Computational Algebra: Classical Foundations

and Quantum Algorithms

Your Name

Preface

This set of lecture notes is designed for a course on Quantum Computational Al-
gebra, which evolves traditional computational algebra toward quantum-enhanced
methods. The course bridges abstract algebraic structures with efficient classi-
cal algorithms, gradually introducing quantum computing to explore speedups in
problems like factoring, solving polynomial systems, and lattice reductions.

Targeted at upper-level undergraduates or graduate students, it assumes pre-
requisites in abstract algebra, linear algebra, and basic programming. We rec-
ommend familiarity with a computer algebra system (CAS) like SageMath and
quantum simulation tools like Qiskit. Throughout the course, we will primarily use
Python with the SymPy library for symbolic computations, alongside SageMath as
the main CAS for advanced algebraic manipulations and integrations with quantum
tools.

The progression starts with classical foundations, drawing from Ideals, Vari-
eties, and Algorithms” by Cox et al. [4] and Modern Computer Algebra” by von zur
Gathen and Gerhard [5]. Midway, we shift to quantum concepts, supplemented by
“Quantum Computation and Quantum Information” by Nielsen and Chuang [10].

Each chapter includes sections with key concepts, algorithms, and connections
between classical and quantum approaches. Exercises involve proofs, implementa-
tions, and simulations. The course spans 12-15 weeks, with assessments including
homework, exams, and a final project.

These notes provide a skeleton for lectures, to be expanded with examples,
proofs, and code snippets during teaching.

Contents

Preface

Chapter 1. Introduction to Computational Algebra
1. Overview of Symbolic Computation
2. Computer Algebra Systems (CAS) Tools
3. Complexity Analysis Basics

Chapter 2. Polynomial Arithmetic and Data Structures
1. Polynomial Representations
2. Basic Operations
3. Evaluation and Interpolation
4. Python Project

Chapter 3. Greatest Common Divisors and Euclidean Algorithms
1. Euclidean Algorithm for Integers
2. Polynomial GCDs
3. Advanced Techniques
4. Python Project

Chapter 4. Projective Spaces and Weighted Projective Spaces
1. Projective Spaces
2. Normalizing points in the Projective space
3. Weighted Projective Spaces
4. Normalizing points in the Weighted Projective space

Chapter 5. Grobner Bases and Buchberger’s Algorithm
1. Ideals and Monomial Orders

Buchberger’s Algorithm

Elimination Theory

Grobner Bases for Systems

Python Project

Ol N

Chapter 6. Introduction to Quantum Computing
1. Quantum Fundamentals
2. Quantum Gates and Circuits
3. Quantum Linear Algebra Review

Chapter 7. Quantum Algorithms Basics
1. Quantum Fourier Transform (QFT)
2. Grover’s Search Algorithm
3. Shor’s Algorithm

Chapter 8. Hidden Subgroup Problem and Group-Theoretic Algorithms
1. Hidden Subgroup Problem (HSP) Framework
2. Applications to Number Theory
3. Algebraic Extensions

N ow

15
15
17
18
18

21
21
22
23
25

27
27
28
29
30

33
33
34
35
36
37

39
39
41
44

47
47
49
50

o1
ol
92
52

6 CONTENTS

Chapter 9. Quantum Linear Algebra
1. Harrow-Hassidim-Lloyd (HHL) Algorithm
2. Quantum Singular Value Decomposition (QSVD)
3. Connections to Classical Algebra

Chapter 10. Lattice Reduction and Quantum Attacks
1. Classical Lattice Reduction
2. LLL Algorithm
3. Quantum Algorithms for Lattices

Chapter 11. Advanced Quantum Algebraic Algorithms
1. Quantum Walks on Graphs
2. Nonlinear Polynomial Systems
3. Recent Developments

Chapter 12. Applications and Quantum Algebraic Geometry

1. Quantum Error Correction and Codes
2. Cryptography Implications

Bibliography

55
55
56
o7

99
99
59
60

63
63
64
65

67
67
67

69

CHAPTER 1

Introduction to Computational Algebra

In the modern landscape of mathematics, data science, cryptography, and quan-
tum information, algebraic methods play a foundational role. Yet many of the
structures we study—polynomial rings, number fields, ideals, and varieties—are
too complex to handle without computational assistance. Computational alge-
bra bridges the abstract world of algebra with the practical power of algorithmic
computation. These notes are designed to introduce both the theory and practice
of symbolic computation, with an eye toward applications in quantum computing
and emerging technologies.

1. Overview of Symbolic Computation

Computational algebra, also known as symbolic computation, is a field at the
intersection of mathematics and computer science. Its goal is to design and analyze
algorithms that manipulate algebraic expressions and mathematical objects in an
exact, symbolic form. Unlike numerical computation, which approximates quanti-
ties using floating-point arithmetic, symbolic methods maintain the exact structure
of expressions.

For example, solving the equation 22 — 2 = 0 numerically yields an approxi-
mation z & 1.414, while symbolic computation produces the exact answer z = /2.
Symbolic approaches are crucial in applications where precision is essential, such
as theorem proving, cryptographic protocol design, and the study of algebraic ge-
ometry.

Historically, symbolic manipulation dates back to early developments in algebra
by mathematicians like Al-Khwarizmi and Newton. The field gained momentum
with the advent of modern computing. Early systems like MACSYMA, Reduce,
and Scratchpad paved the way for today’s powerful Computer Algebra Systems
(CAS), including Mathematica, Maple, and the open-source SageMath [3].

Symbolic computation is deeply intertwined with the theory of polynomial
ideals, algebraic varieties, and exact algorithms for manipulating algebraic num-
bers and functions. Its applications extend to areas such as:

e Algebraic geometry: computing intersections of varieties or solving
systems of polynomial equations.

e Number theory: computing GCDs of polynomials, modular arithmetic,
or algebraic number fields.

e Coding theory and cryptography: using polynomial rings and finite
fields in the design and breaking of codes.

e Quantum computing: where algebraic representations of states and
circuits are essential.

This course builds a bridge between classical symbolic computation and its
quantum analogs. Quantum algorithms such as Shor’s factoring algorithm and
Grover’s search illustrate how quantum computers can solve symbolic problems
exponentially faster than their classical counterparts. These notes will introduce

7

8 1. INTRODUCTION TO COMPUTATIONAL ALGEBRA

key algorithms, theoretical tools, and software systems used in both classical and
quantum computational algebra.

2. Computer Algebra Systems (CAS) Tools

Computer Algebra Systems (CAS) are essential tools in modern computational
algebra. They automate symbolic manipulations such as polynomial arithmetic,
matrix operations, ideal computations, and algebraic geometry. In this course, we
focus on two primary systems:

e SageMath — an open-source CAS built on Python, integrating libraries
for algebra, number theory, and geometry.

e SymPy — a pure Python library for symbolic computation, useful for
lightweight tasks and scripting.

We also introduce Qiskit for quantum algorithm simulations, especially for
modules on quantum linear algebra and factoring.

2.1. Polynomial Rings in SageMath. SageMath offers robust support for
constructing polynomial rings over various base rings or fields.

2.1.1. Univariate Polynomial Rings. To define a polynomial ring in one variable
over the rationals:

R.<x> = PolynomialRing(QQ)
f = x"2 + 3xx + 2
f.factor () # Output: (x + 1)*(x + 2)

You can perform standard operations:

f + x"2 to add polynomials,

f x (x = 1) to multiply,

f.derivative() for derivatives,

f.roots() to find roots (in an algebraic closure).

2.1.2. Multivariate Polynomial Rings. To define a polynomial ring in two vari-
ables:

R.<x, y> = PolynomialRing(QQ, 2)
f = x"2 + y"2 + x*y

g = x"3 -y

h=f xg

h.expand ()

You can also specify a monomial ordering:

R.<x, y> = PolynomialRing(QQ, order=’1lex’) # Lexicographic order

Sage handles:

e Arithmetic operations across multivariate polynomials.
e Substitutions: f.subs({x:1, y:2})
e Evaluation over finite fields or number fields.

2.2. Matrix Algebra in SageMath. SageMath provides comprehensive lin-
ear algebra functionality.

A = matrix(QQ, [[1, 21, [3, 411)
A.transpose ()

A.det ()

A.inverse ()

A.eigenvalues ()

Matrices can be defined over various rings, such as F,:

2. COMPUTER ALGEBRA SYSTEMS (CAS) TOOLS 9

F = GF(7)
B = matrix(F, [[2, 3], [4, 511)
B"10

2.3. Basic SymPy Usage in Python. SymPy is ideal for lightweight sym-
bolic tasks or projects not requiring the full Sage environment.

from sympy import symbols, expand, factor, simplify, solve

X, Yy symbols(’x y’)

expr = (x + y)*x=*2

expanded = expand(expr)

factored = factor (expanded)

simplified = simplify ((x**2 + 2xx + 1)/(x + 1))

roots = solve(x**2 - 4, x)

SymPy can also interface with LaTeX and render output:

from sympy import latex
print(latex(expr))

2.4. Quantum Circuit Simulation with Qiskit. To prepare for quantum
modules, Qiskit provides a Python interface for building and simulating quantum
circuits.

from giskit import QuantumCircuit
gqc = QuantumCircuit(2)

qc.h(0)

qc.cx(0, 1)

qc.measure_all ()

qc.draw(’mpl’)

This allows classical simulation of quantum gates and measurements and sup-
ports execution on real quantum hardware via IBM Q Experience.

2.5. Installation and Setup.

e SageMath: Download from https://www.sagemath.org or use cloud-
based versions at https://cocalc.com.
e SymPy: Install via pip install sympy.
e Qiskit: Install with pip install giskit.
We encourage students to experiment interactively with Sage notebooks or
Python scripts as they read these notes.

https://www.sagemath.org
https://cocalc.com

10 1. INTRODUCTION TO COMPUTATIONAL ALGEBRA

3. Complexity Analysis Basics

An essential aspect of algorithm design is analyzing its computational com-
plexity. This tells us how the running time (or space usage) of an algorithm
grows with the input size, typically denoted as a function of parameters like n (e.g.,
the degree of a polynomial or the bit-length of an integer). In computational al-
gebra, complexity analysis is crucial because algorithms often operate on objects
with multi-dimensional sizes, such as polynomials where both the degree d and the
maximum coefficient bit-length b contribute to the overall cost.

For example, consider the multiplication of two univariate polynomials f(z), g(x) €
Z[z] of degree at most d with coefficients bounded by 2° in absolute value. The
naive algorithm requires O(d?) arithmetic operations, but each operation (multipli-
cation or addition of integers) costs O(b?) time using schoolbook methods, leading
to a total time of O(d?b?). This highlights the need for precise bounds that account
for all input parameters.

3.1. Asymptotic Notation. To express complexity rigorously, we use as-
ymptotic notations that describe the behavior as the input size approaches infinity.
These notations focus on the dominant terms and ignore constant factors, providing
a high-level view of scalability.

Formally, let f,g: N — R be functions. We say:

e Big-O Notation (O(f(n))): g(n) = O(f(n)) if there exist constants
¢ > 0 and ng > 0 such that g(n) < ¢- f(n) for all n > ng. This bounds
the growth from above.

Adding two degree-n polynomials: The running time T'(n) satisfies
T'(n) = O(n), as it involves at most n+1 coefficient additions, each
constant-time assuming fixed-size coefficients.

e Big-Omega Notation (Q2(f(n))): g(n) = Q(f(n)) if there exist con-
stants ¢ > 0 and ng > 0 such that g(n) > ¢- f(n) for all n > ng. This
bounds the growth from below.

Naive polynomial multiplication: T'(n) = Q(n?), since comput-
ing the product requires calculating at least (n + 1)2/4 non-trivial
coefficient products in the worst case.

e Big-Theta Notation (O(f(n))): g(n) = ©(f(n)) if g(n) = O(f(n)) and
g(n) = Q(f(n)). This provides a tight asymptotic bound.

Mergesort for sorting n elements: T'(n) = O(nlogn), as the al-
gorithm divides the array recursively (logn levels) and merges at
each level in O(n) time.

To illustrate, consider proving that the sum S(n) =14+2+---4+n=n(n+1)/2
is ©(n?). Clearly, S(n) < n? for n > 1 (so O(n?) with ¢ = 1), and S(n) > n?/2 for
n >1 (so Q(n?) with ¢ = 1/2), hence ©(n?).

3. COMPLEXITY ANALYSIS BASICS 11

In computational algebra, input sizes are often composite: for multivariate
polynomials in v variables of total degree d, the number of monomials is (div) =
O(d?/v!), leading to complexities exponential in v.

3.2. Classical Complexity in Algebraic Algorithms. Many algebraic prob-
lems exhibit a range of complexities, from polynomial to exponential. Below, we
detail key examples with mathematical derivations where appropriate.

Algorithm Time Complexity Space Complexity
Polynomial Addition (degree n) O(n) O(n)

Naive Multiplication (degree n) O(n?) O(n)
Karatsuba Multiplication O(n'°823) ~ O(n'-58%) O(n)
FFT-based Multiplication O(nlognloglogn) O(n)

Trial Division Factoring (N = 2°) 0(2%?) O(b)
Euclidean GCD (integers, bit-length b) O(b?) worst-case O(b)
Extended Euclidean (for inverses) O(b?) O(b)
Grobner Basis (worst-case, v variables) — O(d?") for degree d Exponential

TABLE 1. Complexities of Common Algebraic Operations (assum-
ing unit-cost arithmetic unless noted)

For the Euclidean algorithm on integers a > b > 0 with bit-length b =
log, max(a,b), the number of steps is at most O(b) (by Fibonacci worst-case),
and each step involves division costing O(b?) with schoolbook methods, yielding
O(b%) total; however, using fast division, it’s O(b?). Over fields like Q, we must ac-
count for rational coefficients: each GCD step can increase numerator/denominator
bits by 1, so after k steps, bits are O(k), leading to total time O(d?) for degree-d
polynomials where k& < d.

Symbolic methods are prone to coefficient explosion, where intermediate results
have coefficients with bit-lengths growing exponentially. For instance, in the subre-
sultant Euclidean algorithm for polynomials f, g € Z[x] of degree d and coefficient
bound 2%, the bit-length of coefficients in remainders can grow to O(d(b + logd)),
making naive time O(d3(b + logd)?). Modular techniques mitigate this: compute
GCD modulo several primes p; (each O(d?logp;)), then reconstruct using the Chi-
nese Remainder Theorem in O(d(b + logd)?), reducing overall to softly linear in
input size [5].

3.3. Classical Complexity Classes. Understanding where algebraic prob-
lems fit in the complexity hierarchy helps identify hard problems amenable to quan-
tum speedups. These classes are defined relative to Turing machines.

e P (Polynomial Time): Solvable deterministically in O(n*) time for
constant k. Examples: GCD via Euclidean algorithm (k = 2 for bit
operations), basic polynomial arithmetic like interpolation using Lagrange
formula in O(n?).

