered a vibrant intellectual environment that attracted mathematicians from around the
world.

One of Gordan’s most significant legacies is his role as the doctoral advisor to Emmy
Noether, one of the most important mathematicians of the 20th century. He recognized her
exceptional talent and guided her early research, even though her later work in abstract
algebra eventually diverged significantly from his own computational focus.

A well-known anecdote, often repeated, involves Gordan and David Hilbert’s ground-
breaking proof of Hilbert’s basis theorem. This theorem, which drastically generalized Gor-
dan’s work on invariants, demonstrated the existence of a finite basis for invariants in a much
broader context using non-constructive methods. The quote attributed to Gordan, "This is
not mathematics; this is theology," reflects the initial shock and perhaps skepticism that some
mathematicians felt towards Hilbert’s abstract, existence-based approach, which contrasted
sharply with the constructive, computational methods prevalent at the time.

However, the historical accuracy and intended meaning of this quote are debated. The
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earliest known reference to it appears long after the events and Gordan’s death. Furthermore,
the narrative of Gordan as being opposed to Hilbert’s work is largely a myth. In reality,
Gordan recognized the power of Hilbert’s methods, used them in his own research, and
even supported Hilbert’s publications. It’s likely that the quote, if indeed Gordan uttered it,
was meant as a humorous or nuanced observation, not as a categorical rejection of Hilbert’s
approach. Gordan himself acknowledged the significance of Hilbert’s work, and the two
mathematicians maintained a professional respect for each other.

Paul Gordan’s legacy is multifaceted. He was a master of classical invariant theory, a key
figure in the development of Erlangen’s mathematical school, and a mentor to one of the most
influential mathematicians of the 20th century. While the anecdote about Hilbert persists, it’s
crucial to understand it in the context of the evolving mathematical landscape of the late 19th
century and to recognize Gordan’s own contributions to and acceptance of the new, more
abstract mathematics that was emerging.
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Chapter 5

Inner Spaces and Orthogonality

In this chapter we will study the important concept of inner product in a vector space. We give
the most general definition of the inner product and briefly look at Hermitian products. The
rest of the chapter is focused on orthogonal and orthonormal bases we will study the Gram-
Schmidt orthogonalization process. In the last section a brief introduction to dual spaces is
given.

5.1 Inner products

Let V be a vector space over the field F. Recall that in this book F denotes one of the fields
Q,R, or C. For α ∈ C the complex conjugate of α is denoted by ᾱ. Let f (u,v) be a function
given as below

f : V×V −→ F
(u,v) = f (u,v)

(5.1)

The function f is called an inner product (scalar product) if the following properties hold for
every u,v,w ∈ V and r ∈ F:

(i) f (u,v) = f (v,u),
(ii) f (u,v+w) = f (u,v)+ f (u,w)

(iii) f (ru,v) = r f (u,v).
We denote inner products with ⟨u,v⟩ instead of f (u,v). An inner product is called non-

degenerate if ⟨u,v⟩= 0, for all v ∈V implies that u= 0. A vector space V with an inner product
is called an inner space. We give some examples of inner products and inner spaces.

Example 5.1. Let V = C be a vector space over C. Show that ⟨u,zv⟩ = z̄⟨u,v⟩, where z̄ is the complex
conjugate; see ??.

Solution: Indeed, ⟨u,zv⟩ = ⟨zv,u⟩ = z⟨u,v⟩ = z̄⟨u,v⟩. □

Example 5.2. Let V =Rn and consider u =


u1
u2
. . .
un

 and v =


v1
v2
. . .
vn

 and two vectors inRn. The dot product
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studied before is defined as
u ·v = u1v1+ · · ·+unvn

We leave it as an exercise for the reader to show that this is an inner product in V. □

Let us see some other examples of inner products different from the dot product.

Exercise 66. Let V = Rn and A ∈Matn×n(R) be a symmetric matrix. Prove that the following is an
inner product on V,

⟨u,v⟩ := utAv.

Example 5.3. Let C[0,1] be the space of real continuous functions f : [0,1] −→ R. For f , g ∈ V
define

⟨ f , g⟩ =
∫ 1

0
f (t) · g(t)dt (5.2)

Using properties of integrals it is easy to verify that this is an inner product. □

Example 5.4. Let f (x) = sinx and g(x) = cosx in C[0,1] with the inner product defined in Eq. (5.2).
Compute ⟨ f , g⟩.
Solution: We have

⟨ f , g⟩ =
∫ 1

0
sinx cosx dx =

1
2

∫ 1

0
sin(2x) dx =

1
4

(−cos2+ cos0) =
1− cos2

4

Definition 5.1. Let V be a vector space and ⟨·, ·⟩ an inner product on V. Let u ∈ V. We call v
orthogonal to u if ⟨u,v⟩ = 0, sometimes denoted by u⊥ v. For a set U ⊂ V its orthogonal set U⊥ is
defined as

U⊥ := {v ∈ V | v⊥ u, for all u ∈U, }

If U is a subspace of V then U⊥ is called the orthogonal complement of U.

Exercise 67. Take V = R3 and U as the subspace given by the equation of the line r(t) = r0+ tv, for
t ∈R. Find U⊥.

5.1.1 Positive definite inner products

Notice that for any vector space V over C, the inner product has the property

⟨u,u⟩ = ⟨u,u⟩.

Hence ⟨u,u⟩ ∈R and therefore the following definition makes sense.

Definition 5.2. An inner product is positive definite if the following hold:
(i) ⟨u,u⟩ ≥ 0 for all u ∈ V.

(ii) ⟨u,u⟩ > 0 if and only if u , 0.
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Ann inner product is called positive semidefinite if ⟨u,u⟩ ≥ 0 if and only if u, 0. The norm
of an element v ∈ V is defined to be

∥v∥ :=
√
⟨v,v⟩.

For a positive definite inner product such norm is always ∥v∥ > 0 for v , 0. In the case of the
Euclidean product is the magnitude of the vector that we studied in Chap. 1. The following
gives an example of an inner product which is not positive definite.

Example 5.5. Let V =R2 and A =
[
−1 1
1 −1

]
. Define the following ⟨u,v⟩ := utAv and verify that this

is an inner product. Take v1 =

[
1
0

]
and v2 =

[
1
1

]
. Then,

⟨v1,v1⟩ = vt
1Av1 =

[
1, 0

] [−1 1
1 −1

] [
1
0

]
= −1.

and

⟨v2,v2⟩ = vt
2Av2 =

[
1, 1

] [−1 1
1 −1

] [
1
1

]
= 0.

Hence, this inner product is not positive definite. □

Exercise 68. Consider the inner space C[0,1] as in ??. Is the inner product defined in Eq. (5.2) positive
definite?

5.1.2 Real inner spaces

Notice that if V is a vector space over R then the definition of the inner product is a function

⟨u,v⟩ : V×V −→R

such that the following properties hold for every u,v,w ∈ V and r ∈R:
(i) ⟨u,v⟩ = ⟨v,u⟩,

(ii) ⟨u,v+w⟩ = ⟨u,v⟩+ ⟨u,w⟩
(iii) ⟨ru,v⟩ = r⟨u,v⟩ = ⟨u,rv⟩.

The most common inner product of Euclidean spaces Rn is the dot product

Exercise 69. Let V =Rn and the inner product is the Euclidean product. As a review of Chap. 1 prove
the following for any u,v ∈ V.

(i) ∥u+v∥2 = ∥u∥2+ ∥v∥2

(ii) ∥u+v∥ ≤ ∥u∥+ ∥v∥
(iii) ∥u∥ = 0 if and only if u = 0.
(iv) |⟨u,v⟩| ≤ ∥u∥ · ∥v∥
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Similarly to the discussion in Chap. 1 for vectors u and v inR2 (see Eq. (5.4) and Eq. (1.33))
we can try to get a projection formula for any inner product ⟨·, ·⟩. The projection vector of v
on u, denoted by proju(v) is the vector

proju(v) =
u ·v
∥u∥
·

u
∥u∥
=

(u ·v
u ·u

)
u

If we want a vector perpendicular to u we have

w = v−proju(v) = v−
(u ·v
u ·u

)
u. (5.3)

as in Eq. (1.33). Everything works fine for the dot product or even for an inner product such
that ⟨u,u⟩ , 0 for u , 0. To avoid dividing by zero, we have to take an inner product which is
positive definite.

Exercise 70. Let u and v be vectors in an inner space with a positive definite inner product ⟨·, ·⟩. Take

w = v−
(
⟨u,v⟩
⟨u,u⟩

)
u.

Prove that w is orthogonal to u.

Let W be a subspace of V. Then W⊥ is defined as

W⊥ = {v ∈ V | ⟨v,w⟩, for all w ∈W.}

and is called the orthogonal complement of W with respect to the inner products ⟨·, ·⟩. The
orthogonal complement of a k-dimensional subspace is an (n− k)-dimensional subspace as
proved below.

Theorem 5.1. Let V be a finite dimensional vector space over R with a positive definite inner product
⟨·, ·⟩. If W is a subspace of V then

V =W⊕W⊥.

Moreover,
dimV = dimW+dimW⊥.

Proof. See [Lan87, pg. 140]
□

Exercise 71. Prove that the double orthogonal complement is the original subspace. In other words.(
w⊥

)⊥
=W.

Exercise 72. Let A be a m×n matrix and Row A, Col A, and Null(A) are the row space, column
space, and null space of A. Prove that

(i) (Row A)⊥ =Null(A)
(ii) (Col A)⊥ =Null(At).
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Consider a subspace V ofRn. For any vector x ∈Rn there is a unique vector w ∈V such that
x−w ∈ V⊥. This vector w is called the orthogonal projection of x onto V and is denoted by
projV(x). When n= 2, 3 it corresponds to the geometric projection. Next we see a generalization
of Lem. 1.11

Lemma 5.1. Let V be a subspace of Rn with an orthonormal basis B = {v1, . . . ,vm}. Then

projV(x) = (v1 ·x) ·v1+ · · ·+ (vm ·x) ·vm. (5.4)

Moreover, the transformation T(x) = projV(x) is linear.

Proof. We need to show that u := x−projV(x) ∈V⊥. Since the dot product is linear, it is enoguh
to prove that x−projV(x) is orthogonal with every element of B = {v1, . . . ,vm}. Then, since
(vi,v j) = 0 for all i , j we have

(u,vi) =
((

x−projV(x)
)
,vi

)
= (x,vi)− [(v1,x)v1+ · · ·+ (vi,x)vi+ · · ·+ (vm,x)vm] vi

= (x,vi)− ((vi,x)vi,vi) = (x,vi)− (vi,x)(vi,vi) = (x,vi)− (vi,x) ∥vi∥
2 = (x,vi)− (vi,x) = 0,

because ∥vi∥= 1. The transformation T(x)= projV(x) is linear since the dot product is linear. In
other words, it is easy to check that projV(x+y) = projV(x)+projV(y) and projV(rx) = rprojV(x)
for any x,y ∈Rn and r ∈R. This completes the proof.

□
There is a nice application of the above result. Let V =Rn andB = {v1, . . . ,vn} an orthonor-

mal basis of V. Since the projection of x onto V is x itself we have:

Corollary 5.1. Let B = {v1, . . . ,vn} be an ordered orthonormal basis of Rn. Then every x ∈ Rn is
written as

x = (v1 ·x) ·v1+ · · ·+ (vm ·x) ·vn.

Notice that for a general basis B = {v1, . . . ,vn} of Rn to find the coordinates x1, . . . ,xn of
x ∈Rn we assume that x is written as a linear combination

x = r1v1+ · · ·rnvn,

and solve the linear system for r1, . . . ,rn. However, if B is orthonormal we have

ri = ⟨vi,x⟩ = vi ·x,

which is much easier.

5.1.3 Complex inner spaces, Hermitian products

Let V be a vector space over C. The inner product in this case is called a Hermitian product.
It is a function on V such that

⟨u,v⟩ : V×V −→ C

such that the following properties hold for every u,v,w ∈ V and r ∈ C:
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(i) ⟨u,v⟩ = ⟨v,u⟩,
(ii) ⟨u,v+w⟩ = ⟨u,v⟩+ ⟨u,w⟩

(iii) ⟨αu,v⟩ = α⟨u,v⟩ and ⟨u,αv⟩ = ᾱ⟨u,v⟩.

We leave the following to the reader:

Exercise 73. Prove the following for the Hermitian product:
(i) ∥u∥ ≥ 0

(ii) ∥u∥ = 0 if and only if u = 0.
(iii) ∥αu∥ = |α| ∥u∥
(iv) ∥u+v∥ ≤ ∥u∥+ ∥v∥

Lemma 5.2 (The Schwartz inequality). The following holds

|⟨u,v⟩| ≤ ∥u∥ · ∥v∥

for the Hermitian product.

Example 5.6. Let F ⊂ C and V = Fn. For any

u =


u1
u2
. . .
un

 and v =


v1
v2
. . .
vn)


define

⟨u,v⟩ = u1v̄1+ · · ·+unv̄n

Show that this is a Hermitian product. This particular product we will call the Euclidean inner
product. □

Notice that for the Euclidean inner product ⟨·, ·⟩

⟨u,u⟩ = u1ū1+ · · ·+unūn = ∥u1∥
2+ · · ·+ ∥un∥

2

The norm of u ∈ V is defined as

∥u∥ =
√
⟨u,u⟩ =

√
∥u1∥

2+ · · ·+ ∥un∥
2

Example 5.7. Let V be the space of complex continuous functions

f : [0,1] −→ C

For f , g ∈ V we define

⟨ f , g⟩ =
∫ 1

0
f (t) · g(t) dt

Using properties of complex integrals show that this is an inner product. □
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Consider now the space of square-integrable functions L2(R) already considered in
Chap. 2. Define

⟨ f , g⟩ =
∫
∞

−∞

f (x) g(x)dx

where f and g are square-integrable functions f (x) is the complex conjugate of f (x).
A Hilbert space is a real or complex inner product space that is also a complete metric

space with respect to the distance function induced by the inner product.

Example 5.8. (Fourier series) Let V be the space of continuous complex-valued functions

f : [−π,π] −→ C

For f , g ∈ V we define

⟨ f , g⟩ =
∫ π

−π
f (t) · g(t) dt

For any integer n define
fn(t) = en·it.

Prove that:
(i) if m , n then ⟨ fn, fm⟩ = 0

(ii) ⟨ fn, fn⟩ = 2π
(iii) ⟨ f , fn⟩

⟨ fn, fn⟩
= 1

2π

∫ π
−π

f (t)e−int dt.

The quantity ⟨ f , fn⟩
⟨ fn, fn⟩

is called the Fourier coefficient with respect to f . □

Let A be a matrix with real entries. Then its characteristic polynomial char (A,x) has real
coefficients. Since complex eigenvalues occur in pairs via the conjugate, for every polynomial
with real coefficients, consider such a pair α± iβ as eigenvalues of A. Then their corresponding
eigenvectors are v± iw, respectively.

Lemma 5.3. If λ = α± iβ are eigenvalues of A, then their corresponding eigenvectors are v± iw
respectively, for some v,w ∈Rn. Moreover,

⟨v+ iw,v− iw⟩ = ∥v∥2+ ∥w∥2 .

Proof. Exercise. □

Exercises:

324. Let V be the space of real continuous func-
tions

f : [0,1] −→R

For f , g ∈ V we define

⟨ f , g⟩ =
∫ 1

0
f (t) · g(t)dt

Given f (x) = x3, find g(x) ∈ V such that g is or-
thogonal to f .

325. Let V be the vector space as in the previous
exercise and W the set all polynomials in V. Is W
is a subspace of V? Given a polynomial

f (x) = anxn+ an−1xn−1+ · · ·+ a1x+ a0,
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Can you find g(x) ∈ V such that ⟨ f , g⟩ = 0 ?

326. Let V :=Matn(R). Define the inner product
of matrices M and N as

⟨M,N⟩ = tr(MN)

Show that this is an inner product and it is non-
degenerate.

327. Let V :=Matn(R). Let A,B be any matrices
in V such that

A :=
[

a1 a2
a3 a4

]
, and B :=

[
b1 b2
b3 b4

]
Is the following

⟨A,B⟩ = a1b1+ a2b2+ a3b3+ a4b4

an inner product on V?

328. Let P2 denote the space of polynomials inF[x]
and degree ≤ 2. Let f , g ∈ P2 such that

f (x) = a2x2+ a1x+ a0,

and
g(x) = b2x2+ b1x+ b0.

Define
⟨ f , g⟩ = a0b0+ a1b1+ a2b2.

Prove that this is an inner product on P2.

329. Let P2 be equipped with the inner product as
in the above example. Describe all the polynomials
of norm 1.

330. Let V :=L([0,1],R) be the space of real con-
tinuous functions on [0,1] with the inner product

⟨ f , g⟩ =
∫ 1

0
f (t) · g(t)dt

Is this a non-degenerate inner product?

331. Let V :=L([0,1],R) be the space of real con-
tinuous functions on [0,1] with the inner product

⟨ f , g⟩ =
∫ 1

0
f (t) · g(t)dt

Describe the norm associated to this inner product
and all functions of norm 1.

194

https://leanpub.com/lin-alg/
https://leanpub.com/u/shaska


Shaska, T. Linear Algebra

5.2 Orthogonal bases, Gram-Schmidt orthogonalization

Let V be a finite dimensional vector space over F with an inner product ⟨·, ·⟩. We assume
throughout this section that the inner product is positive definite. The norm of an element v ∈ V
is defined as

∥v∥ :=
√
⟨v,v⟩.

Then for every nonzero vector v we have ∥v∥ > 0. Hence we can normalize each element v ∈V
by u = v

∥v∥ such that ∥u∥ = 1. A set {v1, . . . ,vn} of vectors is called an orthogonal if for any i , j
we have

⟨vi,v j⟩ = 0.

If in addition, all vectors have norm one then they are called an orthonormal.

Lemma 5.4. Orthonormal vectors in Rn are linearly independent.

Proof. Exercise □

Exercise 74. Is the above Lemma true for any inner space?

Exercise 75 (Pythagorean theorem). Consider vectors u,v ∈Rn. Prove that

∥u+v∥2 = ∥u∥2+ ∥v∥2

holds if and only if u and v are orthogonal. Is this true for in any inner space?

Theorem 5.2. Let V be a finite dimensional vector space with a positive definite inner product. If
v1, . . . ,vn are linearly independent then there is an orthogonal set w1, . . . ,wn such that

Span (v1, . . . ,vn) = Span (w1, . . .wn)

Proof. Let us fix an ordering onB = {v1, . . . ,vn} say v1,v2, . . . ,vn. The vector w2 = v2−projv1
(v2)

is orthogonal to v1Moreover, Span (v1,v2) = Span (v1,w2).
Denote by V2 = Span (v1,v2). Then, w3 = v3−projV2

(w3) is orthogonal to V2. In general,
we let Vi := Span (w1, . . . ,wi) and take wi+1 = vi+1−projVi

(vi+1) and we have wi+1 ⊥Vi. Hence,
we take the following set of vectors

w1 = v1

w2 = v2−

(
⟨v2,w1⟩

⟨w1,w1⟩

)
w1

w3 = v3−

(
⟨v3,w2⟩

⟨w2,w2⟩

)
w2−

(
⟨v3,w1⟩

⟨w1,w1⟩

)
w1

. . . . . .

wi+1 = vi+1−

(
⟨vi+1,wi⟩

⟨wi,wi⟩

)
wi− · · ·−

(
⟨vi+1,w1⟩

⟨w1,w1⟩

)
w1

(5.5)

to get the desired orthogonal set. □
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LetB = {v1, . . . ,vn} be a basis for V. ThenB is called an orthogonal basis if for any i , j we
have

⟨vi,v j⟩ = 0.

If in addition, for all i = 1, . . . ,n, ∥vi∥ = 1 then B is called an orthonormal basis. Then we have
the following:

Corollary 5.2. Every finite dimensional inner space with a positive definite inner product has an
orthogonal basis.

The proof of the above theorem is constructive and provides and algorithm to find an
orthogonal space (and therefore orthonormal) of any inner space.

Algorithm 8. Gram-Schmidt Algorithm:

Input: A set S = {v1, . . . ,vn} of vectors.
Output: An orthogonal set of vectors W = {w1, . . . ,wn} such that

Span (v1, . . . ,vn) = Span (w1, . . .wn)

(i) Fix an ordering of the set S, say v1,v2, . . . ,vn.
(ii) Let w1 := v1

(iii) Compute all wi’s using the recursive formula Eq. (5.5), for all i = 1, . . . , n−1.
(iv) The set {w1, . . . ,wn} is the required W.

Let us see some examples.

Example 5.9. Let V =R3 and the inner product on V is the dot product . Let v1 =

123
 and v2 =

221
.

Find an orthogonal basis of Span (v1,v2).
Solution: Let w1 = v1. Then

w2 = v2−
⟨v2,w1⟩

⟨w1,w1⟩
w1 =

221
− 9

14

221
 =


19
14
5
7
−

13
14


Clearly w1 ⊥w2. □

Example 5.10. Let V be the space of real continuous functions f : [0,1] −→R. For f , g ∈ V we define

⟨ f , g⟩ =
∫ 1

0
f (x) · g(x)dx

As shown above, this is an inner product. Let f (x) = x and g(x) = x2. Since both are continuous then
f , g ∈ V. Find an orthogonal basis of Span ( f , g).
Solution: Let w1 = f . Then

w2 = g−
⟨g, f ⟩
⟨ f , f ⟩

f = x2
−


∫ 1

0 x3 dx∫ 1
0 x2 dx

 x = x2
−

3
4

x

The reader should check whether w1 ⊥w2. □
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Example 5.11. Let V be the space of real continuous functions. Given f (x) = x3, find g(x) ∈ V such
that g is orthogonal to f .
Solution: Take S = { f ,1}. We want to find an orthogonal set W such that f ∈W. Let w1 = f . Then

w2 = 1−
⟨1, f ⟩
⟨ f , f ⟩

f = 1−

∫ 1
0 x3 dx∫ 1
0 x6 dx

x3 = 1−
7
4

x3

The reader can check that ⟨ f ,w2⟩ = 0. □

5.2.1 Orthonormal basis

Can we modify the Gram-Schmidt to get an orthonormal basis? The answer is "yes" since we
have a positive definite inner product. In the view of the orthogonal projections on subspaces
(see Eq. (5.4)) we can rewrite the Gram Schmidt algorithm as

w1 =
v1

∥v1∥
, wi =

1∥∥∥vi−projVi−1
(vi)

∥∥∥ (
vi−projVi−1

(vi)
)
, for j = 2, . . . ,n,

where Vi−1 = Span (v1, · · · ,vi−1). In the coming lectures we will see how to construct an
orthonormal basis in the case of inner products which are not necessarily positive-definite. This
is the celebrated Sylvester’s theorem.

Exercises:

332. Can we find an orthonormal basis for the in-
ner space of Exa. 5.11? Is the inner product posi-
tive definite?

333. Find an orthonormal basis for the nullspace

Null(A) of the matrix A :=

2 −2 14
0 3 −7
0 0 2


334. Find an orthonormal basis for the nullspace

of the matrix A =

2 1 1
1 2 0
1 1 3

.
335. Find an orthogonal basis for the nullspace of
the matrix

A =


3 1 0 -1
4 0 0 3
-4 2 2 -3
2 -4 0 7



336. Let V be the space of real continuous func-
tions. Given f (x) = x2 and g(x) = ex, find an or-
thogonal set W = {w1,w2} such that Span ( f , g)=
Span (w1,w2).

337. In the space of real continuous functions find
a function g(x) which is orthogonal to f (x)= sinx.

338. Show that the following identity holds for any
inner product

∥u+v∥+ ∥u−v∥ = 2∥u∥+2∥v∥

339. Let V =R4 and the inner product on V is the
dot product . For

v1 =


1
2
3
4

 , v2 =


2
0
2
1

 , v3 =


1
1
1
1

 , v4 =


1
2
3
4

 , v5 =


0
0
1
2


find an orthonormal basis for Span (v1,v2,v3,v4,v5).
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340. Let P2 denote the space of polynomials in
F[x] and degree ≤ 2. Let f , g ∈ P2 such that
f (x) = a2x2+ a1x+ a0 and g(x) = b2x2+ b1x+ b0.
Define the inner product

⟨ f , g⟩ = a0b0+ a1b1+ a2b2.

Let f1, f2, f3, f4 be given as below

f1 = x2+3
f2 = 1−x

f3 = 2x2+x+1
f4 = x+1.

(5.6)

Find an orthogonal basis of Span ( f1, f2, f3, f4).

341. Find an orthogonal basis for the subspace
Span (1,

√
x,x) of the vector space C[0,1] of

continuous functions on [0,1], where ⟨ f , g⟩ =∫ 1
0 f (x)g(x)dx.

342. Find an orthonormal basis for the plane
x+7y− z = 0.

343. The matrix

A =



0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0



has characteristic polynomial

char (A,λ) = (λ+1)2 (λ−1)3

Determine an orthogonal basis for each eigenvalue.
Diagonalize A using the orthogonal eigenbasis that
you found for each eigenvalue.

344. The matrix

M =



1 0 0 0 0

0 −1 0 1 0

0 1 1 0 1

0 0 0 1 0

0 0 0 −1 −1


has eigenvalues λ1 = −1 and λ2 = 1. Determine
their algebraic multiplicities and if there are any
other eigenvalues. Find an orthonormal basis for
each eigenspace. Using such orthonormal bases
determine C and D such that D = C−1 AC and D
is diagonal.
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5.3 Orthogonal transformations and orthogonal matrices

Let us start with some examples from the geometry ofR2. Consider the linear map T :R2
→R2

such that [
x1
x2

]
→

[
x1
2x2

]
.

The corresponding matrix for this map is A =
[
1 0
0 2

]
. If we have the ellipse

x2
1+

x2
2

4
= 1,

then it is transformed to the unit circle x2
1+x2

2 = 1. So linear transformations change shapes of
objects in R2.

How should a linear transformation be such that it preserves shapes? Obviously, it has to
preserve distances. This motivates the following:

Definition 5.3. A linear transformation T :Rn
→Rn is called orthogonal if it preserves the length:

∥T(x)∥ = ∥x∥ ,

for all x ∈Rn. The corresponding matrix of an orthogonal map is called an orthogonal matrix.

Example 5.12. Perhaps the simplest orthogonal maps are rotations. Obviously a rotation preserves
the length of every vector. For example, the rotation by θ on V = R2 is an orthogonal map with
orthogonal matrix [

cosθ sinθ
−sinθ cosθ

]
Proposition 5.1. Orthogonal transformations preserve orthogonality. In other words, if u is orthogonal
to v then T(u) is orthogonal to T(v).

Proof. Using Exe. 75 it is enough to show that

∥T(u)+T(v)∥2 = ∥T(u)∥2+ ∥T(v)∥2 .

We have

∥T(u)+T(v)∥2 = ∥T(u+v)∥2 = ∥(u+v)∥2 = ∥u∥2+ ∥v∥2 = ∥T(u)∥2+ ∥T(v)∥2

□

Theorem 5.3. The following are true:
(i) A linear transformation T :Rn

→Rn is orthogonal if and only if the image of the standard basis
is an orthonormal basis.

(ii) An n×n matrix is orthogonal if and only if its columns form an orthonormal basis for Rn.
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Proof. LetB = {e1, . . . ,en} be the standard basis. Then, by Prop. 5.1 the set {T(e1), . . . ,T(en)} is an
orthogonal basis. Since T preserves norms, then it is an orthonormal basis.

An orthogonal matrix is the matrix of an orthogonal transformation T : Rn
→ Rn. Let

B = {v1, . . . ,vn} be an orthonormal basis for Rn. Then the matrix is given by

[T(v1) |T(v2) | . . . , |T(vn)]

Since v1, . . . ,vn are orthonormal, then T(v1), . . . ,T(vn) are orthonormal. □

Example 5.13. The matrix A is orthogonal since its column vectors are all orthogonal to each other
and they all have length one. However, the matrix B is not orthogonal, because even though its columns
are all orthogonal to each other, they don’t have norm one.

