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Abstract. This paper explores the geometry and computation of (ℓ, ℓ)-isogenies

between abelian surfaces, focusing on Jacobians of genus 2 curves and their
Kummer surfaces. We establish a comprehensive framework integrating abelian

varieties, theta functions, and Kummer surface embeddings, leveraging the

Torelli theorem to connect genus 2 curves with their principally polarized Ja-
cobians. Theta functions of level 2 embed Kummer surfaces into P3, enabling

both theoretical analysis and practical computations. We generalize Richelot’s
(2,2)-isogenies to arbitrary odd ℓ, developing efficient algorithms for computing

these isogenies.

Contents

1. Introduction 1
2. Abelian varieties 2
3. Theta Functions 4
4. Kummer Surfaces 6
4.1. Jacobian Varieties and Surfaces 7
4.2. Kummer Surface and Shioda-Inose Surface 8
5. Endomorphism Ring of Abelian Varieties 9
6. Genus 2 Curves and Their Jacobians 12
6.1. (n, n)-Split Jacobians 13
6.2. Loci of (ℓ, ℓ)-Split Jacobians 14
7. Richelot Isogenies of Abelian Surfaces 15
7.1. A Theta Functions Approach 16
8. Computing (ℓ, ℓ)-Isogenies 17
8.1. Computing (n, n)-Isogenies via Kummer Surface 19
8.2. The Lubicz-Robert Formula for Computing (ℓ, ℓ)-Isogenies on Kummer

Surfaces 19
9. Cryptanalytic Implications of (ℓ, ℓ)-Split Jacobians 21
9.1. The Costello et al. Attack 21
9.2. Impact on Genus 2 Cryptography 21
9.3. Requirements for a Full Break 22
9.4. Connection to This Work 22
10. Conclusion and Future Work 22
References 23

1



2 ADRIAN CLINGHER, ANDREAS MALMENDIER, AND TONY SHASKA

1. Introduction

Abelian varieties, as projective algebraic groups, generalize elliptic curves to
higher dimensions and play a central role in algebraic geometry and number the-
ory. This paper focuses on abelian surfaces—two-dimensional abelian varieties—
with particular emphasis on Jacobians of genus 2 curves, which exhibit intricate
geometric and arithmetic properties that enrich pure mathematical theory and hold
promise for applied contexts, notably cryptography.

The advent of isogeny-based cryptography has spotlighted abelian varieties,
where isogenies—surjective homomorphisms with finite kernels—underpin the se-
curity of protocols like the Supersingular Isogeny Diffie-Hellman (SIDH) by lever-
aging the computational hardness of isogeny problems on supersingular elliptic
curves. Extending this paradigm to abelian surfaces enhances security through
larger ℓ4-torsion groups and richer endomorphism algebras, potentially improving
efficiency over elliptic curve systems. However, computing (ℓ, ℓ)-isogenies, especially
for ℓ > 2, poses significant challenges due to increased kernel complexity, necessitat-
ing techniques beyond classical Richelot isogenies and prompting scrutiny of their
cryptographic vulnerabilities.

Theta functions are essential in this endeavor, serving as analytic tools defined
on an abelian variety’s universal cover with quasi-periodic properties tied to its
lattice structure. They provide explicit coordinates for embedding abelian varieties
into projective spaces, facilitating both theoretical insights and practical computa-
tions. For abelian surfaces, level 2 theta functions embed the Kummer surface—the
quotient by its inversion involution—into P3, encoding moduli via theta constants,
or thetanulls, crucial for our geometric and computational framework.

Genus 2 curves, smooth projective curves of genus 2, yield principally polarized
abelian surfaces as their Jacobians, linked by the Torelli theorem, which identifies a
curve with its Jacobian’s theta divisor up to isomorphism. Their Kummer surfaces,
featuring the (16,6)-configuration of nodes and tropes, provide a computational
platform. We explore (ℓ, ℓ)-isogenies, with kernels as maximal isotropic subgroups
of ℓ-torsion points, generalizing Richelot’s (2,2)-isogenies to odd primes ℓ. Efficient
computation of these isogenies is vital for genus 2 cryptographic applications, yet
their security hinges on understanding split Jacobians—those isogenous to elliptic
curve products—and their loci Lℓ.

This paper integrates the theoretical foundations of abelian varieties, theta func-
tions, and Kummer surfaces with advanced computational and cryptanalytic in-
sights for (ℓ, ℓ)-isogenies. Sections 2–6 establish the background, detailing abelian
surfaces, endomorphism rings, theta properties, and genus 2 geometry, including
Lℓ for ℓ = 2, 3, 5, 7, 11. Sections 7–8 develop computational methods, from Richelot
constructions to the Lubicz-Robert formula, achieving O(ℓ2) complexity for odd
ℓ. Section 9 examines cryptanalytic implications, highlighting attacks exploiting
Lℓ that accelerate isogeny problem-solving (e.g., 100× faster for 1000-bit primes),
assessing their impact on protocols like the Castryck-Decru-Smith hash, and out-
lining requirements for a full break. We conclude in Section 10 with reflections on
these contributions, bridging geometry, computation, and cryptography to advance
genus 2 Jacobians in next-generation protocols.
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2. Abelian varieties

We assume some familiarity with algebraic curves and abelian varieties. For
some of the basic definitions, we refer to [17] among other places.