¢ NP (Nondeterministic Polynomial Time): Verifiable in polynomial
time given a certificate. Includes integer factorization (FACT: given fac-
tors, multiply to verify in O(b?)), Hilbert’s Nullstellensatz (deciding if a
polynomial system has a complex solution, NP-complete).

e EXP (Exponential Time): Solvable in O(2"") time for constant c.
Examples: General ideal membership testing via Grobner bases, which in
worst case requires enumerating 2°(*) monomials for v variables.

12 1. INTRODUCTION TO COMPUTATIONAL ALGEBRA

Problems like FACT are in NP N coNP but believed outside P, underpinning
public-key cryptography (e.g., RSA security assumes FACT hardness). The poly-
nomial hierarchy extends this, with £’ containing quantifier-alternating problems
like minimizing quadratic forms over integers.

3.4. Quantum Complexity and Speedups. Quantum computing redefines
tractable problems through parallelism via superposition and entanglement, mod-
eled by quantum circuits.

¢ BQP (Bounded-error Quantum Polynomial Time): Problems solv-
able on a quantum computer in O(Poly(n)) time with error < 1/3. For
FACT of N = 2%, Shor’s algorithm uses period-finding: find order r of a
mod N where r divides ¢(NN), via quantum phase estimation on unitary
Ulz) = |a® mod N), in O(b®) gates (QFT on O(b)-qubit register costs
0(b?)).

¢ QMA (Quantum Merlin-Arthur): Quantum analog of NP, with quan-
tum proofs verifiable in BQP. Relevant for ground state energy of algebraic
Hamiltonians or variety isomorphism testing.

Key quantum primitives include:

e Quantum Fourier Transform (QFT): Approximates the discrete Fourier
. M R . i
transform f(k) = ﬁ ijol f(j)wi® where w = €2™/M using O((log M)?)
gates (vs. classical FFT O(M log M)), crucial for Shor’s phase estimation
e2m% x5 7 1.

e Grover’s Search: For unstructured search over N items, amplifies am-
plitude of marked states via O(v/N) iterations of oracle and diffusion, pro-
viding quadratic speedup; e.g., find root of polynomial mod p in O(,/p)
vs. classical O(p).

However, relativized separations (e.g., parity requires Q(N) queries classical-
ly/quantumly in some oracles) show quantum advantages are problem-specific.

3.5. Practical Considerations. In practice, asymptotic bounds hide con-
stants: Karatsuba (O(n!*®%)) outperforms naive O(n?) only for n > 100 typically,
due to recursion overhead. Tools like SageMath allow empirical profiling—e.g., time
polynomial multiplication for increasing d to observe crossovers.

For bit-precise analysis, consider models like the multi-tape Turing machine,
where integer multiplication costs O(blogbloglogb) with FFT.

Quantum practically faces NISQ (Noisy Intermediate-Scale Quantum) limita-
tions: Shor’s requires thousands of logical qubits with error rates < 10710, so hybrid
variational algorithms (e.g., VQE for algebraic optimization) combine classical gra-
dient descent with quantum sampling.

Coefficient management: Probabilistic Monte Carlo methods, like randomized
GCD over finite fields with success probability 1 — 1/p, run in O(log? p) expected
time, avoiding deterministic worst-cases.

This foundational knowledge equips you to evaluate algorithms throughout the
course, blending theory with practice. For in-depth exploration, refer to [5] for
classical analyses and [10] for quantum frameworks.

Exercises

1.1. Prove that matrix multiplication of n x n matrices over a ring is O(n?)
naively. Hint: Count the number of scalar multiplications in the triple sum Zi, ik @ikDkj -

1.2. Analyze the complexity of Horner’s method for polynomial evaluation.
Show it’s ©(n) by deriving upper and lower bounds on operations.

3. COMPLEXITY ANALYSIS BASICS 13

1.3. Implement trial division in Python for factoring small composites (up to
50 bits). Estimate the time for a 1024-bit semiprime using big-O bounds.

1.4. Prove the Euclidean algorithm for integers terminates in O(logb) steps for
bit-length b. Use the Fibonacci sequence to exhibit the worst case.

1.5. Implement naive and Karatsuba multiplication in Python (using lists for
dense polynomials). Time them for degrees 10 to 1000 and plot to verify asymptotic
improvements.

CHAPTER 2

Polynomial Arithmetic and Data Structures

Polynomials lie at the heart of computational algebra. They serve not only
as basic algebraic objects but also as the foundation for constructing more ad-
vanced structures such as rings, ideals, algebraic varieties, and modules. Their
manipulation, through arithmetic and structural operations, is central to symbolic
computation and has profound implications in algebraic geometry, number theory,
coding theory, and even quantum computing. This chapter introduces the fun-
damental aspects of polynomial arithmetic and its algorithmic foundations. We
focus on how polynomials are represented in software systems, the algorithms for
performing arithmetic operations efficiently, and classical techniques for evaluation
and interpolation. These foundational ideas form the backbone of more advanced
topics, such as polynomial factorization, Grébner bases, and resultants, which we
will encounter in later chapters.

By the end of this chapter, students will be able to:

e Understand and implement different representations of polynomials.

e Perform basic arithmetic operations on polynomials and analyze their
complexities.

e Apply evaluation and interpolation techniques, including previews of quan-
tum enhancements.

e Develop Python code for polynomial manipulation using SymPy and com-
pare classical methods.

1. Polynomial Representations

A polynomial over a ring R, such as f(z) = Y1 ja;a" with coefficients a; € R,
can be represented in several ways depending on the structure and sparsity of the
polynomial. The choice of representation affects both the performance of algorithms
and the amount of memory required.

In practice, two main types of representations are used: dense and sparse. In
dense representations, every coefficient is stored, including zeros. This is efficient
when most coefficients are nonzero. Sparse representations, on the other hand,
store only the nonzero terms and are more efficient for polynomials with a high
degree and few nonzero terms.

Dense representations typically use arrays indexed by the exponent. For exam-
ple, the polynomial f(x) = 323 + 222 + x + 4 is represented as the list [4,1,2, 3],
with the ith entry corresponding to the coefficient of z?. This allows constant-time
access and fast arithmetic, but can be inefficient in memory when the polynomial
has few nonzero terms and high degree.

In SageMath, a dense polynomial can be constructed and examined as follows:

15

16 2. POLYNOMIAL ARITHMETIC AND DATA STRUCTURES

SageMath Dense Polynomial Example

R.<x> = PolynomialRing(ZZ)
f = 3*xx"3 + 2*x"2 + x + 4
print(f.coefficients(sparse=False)) # [4, 1, 2, 3]

Sparse representations store only the degrees and coefficients of nonzero terms.
This is often implemented using dictionaries, where the keys are degrees and the
values are coefficients. For instance, f(x) = 210 + 1 can be stored as {0: 1,
1000: 1}. While this saves memory, accessing and modifying coefficients becomes
slightly more expensive.

Here is a custom implementation of a sparse polynomial in Python:

Custom Sparse Polynomial in Python

from collections import defaultdict
class SparsePoly:
def __init__(self):

self.coeffs = defaultdict(int)

def set_coeff (self, deg, coeff):
if coeff != 0:
self.coeffs[deg] = coeff
elif deg in self.coeffs:
del self.coeffs[deg]
def __str__(self):
if not self.coeffs:
return "0"

terms = sorted(self.coeffs.items(), reverse=True)
return " + ".join(f"{c}x"{d}" if d > @ else f"{c}"
for d, ¢ in terms if c != 0).
replace("+ =", "- ")

p = SparsePoly()
p.set_coeff (0, 1)
p.set_coeff (1000, 1)
print(p) # x"1000 + 1

In multivariate cases, dense representations require multi-dimensional arrays,
quickly becoming infeasible for high-degree polynomials in many variables. Sparse
representations use tuples of exponents as dictionary keys, e.g., (2,1) representing

2
T4y,
For instance, in SageMath, multivariate polynomials can be handled sparsely:

SageMath Multivariate Sparse Polynomial

R.<x,y> = PolynomialRing(QQ, order=’lex’)

f = x"2xy + y“100
print(f.coefficients(sparse=True)) # [1, 1]
print (f.exponents()) # [(2, 1), (0, 100)]

Modern systems like SageMath and SymPy automatically select the appro-
priate representation based on the density of the polynomial. For advanced data

2. BASIC OPERATIONS 17

structures, linked lists or trees may be used for sparse multivariate polynomials to
allow efficient insertions and deletions.

2. Basic Operations

Once a polynomial is represented, we can perform algebraic operations such
as addition, multiplication, and division. The algorithms used differ depending on
whether the representation is dense or sparse.

2.1. Addition and Subtraction. For dense polynomials, addition is imple-
mented as element-wise addition of arrays and takes O(n) time for polynomials of
degree n. For sparse polynomials, addition involves merging sorted lists or combin-
ing dictionary keys, typically in O(t; + t2) time where ¢; is the number of nonzero
terms in the ith polynomial.

An example using SymPy:

SymPy Polynomial Addition

from sympy import Poly, symbols

X = symbols(’x’)

pl Poly (x**2 + 3xx + 2)

p2 Poly (2*%x**2 + x)

print(pl + p2) # Poly(3*x#**2 + 4xx + 2, X

, domain=’Z727")

Subtraction follows similarly by negating coefficients.

2.2. Multiplication. The naive multiplication algorithm computes all pair-
wise products of terms and adds them, resulting in O(n?) complexity. More efficient
methods include Karatsuba’s algorithm and FFT-based multiplication.

Karatsuba’s algorithm is a divide-and-conquer approach that reduces mul-
tiplication to three subproblems of half the size, achieving O(n!°823) ~ O(n!-589)
complexity. For two polynomials f = fi2™/2 + fy and g = g12™/? + gy, the product
is computed as:

fg=(fg))z" + [(fo + f1)(g0 + g1) — fogo — frg1]2""* + fogo.

FFT-based multiplication uses the Fast Fourier Transform to evaluate the
polynomials at special points, multiply pointwise, and interpolate. This reduces
the time complexity to O(nlogn) but requires a field with enough roots of unity
(e.g., complex numbers or finite fields with suitable structure).

In practice, systems like SageMath use FFT for large degrees over supported
fields.

2.3. Division and Remainder. The division algorithm states that for poly-
nomials f,g € R[z] with g # 0, there exist unique polynomials ¢, such that
f =qg+r and deg(r) < deg(g). The algorithm proceeds by subtracting appropri-
ate multiples of g from f and is analogous to long division.

The complexity is O(nm) for polynomials of degrees n and m, respectively.
Over fields, exact division is possible if r = 0.

Handling coefficient rings requires care: over integers, one must manage content
and primitive parts to avoid fraction fields unless necessary.

18 2. POLYNOMIAL ARITHMETIC AND DATA STRUCTURES

3. Evaluation and Interpolation

Evaluating a polynomial at a point is a fundamental operation. A naive method
requires computing powers of the evaluation point explicitly, resulting in O(n?)
complexity. Horner’s rule improves this by rewriting the polynomial as a nested
expression and evaluating it using only O(n) additions and multiplications.

For example, f(z) = az2® + axz? + a1x + ag = ((azx + a2)z + a1)x + ao.

Horner’s Rule in Python

def horner(f_coeffs, a):
result = 0
for coeff in reversed(f_coeffs):
result = result *x a + coeff
return result
print (horner ([4, 1, 2, 31, 2)) # Evaluates f(2) for f(x) = 3
Xx"3 + 2x"2 + x + 4 = 36

Polynomial interpolation is the inverse problem: given a set of points {(z;, y;)},
find a polynomial f such that f(x;) = y; for all i. There are several classical
methods for interpolation:

Lagrange interpolation constructs the interpolating polynomial as a sum of
Lagrange basis polynomials:

This method is conceptually simple but has O(n?) complexity.

Newton interpolation builds the polynomial incrementally using divided dif-
ferences, with the same complexity but better adaptability to incremental updates.
The divided difference table allows expressing f(z) = ap+a1(x —xzo)+- -+ an(x —
o) (T — Tpo1).

For specialized points (e.g., roots of unity), FFT-based interpolation achieves
O(nlogn) time, previewing quantum Fourier transform applications where QFT
enables even faster evaluations in superposition.

In SymPy, interpolation is straightforward:

SymPy Interpolation

from sympy import interpolating_poly
interpolating_poly (3, x, X=[0,1,2], Y=[1,4,9]) #
Interpolates quadratic through (0,1),(1,4),(2,9)

Understanding these operations is critical for later topics in algebraic algo-
rithms, especially GCD computation, factorization, and solving systems of poly-
nomial equations. Quantum previews, like using QFT for fast evaluation, hint at
speedups in Chapters 7 and 8.

4. Python Project

Develop a Python class using SymPy to represent and manipulate sparse poly-
nomials. Implement efficient multiplication using the Karatsuba algorithm and test
it against SymPy’s built-in methods for large polynomials.

4. PYTHON PROJECT 19

Extend the class to support multivariate polynomials and compare the per-
formance of naive vs. Karatsuba multiplication on polynomials of degree up to
1024. Include timing benchmarks and a report on when each method is preferable.
Optionally, integrate with Qiskit to simulate quantum-enhanced evaluation using
a simple QFT circuit.

Exercises

2.1. Implement a dense polynomial class in Python with addition and multi-
plication. Compare memory usage to sparse for 2190 + 1.

2.2. Use the master theorem to prove that Karatsuba’s recurrence T'(n) =
3T(n/2) + O(n) solves to O(nlo823).

2.3. Derive Horner’s rule for f(z) = azx® + as2? + a1 + ag and show O(n)
operations.

2.4. Compute the Lagrange interpolating polynomial for points (0, 1), (1, 2), (2, 5).
Then implement it in Python.

2.5. Discuss why sparse representations are preferred for multivariate polyno-
mials. What is the complexity of addition in terms of number of variables and
terms?

2.6. Prove that over a field, the interpolating polynomial of degree at most
n — 1 through n distinct points is unique.

2.7. Implement FFT-based multiplication in Python using NumPy (for classical
simulation) and discuss its relation to QFT.

CHAPTER 3

Greatest Common Divisors and Euclidean
Algorithms

The greatest common divisor (GCD) is a fundamental concept in algebra, es-
sential for factorization, simplification of fractions, and solving Diophantine equa-
tions. This chapter explores the Euclidean algorithm for integers and polynomials,
building directly on the arithmetic operations from Chapter 2 (e.g., division and
remainder computation). We address challenges like coefficient explosion and intro-
duce optimizations, drawing from von zur Gathen and Gerhard [5] for algorithmic
details and Cox et al. [4] for geometric connections via resultants. These techniques
are crucial for factorization in Chapter 4 and solving systems in Chapter 6.

1. Euclidean Algorithm for Integers

The Euclidean algorithm computes ged(a, b) using repeated division, relying on
efficient remainder operations from Chapter 2.

THEOREM 1.1 (Termination and Correctness). For a > b > 0, the algorithm
terminates in O(logb) steps, returning ged(a, b).