A =



0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0


B =



1 1 1 0 0

0 0 1 0 0

1 0 0 1 0

0 1 1 0 1

1 0 1 1 1


Next we have the following theorem.

Theorem 5.4. A square matrix A is orthogonal if and only if A−1 = At.

Proof. Let A = [v1|v2| . . . |vn] be a given orthogonal matrix. From Thm. 5.3 its columns form an
orthonormal basis. Then,

AtA =


− vt

1 −

− vt
2 −
...

− vt
n −


 | | |

v1 v2 . . . vn
| | |

 =

v1 ·v1 v1 ·v2 · · · v1 ·vn
v2 ·v1 v2 ·v2 · · · v2 ·vn
...

...
. . .

...
vn ·v1 vn ·v2 · · · vn ·vn

 = I,

since v1, . . . ,vn is an orthonormal set. □
Another property of orthogonal matrices is the following, the proof of which is left as an

exercise.

Proposition 5.2. Let Q be an orthogonal matrix. For all u and v ∈Rn we have that u ·v= (Qu) · (Qv).

Summarizing all properties of orthogonal matrices we have the following.

Corollary 5.3. Let Q ∈Matn×n(R). Then the following statements are equivalent.
(i) Q is an orthogonal matrix

(ii) The transformation T(x) =Qx preserves norms (in other words ∥Qx∥ = ∥x∥).
(iii) The columns of Q form an orthonormal basis of Rn

(iv) QtQ = In. In other words, Q−1 =Qt.
(v) Q preserves the dot product. In other words u ·v = (Qu) · (Qv).
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Proof. Combine all the results proved above to show the equivalence of these statements.
□

Since we will be using the transpose more often in the coming lectures let’s recall some of
its properties. The reader should be able to verify them easily.

Exercise 76. The following are true:
(i) (A+B)t = At+Bt

(ii) (rA)t = rAt

(iii) AB)t = Bt At

(iv) rank At = rank A

(v)
(
At

)−1
=

(
A−1

)t
.

5.3.1 Orthogonal projections

We have seen orthogonal projections before. Let us now consider how to find the matrix of an
orthogonal projection.

Theorem 5.5. Let V be a subspace of Rn with orthonormal basis {v1, . . . ,vm} and let Q be the matrix

Q =

 | | |

v1 v2 . . . vm
| | |

 .
The matrix of the orthogonal projection onto V is P = QQt. Moreover, the matrix of an orthogonal
transformation is symmetric.

Proof. The projection of x onto V is given by

projV(x) = (v1 ·x)v1+ · · ·+ (vm ·x)vm = v1vt
1x+ · · ·+vmvt

mx =
[
v1|v2| · · · |vm

]
−vt

1−
...

−vt
m−

x =QQtx

□
Let us go back to the case of the line.

Example 5.14. Consider a line L in R2 with equation y = ax+ b. Find the matrix of the orthogonal
projection onto L.

Proof. We have noted before that if the line doesn’t pass through the origin, the projection is
not even a linear map. However, let’s just pretend that we don’t even know that. Notice that
a directional vector for L is

u =
[
−b/a

b

]
=

b
a

[
−1
a

]
.

Its norm is ∥u∥ = b
a

√

a2+1. Hence, {v} is a orthonormal basis for L, where

v =
u
∥u∥
=

1
√

a2+1

[
−1
a

]
.
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Notice that there is no b anymore in this vector. That’s because this is a vector not on the
original line, but on the line parallel to L which goes through the origin.

Then from Thm. 5.5 the matrix P is

P =
(

1
√

a2+1

[
−1
a

]) (
1

√

a2+1

[
−1 a

])
=

1
a2+1

[
1 −a
−a a2

]
.

Let us check how this will work with the directional vector u ∈ L. We have

Pu =
1

a2+1

[
1 −a
−a a2

]
·

(
b
a

[
−1
a

])
=

b
a(a2+1

[
−(a2+1)
a(a2+1)

]
=

b
a

[
−1
a

]
= u,

as expected. □

We have already seen the above example; see Sec. 1.2.3 and Sec. 3.5.5.

Exercise 77. Find the matrix of the orthogonal projection onto the subspace V of R4 such that
V = Span (u,v), where

u =
1
2


1
1
1
1

 and v =
1
2


1
−1
−1
1


Notice that u and v already form an orthonormal basis for V.

Solution: Since the vectors u and v are orthonormal we have

P =QQt =
1
4


1 1
1 −1
1 −1
1 1


[
1 1 1 1
1 −1 −1 1

]
=


1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1


□

Exercise 78 (Projection onto a plane). For given vectors u,v ∈R3 and U = Span (u,v), in Lem. 1.10
we determined a formula for the projection map projU(w) onto U.

Given a plane P inR3 going through the origin, say with equation ax+by+cz= 0. Find the matrix
of the orthogonal map onto P.

Consider now the reflection to a plane as discussed in Exe. 53. Instead of considering a
point P, we consider the vector u = O⃗P. When the plane goes through the origin, the reflection
v := O⃗P′ of u has the same length as u. Hence, reflection to a plane must be an orthogonal
map. Let’s find its corresponding orthogonal matrix.

Example 5.15 (Reflection to a plane). Let P be given a plane in R3 with equation

ax+ by+ cz = 0.

Consider the reflection map T :R3
→R3 which takes a point to its reflection with respect to the given

plane. Is this map linear? If that is the case determine its corresponding matrix. Prove your answers.
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Solution: The normal vector of the plane P is u =

abc
. Let A be a point and v := O⃗A. We

know how to find the projection projPv of v on the plane; see Sec. 3.5.5. Then the vector
perpendicular from A to the plane is

w = v−projPv

The symmetric point A′ of the point A with respect to the plane P is represented by the vector

O⃗A′ = v−2
(
v−projPv

)
Show that this is

O⃗A′ = I3−2
uut

a2+b2+ c2 .

If O⃗A =

xyz
, then

O⃗A′ =


(1−2a2)x−2aby−2acz
−2abx+ (1−2b2)y−2bcz
−2acx−2bcy+ (1−2c2)z

 =

1−2a2

−2ab −2ac
−2ab 1−2b2

−2bc
−2ac −2bc 1−2c2


xyz


Since this map is given through a multiplication by a matrix then it must be linear. □

This transformation is sometimes called Householder transformation and is widely used
in optics, computer vision, etc.

Exercise 79. Find the matrix of the reflection transformation to the plane with equation

2x+3y+5z = 0

Find the reflections of points P(1,1,1) and Q = (2,1,0).

5.3.2 Unitary matrices

Next we will see the concept of orthogonality for matrices with complex entries. Recall that
over the complex numbers C the dot product becomes the Hermitian product. The complex
transpose of a matrix A is the transpose of the conjugate of A, denoted by A∗.

A complex square matrix U ∈Matn×n(C) is called unitary if its conjugate transpose U∗ is
also its inverse, that is, if

U∗U =UU∗ = I,

where I is the identity matrix. The general expression of a 2 by 2 unitary matrix is

U =
[

a b
−eiφb∗ eiφa∗

]
, |a|2+ |b|2 = 1,
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which depends on 4 real parameters (the phase of a, the phase of b, the relative magnitude
between a and b, and the angle φ). The determinant of such a matrix is det (U) = eiφ. The
subgroup of those elements U with det U = 1 is called the special unitary group SU(2). The
matrix U can also be written in this alternative form:

U = eiφ/2
[

eiφ1 cosθ eiφ2 sinθ
−e−iφ2 sinθ e−iφ1 cosθ

]
,

which, by introducing φ1 = ψ+∆ and φ2 = ψ?∆, takes the following factorization:

U = eiφ/2
[
eiψ 0
0 e−iψ

][
cosθ sinθ
−sinθ cosθ

][
ei∆ 0
0 e−i∆

]
.

This expression highlights the relation between 2 by 2 unitary matrices and 2 by 2 orthogonal
matrices of angle θ.

Exercises:

345. Prove the linearity of the reflection to a plane
using only the geometry of vectors in R3.

346. Find the orthogonal projection of v =

 3
−1
2


onto the plane V in R3 with equation

x− y+2z = 0.

347. Check whether the matrix is orthogonal1 1 −1
3 2 −5
2 2 0


348. For a field F the space Matn×n(F) of n× n
matrices with entries in F is a vectors space. Con-
sider the map T : Matn×n(F)→Matn×n(F) given
by

T(A) = At.

Is this a linear map? Prove your answer.
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5.4 QR-factorization

In previous lectures, we have seen that diagonalizing matrices requires finding the eigenval-
ues, which can be a difficult problem, especially for large or non-symmetric matrices. The
QR-factorization offers an alternative approach, enabling numerical approximations of eigen-
values and solutions to systems of equations with greater stability. However, every time there
is approximation involved, an error analysis is required.

In an inner space V, if the inner product ⟨·, ·⟩ is positive definite, we can always obtain an
orthonormal basis.

Lemma 5.5. A finite dimensional vector space V with a positive definite inner product has an or-
thonormal basis.

Proof. Apply the Gram-Schmidt process to any basis of V. Since the inner product is positive
definite, all norms are nonzero, ensuring the process yields an orthonormal basis. □

The orthogonalization process can be represented via a matrix form. Let M ∈Matn×m(R)
with linearly independent column vectors v1, . . . ,vm. Then from the basis

B = {v1, · · · ,vm}

we can get an orthonormal basis
B′ = {w1, · · · ,wm}

by using first the Gram-Schmidt orthogonalization and then normalizing each element. Thus,

w1 =
1
∥v1∥

v1

w2 =
1∥∥∥v2−projv1

(v2)
∥∥∥ (v2−projv1

(v2))

...

wi =
1∥∥∥vi−projVi−1

(vi)
∥∥∥ (vi−projVi−1

(vi))

...

wm =
1∥∥∥vm−projVm−1

(vm)
∥∥∥ (vm−projVm−1

(vm))

(5.7)

Using Gram-Schmidt, each original vector vi can be written as a linear combination of the
orthonormal vectors w1, . . . ,wi. This follows because the algorithm ensures that

Span (v1, . . . ,vi) = Span (w1, . . . ,wi)

at each step, and wi+1, . . . ,wm are orthogonal to vi by construction. Specifically, we express

vi =

i∑
j=1

r jiw j,
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where the coefficients come from the projections and normalization: r ji =w j ·vi for j < i, and

rii =
∥∥∥vi−projVi−1

(vi)
∥∥∥ ,

for i > 1 (with r11 = ∥v1∥). This relationship is the key to representing M in a factored form, as
we will see in the theorem.

Example 5.16. Consider M =
[
1 1
0 1

]
with columns v1 =

[
1
0

]
and v2 =

[
1
1

]
. Applying Gram-Schmidt:

w1 =
v1

∥v1∥
=

[
1
0

]
, w2 =

v2−projv1
(v2)∥∥∥v2−projv1
(v2)

∥∥∥ ,
where projv1

(v2) = (w1 ·v2)w1 = 1 ·
[
1
0

]
=

[
1
0

]
, so

v2−projv1
(v2) =

[
1
1

]
−

[
1
0

]
=

[
0
1

]
,

and w2 =

[
0
1

]
. Now, express v1 and v2 as linear combinations of the w1, w2.

v1 = r11 w1 = ∥v1∥w1 = 1 ·
[
1
0

]
=

[
1
0

]
,

v2 = r12w1+ r22w2,

where r12 =w1 ·v2 = 1, r22 =
∥∥∥v2−projv1

(v2)
∥∥∥ = ∥∥∥∥∥∥

[
0
1

]∥∥∥∥∥∥ = 1, so

v2 = 1 ·
[
1
0

]
+1 ·

[
0
1

]
=

[
1
1

]
.

Notice that if we create this matrix with r1,1,r1,2,r2,2 and put r2,1 then

M = [w1 |w2]
[
r1,1 r1,2
0 r2,2

]
=

[
1 0
0 1

][
1 1
0 1

]
Next we will generalize this to a theorem called the QR-decomposition and the QR-

algorithm, which is considered one of the main algorithms of numerical linear algebra. Its
main application is to numerically compute the eigenvalues for invertible matrices.
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5.4.1 The QR-decomposition

In many problems, we need to break down a matrix into simpler parts that are easier to work
with. The QR-decomposition does this by writing any matrix with independent columns as a
product

A =QR,

where Q is an orthogonal matrix and R an upper triangular matrix. This form is powerful
because orthogonal matrices preserve lengths and angles, making computations stable, while
the triangular matrix simplifies solving equations. Whether we’re finding eigenvalues, solving
systems, or handling numerical approximations, QR-decomposition provides a reliable tool
that connects geometry and algebra, as we will see in some of the applications at the end of
this section.

Theorem 5.6. Let M ∈ Matn×m(R), say M = [v1 | v2 | · · · | vm] with linearly independent column
vectors v1, . . . ,vm. Then

M =QR,

where Q is an orthogonal matrix and R an upper triangular matrix. Moreover,

Q = [w1 |w2 | · · · |wm] and R =


r11 r12 . . . r1,m
0 r22 . . . r2,m
...

...
...

...
0 0 . . . rm,m

 (5.8)

where w1, . . . ,wm are orthonormal vectors obtained by the Gram-Schmidt algorithm on the set S =
{v1, . . . ,vn}, and ri j are given by

r1,1 = ∥v1∥ , ri,i =
∥∥∥vi−projVi−1

(vi)
∥∥∥ for i > 1, ri, j =wi ·v j for i < j,

with Vi−1 = Span (v1, · · · ,vi−1). This factorization is unique.

Proof. The vectors w1, . . . ,wm form an orthonormal basis for the column space of M, obtained
by applying the Gram-Schmidt algorithm to v1, . . . ,vm. We define Q= [w1 | · · · |wm] and R= [ri j],
where ri j =w j ·vi for j≤ i and ri j = 0 for j> i, making R upper triangular. The equation M=QR
holds because each column of QR is

∑i
j=1 r jiw j = vi, as shown above. Multiplying QR confirms

this: the i-th column is
∑m

j=1 r jiw j, but r ji = 0 for j > i, matching vi. The factorization is unique
because Gram-Schmidt, with a fixed order of v1, . . . ,vm, yields a unique orthonormal basis,
and requiring rii > 0 fixes the scaling. □

Hence we have the following:

Corollary 5.4. Any real square matrix A may be decomposed as A = QR, where Q is an orthogonal
matrix and R is an upper triangular matrix. If A is invertible, then the factorization is unique if we
require the diagonal elements of R to be positive.
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Proof. For a square matrix A ∈Matn×n(R), Theorem 5.6 guarantees A =QR with Q orthogonal
(QtQ = In) and R upper triangular. If A is invertible, its columns are linearly independent, and
the Gram-Schmidt process is unique up to signs of the wi. Requiring rii > 0 fixes these signs,
ensuring uniqueness. □

Example 5.17. Let us see how this will work for a general matrix M ∈Mat2×2(R). Say M = [v1 | v2].
Then

w1 =
v1

∥v1∥
, w2 =

v2−projv1
(v2)∥∥∥v2−projv1
(v2)

∥∥∥
Hence, r11, r12, and r22 are given by

r11 = ∥v1∥ , r12 =w1 ·v2, r22 =
∥∥∥v2−projv1

(v2)
∥∥∥

Then we have

M = [v1 | v2] = [w1 |w2]
[
∥v1∥ w1 ·v2

0
∥∥∥v2−projv1

(v2)
∥∥∥
]

Let us see now a more concrete example.

Example 5.18. Let M =
[
1 0
1 1

]
. Then v1 =

[
1
1

]
and v2 =

[
0
1

]
. Hence, w1 =

1
√

2

[
1
1

]
, w2 =

1
√

2

[
−1
1

]
, and

r11 =
√

2, r12 =w1 ·v2 =
1
√

2
, r22 =

∥∥∥v2−projv1
(v2)

∥∥∥ = 1
√

2
.

Thus we have,

Q =

 1
√

2
−

1
√

2
1
√

2
1
√

2

 and R =


√

2 1
√

2
0 1

√
2


Check: QR =

 1
√

2
−

1
√

2
1
√

2
1
√

2



√

2 1
√

2
0 1

√
2

 = [
1 0
1 1

]
=M.

Example 5.19. Find a QR-factorization of the matrix

A = [v1 | v2 | v3] =


1 1 0
1 0 2
1 0 1
1 1 −1


Solution: First we find an orthonormal basis {w1,w2,w3} for the column space and then we
have

Q = [w1 |w2 |w3] =


1/2 1/2 1/2
1/2 −1/2 1/2
1/2 −1/2 −1/2
1/2 1/2 −1/2


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Then we have

r1,1 = ∥v1∥ = 2, r2,2 =
∥∥∥v2−projv1

(v2)
∥∥∥ = 1, r3,3 =

∥∥∥v3−projV2
(v3)

∥∥∥
where V2 = Span (v1,v2). Since V2 has an orthonormal basis {w1,w2}, then from Eq. (5.4) we
have

projV2
(v3) = (w1 ·v3) ·w1+ (w2 ·v3) ·w2 =w1−2w2 =


−1/2
3/2
3/2
−1/2

 .
Then

v3−projV2
(v3) =


0
2
1
−1

−

−1/2
3/2
3/2
−1/2

 =


1/2
1/2
−1/2
−1/2


and r3,3 = 1. Also, r1,2 =w1 ·v2 = 1, r1,3 =w1 ·v3 = 1, r2,3 =w2 ·v3 = −2. Hence,

R =

2 1 1
0 1 −2
0 0 1

 .
Corollary 5.5. The matrix R in the QR-factorization of A is given by

R =QtA.

Proof. Since Q is orthogonal, QtQ = I. Then

QtA =Qt(QR) = (QtQ)R = IR = R.

□

Exercise 80. Prove that the QR-factorization of

A =


1 0 1
7 7 8
1 2 1
7 7 6


is A =QR where

Q =


1/10 −1/2

√
2 0

7
10 0 1/2

√
2

1/10 1/2
√

2 0
7
10 0 −1/2

√
2

 , R =


10 10 10
0
√

2 0
0 0

√
2


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Exercise 81. Prove that the QR-factorization of

A =

 2 8 2
1 7 −1
−2 −2 1


is A =QR where

Q =

 2/3 1/3 2/3
1/3 2/3 −2/3
−2/3 2/3 1/3

 , R =

 3 9 1/3
0 6 2/3
0 0 7/3


5.4.2 Solving Linear Systems with QR-Decomposition

One key application of QR-decomposition is solving linear systems of the form Ax = b, where
A ∈ Matn×m(R) has linearly independent columns, x ∈ Rm, and b ∈ Rn. If A = QR, where
Q ∈Matn×m has orthonormal columns (QtQ = Im) and R ∈Matm×m is upper triangular, we can
transform the system into a simpler one. Substitute A =QR into the equation to get QRx = b.
Since QtQ = Im, multiply both sides by Qt:

QtQRx =Qtb ⇒ Rx =Qtb.

The system Rx = Qtb is easy to solve because R is upper triangular: we use back sub-
stitution starting from the last row. This method is numerically stable because Qt preserves
lengths, avoiding the amplification of errors that can occur when solving Ax = b directly
with elimination. For square, invertible A (n = m), this gives the exact solution. For n > m
(overdetermined systems), it provides the least squares solution, as we’ll explore later.

Example 5.20. Solve the system Ax = b, where

A =

1 1
1 0
0 1

 , b =

211
 .

Solution: First, find the QR-decomposition of A. The columns are v1 =

110
 and v2 =

101
. Apply

Gram-Schmidt:

w1 =
v1

∥v1∥
=

1
√

2

110
 , w2 =

v2−projv1
(v2)∥∥∥v2−projv1
(v2)

∥∥∥ ,
and we get

Q =


1
√

2
1
√

6
1
√

2
−

1
√

6
0 2

√
6

 , R =


√

2 1
√

2

0
√

3
2


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Now, compute Qtb =

 1
√

2
1
√

2
0

1
√

6
−

1
√

6
2
√

6


211

 =
 3
√

2
1
√

6

 and solve Rx =Qtb, where


√

2 1
√

2

0
√

3
2


[
x1
x2

]
=

 3
√

2
1
√

6

 .
Thus, x =

[
2
1
3

]
. □

Is it faster to use row operations or QR-decomposition to solve Ax = b? For a single system
with a square, invertible A (n =m), row operations (Gaussian elimination) are typically faster,
requiring about 2

3n3 operations, while QR-decomposition via Gram-Schmidt needs around 2n3

operations. However, if A is fixed and you solve for multiple b vectors, QR-decomposition is
more efficient: compute Q and R once (costing 2n3), then each solution takes only n2 operations
(Qtb and back substitution), compared to 2

3n3 per system with row operations. Moreover, QR
is preferred for numerical stability or overdetermined systems (n >m), despite the initial cost.

5.4.3 Computing eigenvalues: QR-algorithm

Finding eigenvalues of a matrix A by solving char (A,λ) = 0 is impractical for large n due
to the lack of general formulas for polynomials of degree n ≥ 5. The QR-algorithm offers a
numerically stable iterative method to approximate these eigenvalues.

Assume as above that A has full rank. From Thm. 5.6 we can write A as

A =QR

for some orthogonal matrix Q and an upper triangular matrix R. Notice that

Q−1AQ =Q−1(QR)Q = RQ

Thus A is similar to RQ and therefore they have the same eigenvalues. Instead of computing
the eigenvalues of A, we can compute the eigenvalues of A2 := RQ. Let

A2 =Q2R2

be the QR-decomposition of A2. Again the eigenvalues of A2 are the same as eigenvalues of
A3 := R2Q2. We can continue this process by letting

Ai+1 := RiQi.

Then all matrices A,A2,A3, . . . ,Ai+1 are similar and have the same eigenvalues, since

Ai+1 = RiQi =Q−1
i QiRiQi =Q−1

i AiQi =Qt
iAiQi,
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so all the Ai are similar and hence they have the same eigenvalues. Remarkably, the sequence
of matrices

A,A2,A3, . . . ,Ai, . . .

converges to an upper triangular matrix with these eigenvalues on the main diagonal.
The algorithm is numerically stable because it proceeds by orthogonal similarity trans-

forms. The eigenvalues of a triangular matrix are listed on the diagonal, and the eigenvalue
problem is solved.

Lemma 5.6. The QR-factorization is used to numerically approximate the eigenvalues of A.

Proof. Given A = Q1R1, define A2 = R1Q1 = Qt
1AQ1, which is similar to A and thus has the

same eigenvalues. Iterating, Ai+1 = RiQi =Qt
iAiQi remains similar to A. Each step applies an

orthogonal transformation, preserving the spectrum. For a full-rank matrix A, the off-diagonal
entries of Ai diminish as i increases, converging to an upper triangular form where the diagonal
entries are the eigenvalues (or blocks for complex pairs). This convergence occurs because
repeated QR-factorizations shift A toward a form where eigenvectors align with the basis,
and orthogonality ensures numerical errors do not grow exponentially, unlike polynomial
root-finding. □

Example 5.21. Estimate the eigenvalues of

A =
[
1 1
2 0

]
using the QR-algorithm.

Solution: First we find the QR-decomposition of A =Q1R1, which is

Q1 =
1
√

5

[
1 2
2 −1

]
R1 =

1
√

5

[
5 1
0 2

]
Then

A2 = R1Q1 =
1
5

[
7 9
4 −2

]
Find the QR-decomposition of A2, which is

Q2 =
1
√

65

[
7 4
4 −7

]
R2 =

1
√

65

[
13 10
0 10

]
Then A3 is

A3 =
1

13

[
27 −5
8 −14

]
≈

[
2.08 −0.38
0.62 −1.08

]
So we are already getting closer to the actual eigenvalues, which are 2 and -1.
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Example 5.22. Estimate the eigenvalues of

A =

4 1 1
1 3 10−4

1 10−4 2

 ,
where small entries test numerical stability.

Solution: The characteristic polynomial det (A−λI) is cubic, and small terms like 10−4 make
direct root-finding prone to rounding errors. Using the QR-algorithm:

- Step 1: A =Q1R1. Gram-Schmidt on columns v1 =

411
, v2 =

 1
3

10−4

, v3 =

 1
10−4

2

:
- Q1 ≈

0.943 −0.041 0.029
0.236 0.999 −0.013
0.236 −0.102 0.999

, R1 ≈

4.243 1.179 1.179
0 2.723 −0.278
0 0 1.943

.
- A2 = R1Q1 ≈

4.236 0.936 0.827
0.935 3.000 0.001
0.827 0.001 1.764

.
- Step 2: A2 =Q2R2, repeating yields A3 ≈

4.309 0.765 0.594
0.765 2.999 0.002
0.594 0.002 1.692

.
After a few iterations (e.g., 5–10 in practice), off-diagonal entries shrink, and the diago-

nal stabilizes near 4.31, 3, and 1.69 (true eigenvalues, via numerical solvers). Unlike direct
methods, QR avoids amplifying the 10−4 terms, maintaining accuracy.

Remark 5.1. If some of the eigenvalues of a real matrix A are not real, the QR-algorithm converges to
a block upper triangular matrix where the diagonal blocks are either 1×1 (the real eigenvalues) or 2×2
(each providing a pair of conjugate complex eigenvalues of A).

Exercises:

349. Can a matrix have more than one QR-
factorization?

350. Estimate the eigenvalues of the matrix A up
to two decimal places using the QR-algorithm.

A =

1 2 −1
2 1 3
1 1 2


351. Estimate the eigenvalues of the matrix A up

to two decimal places using the QR-algorithm.

A =


3 −5 1
1 1 1
−1 1 1
3 −7 8


352. Suppose Ax = b is a linear system, where A
is a matrix of size m×n, x of size n× 1, and b of
size m× 1. Let A = QR be a QR-factorization of
A. Demonstrate a simple way of solving the linear
system Ax = b.

353. Perform two iterations of the QR-algorithm
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on

A =
[
3 1
2 1

]
.

Estimate the eigenvalues from A3 and compare
with the exact values (solve char (A,λ) = 0).

354. For

A =

5 1 0
1 4 1
0 1 3

 ,
compute A2 = R1Q1 using the QR-algorithm.
How do the off-diagonal entries change, and what
does this suggest about convergence?

355. Apply one iteration of the QR-algorithm to

A =

 2 1 10−3

1 3 1
10−3 1 4

 .

Compare the diagonal of A2 to A’s, noting the effect
of the small 10−3 entries on stability.

356. Consider

A =

1 2 1
2 1 0
1 0 3

 .
Perform three iterations of the QR-algorithm. Are
the eigenvalues real? How does the matrix form
indicate this?

357. For a 3× 3 matrix A with eigenvalues 2, 3,
and 4, explain why the QR-algorithm converges to
a triangular matrix with these values on the diago-
nal, assuming no complex eigenvalues. What role
does orthogonality play?
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5.5 Schur decomposition

Above we learnt about the QR-factorization, but that worked only for matrices in Matm×n(R).
What about matrices with complex coefficients? The modification of the above factorization
for matrices with complex entries is called Schur decomposition.

Lemma 5.7 (Schur). Any A ∈Matn(C) can be expressed as

A =QUQ−1

where Q is a unitary matrix and U is an upper triangular matrix.

Proof. The proof relies on the existence of eigenvalues and eigenvectors for any square matrix
over C, and proceeds by induction on the matrix size n.

• Base Case (n= 1): If A is a 1×1 matrix, say A= [λ], then take Q= [1] (unitary, since 1∗ = 1
and 1 ·1 = 1) and U = [λ] (upper triangular). Clearly, A =QUQ−1 holds.

• Inductive Step: Assume the result holds for all (n−1)× (n−1) matrices. Let A ∈Matn(C).
Since A has at least one eigenvalue λ (by the Fundamental Theorem of Algebra applied
to its characteristic polynomial), there exists a corresponding eigenvector v with ∥v∥ = 1.
Extend v to an orthonormal basis {v,w2, . . . ,wn} for Cn using the Gram-Schmidt process
with the standard Hermitian inner product.

Define Q1 = [v | w2 | · · · | wn], a unitary matrix (since its columns are orthonormal).
Compute the conjugate transpose Q∗1 = [v∗ |w∗2 | · · · |w

∗
n], where each row is the conjugate

transpose of the corresponding column. Then:

Q∗1AQ1 =Q∗1A[v |w2 | · · · |wn].