Let A, B be abelian varieties over a field k. We denote the Z-module of ho-
momorphisms A 7→ B by Hom(A,B) and the ring of endomorphisms A 7→ A by
EndA. In the context of linear algebra, it is often more convenient to work with
the Q-vector spaces Hom0(A,B) := Hom(A,B) ⊗Z Q and End0 A := EndA⊗Z Q.
For an abelian variety A defined over a number field K, computing EndK(A) is a
harder problem than computing EndK̄(A); see [21, lemma 5.1] for details.

Lemma 1. If there exists an algorithm to compute EndK(A) for any abelian variety
of dimension g ≥ 1 defined over a number field K, then there is an algorithm to
compute EndK̄(A).

Proof. Since K ⊆ K̄, any endomorphism of A over K̄ restricts to an endomor-
phism over K after base change, but the converse requires additional structure. An
algorithm for EndK(A) determines the Z-module of K-rational endomorphisms.
Extending scalars to K̄, we compute EndK̄(A) = EndK(A) ⊗Z K̄, leveraging the
finite generation of EndK(A) and the algebraic closure of K̄. The lemma follows
from the existence of such an extension procedure. □

A homomorphism f : A → B is called an isogeny if Img f = B and ker f is
a finite group scheme. If an isogeny A → B exists, we say that A and B are
isogenous. This relation is symmetric, as shown in lemma 3. The degree of an
isogeny f : A → B is defined as the degree of the function field extension

(1) deg f := [K(A) : f⋆K(B)].
This equals the order of the group scheme ker(f). The group of k̄-rational points
has order #(ker f)(k̄) = [K(A) : f⋆K(B)]sep, where [K(A) : f⋆K(B)]sep is the
degree of the maximal separable subextension. An isogeny f is separable if and
only if

(2) #ker f(k̄) = deg f,

equivalently, if ker f is étale.

Lemma 2. For any abelian variety A/k, there is a one-to-one correspondence
between finite subgroup schemes K ≤ A and isogenies f : A → B, where B is
determined up to isomorphism. Moreover, K = ker f , B = A/K, f is separable if
and only if K is étale, and then deg f = #K(k̄).

Proof. Given a finite subgroup scheme K ≤ A, the quotient B = A/K is an abelian
variety over k, and the natural projection f : A → B is an isogeny with ker f = K.
Conversely, for an isogeny f : A → B, the kernel K = ker f is finite, and B ∼= A/K
by the quotient structure. The map K 7→ A/K is injective (distinct kernels yield
distinct quotients) and surjective (every isogeny arises this way), establishing the
bijection. Separability of f implies ker f is étale, and deg f = #K(k̄) holds in this
case due to the étale order matching the field extension degree. □

Isogenous abelian varieties have commensurable endomorphism rings: if A and
B are isogenous, then End0(A)∼= End0(B). This follows from the existence of iso-
genies f : A → B and g : B → A such that g ◦ f = [n], inducing an isomorphism on
rational endomorphism algebras.
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Theorem 1 (Poincaré-Weil). Let A be an abelian variety. Then A is isogenous to

(3) An1
1 ×An2

2 × · · · × Anr
r ,

where (up to permutation) Ai, for i = 1, . . . , r, are simple, non-isogenous abelian
varieties, and the factors Ani

i are uniquely determined up to isogenies.

Proof. Since A is an abelian variety, its isogeny class contains a product of powers
of simple abelian varieties. Let A ∼

∏r
i=1 A

ni
i , where Ai are simple and pairwise

non-isogenous. The uniqueness follows from the Jordan-Hölder theorem for abelian
varieties: any two such decompositions have isomorphic factors with equal multi-
plicities, up to permutation, due to the indecomposability of simple varieties and
the structure of End0(A). □

Corollary 1. If A is an absolutely simple abelian variety, then every endomorphism
not equal to 0 is an isogeny.

Proof. For A absolutely simple, End0(A) is a division algebra. A non-zero endo-
morphism ϕ has trivial kernel (since kerϕ ̸= A and A has no proper subvarieties as
a simple variety), hence is an isogeny. □

Fix a field k and an abelian variety A over k. Let H be a finite subgroup of A.
From a computational perspective, we consider: (i) finding all abelian varieties B
over k such that there exists an isogeny A → B with kernel isomorphic to H; (ii)
given A and H, determining B := A/H and the isogeny A → B; (iii) given A and
B, determining if they are isogenous and computing a rational expression for an
isogeny A → B. For a survey and conjectures, see [15].

The scalar multiplication by n map [n] : A → A is an isogeny with kernel a group
scheme of order n2 dimA; see [26]. We denote A[n] = ker[n](k̄), whose elements are
the n-torsion points of A.

Lemma 3. Let f : A → B be an isogeny of degree n. Then there exists an isogeny

f̂ : B → A such that

(4) f ◦ f̂ = f̂ ◦ f = [n].

The isogeny f̂ is called the dual of f .

Proof. Define f̂ via the dual abelian variety and the polarization induced by f .

Since f is an isogeny, there exists a unique f̂ : B → A such that f ◦ f̂ = [n] on

B and f̂ ◦ f = [n] on A, satisfying the duality condition due to the finite kernel’s
order matching deg f = n. □

Theorem 2. Let A/k be an abelian variety, p = char k, and dimA = g.

i) If p ∤ n, then [n] is separable, #A[n] = n2g, and A[n]∼=(Z/nZ)2g.
ii) If p | n, then [n] is inseparable, and there exists an integer 0 ≤ i ≤ g such

that

(5) A[pm]∼=(Z/pmZ)i, for all m ≥ 1.