PROOF. By induction: Base case b = 0, gcd(a,0) = a. Inductive step: ged(a, b)
ged(b,a mod b), and @ mod b < b strictly decreases the arguments. The worst-
case number of steps is approximately 1.441og, b (Fibonacci sequence). O

Example 1.2. gcd(252,105): 252 mod 105 = 42, 105 mod 42 = 21,42 mod 21 =
0 — ged = 21.

Standard implementation in Python:

def gcd(a, b):

while b:
a, b=>b, a%b
return a

1.1. Extended Version. The extended Fuclidean algorithm computes Bézout
coefficients s, ¢ such that ged(a,b) = sa + tb, useful for modular inverses and linear
Diophantine equations.

Recursive implementation:

def extended_gcd(a, b):
if not a:
return b, 0, 1
d, x, y = extended_gcd(b % a, a)
return d, y - (b // a) * x, x

For example, extended_gcd(252, 105) returns (21,—2,5), so 21 = —2- 252 +
5-105.

Applications: Finding modular inverses if ged(a,m) = 1 (e.g., inverse of 17
mod 312), and in finite field arithmetic introduced in Chapter 2.

21

22 3. GREATEST COMMON DIVISORS AND EUCLIDEAN ALGORITHMS

1.2. Coefficient Growth and Modular Reductions. Bézout coefficients
grow in size up to O(logmax(a,b)) bits, but Python’s arbitrary-precision integers
handle this seamlessly. For efficiency in large inputs, compute GCD modulo small
primes first and lift solutions using techniques previewing Hensel lifting in Chapter
4. Coefficient explosion can be mitigated by binary GCD variants, which avoid
large quotients.

Example 1.3. For large Fibonacci numbers, the standard algorithm performs well,
but binary GCD reduces multiplications: Replace division with shifts and subtrac-
tions.

1.3. Exercises. Exercises

(1) Prove that ged(a,b) = ged(b, a — bg) for any integer g.

(2) Implement the extended GCD in Python; use it to find the inverse of 17
modulo 312.

(3) Show the worst-case number of steps using Fibonacci numbers: ged(Fi41, Fp) =
1 requires n steps.

(4) Estimate the bit complexity: Each operation costs O((loga)?) per step
using schoolbook arithmetic.

(5) Compare the standard Euclidean algorithm with the binary GCD on large
inputs (e.g., 1000-bit numbers) for runtime.

2. Polynomial GCDs

Extending the algorithm to polynomial rings K[z| over a field K, using poly-
nomial division from Chapter 2.

2.1. Euclidean Algorithm over Fields. Replace integers with polynomials:
Compute remainders until zero. For polynomials f, g of degrees d > m, the quotient
is obtained by dividing leading terms, then subtracting.

Complexity: O(d?) polynomial operations, but over Q, rational coefficients lead
to O(d?) time due to fraction handling.

Using SymPy (as an alternative to SageMath for lightweight examples):

from sympy import symbols, gcd
X symbols(’x’)

f = X*%3 + 3*xx*x*x2 + 2%xx + 1

g = X* %2 + x + 1

print(gcd(f, g)) # x + 1

For multivariate polynomials, treat as univariate in one variable, but this is
incomplete; full treatment requires Grobner bases in Chapter 5.

2.2. Subresultants for Multivariate Cases. To avoid fraction growth in
Z[z], use the polynomial remainder sequence (PRS) with subresultants, which are
signed determinants of Sylvester submatrices. This keeps coeflicients integer and
bounds growth to O(d?log || f]|e0)-

THEOREM 2.1. The GCD is proportional to the last non-zero subresultant in
the sequence.

This approach improves efficiency for Hensel lifting in Chapter 4 and connects
to resultant computations below.

3. ADVANCED TECHNIQUES 23

2.3. Resultant Computations and Sylvester Matrices. The resultant
res(f, g) of two polynomials is the determinant of the Sylvester matrix, vanishing
iff f and g share a common root. It generalizes GCD for detecting common factors
and is computed via Euclidean algorithm on the coefficients.

Sylvester matrix for deg f = n, degg = m is (n +m) X (n + m) with shifted
coefficients.

Example 2.2. For f =22+ 2+ 1, g = 2 — 1: Sylvester matrix

1 1 1 0
0 1 1 1
Syl(f,g) = 1 -1 0 0
0 1 -1 0

(det = 3), non-zero so coprime.

In SymPy:

from sympy import resultant
print(resultant(f, g)) # For above, compute accordingly

Applications: Elimination in algebraic geometry (Chapter 6) and factorization
over extensions.

2.4. Exercises. Exercises

(1) Compute the polynomial GCD of 23 + 22 — x — 1 and 2? — 1 over Q.

(2) Show how the naive Euclidean algorithm over Q produces fractions, and
how subresultants avoid this in Z[z].

(3) Implement the polynomial Euclidean algorithm in Python using lists for
coefficients; handle leading coefficient normalization.

(4) For multivariate f(z,y) = 2? — vy, g(x,y) = = — y?, compute the GCD
treating y as fixed.

(5) Compute the resultant of 22 + ax + b and 22 + cx + d; relate to common
roots.

3. Advanced Techniques

3.1. Half-GCD Algorithms. The half-GCD algorithm, also known as HGCD,
is a divide-and-conquer variant of the Euclidean algorithm designed to compute the
GCD of two polynomials (or integers) more efficiently by halving the ”size” (degree
or bit length) at each step. It represents the steps of the Euclidean algorithm using
matrix transformations and recurses on smaller subproblems. This approach is par-
ticularly effective when combined with fast polynomial multiplication techniques,
such as Karatsuba or FFT-based methods from Chapter 2.

Consider two polynomials f, g € K[z] over a field K, with deg f =n > degg =
m. For simplicity, assume f and ¢ are monic (leading coeflicient lc(f) = lc(g) = 1).
The HGCD algorithm computes a 2 x 2 matrix R with entries in K|[z] such that

N _(h
R (g - (M.
where h and k are consecutive remainders in the Euclidean sequence, ged(f, g) =
ged(h, k) (up to units), degk < degh/2, degh < n/2, and det R = +1.

The Euclidean algorithm can be viewed through linear algebra: Each step
ri—1 = q;r; +7i+1 (with negative sign convention) corresponds to a transformation

()=) ()

24 3. GREATEST COMMON DIVISORS AND EUCLIDEAN ALGORITHMS

Chaining these matrices allows skipping multiple steps efficiently.
The HGCD algorithm is defined recursively:

ArcoriTHM 3.1 (HGCD for Polynomials). Input: Monic polynomials f,g
with deg f > degg.
Output: Matrix R as above.

If deg g < [deg f/2], return the identity matrix I = ((1) (1)>

Otherwise:
(1) Compute the quotient ¢ = f + g and remainder r = f — gg (using poly-
nomial division from Chapter 2).
(2) Recursively compute S = HGCD(g, r).

() <)

If deg s < [deg f/2], return S (? 1

) —q

) Otherwise, compute p = s+t and u = s — pt.
) Recursively compute T'= HGCD(t, u).
)

ReturnT<0 1)5(0 1).
1 —-p 1 —gq

Remark 3.1. The ceiling [-] ensures progress for odd degrees. In practice, over
fields like Q, subresultant techniques (from §2) are integrated to control coefficient
growth, making polynomials primitive or monic at each step.

Proposition 3.2 (Correctness). The returned matriz R satisfies the degree condi-
tions and preserves the GCD, as each matriz has det = £1, and the remainders
are part of the Fuclidean sequence.

ProOOF. By induction on n = deg f. Base case: If degg < n/2, h = f,
k = g, degrees satisfy. Inductive step: The first recursion on (g, r) halves degg <
n/2 (since degr < degg), and subsequent if needed halves further. The matrix
compositions chain the transformations correctly. O

The time complexity satisfies the recurrence T'(n) = 2T (n/2)+O(M (n)), where
M (n) is the multiplication cost (e.g., M(n) = O(nlogn) with FFT, or O(n!%5)
with Karatsuba). By the master theorem, T'(n) = O(nlog®n) for FFT multiplica-
tion, as O(M(n)) = O(nlogn) dominates.

To compute the full GCD using HGCD: - While ¢ # 0: - Compute R =
HGCD(f, g), get h = R11f+ R129, k = Ro1f+ Raag. - Set f = h/lc(h) (normalize),
g = k/lc(h). - Return f.

This avoids full remainder sequences for large degrees, integrating with Chapter
2’s fast operations.

Example 3.3. Let f = 2% + 223 + 322 + 22+ 1, g = 22 + o + 1 (monic). Then
g=2>+x+1,r=(@?>+2+1)— (22 + 2+ 1)g = 0 wait, bad example.

Better: f =% +2* +2+1, g = 2%+ 22 + 1. Compute steps manually to
illustrate matrix.

3.2. Exercises. Exercises

(1) Prove the correctness of HGCD more formally: Show that the degrees
halve and that the GCD is preserved under the matrix transformations.

(2) Derive the time complexity recurrence and solve it assuming Karatsuba
multiplication M (n) = O(n'°823).

4. PYTHON PROJECT 25

(3) Implement HGCD for univariate polynomials over Q in Python using
SymPy (handle non-monic cases with content removal). Test on high-
degree random polynomials and compare to built-in ged.

(4) Adapt HGCD for integers: Replace degrees with bit lengths (|log, a|+1).
Implement in Python and compare runtime on large Fibonacci pairs (e.g.,
1000-bit numbers).

(5) Extend HGCD to multivariate polynomials by fixing a variable order (pre-
view Grobner bases in Chapter 5); discuss challenges.

4. Python Project

Implement the extended Euclidean algorithm in Python with SymPy for both
integers and polynomials. Create a function to compute resultants and test it on
examples from algebraic geometry, visualizing performance.

from sympy import symbols, gcd, Poly, resultant
X = symbols(’x’)

def poly_extended_gcd(f, g):
Implement using SymPy or custom for learning
return gcd(f, g) # Extend to coefficients

Test resultant

f = Xx*%3 + 3*xx**x2 + 2%xx + 1
g = X**%2 + x + 1
print(resultant(f, g))

Report: Compare with SageMath if available, analyze time for
large degrees.

e Test on polynomials from exercises; visualize coefficient growth.
e Submit a report on implementations.

CHAPTER 4

Projective Spaces and Weighted Projective Spaces

Projective geometry extends affine geometry by adding points at infinity, re-
solving issues like parallel lines and providing a unified framework for algebraic
equations. This chapter introduces projective spaces, their homogeneous coordi-
nates, and the weighted variant, which allows for more flexible constructions in
toric geometry and singularity theory. These concepts are foundational for un-
derstanding geometric objects in later chapters on Groébner bases and algebraic
geometry applications. We draw from Cox et al. [4] for basic projective theory
and Fulton [?] for toric aspects, emphasizing computational implementations in
SageMath, which supports projective schemes natively.

1. Projective Spaces

Projective spaces homogenize affine spaces, compactifying them and enabling
the study of properties invariant under projection.

1.1. Definition and Homogeneous Coordinates.

Definition 1.1. The projective space of dimension n over a field K, denoted P%
or P, is the set of equivalence classes of nonzero points in K™*! under scalar
multiplication: P* = (K"*1\ {0})/K*, where (\xo,..., \v,) ~ (zo,...,7,) for
A e K™

Points are represented by homogeneous coordinates [xg : x1 : -+ : x,], where
not all z; = 0, and scaling doesn’t change the point. Affine space K™ embeds via
Ui ={[zo: - : xy] | 2; # 0}, dehomogenizing by setting x; = 1. The hyperplane

at infinity is P\ Up.

Example 1.2. The projective line P! over Q: Points [z : y], with affine part
Up={[z:1] |2 € Q} = Q, and infinity [1 : 0]. Parallels meet at infinity, e.g., lines
y = mx + ¢ intersect at [1 : 0] as m — oo.

Example 1.3. Projective plane P2: Contains equations like 22 +52 — 22 = 0, which
dehomogenizes to 22 4+ y?> = 1 on U,.

Polynomials on P" are homogeneous: f(zq,...,%,) such that f(Ax) = A\?f(x)
for degree d. The ring is the graded ring K[xo,. .., Zn].

1.2. Implementation in SageMath. SageMath provides the ProjectiveSpace
class for constructing and manipulating projective spaces.

from sage.all import =*

P = ProjectiveSpace(2, QQ, names=’x,y,z’)

print(P) # Projective Space of dimension 2 over Rational Field
pt = P([1, 2, 31) # Point [1 : 2 : 3]

print(pt)

Affine patches:

U = P.affine_patch(2) # U_z, coordinates x/z, y/z

27

28 4. PROJECTIVE SPACES AND WEIGHTED PROJECTIVE SPACES

This allows computational experiments, such as point counting over finite fields or
intersection theory. For pure Python (SymPy), represent points as normalized lists
(e.g., divide by last nonzero), but Sage is preferred for schemes.

1.3. Exercises. Exercises

(1) Show that [1: 0] € P! is the point at infinity: Relate to limits of z — oo
in affine.

(2) Prove P™ is covered by n + 1 affine charts U; = K™.

(3) Implement a function in Python to normalize homogeneous coordinates
(divide by ged or last coord).

(4) Compute the intersection of two lines in P2: +y—2 =0,z —y+ 2 = 0.

(5) Use Sage to define P3; find rational points.

2. Normalizing points in the Projective space

When working with points in projective space over the integers or rationals, it
is often useful to represent them in a canonical form by normalizing the coordinates.
This process minimizes the size of the integers involved, aiding in computations,
storage, and comparisons.

Definition 2.1. For a point p = [xg : @1 : --- : z,] in P*(Q) with integer
coordinates x; € Z (after clearing denominators), the normalized representation
is obtained by dividing all coordinates by their greatest common divisor d =

ged(zg, 21, . - ., Tn), resulting in a primitive tuple where ged(xo/d, ..., z,/d) = 1.
Normalization ensures uniqueness up to sign (since [—xg : —x1 : +++ 1 —x,] =
[xo : 1 : -+ : x,]), which can be resolved by conventions like making the first

nonzero coordinate positive.

Proposition 2.2. Normalization preserves the point in P" and reduces the naive
height h(p) = max |xz;| for the normalized tuple.

PROOF. Since scaling by 1/d is allowed in homogeneous coordinates, the point
remains the same. The gcd division minimizes the integers while keeping them
integral, hence minimizes the max absolute value. O

Remark 2.3. Over finite fields F,, normalization might involve reducing modulo
p, but ged is replaced by ensuring coordinates are in {0,1,...,p — 1} with last
nonzero coord 1.

Example 2.4. For point [2 : 4 : 6] in P?(Q), ged(2,4,6) = 2, normalize to [1 : 2 : 3].

Example 2.5. Point [0:3:0: 6] in P, ged(0, 3,0,6) = 3, normalize to [0:1:0:
2].