Since Av = λv and {v,w2, . . . ,wn} is orthonormal:

– Q∗1(Av) =Q∗1(λv) = λQ∗1v = λ[1,0, . . . ,0]T,

– For j = 2, . . . ,n, the column Q∗1(Aw j) produces a vector in Cn.

Thus:

Q∗1AQ1 =

[
λ a∗

0 B

]
,

where a∗ ∈C1×(n−1) and B ∈Matn−1(C). By the induction hypothesis, B=Q2U2Q−1
2 , where

Q2 is unitary and U2 is upper triangular. Define:

Q =Q1

[
1 0
0 Q2

]
, U =

[
λ a∗Q2
0 U2

]
.

– Check Q is unitary: Since Q1 and
[
1 0
0 Q2

]
are unitary (the latter because Q∗2Q2 =

In−1), their product Q is unitary.
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– Check U is upper triangular: U has zeros below the diagonal, as U2 is upper
triangular.

Verify:

QUQ−1 =Q1

[
1 0
0 Q2

][
λ a∗Q2
0 U2

][
1 0
0 Q−1

2

]
Q−1

1 .

Compute the inner product:[
1 0
0 Q2

][
λ a∗Q2
0 U2

]
=

[
λ a∗Q2
0 Q2U2

]
,

[
λ a∗Q2
0 Q2U2

][
1 0
0 Q−1

2

]
=

[
λ a∗

0 Q2U2Q−1
2

]
=

[
λ a∗

0 B

]
,

Q1

[
λ a∗

0 B

]
Q−1

1 =Q1(Q∗1AQ1)Q−1
1 = A.

Thus, A =QUQ−1, completing the induction.

□
U is called a Schur form of A. Since U is similar to A, it has the same eigenvalues and since

it is triangular, its eigenvalues are the diagonal entries of U.
The Schur decomposition implies that there exists a nested sequence of A-invariant sub-

spaces
0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = Cn,

and that there exists an ordered orthonormal basis (for the standard Hermitian product) such
that the first i vectors in the basis span Vi for each i occurring in the nested sequence.

Remark 5.2. Now we can say that for matrices of full rank (all columns are linearly independent)
we have an effective way of computing the eigenvalues via the QR-algorithm. What about matrices
which don’t have full rank? In Thm. 6.11 we will explain how this is done via the Singular Value
Decomposition.

Theorem 5.7. Let A be an n×n matrix and λ1,λ2, . . . ,λn be its eigenvalues (not necessarily distinct).
Then,

tr(A) = λ1+λ2+ · · ·+λn.

Proof. From s Schur decomposition we have

A =UTU∗

where T is an upper triangular matrix. The diagonal entries of T are the eigenvalues of A
(including repetitions according to algebraic multiplicity). Hence,

tr(A) = tr(UTU∗) = tr(U∗UT) = tr(IT) = tr(T)

Since U∗U = I (because U is unitary).

216

https://leanpub.com/lin-alg/
https://leanpub.com/u/shaska


Shaska, T. Linear Algebra

The trace of an upper triangular matrix is simply the sum of its diagonal entries. As the
diagonal entries of T are the eigenvalues of A, we have:

tr(T) = λ1+λ2+ · · ·+λn

Therefore, the trace of matrix A is equal to the sum of its eigenvalues. □

Exercises:

358. For A =
[

0 1
−1 0

]
, compute the Schur decom-

position A=QUQ−1. Verify that Q is unitary and
U is upper triangular, and check that the eigenval-
ues of A appear on the diagonal of U.

359. Consider A =
[
1 2
2 1

]
. Find its Schur decom-

position and confirm that the diagonal entries of U
are the eigenvalues of A.

360. Let A be a 2×2 matrix with complex eigen-

values (e.g., A =
[

0 1
−1 1

]
). Show that its Schur

decomposition yields an upper triangular U with
these eigenvalues on the diagonal.

361. If A is normal (AA∗ = A∗A), prove that U
in its Schur decomposition is diagonal. What does
this imply about normal matrices?

362. Using Schur decomposition, prove that for
any square matrix A and positive integer k,
tr(Ak) =

∑n
i=1λ

k
i , where λi are the eigenvalues of

A.
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5.6 Sylvester’s theorem

Let V be a finite dimensional vector space over R and ⟨·, ·⟩ an inner product on V. By the
previous section we can find an orthogonal basisB = {v1, . . . ,vn} of V. Since the inner product
is not necessarily positive definite then ⟨vi,vi⟩ could be ≤ 0. Denote

ci := ⟨vi,vi⟩

for i = 1, . . .n. We can reorder the basis B such that

c1, . . . ,cp > 0, cp+1, . . . ,cp+s < 0, cp+s+1, . . . ,cp+s+r = 0,

where p+s+r= n. Sylvester’s theorem says that the numbers p,s,r don’t depend on the choice
of the orthogonal basisB. So we have an inner space V with inner product ⟨·, ·⟩, not necessarily
positive definite. We can still get an orthonormal basis on V as follows. Let

v′i :=


vi, if ci = 0
vi
√

ci
, if ci > 0

vi
√
−ci

, if ci < 0

(5.9)

Then the set B′ is a basis of V such that

⟨vi,vi⟩ = ±1, or 0.

Such basis is called an orthonormal basis of V. Let

B = {v1, . . . ,vn}

be an orthogonal basis of V such that

c1, . . . ,cp = 1, cp+1, . . . ,cp+s = −1, cp+s+1, . . . ,cp+s+r = 0

where p+ s+ r = n and ci := ⟨vi,vi⟩.

Theorem 5.8. The number p,r,s are uniquely determined by the inner product and do not depend on
the choice of the orthogonal basis B.

Proof. Fix an orthogonal basis
B = {v1, . . . ,vn}

of V, where ⟨vi,v j⟩ = ciδi j and c1, . . . ,cp = 1, cp+1, . . . ,cp+s = −1, cp+s+1, . . . ,cp+s+r = 0. In this basis,
the inner product is represented by the diagonal matrix

D = diag(c1, . . . ,cn),

with p positive entries, s negative entries, and r zeros along the diagonal. Now consider
another orthogonal basis

B′ = {w1, . . . ,wn},
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where ⟨wi,w j⟩ = c′iδi j, and let D′ = diag(c′1, . . . ,c
′
n) represent the inner product in B′, with

c′1, . . . ,c
′

p′ = 1, c′p′+1, . . . ,c
′

p′+s′ = −1, and c′p′+s′+1, . . . ,c
′

p′+s′+r′ = 0, where p′+ s′+ r′ = n. The change-
of-basis matrix P from B to B′ satisfies wi =

∑
j P jiv j, and because the inner product must

be consistent across bases, we have D′ = PTDP. Since D and D′ are congruent—both being
real symmetric matrices transformed by an invertible P—Sylvester’s Law of Inertia applies,
stating that the number of positive, negative, and zero eigenvalues of D and D′ must be equal.
Here, the eigenvalues of D are its diagonal entries c1, . . . ,cn, giving p positive, s negative, and r
zero eigenvalues, and similarly for D′ with p′, s′, and r′. Thus, p = p′, s = s′, and r = r′, proving
that these counts are invariants of the inner product, not the basis chosen.

□
The integer p (resp., s) is sometimes called the index of positivity (resp., negativity) and

the pair (p,s) the signature of the inner product. Let us see an example.

Example 5.23. Let V =R2 and A ∈Mat2×2(R) be a symmetric matrix. Define an inner product on V
as follows

⟨u,v⟩ := utAv.

The reader should show that this is an inner product.

Example 5.24. Let V =R2 and A =
[
−1 1
1 −1

]
. Then V is an inner space with the inner product

⟨u,v⟩ := utAv.

Take a basis in V as B =
{

v1 =

[
1
0

]
, v2 =

[
1
1

]}
, This is an orthogonal basis since

⟨v1,v2⟩ = vt
1Av2 =

[
1, 0

] [−1 1
1 −1

] [
1
1

]
=

[
−1 1

] [1
0

]
= 0.

What is the signature of this inner product? We have

⟨v1,v1⟩ = vt
1Av1 =

[
1, 0

] [−1 1
1 −1

] [
1
0

]
= −1.

⟨v2,v2⟩ = vt
2Av2 =

[
1, 1

] [−1 1
1 −1

] [
1
1

]
= 0.

Hence the signature is (0,1). □

5.6.1 Decomposition of Inner Spaces

Given a finite-dimensional real vector space V with an inner product ⟨·, ·⟩, define the sets

V+ = {u ∈ V | ⟨u,u⟩ > 0}
V− = {u ∈ V | ⟨u,u⟩ < 0}

V0 = {u ∈ V | ⟨u,u⟩ = 0}
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to capture vectors based on the sign of their inner product. While these sets are not
subspaces—since, for example, 2u may not be in V+ if u ∈ V+ and the inner product is
indefinite—we can use them to motivate a decomposition into subspaces derived from an
orthogonal basis.

Lemma 5.8. The space V admits a direct sum decomposition V = V+⊕V−⊕V0, where V+, V−, and
V0 are subspaces spanned by basis vectors with positive, negative, and zero inner products, respectively.

Proof. From Sylvester’s Theorem, V has an orthogonal basisB = {v1, . . . ,vn}with ⟨vi,v j⟩ = ciδi j,
where c1, . . . ,cp > 0, cp+1, . . . ,cp+s < 0, and cp+s+1, . . . ,cp+s+r = 0, and p+s+r= n. Define subspaces

V+ = Span {v1, . . . ,vp}

V− = Span {vp+1, . . . ,vp+s}

V0 = Span {vp+s+1, . . . ,vp+s+r}.

Any v ∈ V can be expressed as

v =
n∑

i=1

vivi =

p∑
i=1

vivi+

p+s∑
i=p+1

vivi+

p+s+r∑
i=p+s+1

vivi,

where the first sum lies in V+, the second in V−, and the third in V0, showing V =V++V−+V0.
The sum is direct because the basis vectors span disjoint index sets: if u ∈ V+∩V−, then

u =
p∑

i=1

uivi =

p+s∑
i=p+1

wivi,

and since B is linearly independent, u = 0; similarly, V+∩V0 = {0} and V−∩V0 = {0}. With
dimensions p, s, and r summing to n, we have V = V+⊕V−⊕V0.

□
This decomposition leverages the orthogonal basis to define V+, V−, and V0 as subspaces,

distinct from the broader sets initially proposed. For

u = u++u−+u0

with u+ ∈ V+, u− ∈ V−, and u0
∈ V0, the inner product is

⟨u,u⟩ = ⟨u+,u+⟩+ ⟨u−,u−⟩,

since ⟨u0,u0
⟩ = 0 and orthogonality eliminates cross terms.

Example 5.25. Consider V =R2 with ⟨u,v⟩ = uT
[
−1 1
1 −1

]
v. The basis

{[
1
0

]
,

[
1
1

]}
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has 〈[
1
0

]
,

[
1
0

]〉
= −1,

〈[
1
1

]
,

[
1
1

]〉
= 0, and

〈[
1
0

]
,

[
1
1

]〉
= 0,

so V− = Span
{[

1
0

]}
, V0 = Span

{[
1
1

]}
, and V+ = {0}, forming

V = {0}⊕R⊕R =R2.

For v = (a,b), we write v = 0+ a
[
1
0

]
+ (b− a)

[
1
1

]
, and ⟨v,v⟩ = −a2, consistent with V−.

Example 5.26. In V =R3 with ⟨u,v⟩ = u1v1−u2v2+u3v3, the standard basis gives c1 = 1, c2 = −1,
c3 = 1, so

V+ = Span


100

 ,
001


 , V− = Span


010


 , V0 = {0}.

A vector

abc
 decomposes as

a0c
+

0b0
+0, with

⟨

abc
 ,

abc
⟩ = a2

− b2+ c2,

reflecting contributions from V+ and V−. This decomposition is a powerful tool for analyzing indefinite
inner products, separating positive, negative, and null behaviors into orthogonal components.

Exercises:

363. What is the signature of Rn with the usual
Euclidean inner product?

364. On V = R2 with ⟨u,v⟩ = u1v1+u2v2, show
that s = 0 and find p and r.

365. For V = R2 with ⟨u,v⟩ = u1v1 −u2v2, find
an orthogonal basis and determine the signature
(p,s).

366. Let V = R3 with ⟨u,v⟩ = uTAv, where A =1 0 0
0 −1 0
0 0 0

. Compute the signature (p,s) using

the standard basis.

367. For V = R2 with ⟨u,v⟩ = u1v1 −u2v2, find
bases for the subspaces V+, V−, and V0, and verify
V = V+⊕V−⊕V0.

368. Let V = R3 with ⟨u,v⟩ = uT

1 0 0
0 −1 0
0 0 0

v.

Determine the subspaces V+, V−, and V0, and
confirm the direct sum.

369. For V =R3 with ⟨u,v⟩= u1v1−u2v2+u3v3,
find an orthogonal basis and verify that the signa-
ture is (2,1).

370. On V =R2 with ⟨u,v⟩ = u1v2+u2v1, iden-
tify V+, V−, and V0, and check if the decomposition
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holds as a direct sum.

371. Let P2 denote the space of polynomials in
F[x] of degree ≤ 2. For f , g ∈ P2 with f (x) =
a2x2 + a1x+ a0 and g(x) = b2x2 + b1x+ b0, define
⟨ f , g⟩ = a0b0 + a1b1 + a2b2. Find the signature of

this inner product for P2.

372. Given a symmetric matrix A ∈Matn×n(R),
prove that the signature of ⟨u,v⟩ = uTAv matches
the number of positive and negative eigenvalues of
A, assuming A is invertible.
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Chapter 6

Symmetric matrices

The theory of symmetric matrices is tied closely with the classical theory of quadratic forms.
In the first section we give a brief overview of quadratic forms and how to associate them with
matrices. In the next few sections we study in more detail the symmetric matrices. The main
focus of this chapter can be summarized in the problem of diagonalizing a quadratic form.
For example, given and equation

61x2+104xy+22xz+52y2+40yz+61z2 = 144

show that by a change of basis this equation can be written as x2

4 +
y2

9 +
z2

16 = 1, which obviously
is a lot easier to recognize its shape.

6.1 Quadratic forms

The theory of n-ary forms is one of the oldest and most beautiful parts of mathematics. In this
chapter we give a brief introduction to this theory and its relation to linear algebra. As before
we take the field of scalar to be R.

6.1.1 Binary quadratic forms

A binary quadratic form is a homogenous degree 2 polynomial in two variables, in other
words a polynomial of the form

f (x, y) = ax2+bxy+ cy2

and its discriminant defined as ∆ f = b2
−4ac. We let the matrices M and v be defined as

M =
[
a b

2
b
2 c

]
, and v =

[
x
y

]
Then, a binary quadratic form is given by

f (x, y) = vtMv
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Hence, there is a one-to-one correspondence between the binary quadratic forms and symmetric 2×2
matrices. For a given form f its corresponding matrix will be denoted by M f .

Lemma 6.1. The discriminant ∆ f of f is zero if and only if det M f = 0. Moreover, ∆ f = −4det M f .

Remark 6.1. There are many authors who define binary forms as

f (x, y) = ax2+2bxy+ cy2

so that the corresponding matrix is M f =

[
a b
b c

]
and the discriminant ∆ f = ac−b2 instead of b2

−4ac.

We will stick with the usual conventions.

Change of coordinates

A change of coordinates is any linear map R2
→R2 for some matrix M =

[
λ1 λ2
λ3 λ4

]
∈Mat2(R),

[
x
y

]
→

[
λ1 λ2
λ3 λ4

][
x
y

]
.

Notice that M is not necessarily an invertible matrix.

Let f (x, y) = ax2+2bxy+ cy2 with matrix M f =

[
a b
b c

]
. We normally denote by f M (not to be

confused by any power of f ) the new quadratic form

f M(x, y) := f
(
λ1x+λ2y, λ3x+λ4y

)
Then expanding the expression for f M(x, y) we have

f
(
λ1x+λ2y, λ3x+λ4y

)
=(aλ2

1+bλ1λ3+ cλ2
3)x2+ (2aλ1λ2+ bλ1λ4+ bλ2λ3+2cyλ3λ4)xy

+ (aλ2
2+ bλ2λ4+ cλ2

4)y2

which has matrix[
aλ2

1+bλ1λ3+ cλ2
3 aλ1λ2+ cλ3λ4+

b
2 (λ1λ4+λ2λ3)

aλ1λ2+ cλ3λ4+
b
2 (λ1λ4+λ2λ3) aλ2

1+ bλ1λ3+ cλ2
3

]
=

[
λ1 λ2
λ3 λ4

]t

M f

[
λ1 λ2
λ3 λ4

]
=MtM f M.

So if we let v =
[
x
y

]
then

f M(x, y) = f
(
λ1x+λ2y, λ3x+λ4y

)
= vt

(
MtM f M

)
v.

Hence, the associated matrix for f M(x, y) is precisely the matrix MtM f M. This is a symmetric
matrix as expected because of the following easy exercise.
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Exercise 82. If A is a symmetric matrix, then for any matrix B, the matrix BtAB is symmetric.

Hence, through the change of coordinates x→Mx the binary quadratic form f(x, y) became
f M(x, y) or in other words

f (x, y) = vtMv −→ f M(x, y) = vt
(
MtM f M

)
v.

Recall that we didn’t assume that M is invertible. If M is invertible then we call the forms
f (x, y) and g(x, y)= f M(x, y) equivalent and with a change of coordinates x→M−1x we can write
f (x, y) = gM−1

(x, y). We make this precise in the following definition.

Definition 6.1. Two binary quadratic forms f (x, y) and g(x, y) are called equivalent over R if they
are related through an invertible change of coordinates. In other words, if there exists an invertible
matrix M ∈ GL2(R) such that

f M(x, y) = g(x, y).

So answered the natural question: if two binary forms f and g are related by a change of
coordinates, how are their matrices M f and Mg related?

Lemma 6.2. Two binary quadratic forms f (x, y) and g(x, y) are related through a change of coordinates
M ∈Mat2(R) if and only if their corresponding matrices satisfy,

Mg =MtM f M.

Moreover, two binary forms are equivalent over R if and only if there exists M ∈ GL2(R) such that
Mg =MtM f M.

Two matrices A and B are called congruent over R if there is an invertible M ∈ GL2(R)
such that A =MtBM. We now understand what happens to the binary quadratics and their
associated matrices under a change of coordinates. Next we will focus on the geometric point
of view and see what happens to the graph of f (x, y) = d under a coordinate change.

Example 6.1. Given the graph of
8x2+20xy+13y2 = 1

we want to see what happens to this graph after the coordinate change by the matrix A =
[

3
2 −1
−1 1

]
.

Then we have [
3
2 −1
−1 1

][
x
y

]
=

[
3
2x− y
−x+ y

]
.

Substituting in the original equation we have x2+ y2 = 1. This is illustrated in Fig. 6.1.
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Figure 6.1: Mapping the ellipse to the unit circle

Geometry of binary quadratic forms

Let’s see if we can determine the shape of the graph in R2 for the curve with equation

f (x, y) = ax2+ bxy+ cy2 = d

for some fixed constant d ∈ R. Can we somehow use the matrix M f to determine the shape
of the graph? Without any loss of generality we can assume that d = 1 by applying the
transformation [

x
y

]
→

[√
dx
√

d y

]
.

If the quadratic form would have the shape

f (x, y) = α1x2+α2y2 (6.1)

then this would be much easier to graph. We have seen such graphs from high school. We
call binary quadratics as in Eq. (6.1) diagonal, since their corresponding matrices are diagonal[
α1 0
0 α2

]
. So how can we change a binary quadratic to a diagonal quadratic? We know how to

diagonalize matrices. So maybe the same procedure can be used to diagonalize quadratics?
Let’s give it a try.

The characteristic polynomial of A is

char (A,x) = x2
− (a+ c)x−

b2

4
− ac

Its eigenvalues are

λ1 =
a+ c

2
+

√
(a− c)2+ b2

2
and λ1 =

a+ c
2
−

√
(a− c)2+b2

2
and their corresponding eigenvectors

v1 =

 1
(c−a)+

√
(c−a)2+b2

1

 and v2 =

 1
(c−a)−

√
(c−a)2+b2

1

 .
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Hence, A is diagonalizable as A = PDP−1 where P

P =

 1
(c−a)+

√
(c−a)2+b2

1
(c−a)−

√
(c−a)2+b2

1 1

 .
Since D is given by

D = P−1AP

we can make this work if somehow P−1 = Pt as in Lem. 6.2. But we know exactly about
matrices with this property, thanks to Thm. 5.4. They are the orthogonal matrices.

So our next challenge becomes to find an orthogonal matrix P and a diagonal matrix D such
that A = PDP−1, or in other words to choose the eigenvectors in the diagonalization process
such that the transition matrix C is orthogonal.

Exercise 83. Let f (x, y) = x2
−2xy+ y2. Diagonalize f (x, y). Make each eigenvector a unit vector and

determine the transitional matrix C. Graph f (x, y) = 1 and then graph the equation g(x, y) = 1, where
g(x, y) is the diagonal form of f (x, y). Compare the two graphs.

Positive definite forms

Let us now recall a few things from high school.

Example 6.2. For a given binary quadratic form

f (x, y) = ax2+bxy+ cy2

the sign of f (x,1) is determined by the following: f (x,1) has the opposite sign of a in the interval
(−α1,α2) and it has the sign of a everywhere else.

x α1 α2
f(x) a - a a

Table 6.1: The sign of the quadratic polynomial

A binary quadratic is called positive definite if f (x, y) > 0 for every x ∈R2.

Lemma 6.3. A binary quadratic form

f (x, y) = ax2+bxy+ cy2

is a positive definite quadratic if and only if a > 0 and ∆ f < 0.

Proof. We assume that y , 0 and write

f (x, y) = ax2+bxy+ cy2 =
1
y2

a (
x
y

)2

+ b
x
y
+ c


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let us make the substitution t = x
y . Then the sign of f (x, y) is the same as the sign of

g(t) = at2+ bt+ c.

From the above discussion, this is always positive if and only if a > 0 and ∆g = ∆ f < 0.
For values y = 0 we have f (x,0) = ax2, so f (x, y) is not positive definite since for x = 0 it is

f (0,0) = 0. This completes the proof. □

Definition 6.2. A binary quadratic

f (x, y) = x2+bxy+ cy2

with integer coefficients is called reduced if

h( f ) :=max{|a| , |b| , |c|}

is minimal. The integer h( f ) is called the height of f (x, y).

The definition above means that for every M ∈ GL2(Z), the height of f M(x, y) is bigger or
equal to the height of f (x, y). The height of a binary form can be defined in terms of the
corresponding matrix M.

6.1.2 n-ary quadratic forms

Next, we generalize the concept of a binary quadratic to that of an n-ary quadratic form.

Definition 6.3. A quadratic form defined over R is called a function q : Rn
→R, such that

q(x) =
n∑

i=0, j=0

ai, j xi x j, (6.2)

where ai, j are coefficients from R.

As for binary quadratics, every quadratic form has an associated matrix Aq given by
A =

[
ai, j

]
. Binary forms are the simplest of all quadratic forms. Quadratic forms q : R3

→ R

are called ternary forms. A ternary form is given by

q(x) = a1,1 x2
1+ a1,2 x1x2+ a1,3 x1x3+ a2,2 x2

2+ a2,3 x2x3+ a3,3 x2
3

and has coefficient matrix

A = [ai, j] =


a1,1

1
2a1,2

1
2a1,3

1
2a1,2 a2,2

1
2a2,3

1
2a1,3

1
2a2,3 a3,3


As in the case of binary quadratics, even for n-ary forms we have

q(x) = xt Aq x
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Exercise 84. Prove that for a given form q the matrix Aq is unique.

Exercise 85. Prove that the set Qn of all quadratic forms over R forms a subspace in the space of all
functions from Rn to R. What is the dimension of this space?

A quadratic form q(x) is called diagonal (or canonical) if it is given by

q(x) =
n∑

i=1

ai,i ·x2
i .

As for binary quadratics we can diagonalize any quadratic for q(x) by diagonalizing its
associated matrix. Diagonal quadratic forms have diagonal matrices as it can be seen in the
following example.

Consider the ternary form

q(x, y,z) =
x2

a2 +
y2

b2 +
z2

a2 ,

which has corresponding matrix

Aq =


1
a2 0 0
0 1

b2 0
0 0 1

c2


From Calculus we know that the equation of q(x, y,z)= 1
in R3 is an ellipsoid as shown in Fig. 6.2.

y

z

x

0a b

c

Figure 6.2: Ellipsoid

Next we will describe briefly the steps how to diagonalize a quadratic form. Let q(x) be
a quadratic form. To find its canonical form (or diagonal form) we perform the following
steps:

Algorithm 9. Input: A quadratic form q(x).
Output: A diagonal quadratic form Q(x) equivalent to q(x).

Step:Determine the matrix M associated to q(x)
Step:Diagonalize the matrix M as M=CDC−1, where C is the transitional matrix and D is a diagonal
matrix.
Step:The form Q(x) := q(Cx) is a diagonal form and equivalent to q(x).

Exercises:

373. Prove that there is a one to one correspon-
dence between the set of positive definite quadratic
forms and the upper half plane

H = {z ∈ C | ℜ(z) > 0}

374. Let

q(x, y) = ax2+2bxy+ c y2

be a quadratic form. From methods of multivari-
able calculus determine the global extrema of this
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function. Can you accomplish this via linear alge-
bra methods?

375. Transform each of the following quadratic
forms into a sum of squares:

(i) x2+2xy+2y2+4yz+5z2

(ii) x2
−4xy+2xz+4y2+ z2

(iii) xy+ yz+ zx
(iv) x2

−2xy+2xz−2xw+ y2+2yz−4yw+z2
−

2w2

(v) x2+xy+ yw

376. Transform the following into a diagonal form

n∑
i=1

x2
i +

∑
i< j

xix j

377. Transform the following into a diagonal form∑
i< j

xix j

378. Show that every principal minor of a positive
definite quadratic form is positive.

379. A binary form (not necessary quadratic) is a
homogenous polynomial

f (x, y) =
d∑

i=0

aixiyd−i.

Is there a way to associate a matrix to f (x, y) when
d > 0?
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6.2 Symmetric matrices, Spectral theorem

From Sec. 5.3 we recall that a matrix Q is called orthogonal if its corresponding linear map
x→Qx preserves lengths, for all x ∈Rn. As we have seen in Cor 5.3, the following are true for
orthogonal matrices:

(i) Q is orthogonal
(ii) Qt =Q−1

(iii) Columns of Q form an orthonormal basis for Rn

The reader should check Sec. 5.3 for details.

Definition 6.4. A matrix A is called orthogonally diagonalizable if there if there is an orthogonal
matrix Q and a diagonal matrix D such that

A =QtDQ.

Expressing a matrix A in the above form would be beneficial for obvious reasons, not
only we change the base of the vector space such that A becomes a diagonal matrix, but
we do so preserving distances. The natural question is, which matrices are orthogonally
diagonalizable? We will answer this question in the remaining of this lecture.

Lemma 6.4. If A is orthogonally diagonalizable then At = A.

Proof. If A is orthogonally diagonalizable then it exists an orthogonal matrix Q ∈GLn(R) such
that A =QDQt, for some diagonal matrix D. Then,

At = (QDQt)t = (Qt)t
·Dt
·Qt = A.

Hence, At = A. □

Example 6.3. Let A =
[
1 2
2 −2

]
. Find Q orthogonal such that QtAQ is diagonal.

Solution: Since for an orthogonal matrix Q we have Qt =Q−1, then we are looking for a matrix
such that Q−1AQ is diagonal. We follow the same method as in Sec. 4.3. The characteristic
polynomial is

char (A,λ) = (1−λ)(−2−λ)−4 = λ2+λ−6 = (λ−2)(λ+3)

For λ = 2 and λ = −3 we have

E2 = Span
([

2
1

])
and E−3 = Span

([
−1
2

])
respectively. Then the matrices Q and D are

Q =
[
2 −1
1 2

]
, and D =

[
2 0
0 −3

]
The matrix Q is not orthogonal, since its columns do not form an orthonormal basis for R2.