Proof. If p ∤ n, [n] is separable as its derivative is non-zero, and A[n] ∼= (Z/nZ)2g
follows from the étale nature of the kernel over k̄. If p | n, [n] includes a power of
the Frobenius, making it inseparable, and the p-torsion structure depends on the
p-rank i, determined by the dimension of the p-divisible group. □



ISOGENIES, KUMMER SURFACES, THETA FUNCTIONS 5

If i = g, A is ordinary; if A[ps](K̄) = Z/ptsZ, it has p-rank t. For dimA = 1,
it is supersingular if p-rank is 0; A is supersingular if isogenous to a product of
supersingular elliptic curves.

3. Theta Functions

Let A be an abelian variety of dimension g over an algebraically closed field k,
which we take as C for simplicity; the arguments extend to fields of characteristic
p coprime to relevant integers via algebraic theta functions (see [26]). Represent A
as Cg/Λ, where Λ = Zg + τZg is a lattice, and τ is a symmetric g × g matrix in
the Siegel upper half-space Hg, satisfying tτ = τ and Im(τ) > 0. A theta function
with characteristic [a, b], where a, b ∈ Qg, is defined as

(6) θ [ ab ] (z, τ) =
∑
n∈Zg

exp
(
πi(n+ a)tτ(n+ a) + 2πi(n+ a)t(z + b)

)
,

for z ∈ Cg. The series converges absolutely due to the positive definiteness of Im(τ),
ensuring that θ [ ab ] (z, τ) is holomorphic on Cg. These functions are quasi-periodic
with respect to the lattice Λ: for m ∈ Zg,

θ [ ab ] (z +m, τ) = θ [ ab ] (z, τ),

and for n ∈ Zg,

θ [ ab ] (z + τn, τ) = exp
(
−πintτn− 2πint(z + b)

)
θ [ ab ] (z, τ).

When a, b ∈ {0, 1/2}g, the characteristic is half-integer, and the parity is even if
4atb is even, odd if 4atb is odd, reflecting the function’s symmetry properties.

Proof of Quasi-Periodicity. For the first property, substitute z+m into the defini-
tion:

θ [ ab ] (z +m, τ) =
∑
n∈Zg

exp
(
πi(n+ a)tτ(n+ a) + 2πi(n+ a)t(z +m+ b)

)
.

Since (n+a)tm = ntm+atm and n,m ∈ Zg, the exponential term exp(2πintm) = 1,
and atm is rational, so the sum reindexes to itself, yielding equality. For the second,
let z′ = z + τn:

θ [ ab ] (z + τn, τ) =
∑
k∈Zg

exp
(
πi(k + a)tτ(k + a) + 2πi(k + a)t(z + τn+ b)

)
.

Set k = n−m, adjust the sum, and compute the difference in exponents, factoring
out exp (−πintτn− 2πint(z + b)) due to the symmetry tτ = τ , confirming the
multiplier. □

Theta functions are sections of line bundles on A. For a level n theta structure,
define the functions θ [ 0b ] (z, τ/n), where b ∈ (Z/nZ)g. These form a basis for
the space of sections Γ(A,L n

0 ), where L0 is the line bundle associated with the
principal polarization, and L n

0 is its n-th tensor power. The dimension of this
space is ng, reflecting the number of distinct characteristics b ∈ (Z/nZ)g. This
basis induces a morphism

(7) φn : A → Pn
g−1, z 7→ (θ [ 0b ] (z, τ/n))b∈(Z/nZ)g .

For n ≥ 3, φn is an embedding, realizing A as a projective variety (see [34], Chapter
II).
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Theorem 3 (Embedding Theorem). For an abelian variety A of dimension g over
C with a principal polarization, the morphism φn : A → Png−1 is an embedding for
n ≥ 3.

Proof. The line bundle L n
0 is ample for n ≥ 1, and for n ≥ 3, it is very ample,

meaning it separates points and tangent vectors. For distinct points x, y ∈ A, there
exists b ∈ (Z/nZ)g such that θ [ 0b ] (x, τ/n) ̸= θ [ 0b ] (y, τ/n), as the functions span
a space large enough to distinguish cosets modulo Λ. For a point x and tangent
vector v ∈ TxA, the directional derivative Dvθ [ 0b ] (x, τ/n) ̸= 0 for some b, due
to the completeness of the basis. Thus, φn is injective with injective differential,
embedding A into Png−1. □

A key result is the transformation law under the symplectic group Sp(2g,Z),

which acts on Hg. For γ =

(
A B
C D

)
∈ Sp(2g,Z), define the transformed period

matrix τ ′ = (Aτ + B)(Cτ +D)−1 and z′ = z(Cτ +D)−1. Shimura ([34], Chapter
III) provides the functional equation:

(8) θ [ ab ] (z
′, τ ′) = κ(γ) det(Cτ +D)1/2 exp

(
πiz(Cτ +D)−1Czt

)
θ
[
a′

b′

]
(z, τ),

where κ(γ) is a constant, and a′, b′ are transformed characteristics. This law governs
the behavior of theta functions under automorphisms of A.