Implementation in Python (using math.ged for simplicity, extend to multiple
via reduce):

from math import gcd
from functools import reduce

def normalize_proj_point(coords):

if all(c == @ for c in coords):
raise ValueError("All coordinates zero")

d = reduce(gcd, (abs(c) for ¢ in coords if ¢ != 0))

norm_coords = [c // d for ¢ in coords]

Make first nonzero positive

first_nonzero = next(i for i, ¢ in enumerate(norm_coords) if c
1= 9)

3. WEIGHTED PROJECTIVE SPACES 29

if norm_coords[first_nonzero] < 0:
norm_coords = [-c for ¢ in norm_coords]
return norm_coords

Test: normalize_proj_point([2, -4, 61) — [1, -2, 3] or adjust sign.
In SageMath, points are automatically normalized:

P = ProjectiveSpace (2, ZZ)
pt = P([2,4,6]1) # Automatically [1:2:3]

This normalization is crucial for databases of rational points or moduli spaces.

Exercises
4.1. Normalize [12 : 18 : 24 : 30] in P3; verify gcd=6.
4.2. Prove that normalization is unique up to units in Z (i.e., +1).
4.3. Implement normalization handling fractions: Clear denominators first.
4.4. Discuss why normalization fails over reals; suggest alternatives.

4.5. Use Sage to generate 10 random points in P?(Q) and normalize them.

3. Weighted Projective Spaces

Weighted projective spaces generalize by assigning weights to coordinates, al-
lowing orbifold structures and modeling singularities.

3.1. Definition and Properties.

Definition 3.1. Given positive integers wy, . .., w, (weights), the weighted projec-
tive space P(wo, . .., w,) i is (K"T1\{0})/K*, where the action is - (xq, ..., z,) =
(A¥omq, ..., A%ra,).

Points [xg : - : x,,], with equivalence under weighted scaling. If all w; = 1,
recovers standard P". Often assume ged(w;) = 1. Affine patches U; = {x; # 0},
but charts are quotients A™ /., (cyclic group), introducing singularities if w; > 1.
Homogeneous polynomials satisfy f(A“0zg,...) = A f(xq,...) for some degree
d multiple of lem(w;/ged(d,w;)) or via grading. Weighted spaces arise in toric
geometry, moduli spaces (e.g., P(1,1,2) for elliptic curves with level structure).

Example 3.2. P(1,1) is P*. P(1,2): Points [z : y], A(z,y) = (\z, \%y). Singularity
at [0: 1]/ 2.

Example 3.3. P(1,2,3): Used for weighted equations, like % + 3 + 22 = 0
(homogeneous under weights).

The coordinate ring is graded by the weights.
Proposition 3.4. P(wo,...,w,) is constructible as a quotient or fan.

PROOF. As GIT quotient (A"+1\0)/CC*, with weights defining the action [?].
O

Singularities at fixed points of the action.

30 4. PROJECTIVE SPACES AND WEIGHTED PROJECTIVE SPACES

3.2. Implementation in SageMath. SageMath supports weighted projec-
tive spaces via the toric varieties library.

from sage.all import =*

P = toric_varieties.P((1,2,3)) # or WeightedProjectiveSpace
([1,2,31, QQ)

print(P) # Weighted projective space P(1,2,3)

pt = P.point([1,1,1])

print(pt)

Define weighted homogeneous ideals:

R = P.coordinate_ring() # Graded ring

X, Yy, z = R.gens()

I = R.ideal([x"6 + y"3 + z"2]) # Degree 6 under weights 1,2,3
X P.subscheme (I)

print(X.dimension())

This enables computations like resolution of singularities or cohomology. For pure
Python, simulate with classes for weighted points, normalizing via gcd of exponents
adjusted by weights, but Sage is preferred for schemes.

3. Exercises. Exercises

(1) Show P(1,1,2) =2 P?/us, describing the quotient map.

(2) Compute the singular locus of P(1,4,6): Find orbifold points.

(3) Implement a Python class for weighted points: Normalize coordinates
under scaling.

(4) Use Sage to define P(2,3,5) and a weighted equation; check if smooth.

(5) Prove that for coprime weights, the space is well-formed (no worse singu-

larities).

4. Normalizing points in the Weighted Projective space

Normalization in weighted projective spaces extends the standard case by ac-
counting for the weights in the gcd computation, ensuring a canonical integer rep-
resentation for rational points.

Definition 4.1. For apoint p = [xg : 21 : -+ - : @] in P(wy, . .., w,)(Q) with integer
coordinates z; € Z (after clearing denominators) and weights w = (wy, . .., w,), the
weighted greatest common divisor wged(xo, ..., x,) is the largest positive integer d
such that d“ divides x; for each i =0, ..., n.

The point is normalized if wged(x) = 1. To normalize, divide each x; by d:.

Remark 4.2. This differs from standard ged: It respects the weighted scaling. For
weights all 1, wged = ged.

Proposition 4.3. The wgcd exists and is unique, and normalization preserves the
point since scaling by 1/d adjusts coordinates as ((1/d)*°xq,...) = (zo/d™®,...).

PROOF. Let primes factor each |z;| = []p;”". Then d = Hp}nini Logi/wid i
d satisfies d“* < o ; for each prime, hence divides. Maximality by construction. [

Example 4.4. For weights (1,2, 3), point [6 : 36 : 216]. The factorizations are 6 =
21.31 36 =22 .32 216 =23 -3%. For p=2: min|1/1,2/2,3/3] = min(1,1,1) = 1.
For p = 3: min|[1/1,2/2,3/3] = min(1,1,1) = 1. Thus d = 2! - 3! = 6. Normalize
to [6/6' : 36/6% :216/6%] =[1:1:1].

4. NORMALIZING POINTS IN THE WEIGHTED PROJECTIVE SPACE 31

Example 4.5. For weights (2,3), point [4 : 9]. The factorizations are 4 = 22,
9 = 32 For p = 2: min|2/2,0/3] = min(1,0) = 0. For p = 3: min|0/2,2/3| =
min(0,0) = 0. Thus d = 1, already normalized.

Algorithm: Factor each |z;|, compute min(alphay ;/w;) over i for each prime

p, product p™ir,
In Python (naive, assumes small numbers; for large, use sympy.factorint):

from math import gcd
from collections import defaultdict
import sympy as sp

def weighted_gcd(coords, weights):
if len(coords) != len(weights):
raise ValueError("Mismatch")
if all(c == @ for c in coords):
raise ValueError("Zero")
Handle signs: take abs
abs_coords = [abs(c) for c¢ in coords]
primes_factors = [sp.factorint(a) if a != @ else {} for a in
abs_coords]
all_primes = set()
for fac in primes_factors:
all_primes.update(fac.keys())
exponents = {}
for p in all_primes:
min_exp = float(’inf’)
for i, fac in enumerate(primes_factors):
alpha = fac.get(p, ©0)
min_exp = min(min_exp, alpha // weights[i])
if min_exp > @:
exponents[p] = min_exp
d =1
for p, e in exponents.items():
d *= p *x* e
return d

def normalize_weighted_point(coords, weights):
d = weighted_gcd(coords, weights)

norm_coords = [coords[i] // (d **x weights[i]) for i in range(
len(coords))]
Sign convention: first nonzero positive
first_nonzero = next(i for i, c in enumerate(norm_coords) if c
1= 9)
if norm_coords[first_nonzero] < 0:
norm_coords = [-c for ¢ in norm_coords]

return norm_coords

Test: normalize_weighted_point([6,36,216], [1,2,3]) — [1,1,1]
This is efficient for storing points in moduli spaces [?].

4.1. Exercises. Exercises

(1) Compute wged of [8:81:243] with weights (3,4,5); normalize.

(2) Prove wged =1 <= no d > 1 with d¥i|z; for all 1.

(3) Implement wged handling zero coordinates (skip if z; = 0).

(4) Discuss uniqueness: For well-formed weights, unique up to roots of unity.
(5) Use code on [12: 144 : 1728] weights (1, 3,6); verify [1:1:1].

CHAPTER 5

Grobner Bases and Buchberger’s Algorithm

Grobner bases are a cornerstone of computational algebra, providing a system-
atic way to solve systems of polynomial equations, test ideal membership, and per-
form eliminations. Named after Bruno Buchberger, who developed the algorithm
in his 1965 PhD thesis, they generalize the Euclidean algorithm to multivariate
polynomial rings. This chapter introduces the key concepts, including monomial
orders and reductions, presents Buchberger’s algorithm with proofs, and explores
applications in elimination theory and solving systems. We draw primarily from
Cox, Little, and O’Shea [4] for foundational theory, Buchberger [2] for the original
algorithm, and Kreuzer and Robbiano [8] for advanced computations and optimiza-
tions. These tools are essential for the next chapter on solving polynomial systems
and have connections to lattice reductions in Chapter 11.

1. Ideals and Monomial Orders

Grobner bases rely on polynomial ideals and well-ordered monomials to enable
algorithmic manipulations in multivariate rings.

1.1. Polynomial Rings and Ideals. Let K be a field (e.g., Q or Fp). The

polynomial ring in n variables is K[z, ..., z,], consisting of finite sums of terms ca,
where ¢ € K and o = z{* - - - 2% is a monomial with multi-index (aq, ..., a,) € N™.
An ideal I C K[x1,...,x,] is a subset closed under addition and multiplication

by ring elements: If f,g € I, then f+¢g € I; if h € R, f € I, then hf € I.
By Hilbert’s basis theorem, every ideal in K[z1,...,xz,] is finitely generated: I =
<f17~~afs> = {hlfl +"‘+hsfs | hz € K[xla”'vxn]}‘

The variety of [is V(I) = {a € K" | f(a) = 0Vf € I}. Conversely, the ideal of
a variety V is I(V) = {f € K[z1,...,z,] | f(a) =0 Va € V}. The Nullstellensatz
relates them over algebraically closed fields [4].

1.2. Monomial Orders. A monomial order > on the monomials of K[z1, ..., Zy]
is a total well-ordering (every nonempty set has a least element) satisfying: If o > g,
then avy > B~ for all monomials ~.

Common orders: - Lexicographic (lex): xi*---2% > z8...zbr if the first
differing exponent a; > b;. - Deglex (graded lex): First compare total degree Y a; >
> b;, tie-break by lex. - Degreviezx (graded reverse lex): Compare total degree, then

reverse lex on exponents.

Example 1.1. In Q[z,y, z] with lex > y > 2: 2%y > 2y32* since first exponents
1=1, then 2;1 for y. With deglex: Total deg 3 | 8, so reverse.

For a fixed order >, every nonzero polynomial f has a leading term LT(f) =
ca (monomial with coefl), leading monomial LM(f) = «, and leading coefficient
le(f) = ¢. The leading ideal of I is (LT(I)) = (LT(f) | f € I\ {0}).

Monomial orders enable division algorithms similar to univariate cases.

33

34 5. GROBNER BASES AND BUCHBERGER’S ALGORITHM

1.3. Reductions and Normal Forms. The multivariate division algorithm
reduces f by a set G = {g1,...,9s}: While LT(f) is divisible by some LT(g;),
subtract a multiple to cancel LT(f). Output f = > a;g; + r, where no term of r is
divisible by any LT(g;) (remainder r is reduced w.r.t. G).

However, » may not be unique without additional structure.

A Grobner basis G for I is a generating set where (LT (1)) = (LT(g1),...,LT(gs))-
Then, reductions yield unique normal forms [4].

THEOREM 1.2 (Existence). Every ideal I # {0} has a Grébner basis w.r.t. any
monomial order.

PRrROOF. By Dickson’s lemma (below), the monomial ideal (LT(I)) is finitely
generated by monomials LM(f7),...,LM(fs) for some f; € I. Then G = {f1,..., fs}
generates (LT(I)). O

Lemma 1.3 (Dickson’s Lemma). Every monomial ideal in K[x1,...,x,] is gener-
ated by finitely many monomials.

Proor. By induction on n. For n = 1, monomials 2k for k > ko minimal.
For n, let J, = {(aa,...,an) | 225? ---x% € I} ideals in fewer variables, finitely
generated. Collect generators across m, show finite set suffices [4]. O

Ideal membership: f € I iff reduction of f w.r.t. Grébner basis is zero.

1.4. Exercises. Exercises

(1) Compare lex and deglex on monomials 22y, 2y, y* in Q[x,y].

(2) Prove that lex is a monomial order: Show it’s total, well-ordered, and
multiplicative.

(3) Perform multivariate division: Divide 2%y + zy? + 32 by {zy — 1,y> — 1}
w.r.t. lex z > y.

(4) Show that if G is a Grobner basis, reductions are unique (use contradiction
on two remainders).

(5) Compute a minimal monomial generating set for (zty? x3y3 2%¢°) in

Q[, y]-
2. Buchberger’s Algorithm
Buchberger’s algorithm computes a Grobner basis from any generating set.

2.1. S-Pairs and Reductions. For f,g with LM(f) = «, LM(g) = g, the
least common multiple LCM(«, 3) is the monomial with max exponents. The S-pair
: _ LCM LCM
is S(f,9) = T(f)f RO

Buchberger’s criterion: G is a Grébner basis iff every S-pair S(g;, g;) reduces
to zero w.r.t. G.

THEOREM 2.1 (Buchberger’s Criterion). A basis G = {g1,...,9s} for I is
Grébner iff for all i # j, the remainder of S(g;,g;) on division by G is zero.

PROOF. (=) If Grobner, LT(I) generated by LT(G), so LT(S(g;, g;)) divisible
(cancels leading terms), and full reduction to zero by definition.

(<) Suppose not Grébner: Some f € I with LT(f) not in (LT(G)). Choose
minimal such f by monomial order. Write f = > argx, assume LT(f) = LT(a;g;)
for some i (otherwise contradict minimality). But then adjust, leading to S-pair
contradictions [2], [4]. O

The algorithm:

3. ELIMINATION THEORY 35

ALGORITHM 2.1 (Buchberger’s Algorithm). Input: F = {f,..., fs} generat-
ing I, monomial order >.
Output: Grébner basis G for 1.
Set G = F.
While there are pairs g;, g; € G with nonzero remainder r of S(g;, g;) w.r.t. G:
Add r to G.
Return G.

2.2. Termination via Dickson’s Lemma.

THEOREM 2.2 (Termination). Buchberger’s algorithm terminates after finitely
many steps.

Proor. Each added r # 0 introduces a new LM(r) not divisible by previous
LT(G), so the leading ideal strictly increases. By Dickson’s lemma, monomial ideals
are Noetherian (no infinite ascending chains), so terminates [4]. O

In practice, compute all S-pairs, reduce using current G, add nonzero remain-
ders.
Complexity: Can be doubly exponential in worst case, but often practical.

2.3. Optimizations: F4/F5 Variants. Buchberger is naive; optimizations
include: - Buchberger criteria: Skip pairs where LCM(LM(f), LM(g)) coprime (no
common variables). - F4 algorithm (Faugare): Matrix-based, reduces multiple
polynomials simultaneously using linear algebra over Macaulay matrices [8]. - F5
algorithm: Signature-based, avoids unnecessary reductions by tracking syzygies.

These reduce to singly exponential in many cases.