We can fix this by taking Q = 1
√

5

[
2 −1
1 2

]
. □

Next, we see how to do this in general.

231

https://leanpub.com/u/shaska
https://leanpub.com/lin-alg/


Linear Algebra Shaska, T.

Theorem 6.1. Let v1 and v2 be eigenvectors of a symmetric matrix A belonging to distinct eigenvalues
λ1 and λ2. Then, v1 and v2 are orthogonal.

Proof. Consider the product vt
1Av2. Then we have,

vt
1Av2 = vt

1(λ2v2) = λ2 (v1 ·v2)

Also,
vt

1Av2 = vt
1Atv2 = (Av1)tv2 = (λ1v1)t v2 = λ1(v1 ·v2)

Hence, we have
λ1(v1 ·v2) = λ2(v1 ·v2).

Thus, (λ1−λ2)(v1 ·v2) = 0, which implies that v1 ·v2 = 0 and therefore v1 is orthogonal to v2.
□

The above theorem shows that symmetric matrices are special. Indeed, it gets even better.

Theorem 6.2. If A is a symmetric matrix with real entries, then all its eigenvalues are real.

Proof. Since complex eigenvalues occur in pairs via the conjugate, consider such a pair α± iβ
and the corresponding eigenvectors v± iw, respectively. Note that

(v+ iw)t(v− iw) = ∥v∥2+ ∥w∥2 ,

see Lem. 5.3. Then, we have

(v+ iw)tA(v− iw) = (v+ iw)t(α− iβ)(v− iw) = (α− iβ)(∥v∥2+ ∥w∥2)

Also,

(v+ iw)tA(v− iw) = (A(v+ iw))t (v− iw) = (α+ iβ)(v+ iw)t(v− iw) = (α+ iβ) (∥v∥2+ ∥w∥2)

Hence, α+ iβ = α− iβ and we are done. □
Next, we consider the main result of this lecture, the so called spectral theorem.

Theorem 6.3 (Spectral theorem). A matrix A is orthogonally diagonalizable if and only if A is
symmetric.

Proof. Proof. We have already shown that if A is orthogonally diagonalizable, then A is sym-
metric. Now we prove the converse, that if A is symmetric, then A is orthogonally diagonal-
izable. We will prove this using induction on n, the size of the matrix.

For n = 1, the matrix A is a 1×1 matrix, and the statement is trivially true. We can simply
take Q = [1] and D = A.

Assume the theorem is true for k× k symmetric matrices. Now consider an (k+1)× (k+1)
symmetric matrix A. Since A is symmetric, all its eigenvalues are real. Let λ1 be an eigenvalue
of A, and let v1 be a corresponding eigenvector. We can assume without loss of generality that
∥v1∥ = 1. Extend v1 to an orthonormal basis {v1,u2, . . . ,uk+1} of Rk+1. Let Q1 = [v1 u2 . . . uk+1]
be the orthogonal matrix formed by these vectors. Then
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Qt
1AQ1 =

[
λ1 0T

0 B

]
where B is a k× k symmetric matrix. This is because Qt

1AQ1 is similar to A, and the first

column of Qt
1AQ1 is Qt

1Av1 = λ1e1, where e1 =


1
0
...
0

.
By the induction hypothesis, there exists an orthogonal matrix Q2 such that Qt

2BQ2 = D2,
where D2 is a k× k diagonal matrix. Now let

Q =Q1

[
1 0T

0 Q2

]
and D =

[
λ1 0T

0 D2

]
.

Then Q is an orthogonal matrix, and

QtAQ =
[
1 0T

0 Qt
2

]
Qt

1AQ1

[
1 0T

0 Q2

]
=

[
1 0T

0 Qt
2

][
λ1 0T

0 B

][
1 0T

0 Q2

]
=

[
λ1 0T

0 Qt
2BQ2

]
=

[
λ1 0T

0 D2

]
=D.

Thus, A = QDQt, and A is orthogonally diagonalizable. This completes the proof by
induction.

□

6.2.1 Orthogonally Diagonalizing a Matrix

The following algorithm gives a method to orthogonally diagonalize a matrix.

Algorithm 10. Orthogonal diagonalization of matrices

Input: A symmetric matrix A
Output: An orthogonal matrix Q and a diagonal matrix D such that A =QtDQ.

Step:Compute all eigenvalues
λ1, . . . ,λr,

and their multiplicities
Step:For each eigenvalue λi determine an orthonormal basis

B = {vi,1, . . . ,vi,si}

Step:The matrix
Q =

[
v1,1 | . . . |v1,s1 |v2,1| . . . |v2,s2 | . . . |vr,sr

]
is the desired orthogonal matrix and the matrix of the eigenvalues is the matrix D.
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Notice that the matrix Q is guaranteed to be an orthogonal matrix, since any two eigenvec-
tors in the same eigenspace are orthonormal by construction and two eigenvalues in different
eigenspaces are orthogonal from Thm. 6.1. Let us see an example.

Example 6.4. Orthogonally diagonalize the matrix

A =


2 0 0 1
0 1 0 0
0 0 1 0
1 0 0 2


Solution: The characteristic polynomial is char (A,x) = (x− 3)(x− 1)3. For λ1 = 3 the corre-

sponding normalized eigenvector is v1 =
1
√

2


1
0
0
1

. Forλ2 = 1 we have the following orthonormal

eigenbasis

v2 =
1
√

2


−1
0
0
1

 , v3 =


0
0
1
0

 , v4 =


0
1
0
0


The transitional orthogonal matrix is

Q = [v1|v2|v3|v4] =


1
√

2
−

1
√

2
0 0

0 0 0 1
0 0 1 0
1
√

2
1
√

2
0 0


Then, A =Qt


3 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Q. □

6.2.2 Orthogonally diagonalizing a quadratic form

For any given form q(x), the corresponding matrix A is a symmetric matrix. Since A is
symmetric, then it can be orthogonally diagonalized, say

A = QtDQ,

for some orthogonal matrix Q and a diagonal matrix D. Let v = Qx. Then we have the
following result

Theorem 6.4 (Principal Axes Theorem). Let q(x) be a quadratic form and A its corresponding
matrix with

A = QDQt
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its orthogonal diagonalization. Then

q (Qx) = λ1v2
1+ · · ·+λnv2

n,

where λ1, . . . ,λn are eigenvalues of A.

Proof. Let q(x) = xtAx. By the Spectral Theorem there exist matrices Q and D such that Q is
orthogonal and D is diagonal with eigenvalues of A as entries in the main diagonal and

A =QtDQ.

Then we have
D = Q−1A

(
Qt

)−1
=QtAQ.

Let us now compute q(Qx),

q (Qx) = (Qx)t A (Qx) = xt (QtAQ)x = xt Dx = λ1x2
1+ · · ·+λnx2

n.

This completes the proof. □
The eigenvectors v1, . . . ,vn are called the principal axes. Let us consider a few examples.

Example 6.5. Find a change of coordinates that transforms the quadratic form

q(x, y) = 5x2+4xy+2y2,

into a diagonal form. Sketch the graph of the curve q(x) = 1 before and after the diagonalizing it.

Proof. The corresponding matrix is A =
[
5 2
2 2

]
.

Its eigenvalues are λ1 = 6 and λ2 = 1 and the correspond-
ing unit eigenvectors

v1 =
1
√

5

[
2
1

]
and v2

1
√

5

[
1
−2

]
So the matrix for the coordinate change is

Q =
1
√

5

[
2 1
1 −1

]
If we check the change of coordinates we have

q (Qx) = q
(

2x+ y
√

5
,
x−2y
√

5

)
= 6x2+ y2,

as expected.
Figure 6.3: The ellipse after the trans-
formation
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Example 6.6. Graph the equation

q(x, y) = −7x2
−12xy+2y2 = 1

Diagonalize the quadratic form q(x) and graph the equation again.

Proof. The corresponding matrix is A =
[
−7 −6
−6 2

]
.

Its eigenvalues are λ1 = 5 and λ2 = −10 and the corre-
sponding unit eigenvectors

v1 =

[
−

1
2

1

]
and v2

[
2
1

]
Normalizing them we have

v1 =
1
√

5

[
−1
2

]
, v2 =

1
√

5

[
2
1

]
.

So the matrix for the coordinate change is

Q =
1
√

5

[
−1 2
2 1

]
Figure 6.4: The hyperbola after the
transformation

If we check the change of coordinates we have

q (Qx) = q
(
−

1
2

x+2y,x+ y
)
= 5x2

−10y2.

The red graph is the initial one and the blue graph is the graph of the quadratic in the diagonal
form. □

Let us see another example.

Exercise 86. Let T :R2
→R2 be a linear map such that

T(x) = Ax,

for A a 2× 2 invertible symmetric matrix. Show that the unit circle is mapped to an ellipse under T.
Find the lengths of the semi-major and the semi-minor axis of the ellipse in terms of the eigenvalues of
A.

Solution: Since A is invertible, then its eigenvalues λ1,λ2 are nonzero and real. Assume that

|λ1| ≥ |λ2|. We denote by v1,v2 the corresponding orthonormal eigenbasis. Let x =
[
x
y

]
be a

vector on the unit circle. Then, x = v1 cosθ+v2 sinθ. Thus,

T(x) = cosθ ·T(v1)+ sinθ ·T(v2) = cosθ · (λ1v1)+ sinθ · (λ2v2)

which is on the ellipse with semi-major axis ∥λ1v1∥ = |λ1 | and semi-minor axis ∥λ2v2∥ = |λ2 |.
□
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Corollary 6.1. Let C be the curve in R2 given by the equation

f (x, y) = ax2+bxy+ cy2 = 1

and A =
[

a b/2
b/2 c

]
its corresponding matrix. If both eigenvalues of A are positive then C is an ellipse,

if they have different signs then C is a hyperbola.

Proof. The proof is straight forward. The binary form is equivalent to

f Q = λ1x2+λ2y2.

From high school we know that the corresponding graph is an ellipse if λ1 and λ2 have the
same sign and a hyperbola if they have different signs. □

Example 6.7. Find the shape of the equation

q(x) = x2+18xy+6y2 = 2

Proof. The matrix for q(x) is A =
[
1 9
9 6

]
Since its eigenvalues are λ1 = 1 and λ2 = −3 and they

have different signs then the shape is a hyperbola. □

Exercises:

380. Find an orthogonal matrix Q and a diagonal
matrix D such that A =QDQt, where

A =
[
3 2
2 3

]
381. Find an orthogonal matrix Q and a diagonal
matrix D such that A =QDQt, where

A =
[
3 3
3 −5

]
382. Find an orthogonal matrix Q and a diagonal
matrix D such that A =QDQt, where

A =

0 0 3
0 2 0
3 0 0


383. Find an orthogonal matrix Q and a diagonal
matrix D such that A =QDQt, where

A =

 1 −2 2
−2 4 −4
2 −4 4



384. Find an orthogonal matrix Q and a diagonal
matrix D such that A =QDQt, where

A =

1 0 1
0 1 0
1 0 1


385. Prove that the algebraic multiplicities equal
the geometric multiplicities for all the eigenvalues
of the following matrix

A =


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1


What is the kernel of A?
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386. Find all the eigenvalues and their multiplici-
ties of the following matrix

A =


3 1 1 1 1
1 3 1 1 1
1 1 3 1 1
1 1 1 3 1
1 1 1 1 3


387. Use an orthogonal transformation to trans-
form each of the following into canonical form:

(i) 2x2+ y2
−4xy−4xz

(ii) x2+2y2+3z2
−4xy−4yz

(iii) 2x2 + 2y2 + 2z2 + 2w2
− 4xy+ 2xw+ 2yz−

4zw
(iv) 2xy+2zw
(v) x2+ y2+ z2+w2+2xy−2xw−2yz+2zw

(vi) 2xy+2yz−2yw−2yz+2yw+2zw

(vii) x2+ y2+ z2+w2
−2xy+6xz−4xw−4yz+

6yw−2zw
(viii) 8xy+2xw+2yz+8yw

388. Use an orthogonal transformation to trans-
form the following into a canonical form

(i)
∑n

i=1 x2
i +

∑
i< j xix j

(ii)
∑

i< j xix j

389. Use an orthogonal transformation to trans-
form the following quadratic form into a canonical
form

q(x) = x1x2+x2x3+ · · ·+xn−1xn.

390. Show that a nonsingular matrix M ∈

Matm×n(R) can be written as a product of an
orthogonal matrix with a symmetric matrix which
correspond to a positive definite quadratic form.
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6.3 Quadratic surfaces

A quadratic surface in R3 is a surface which is given by a degree two polynomial equation
f (x, y,z) = 0. Hence, a general equation for such surfaces is

f (x, y,z) = ax2+by2+ cz2+dxy+ exz+ f yz+ gx+hy+ iz+ j = 0 (6.3)

where a,b,c,d,e, f , g,h, i, j ∈ R and a,b,c are not simultaneously zero. Without any loss of
generality we can assume that Eq. (6.3) is given in the form

F(x, y,z) = ax2+by2+ cz2+2dxy+2exz+2 f yz

where coefficients a through f are real numbers. Hence, a quadratic surface is the graph of a
ternary quadratic form. Now we can use the results from diagonalizing quadratic forms to
graph such surfaces.

Consider the curve
F(x, y,z) = h.

Then this equation can be written in the form

xtAx = h,

where

x =

 x
y
z

 , and A =

 a d e
d b f
e f c


A is called the matrix associated with the quadratic form F(x, y,z). Sometimes it is useful to
rotate the xy-axis such that the equation of the above curve does not have the terms xy, yz,
xz. Such quadratic forms are called diagonal quadratic forms. This would be equivalent to
asking that the associated matrix be diagonal.

By the Principal Axes Theorem, the above equation can be written as

λ1 x2+λ2 y2+λ3 z2 = h,

where λ1, λ2, λ3 are the eigenvalues of A. The inertia of A, denoted in (A), is defined as the
triple

in (A) := (n1,n2,n3)

where ni, i = 1,2,3 denotes the number of positive, negative, and zero eigenvalues of A
respectively.

Example 6.8. Let the quadratic form q(x, y,z) be given as below

q(x, y,z) = 2x2+3y2+3z2
−2xy−2xz−2yz.

Determine its diagonal form.
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Proof. The matrix corresponding to q(x, y,z) is

A =

 2 −1 −1
−1 3 −1
−1 −1 3


The characteristic polynomial is

char (A,x) = (x−4)(x2
−4x+2)

and the eigenvalues

λ1 = 4, λ2 = 2−
√

2, λ3 = 2+
√

2.

The diagonal form is

q(Qx) = 4x2+ (2−
√

2)y2+ (2+
√

2)z2.

□
Next we go over each case for the signature of a ternary quartic and therefore each shape

of their graphs. For the rest of this section we assume that q(x) is a ternary form and A its
associated symmetric matrix.

6.3.1 Ellipsoid

Suppose that in (A) = (3,0,0). Then the equation can be writ-
ten as

q(Qx) = λ2
1x2+λ2

2y2+λ2
3z2

for eigenvalues λ2
1,λ

2
2,λ

2
3. Hence, the equation q(x) = r be-

comes q(Qx) = r. For r > 0, we usually write this equation
as

x2

a2 +
y2

b2 +
z2

c2 = 1

Its graph Fig. 6.5 is called an elipsoid. If all eigenvalues of A
are equal, we have a2 = b2 = c2. In this case we get a sphere.
Cross sections of an ellipsoid are ellipses.

y

z

x

0a b

c

Figure 6.5: Elipsoid

If r < 0 then the equation becomes

x2

a2 +
y2

b2 +
z2

c2 = −1

which is called the imaginary ellipsoid. Let P be a plane in R3. It is obvious that if P is one
of the planes xy, xz, or yz then its intersection with an ellipsoid is an ellipse. Is this true in
general? Prove your answer.
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Spheroid

The spheroid is a special case of the ellipsoid, when one of the eigenvalues has multiplicity
two. This implies that two of the coefficients are equal, say a2 = b2. Hence, the equation of the
spheroid is

x2

a2 +
y2

a2 +
z2

c2 = 1 (6.4)

The graph of a spheroid is given in Fig. 6.6. If c < a then the spheroid is called oblate and
if c > a prolate.

Figure 6.6: Spheroid

0

5 −4 −2 0 2 4

−1

0

1

Spheres

A sphere is the case when the quadratic has an eigenvalue of multiplicity three. Hence, the
equation is that of the ellipse with a2 = b2 = c2. Usually we write x2+ y2+ z2 = r2.

y

z

x
0

∥x−x0∥ = r

x

x0

x−x0

(x0, y0,z0)

A general sphere can be written in vector equation as

S =
{
x ∈R3 : ∥x−x0∥ = r

}
(6.5)

where x0 =

x0
y0
z0

 is a fixed vector in R3.
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6.3.2 Elliptic paraboloid

If in (A) = (2,0,1) then we get an elliptic paraboloid. In this
case one of the eigenvalues is zero, say λ3 = 0. Hence the
equation of the surface can be written as

x2

a2 +
y2

b2 =
z
c

(6.6)

The intersection with a plane z= r> 0 parallel to the xy-plane
is an ellipse. The intersection with the xy-plane is a single
point.

y

z

x
0

Figure 6.7: Elliptic paraboloid
If c > 0 we have a graph as in Fig. 6.7. When c < 0, the surface is below the xy− plane

pointed downwards. If a = b then the surface is a cylinder.

6.3.3 Hyperbolic paraboloid

Assume that in (A)= (1,1,1). So we have one positive eigenvalue, one negative, and one zero.
Thus, we can assume that the surface has equation

x2

a2 −
y2

b2 =
z
c

(6.7)

This is an example of what we call a saddle point in Calculus. In Fig. 6.8 is the graph of the
hyperbolic paraboloid z = y2

−x2, which is a special case for a = b = 1 and c = −1.

Figure 6.8: Hyperbolic paraboloid

The intersection with the plane z = z0 is y2 = −x2
− z0, hence a hyperbola with two sheets.

Meanwhile, the intersection with the plane x = c is a curve with equation z = y2
− c, hence a

parabola. This justifies the name hyperbolic paraboloid.
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6.3.4 Hyperboloid of one sheet

Assume that in (A) = (2,1,0). Then we can assume that the
surface has equation

x2

a2 +
y2

b2 −
z2

c2 = 1 (6.8)

Hyperboloid of one sheet every cross section parallel with
the xy-plane is an ellipse. Cross sections parallel with the xz
and yz planes are hyperbolas; Fig. 6.9, the only cases when
this is not true are when x = ±a and y = ±b; in such cases we
get pairs intersecting lines.

y

z

x

0

Figure 6.9: Hyperboloid of one
sheet

Example 6.9. Identify the quadratic surface with equation

5x2+16xy+11y2+20xz−4yz+2z2 = 36.

by finding its diagonal form.

Proof. The corresponding matrix is

A =

 5 8 10
8 11 −2

10 −2 2


with

char (A,x) = (x2
−81)(x−18).

So the eigenvalues are λ1 = 18, λ2 = 9,, λ3 = −9. The signature is in (A) = (2,1,0) and therefore
the surface is a hyperboloid with one sheet.

The normalized eigenvectors are:

v1 =
1
3

221
 , v2 =

1
3

 1
−2
2

 , v3 =
1
3

 2
−1
−2


Hence the orthogonal matrix Q is

Q =
1
3

2 1 2
2 −2 −1
1 2 −2


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Then the change of coordinates is

Qx =
1
3

2 1 2
2 −2 −1
1 2 −2


xyz

 =
 2x+ y+ z
2x−2y− z
x+2y−2z


Then the diagonalized form is

q(Qx) = q(2x+ y+ z,2x−2y− z,x+2y−2z) = 18x2+9y2
−9z2 = 36.

The equation of the surface
x2

2
+

y2

4
−

z2

4
= 1.

□

Elliptic cone

A special case of the hyperboloid with one sheet is when the constant of the right hand
side is c = 0. The surface in such case has equation

x2

a2 +
y2

b2 −
z2

c2 = 0 (6.9)

and it is called an elliptic cone. Cross intersections with the plane z = z0 are ellipses

x2

a2 +
y2

b2 =
(z0

c

)2

except with the xy- plane when the intersection is a single point. Intersections with planes
parallel to the xz or yz planes, are hyperbolas, except the planes xy and yz themselves which
intersect the surface along a pair of intersecting lines. The special case when a2 = b2 is called
a circular cone.

y

z

x

0

Figure 6.10: Elliptic cone
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6.3.5 Hyperboloid of two sheets

In the case when in (A) = (1,2,0) the matrix has one posi-
tive eigenvalue and two negative ones. Thus, its equation
becomes

x2

a2 −
y2

b2 −
z2

c2 = 1

Every plane parallel with the xy-plane intersects this surface
along a hyperbola; Fig. 6.11. With the yz-plane there is no
intersection, because for x = 0 the equation

−
y2

b2 −
z2

c2 = 1

has no solutions. With every plane parallel with the yz-plane
for which |x| > a the surface intersects along an ellipse.

y

z

x

0

Figure 6.11: Hyperboloid of two
sheets

Example 6.10. Determine the shape of the graph given by the equation

x2+2xy+2xz+ y2
−2 yz+ z2+2x+6z = −2

Solution: We first consider the quadratic form

q(x) = x2+2xy+2xz+ y2
−2 yz+ z2.

The matrix associated to q(x) is

A =

1 1 1
1 1 −1
1 −1 1


with characteristic polynomial

char (A,x) = (x+1)(x−2)2

and eigenvalues λ1 = −1 and λ2 = λ3 = 2. The corresponding eigenbases are

E1 = Span


−1

1
1


 and E2 = Span


101

 ,
110




Thus, we can take orthonormal bases {v1} and {v2,v3} as follows

v1 =
1
√

3

−1
1
1

 , v2 =
1
√

2

101
 , v3 =

1
√

6

 1
2
−1

 .
The change of coordinates isXYZ

 =Q

xyz
 = [v1|v2|v3]x =


−

1
√

3
1
√

2
1
√

6
1
√

3
0 2

√
6

1
√

3
1
√

2
−

1
√

6


xyz


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Applying this to the initial quadratic equation we have

−x2+2 y2+2z2+
4
3

√

3x+4
√

2y−
2
3

√

6z = −2

Hence, now we have no xy terms and

−

(
x2
−

4
3

√

3x
)
+2

(
y2+2

√

2y
)
+2

(
z2
−

1
3

√

6z
)
= −2

which becomes

−

(
x−

2
3

√

3
)2
+2(y+2)2+2

(
z−

1
6

)2
=

35
9
−2

This quadratic has no xy-terms and you can finish it by completing the squares. The equation in the
standard form is −x2+2y2+2z2 = −2, or

x2

2
− y2
− z2 = 1.

Hence the graph is a hyperboloid with two sheets.

6.3.6 Parabolic cylinders

Assume that in (A) = (1,0,2). Then the equation in the standard form becomes

a2x2+by+ cz = h.

Cross sections of such surfaces are parabolas. Hence, such surfaces are called parabolic
cylinders.

Example 6.11. Graph the surface with equation z = x2

Solution: Since the equation doesn’t have any
y term, then every plane with equation y = k
intersects the graph along the curve z = x2. Hence,
it is a parabola.

The graph is presented in Fig. 6.12.
□

−4 −2 0 2 4 −5

0

5
0

20

Figure 6.12: The surface z = x2.

Circular cylinders

Perhaps is worth mentioning that a very special case, known from high school, is that of a
straight circular cylinder. The inertia is in (A) = (2,0,1) and two of the positive eigenvalues
are equal. Hence, we have an equation in the standard form

a2x2+b2y2 = r2.

246

https://leanpub.com/lin-alg/
https://leanpub.com/u/shaska


Shaska, T. Linear Algebra

y

z

x
0

r

(a) x2+ y2 = r2, pÃ«r
z ∈R

y

z

x

0

r

(b) x2+ z2 = r2, pÃ«r y ∈R

y

z

x

0
r

(c) y2+ z2 = r2, pÃ«r x ∈R

Figure 6.13: Cylinders in R3

Similarly such equation can be written in any pair of variables, depending on the order of the
eigenvalues. We illustrate below.

We summarize in the following theorem.

Theorem 6.5. Let F(x, y,z) be a ternary quadratic form and A its associated matrix. The following are
true:

(i) If in(A) = (3,0,0) then the quadratic is an ellipsoid.
(ii) If in(A) = (2,0,1) then the quadratic is an elliptic paraboloid.

(iii) If in(A) = (2,1,0) then the quadratic is a hyperboloid of one sheet.
(iv) If in(A) = (1,2,0) then the quadratic is a hyperboloid of two sheets.
(v) If in(A) = (1,1,1) then the quadratic is a hyperbolic paraboloid.

(vi) If in(A) = (1,0,2) then the quadratic is a parabolic cylinder.

Example 6.12. Determine the change of coordinates to bring the equation

x2+ y2
−2z2+4xy−2xz+2yz−x+ y+ z = 0

in the standard form. Write down the standard form and identify the surface.

Solution: We first take
q(x) = x2+ y2

−2z2+4xy−2xz+2yz.

The corresponding matrix for this quadratic form is

A =

 1 2 −1
2 1 1
−1 1 −2


and its characteristic polynomial

char (A,x) = x(x−3)(x+3).
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We take the eigenvalues as λ1 = 0, λ2 = −3, λ3 = 3. The corresponding eigenvectors in normal
form are

v1 =
1
√

3

−1
1
1

 , v2 =
1
√

6

 1
−1
2

 , v3 =
1
√

2

110
 ,

Hence, the orthogonal transitional matrix is Q = [v1|v2|v3]. The diagonalized form will be

q′(x) = 0 ·X2
−3Y2+3Z2.

The change of coordinates is

XYZ
 =Q

xyz
 =


−

x
√

3
+

y
√

6
+ z
√

2
x
√

3
−

y
√

6
+ z
√

2
x
√

3
+

y
√

6
3


Hence our equation becomes

−x+3y2
−3z2 = 0

This is a hyperbolic paraboloid.
□

Exercises:

391. Use an orthogonal transformation to trans-
form each of the following into canonical form:

(i) 3x2+4y2+5z2+4xyb−4yz
(ii) 2x2+5y2+5z2+4xy−4xz−8yz

(iii) x2
−2y2

−2z2
−4xy+4xz+8yz

(iv) 5x2+6y2+4z2
−4xy−4xz

(v) 3x2+6y2+3z2
−4xy−8xz−4yz

(vi) 7x2+5y2+3z2
−8xy+8yz

392. Let the unit sphere in R3 with equation

x2+ y2+ z2 = 1

be given. Using the method of the previous exer-
cise, classify it according to the above list.

393. Classify the quadratic surface

2x2+4y2
−5z2+3xy−2xz+4yz = 2.

394. Classify the quadratic surface

x2+ y2
− z2+3xy−5xz+4yz = 1.

395. Classify the quadratic surface

x2+ y2+ z2 = 1.
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6.4 Positive definite matrices

We have already seen positive definite quadratics. In this section we will study positive
definite and positive semidefinite matrices.

First we recall definitions of positive definite and positive semidefinite for quadratic forms.
Let q(x) be a quadratic form. We say q(x) is positive definite if for all x ∈Rn, q(x) > 0. We say
that the quadratic form is positive semidefinite if q(x) ≥ 0 for all x ∈ Rn. A quadratic form
q(x) is called indefinite if it takes both positive and negative values.

Similarly, a symmetric matrix A is called positive definite if the quadratic form q(x)= xtAx
is positive definite and positive semidefinite when q(x) = xtAx is positive semidefinite. A
symmetric matrix A is called indefinite if the quadratic form q(x) = xtAx is indefinite. Hence,
we have the following:

Lemma 6.5. Let A ∈Matn×n(R) be a symmetric matrix.
(i) A is positive definite if and only if xtAx > 0 for all x ∈Rn

(ii) A is positive semidefinite if and only if xtAx ≥ 0 for all x ∈Rn

(iii) A is negative definite if and only if xtAx < 0 for all xR ∈ n
(iv) A is negative semidefinite if and only if xtAx ≤ 0 for all x ∈Rn

The following lemma is an easy exercise.