Theorem 4 (Riemann Theta Relation). For z1, z2 ∈ Cg, the theta functions satisfy

(9) θ(z1 + z2)θ(z1 − z2) =
∑

m∈(Z/2Z)g
θ
[
m/2
0

]
(2z1)θ

[
m/2
0

]
(2z2),

where θ(z) = θ [ 00 ] (z, τ).

Proof. Consider the product θ(z1 + z2)θ(z1 − z2) as a sum over n,m ∈ Zg. Pair
terms with n+m and n−m, adjust indices, and use the periodicity properties. The
right-hand side arises from a Fourier expansion of the product, with the half-integer
characteristics m/2 accounting for the doubling 2z1, 2z2. The identity holds by the
analytic continuation and symmetry of theta functions (see [34], Chapter II). □

The values θ [ ab ] (0, τ), called theta constants or thetanulls, are significant. For a
principally polarized A, they determine τ up to the action of Sp(2g,Z), parametriz-
ing the moduli space Ag. When a, b ∈ {0, 1/2}g, there are 22g such constants, half
even and half odd, reflecting the 2-torsion structure A[2].

Lemma 4. The theta constants θ [ ab ] (0, τ) for a, b ∈ {0, 1/2}g are zero if and only
if the characteristic [a, b] is odd.

Proof. The parity depends on 4atb mod 2. If odd, the summand exp(πi(n +
a)tτ(n + a)) at z = 0 pairs terms n and −n − 2a, with opposite signs due to
the linear term 2πi(n+a)tb, canceling to zero. If even, no such cancellation occurs,
and the constant is non-zero generically. □

These results underpin the geometric and analytic properties of abelian vari-
eties, with theta functions serving as both coordinates and invariants (see [34] for
a comprehensive treatment).
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4. Kummer Surfaces

Given an abelian surface A over a field k, the Kummer surface Kum(A) is defined
as the quotient A/⟨±1⟩, where the involution ι : A → A acts by ι(x) = −x. This
quotient is a singular surface with 16 ordinary double points, each corresponding
to a 2-torsion point in A[2] = {x ∈ A(k̄) | 2x = 0}, the set of which has car-
dinality 22·2 = 16 over an algebraically closed field. The minimal resolution of
Kum(A) is a smooth K3 surface, obtained by blowing up each double point to
introduce a (−2)-curve (see [35] for details). For an abelian surface A equipped
with a principal polarization, the level 2 theta functions induce a map into projec-
tive space. Specifically, if A = C2/Λ with a period matrix τ ∈ H2, the functions

φ2(z) =
(
θ
[

0
i/2

]
(z, τ/2)

)
i∈(Z/2Z)2 satisfy φ2(z) = φ2(−z), defining a morphism

Kum(A) → P3. If A is not a product of elliptic curves, this morphism is an embed-
ding, and the image is a quartic surface in P3 with 16 nodes reflecting the 2-torsion
structure (see [2, Theorem 4.8.1]).

The quotient construction leverages the group structure of A. The involution ι
is an automorphism of order 2, and its fixed points, the 2-torsion points, map to
singularities on Kum(A). Each singularity is locally isomorphic to the quotient of
C2 by the action z 7→ −z, an A1 singularity, characterized by a quadratic cone.
The number of such points, 16, follows from the structure of the 2-torsion subgroup
A[2] ∼= (Z/2Z)4 over k̄, as the dimension of A is 2. The embedding into P3 arises
from the symmetry of the theta functions under ι, and the quartic nature of the
image reflects the degree of the line bundle L 2

0 associated with the doubled principal
polarization.

Lemma 5. Let A be a principally polarized abelian surface over C, not isomorphic
to a product of elliptic curves. The map φ2 : Kum(A) → P3 defined by φ2(z) =(
θ
[

0
i/2

]
(z, τ/2)

)
i∈(Z/2Z)2 is an embedding.

Proof. The theta functions θi(z) = θ
[

0
i/2

]
(z, τ/2) for i ∈ (Z/2Z)2 are even, sat-

isfying θi(−z) = θi(z) due to the characteristic’s symmetry under the involution
ι. Thus, φ2 : A → P3 factors through the quotient π : A → Kum(A), inducing a
well-defined map φ2 : Kum(A) → P3. For A principally polarized, the line bun-
dle L 2

0 corresponds to 2Θ, where Θ is the theta divisor. The space of sections
Γ(A,L 2

0 ) is 4-dimensional, spanned by the θi. If A is not a product E1 × E2, the
polarization ensures L 2

0 is very ample on Kum(A), separating points and tangent
vectors. Specifically, for distinct points x, y ∈ Kum(A) (not both in A[2]), there
exists i such that θi(x) ̸= θi(y), and for a point x with tangent direction v, some
θi has non-zero derivative along v. Thus, φ2 embeds Kum(A) as a quartic surface
with 16 nodes at the images of A[2]. □

4.1. Jacobian Varieties and Surfaces. Let X be a curve of positive genus over k,
and assume there exists a k-rational point P0 ∈ X (k) with attached prime divisor
p0. There exists an abelian variety Jack(X ) over k and a uniquely determined
embedding

(10) ϕP0 : X → Jack(X ) with ϕP0(P0) = 0Jack(X ),

satisfying:

(1) For all extension fields L of k, JacL X = Pic0XL
(L), with this equality given

functorially.
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(2) For any abelian variety A and morphism η : X → A sending P0 to 0A, there
exists a unique homomorphism ψ : Jac(X ) → A such that ψ ◦ ϕP0 = η.