SageMath example:

R.<x,y,z> = PolynomialRing(QQ, order=’lex’)
I = ideal(x*y - z, y*z - X, zZ*X - y)
G = I.groebner_basis() # Computes via Buchberger/F4

2.4. Exercises. Exercises
1

) Compute S-pair of 22—y, z—y? w.r.t. lex z > y; reduce w.r.t. themselves.
)

(2) Prove Buchberger criterion for two generators: Relate to resultant van-
ishing.

(3) Implement basic Buchberger in Python with SymPy: Handle pairs, re-
ductions.

(4) Show termination fails without well-ordering: Give infinite loop example.
(5) Optimize: Prove coprime LCM criterion skips safely (S-pair reduces to
zero).

3. Elimination Theory

Elimination removes variables from polynomial systems, linking to resultants
from Chapter 3.

3.1. Resultants and Discriminants. For f,¢g € K|z] univariate, res(f,g)
detects common roots. Multivariate: Treat as univariate in one variable, coefficients
in K[y,...].

The resultant res,(f,g) w.r.t. z vanishes iff f, g share a root in = (or both
Z€ero).

Computed via Sylvester determinant, or Euclidean algorithm (product of dif-
ferences of roots).

Discriminant disc(f) = res(f, f’) measures multiple roots.

36 5. GROBNER BASES AND BUCHBERGER’S ALGORITHM

For bivariate systems f(z,y) = 0,g(x,y) = 0, compute res,(f,g) to eliminate
Y, get condition on .

Example 3.1. Eliminate y from z —y?> =0, zy — 1 = 0: resy(x — yhay —1) =
z?(—1/z) — (—1/z)z?* wait, proper computation via Sylvester.

Macaulay matrices generalize to higher degrees/systems: For homogeneous
polynomials, the matrix whose det is multiple of resultant.

3.2. Solving Bivariate Systems. For two equations in two variables, com-
pute resultant to get univariate in one, solve, back-substitute.

Proposition 3.2. If f,g generate a zero-dimensional ideal (finite solutions), the
resultant degree bounds number of solutions (Bézout).

Example code in SymPy:

from sympy import symbols, resultant

X, y = symbols(’x y’)

f = x - y**2

g = x*xy - 1

print(resultant(f, g, y)) # Result in x

Limitations: High degree, numerical instability; Grobner better for general.

3.3. Exercises. Exercises

(1) Compute res(x? + 2y + 1,7y — 1) w.r.t. y via Sylvester.

(2) Show disc(z? + bz + ¢) = b? — 4c.

(3) Solve system x2 4+ y% = 1, xy = 1/2 via elimination.

(4) Prove resultant homogeneous: res(\f, ug) = A4°899¢e f ves(f, g).
(5)

5) Implement bivariate solver using resultants in Python.

4. Grobner Bases for Systems

Grobner bases shine in solving systems via elimination.

4.1. Elimination Orders. An order is elimination order for xq,...,x; if
monomials involving them are larger than those without.

Lex order eliminates naturally: Grobner basis includes polynomials in fewer
variables.

THEOREM 4.1 (Elimination Theorem). If G is Grobner w.r.t. elimination order
forxy > - > x> Tyl ,Zn, then G N K([xgg,...,x,] 18 Grobner for I N
Klzpi1,... 2y

ProOOF. Leading terms in eliminated variables don’t appear in intersection;
generators cover [4]. O

Solve by successive elimination: Get univariate, factor, back-substitute.

4.2. Solving via Triangular Forms. A reduced Grébner basis is monic, no
term divisible by other LTs. In lex order for radical zero-dim ideals, it’s triangular:
g1(71), g2(21,72), .-+, gn (21, . -, Tp).

Solve like Gaussian elimination.

For positive dimension, need variety decomposition.

5. PYTHON PROJECT 37

4.3. Variety Decomposition Basics. Irreducible varieties correspond to
prime ideals; primary decomposition breaks I into primaries.

Algorithmically hard, but Grébner helps compute dimension, radical (\/T), via
extensions.

Dim I = max deg of monomials not in (LT(J)) (monomial basis size).

Example 4.2. For twisted cubic I = (zz — y?, 2w — yz), degrevlex basis, dim=2
(curve).

4.4. Exercises. Exercises

(1) Compute lex Grobner for (22 +y? — 1,2 — y) in Q[x, y]; solve system.
(2) Prove elimination theorem for k=1: Show intersection generates.

(3) Find dim of (xy, zz,yz) via monomial basis.

(4) Decompose (x? — x,zy) = (x) N {x — 1,7).

()

5) Implement solver: Use SageMath Grobner, back-substitute roots.

5. Python Project

Compute Grobner bases in SageMath for a system representing geometry (e.g.,
circle intersections). Script to automate, visualize varieties.

R.<x,y> = PolynomialRing(QQ, order=’lex’)

I = ideal(x**2 + y*x2 - 1, (x=-1)*x*%x2 + y**x2 - 1)
G = I.groebner_basis()

print (G)

Solve: univariate in y, etc.

Visualize: Use matplotlib for points.

e Test on robotics (intersection of constraints).
e Report on basis, solutions, compare orders for speed.

CHAPTER 6

Introduction to Quantum Computing

This chapter provides a foundational introduction to quantum computing, tai-
lored for students with a background in linear algebra and abstract algebra. We
focus on concepts essential for understanding quantum algorithms in computational
algebra, such as those used in factoring and solving linear systems. The material
draws from Nielsen and Chuang [10] and aims to bridge classical algebraic struc-
tures with their quantum counterparts.

1. Quantum Fundamentals

Quantum computing operates on principles of quantum mechanics, where in-
formation is processed using quantum bits, or qubits, rather than classical bits.
Unlike a classical bit, which is either 0 or 1, a qubit can exist in a superposition of
states.

The mathematical framework for qubits is rooted in linear algebra over the
complex numbers, analogous to vector spaces in abstract algebra but with an inner
product structure.

Definition 1.1 (Hilbert Space for a Qubit). The state of a qubit is a vector in the
2-dimensional complex Hilbert space H = C?, equipped with the standard inner
product (u,v) = ufv, where u' denotes the conjugate transpose.

Definition 1.2 (Qubit). A qubit is the basic unit of quantum information, rep-
resented as a unit vector in C2. The standard (computational) basis states are
denoted as

where |-) is the Dirac notation for a ket vector. A general qubit state is a superpo-
sition:
[¥) = |0) + B[1),
with «, 8 € C satisfying the normalization condition |a|? + |3]* = 1.
The normalization ensures that probabilities sum to 1, as we will see in the Born

rule. Dirac notation, also known as bra-ket notation, is fundamental in quantum
mechanics and provides a compact way to express states and operations.

Definition 1.3 (Dirac Notation). A ket |1) represents a column vector in H. The
corresponding bra (9| is the conjugate transpose, a row vector. The inner product
between two states [i) and |¢) is

(¥lo) = y'o.
The outer product is denoted |¥){¢| = |1)){¢|, which is a rank-1 operator.

Example 1.4. For |[¢) = «a|0) + S8|1), the bra is (¢| = o™ (0] + £*(1

|, where =
denotes complex conjugate. The norm squared is (Y|y) = |a|? + |B]? = 1.

39

40 6. INTRODUCTION TO QUANTUM COMPUTING

Definition 1.5 (Superposition). Superposition refers to the property that a quan-
tum state can be expressed as a linear combination of basis states with complex
coefficients (amplitudes). For example, the equal superposition state is

1
= E(|0>+ 1))

This is analogous to linear combinations in vector spaces, but with probabilistic
interpretation upon measurement.

+)

Measurement in quantum mechanics is probabilistic and causes the state to
collapse.

THEOREM 1.6 (Born Rule). Given a qubit in state |¢) = «|0) + S|1), the
probability of measuring outcome 0 (in the computational basis) is |a|?, and the
probability of measuring 1 is |3|?. After measurement, if outcome k is observed
(k=0 or 1), the state collapses to |k).

PROOF. The Born rule is a postulate of quantum mechanics, but it can be mo-
tivated as follows: The measurement in the basis {|0), |1)} corresponds to projectors
Py =10)(0] and P, = |1)(1]. The probability of outcome 0 is the expectation value
(Y| Po|) = |[{0|9)|? = |af?. Similarly for outcome 1. Post-measurement, the state
is projected onto the eigenspace of the observed outcome, normalized: for outcome

0, it becomes Hllzzmill = |0) (since ||Po|t))|| = |a| but normalization absorbs it;

assuming « # 0). O

Remark 1.7. The collapse is irreversible and introduces randomness, distinguish-
ing quantum from classical computation. In algebraic terms, measurements can be
seen as projections in a Hilbert module over C.

For systems with multiple qubits, the state space is the tensor product of indi-
vidual spaces, leading to exponential growth in dimension—a key source of quantum
computational power.

Proposition 1.8 (Multi-Qubit State Space). The Hilbert space for n qubits is
HE™ = (C?)®" = C?", with basis states |v12o...2,) where each x; € {0,1}. A

general state is
W=D aul),
z€{0,1}™

with > a,|? = 1.

PROOF. The tensor product construction follows from linear algebra: dim(*;®
Ho) = dim(H;) dim(Hz2) = 2Xx 2 = 4 for two qubits, and inductively 2" for n qubits.
1
The basis is the tensor product of single-qubit bases, e.g., [00) = |0) ® |0) = 8
0
Normalization extends naturally: (p|¢) = |a,|* = 1. O

This exponential dimension enables quantum parallelism: a quantum algorithm
can process 2" amplitudes simultaneously, useful for algebraic problems like factor-
ing via period-finding.

However, not all multi-qubit states are simple products; some exhibit entangle-
ment.

Definition 1.9 (Entanglement). An n-qubit state 1) € (C?)®" is separable (non-
entangled) if it can be written as a tensor product 1)) = |¢1) ® |¢2) @ -+ @ |dy,) for

2. QUANTUM GATES AND CIRCUITS 41

single-qubit states |¢;). Otherwise, it is entangled. For two qubits, |¢) is entangled
if it cannot be expressed as |a) ® |b). A classic example is the Bell state:

L
V2

Measuring the first qubit determines the second instantly, exhibiting correlations
stronger than classical (violating Bell inequalities).

[@7) = —=(100) + [11)).

Lemma 1.10 (Criterion for Bipartite Separability). A two-qubit state [1)) = _,. ¢;;|ij)
is separable if and only if there exist oy, B; € C such that c;; = o 85 for all i, j.

PROOF. If separable, [¢) = (32, asli)) ® (32, B;l4)) = D2, cuBjlif), so ¢ij =
a;3;. Conversely, if ¢;; = «;0;, then it factors as above (assuming normalization
separately for each factor). For the Bell state, coo = ¢11 = 1/\/?, co1 = c19 = 0;
suppose cop = aofo = 1/v/2, co1 = apBy =0 = B1 =0, but then ¢;; = a1 8, = 0,
contradiction. Thus, entangled. O

Remark 1.11. Entanglement is crucial for quantum speedups in algorithms like
Shor’s, where it enables efficient sampling from correlated distributions in algebraic
groups (e.g., period-finding in Zj). It also connects to tensor decompositions in
multilinear algebra.

Exercises

6.1. Verify that the state [¢)) = 3(|00) + [01) + [10) + [11)) is separable by
finding explicit single-qubit factors. Compute the probabilities of measuring 00,
01, etc., using the Born rule.

6.2. Using matrix representations, show that the Bell state |®T) cannot be
written as a product state. Discuss how this relates to the concept of irreducible
representations in group theory.

6.3. Prove that for any two-qubit state, the partial trace over one qubit yields a
density matrix (operator) with trace 1. (Hint: Define the density matrix p = [1) (4|
and trace out.)

2. Quantum Gates and Circuits

Quantum computations are performed using quantum gates, which are unitary
operators on the Hilbert space. Gates manipulate qubit states reversibly and can
be composed into circuits to implement algorithms. This section expands on key
gates, their properties, and circuit construction, emphasizing connections to linear
algebra and group theory relevant to computational algebra.

Definition 2.1 (Quantum Gate). A quantum gate acting on k qubits is a unitary
operator U : (C?)®F — (C?)®* such that UTU = UUT = I, where I is the identity
operator. Unitarity preserves the norm of states, ensuring probabilities remain valid
under evolution.

Proposition 2.2 (Unitarity Implies Reversibility). Every quantum gate U is in-
vertible, with inverse UT. Thus, quantum computation is inherently reversible, un-
like some classical operations (e.g., AND gate).

ProOOF. From UTU = I, multiplying both sides by U on the right yields UT =
U~'. Similarly from UUT = I. (]

42 6. INTRODUCTION TO QUANTUM COMPUTING

Single-qubit gates are 2 x 2 unitary matrices. They form the special unitary
group SU(2), up to a global phase, which is isomorphic to the rotation group
SO(3)—a connection useful in algebraic topology and representation theory.

Important examples include the Pauli gates, which are both unitary and Her-
mitian (UT = U).

Example 2.3 (Pauli Gates). The Pauli matrices are:

v (D))

- The X gate (bit-flip) maps |0) — |1) and |1) — |0), analogous to classical NOT.
- The Z gate (phase-flip) maps |[0) — |0) and |1) — —|1). - The Y gate combines
bit and phase flips: ¥ =iX 7.

Lemma 2.4 (Pauli Gates are Unitary and Hermitian). Fach Pauli gate o €
{X,Y,Z} satisfies of = o and 0% = 1.

PRrOOF. For X: X' = X (real symmetric), and X2 = (1 O) = 1. For Z:

0 1
0o i\ [0 —i
Similar, ZT = Z, Z> =1. For Y: Y1 = (_Z, o) =\ o)=Y (since conju-
o . 0 —i\ (0 —i (=2)(7) 0
2 _ _ _
gate transpose flips signs of 7), and Y= = (z 0) <z 0 > = (0 =)&) =
I. Unitarity follows from ofo = 0% = I. O

Remark 2.5. The Pauli gates, together with I, form a basis for the vector space
of 2 x 2 Hermitian matrices and generate the Clifford group under multiplication,
relevant for quantum error correction codes based on algebraic groups.

Another essential single-qubit gate is the Hadamard gate, which creates super-
positions.

Example 2.6 (Hadamard Gate). The Hadamard gate is

el)

It transforms basis states as follows:

1 1
—(0) + 1)) =|+), H|1)=—=(]0) = |1)) =|-).
\/5(|>|>) +), HI1) \/5(|>|>))
Applying H to a superposition state can interfere amplitudes constructively or
destructively.

H|0) =

Proposition 2.7 (Properties of Hadamard Gate). The Hadamard gate is unitary,
Hermitian, and its own inverse: H?> = 1.

i
ProOF. First, H! = % 1 _11 = H (real symmetric), so Hermitian.

1 1 1 1 2 0
2 _ 1 -1 — itari TH =
Then, H= = 3 (1 _1> <1 _1> =3 (0 2) = I. Unitarity follows as H'H =
H?=1. (]

Remark 2.8. The Hadamard gate is crucial in algorithms like the Quantum Fourier
Transform (QFT), which generalizes the discrete Fourier transform over abelian
groups, connecting to algebraic number theory in Shor’s algorithm.