Lemma 6.6. Let M ∈Matn×m(R). The matrix A =MtM is positive semidefinite. Let

q(x) := ∥Mx∥2 = xt
(
MtM

)
x, for x ∈Rn.

Then, q(x) is a positive semidefinite. Moreover, q(x) is positive definite if and only if Null(M) = {0}.

Proof. Notice that for any vector v ∈ Rn, we have ∥v∥2 = vt
·v, as multiplication of matrices.

Hence,
∥Mx∥2 = (Mx)t

· (Mx) = xt(MtM)x ≥ 0

If Null(M) = {0} then q(x) > 0 for all nonzero x ∈Rn.
□

In Lem. 6.3 we proved when a binary quadratic form is positive definite. Hence, we have
the following:

Corollary 6.2. A symmetric matrix A =
[
a b
b c

]
is positive definite if a > 0 and b2

− ac < 0.

However, this doesn’t seem quite satisfactory.

Example 6.13. Prove that A =
[
a b
b c

]
is positive definite if and only if its eigenvalues are positive.

In fact, we can generalize this result to all symmetric matrices.

Theorem 6.6. The following are true:
(i) A symmetric matrix M is positive definite if and only if all of its eigenvalues are positive.

(ii) A symmetric matrix M is positive semidefinite if and only if all of its eigenvalues are positive or
zero.
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Proof. The proof is rather straightforward. If λ1, . . . ,λn are the eigenvalues of A, then in its
diagonal form

q(x) = xtAx = λ1x2
1+ · · ·+λnx2

n

is positive if all its coefficients are positive. The rest follows.
□

Exercise 87. Prove that the matrix

A =


1 1 1

1 1 −1

1 −1 1


is not positive definite.

6.4.1 Principal matrices

Principal matrices (or principal submatrices) arise naturally when studying various properties
of a matrix, particularly in the context of positive definiteness. They allow us to break down
a larger matrix into smaller, more manageable pieces. The determinants of these principal
submatrices provide crucial information about the overall matrix’s properties. In the case of
positive definiteness, as your theorem states, they provide a necessary and sufficient condition.
This is very useful because checking positive definiteness directly can be computationally
expensive, but checking the determinants of principal submatrices can be more efficient in
some cases. They are also important in other areas like stability theory and network analysis.

Let A be a square matrix. The principal matrices of A, denoted by

A(1),A(2), ·A(i), · · · ,A(n),

are the matrices obtained by chopping off all the rows and columns > i of A. We have the
following:

Theorem 6.7. A symmetric n×n matrix A is positive definite if and only if det A(m) > 0 for all principal
submatrices A(m), m = 1, . . . ,n.

Proof. We will prove this by induction on the size of the matrix n.
Base Case (n = 1): If A is a 1×1 matrix, then A = A(1) = [a11]. A is positive definite if and

only if a11 > 0, which is equivalent to det A(1) > 0.
Inductive Hypothesis: Assume the theorem holds for all k×k symmetric matrices for some

k ≥ 1.
Inductive Step (n = k+1): Let A be a (k+1)× (k+1) symmetric matrix. We can partition A

as follows:

A =
[
a11 wT

w B

]
where a11 is a scalar, w is a k× 1 vector, and B is a k× k matrix. Note that A(1) = a11 and

A(m) =

[
a11 wT

m
wm Bm

]
where wm and Bm are sub-vectors and sub-matrix of w and B respectively.
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(⇒) Suppose A is positive definite. Then, by definition, xTAx > 0 for all nonzero vectors

x ∈ Rk+1. Consider any nonzero vector y ∈ Rm for m ≤ k+ 1, and let x =
[
y
0

]
where 0 is of

appropriate size. Then xTAx = yTA(m)y > 0, since A is positive definite. Thus A(m) is positive
definite. By the induction hypothesis, det A(m) > 0 for m = 1, . . . ,k. Since A is positive definite,
a11 > 0. We also know that B− 1

a11
wwT is positive definite. By the induction hypothesis, we

have det (B− 1
a11

wwT)(m) > 0 for m = 1, ...,k. Now, using the Schur complement, we have:

det A = a11det (B−
1

a11
wwT).

Since A is positive definite, we have det A > 0. Also a11 = det A(1) > 0. By the induction
hypothesis, det B= det A(k) > 0. Since A(m) is positive definite for m≤ k, we also have det A(m) >
0.

(⇐) Suppose det A(m) > 0 for all m = 1, . . . ,k+1. We want to show that A is positive definite.
Since det A(1) = a11 > 0, and by the induction hypothesis, B is positive definite. We can write

det A = a11det (B−
1

a11
wwT).

Since det A > 0 and a11 > 0, we must have det (B− 1
a11

wwT) > 0. By the induction hypothesis,

B− 1
a11

wwT is positive definite. Now, for any nonzero vector x =
[
x1
y

]
∈Rk+1, where y ∈Rk, we

have:

xTAx = a11x2
1+2x1wT y+ yTBy = a11

(
x1+

wT y
a11

)2

+ yT
(
B−

1
a11

wwT
)

y

Since a11 > 0 and B− 1
a11

wwT is positive definite, xTAx > 0. Thus, A is positive definite.
This completes the proof by induction. □

Example 6.14. Let A be the matrix given by

A =

 1 1 2
−1 2 0
1 2 0


Indeed we have

A(1) = [1], A(2) =

[
1 1
−1 2

]
Then,

det A(1) = 1, det A(2) = 3, det A(3) = 8.

Therefore, A is positive definite.
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Exercise 88 (Sylvester’s conditions). Show that the quadratic form

q(x) =
n∑

i, j=1

ai, jxix j

is positive definite if and only if the following inequalities are valid:

a1,1 > 0,
∣∣∣∣∣a1,1 a1,2
a2,1 a2,2

∣∣∣∣∣ > 0, . . . ,

∣∣∣∣∣∣∣∣∣∣∣
a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
...

... · · ·
...

an,1 an,2 · · · an,n

∣∣∣∣∣∣∣∣∣∣∣ > 0

6.4.2 Min-Max Theorem for Quadratic Forms

The Min-Max Theorem for quadratic forms provides a fundamental connection between
the eigenvalues of a real symmetric matrix and the maximum and minimum values of the
associated quadratic form on the unit sphere. This theorem has significant applications in
various areas, including optimization, eigenvalue problems, and the study of the geometry
of quadratic forms. It essentially tells us that the largest and smallest eigenvalues of a matrix
correspond to the maximum and minimum values of the quadratic form when the input vector
is constrained to have unit length. This connection is crucial for understanding the behavior
of quadratic forms and for developing algorithms to compute eigenvalues and eigenvectors.

Theorem 6.8 (Min-Max Theorem for Quadratic Forms). Let q(x) = xTAx be a quadratic form,
where A is a real symmetric n×n matrix. Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of A. On the
domain ∥x∥ = 1 the following are true:

(i) λ1 ≥ q(x) ≥ λn

(ii) q(x) achieves a maximum value when x is a unit eigenvector of λ1. Moreover, this maximum
value is q(x) = λ1.

(iii) q(x) achieves a minimum value when x is a unit eigenvector of λn. Moreover, this minimum
value is q(x) = λn.

Proof. Since A is a real symmetric matrix, its eigenvalues are real, and there exists an or-
thonormal basis of eigenvectors v1,v2, . . . ,vn corresponding to the eigenvalues λ1,λ2, . . . ,λn,
respectively. That is, Avi = λivi and vT

i v j = δi j (Kronecker delta).
Let x be any vector with ∥x∥ = 1. We can express x as a linear combination of the eigenvec-

tors:
x = c1v1+ c2v2+ · · ·+ cnvn

where ci = xTvi. Because the eigenvectors are orthonormal and ∥x∥ = 1, we have:

1 = ∥x∥2 = xTx = c2
1+ c2

2+ · · ·+ c2
n
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Now, consider the quadratic form q(x) = xTAx:

q(x) = (c1v1+ · · ·+ cnvn)TA(c1v1+ · · ·+ cnvn)

= (c1v1+ · · ·+ cnvn)T(c1λ1v1+ · · ·+ cnλnvn)

= c2
1λ1+ c2

2λ2+ · · ·+ c2
nλn

Since λ1 ≥ λi ≥ λn for all i, and
∑n

i=1 c2
i = 1, we have:

q(x) =
n∑

i=1

c2
i λi ≤ λ1

n∑
i=1

c2
i = λ1

and

q(x) =
n∑

i=1

c2
i λi ≥ λn

n∑
i=1

c2
i = λn

Thus, λ1 ≥ q(x) ≥ λn.
If x = v1 (the eigenvector corresponding to λ1), then c1 = 1 and ci = 0 for i > 1. In this case:

q(x) =
n∑

i=1

c2
i λi = λ1

So, the maximum value of q(x) is λ1, achieved when x is a unit eigenvector of λ1.
Similarly, if x = vn, then q(x) = λn, and the minimum value of q(x) is λn, achieved when x

is a unit eigenvector of λn. □

6.5 The Cholesky Factorization

The Cholesky factorization is a cornerstone of numerical linear algebra, providing an elegant
and efficient decomposition for a specific class of matrices. It plays a crucial role in solving
linear systems, least-squares problems, and Monte Carlo methods, among other applications.
This document will explore the Cholesky factorization, its key properties, and its significance.

The central idea behind the Cholesky factorization is to express a given matrix as the
product of a lower triangular matrix and its transpose. Formally, we have the following
theorem:

Theorem 6.9 (Cholesky Factorization). Let A be a real, symmetric, positive-definite n×n matrix.
Then there exists a unique lower triangular matrix L with positive diagonal entries such that:

A = LLT

Proof. We will prove this by induction on the size of the matrix n.
Base Case (n = 1): If A is a 1×1 matrix, then A = [a11]. Since A is positive definite, a11 > 0.

We can simply choose L = [
√

a11], and then LLT = [
√

a11][
√

a11] = [a11] = A.
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Inductive Hypothesis: Assume the theorem holds for all k× k positive-definite matrices
for some k ≥ 1.

Inductive Step (n = k+ 1): Let A be a (k+ 1)× (k+ 1) positive-definite matrix. We can
partition A as follows:

A =
[
a11 wT

w B

]
where a11 is a scalar, w is a k×1 vector, and B is a k× k matrix. Since A is positive definite,

a11 > 0, and the matrix B− 1
a11

wwT is also positive definite.
By the inductive hypothesis, there exists a unique lower triangular matrix LB with positive

diagonal entries such that B− 1
a11

wwT = LBLT
B.

Now, we construct the lower triangular matrix L as follows:

L =
[
l11 0
v LB

]
where l11 =

√
a11 and v = 1

l11
w.

Then,

LLT =

[
l11 0
v LB

][
l11 vT

0 LT
B

]
=

[
l211 l11vT

vl11 vvT+LBLT
B

]
Substituting our values for l11 and v, we get:

LLT =

[
a11 wT

w 1
a11

wwT+LBLT
B

]
Since LBLT

B = B− 1
a11

wwT, we have:

LLT =

[
a11 wT

w B

]
= A

Thus, we have shown that A = LLT. The uniqueness of L follows from the uniqueness of
LB (by the induction hypothesis) and the fact that the diagonal entries of L are determined by
the positive definiteness of A.

This completes the proof by induction. □

Remark 6.2. The matrix L is referred to as the Cholesky factor of A. It’s important to note that the
Cholesky factorization exists if and only if the matrix A is symmetric and positive definite. If A is
merely positive semidefinite, the decomposition still exists, but L may have zeros on the diagonal, and
the uniqueness of L is lost.

The Cholesky factorization possesses several remarkable properties that contribute to its
utility. We encapsulate some of these in the following lemma:
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Lemma 6.7. • (Uniqueness): If A is positive definite, its Cholesky factor L is unique. This
uniqueness is a powerful asset in many applications, ensuring a well-defined decomposition.

• (Triangularity): The Cholesky factor L is a lower triangular matrix. This structure significantly
reduces computational costs, as operations involving triangular matrices are generally more
efficient.

• (Positive Diagonal Entries): When A is positive definite, the diagonal entries of its Cholesky
factor L are all positive. This property is closely linked to the positive definiteness of A.

• (Semidefinite Case): If A is positive semidefinite, the Cholesky factorization still exists, though
the resulting L may have zeros on the diagonal, and it’s no longer unique.

6.5.1 Computation

The Cholesky factor L can be computed using the Cholesky algorithm (or square root method).
This algorithm directly arises from the equation A= LLT and calculates the entries of L column
by column. Here’s a step-by-step description of the procedure:

Cholesky Algorithm (Column-wise):
Given a symmetric, positive-definite matrix A, the Cholesky factor L is computed as

follows:

1. Initialization: Create a lower triangular matrix L of the same size as A, and initialize all
its entries to 0.

2. Iteration: For each column j = 1,2, . . . ,n:

(a) Diagonal element: Compute the diagonal element l j j:

l j j =

√√√√
a j j−

j−1∑
k=1

l2jk

(Note: For j = 1, the sum is empty, so l11 =
√

a11.)

(b) Sub-diagonal elements: For each row i = j+1, j+2, . . . ,n below the diagonal in the
current column:

li j =
1
l j j

ai j−

j−1∑
k=1

likl jk


The algorithm proceeds column by column. For each column j, we first compute the

diagonal element l j j. Then, we compute the elements li j below the diagonal in that column.
The formulas ensure that the equation A = LLT is satisfied. The key is that we use previously
computed values of L to calculate the current entries.
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Example 6.15. Let’s apply the algorithm to the matrix:

A =

 4 12 −16
12 37 −43
−16 −43 98


1. j = 1:

• l11 =
√

a11 =
√

4 = 2

2. j = 2:

• l22 =
√

a22− l221 =
√

37−62 =
√

1 = 1

• l21 =
1

l11
a21 =

1
2 ×12 = 6

3. j = 3:

• l33 =
√

a33− l231− l232 =
√

98− (−8)2−52 =
√

9 = 3

• l31 =
1

l11
a31 =

1
2 × (−16) = −8

• l32 =
1

l22
(a32− l31l21) = 1

1 (−43− (−8)(6)) = −43+48 = 5

Thus, we obtain:

L =

 2 0 0
6 1 0
−8 5 3


The Cholesky factorization finds widespread use in various computational tasks. Some

prominent applications include:

• Solving Linear Systems: For positive definite matrices A, solving Ax = b is efficiently
done by first computing the Cholesky factorization A = LLT, and then solving the two
triangular systems Ly = b and LTx = y using forward and backward substitution.

• Least Squares Problems: Cholesky factorization is instrumental in solving normal equa-
tions arising in least squares problems.

• Monte Carlo Methods: Generating correlated random vectors often relies on the Cholesky
decomposition of the covariance matrix.

• Numerical Optimization: Certain optimization algorithms employ the Cholesky factor-
ization.

The Cholesky factorization is a powerful and computationally efficient method for de-
composing positive-definite (and positive semi-definite) matrices. Its properties and diverse
applications underscore its importance in numerical computation.
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6.5.2 Inner Products and Positive Definite Matrices

Let M and N be Hermitian positive definite matrices of order m and n respectively. These
matrices can be used to define weighted inner products (or inner product induced by M) on
Cm and Cn as follows:

⟨x,y⟩M = y∗Mx, x,y ∈ Cm

and
⟨x,y⟩N = y∗Nx, x,y ∈ Cn

Here, y∗ denotes the conjugate transpose of y. It is essential to use the conjugate transpose
(rather than just the transpose) when working with complex vectors to ensure that the resulting
inner product satisfies the required properties (e.g., conjugate symmetry).

When M = I (the identity matrix), we recover the standard inner product (or dot product):

⟨x,y⟩I = y∗Ix = y∗x

Hence the standard inner product can be seen as a special case of a weighted inner product. The
reason it’s often distinguished is due to its simplicity and its direct geometric interpretation
(e.g., relating to lengths and angles in Euclidean space). However, the choice of M = I is
essentially a choice of basis. Any positive definite matrix M can define a valid inner product,
and in some contexts, these weighted inner products are more natural or relevant.
Why Positive Definiteness is Crucial:

The requirement that M and N be positive definite is *not* arbitrary. It’s precisely what
guarantees that the defined "inner products" actually satisfy all the axioms of an inner product.
These axioms include:

• Linearity: ⟨αx+βy,z⟩M = α⟨x,z⟩M+β⟨y,z⟩M

• Conjugate Symmetry: ⟨x,y⟩M = ⟨y,x⟩M

• Positive Definiteness: ⟨x,x⟩M > 0 for x , 0

It’s the positive definiteness of M that ensures the last property holds. If M were only
positive semidefinite, we could have ⟨x,x⟩M = 0 for some x , 0, violating the inner product
axioms.

Remark 6.3. The term "weighted inner product" is commonly used to describe inner products of the
form ⟨x,y⟩M = y∗Mx, where M is a positive definite matrix. However, the use of "weighted" can be
somewhat misleading. It might suggest an analogy to weighted averages or sums, where individual
components are multiplied by scalar weights. While there is a loose analogy, the matrix M does more
than just apply individual weights.

The matrix M acts as a transformation that *modifies* the standard inner product. It scales
and *mixes* the components of the vectors x and y before the inner product is computed. It’s not
simply a matter of assigning a "weight" to each component; M can introduce correlations between
the components. The term "weighted" emphasizes that the contribution of each component is modified
by M, but it’s crucial to understand that this modification is more complex than a simple scalar
multiplication.
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Some authors prefer the terminology "inner product induced by M" or "inner product defined
by M" to avoid the potentially misleading connotations of "weighted." These alternative terms more
accurately reflect the role of M as a matrix that *defines* a new inner product space, rather than simply
applying weights to an existing one. The matrix M effectively changes the geometry or "metric" of the
vector space.

Therefore, while "weighted inner product" is common parlance, it’s important to keep in mind that
the "weight" is the matrix M, and its action is a transformation of the vector space, not just a scalar
weighting of components.

Exercises:

396. Show that every principal minor of a positive definite quadratic form is positive.
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6.6 Singular values and singular value decomposition

Consider a transformation T :Rn
→RM. We saw that many linear transformations were pro-

jections, rotations, reflections or a combination of those. Can we express every transformation
as a composition of simpler transformations? If so what would happen to the corresponding
matrix of this transformation? This section barely touches in this very important topic.

Let A be an n×m matrix. Then AtA is an m×m symmetric matrix. For any symmetric
matrix we can ask if it is positive definite, positive semidefinite, or indefinite. The matrix AtA
is always positive semidefinite; see Lem. 6.6. Hence all eigenvalues of AtA are positive or
zero. Assume that they are

λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0

and denote by
σi =

√
λi, i = 1, . . .m.

The singular values of A are the square roots of the eigenvalues of the m×m matrix At A.
Usually we write the singular values σ1, . . . ,σm of a matrix in decreasing order

σ1 ≥ · · · ≥ σm ≥ 0

Example 6.16. Let A =

1 1 1
1 1 −1
1 −1 1

 be given. Then

M := AtA =


1 1 1

1 1 −1

1 −1 1




1 1 1

1 1 −1

1 −1 1

 =


3 1 1

1 3 −1

1 −1 3


The characteristic polynomial of M is

char (M,λ) = (λ−1)(λ−4)2

Hence, the singular values of A are σ1 = 1, σ2 = 2, σ3 = 2. □

Exercise 89. Show that the singular values of the matrix

M =


3 1 1

1 3 −1

1 −1 3


are σ1 = 1, σ2 = 4, σ3 = 4. □

The following theorem shows that the number of singular values that are equal to zero is
an invariant under any base change.

Theorem 6.10 (Singular values and rank). If A is an n×m matrix of rank r, then the singular values
σ1, . . . ,σr are nonzero and

σr+1 = · · · = σm = 0.
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Proof. □

Example 6.17. Let be given the matrix

A =


2 0 0 1

0 1 0 0

0 0 1 0

1 0 0 2


Find its singular values.

Solution: We have

AtA =


5 0 0 4

0 1 0 0

0 0 1 0

4 0 0 5


Then,

char (AtA,x) = (x−9)(x−1)3

so the eigenvalues are λ1 = 9, λ2 = 1 and the singular values are σ1 = 3, σ2 = 1. □
Next we take a non-symmetric matrix

Example 6.18. Let be given the matrix

A =


2 1 −1 1

1 1 0 3

1 0 1 0

1 0 −3 2


Find its singular values.

Solution: We have

AtA =


7 3 −4 7

3 2 −1 4

−4 −1 11 −7

7 4 −7 14


Then,

char (AtA,x) = x4
−34x3+253x2

−508x+144
This polynomial is irreducible. We can find its eigenvalues numerically and they are

24.51545253, 6.450415601, 2.696419097, 0.3377127726,

and the singular values

σ1 = 4.95130816342049, σ2 = 2.53976683989367, σ3 = 1.64207767698920, σ4 = .581130598536912.

□
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6.6.1 Singular value decomposition

Let us get back to our original question. Can we write our linear maps as some kind of
composition of simpler linear maps. The next theorem addresses that question.

Theorem 6.11 (Singular Value Decomposition). Any matrix A ∈Matn×m(R) of rank (A) = r can
be written as

A =UΣVt

where U is an orthogonal n×n matrix, V is an orthogonal m×m matrix, and Σ is an n×m matrix
whose first r diagonal entries are the nonzero singular values σ1, . . . ,σr of A, while all the other values
are zero. If A ∈Matn×m(C), then A =UΣV∗.

Proof. Let A be a matrix with real entries and rank (A) = r. We denote its non-zero singular
values by σ1 ≥ σ2 ≥ · · · ≥ σr. Choose an orthonormal basis of eigenvectors B := {v1,v2, . . . ,vm}.
Let ui =

1
σi

Avi for i = 1, . . . ,r, V = [v1|v2| · · · |vr] and U = [u1|u2| · · · |ur]. Take Σ to be the n×m
diagonal matrix whose first r diagonal entries are the nonzero singular values σ1, . . . ,σr of A,
while all the other values are zero.

□

From the proof of the theorem we are able
to devise a procedure how to compute such
singular value decomposition. Let rank (A)= r
and

σ1 ≥ σ2 ≥ · · · ≥ σr

the non-zero singular values. Choose an or-
thonormal basis of eigenvectors

v1,v2, . . . ,vm.

Let

u1 =
1
σ1

Av1, u2 =
1
σ2

Av2, . . . ,ur =
1
σr

Avr.

Then take

V = [v1|v2| · · · |vr] , U = [u1|u2| · · · |ur]

and

Σ =


σ1

. . .
σr


Figure 6.14: Singular value decomposition

Next we see some examples.

Example 6.19. Find a singular value decomposition for A =
[

6 2
−7 6

]
.
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Solution: We have AtA =
[

85 −30
−30 40

]
with characteristic polynomial

char (AtA,x) = x2
−125x+2500 = (x−100)(x−25).

The eigenvalues are λ1 = 100 ≥ λ2 = 25 and the singular values are σ = 10 ≥ σ2 = 5. The
normalized eigenvectors are

v1 =
1
√

5

[
2
−1

]
and v2 =

1
√

5

[
1
2

]
.

and

V =
1
√

5

[
2 1
−1 2

]
Then we have

u1 =
1
σ1

Av1 =
1
√

5

[
−1
2

]
and u2 =

1
σ2

Av2 =
1
√

5

[
2
1

]
Hence, U = 1

√
5

[
1 2
−2 1

]
. Finally Σ =

[
10 0
0 5

]
. You should verify whether A =UΣVt. □

Example 6.20. Find the singular value decomposition of the matrix

A =

1 1 1
1 1 −1
1 −1 1


6.6.2 Singular values and linear maps

Do the singular values have any geometrical interpretation? We consider the simplest cases.

Theorem 6.12. Let L(x) = Ax be an invertible linear transformation from R2 to R2. The image of the
unit circle under L is an ellipse E. The lengths of the semi-major and semi-minor axes of E are the
singular values σ1 and σ2 of A, respectively.

Proof. Exercise. □

Theorem 6.13. Let L(x) = Ax be a linear transformation from Rm to Rn. Then, there exists an
orthonormal basis v1, . . . ,vm or Rm such that vectors L(v1), . . . ,L(vm) are orthogonal and their lengths
are the singular values σ1, . . . ,σm of A.

Proof. Exercise. □
The above theorem give a constructive method for the basis B = {v1, . . . ,vm}. We determine

all eigenvalues
λ1 ≥ · · · ≥ λ1 ≥ 0

for the matrix At A and from that an eigenbasis for At A.

Exercises:
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397. Find the singular values of

A =
[
p −q
q p

]
.

Explain the results geometrically.

398. Find the singular values of

A =
[
1 1
0 1

]
.

6.7 Data compression and SVD

Imagine a large digital photograph. It contains a vast amount of data, representing the color
and brightness of each tiny point (pixel). Storing and transmitting this data requires significant
space and bandwidth. Image compression aims to reduce the data needed to represent the
image, making storage and transmission more efficient. Think of it like neatly packing a
suitcase—organizing the contents for optimal space utilization.

6.7.1 From Image to Matrix: The Grayscale Case

Consider a grayscale image (black and white with shades of gray). The image is a grid of tiny
squares (pixels), each with a brightness value, typically between 0 (black) and 255 (white).
We can arrange these values into a matrix. Each row corresponds to a row of pixels, and each
column to a column of pixels. The matrix entry at a row and column intersection is the pixel’s
brightness.

For example, a small 4x4 grayscale image is represented by a 4x4 matrix:
100 120 140 160
80 100 120 140
60 80 100 120
40 60 80 100


Each number represents the gray level of a corresponding pixel.

6.7.2 From Image to Matrix: The Color Case

Color images are more complex. Instead of one brightness value, we need three: Red, Green,
and Blue (RGB). A color image has three matrices, one for each color. Each matrix is like the
grayscale example, representing the intensity of that color in each pixel.

6.7.3 How Matrices Help with Compression (The Intuition)

Large image matrices often contain redundancy, meaning pixel values are related. Neigh-
boring pixels often have similar colors or brightnesses. Compression techniques exploit this
redundancy. Instead of storing every pixel value, we find more efficient representations.
This is where techniques like SVD come in. They decompose the matrix, capturing essential
information and discarding redundant parts.
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6.7.4 Project: Image Compression with Singular Value Decomposition
(SVD)

Project Goal:

Understand and implement Singular Value Decomposition (SVD) for image compression, ex-
ploring the trade-off between compression ratio and image quality. This project demonstrates
a practical application of linear algebra in data compression and introduces fundamental
concepts relevant to machine learning.

Introduction:

Digital images are represented as matrices of pixel values. For grayscale images, this is a single
matrix, while color images use three matrices (Red, Green, Blue). Singular Value Decompo-
sition (SVD) is a powerful tool for analyzing and manipulating matrices, with important
applications in image compression.

SVD for Image Compression: The Big Idea

SVD decomposes a matrix A into three matrices: U, Σ, and VT, such that A = UΣVT. The
singular values (diagonal elements of Σ) represent the "importance" of components in the
image. By keeping the k largest singular values, we create a lower-rank approximation,
achieving compression. Larger singular values capture more of the image’s information.

Python Implementation: Step-by-Step Guide

This section details the specific steps you must take in your Python implementation:

1. Image Loading: Use the Pillow (PIL) library to load an image (choose a grayscale image
for your initial implementation). Convert the image to a NumPy array. This array will
represent your image matrix. You can use code like this:

Listing 6.1: Image Loading Example
from PIL import Image
import numpy as np

img = Image.open("your_image.jpg").convert("L") # Grayscale conversion
img_array = np.array(img)

2. SVD Computation: Use ‘numpy.linalg.svd()‘ to decompose the image matrix.

Listing 6.2: SVD Example
U, S, V = np.linalg.svd(img_array)
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3. Compression: The ‘S‘ returned by ‘np.linalg.svd()‘ is a 1D array of singular values.
Convert it to a diagonal matrix using ‘np.diag(S)‘. Choose a value for k (the number of
largest singular values to keep). Create a compressed version of Σ by setting all but the
top k singular values to zero. Then, create the compressed image matrix:

Listing 6.3: Compression Example
S = np.diag(S) # Convert to diagonal matrix
k = 50 # Example value - experiment with this!
S_compressed = np.zeros(S.shape)
S_compressed[:k, :k] = S[:k, :k]
compressed_img = U @ S_compressed @ V # Reconstruct the compressed image

4. Reconstruction: Reconstruct the compressed image matrix back into an image using the
inverse process.

5. Compression Ratio: Calculate the compression ratio: Original Image Size
Compressed Image Size . The com-

pressed image size is related to the number of singular values kept (k).