This Jac(X ), called the Jacobian variety of X , maps a prime divisor p of degree 1
on XL to [p− p0] in Pic0XL

(L).

Lemma 6. The Jacobian Jac(X ) is unique up to isomorphism among abelian va-
rieties satisfying the above properties.

Proof. Suppose J1 and J2 satisfy the conditions with embeddings ϕ1 : X → J1

and ϕ2 : X → J2. By property (2), there exist homomorphisms ψ12 : J1 → J2

and ψ21 : J2 → J1 such that ψ12 ◦ ϕ1 = ϕ2 and ψ21 ◦ ϕ2 = ϕ1. Composing,
ψ21 ◦ ψ12 ◦ ϕ1 = ϕ1. Since ϕ1(X ) generates J1 as a group (by the Abel-Jacobi
theorem), and J1 is abelian, ψ21 ◦ ψ12 acts as the identity on a dense subset,
hence ψ21 ◦ ψ12 = idJ1

. Similarly, ψ12 ◦ ψ21 = idJ2
, establishing an isomorphism

J1
∼= J2. □

Let L/k be a finite algebraic extension. Then JacL X is the scalar extension of
JacX with L, forming a fiber product with projection p : JacL X → JacX . The
norm map is p∗, and the conorm map is p∗. If f : X → D is a surjective morphism
of curves sending P0 to Q0, there exists a unique surjective homomorphism f∗ :
JacX → JacD such that f∗ ◦ ϕP0

= ϕQ0
. If JacX is simple and η : X → D is a

separable cover of degree > 1, then D ∼= P1, as any non-trivial quotient of a simple
abelian variety is trivial. For details, see [17].

Abelian varieties of dimension 2 are termed abelian surfaces. When A = Jac(X ),
the Kummer surface Kum(Jac(X )) inherits properties from the curve via the em-
bedding φ2. The 16 nodes correspond to the 2-torsion points of Jac(X ), and the
quartic surface in P3 reflects the polarization’s structure, with theta constants de-
termining its equation.

4.2. Kummer Surface and Shioda-Inose Surface. For an abelian surface A =
Jac(X ), one can attach two K3 surfaces: the Kummer surface and its double cover,
the Shioda-Inose surface. Let i be the involution on Jac(X ) given by i : p → −p.
The quotient Jac(X )/{I, i} is a singular surface with 16 ordinary double points,
denoted the Kummer surface Kum(Jac(X )); see [24].

The Inose surface, Y := SI(Jac(X )), is a double cover of Kum(Jac(X )). Shioda
and Inose showed that the diagram of rational maps,

(11)

Jac(X ) Y

Kum(Jac(X ))

π0
π1

called a Shioda-Inose structure, induces an isomorphism of integral Hodge struc-
tures between the transcendental lattices of Jac(X ) and Y (see [35]). Specifi-
cally, Y admits an involution fixing the holomorphic (2,0)-form, with quotient
Kum(Jac(X )), and the degree 2 map p : Y → Kum(Jac(X )) satisfies a Hodge
isometry between T (Y)(2) and T (Kum(Jac(X ))); see [24].

Lemma 7. The Shioda-Inose structure induces an isomorphism between the tran-
scendental lattices T (Jac(X )) and T (Y), up to scaling.
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Proof. The transcendental lattice T (Jac(X )) is the orthogonal complement of the
Néron-Severi group in H2(Jac(X ),Z). The map π0 : Jac(X ) → Kum(Jac(X ))
contracts the 2-torsion cycles, and p : Y → Kum(Jac(X )) doubles the lattice, with
the involution on Y preserving the (2,0)-form. The Hodge structure on T (Y) aligns
with T (Jac(X )) via π1, and the scaling by 2 in T (Y)(2) matches the degree of the
cover, ensuring an isometry of integral lattices. □

An elliptic surface E(k(t)) over P1 with a section has a Weierstrass equation

(12) y2 + a1(t)xy + a3(t)y = x2 + a2(t)x
2 + a4(t)x+ a6(t),

where ai(t) are rational functions. If it has a singular fiber, the Mordell-Weil group
E(k(t)) relates to the Néron-Severi group of the K3 surface via the Shioda-Tate
theorem. For Kum(Jac(X )), an elliptic fibration π : Kum(Jac(X )) → P1 can be
constructed, with a Weierstrass model

(13) Y 2 = 4X3 − g2(t)X − g3(t),

where g2(t) and g3(t) are polynomials of degrees 4 and 6, derived from the theta
embedding’s coordinates.

5. Endomorphism Ring of Abelian Varieties

The endomorphism ring of an abelian variety is a fundamental invariant that
encodes its algebraic symmetries and arithmetic structure. For an abelian variety
A of dimension g over a field k, we define End(A) as the ring of regular morphisms
ϕ : A → A that preserve the group operation, satisfying ϕ(x+y) = ϕ(x)+ϕ(y) for all
x, y ∈ A(k′) over any extension field k′. Equipped with addition and composition,
and with the identity map as the unit, End(A) forms a Z-module, but its full
complexity emerges in the rational endomorphism algebra End0(A) = End(A) ⊗Z
Q, a finite-dimensional Q-algebra. Over an algebraically closed field such as C
or Q, this algebra provides insight into the variety’s isogeny class and geometric
properties.