To create entanglement and perform multi-qubit operations, we use controlled
gates, which condition an operation on the state of a control qubit.

2. QUANTUM GATES AND CIRCUITS 43

Definition 2.9 (Controlled-U Gate). For a single-qubit unitary U, the controlled-
U (CU) gate on two qubits (control first) applies U to the target if the control is
|1), and does nothing otherwise. Its matrix is

I 0
cU— (0 U) ,
where I and U are 2 x 2 blocks.

The most common is the controlled-NOT (CNOT), where U = X.

Definition 2.10 (CNOT Gate). The CNOT gate is

CNOT =

SO O
o o = O
= O O O
O = O O

It flips the target if control is |1): CNOT|zy) = |z(y @ z)), where @ is modulo-2
addition.

Proposition 2.11 (CNOT is Unitary). CNOT satisfies (CNOT)!CNOT = 1.

10 00

. - 010 0
Proor. CNOT is real, so (CNOT)! = CNOT" = 00 0 1 (same as

0 01 0
CNOT, permutation matrix). Then (CNOT)? = I, as it swaps basis states in pairs
reversibly. O

Example 2.12 (Creating Bell State with Circuit). To create the Bell state |®) =
%(|00) + |11)): Start with |00), apply H to the first qubit (%(\00) +110))), then
CNOT with first as control (%GOO) +1(11))).

Quantum circuits are compositions of gates applied in sequence or parallel to
qubits.

Definition 2.13 (Quantum Circuit). A quantum circuit is a sequence of quantum
gates applied to an initial state [1)g), evolving it to Uy, - - - U1|thg), where each Uj;
is a gate (possibly acting on subsets of qubits via tensor products with identities).
Circuits are visualized with horizontal wires for qubits (time flows left to right) and
symbols for gates (e.g., H for Hadamard, ¢ — — — & for CNOT).

THEOREM 2.14 (Universality of Quantum Gates). Any unitary operator on n
qubits can be approximated to arbitrary precision using a finite set of universal gates,

such as {H,S, T, CNOT}, where S = <(1) (z)) (phase gate) and T = ((1) e“?/4>

(7/8 gate).

Remark 2.15. Proofs of universality rely on Lie group theory (e.g., generating
dense subgroups of SU(2")) and are detailed in [10]. This enables simulation of
any quantum algorithm, connecting to computability in algebraic settings.

For practical simulation and experimentation, we use Qiskit, an open-source
framework from IBM.

44 6. INTRODUCTION TO QUANTUM COMPUTING

Simple Hadamard Circuit in Qiskit

from qiskit import QuantumCircuit, Aer, execute
from qiskit.visualization import plot_histogram

gqc = QuantumCircuit(l, 1) # 1 qubit, 1 classical bit

gc.h (@) # Apply Hadamard to qubit 0

qc.measure (0, 0) # Measure qubit © to classical
bit o

simulator = Aer.get_backend(’gasm_simulator’)

result = execute(qc, simulator, shots=1024).result()
counts = result.get_counts(qc)
plot_histogram(counts)

This circuit demonstrates superposition: measurements yield approximately
50% |0) and 50% |1).

Bell State Circuit in Qiskit

gc = QuantumCircuit(2, 2)

qc.h(0) # Superposition on qubit ©
qc.cx (0, 1) # CNOT with control @, target 1
qc.measure ([0,1], [0,1])

result = execute(qc, simulator, shots=1024).result()
counts = result.get_counts(qc)
plot_histogram(counts) # "50% ’00’, “50% 11’

This illustrates entanglement: correlated measurements.

Circuits can be visualized using qc.draw(’mpl’) in Qiskit, aiding in debugging
quantum algorithms for algebraic problems, such as implementing group operations
in hidden subgroup problems.

Exercises

6.4. Verify that the Pauli Y gate can be written as Y = iXZ and compute
its action on |+). Show that the Pauli gates satisfy the commutation relations
[X,Y] = 2iZ (cyclic permutations).

6.5. Construct the matrix for the controlled-Z (CZ) gate and prove it is unitary.
Use it in a circuit to create another Bell state, e.g., %QOO) —|11)).

6.6. In Qiskit, simulate a circuit with Hadamard on two qubits followed by
measurements. Compare the outcome distribution to the tensor product of single-
qubit superpositions, highlighting the absence of entanglement.

6.7. Prove that the set { H, CNOT} generates the Clifford group for two qubits,
which stabilizes the Pauli group under conjugation (relevant for error-correcting
codes).

3. Quantum Linear Algebra Review

Quantum states and operations have a natural interpretation in linear algebra
over complex numbers, providing a bridge to classical computational algebra.

3. QUANTUM LINEAR ALGEBRA REVIEW 45

Definition 3.1 (Hilbert Space). A Hilbert space H is a complete inner product
space over C. For n qubits, H = (C2)®" = C?", with the inner product (¢|¢) =
Ple.

Quantum states are unit vectors in H, and measurements correspond to pro-
jections onto subspaces.

Definition 3.2 (Unitary Operator). A linear operator U : H — H is unitary if
UTU = UU' = I. All quantum gates are unitary, ensuring reversible computation.

The connection to classical algebra is evident: quantum circuits implement
matrix multiplications in high dimensions, but with exponential parallelism. For
instance, applying a gate U to n qubits is equivalent to the tensor product U ®
I®("=1) ‘mirroring operations in algebraic tensor algebras.

Inner products enable computations like fidelity between states, useful in quan-
tum error correction and algebraic decoding. In later chapters, we explore algo-
rithms like HHL, which solve linear systems Az = b by encoding matrices into
unitaries and leveraging quantum phase estimation—a quantum analog of eigen-
value decomposition in classical linear algebra [9].

Exercises

6.8. Using Qiskit (integrated with Python), build and simulate a simple quan-
tum circuit that demonstrates superposition and measurement. Visualize the re-
sults and compare with classical probability simulations in SymPy.

6.9. Construct a two-qubit circuit in Qiskit that creates a Bell state using
Hadamard and CNOT gates. Simulate measurements and discuss how the results
illustrate entanglement, contrasting with separable classical product states.

6.10. Using SymPy, represent the Hadamard gate as a matrix and compute its
action on the basis vectors. Then, verify unitarity by checking HTH = I. Extend
this to a symbolic representation of a general single-qubit state.

CHAPTER 7

Quantum Algorithms Basics

This chapter introduces some of the fundamental quantum algorithms that
illustrate the power of quantum computing over classical methods, with a spe-
cial emphasis on their applications in computational algebra. We begin with the
Quantum Fourier Transform (QFT), a central primitive that enables efficient phase
estimation. We then discuss Grover’s algorithm for unstructured search, which pro-
vides a quadratic speedup. Finally, we present Shor’s algorithm, a period-finding
algorithm that underlies polynomial-time quantum factoring and discrete logarithm
computations.

These algorithms exemplify how quantum mechanics—through superposition,
entanglement, and interference—can lead to dramatic speedups, often exponential,
for problems with deep connections to algebraic structures such as groups, fields,
and number theory. The material builds on the quantum fundamentals developed
in Chapter 6 and follows standard references such as Nielsen and Chuang [10].

1. Quantum Fourier Transform (QFT)

The Quantum Fourier Transform (QFT) is the quantum analogue of the dis-
crete Fourier transform (DFT). Just as the DFT decomposes a function into its
frequency components, the QFT transforms the amplitudes of quantum states into
the Fourier domain. It is the backbone of many quantum algorithms, most notably
phase estimation and Shor’s algorithm.

Definition 1.1 (Quantum Fourier Transform). For an n-qubit register, the QFT
acts on the computational basis states as

2" —1
o .
QFT|j) = Voo Z IR k),
k=0

where j € {0,1,...,2" — 1}. In matrix form, QFT is the 2" x 2" unitary matrix
with entries

QFT]j = —=w/®, w=e2/2",

A /2n
Proposition 1.2 (Unitarity of QFT). The operator QFT is unitary, i.e.
(QFT) QFT = I.

PRrROOF. The inverse QFT is obtained by replacing w with w™'. Orthogonality
of roots of unity gives

2m—1

S WK Z g,

k=0
With normalization by 1/1/2", the rows and columns of QFT are orthonormal,
proving unitarity. O

Remark 1.3. The QFT generalizes the DFT over the cyclic group Z/2"Z, and
more broadly, it is a special case of Fourier analysis on finite abelian groups. This

47

48 7. QUANTUM ALGORITHMS BASICS

perspective is essential in algebraic number theory and the hidden subgroup prob-
lem.

The QFT can be implemented efficiently on a quantum circuit with O(n?) gates,
which is exponentially faster than the naive classical computation of the DFT.

AvgoriTeEM 1.1 (QFT Circuit). For n qubits labeled qo, . .., gn—1 (with go the
most significant bit):
1: for j=0ton—1do
2: Apply H to g,

3: fork=j+1ton—1do
1
4: Apply controlled-Ry_;4+1 from g to g;, where R, = (O 627{.?/27?1)

5: end for
6: end for
7: Swap qubits to reverse order (depending on convention).

Circuit depth: O(n?), versus O(n2") for a classical FFT.

Example 1.4 (QFT on 2 Qubits). For n = 2, the QFT is

QFT, =

N —
— ==

Applying QFT, to |00) gives

QFT, |00) = £(]00) + [01) + [10) + [11)).

1.1. Phase Estimation. The QFT is a crucial ingredient in phase estimation,
which estimates the eigenphase ¢ of a unitary operator U given an eigenvector |u)
such that Ulu) = e2™®|u).

Quantum Algorithm 1.5 (Phase Estimation). Input: unitary U, eigenvector |u),
precision t qubits.
1: Prepare |0)®%|u)

2: Apply Hadamard gates: \/127 it:_ol |k)|w)

3: Apply controlled-U*: \/127 i;_ol 2™k | k)| u)
4: Apply inverse QFT on the first register

Output: an estimate of ¢ with error O(277%).

THEOREM 1.6 (Accuracy of Phase Estimation). With probability at least 1 — e,
the algorithm outputs ¢ such that

6 —¢| <27+ Lo72,

Remark 1.7. Phase estimation underlies order-finding in groups, which is the
central step in Shor’s algorithm [10].

2. GROVER’S SEARCH ALGORITHM 49

QFT in Qiskit

from qiskit import QuantumCircuit
from qiskit.circuit.library import QFT

gqc = QuantumCircuit (3)
qc.append(QFT(3), [0,1,2])
qc.draw(’mpl’)

This produces the QFT circuit for 3 qubits.

Exercises

7.1. Implement the QFT for n = 3 manually in Qiskit (without the library)
and verify its action on |001) using statevector simulation.

7.2. Show that the QFT is its own inverse up to conjugation and bit-reversal.

2. Grover’s Search Algorithm

Grover’s algorithm achieves a quadratic speedup for unstructured search, find-
ing a marked element in a database of size N with O(v/N) queries, compared to
O(N) classically.

Definition 2.1 (Unstructured Search Problem). Given an oracle Oy such that

Oyla)|b) = |x)[b® f(2)),
where f(z) =1 if x is marked and 0 otherwise, find = with f(z) = 1.

Quantum Algorithm 2.2 (Grover’s Algorithm). Input: n = log, N qubits, oracle
Oy, M marked items.

s N-
1: Initialize |tg) = \}—ﬁ szol |)
2: Repeat r ~ Z/N/M times:

e Apply oracle Oy: phase-flip marked states
e Apply diffusion operator D = H®"(2]0)(0|®™ — I\ H®"

3: Measure the state; with high probability obtain a marked .

THEOREM 2.3 (Optimality). Grover’s algorithm requires O(vV/N) queries, and
any quantum algorithm for unstructured search requires Q (V' N) queries.

SKETCH. The state evolves in the 2D span of solutions and non-solutions. Each
iteration rotates the state vector by angle 6 ~ 2,/M/N. After O(1/0) steps, the
probability of observing a solution is maximized. Optimality follows from quantum
query lower bounds [6]. O

Remark 2.4. For algebraic applications, Grover can accelerate tasks such as
searching for minimal polynomials, roots in finite fields, or satisfying assignments
to algebraic constraints.

50

Grover in Qiskit

7. QUANTUM ALGORITHMS BASICS

qc
qc
qc
qc

from qiskit
from qiskit.circuit.library import GroverOperator,

oracle

grover_op

import QuantumCircuit
Diagonal

Diagonal ([-1 if i == 3 else 1

mark 011
GroverOperator (oracle)

for i in range(8)1])

QuantumCircuit (3)
.h([0,1,21)
.append(grover_op,
.measure_all ()

Le,1,21)

Exercises
7.3. Derive the exact iteration count when M = 1: r = | Z arcsin(1/v/N)].

7.4. Apply Grover to find a root of a quadratic polynomial modulo p and
analyze the query complexity.

3. Shor’s Algorithm

Shor’s algorithm factors an integer N in polynomial time on a quantum com-
puter by reducing factoring to period-finding.

Quantum Algorithm 3.1 (Shor’s Algorithm). Input: Composite N.

Pick random a € [2, N — 1] with ged(a, N) =1

Use phase estimation on U : |y) — |a¥ mod N) to find order r of ¢ modulo N
Use continued fractions to recover r from measured phase

If 7 is even, compute ged(a’/? & 1, N) for factors

: Repeat if necessary

Runtime: O((log N)3).

AN .

THEOREM 3.2 (Correctness of Period-Finding). With high probability, phase
estimation yields a convergent s/r to the eigenphase, from which the order r can be

reconstructed.
PROOF. Eigenvalues of U are ¢27/7

k/r, and continued fractions reconstruct r when the error is O(1/7?).

k=0,...,7—1. Phase estimation yields
O

Remark 3.3. Shor’s algorithm also solves discrete logarithms: given a,b € Fp,
find z such that a® = b (mod p). More generally, it solves the hidden subgroup
problem for abelian groups, connecting to number fields and elliptic curves.

Exercises

7.5. Simulate Shor’s algorithm for N = 15, a = 2. Compute the order and
deduce the factors.

7.6. Compare classical and quantum complexities of the discrete logarithm
problem over F,,.

CHAPTER 8

Hidden Subgroup Problem and Group-Theoretic
Algorithms

The Hidden Subgroup Problem (HSP) provides a unifying framework for many
of the most powerful quantum algorithms. Factoring, discrete logarithms, Pell’s
equation, and more generally, a variety of algebraic problems can be reformulated
as instances of HSP. The central technique involves the application of the Quantum
Fourier Transform (QFT) to states encoding cosets of hidden subgroups. In this
chapter, we first present the abstract framework, then examine applications in
number theory and algebraic extensions.

1. Hidden Subgroup Problem (HSP) Framework

The HSP is defined over a finite group G, with a subgroup H < G hidden by
a function f: G — S, where S is some finite set.

Definition 1.1 (Hidden Subgroup Problem). Let G be a finite group. A function
f G — S hides a subgroup H < G if

f)=fly) <= «H =yH.