6. Image Quality Metrics: Calculate the Mean Squared Error (MSE) and/or Peak Signal-
to-Noise Ratio (PSNR) between the original and compressed images. These metrics will
quantify the "loss" due to compression.

Experimentation and Analysis: What to Explore

This is the most important part of the project. Don’t just implement the code; *analyze* the
results. Here are specific questions to address:

1. Varying k: Experiment with different values of k (e.g., 10, 20, 30, 50, 100, etc.). For each
k, record the compression ratio and the MSE/PSNR.

2. Trade-offAnalysis: Create plots showing the relationship between k, compression ratio,
and MSE/PSNR. Describe the trade-off you observe. As you increase k, what happens to
the compression ratio? What happens to the image quality?

3. Optimal k?: Is there a "sweet spot" for k? A value where you get significant compression
without sacrificing too much image quality? Justify your answer based on your results.

4. Image Dependence: Does the "optimal" k depend on the image itself? (You can explore
this further in the bonus challenges).

Bonus Challenges (Optional): Extend to color images (process each RGB channel sep-
arately), test on various images, research JPEG/PNG compression, or explore other SVD
applications.

Deliverables: Well-documented Python code and a clear, detailed report. The report
should include:

• Introduction: Briefly explain SVD and its application to image compression.
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• Implementation Details: Describe your Python code, including any challenges you faced.
Include your code in an appendix or as a separate file.

• Results: Present your experimental results (tables of data, plots).

• Analysis: Discuss your findings, addressing the questions outlined in the "Experimen-
tation and Analysis" section.

• Conclusion: Summarize your key findings and what you learned from the project.

Grading Rubric: Code correctness and efficiency, report clarity and completeness, analysis
depth, visualization quality, and bonus challenge effort.
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Review Exercises

399. True or False?
(1) ———- If the system Ax = y has a unique solution, then A is a square matrix.
(2) ———- If A2 is invertible, then the matrix A is invertible.
(3) ———- Let A be a 2 by 2 matrix. Then det (2A) = 2det A.
(4) ———- If the image of an n×n matrix A is all of Rn, then A must be invertible.
(5) ———- Let U and V be subspaces of a vector space W. Then dim(U+V) = dimU+dimV.
(6) ———- Let U be the set of points R3 with coordinate z = 0. Then U is a subspace of R3.
(7) ———- T :R2

→R2 is the map projecting any P ∈R2 onto the line y = x+1. Then T is a linear.
(8) ———- If A and B are symmetric, then AB must be symmetric.
(9) ———- If A−1 = A, then A must be orthogonal.

(10) ———- If A is orthogonal, then A2 must be orthogonal as well.
(11) ———- All nonzero symmetric matrices are invertible.
(12) ———- If A is a square matrix such that AtA = I then A is orthogonal.
(13) ———- If AAt = A2 for a 2×2 matrix A, then A must be symmetric.
(14) ———- If A and B are symmetric square matrices, then ABBA is symmetric.
(15) ———- If A is orthogonal, then At is orthogonal.
(16) ———- The entries of an orthogonal matrix are all less than 1.
(17) ———- If A is symmetric and S is orthogonal, then S−1AS is symmetric.
(18) ———- Let A be a 5×5 matrix. Then det (A)5 = (det A)5.
(19) ———- Similar matrices have the same characteristic polynomials.
(20) ———- If two matrices have the same characteristic polynomial they must be similar.
(21) ———- Similar matrices have the same rank.
(22) ———- Similar matrices have the same nullity.
(23) ———- Similar matrices have the same eigenvalues with the same algebraic and geometric

multiplicities.
(24) ———- Similar matrices have the same eigenvectors.
(25) ———- If A is similar to B then det A = det B.
(26) ———- If A is similar to B then tr(A) = tr(B).
(27) ———- The trace of any square matrix is the sum of its eigenvalues.
(28) ———- The eigenvalues of any triangular matrix are its diagonal entries.
(29) ———- If a matrix is positive definite, then all its eigenvalues must be positive.
(30) ———- If A is an invertible symmetric matrix, then A2 must be positive definite.

400. Sketch the curve x2
1+ 4x1x2+ 4x2

2 = 1. Label the principal axes, label the intercepts of the curve
with the principal axes, and give the formula of the curve in the coordinate system defined by the
principal axes.

401. Find an orthogonal matrix S and a diagonal matrix D such that A = S−1DS, for

A =

0 0 3
0 2 0
3 0 0


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402. Find an SVD (singular value decomposition) for

A =
[
0 1 1
1 1 0

]
403. Let f (x, y,z) be given as

f (x, y,z) = x2+2xy+2xz+ y2
−2yz+ z2

and c = 2. Do each of the following tasks. For the items that you choose to use Python you have to show
the Python code and the output.

(1) Find the matrix A associated to f (x, y,z).
(2) Determine char (A,λ)
(3) Find the eigenvalues and their algebraic multiplicities
(4) Determine the inertia of A. Guess the shape of the graph f (x, y,z) = c
(5) For each eigenvalue find a basis for the corresponding eigenspace
(6) Determine the geometric multiplicities for each eigenvalue
(7) Determine matrices C and D such that D is diagonal and A = CDC−1.
(8) Determine a diagonal quadratic form g(x, y,z) equivalent to f (x, y,z)
(9) Graph g(x, y,z) = c

(10) Using the Gram-Schmidt algorithm determine an orthonormal basis for each eigenspace
(11) Find matrices S and D such that A = SDSt, where S is orthogonal and D is diagonal
(12) Determine an orthogonal transformation which transform f (x, y,z) to a diagonal form h(x, y,z)
(13) Make the algebraic substitutions from the above and determine algebraically h(x, y,z)
(14) Graph h(x, y,z) = c
(15) Compare graphs f (x, y,z) = c, g(x, y,z) = c, and h(x, y,z) = c.
(16) Determine if A is positive definite, positive semidefinite, negative definite, negative semidefinite,

or indefinite.
(17) Determine the singular values of A.
(18) Determine the singular value decomposition of A.
(19) Consider the linear map L : R3

→ R3 such that L(x) = Ax. Determine and graph the image of
the unit sphere S.

(20) Do you see any relation between L(S) and singular values of A?
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James Joseph Sylvester (1814 - 1897)

James Joseph was born in London on 3 September 1814,
the son of Abraham Joseph, a merchant. James later adopted
the surname Sylvester when his older brother did so upon
emigration to the United States, a country which at that time
required all immigrants to have a given name, a middle name,
and a surname.

At the age of 14, Sylvester was a student of Augustus De
Morgan at the University of London. His family withdrew
him from the University after he was accused of stabbing a
fellow student with a knife. Subsequently, he attended the
Liverpool Royal Institution.

Sylvester began his study of mathematics at St John’s College, Cambridge in 1831, where
his tutor was John Hymers. Although his studies were interrupted for almost two years due
to a prolonged illness, he nevertheless ranked second in Cambridge’s famous mathematical
examination, the tripos, for which he sat in 1837. However, Sylvester was not issued a degree,
because graduates at that time were required to state their acceptance of the Thirty-nine
Articles of the Church of England, and Sylvester could not do so because he was Jewish. For
the same reason, he was unable to compete for a Fellowship or obtain a Smith’s prize. In
1838, Sylvester became professor of natural philosophy at University College London and in
1839 a Fellow of the Royal Society of London. In 1841, he was awarded a BA and an MA by
the University of Dublin (Trinity College). In the same year he moved to the United States
to become a professor of mathematics at the University of Virginia, but left after less than
four months following a violent encounter with two students he had disciplined. He moved
to New York City and began friendships with the Harvard mathematician Benjamin Peirce
(father of Charles Sanders Peirce) and the Princeton physicist Joseph Henry. However, he left
in November 1843 after being denied appointment as Professor of Mathematics at Columbia
College (now University), again for his Judaism, and returned to England.

On his return to England, he was hired in 1844 by the Equity and Law Life Assurance
Society for which he developed successful actuarial models and served as de facto CEO, a
position that required a law degree. As a result, he studied for the Bar, meeting a fellow British
mathematician studying law, Arthur Cayley, with whom he made significant contributions
to invariant theory and also matrix theory during a long collaboration. He did not obtain
a position teaching university mathematics until 1855, when he was appointed professor
of mathematics at the Royal Military Academy, Woolwich, from which he retired in 1869,
because the compulsory retirement age was 55. The Woolwich academy initially refused to
pay Sylvester his full pension, and only relented after a prolonged public controversy, during
which Sylvester took his case to the letters page of The Times.

One of Sylvester’s lifelong passions was for poetry; he read and translated works from
the original French, German, Italian, Latin and Greek, and many of his mathematical papers
contain illustrative quotes from classical poetry. Following his early retirement, Sylvester
(1870) published a book entitled The Laws of Verse in which he attempted to codify a set of
laws for prosody in poetry.
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In 1872, he finally received his B.A. and M.A. from Cambridge, having been denied the
degrees due to his being a Jew. In 1876 Sylvester again crossed the Atlantic Ocean to become
the inaugural professor of mathematics at the new Johns Hopkins University in Baltimore,
Maryland. His salary was $5,000 (quite generous for the time), which he demanded be paid in
gold. After negotiation, agreement was reached on a salary that was not paid in gold. In 1878
he founded the American Journal of Mathematics. The only other mathematical journal in the
US at that time was the Analyst, which eventually became the Annals of Mathematics. In 1883,
he returned to England to take up the Savilian Professor of Geometry at Oxford University. He
held this chair until his death, although in 1892 the University appointed a deputy professor
to the same chair. He was on the governing body of Abingdon School. Sylvester died at 5
Hertford Street, London on 15 March 1897.
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Chapter 7

Optimization

Optimization plays a central role in machine learning and numerical computing. It involves
finding the best parameters that minimize (or maximize) a given function, often a loss function
in machine learning.

7.1 Gradient Descent

Gradient descent is an iterative optimization algorithm used to minimize functions by moving
in the direction of the negative gradient.

Definition: Given a differentiable function f (θ), gradient descent updates parameters
using:

θt+1 = θt−α∇ f (θt), (7.1)

where α > 0 is the learning rate.

7.1.1 Batch Gradient Descent

• Computes the gradient over the entire dataset.

• More stable but computationally expensive for large datasets.

7.1.2 Stochastic Gradient Descent (SGD)

• Computes the gradient using a single random data point.

• Faster updates but introduces higher variance in optimization steps.

7.1.3 Mini-Batch Gradient Descent

• Uses a small batch of data to compute gradients.

• Balances efficiency and stability.
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7.2 Backpropagation

Backpropagation is a key algorithm for training neural networks, efficiently computing gra-
dients using the chain rule.

Definition: Given a loss function L, backpropagation computes:

∂L
∂W(l)

=
∂L

∂A(l+1)
·
∂A(l+1)

∂Z(l+1)
·
∂Z(l+1)

∂W(l)
. (7.2)

It propagates gradients backward through the layers of a neural network, making training
feasible for deep networks.

7.3 Convexity

Convexity ensures optimization problems have global minima, simplifying convergence anal-
ysis.

7.3.1 Convex Sets

Definition: A set C is convex if for any x, y ∈ C and λ ∈ [0,1]:

λx+ (1−λ)y ∈ C. (7.3)

7.3.2 Convex Functions

Definition: A function f is convex if its domain is convex and for all x, y:

f (λx+ (1−λ)y) ≤ λ f (x)+ (1−λ) f (y). (7.4)

Convex functions guarantee efficient optimization due to unique global minima.

7.4 Regularization

Regularization prevents overfitting by adding constraints or penalties to optimization.

7.4.1 L1 Regularization (Lasso)

L = L0+λ
∑
|wi|. (7.5)

Encourages sparsity by driving some weights to zero.

7.4.2 L2 Regularization (Ridge)

L = L0+λ
∑

w2
i . (7.6)

Prevents large weights, improving generalization.
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7.4.3 Dropout

Randomly deactivates neurons during training to improve robustness.

7.5 Optimization Algorithms

Different optimization algorithms improve upon vanilla gradient descent:

7.5.1 Momentum

Accelerates convergence by adding a moving average to updates.

7.5.2 RMSprop

Adapts learning rates using exponentially weighted squared gradients.

7.5.3 Adam (Adaptive Moment Estimation)

Combines momentum and RMSprop, adjusting learning rates adaptively:

mt = β1mt−1+ (1−β1)gt, (7.7)

vt = β2vt−1+ (1−β2)g2
t . (7.8)

Corrects bias using:
m̂t =

mt

1−βt
1

, v̂t =
vt

1−βt
2

. (7.9)

This chapter has covered key optimization techniques, highlighting their mathematical
foundations and importance in machine learning.
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Chapter 8

Probability and Statistics for Linear
Algebra

8.1 Random Variables and Vectors

In the context of linear algebra, random variables can be scalar or vector-valued. A scalar
random variable X maps outcomes from a sample space to real numbers, allowing us to model
uncertainty in measurements or predictions. When we extend this to vectors, we get random
vectors, like X = [X1,X2, ...,Xn]T, where each component Xi can be treated as a scalar random
variable. This vector approach is crucial in multivariate analysis, where we’re interested not
just in individual outcomes but in how these outcomes relate across dimensions. For instance,
in financial models, a vector might represent different asset returns, highlighting their joint
behavior rather than just individual stock performance.

8.2 Probability Distributions

Probability distributions describe how probabilities are distributed over the values of ran-
dom variables. For example, the Gaussian (or normal) distribution is pivotal due to its
properties under linear transformations, making it central in linear algebra applications.
It’s characterized by its mean µ and variance σ2, with the probability density function

f (x) = 1
√

2πσ2
exp

(
−

(x−µ)2

2σ2

)
. Uniform distributions, where every value in a range has equal

probability, also play a role, particularly in simulation or when modeling systems with no
particular bias towards any value within a range. Other distributions like the exponential
or Poisson might appear in contexts like time between events or counts of events in a fixed
interval, respectively, often requiring transformation or linear combination in linear algebra
contexts.
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8.3 Mean, Variance, and Covariance

The mean of a random variable gives us the expected value, a central tendency measure. For a
vector X, the mean vectorE[X] summarizes the average behavior across dimensions. Variance
quantifies the spread of a single variable, while covariance measures how two variables change
together. The covariance matrix Σ for a random vector X encapsulates this relationship for all
pairs of components:

Σ = E[(X−E[X])(X−E[X])T]

This matrix is symmetric and positive semi-definite, reflecting the interdependence among
variables in a way that’s fundamental for operations like principal component analysis or
when working with multidimensional data.

8.4 The Multivariate Gaussian Distribution

The multivariate Gaussian distribution extends the univariate Gaussian to vectors, offering
a model for data where all components are jointly normally distributed. This distribution is
fully described by its mean vector µ and covariance matrix Σ:

f (x) =
1

(2π)n/2|Σ|1/2
exp

(
−

1
2

(x−µ)TΣ−1(x−µ)
)

This form is particularly useful because linear combinations of multivariate Gaussians remain
Gaussian, a property exploited in many linear algebra applications from signal processing to
statistical inference.

8.5 Maximum Likelihood Estimation (MLE)

Maximum Likelihood Estimation is a method used to estimate the parameters of a statistical
model by maximizing the likelihood function. In the context of linear algebra, MLE often
translates to solving a system of equations or optimizing a function. For example, when
fitting a linear model y = Xβ+ ϵ where ϵ is Gaussian noise, the MLE for β coincides with the
least squares solution:

β̂ = (XTX)−1XTy

Here, the likelihood maximization problem reduces to minimizing the squared error, linking
probability theory with linear algebra through the lens of optimization. This connection is
profound as it not only facilitates parameter estimation but also underlies many statistical
tests and confidence intervals, crucial in understanding model reliability and significance in
applied settings.
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Chapter 9

Dimensionality Reduction

Dimensionality reduction is a crucial technique in machine learning and data analysis that aims
to reduce the number of variables under consideration while preserving as much information
as possible. It helps mitigate the curse of dimensionality, improves computational efficiency,
and can aid in data visualization.

9.1 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a widely used linear dimensionality reduction tech-
nique. It finds a new set of orthogonal basis vectors (principal components) that maximize
the variance of the data.

Definition: Given a dataset represented as an m×n matrix X with mean-centered columns,
PCA seeks an orthogonal transformation P such that the transformed data Y=XP has mutually
uncorrelated columns ordered by decreasing variance.

Computation: 1. Compute the covariance matrix C = 1
mXTX. 2. Compute the eigenvalues

and eigenvectors of C. 3. Select the top k eigenvectors to form the transformation matrix Pk.
4. Project data onto the lower-dimensional subspace: Y = XPk.

Example: Consider a dataset with two correlated features. PCA identifies the direction
of maximum variance, allowing data to be projected onto a single principal component for
better interpretation.

9.2 Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA) is a supervised dimensionality reduction technique that
aims to maximize class separability.

Definition: Given labeled data (X, y), LDA finds a transformation matrix W such that the
projected data maximizes the ratio of between-class variance to within-class variance.

Computation: 1. Compute the mean vectors for each class. 2. Compute the within-class
scatter matrix SW and between-class scatter matrix SB. 3. Solve the generalized eigenvalue
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problem SBw = λSWw. 4. Select the top eigenvectors corresponding to the largest eigenvalues.
5. Transform the data using Wk.

Example: In a binary classification problem, LDA finds the best linear boundary to separate
the two classes.

9.3 t-SNE and UMAP

9.3.1 t-Distributed Stochastic Neighbor Embedding (t-SNE)

t-SNE is a nonlinear dimensionality reduction technique primarily used for visualization.
Definition: t-SNE models the high-dimensional data structure by minimizing the Kullback-

Leibler divergence between probability distributions in high and low dimensions.
Computation: 1. Compute pairwise similarities in the high-dimensional space using

Gaussian distributions. 2. Compute pairwise similarities in the low-dimensional space us-
ing Student’s t-distribution. 3. Minimize the divergence between these distributions using
gradient descent.

Example: t-SNE is often used to visualize complex datasets like handwritten digits or
word embeddings.

9.3.2 Uniform Manifold Approximation and Projection (UMAP)

UMAP is another nonlinear dimensionality reduction technique that preserves both global
and local structures better than t-SNE.

Definition: UMAP constructs a high-dimensional graph representation of the data and
optimizes a low-dimensional embedding to approximate it.

Computation: 1. Compute a fuzzy simplicial complex representing data relationships. 2.
Optimize a low-dimensional representation using stochastic gradient descent.

Example: UMAP is useful for clustering and exploring large-scale datasets while main-
taining structure better than t-SNE.

This chapter provided an overview of several dimensionality reduction techniques, each
with unique properties suitable for different applications.
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Chapter 10

Linear Models

Historically, the method of least squares was used by Gauss and Legendre to solve problems
in astronomy and geodesy. The method was first published by Legendre in 1805 in a paper on
methods for determining the orbits of comets. However, Gauss had already used the method
of least squares as early as 1801 to determine the orbit of the asteroid Ceres, and he published
a paper about it in 1810 after the discovery of the asteroid Pallas. It is in that same paper that
Gaussian elimination using pivots is introduced.

10.1 The method of least squares

The method of least squares was first discovered by Gauss in the early 1800’s and has been
used successively since then in many areas of mathematics and engineering. Consider the
following problem:

Problem: Given a set of data

x x1 x2 x3 x4 . . . xn

y y1 y2 y3 y4 . . . yn

Find a linear function y = f (x) that best fits this data.

Geometrically two of these points Pi = (xi, yi) determine a line. However, we are looking
for the line that is "closest" to all the given points. Let us assume that the equation of that line
is given by y = f (x) = ax+ b. Then we have

yi = axi+b, for i = 1, . . .n.
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In matrix notation it becomes 

x1 1
x2 1
· ·

· ·

· ·

xn 1


[
a
b

]
=



ax1+b
ax2+b
·

·

·

axn+b


or we write this as Av � y, where

A =



x1 1
x2 1
· ·

· ·

· ·

xn 1


, v =

[
a
b

]
, y =



ax1+ b
ax2+ b
·

·

·

axn+ b


.

The problem now becomes to determine v =
[
a
b

]
such that the error vector Av−y is minimal.

The concept of minimal depends on the type of application. The method of least squares
is based on the idea that we require that the magnitude

∥∥∥Av−y
∥∥∥ is minimal. Denote by

d :=Av−y. Then, di = (axi+b)− yi. Minimizing
∥∥∥Av−y

∥∥∥ means minimizing
∥∥∥Av−y

∥∥∥2
, which

means minimizing
d2

1+d2
2+ · · ·+d2

n.

Let v1 and v2 denote the column vectors of A. The vector Av = av1 + bv2 lies in the space
W = Span (v1,v2). We want to find a vector v0 ∈W such that the dot product Av · (Av0−y) = 0
for all v ∈W. Then we have

Av · (Av0−y) = (Av)t (Av0−y) = (Av)t Av0− (Av)ty

= vtAtAv0−vtAty = vt
(
AtAv0−Aty

)
= 0

(10.1)

for all v ∈W. Because the dot product is a non-degenerate inner product then

AtAv0−Aty = 0

and
v0 = (AtA)−1 Aty

The matrix P := (AtA)−1 At is sometimes called the projection matrix of A. Let us see an
example.

Example 10.1. Let the following data be given

x 1 2 2 5
y 2 3 5 7

Find a linear function that best fits the data.
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Solution: Then

A :=


1 1
2 1
2 1
5 1

 and b =


2
3
5
7


We have AtA =

[
34 10
10 4

]
and the least squares solution is

v0 = (AtA)−1 Aty =
1
6

[
7
8

]
Hence, the best fitting line to the above data is y = 7

6x+ 4
3 .

□
As we will see in the next example the least squares method has its limitations. As expected

not everything in applications is linear. If we approximate a given data with a linear model
then this model might not fit the data very well. In the next example we see that sometimes
such an approximation is not close at all to the data.

Example 10.2. Let the following data be given

x 1 2 3 4 5
y 2 5 4 7 2

Find a linear function that best fits the data.

Solution: Then

A :=


1 1
2 1
3 1
4 1
5 1

 , and y =


2
5
4
7
2


The least squares solution is

v0 = (AtA)−1 Aty =
1
5

[
1

17

]
Hence, the best fitting line to the above data is y = x

5 +
17
5 . The graph in Fig. 10.1 presents the

graph of the data and of the function. □
In the above examples we found a linear function that best fits a given set of data. However,

the method of least squares can be used not only to find linear functions. Next we see how to
generalize the method.

10.1.1 The method of least squares for higher degree polynomials

We consider the same problem as in the previous subsection. However, the approximation
we want to use is not necessarily linear but a degree n polynomial. It is known that if n points
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Figure 10.1: Fitting of the above data by the least squares method.

are given on the plane then there is always a degree n polynomial which passes through these
points, unless the points are linearly dependent. Thus, for most applications we have r points
and want to find a polynomial of degree n that best fits the data for n< r. Consider the problem:

Problem: Given a set of data Find a degree n polynomial

x x1 x2 x3 x4 . . . xr

y y1 y2 y3 y4 . . . yr

Table 10.1

y = f (x) = anxn+ an−1xn−1+ · · ·+ a1x+ a0

that best fits this data.

We can write this in a matrix form as follows:

xn
1 . . . x1 1

xn
2 . . . x2 1
· · · ·

· · · ·

· · · ·

xn
n . . . xn 1





an
an−1
·

·

·

a0


=



anxn
1 + an−1xn−1

1 + · · ·+ a1x1+ a0
anxn

2 + an−1xn−1
2 + · · ·+ a1x2+ a0
·

·

·

anxn
n+ an−1xn−1

n + · · ·+ a1xn+ a0


As previously we denote this as Av = y. The least squares solution is

v0 = (AtA)−1 Aty
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Example 10.3. Let the following data be given as in the previous example.

x 1 2 3 4 5
y 2 5 4 7 2

Find a polynomial of degree 2 that best fits the data.

Solution: Then

A :=


1 1 1
4 2 1
9 3 1
16 4 1
25 5 1

 , and y =


2
5
4
7
2


The least squares solution is

v0 = (AtA)−1 Aty =
[
−

6
7
,
187
35
,−

13
5

]t

Hence, the best fitting degree 2 polynomial to the above data
is

y = −
6
7

x2+
187
35

x−
13
5

The graph of Fig. 10.2 presents the graph of the data and of
the function. Notice how we get a better approximation than
in the linear case.

Figure 10.2: Quadratic approxi-
mation

□

Example 10.4. Find degree 3 and 4 polynomials that approximate
the data of the previous example.

Solution: For a degree 3 polynomial we have

y = −
1
3

x3+
15
7

x2
−

53
21

x+3

The graph is presented in Fig. 10.3. Compare this with degree
1 and 2 polynomials to see that we get a better fit.

Figure 10.3: Cubic fitting
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Since we have four points on the plane, then by using a
degree 4 polynomial we are able to find a polynomial that will
pass through the points. The least squares method will find
this unique solution when it exists. In this case, the degree 4
polynomial that fits the data is

y = −
5
6

x4+
29
3

x3
−

235
6

x2+
196
3

x−33

and the graph is presented in Fig. 10.4.

Remark 10.1. (AtA)−1 exists if A has independent column vectors.
Thus, we have a unique least squares solution if null (A) = 0. Figure 10.4: Quartic fitting

□
The least squares method can be used for many other applications.

10.1.2 Least Squares and the Pseudo-Inverse

The method of least squares can be used for "solving" an overdetermined system of linear
equations Ax = b, i.e., a system in which A is a rectangular m×n matrix with more equations
than unknowns (when m > n).

Consider the following: Find a vector x0 which minimizes

∥Ax− b∥2

When such vector x0 exists we call it a least squares solution for the Euclidean norm.

Theorem 10.1. Every linear system Ax = b, where A is an m×n matrix, has a unique least squares
solution x0 of smallest norm.

Proof. Let R(A) denote the column space of A, which is a subspace of Rm. By the Projection
Theorem, for any b ∈Rm, there exists a unique vector p ∈ R(A) such that b−p is orthogonal to
every vector in R(A). This vector p is the orthogonal projection of b onto R(A).

Since p ∈ R(A), there exists at least one vector x0 ∈R
n such that Ax0 = p.

Now, let’s show that this x0 minimizes ∥Ax− b∥2. For any other vector x ∈Rn, we have:

∥Ax− b∥2 =
∥∥∥(Ax−p)+ (p−b)

∥∥∥2

Since p = Ax0 ∈ R(A), the vector Ax−p = A(x−x0) is also in R(A). By the Projection Theorem,
p− b = −(b− p) is orthogonal to every vector in R(A), including Ax− p. Therefore, by the
Pythagorean theorem: ∥∥∥(Ax−p)+ (p− b)

∥∥∥2
=

∥∥∥Ax−p
∥∥∥2
+

∥∥∥p− b
∥∥∥2

Since
∥∥∥Ax−p

∥∥∥2
≥ 0, we have:

∥Ax−b∥2 =
∥∥∥Ax−p

∥∥∥2
+

∥∥∥p−b
∥∥∥2
≥

∥∥∥p− b
∥∥∥2
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Equality holds when
∥∥∥Ax−p

∥∥∥2
= 0, which means Ax−p = 0, or Ax = p =Ax0. Thus, x0 is a least

squares solution, and the minimum value of ∥Ax− b∥2 is ∥Ax0−b∥2 =
∥∥∥p−b

∥∥∥2
.

We have shown that any least squares solution x0 must satisfy Ax0 = p, where p is the
orthogonal projection of b onto R(A).

Consider the normal equations:
ATAx = ATb

If Ax0 = p, and since b− p is orthogonal to R(A), it is orthogonal to the columns of A. This
means AT(b−p) = 0, so AT(b−Ax0) = 0, which gives ATb−ATAx0 = 0, or ATAx0 = ATb. Thus,
any least squares solution must satisfy the normal equations.