An endomorphism ϕ ∈ End(A) is an isogeny if it is surjective with a finite
kernel, its degree deg ϕ being the order of kerϕ as a group scheme. Such a ϕ

has a dual isogeny ϕ̂ : A → A such that ϕ ◦ ϕ̂ = [deg ϕ], where [n] : A → A
denotes multiplication by n. A key property across all dimensions is that End0(A)
is invariant under isogeny: if A and B are isogenous abelian varieties, meaning
there exists an isogeny f : A → B, then their rational endomorphism algebras are

isomorphic. To see this, consider f with dual f̂ satisfying f ◦ f̂ = [n]. The map

Φ : End(B) → End(A) given by Φ(ϕ) = f ◦ ϕ ◦ f̂ is a ring homomorphism, and

extending it to End0(B) via Φ′(ϕ) = 1
nf ◦ ϕ ◦ f̂ yields an isomorphism, as Φ′ is

injective (if f ◦ϕ ◦ f̂ = 0, then ϕ = 0 since f and f̂ are isogenies) and surjective via
the inverse map adjusted by scalars (see [26], Chapter III, §19). This invariance
underpins the study of endomorphism algebras across isogeny classes.

For an abelian variety A, the structure of End0(A) depends on its decomposition.
The Poincaré-Weil theorem asserts that A is isogenous to An1

1 × · · · × Anr
r , where

the Ai are simple (having no non-trivial abelian subvarieties) and pairwise non-
isogenous, with the factors uniquely determined up to permutation and isogeny
([26], Chapter III, §15). If A is simple, End0(A) is a division algebra over its center
Z, and [Z : Q] · [End0(A) : Z] = (dimA)2 = g2. If A is not simple, End0(A) is a
product of the endomorphism algebras of its factors, adjusted for isogenies.
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When we narrow our focus to abelian surfaces, where dimA = 2, the classifica-
tion of End0(A) becomes more precise, especially over Q. Here, an endomorphism
ϕ acts on a 2-dimensional variety, and the possible structures of End0(A) are richly
detailed by Albert’s classification, as refined in [28]. For a principally polarized

abelian surface A—where a polarization λ : A → Â to the dual has degree 1—the
algebra End0Q(A) can be one of several types: Q, a real quadratic field (e.g., Q(

√
d),

d > 0 square-free), a CM field of degree 4 over Q (a totally imaginary quadratic ex-

tension of a real quadratic field), a non-split quaternion algebra over Q (e.g.,
(
a,b
Q

)
,

a, b ∈ Q×), a direct sum F1⊕F2 where each Fi is Q or an imaginary quadratic field
(e.g., Q(

√
−d)), or a matrix algebra from the Mumford-Tate group with center F

being Q or an imaginary quadratic field.
To understand this classification, consider the isogeny decomposition of an abelian

surface. If A is simple, End0(A) is a division algebra, and since dimA = 2, we have
[Z : Q] · [End0(A) : Z] = 22 = 4. If the center Z = Q, then End0(A) has dimension
1 (just Q), 2 (a real quadratic field), or 4 (a CM field or quaternion algebra). A

real quadratic field like Q(
√
2) indicates real multiplication, where endomorphisms

embed the field into the algebra of 2 × 2 matrices over R. A CM field, such as
Q(

√
2, i), arises from complex multiplication, doubling a quadratic field with an

imaginary unit, and has dimension 4 over Q. A non-split quaternion algebra, like(
−1,−1

Q

)
, also has dimension 4 and occurs in special cases, often in positive char-

acteristic. If A is not simple, it is isogenous to E1 × E2, where dimEi = 1, and
End0(A) = End0(E1) ⊕ End0(E2), with each End0(Ei) being Q (dimension 1) or
an imaginary quadratic field (dimension 2), yielding the direct sum type. The
Mumford-Tate case involves a center F (Q or Q(

√
−d)), where End0(A) forms a

matrix algebra constrained by the surface’s Hodge structure.

Theorem 5 (Albert’s Classification for Abelian Surfaces). Let A be a principally
polarized abelian surface over Q. Then End0(A) is isomorphic to one of: Q, a real
quadratic field, a CM field of degree 4 over Q, a non-split quaternion algebra over
Q, F1 ⊕F2 where Fi = Q or an imaginary quadratic field, or a matrix algebra over
a center F where F = Q or an imaginary quadratic field.

Proof. Since A is an abelian surface over Q, its dimension is 2, and by the Poincaré-
Weil theorem (Theorem 1), A is isogenous to a product An1

1 × · · · × Anr
r , where

the Ai are simple abelian varieties, pairwise non-isogenous, and the decomposition
is unique up to permutation and isogeny. Given dimA = 2, only two cases arise:
(i) A is simple (r = 1, n1 = 1), or (ii) A ∼= E1 × E2, where dimE1 = dimE2 = 1.
The rational endomorphism algebra End0(A) = End(A) ⊗Z Q is semi-simple due
to the principal polarization’s Rosati involution, and its structure depends on this
decomposition.

Case 1: A is simple. IfA is simple, End0(A) is a division algebra over its center
Z, a number field over Q, and the dimension formula holds: [Z : Q] · [End0(A) :
Z] = (dimA)2 = 4. Since A is principally polarized, the Rosati involution ϕ 7→ ϕ†

(where ϕ† = λ̂−1 ◦ ϕ̂ ◦ λ, λ : A → Â the polarization) is positive definite, fixing
Z and constraining End0(A) to be a division algebra with involution. We consider
possible dimensions of Z:

• If Z = Q, then [Z : Q] = 1, and [End0(A) : Q] = 4. Possible division
algebras over Q of dimension 4 include:
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– Q itself, dimension 1, where End0(A) = Q, and every non-zero endo-
morphism is an isogeny (multiplication by a rational).