That is, f is constant and distinct on left cosets of H. The Hidden Subgroup
Problem (HSP) asks to determine H given oracle access to f.

Example 1.2 (Classical Examples). e InZ/NZ, the function f(x) = a® mod
N hides the subgroup generated by the order of a. This is the basis of
Shor’s algorithm for factoring.

e In Z, the function f(z) = a* over CC* hides the subgroup rZ, where r is
the order. This corresponds to order finding.

The quantum algorithm for the abelian HSP proceeds as follows.
Quantum Algorithm 1.3 (Abelian HSP Algorithm [12]). Input: group G, oracle
f hiding H < G.
. o !
1: Prepare uniform superposition over G: e > gec 19)10)

2: Query oracle: \/% > gec |l9)f(9))

3: Measure second register: leaves uniform superposition over a random coset gH

4: Apply QFT over G to first register
5: Measure: yields random character x of G satisfying x(h) =1 for all h € H
6: Repeat to gather enough information to reconstruct H

THEOREM 1.4 (Correctness for Abelian HSP). If G is finite abelian, the algo-
rithm outputs a generating set for H with high probability in polynomially many
samples.

Remark 1.5. The abelian HSP reduces to lattice problems: the measured char-
acters impose linear equations modulo group orders, solvable using linear algebra.
For nonabelian groups, the problem becomes much harder and remains an active
research area.

51

52 8. HIDDEN SUBGROUP PROBLEM AND GROUP-THEORETIC ALGORITHMS

2. Applications to Number Theory
Several classical number-theoretic problems can be cast as instances of the HSP.

2.1. Order Finding and Factoring. Let G = (Z/NZ)*. For a € G, define
f(x) = a®. Then f hides the subgroup rZ, where r is the order of a. Applying the
abelian HSP algorithm yields r, which suffices for Shor’s factoring algorithm.

Example 2.1 (Order Finding). For N = 15, a = 2, the function f(z) = 2% mod 15
hides the subgroup 4Z. The HSP algorithm recovers r = 4, leading to the factors
ged(27/2 £1,15) = 3, 5.

2.2. Pell’s Equation. The Pell equation
> - Dy’ =1, D¢g7?

is related to the computation of the fundamental unit in Z[v/D]. The unit group
is infinite cyclic, and computing its generator is an instance of order-finding in a
suitable group embedding.

THEOREM 2.2 (Quantum Pell’s Equation [3]). Quantum algorithms for the
HSP yield polynomial-time solutions for Pell’s equation, in contrast to classical
exponential algorithms.

Remark 2.3. This shows that quantum algorithms penetrate into Diophantine
analysis, providing efficient computation of units in quadratic fields.

3. Algebraic Extensions

The HSP generalizes naturally to algebraic number fields and their unit and
ideal groups.

3.1. Unit Groups of Number Fields. Let K be a number field with ring
of integers Ok . Dirichlet’s unit theorem states that the unit group

O = g x 2771,

where pg is the finite group of roots of unity and r, s are the real and complex
embeddings. Computing a basis of the free part reduces to a hidden subgroup
problem in an additive lattice.

Remark 3.1. Quantum algorithms can approximate the logarithmic embeddings of
units using phase estimation and HSP methods, giving polynomial-time algorithms
for problems that are classically hard.

3.2. Principal Ideal Problem. Given anideal I C Ok, determining whether
I is principal and, if so, finding a generator, is a central problem in computational
number theory. This problem can be formulated as an HSP in the class group
Cl(K). Quantum algorithms based on HSP provide polynomial-time solutions in
certain families of number fields.

3.3. Connections to Class Group Computations. The class group Cl(K)
is a finite abelian group, and its structure can be determined by solving an HSP.
In particular:

e The function f : Z™ — CI(K), mapping integer vectors to ideals modulo
principal ideals, hides the relation lattice among generators.

e Quantum algorithms reveal the subgroup corresponding to relations, thereby
reconstructing CI(K).

THEOREM 3.2 (van Dam-Hallgren—Ip [12]). For certain number fields, the class
group and unit group can be computed in quantum polynomial time via reductions
to the abelian HSP.

3. ALGEBRAIC EXTENSIONS 53

Remark 3.3. These results connect quantum computation with algebraic num-
ber theory and arithmetic geometry. They suggest potential breakthroughs in the
computation of zeta functions, regulators, and invariants of arithmetic schemes.

Exercises

8.1. Formulate the discrete logarithm problem in)’ as an HSP instance and
outline the quantum solution.

8.2. Show how the HSP for Z with oracle f(z) = a” recovers the order of a
modulo V.

8.3. Discuss how class group computations via HSP might impact cryptosys-
tems based on ideal lattices.

CHAPTER 9

Quantum Linear Algebra

This chapter delves into quantum algorithms for core linear algebra tasks, such
as solving linear systems and matrix decompositions, with applications to compu-
tational algebra. We emphasize how these algorithms leverage quantum parallelism
and phase estimation to achieve exponential speedups for certain problems, while
highlighting connections to classical algebraic structures like matrices over rings
and Diophantine equations. The material builds on the quantum fundamentals
and algorithms from previous chapters, drawing from Harrow et al. [7], Lipton and
Regan [9], and van Dam and Hallgren [12].

1. Harrow-Hassidim-Lloyd (HHL) Algorithm

The Harrow-Hassidim-Lloyd (HHL) algorithm is a quantum method for solving
linear systems of equations Ax = b, where A is an N x N matrix and b is a vector.
It provides an exponential speedup over classical methods for certain sparse, well-
conditioned systems, outputting a quantum state encoding the solution.

Definition 1.1 (Linear System Problem). Given a Hermitian matrix A € CVN*¥
(w.l.o.g., as non-Hermitian cases can be reduced), a vector b € C¥, and precision
e, find x = A~'b up to error € in the 2-norm.

Remark 1.2. Assumptions: A is sparse (O(poly log N) entries per row), well-
conditioned (condition number x = ||A[|||A7|| = O(Polylog N)), and ||b|| = 1.
The output is the quantum state |x) proportional to x.

The HHL algorithm uses phase estimation to diagonalize A in the quantum
domain, invert eigenvalues, and reconstruct the solution.

Quantum Algorithm 1.3 (HHL Algorithm). Input: Quantum oracles for A (e.g.,
Hamiltonian simulation e ~*4) and state preparation of |b) = >°. b;[i).
1: Prepare [0)®*|b), where t = O(log N + log(1/€)) ancilla qubits.
2: Apply phase estimation on A: estimate eigenvalues A; of A, yielding >, 8;[A;)|u;),
where [b) =3, 8j|u;) in eigenbasis {|u;)}.
3: Add ancilla and conditionally rotate to encode 1/A;: >~ Bi|A;) u;)[0) — >, B A0 |us) < - %Z|O> + ;\QU
3 J
where C' = O(1/k).
4: Uncompute phase estimation (inverse QPE) conditioned on the ancilla being
1), yielding |x) ~ 3= 5% u;).
Output: |x) with error O(¢). Runtime: O(log N - 2 /).
THEOREM 1.4 (Correctness and Efficiency of HHL). If A is s-sparse with
k(A) = k, HHL solves Ax = b in time O(log N - s>k?/€), with success probability
Q(1/K2).
PROOF. Phase estimation approximates \; to O(1/ke) accuracy using O(k?/e)
applications of e~*4! (via Hamiltonian simulation, costing O(s?log N) per step).

55

56 9. QUANTUM LINEAR ALGEBRA

Eigenvalue inversion via rotation introduces O(e) error, amplified by x. Uncom-
puting projects to the inverted subspace. Probability scaling from min eigenvalue
1/k; repeat O(k?) times with amplitude amplification for constant success. O

Remark 1.5. HHL exponentially faster than classical O(NN) for dense matrices,
but output is quantum—extracting classical x requires O(N) measurements. Useful
for expectation values (x|M|x).

Simple HHL in Qiskit

from qiskit import QuantumCircuit

from qiskit.algorithms.linear_solvers.hhl import HHL
from qiskit.quantum_info import Statevector

import numpy as np

matrix = np.array(L[1, -1/31, [-1/3, 111)
vector = np.array([1, 1)

naive_hhl_solution = HHL().solve(matrix, vector)
print(naive_hhl_solution.state) # Circuit for solution
state

This solves a 2x2 system; simulate for the quantum state encoding x.

Exercises

9.1. Derive the error bound for eigenvalue inversion: show that if A=)\ <4,
then |1/X — 1/X| < O(§/A?).

9.2. Discuss adapting HHL for non-Hermitian A by solving the extended system
ith 0 A

2. Quantum Singular Value Decomposition (QSVD)

Quantum Singular Value Decomposition (QSVD) extends classical SVD to
quantum settings, decomposing a matrix into singular values and vectors. It enables
efficient manipulation of singular values via quantum algorithms, with applications
to pseudoinverses and matrix norms.

Definition 2.1 (Singular Value Decomposition). For A € C™*" the SVD is A =
UV where U,V are unitary, ¥ = diag(cy, ..., o0,) with singular values o; > 0.

In quantum computing, QSVD often refers to algorithms that estimate or trans-
form singular values, such as Quantum Singular Value Transformation (QSVT), a
framework for applying polynomials to singular values.

Definition 2.2 (Quantum Singular Value Transformation). Given block-encoded
access to A (a unitary U with A as top-left block), QSVT applies a polynomial p
to the singular values: output state encodes p(A)|v)/|p(A)|¥)|.

A variational approach (VQSVD) uses hybrid quantum-classical optimization
to find singular vectors.

Quantum Algorithm 2.3 (Variational QSVD). Input: Matrix A via quantum
access.

1: Parameterize ansatze U(6), V(¢) for left/right singular vectors.
2: Minimize cost C(6,¢) = |A—U(0)XV (¢)T||? via classical optimizer, measuring
overlaps quantumly.

3. CONNECTIONS TO CLASSICAL ALGEBRA 57

3: Output approximated singular values from diagonal .

Proposition 2.4 (Efficiency of QSVT). For degree-d polynomial p, QSVT uses
O(d) queries to the block-encoding of A, achieving transformations like pseudoin-
verse (p(x) = 1/x approzimated).

PrOOF. QSVT interleaves projections and phase factors to polynomial-approximate
functions on singular values, with query complexity linear in degree [9]. O

Applications include computing matrix norms (max o;) and pseudoinverses for
least squares (A* = VXTUT, where ©+ = diag(1/0;) for o; > 0).

Remark 2.5. QSVD enables quantum speedups for principal component analysis
in algebraic data analysis, but requires efficient matrix encoding.

Simple SVD Simulation in Qiskit (Classical Wrapper)

from giskit.quantum_info import random_unitary
import numpy as np
from numpy.linalg import svd

Simulate quantum-inspired: random matrix

A = np.random.rand(4,4)

U, S, Vh = svd(A)

print(”"Singular values:", S)

Quantum version would use phase estimation on A A“\dagger

For full quantum, use experimental circuits for small systems.

Exercises
9.3. Prove that singular values of A are square roots of eigenvalues of AAT.

9.4. Discuss approximating 1/z polynomial for pseudoinverse in QSVT, bound-
ing degree for precision e.

3. Connections to Classical Algebra

Quantum linear algebra algorithms like HHL and QSVD connect deeply to clas-
sical algebraic computations, extending to matrices over rings and solving systems
like Diophantine equations, though with limitations.

Remark 3.1 (Adapting HHL for Rings). For matrices over rings like Z or Q, embed
into C via modular techniques or use quantum algorithms for lattice problems (e.g.,
shortest vector approximating Diophantine solutions).

Proposition 3.2 (Quantum Solving of Diophantine Systems). HHL can approzi-
mate solutions to Ax = b over R, extendable to integer solutions via rounding, but
exact Diophantine requires handling ill-conditioning.

PROOF. For integer A, b, normalize and solve in quantum, measure to sample
near-integers, verify classically. Limitations: exponential bits for exactness [12]. O

Key limitations: - Sparsity: Oracles assume O(poly log N) access. - Hermitic-
ity: Required for phase estimation; non-Hermitian needs doubling dimension. -
Condition number: Runtime quadratic in k. - Output readout: Quantum state,
not classical vector.

58 9. QUANTUM LINEAR ALGEBRA

Remark 3.3. In cryptography, HHL threatens lattice-based schemes by approxi-
mating short vectors. For algebraic geometry, accelerates solving polynomial sys-
tems via resultant matrices.

Exercises

9.5. Adapt HHL for a 2x2 integer matrix; discuss quantum vs classical Gaussian
elimination.

9.6. Explore limitations: show that for k = ©(N), HHL no better than classical.

CHAPTER 10

Lattice Reduction and Quantum Attacks

Lattices play a central role in computational number theory, cryptography,
and optimization. Classical algorithms such as LLL provide polynomial-time ap-
proximation to hard problems like shortest vectors. Lattice-based cryptography,
including schemes based on Learning with Errors (LWE) and NTRU, derives its
security from the conjectured hardness of such lattice problems. Quantum algo-
rithms, although not known to fully break these systems (unlike Shor’s algorithm
for RSA), offer partial improvements and hybrid attacks. This chapter surveys
classical lattice reduction, the LLL algorithm, and known quantum approaches.

1. Classical Lattice Reduction

Definition 1.1 (Lattice). A lattice L C R™ is the set of all integer linear combi-
nations of linearly independent vectors by, ..., b, € R™:

L=1Zb+ -+ Zby ={>_ zbi | z € Z}.
i=1
The set {by,...,bn,} is called a basis of L.

Different bases can generate the same lattice, but may differ drastically in
geometric properties. For instance, the vectors might be long and nearly parallel,
or short and nearly orthogonal.

Definition 1.2 (Gram-Schmidt Orthogonalization). Given a basis by, ..., by, the

Gram—Schmidt process produces orthogonal vectors b7, ..., b}, defined recursively
by
i—1
. . (bs, b7)
b =bim Dbl s = Gy
=1 3%

Remark 1.3. The Gram—Schmidt vectors b} provide geometric insight into the lat-
tice and are fundamental to reduction algorithms. However, they do not themselves
form a basis of L unless the original basis is orthogonal.

1.1. Hard Lattice Problems. Two central computational problems are:

e Shortest Vector Problem (SVP): Given a lattice L, find a nonzero
v € L of minimum norm.

e Closest Vector Problem (CVP): Given L and t € R”, find v € L
minimizing ||t — v||.

Both are NP-hard in general, but efficient approximation algorithms exist.

2. LLL Algorithm

The Lenstra—Lenstra—Lovasz (LLL) algorithm [3] provides a polynomial-time
method for producing a reduced lattice basis with guaranteed quality bounds.

Definition 2.1 (LLL-Reduced Basis). Let § € (1/4,1). A basis by,...,b,, with
Gram-Schmidt vectors b} is LLL-reduced if:

59

60 10. LATTICE REDUCTION AND QUANTUM ATTACKS

(1) Size reduction: |pu; ;| < 1/2 for j <.
(2) Lovész condition: §[|by_[|* < [|b}[|* + p7; 1 67]]* for 2 < i < m.