Now, let’s consider the uniqueness and the smallest norm. Let N(A) be the null space of
A, i.e., {z ∈Rn

| Az = 0}. If x0 is a least squares solution (Ax0 = p), then for any z ∈ N(A), x0+z
is also a least squares solution because A(x0+z) = Ax0+Az = p+0 = p.

To find the least squares solution of smallest norm, we want a solution that is orthogonal to
the null spaceN(A). By the Fundamental Subspaces Theorem, we know that R(AT) =N(A)⊥.
Therefore, the least squares solution of smallest norm must lie in the row space of A, R(AT).

Let x0 be a least squares solution with the smallest norm. Then x0 ∈ R(AT), so there exists
a vector y such that x0 = ATy. Since x0 is a least squares solution, it satisfies the normal
equations:

ATAx0 = ATb

Substituting x0 = ATy, we get:
ATA(ATy) = ATb

Now, consider any other least squares solution x1. We know that Ax1 = p=Ax0, so A(x1−x0)= 0,
which means x1−x0 ∈ N(A). If x1 also has the smallest norm, then x1 must also be in R(AT).
Since x1 − x0 ∈ N(A) and x0,x1 ∈ R(AT) = N(A)⊥, it follows that x1 − x0 must be orthogonal
to itself, which implies x1 − x0 = 0, so x1 = x0. This shows that the least squares solution of
smallest norm is unique.

Alternatively, we can argue about the uniqueness within R(AT) directly from the normal
equations. Consider two least squares solutions x0 and x1 in R(AT). They both satisfy
ATAx = ATb. Let w = x1 − x0. Then ATAw = ATAx1 −ATAx0 = ATb−ATb = 0. This means
w ∈N(ATA). We know thatN(ATA)=N(A). Since both x0 and x1 are inR(AT), their difference
w = x1− x0 is also in R(AT). Thus, w ∈ N(A)∩R(AT) = {0}, which implies x1 = x0. Therefore,
there is a unique least squares solution inR(AT), which is the least squares solution of smallest
norm.

□

Remark 10.2. Let A+ denote the pseudo-inverse of A (cf. Thm. 6.11). Then the least squares solution
of smallest norm of the linear system Ax = b, is given by

x0 = A+b

Of course, when A has full rank, then the pseudo-inverse is given by

A+ = (AtA)−1At
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Example 10.5. Find the least squares solution to the system
x1−x2 = 4

3x1+2x2+x3 = 3
3x1+2x2−5x3 = 1

2x1+x2−x3 = 3

Solution: We have
Ax = y

where

A =


1 -1 0
3 2 1
3 2 -5
2 1 -1

 , y =


4
3
1
3

 .
The least squares solution is

v0 = (AtA)−1Aty =


617
275

−21
11

29
275

 .
Then the orthogonal projection of y on the column space of A is the vector Av0 given by

Av0 =



1142
275

179
55

331
275

123
55


=



4.152727273

3.254545455

1.203636364

2.236363636


.

□

Exercises:

404. Let the following data be given

x 1 2 3 4 5
y 8 13 18 23 28

Find a linear function that best fits the data.

405. Let the following data be given

x 0 1 3 2 -2
y 2 1 -1 -5 4

Find a linear function that best fits the data.

406. Find a degree 2 polynomial that best fits the
following data:

x 0 1 3 2 5
y -2 -1 2 4 2

407. Find a degree 3 polynomial that best fits the
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data:
x 0 1 3 5 -2
y 2 3 5 0 -4

408. Find the least squares solution to the system
x1−x2 = 4

3x1+2x2 = 3
3x1+2x2 = 1

409. Find the least squares solution to the system
x1−11x2 = 1
3x1+x3 = 2
x1+2x2 = 1

2x1+x2−x3 = 31

and the corresponding orthogonal projection.

410. Find the least squares solution to the system
5x1−12x2 = 4
x1+3x2 = −2

6x1+2x2 = −1

and the corresponding orthogonal projection.

411. Find the least squares solution to the system
3x1−x2+3x3 = 4
3x1+7x2+x3 = 3

3x1+2x2−x3 = 21
2x1+x2−x3 = 4

and the corresponding orthogonal projection.

287

https://leanpub.com/u/shaska
https://leanpub.com/lin-alg/


Linear Algebra Shaska, T.

10.2 Linear regression and its Connection to Least Squares

Suppose there are m data points in Rn and t targets.
Store the predictors in the matrix X ∈Rm×n, with each row corresponding to one data point

and store the targets in the matrix Y ∈Rm×t, corresponding to X (i.e., the rows of X and Y are
one-to-one mapped), say

X =


x1,1 x1,2 . . . x1,n
...

xm,1 xm,2 . . . xm,n

 , Y =


y1,1 y1,2 . . . y1,t
...

ym,1 ym,2 . . . ym,t

 ,
In the lecture, we only consider a single target variable. Here Y consists of t target variables.
Mathematically, linear regression solves this optimization problem:

Example 10.6. Given X and Y, find the best W ∈Rn×t and b ∈Rt such that

Y ≈ XW+1bT

Here, W is a n× t weight matrix, b is a bias vector of length t, and 1 ∈Rm is a column vector of ones.

Linear regression then solves this optimization problem: Find W∗,b∗ such that

min
W,b
∥Y− (XW+1bT)∥2F

where ∥ · ∥F denotes the Frobenius norm. This is equivalent to minimizing the sum of the
squared Euclidean norms of the columns of the residual matrix Y− (XW+1bT).

Let X = [X,1], i.e., append a column of 1 to the last column of X. Here 1 ∈Rm is a column

vector of length m with every element being 1. Also, let W =

[
W
bT

]
, where W is a (n+ 1)× t

matrix, with the first n rows corresponding to W and the last row being the transpose of b. The
linear regression model can then be written as Y ≈ XW. The optimization problem becomes:

min
W

∥Y−XW∥2F

This is a standard linear least squares problem. For each target variable (each column of Y),
we are trying to find a linear combination of the columns of X that best approximates it in the
least squares sense.

Consider a single target variable (t = 1), where Y = y ∈Rm andW =w =
[
W
b

]
∈Rn+1. The

problem is to minimize ∥y−Xw∥2. From the theorem on least squares solutions, the optimal
w∗ satisfies the normal equations:

XTXw∗ = XTy

If XTX is invertible, the unique least squares solution is given by:

w∗ = (XTX)−1XTy
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For multiple target variables (t > 1), we can apply this column-wise. Let y j be the j-th column
of Y and w j be the j-th column ofW. Then, for each j = 1, . . . , t, the optimal w∗j satisfies:

XTXw∗j = XTy j

Combining these solutions into the matrixW∗ = [w∗1, . . . ,w
∗

t], we get the closed-form solution
for linear regression:

W
∗ = (XTX)−1XTY

You can then read W∗ (the first n rows ofW∗) and b∗T (the last row ofW∗) directly fromW∗.
Let us see an example in R3 and some visual illustration of it.

Exercise 90. Let a set of data in R3 be given by the points P1 = (1,2,3), P2 = (−1,1,1), P3 = (2,3,4),
P4 = (−2,1,−3), P5 = (1,1,−1), P6 = (2,3,−2), P7 = (5,5,5), P8 = (−3,4,6).

Find the regression plane for this data.

Solution: We want a plane with equation

ax+by+ cz+d = 0

which best fits the data. So we want to determine the vector v = [a,b,c,d]t. We can consider
the third coordinate as the target variable and the first two as predictors. Our model is

z ≈ w1x+w2y+b,

which can be written as w1x+w2y− z+b ≈ 0.
The matrices X and Y are given by

X =



1 2
−1 1
2 3
−2 1
1 1
2 3
5 5
−3 4


and Y =



3
1
4
−3
−1
−2
5
6



Then X = [X,1] =



1 2 1
−1 1 1
2 3 1
−2 1 1
1 1 1
2 3 1
5 5 1
−3 4 1


.
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The augmented weight vector w =

w1
w2
b

 is given by w = (XTX)−1XTY. We computed earlier:

XTX =

40 42 7
42 50 21
7 21 8

 and XTY =

49
60
13


Solving the system

40 42 7
42 50 21
7 21 8


w1
w2
b

 =
49
60
13

 will give the coefficients of the regression plane

z = w1x+w2y+ b.
Using a computational tool to solve this system, we find (approximately):

w1 ≈ 0.86, w2 ≈ 0.51, b ≈ −0.82

So the regression plane is approximately given by z = 0.86x+0.51y−0.82, or 0.86x+0.51y−z−
0.82 = 0.

Then v = (XtX)−1XtY =


0.86
0.51
−1
−0.82

 (note the coefficient of z is -1 in our formulation). The data

and the plane are given in the picture below. □

Exercise 91. Consider a set of 6 data points inR5, where the first 4 components are the predictors and
the 5th component is the target variable:

P1 = (1,0,2,−1,3)
P2 = (0,1,−1,2,1)
P3 = (2,−1,1,0,4)
P4 = (−1,2,0,1,−2)
P5 = (1,1,1,1,2)
P6 = (0,0,−2,−2,−1)

Find the linear regression model that predicts the 5th component (the target) based on the first 4
components (the predictors).

Solution: Let the predictor variables be x1,x2,x3,x4 and the target variable be y. We want to
find a linear model of the form:

y ≈ w1x1+w2x2+w3x3+w4x4+b

We can set up the matrices X and Y:

X =



1 0 2 −1
0 1 −1 2
2 −1 1 0
−1 2 0 1
1 1 1 1
0 0 −2 −2


∈R6×4, Y =



3
1
4
−2
2
−1


∈R6×1
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Now, we form the augmented predictor matrix X by adding a column of ones:

X = [X,1] =



1 0 2 −1 1
0 1 −1 2 1
2 −1 1 0 1
−1 2 0 1 1
1 1 1 1 1
0 0 −2 −2 1


∈R6×5

The augmented weight vector w =


w1
w2
w3
w4
b

 is the least squares solution to Xw ≈ Y, given by

w = (XTX)−1XTY, assuming (XTX) is invertible.
Let’s compute XTX:

XTX =


1 0 2 −1 1 0
0 1 −1 2 1 0
2 −1 1 0 1 −2
−1 2 0 1 1 −2
1 1 1 1 1 1





1 0 2 −1 1
0 1 −1 2 1
2 −1 1 0 1
−1 2 0 1 1
1 1 1 1 1
0 0 −2 −2 1


=


7 −1 3 −4 2
−1 6 −3 5 3
3 −3 11 −3 3
−4 5 −3 11 3
2 3 3 3 6


Now, let’s compute XTY:

XTY =


1 0 2 −1 1 0
0 1 −1 2 1 0
2 −1 1 0 1 −2
−1 2 0 1 1 −2
1 1 1 1 1 1





3
1
4
−2
2
−1


=


3+0+8+2+2+0
0+1−4−4+2+0
6−1+4+0+2+2
−3+2+0−2+2+2
3+1+4−2+2−1

 =

15
−5
13
1
7


To find w, we need to solve the linear system (XTX)w = XTY:

7 −1 3 −4 2
−1 6 −3 5 3
3 −3 11 −3 3
−4 5 −3 11 3
2 3 3 3 6




w1
w2
w3
w4
b

 =

15
−5
13
1
7


Solving this system of linear equations (which would typically be done using numerical
methods or computational software) will give us the values of w1,w2,w3,w4, and b. These
coefficients define the linear regression model in R5.

Let’s assume, after solving this system, we obtained a solution (for illustrative purposes):

w1 ≈ 1.0, w2 ≈ −0.5, w3 ≈ 0.2, w4 ≈ 0.8, b ≈ 0.1
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Then the linear regression model would be approximately:

y ≈ 1.0x1−0.5x2+0.2x3+0.8x4+0.1

The process remains the same regardless of the number of dimensions. We form the
augmented predictor matrix, compute XTX and XTY, and then solve the resulting system
of normal equations. The complexity of solving the system increases with the number of
predictors.

□
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Charles Hermite (1822 - 1901)

Hermite was born in Dieuze, Moselle, on 24 December
1822, with a deformity in his right foot that would impair his
gait throughout his life. He was the sixth of seven children of
Ferdinand Hermite and his wife, Madeleine nee Lallemand.
Ferdinand worked in the drapery business of Madeleine’s
family while also pursuing a career as an artist. The drapery
business relocated to Nancy in 1828, and so did the family.

Hermite obtained his secondary education at College de
Nancy and then, in Paris, at Coll?ge Henri IV and at the Lycee
Louis-le-Grand. He read some of Joseph-Louis Lagrange’s
writings on the solution of numerical equations and Carl
Friedrich Gauss’s publications on number theory.

Hermite wanted to take his higher education at Ecole Polytechnique, a military academy
renowned for excellence in mathematics, science, and engineering. Tutored by mathematician
Eugene Charles Catalan, Hermite devoted a year to preparing for the notoriously difficult
entrance examination. In 1842 he was admitted to the school. However, after one year
the school would not allow Hermite to continue his studies there because of his deformed
foot. He struggled to regain his admission to the school, but the administration imposed
strict conditions. Hermite did not accept this, and he quit the Ecole Polytechnique without
graduating.

In 1842, Nouvelles Annales de Mathematiques published Hermite’s first original contribu-
tion to mathematics, a simple proof of Niels Abel’s proposition of concerning the impossibility
of an algebraic solution to equations of the fifth degree.

A correspondence with Carl Jacobi, begun in 1843 and continued the next year, resulted
in the insertion, in the complete edition of Jacobi’s works, of two articles by Hermite, one
concerning the extension to Abelian functions of one of the theorems of Abel on elliptic
functions, and the other concerning the transformation of elliptic functions.

After spending five years working privately towards his degree, in which he befriended
eminent mathematicians Joseph Bertrand, Carl Gustav Jacob Jacobi, and Joseph Liouville, he
took and passed the examinations for the baccalaureat, which he was awarded in 1847. He
married Joseph Bertrand’s sister, Louise Bertrand, in 1848.

In 1848, Hermite returned to the Ecole Polytechnique as repetiteur and examinateur
d’admission. In 1856 he contracted smallpox. Through the influence of Augustin-Louis
Cauchy and of a nun who nursed him, he resumed the practice of his Catholic faith. In July
1848, he was elected to the French Academy of Sciences. In 1869, he succeeded Jean-Marie
Duhamel as professor of mathematics, both at the Ecole Polytechnique, where he remained
until 1876, and at the University of Paris, where he remained until his death. From 1862 to 1873
he was lecturer at the Ecole Normale Superieure. Upon his 70th birthday, he was promoted
to grand officer in the French Legion of Honour.

Hermite died in Paris on 14 January 1901, aged 78.
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10.3 Polynomial Regression

Polynomial regression extends the concept of linear regression to model non-linear relation-
ships between a scalar independent variable x and a scalar dependent variable y. Despite
modeling a curve, it remains a linear model in terms of its parameters. The core idea is
to augment the feature space by including polynomial powers of the original independent
variable.

Given a dataset of m data points {(xi, yi)}mi=1, where xi ∈R and yi ∈R, polynomial regression
of degree n aims to find a polynomial function that best fits the data:

y = β0+β1x+β2x2+ · · ·+βnxn+ϵ, (10.2)

where β0,β1, . . . ,βn are the polynomial coefficients to be estimated, and ϵ represents the
random error term, assumed to have a mean of zero.

10.3.1 Linear Algebra Formulation

To apply the principles of linear regression, we construct a design matrix X ∈Rm×(n+1) and a
coefficient vector β ∈Rn+1:

X =


1 x1 x2

1 . . . xn
1

1 x2 x2
2 . . . xn

2
...

...
...

. . .
...

1 xm x2
m . . . xn

m

 , β =

β0
β1
...
βn

 . (10.3)

The vector of observed dependent variables is y =


y1
y2
...

ym

 ∈ Rm, and the error vector is

ϵ =


ϵ1
ϵ2
...
ϵm

 ∈Rm. The polynomial regression model in matrix form is:

y = Xβ+ϵ. (10.4)

10.3.2 Least Squares Solution

The coefficientsβ are typically estimated using the ordinary least squares (OLS) method, which
minimizes the sum of the squared errors between the observed values y and the predicted
values ŷ = Xβ:

Minimize L(β) =
m∑

i=1

(yi− ŷi)2 = ∥y−Xβ∥2 = (y−Xβ)T(y−Xβ). (10.5)
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To find the β that minimizes L(β), we take the gradient with respect to β and set it to zero:

∇βL(β) = ∇β(yTy−2βTXTy+βTXTXβ)

= −2XTy+2XTXβ = 0.

Solving for β yields the normal equations:

XTXβ = XTy. (10.6)

If the matrix XTX is invertible (which occurs when X has full column rank, typically when
m > n+ 1 and the xi values are distinct), the unique least squares solution for the coefficient
vector is:

β∗ = (XTX)−1XTy. (10.7)

This solution provides the polynomial coefficients that best fit the given data in the least
squares sense.

10.3.3 Examples

Let’s illustrate polynomial regression with a couple of examples.

Example 10.7 (Quadratic Regression). Suppose we have the following dataset: {(1,2), (2,5), (3,10), (4,17)}.
We want to fit a quadratic polynomial (n = 2) of the form y = β0+β1x+β2x2.

The design matrix X and the target vector y are:

X =


1 1 12

1 2 22

1 3 32

1 4 42

 =

1 1 1
1 2 4
1 3 9
1 4 16

 , y =


2
5
10
17

 .
First, we compute XTX:

XTX =

1 1 1 1
1 2 3 4
1 4 9 16



1 1 1
1 2 4
1 3 9
1 4 16

 =
 4 10 30
10 30 100
30 100 354

 .
Next, we compute XTy:

XTy =

1 1 1 1
1 2 3 4
1 4 9 16




2
5
10
17

 =
 2+5+10+17

2+10+30+68
2+20+90+272

 =
 34
110
384

 .
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Now, we need to solve the system (XTX)β = XTy: 4 10 30
10 30 100
30 100 354


β0
β1
β2

 =
 34
110
384

 .
Solving this system of linear equations (e.g., using Gaussian elimination or by computing (XTX)−1),

we find the coefficients:
β0 = 1, β1 = 0, β2 = 1.

Thus, the best-fit quadratic polynomial is y = 1+0x+1x2 = 1+x2.

Example 10.8 (Cubic Regression). Consider a dataset where we suspect a cubic relationship:
{(0,1), (1,6), (2,17), (3,34)}. We want to fit a cubic polynomial (n = 3) of the form y = β0 + β1x+
β2x2+β3x3.

The design matrix X and the target vector y are:

X =


1 0 02 03

1 1 12 13

1 2 22 23

1 3 32 33

 =

1 0 0 0
1 1 1 1
1 2 4 8
1 3 9 27

 , y =


1
6

17
34

 .
We would then compute XTX and XTy:

XTX =


4 6 14 36
6 14 36 98

14 36 98 276
36 98 276 794

 , XTy =


58

150
404
1158

 .
Solving the system (XTX)β = XTy yields the coefficients:

β0 = 1, β1 = 2, β2 = 3, β3 = 0.

Thus, the best-fit cubic polynomial is y = 1+2x+3x2+0x3 = 1+2x+3x2.

These examples demonstrate how to set up the design matrix and the normal equations
for polynomial regression. Solving the resulting linear system provides the coefficients of the
best-fit polynomial.

10.3.4 Model Evaluation, Applications, Advantages, Disadvantages, and
Regularization

The subsequent sections on model evaluation, applications, advantages, disadvantages, and
regularization remain relevant and well-described in your original text. They provide impor-
tant context for understanding the practical aspects of polynomial regression.

By understanding the linear algebra formulation and the least squares solution, along
with the practical considerations discussed in the other sections, you have a comprehensive
overview of polynomial regression.
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10.4 Logistic Regression

Logistic regression is a powerful and widely used statistical model for binary classification
problems. Despite its name containing "regression," it is fundamentally a classification algo-
rithm. It models the probability of a binary outcome (e.g., success/failure, yes/no, 0/1) based
on a set of independent variables (predictors). Logistic regression achieves this by using
a linear combination of the input features and applying a non-linear function, the sigmoid
function (also known as the logistic function), to the result. From a linear algebra perspective,
it combines a linear transformation of the feature space with this non-linear mapping, mak-
ing it a bridge between linear models and advanced machine learning techniques like neural
networks.

10.4.1 The Sigmoid Function

The core of logistic regression is the sigmoid function, denoted by σ(z), which maps any
real-valued number z to a value between 0 and 1. The sigmoid function is defined as:

σ(z) =
1

1+ e−z (10.8)

The shape of the sigmoid function is an "S" curve. It has the following important properties:

• σ(z) ∈ (0,1) for all z ∈R.

• limz→∞σ(z) = 1.

• limz→−∞σ(z) = 0.

• σ(0) = 0.5.

• σ′(z) = σ(z)(1−σ(z)).

The output of the sigmoid function can be interpreted as the probability of the positive class
(typically labeled as 1). Its smooth "S" shape ensures a gradual transition, which is key to
modeling probabilities rather than hard boundaries.

10.4.2 The Logistic Regression Model

In logistic regression, we model the probability of the positive class given a set of input features
x = [x1,x2, . . . ,xn]T using a linear combination of these features, similar to linear regression.
However, instead of directly predicting the outcome, we pass this linear combination through
the sigmoid function:

P(y = 1|x;w,b) = σ(wTx+ b) =
1

1+ e−(wTx+b)
(10.9)

Here:

297

https://leanpub.com/u/shaska
https://leanpub.com/lin-alg/


Linear Algebra Shaska, T.

• x is the vector of input features (independent variables).

• w = [w1,w2, . . . ,wn]T is the vector of weights (coefficients) associated with each feature.

• b is the bias term (intercept).

• wTx+ b is the linear combination of the features, just like in linear regression.

• σ(wTx+ b) is the predicted probability that the output variable y is 1 given the input
features x.

The probability of the negative class (y = 0) is then given by:

P(y = 0|x;w,b) = 1−P(y = 1|x;w,b) = 1−σ(wTx+b) = σ(−(wTx+ b)) =
e−(wTx+b)

1+ e−(wTx+b)
(10.10)

To emphasize the linear algebra foundation, we can augment x with a 1 (i.e., xaug =

[x1,x2, . . . ,xn,1]T
∈Rn+1) and define waug = [w1,w2, . . . ,wn,b]T, so we have

P(y = 1|x;waug) = σ(wT
augxaug) (10.11)

This matrix notation highlights the linear transformation from features to probabilities.

10.4.3 Decision Boundary

To make a classification decision, we typically set a threshold on the predicted probability. A
common threshold is 0.5. If P(y = 1|x;w,b) ≥ 0.5, we predict y = 1; otherwise, we predict y = 0.

The decision boundary is the set of points x for which P(y = 1|x;w,b) = 0.5. This occurs
when the argument of the sigmoid function is zero:

wTx+b = 0 (10.12)

This equation represents a hyperplane in the feature space, which separates the regions
where the model predicts one class versus the other. This is why logistic regression is con-
sidered a linear classifier – its decision boundary is linear. Geometrically, w determines the
hyperplane’s orientation (as its normal vector), while b shifts its position from the origin. The
sigmoid function softens this boundary, assigning probabilities that decrease exponentially
with distance from the hyperplane, as illustrated in Figure 10.5.

10.4.4 Learning the Parameters: Maximum Likelihood Estimation

The goal of training a logistic regression model is to find the optimal values for the weights
w and the bias b that best fit the training data. This is typically done using the principle of
maximum likelihood estimation (MLE).
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wTx+ b = 0

−3 −2 −1 1 2 3
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−2

−1

1

2

3

x1

x2

Logistic Regression Decision Boundary

Class 0
Class 1

Figure 10.5: A 2D decision boundary w1x1+w2x2+ b = 0 with points labeled 0 (blue circles)
and 1 (red stars). The gradient represents σ(wTx+b), transitioning from 0 (black) through red
and yellow to 1 (white).

Given a training dataset of m labeled examples {(xi, yi)}mi=1, where yi ∈ {0,1}, the likelihood
of observing this dataset given the parameters w and b is:

L(w,b) =
m∏

i=1

P(yi|xi;w,b) (10.13)

We can write P(yi|xi;w,b) as:

P(yi|xi;w,b) = [P(y = 1|xi;w,b)]yi[P(y = 0|xi;w,b)]1−yi (10.14)

To make the optimization easier, we often work with the log-likelihood:

ℓ(w,b) = logL(w,b) (10.15)

=

m∑
i=1

[yi logP(y = 1|xi;w,b)+ (1− yi) logP(y = 0|xi;w,b)] (10.16)

=

m∑
i=1

[yi logσ(wTxi+b)+ (1− yi) log(1−σ(wTxi+b))] (10.17)

=

m∑
i=1

[yi(wTxi+b)− log(1+ e(wTxi+b))] (10.18)

The goal is to find the values of w and b that maximize this log-likelihood function. This is
typically done using gradient-based optimization algorithms like gradient ascent (since we
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want to maximize) or gradient descent (if we minimize the negative log-likelihood, which is
a common loss function called the binary cross-entropy loss). The negative log-likelihood is:

J(w,b) = −ℓ(w,b) = −
m∑

i=1

[yi logσ(wTxi+b)+ (1− yi) log(1−σ(wTxi+b))] (10.19)

The gradient of the log-likelihood with respect to the weights w j and the bias b can be calculated
as

∂ℓ(w,b)
∂w j

=

m∑
i=1

(yi−σ(wTxi+b))xi j (10.20)

∂ℓ(w,b)
∂b

=

m∑
i=1

(yi−σ(wTxi+b)) (10.21)

For minimization, the gradient of J is:

∂J
∂w j
=

m∑
i=1

[σ(wTxi+ b)− yi]xi j (10.22)

∂J
∂b
=

m∑
i=1

[σ(wTxi+ b)− yi] (10.23)

10.4.5 Linear Algebra Formulation for Training

We can express the training process in a more compact linear algebra form. Let X be the
design matrix where each row is a feature vector xT

i , and let y be the vector of labels yi. We
can also include the bias term by augmenting the feature matrix with a column of ones and
including the bias b in the weight vector waug = [b,w1, . . . ,wn]T. The augmented feature vector
is xi,aug = [1,xi1, . . . ,xin]T.

Then the linear combination becomes wT
augxi,aug. The predicted probability for all data

points can be written as a vector p̂ where p̂i = σ(wT
augxi,aug). Define Xaug ∈ Rm×(n+1) as the

augmented design matrix. The gradient of the negative log-likelihood (the loss function we
want to minimize) with respect to waug can be expressed as:

∇waug J(waug) =
1
m

XT
aug(p̂−y) (10.24)

Gradient descent updates the weights as:

w(t+1)
aug =w(t)

aug−α∇waug J(w(t)
aug) (10.25)

where α is the learning rate. This matrix formulation leverages linear algebra operations
(e.g., inner products from Section 6.1), enhancing computational efficiency.

Example 10.9. Consider a simple binary classification problem with one feature. Suppose we have the
following data points:
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• Feature: x = −1, Class: y = 0

• Feature: x = 0, Class: y = 0

• Feature: x = 1, Class: y = 1

• Feature: x = 2, Class: y = 1

We want to train a logistic regression model to classify these points. Our model is P(y = 1|x;w,b) =
σ(wx+ b). We would initialize w and b (e.g., to 0). Then, we would iteratively update w and b using
gradient descent based on the gradients of the log-likelihood (or the binary cross-entropy loss) calculated
on these data points.

For instance, for the first data point (x = −1, y = 0), the predicted probability is p̂1 = σ(−w+b). The
contribution to the gradient would involve (0− p̂1) · (−1) for w and (0− p̂1) ·1 for b. We would do this
for all data points and sum the contributions to get the overall gradient, which we then use to update
w and b. This process is repeated until convergence.

After training, we would have the optimal values for w and b, and we could use the decision
boundary wx+ b = 0 to classify new data points.