– A real quadratic field, e.g., Q(
√
d), d > 0 square-free, dimension 2,

where End0(A) embeds into M2(R) via real multiplication, satisfying
the dimension constraint with [End0(A) : Z] = 2.

– A CM field of degree 4, e.g., Q(
√
d, i), a totally imaginary quadratic ex-

tension of a real quadratic field, dimension 4, with [End0(A) : Z] = 1,
compatible with complex multiplication and the involution (conjuga-
tion).

– A non-split quaternion algebra over Q, e.g.,
(
a,b
Q

)
, a, b ∈ Q×, di-

mension 4, with [End0(A) : Z] = 1, where the standard involution
(conjugation) is positive definite under the polarization.

• If Z is a quadratic field (real or imaginary), [Z : Q] = 2, then [End0(A) :
Z] = 2. Here, End0(A) is a division algebra over a quadratic field:

– For Z = Q(
√
d), d > 0, End0(A) could be a quaternion algebra over Z

(dimension 4 over Z, but 8 over Q), exceeding 4, so this is not possible
unless End0(A) = Z, already covered.

– For Z = Q(
√
−d), similar constraints apply; a CM field over an imag-

inary quadratic field has dimension 8 over Q, ruling it out.
• If Z is quartic, [Z : Q] = 4, then [End0(A) : Z] = 1, so End0(A) = Z, a
CM field, as above.

Thus, for simple A, End0(A) is Q, a real quadratic field, a CM field of degree 4, or
a non-split quaternion algebra over Q.

Case 2: A ∼= E1 × E2. If A is not simple, it is isogenous to E1 × E2, where
E1 and E2 are elliptic curves over Q. Then End0(A) = End0(E1) ⊕ End0(E2), as
endomorphisms respect the product structure (no cross-terms exist unless E1

∼=
E2). For an elliptic curve Ei over Q:

• End0(Ei) = Q if Ei has no complex multiplication (CM), dimension 1.
• End0(Ei) = Q(

√
−d), an imaginary quadratic field, if Ei has CM, dimension

2.

Thus, End0(A) = F1 ⊕ F2, where Fi = End0(Ei), yielding dimensions 1+1 = 2 or
2+2 = 4 over Q. If E1

∼= E2, End
0(A) ∼= M2(F ), where F = End0(E1), a matrix

algebra over Q (dimension 4) or an imaginary quadratic field (dimension 8), but
the principal polarization constrains this to a division algebra unless adjusted by
the Hodge structure.

When A’s Hodge structure (over C) defines a Mumford-Tate group, End0(A)
may be a matrix algebra over a center F . For dimA = 2, F = Q gives M2(Q)
(dimension 4), or F = Q(

√
−d) gives a division algebra (dimension 4 over F , 8 over

Q), but the polarization restricts to M2(Q) or reduces to prior cases ([28], §4; [34],
Chapter IV).

The dimension bound 4 and semi-simplicity (via Rosati) limit End0(A) to these
types. Higher-degree fields or algebras (e.g., dimension 8) exceed dimA2 = 4,
and the polarization excludes non-division or non-positive cases, completing the
classification. □

A principal polarization λ : A → Â induces the Rosati involution ϕ 7→ ϕ† =

λ̂−1 ◦ ϕ̂ ◦ λ, fixing the center and ensuring End0(A) is semi-simple. The trace form
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⟨ϕ, ψ⟩ = tr(ϕ† ◦ ψ) is positive definite: for ϕ ̸= 0, tr(ϕ† ◦ ϕ) > 0, as ϕ† ◦ ϕ is a non-

zero symmetric endomorphism, and the polarization’s positivity on Â guarantees
this (see [26], Chapter IV, §21). Thus, End0(A) decomposes into simple algebras
matching Albert’s types.

The dimension of End0(A) for an abelian surface is at most 4, reflecting g = 2.
If A is simple, it is 1, 2, or 4; if a product, it sums to 2 or 4. For a Jacobian
Jac(X ), End0Q(JacX ) is typically Q unless X has special symmetries, yielding richer

structures as detailed in [28].

6. Genus 2 Curves and Their Jacobians

Since our focus later will be on cryptosystems based on isogenies of Jacobians
of genus two curves, we present here the essential facts about such curves, which
have become ingrained in mathematical folklore. For further details, the interested
reader may consult [25,31]. Let X be a genus 2 curve defined over a field k. A curve
of genus 2 is a smooth, projective, geometrically irreducible algebraic curve with
genus g = 2, meaning its geometric genus—computed as the dimension of the space
of holomorphic differentials over an algebraically closed field—is 2. The gonality
of X , denoted γX , is the minimal degree of a non-constant morphism from X to
P1, and for genus 2 curves, γX = 2. This implies that X is hyperelliptic, admitting
a degree 2 covering π : X → P1, which we call the hyperelliptic projection. By
Hurwitz’s formula, applied to this double cover, the number of branch points r
satisfies 2g − 2 = −2 · 2 + r, so 2 · 2 − 2 = r − 4, hence r = 6. These 6 branch
points in P1(k̄) are the images of the Weierstrass points of X , points where the
hyperelliptic involution (an automorphism of order 2) fixes the curve. The moduli
space of genus 2 curves, denoted M2, parameterizes such curves up to isomorphism
and has dimension r − 3 = 6 − 3 = 3, reflecting the 3 degrees of freedom in their
configuration after projective transformations.