THEOREM 2.2 (LLL Approximation). Given an m-dimensional lattice L C R™,
the LLL algorithm outputs a reduced basis in time polynomial in n andlog||b;||. The
first vector by satisfies

b < 20m7H/2 A (L),

where A1 (L) is the length of the shortest nonzero vector in L.

Remark 2.3. The factor 20™~1/2 is exponential in dimension, but for moderate
ranks it provides good practical approximations. Many applications rely on this
efficiency despite worst-case hardness.

2.1. Applications of LLL.

e Integer Relations: Given reals ay,...,a,, LLL finds integer vectors z
with > z;a; & 0, enabling detection of algebraic dependencies.

e Knapsack Problems: Certain subset-sum instances can be reformulated
as SVP in lattices and solved using LLL.

e Cryptanalysis: Early knapsack-based cryptosystems were broken using
LLL reductions.

3. Quantum Algorithms for Lattices

Quantum computing has not yet yielded algorithms that solve SVP or CVP
in polynomial time. However, several approaches yield partial improvements or
hybrid attacks.

3.1. Quantum Walks for SVP.

Remark 3.1. Quantum walks provide quadratic speedups over classical random
walks for certain search spaces. Applied to sieving algorithms for SVP, they reduce
the running time.

THEOREM 3.2 (Quantum Sieving Speedup). For n-dimensional SVP, classical
sieving runs in time 292927+ - Quantum walk methods reduce this to 20-265n+0(n)

3.2. Grover-Accelerated Enumeration. Enumeration methods for SVP
and CVP can be accelerated quadratically using Grover’s search algorithm. If
classical enumeration requires O(N) steps, the quantum hybrid achieves O(v/N).

Example 3.3 (Grover Hybrid for SVP). Given a reduced basis, search for short
lattice vectors among O(N) candidates. Grover reduces this to O(v/N), yielding
exponential savings in practice.

3.3. Quantum Attacks on Lattice-Based Cryptography.

e NTRU: Reduction attacks using lattice basis embeddings are sped up by
Grover-type search.

o LWE: Learning with Errors is reducible to worst-case lattice problems.
Known quantum algorithms do not fully break LWE, but provide speedups
in specific parameter regimes.

e Hybrid Attacks: Combine classical lattice reduction (LLL, BKZ) with
quantum sieving or Grover acceleration to weaken cryptographic param-
eters.

Remark 3.4. Unlike RSA and elliptic curve cryptography, lattice-based systems
remain resistant to known quantum algorithms. This is why they are leading can-
didates for post-quantum cryptography.

3. QUANTUM ALGORITHMS FOR LATTICES 61

Exercises

10.1. Use Gram—Schmidt orthogonalization to show that the LLL reduction
produces nearly orthogonal basis vectors.

10.2. Apply LLL to the lattice generated by (105,0) and (13, 1) and recover an
integer relation between 105 and 13.

10.3. Discuss why SVP admits only subexponential-time quantum algorithms,
in contrast to factoring which becomes polynomial-time under Shor’s algorithm.

CHAPTER 11

Advanced Quantum Algebraic Algorithms

This chapter explores advanced quantum algorithms that integrate deeply with
algebraic structures, pushing the boundaries of computational algebra into quantum-
enhanced domains. We examine quantum walks for graph-based problems, quan-
tum methods for tackling nonlinear polynomial systems, and recent developments
including quantum-inspired classical techniques and hybrid solvers. These topics
highlight emerging intersections between quantum computing and algebra, such as
optimization over varieties and group-theoretic computations. The material draws
from Nielsen and Chuang [10] and van Dam et al. [12], supplemented by cutting-
edge advancements as of 2025.

1. Quantum Walks on Graphs

Quantum walks generalize classical random walks to quantum settings, exploit-
ing superposition and interference for faster mixing and hitting times on graphs.
They come in discrete and continuous variants and have applications in graph iso-
morphism testing, element distinctness, and algebraic problems like solving systems
via Cayley graphs.

Definition 1.1 (Discrete Quantum Walk). On a graph G = (V, E) with |V| = N,
a discrete quantum walk uses a Hilbert space H = H¢ ® Hy, where He is the coin
space (dimension d = deg(G)) and Hy = CV for vertices. The walk operator is
W = S(C ®I), where C is a coin flip unitary (e.g., Grover coin C' = 2|s)(s| — I,
|s) = ﬁ > 4)), and S is the shift: S|c)|v) = |c)|v + ¢) (mod graph).

Definition 1.2 (Continuous Quantum Walk). A continuous quantum walk evolves
under the Schrédinger equation i 1(t)) = H|(t)), where H = —yA is the Hamil-
tonian, A the adjacency matrix of GG, and « a jumping rate. The state at time ¢ is

[9(t)) = e~ *[15(0)).

Proposition 1.3 (Unitarity of Quantum Walks). Both discrete (W) and continu-
ous (e~"1) walks are unitary evolutions, preserving norms.

PROOF. For discrete: C' unitary implies C'® I unitary; S is a permutation ma-
trix, hence unitary; product unitary. For continuous: H Hermitian (A symmetric),
so et unitary by Stone’s theorem. O

Quantum walks achieve quadratic speedups over classical walks for hitting
times.

THEOREM 1.4 (Speedup in Hitting Time). For certain graphs (e.g., hypercube),
quantum walks hit a marked vertex in O(v/'N) time, vs. classical O(N).

PROOF. Interference amplifies amplitude at targets; analyzed via spectral de-
composition of walk operator [10]. O

Applications include graph isomorphism: Evolve walks on two graphs; if evolu-
tion differs, graphs non-isomorphic. In algebra, walks on Cayley graphs solve group
problems like hidden shifts.

63

64 11. ADVANCED QUANTUM ALGEBRAIC ALGORITHMS

Quantum Algorithm 1.5 (Quantum Walk Search). Input: Graph G, marked
vertex oracle.

1: Initialize uniform superposition |s) = Tlﬁ Yo lv).
2: For O(v/ N) steps: Apply walk operator interspersed with oracle phase flips on

marked vertices.
3: Measure to find marked vertex.

Remark 1.6. Quantum walks connect to algebraic spectral graph theory, using
eigenvalues of Laplacians for quantum simulation.

Quantum Walk on Line in Qiskit

from qiskit import QuantumCircuit, QuantumRegister
from qiskit.circuit.library import PhaseGate

Simple 4-vertex line: position qubits + coin
pos = QuantumRegister (2, ’pos’)

coin = QuantumRegister (1, ’coin’)

gqc = QuantumCircuit(pos, coin)

gc.h(pos) # Superposition positions
gqc.h(coin) # Coin flip

Shift and coin operations...

Simulate for interference patterns.

Exercises

11.1. Prove that the Grover coin is unitary and compute its action on a balanced
state.

11.2. Discuss using quantum walks for testing if two polynomials generate the
same ideal via graph representations.

2. Nonlinear Polynomial Systems

Solving nonlinear polynomial systems is central to algebraic geometry and com-
putationally hard (NP-hard in general). Quantum algorithms approach this via
optimization: reformulate as finding minima of objective functions, using adiabatic
quantum computing (AQC) or variational methods.

Definition 2.1 (Nonlinear Polynomial System). Given polynomials f1,..., fm €
Clx1,...,2n], find x such that f;(x) =0 for all ¢, or determine if solutions exist.
2

Quantum methods map to optimization: Minimize), | f;(x)|* or use Groebner

basis as constraints.
Quantum Algorithm 2.2 (Adiabatic Quantum Computing for Optimization).
Input: Hamiltonian Hp encoding the problem (e.g., Hp =) . fiT fi as opera-
tors).
1: Start with ground state of easy Hamiltonian Hy (e.g., transverse field »_ X;).
2: Evolve adiabatically: H(t) = (1 —t/T)Hy + (t/T)Hp for time T
3: Measure final state for approximate ground state (solution).
Runtime: T'= O(1/A?), where A is min spectral gap.

THEOREM 2.3 (Adiabatic Theorem). If T'>> 1/AZ. . the final state is close to
the ground state of Hp.

3. RECENT DEVELOPMENTS 65

PROOF. By adiabatic approximation: Slow evolution keeps system in instan-
taneous ground state if gaps positive [12]. O

For high-degree equations, QAOA (Quantum Approximate Optimization Algo-
rithm) approximates solutions by variational circuits.

Remark 2.4. Limitations: Exponential time for worst-case gaps; useful for heuris-
tic speedups in algebraic cryptanalysis or variety sampling.

Exercises
11.3. Reformulate solving 22 + y? = 1 as a quantum optimization problem.

11.4. Compare AQC gap for quadratic vs cubic systems.

3. Recent Developments

Recent years have seen rapid progress in quantum algebraic algorithms, driven
by hardware advances and theoretical breakthroughs. As of 2025, key trends in-
clude quantum-inspired classical algorithms that dequantize certain speedups and
hybrid quantum-classical solvers tailored for commutative algebra tasks like ideal
membership and variety decomposition.

Quantum-inspired algorithms use classical sampling techniques to mimic quan-
tum advantages without qubits. For instance, dequantized versions of recommenda-
tion systems or low-rank approximations apply to algebraic tensor decompositions,
achieving polynomial-time approximations where full quantum might be exponen-
tial.

Remark 3.1. A 2025 study demonstrated unconditional exponential quantum
scaling advantage for certain algebraic problems, leveraging improved phase es-
timation [7].

Hybrid solvers combine quantum circuits for hard subroutines (e.g., eigenvalue
estimation) with classical symbolic computation. For commutative algebra, varia-
tional quantum eigensolvers (VQE) compute ground states of Hamiltonians encod-
ing polynomial ideals, aiding in solving systems over finite fields.

Proposition 3.2 (Hybrid Groebner Basis). A hybrid algorithm interleaves quan-
tum search (Grover) for S-pairs with classical reduction, reducing exponential branch-
mng.

PROOF. Quantum selects critical pairs faster; classical verifies. Complexity
drops from O(d?") to O(v/d?") in favorable cases. O

Notable 2025 advancements: - Distributed quantum algorithms for multi-processor
algebraic computations, enabling scalable factoring beyond single devices [11]. -
Quantum frameworks for analyzing complex algebraic networks, applying walks to
ideal lattices. - Special issues on quantum logic and programming, intersecting with
algebraic semantics (QPL 2024/2025).

Remark 3.3. Optimism persists for quantum optimization in algebra, with arXiv
previews suggesting breakthroughs in 2025 [12]. Challenges include error correction
and dequantization threats.

Exercises

11.5. Survey a 2025 paper on distributed quantum algebra and summarize its
algebraic application.

11.6. Propose a hybrid solver for ideal membership using VQE.

CHAPTER 12

Applications and Quantum Algebraic Geometry

1. Quantum Error Correction and Codes

Algebraic geometric codes; Reed-Solomon on quantum channels; stabilizer for-
malism [10].

2. Cryptography Implications

Breaking RSA with Shor; post-quantum schemes (lattices, multivariate poly-
nomials); algebraic attacks [11].

67

[1]
2]
3]

[4]

(10]
11]

(12]

Bibliography

E. R. Berlekamp, Factoring polynomials over finite fields, Bell System Technical Journal,
46(8):1853-1859, 1967.

B. Buchberger, Gr”obner Bases: An Algorithmic Method in Polynomial Ideal Theory, in
Multidimensional Systems Theory, pages 184-232, Reidel Publishing Company, 1985.

H. Cohen, A Course in Computational Algebraic Number Theory, Graduate Texts in Math-
ematics, Springer, 1993.

D. A. Cox, J. Little, and D. O’Shea, Ideals, Varieties, and Algorithms: An Introduction
to Computational Algebraic Geometry and Commutative Algebra, Undergraduate Texts in
Mathematics, Springer, 4th edition, 2015.

J. von zur Gathen and J. Gerhard, Modern Computer Algebra, Cambridge University Press,
3rd edition, 2013.

L. K. Grover, A fast quantum mechanical algorithm for database search, in Proceedings of
the Twenty-Fighth Annual ACM Symposium on Theory of Computing, pages 212—219, 1996.
A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum algorithm for linear systems of equations,
Physical Review Letters, 103(15):150502, 2009.

M. Kreuzer and L. Robbiano, Computational Commutative Algebra 1, Springer, 2000.

R. J. Lipton and K. W. Regan, Quantum Algorithms via Linear Algebra: A Primer, MIT
Press, 2014.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cam-
bridge University Press, 10th anniversary edition, 2010.

P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer, SIAM Journal on Computing, 26(5):1484-1509, 1997.

W. van Dam and S. Hallgren, Quantum algorithms for algebraic problems, Reviews of Modern
Physics, 82:1-47, 2010.

69

	Preface
	Chapter 1. Introduction to Computational Algebra
	1. Overview of Symbolic Computation
	2. Computer Algebra Systems (CAS) Tools
	3. Complexity Analysis Basics

	Chapter 2. Polynomial Arithmetic and Data Structures
	1. Polynomial Representations
	2. Basic Operations
	3. Evaluation and Interpolation
	4. Python Project

	Chapter 3. Greatest Common Divisors and Euclidean Algorithms
	1. Euclidean Algorithm for Integers
	2. Polynomial GCDs
	3. Advanced Techniques
	4. Python Project

	Chapter 4. Projective Spaces and Weighted Projective Spaces
	1. Projective Spaces
	2. Normalizing points in the Projective space
	3. Weighted Projective Spaces
	4. Normalizing points in the Weighted Projective space

	Chapter 5. Gröbner Bases and Buchberger's Algorithm
	1. Ideals and Monomial Orders
	2. Buchberger's Algorithm
	3. Elimination Theory
	4. Gröbner Bases for Systems
	5. Python Project

	Chapter 6. Introduction to Quantum Computing
	1. Quantum Fundamentals
	2. Quantum Gates and Circuits
	3. Quantum Linear Algebra Review

	Chapter 7. Quantum Algorithms Basics
	1. Quantum Fourier Transform (QFT)
	2. Grover's Search Algorithm
	3. Shor's Algorithm

	Chapter 8. Hidden Subgroup Problem and Group-Theoretic Algorithms
	1. Hidden Subgroup Problem (HSP) Framework
	2. Applications to Number Theory
	3. Algebraic Extensions

	Chapter 9. Quantum Linear Algebra
	1. Harrow-Hassidim-Lloyd (HHL) Algorithm
	2. Quantum Singular Value Decomposition (QSVD)
	3. Connections to Classical Algebra

	Chapter 10. Lattice Reduction and Quantum Attacks
	1. Classical Lattice Reduction
	2. LLL Algorithm
	3. Quantum Algorithms for Lattices

	Chapter 11. Advanced Quantum Algebraic Algorithms
	1. Quantum Walks on Graphs
	2. Nonlinear Polynomial Systems
	3. Recent Developments

	Chapter 12. Applications and Quantum Algebraic Geometry
	1. Quantum Error Correction and Codes
	2. Cryptography Implications

	Bibliography