Now, let’s compute one step explicitly. The augmented design matrix and labels are:

Xaug =


−1 1
0 1
1 1
2 1

 , y =


0
0
1
1


Initialize waug = [w,b]T = [0,0]T. Then Xaugwaug = [1,1,1,1]T, so p̂= σ([1,1,1,1]T)≈ [0.731,0.731,0.731,0.731]T

(since σ(1) ≈ 0.731). The gradient is:

∇J =
1
4

XT
aug(p̂−y) =

1
4

[
−1 0 1 2
1 1 1 1

]
0.731
0.731
−0.269
−0.269

 = 1
4

[
−0.538
0.924

]
=

[
−0.1345

0.231

]

With α = 0.1, update:

w(1)
aug = [0,0]T

−0.1 · [−0.1345,0.231]T = [0.01345,−0.0231]T

This step shifts the decision boundary toward better separating the classes.

10.4.6 Advantages and Disadvantages

Advantages:

• Simple and easy to implement.

• Provides probabilistic interpretation of the output.

• Can be regularized to prevent overfitting (see Section 8.4).
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• Performs well on linearly separable data.

Disadvantages:

• Assumes a linear relationship between the features and the log-odds of the outcome.

• Can underperform when the decision boundary is highly non-linear.

• Sensitive to multicollinearity in the features (mitigable via PCA, Section 10.1).

10.4.7 Extension to Multiclass Classification

Logistic regression can be extended to handle multiclass classification problems (where the
outcome variable has more than two categories) using techniques like:

• One-vs-Rest (OvR): Train a separate binary logistic regression classifier for each class,
where one class is treated as the positive class and all other classes are treated as the
negative class.

• Multinomial Logistic Regression (Softmax Regression): Directly models the probabil-
ities of each class using a softmax function, which generalizes the sigmoid function to
multiple classes:

P(y = k|x) =
ewT

k xaug∑K
j=1 ewT

j xaug

where K is the number of classes.

This section provides a foundational understanding of logistic regression as a linear model
for binary classification, covering its mathematical formulation, training process, and key
characteristics. It also connects to machine learning: σ(wTx+ b) resembles a neuron’s output
in neural networks (Chapter 14), and gradient descent aligns with backpropagation (Section
14.4).

412. For the dataset Xaug =

0 1
1 1
2 1

, y= [0,1,1]T, compute one gradient descent step with waug = [0,0]T,

α = 0.1.
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Chapter 11

Tensors

This chapter introduces the concept of tensors, which are a generalization of scalars, vectors,
and matrices. Tensors are essential for understanding many areas of mathematics, physics,
and computer science, particularly machine learning.

11.1 Tensor Product

Let U and V be vector spaces over a field F. A tensor product of U and V is a pair (W,⊗), where
W is a vector space over F and

⊗ : U×V→W

is a bilinear map, satisfying the following universal property:
For any vector space Z over F and any bilinear map ϕ : U×V→ Z, there exists a unique

linear map ϕ̃ : W→ Z such that the diagram commutes:

U×V W

Z

⊗

ϕ̃

11.1.1 The Bilinear Map ⊗

The map ⊗ : U ×V → W takes pairs of vectors (u,v) ∈ U ×V and maps them to elements
u⊗v ∈W. It is bilinear, meaning:

(αu)⊗v = α(u⊗v)
u⊗ (αv) = α(u⊗v)

(u1+u2)⊗v = u1⊗v+u2⊗v
u⊗ (v1+v2) = u⊗v1+u⊗v2

for all u,u1,u2 ∈ U, v,v1,v2 ∈ V, and α ∈ F. Elements of W of the form u⊗ v are called simple
tensors or elementary tensors.
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Lemma 11.1. The bilinear map ⊗ is distributive over addition in both arguments, as shown by the
properties above.

Proof. The properties follow directly from the definition of bilinearity in the construction of
W. For instance, (u1+u2)⊗ v− (u1⊗ v+u2⊗ v) is an element of the subspace S, hence zero in
the quotient W = F(U×V)/S. □

413. Verify that (2u1 −u2)⊗ (v1 + v2) = 2u1 ⊗ v1 + 2u1 ⊗ v2 −u2 ⊗ v1 −u2 ⊗ v2 using the bilinearity
properties.

414. If u1,u2 are linearly dependent in U, show that u1⊗v and u2⊗v are linearly dependent in U⊗V
for any v ∈ V.

11.1.2 The Universal Property

The universal property states that ⊗ is the "most general" bilinear map. Specifically, for any
bilinear map ϕ : U×V→ Z (where Z is any vector space), there exists a unique linear map
ϕ̃ : W→ Z such that ϕ = ϕ̃◦⊗. This means the following diagram commutes:

U×V W

Z

⊗

ϕ̃

This property completely characterizes the tensor product.

415. Suppose ϕ : U×V→ Z is bilinear and satisfies ϕ(u,v) = 0 for all u ∈ U, v ∈ V. Prove that the
corresponding ϕ̃ : W→ Z is the zero map.

416. Construct a bilinear mapϕ :R2
×R2

→R defined byϕ
((

a
b

)
,

(
c
d

))
= ac+bd. Find the corresponding

linear map ϕ̃ :R2
⊗R2

→R.

11.1.3 Existence and Construction

We construct the tensor product as follows:

1. Free Vector Space: Let F(U×V) be the free vector space generated by the set U×V.
Elements of F(U×V) are formal linear combinations of pairs (u,v), i.e., elements of the
form

∑n
i=1αi(ui,vi) where αi ∈ F, ui ∈U, and vi ∈ V.

2. Subspace of Relations: Let S be the subspace of F(U×V) generated by the elements:

(αu,v)−α(u,v)
(u,αv)−α(u,v)

(u1+u2,v)− (u1,v)− (u2,v)
(u,v1+v2)− (u,v1)− (u,v2)

These elements enforce the bilinearity relations.
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3. Tensor Product Space: Define the tensor product space W as the quotient space W =
F(U×V)/S.

4. Bilinear Map: Define the bilinear map ⊗ : U×V→W by u⊗v = (u,v)+S, where (u,v)+S
denotes the coset of (u,v) in W.

It can be verified that (W,⊗) constructed in this way satisfies the universal property.

417. Show that the elements generating S ensure that ⊗ is bilinear by verifying one of the relations in
the quotient space.

418. If U =R and V =R2, describe the elements of F(U×V) and identify one element in S.

11.1.4 Uniqueness (Up to Isomorphism)

Suppose (W,⊗) and (W′,⊗′) are two tensor products of U and V. By the universal property of
(W,⊗), there exists a unique linear map F : W→W′ such that F(u⊗v) = u⊗′ v for all u ∈U and
v ∈ V. Similarly, there exists a unique linear map G : W′→W such that G(u⊗′ v) = u⊗v.

Now, consider the map G◦F : W→W. For any simple tensor u⊗v ∈W,

(G◦F)(u⊗v) = G(F(u⊗v)) = G(u⊗′ v) = u⊗v.

Since simple tensors span W, G◦F must be the identity map on W. A similar argument shows
that F◦G is the identity on W′. Therefore, F and G are isomorphisms, inverses of each other,
demonstrating that the tensor product is unique up to isomorphism.

Theorem 11.1. The tensor product U⊗V is unique up to isomorphism.

Proof. The existence of isomorphisms F and G with G ◦F = idW and F ◦G = idW′ establishes
that W �W′. □

419. Prove that if F : W → W′ is an isomorphism satisfying F(u⊗ v) = u⊗′ v, then F−1 satisfies
F−1(u⊗′ v) = u⊗v.

420. If U = V =R, show that U⊗V �R by constructing an explicit isomorphism.

11.1.5 Spanning Set and Dimension

The set {u⊗v | u ∈U,v ∈V} spans W, but it is not generally a basis. If dim(U)=m and dim(V)= n,
then dim(U⊗V) =mn.

Theorem 11.2. If U and V are finite-dimensional vector spaces with dim(U) = m and dim(V) = n,
then dim(U⊗V) =mn.

Proof. Let {e1, . . . ,em} be a basis for U and { f1, . . . , fn} be a basis for V. The set {ei ⊗ f j | 1 ≤ i ≤
m,1 ≤ j ≤ n} spans U⊗V and has mn elements. To show it is a basis, suppose

∑
i, j ai j(ei⊗ f j) = 0.

Define a bilinear map ϕ : U×V→ F by ϕ(ei, f j) = ai j and extend linearly. By the universal
property, there exists ϕ̃ : U⊗V→ F with ϕ̃(ei⊗ f j) = ai j. Since

∑
ai j(ei⊗ f j) = 0, ϕ̃ = 0, implying

ai j = 0 for all i, j. Thus, the set is linearly independent and a basis. □
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421. If U =R2 and V =R3, compute dim(U⊗V) and write down a basis for U⊗V.

422. Prove that if U or V is infinite-dimensional, then U⊗V is infinite-dimensional.

11.1.6 Operations on Tensor Products

• Scalar Multiplication: α(u⊗v) = (αu)⊗v = u⊗ (αv)

• Addition: Defined by linearity. If w1 =
∑

i ai(ui⊗vi) and w2 =
∑

j b j(u′j⊗v′j), then

w1+w2 =
∑

i

ai(ui⊗vi)+
∑

j

b j(u′j⊗v′j).

Remark: Tensor products are fundamental in machine learning, particularly in deep learn-
ing frameworks like TensorFlow, where multi-dimensional arrays (tensors) represent data and
weights. Operations like addition and scalar multiplication on tensor products enable efficient
computation of gradients and updates in neural networks.

423. Compute 3
((

1
0

)
⊗

(
2
1

))
+2

((
0
1

)
⊗

(
1
3

))
in R2

⊗R2.

424. Show that the set of all simple tensors {u⊗v | u ∈U,v ∈ V} is not a basis if dim(U),dim(V) > 1.

11.1.7 Basis Representation and Elementary Matrices

Let {e1,e2, . . . ,em} be a basis for U and { f1, f2, . . . , fn} be a basis for V. Then the set {ei⊗ f j | 1 ≤ i ≤
m,1 ≤ j ≤ n} forms a basis for U⊗V, and any element w ∈U⊗V can be written as:

w =
m∑

i=1

n∑
j=1

ai j(ei⊗ f j),

where ai j ∈ F. The dimension of U⊗V is thus mn, as previously stated.
To represent the tensor product in matrix form, consider vectors u =

∑m
i=1 uiei ∈ U and

v =
∑n

j=1 v j f j ∈ V. The tensor u⊗v can be expressed as:

u⊗v =
m∑

i=1

n∑
j=1

uiv j(ei⊗ f j).

If we order the basis {ei ⊗ f j} (e.g., lexicographically: e1 ⊗ f1,e1 ⊗ f2, . . . ,em ⊗ fn), then u⊗ v
corresponds to a vector in Fmn with components uiv j.

For example, let U = V = R2 with basis {e1,e2} and { f1, f2}, respectively. For u =
(
u1
u2

)
and

v =
(
v1
v2

)
, the tensor u⊗v in the basis {e1⊗ f1,e1⊗ f2,e2⊗ f1,e2⊗ f2} is:

u⊗v = u1v1(e1⊗ f1)+u1v2(e1⊗ f2)+u2v1(e2⊗ f1)+u2v2(e2⊗ f2),
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represented as the vector: 
u1v1
u1v2
u2v1
u2v2

 .
This is equivalent to the Kronecker product of the coordinate vectors u =

(
u1
u2

)
and v =

(
v1
v2

)
.

425. Express
(
1
2

)
⊗

(
3
4

)
as a linear combination of the basis {ei⊗ f j} for R2

⊗R2.

426. If u=
(

1
−1

)
and v=

(
0
2

)
, compute the coordinates of u⊗v in the basis {e1⊗ f1,e1⊗ f2,e2⊗ f1,e2⊗ f2}.

11.1.8 Elementary Tensor Matrices and the Kronecker Product

For finite-dimensional spaces, we can represent simple tensors as matrices via the Kronecker
product, which provides a concrete realization of the tensor product for matrices. For matrices
A ∈ Fm×n and B ∈ Fp×q, their Kronecker product A⊗B is an mp×nq matrix defined as:

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB
...

...
. . .

...
am1B am2B · · · amnB

 ,
where ai jB is the matrix B scaled by the scalar ai j. This operation is bilinear and aligns with
the tensor product when matrices are viewed as elements of vector spaces (e.g., Fm×n � Fmn).

Consider U =Rm and V =Rn. The tensor ei⊗ f j, where ei is the i-th standard basis vector
in Rm and f j is the j-th standard basis vector in Rn, corresponds to the m×n matrix with a 1
in the (i, j)-th position and 0s elsewhere. For example, in R2

⊗R2:

• e1⊗ f1 =
(
1
0

)
⊗

(
1
0

)
=

(
1 0
0 0

)
(as a flattened 4×1 vector:


1
0
0
0

),

• e1⊗ f2 =
(
1
0

)
⊗

(
0
1

)
=

(
0 1
0 0

)
(as a flattened vector:


0
1
0
0

),

• e2⊗ f1 =
(
0
1

)
⊗

(
1
0

)
=

(
0 0
1 0

)
(as a flattened vector:


0
0
1
0

),
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• e2⊗ f2 =
(
0
1

)
⊗

(
0
1

)
=

(
0 0
0 1

)
(as a flattened vector:


0
0
0
1

).

These elementary tensors form a basis for R2
⊗R2, and any tensor can be written as a linear

combination of them.
Here are additional examples of the Kronecker product:

• Vectors: Let u =
(
1
2

)
and v =

(
3
4

)
. Then:

u⊗v =
(
1
2

)
⊗

(
3
4

)
=


1 ·3
1 ·4
2 ·3
2 ·4

 =

3
4
6
8

 ,
a 4×1 vector.

• Matrices: Let A =
(
1
2

)
and B =

(
3 4

)
. Then:

A⊗B =
(
1
2

)
⊗

(
3 4

)
=

1 ·
(
3 4

)
2 ·

(
3 4

) = (
3 4
6 8

)
,

a 2×2 matrix.

For a larger example, consider the tensor product of a 2×3 matrix and a 3×4 matrix. Let:

A =
(
1 2 3
4 5 6

)
, B =

1 2 3 4
5 6 7 8
9 10 11 12

 .
The Kronecker product A⊗B is a 6×12 matrix:

A⊗B =
(
1 ·B 2 ·B 3 ·B
4 ·B 5 ·B 6 ·B

)
=



1 2 3 4 2 4 6 8 3 6 9 12
5 6 7 8 10 12 14 16 15 18 21 24
9 10 11 12 18 20 22 24 27 30 33 36
4 8 12 16 5 10 15 20 6 12 18 24

20 24 28 32 25 30 35 40 30 36 42 48
36 40 44 48 45 50 55 60 54 60 66 72


Remark: The Kronecker product is widely used in applications such as quantum mechanics

(to describe composite systems via tensor products of state spaces) and machine learning (e.g.,
in tensor decomposition methods like CP decomposition for multi-dimensional data analysis).

427. Compute the Kronecker product
(
1
0

)
⊗

(
1 2
3 4

)
and express the result as a matrix.

428. If A is a 2×2 matrix and B is a 3×3 matrix, what is the size of A⊗B? Verify your answer with
an example.

308

https://leanpub.com/lin-alg/
https://leanpub.com/u/shaska


Shaska, T. Linear Algebra

11.2 Tensor Operations

11.2.1 Tensor Addition and Scalar Multiplication

Tensors of the same order can be added element-wise:

(A+B)i1i2...in = Ai1i2...in +Bi1i2...in

Tensors can be multiplied by a scalar:

(αA)i1i2...in = αAi1i2...in

429. If A =
(
1 2
3 4

)
and B =

(
5 6
7 8

)
, compute 2A+3B.

430. Show that tensor addition is commutative: A+B = B+A.

11.2.2 Tensor Product (Outer Product)

The tensor product (also known as the outer product) of two tensors A (of order m) and B (of
order n) results in a tensor C of order m+n:

(A⊗B)i1i2...im j1 j2... jn = Ai1i2...imB j1 j2... jn

Remark 11.1. machine learning, the outer product is used in algorithms like singular value decompo-
sition (SVD) and in constructing covariance matrices, which are critical for dimensionality reduction
techniques such as PCA.

431. Compute the outer product of
(
1
2

)
and

(
3
4

)
and verify it matches the Kronecker product result.

432. If A is a 2×3 matrix, what is the order of A⊗A? Describe its dimensions.

11.2.3 Contraction

Contraction is an operation that reduces the order of a tensor. It involves summing over a
pair of indices. For example, contracting a 2-order tensor (matrix) over its two indices gives
the trace:

Tr(A) =
∑

i

Aii

For higher-order tensors, contraction can be performed over any pair of indices.

Lemma 11.2. The trace of a rank-1 matrix A = u⊗vT (where u,v ∈Rn) is the dot product uTv.

Proof. Let u =


u1
...

un

 and v =


v1
...

vn

. Then Ai j = uiv j, and Tr(A) =
∑

i Aii =
∑

i uivi = uTv. □
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Remark 11.2. Contraction is key in physics (e.g., Einstein notation for tensor operations in relativity)
and machine learning (e.g., reducing tensor dimensions in neural network optimization).

433. Compute the trace of
(
1
2

)
⊗

(
3 4

)
and verify it equals the dot product of the vectors.

434. If A is a 3×3 matrix with Tr(A) = 5, what is Tr(2A)?

11.2.4 Examples of Tensor Operations

Consider U =V =R2. Let u =
(
1
2

)
and v =

(
3
4

)
inR2. Their tensor product u⊗v as a 2×2 matrix

is:

u⊗v =
(
1
2

)
⊗

(
3
4

)
=

(
1 ·3 1 ·4
2 ·3 2 ·4

)
=

(
3 4
6 8

)
.

Now, let w =
(
5
6

)
. Then w⊗v =

(
15 20
18 24

)
. Adding these tensors:

(u⊗v)+ (w⊗v) =
(
3 4
6 8

)
+

(
15 20
18 24

)
=

(
18 24
24 32

)
.

Scalar multiplication: 2(u⊗v) = 2
(
3 4
6 8

)
=

(
6 8
12 16

)
.

For contraction, the trace of u⊗v is:

Tr(u⊗v) = 3+8 = 11.

435. Using u =
(
1
2

)
and v =

(
3
4

)
, compute u⊗v+v⊗u and find its trace.

436. Verify that Tr(3(u⊗v)) = 3Tr(u⊗v) for the example above.
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Chapter 12

Introduction to Machine Learning

This chapter provides a brief overview of key machine learning concepts to tie together the
linear algebra principles discussed in the previous chapters. We will explore the fundamental
differences between supervised and unsupervised learning, the crucial bias-variance tradeoff,
model selection and evaluation techniques like cross-validation, and a high-level introduction
to some other common machine learning algorithms, highlighting their connections to linear
algebra.

12.1 Supervised vs. Unsupervised Learning

Machine learning can be broadly categorized into two main types: supervised learning and
unsupervised learning.

Supervised learning involves learning a mapping from inputs to outputs based on labeled
training data. The training data consists of pairs (xi,yi), where xi is the input and yi is the
corresponding desired output (or label). The goal is to learn a function f such that f (xi) ≈ yi
for unseen inputs. Examples of supervised learning tasks include:

* Classification: Predicting a categorical label (e.g., classifying images as cats or dogs).
* Regression: Predicting a continuous value (e.g., predicting house prices).
Linear algebra plays a crucial role in many supervised learning algorithms. For instance,

linear regression, logistic regression, and support vector machines (SVMs) all heavily rely on
matrix operations, vector spaces, and other linear algebra concepts.

Unsupervised learning, on the other hand, involves learning patterns and structures in
data without explicit labels. The training data consists only of inputs xi, and the goal is to
discover relationships or representations within the data itself. Examples of unsupervised
learning tasks include:

* Clustering: Grouping similar data points together (e.g., grouping customers based on
their purchasing behavior).

* Dimensionality Reduction: Reducing the number of features while preserving important
information (e.g., Principal Component Analysis - PCA).

Unsupervised learning algorithms often utilize linear algebra techniques. For example,
PCA relies heavily on eigenvalue decomposition and singular value decomposition (SVD) to
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find the principal components of the data. Clustering algorithms like k-means often involve
calculating distances between data points, which can be expressed using vector norms.

12.2 The Bias-Variance Tradeoff

A fundamental challenge in machine learning is the bias-variance tradeoff. This tradeoff
describes the balance between a model’s ability to fit the training data (low bias) and its ability
to generalize to unseen data (low variance).

* Bias: Bias refers to the error introduced by simplifying assumptions made by the model
to make the target function easier to learn. A high-bias model underfits the training data
and may fail to capture complex relationships. * Variance: Variance refers to the model’s
sensitivity to fluctuations in the training data. A high-variance model overfits the training
data, memorizing noise and performing poorly on unseen data.

Ideally, we want a model with both low bias and low variance. However, decreasing
bias often increases variance, and vice versa. Finding the right balance is crucial for good
generalization performance. Linear algebra techniques, such as regularization (L1 and L2), can
be used to control model complexity and manage the bias-variance tradeoff. Regularization
adds penalties to the loss function, which in turn affects the weight matrices and other linear
algebra components of the model.

12.3 Model Selection and Evaluation (Cross-Validation)

Model selection is the process of choosing the best model from a set of candidate models.
Model evaluation is the process of assessing the performance of a trained model. A key
challenge is that we want to estimate how well a model will perform on unseen data, but we
only have access to the training data.

Cross-validation is a technique used to address this challenge. The basic idea is to divide
the training data into k subsets (or folds). For each fold, we train the model on the remaining
k− 1 folds and evaluate it on the held-out fold. This process is repeated k times, and the
performance estimates are averaged to obtain a more robust evaluation of the model. Common
cross-validation techniques include k-fold cross-validation and leave-one-out cross-validation.

Linear algebra isn’t directly involved in the cross-validation process itself, but it’s essential
for the underlying models being evaluated. The models being compared in cross-validation
are often based on linear algebra.

12.4 A Very High-Level Introduction to Other ML Algorithms

Many other machine learning algorithms rely heavily on linear algebra. Here are a few
examples:

* Support Vector Machines (SVMs): SVMs use linear algebra to find the optimal hyper-
plane that separates data points of different classes. The kernel trick, used in SVMs, implicitly
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maps data to a high-dimensional feature space, which is often represented using linear algebra.
* Decision Trees: While decision trees are not directly based on linear algebra, some

variations, like oblique decision trees, use linear combinations of features at each node, which
can be represented using vectors and matrices.

* k-Nearest Neighbors (k-NN): k-NN is a simple algorithm that classifies a data point
based on the labels of its k nearest neighbors. Calculating distances between data points, a
key step in k-NN, involves vector norms.

This chapter has provided a brief introduction to key machine learning concepts. While
the focus has been on providing a high-level overview, it’s important to remember that linear
algebra forms the mathematical backbone of many machine learning algorithms. A solid
understanding of linear algebra is crucial for developing, understanding, and applying these
powerful techniques.
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Chapter 13

Neural Networks: A Linear Algebra
Perspective

Neural networks are powerful computational models inspired by the structure of the human
brain. They are widely used in machine learning for tasks like image recognition, natural
language processing, and many others. From a linear algebra perspective, neural networks
are essentially compositions of linear transformations and non-linear activation functions.
This chapter focuses on the linear algebra aspects of neural networks, emphasizing how
matrix multiplications represent layers, how backpropagation leverages the chain rule, and
how optimization algorithms are employed. We will not delve deeply into specific neural
network architectures, as that is a broader topic.

13.1 Neural Network Layers as Linear Transformations

At the heart of a neural network lies the concept of a layer. A layer performs a transformation
on its input, and this transformation can be largely expressed using linear algebra. Consider
a single layer with m neurons, receiving an input vector x ∈ Rn. Each neuron computes a
weighted sum of the inputs and adds a bias term:

zi =

n∑
j=1

wi jx j+bi, i = 1,2, . . . ,m, (13.1)

where wi j are the weights connecting input x j to neuron i, and bi is the bias for neuron i.
This can be compactly written in matrix form:

z =Wx+b, (13.2)

where z ∈Rm is the vector of weighted sums, W ∈Rm×n is the weight matrix, x ∈Rn is the
input vector, and b ∈ Rm is the bias vector. This equation represents a linear transformation
of the input vector x, followed by a translation by the bias vector b. The weight matrix W can
be viewed as a linear map from Rn to Rm.
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13.2 Activation Functions: Introducing Non-linearity

The linear transformation in a layer is followed by a non-linear activation function σ. This
function is applied element-wise to the vector z:

y = σ(z), (13.3)

where y ∈Rm is the output of the layer. Common activation functions include:
* Sigmoid: σ(z) = 1

1+e−z . The sigmoid function squashes the input to a range between 0
and 1. It was historically popular but is less used now due to vanishing gradients. * Tanh:
σ(z) = tanh(z). The tanh function squashes the input to a range between -1 and 1. It is similar
to sigmoid but centered at 0, which often leads to faster convergence. * ReLU (Rectified
Linear Unit): σ(z) =max (0,z). ReLU is a piecewise linear function that outputs 0 if the input
is negative and the input itself if it is positive. It is very popular due to its simplicity and
effectiveness in mitigating the vanishing gradient problem.

Activation functions introduce non-linearity, which is crucial for neural networks to learn
complex patterns in data. Without non-linearity, a neural network would simply be a com-
position of linear transformations, which could be represented by a single linear transfor-
mation. Specifically, if we had two linear layers: z1 = W1x+b1 and z2 = W2z1 +b2, then
z2 =W2(W1x+b1)+b2 = (W2W1)x+ (W2b1 +b2), which is just another linear transformation
with weight matrix W2W1 and bias vector W2b1+b2.

13.3 Multi-Layer Networks: Composing Linear Transforma-
tions

A neural network consists of multiple layers stacked together. The output of one layer becomes
the input to the next. For a network with L layers, the output y(L) can be expressed as:

y(L) = σL(W(L)x(L−1)+b(L)), (13.4)

where x(L−1) = y(L−1) is the output of the (L−1)-th layer. This shows how matrix multipli-
cations and activation functions are composed to form the overall transformation performed
by the network. The composition of linear transformations and non-linear activations allows
the network to learn highly non-linear and complex mappings from input to output.

13.4 Backpropagation: The Chain Rule in Action

Training a neural network involves adjusting the weights and biases to minimize a loss
function L that measures the difference between the network’s output ŷ and the true target
values y. This is typically done using gradient descent or related optimization algorithms.
A crucial step is computing the gradient of the loss function with respect to each weight and
bias. This is where backpropagation comes in.
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Backpropagation is an efficient algorithm for computing gradients by leveraging the chain
rule of calculus. Because the network is a composition of functions, the gradient of the loss
function with respect to a weight in an earlier layer can be computed by propagating the
gradient backwards through the network. Specifically, if we have two layers, the gradient of
the loss with respect to the weights W1 in the first layer can be computed using the chain rule:

∂L
∂W1

=
∂L
∂y2

∂y2

∂z2

∂z2

∂y1

∂y1

∂z1

∂z1

∂W1
, (13.5)

where y1 and z1 are the output and weighted sum of the first layer, and y2 and z2 are the
output and weighted sum of the second layer. This process is repeated for all layers, moving
backwards from the output layer to the input layer.

13.5 Optimization Algorithms: Minimizing the Loss

Once the gradients are computed using backpropagation, optimization algorithms are used
to update the weights and biases. A basic algorithm is gradient descent:

θt+1 = θt−α∇L(θt), (13.6)

where θ represents the network’s parameters (weights and biases), α is the learning rate,
and ∇L(θ) is the gradient of the loss function.

More sophisticated optimization algorithms, such as Adam, RMSprop, and others, use
adaptive learning rates and other techniques to improve convergence. These algorithms
often involve matrix operations and vector manipulations. For example, Adam updates the
parameters using exponentially decaying averages of the past gradients and the squared
gradients.

13.6 Conclusion

This chapter has highlighted the crucial role of linear algebra in neural networks. Matrix
multiplications are used to represent the linear transformations within each layer, and the chain
rule is essential for backpropagation. Optimization algorithms, which often rely on linear
algebra operations, are then used to update the network’s parameters. While neural networks
involve many other concepts, understanding the underlying linear algebra is fundamental to
grasping how these powerful models work.
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