The arithmetic structure of M2 was profoundly studied by Igusa in his seminal
paper [19], building on earlier work by Clebsch, Bolza, and others. He introduced
a set of invariants J2, J4, J6, J8, J10, known as the Igusa invariants, which uniquely
determine the isomorphism class of a genus 2 curve over an algebraically closed
field. These invariants are homogeneous polynomials in the coefficients of a defining
equation, with degrees 2, 4, 6, 8, and 10, respectively, and we refer to [1] for a
comprehensive treatment of their properties and relations. Two genus 2 curves X
and X ′ are isomorphic over k̄ if and only if there exists l ∈ k̄⋆ such that J2i(X ) =
l2iJ2i(X ′) for i = 1, . . . , 5, a condition reflecting the projective weighting of the
invariants. When char k ̸= 2, the invariant J8 is redundant, expressible in terms of
J2, J4, J6, and J10, simplifying the classification.

Henceforth, we assume char k ̸= 2, ensuring a standard form for the curve’s
equation. Under this condition, X can be represented by an affine Weierstrass
equation

(14) y2 = f(x) = a6x
6 + · · ·+ a1x+ a0,

over k̄, where f(x) is a monic polynomial of degree 6 with distinct roots, and the
discriminant ∆f = J10 ̸= 0 guarantees smoothness. The moduli space M2, via
the Torelli morphism, identifies with the moduli space A2 of principally polarized
abelian surfaces that are not products of elliptic curves. The Torelli morphism
X 7→ (Jac(X ),Θ), where Jac(X ) is the Jacobian of X and Θ is the theta divisor,
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embeds M2 into A2, which has a compactification A⋆2 as the weighted projective
space P(2,4,6,10)(k) using the invariants J2, J4, J6, J10. Thus,

(15) A2
∼=P(2,4,6,10)(k) \ {J10 = 0},

where J10 ̸= 0 excludes singular curves. From now on, by invariants of a genus 2
curve, we mean J2, J4, J6, J10, and by a genus 2 curve, we refer to its isomorphism
class, represented as a moduli point p = [J2 : J4 : J6 : J10] ∈ P(2,4,6,10)(k).

The Jacobian Jac(X ) of a genus 2 curve X is an abelian surface, a 2-dimensional
principally polarized abelian variety, constructed as the Picard group Pic0(X ) of
degree 0 divisor classes. Given a k-rational point P0 ∈ X (k), the embedding ϕP0

:
X → Jac(X ), defined by P 7→ [(P )− (P0)], maps X into Jac(X ) with ϕP0

(P0) = 0.
This embedding is canonical up to translation, and Jac(X ) is functorial: for any
extension L/k, JacL(X ) = Pic0XL

(L). The hyperelliptic involution ι : X → X ,
swapping sheets of the cover π, induces an involution ι∗ : Jac(X ) → Jac(X ) with
ι∗(D) = −D, central to later constructions like the Kummer surface.

A map f : X → D between curves induces homomorphisms f∗ : Jac(D) →
Jac(X ) (pullback) and f∗ : Jac(X ) → Jac(D) (pushforward), reflecting the func-
torial nature of the Jacobian. When f is a maximal covering—i.e., not factoring
through an isogeny—these maps reveal the Jacobian’s structure. For an abelian
surface A, a polarization is an isogeny λ : A → Â to the dual, and A is principally
polarized if deg λ = 1. The theta divisor Θ ⊂ Jac(X ), image of ϕP0

, provides such
a polarization, making Jac(X ) a principal case in A2.

6.1. (n, n)-Split Jacobians. A fascinating aspect of genus 2 Jacobians is their
potential decomposability. Let ψ : X → E1 be a maximal degree n covering to an
elliptic curve E1, meaning degψ = n and ψ does not factor through an isogeny
of E1. Then, there exists another elliptic curve E2 := Jac(X )/E1, defined as the
quotient by the connected component of ker(ψ∗), such that Jac(X ) is isogenous
to E1 × E2 via an isogeny of degree n2. We call Jac(X ) (n, n)-decomposable
or (n, n)-split, a property studied in [16]. The locus of such curves in M2 forms
a 2-dimensional irreducible subvariety, with explicit computations for n = 2, 3, 5
given in [31], [33], and [23], respectively.

Consider a genus 2 curve X and a maximal covering ψ1 : X → E1 of degree n.
The induced map ψ∗

1 : E1 → Jac(X ) is injective, embedding E1 as a subvariety, and
ψ1,∗ : Jac(X ) → E1 has kernel ker(ψ1,∗), an elliptic curve E2 since dimJac(X ) = 2
and dimE1 = 1 (see [32]). Fixing a Weierstrass point P ∈ X , the embedding

(16)
iP : X → Jac(X )

x 7→ [(x)− (P )]

maps X into Jac(X ). Let g : E2 → Jac(X ) be the natural inclusion, with dual
g∗ : Jac(X ) → E2. Define ψ2 = g∗ ◦ iP : X → E2, a morphism to E2. This yields
exact sequences:

(17) 0 → E2
g−→ Jac(X )

ψ1,∗−−−→ E1 → 0,

and its dual

(18) 0 → E1
ψ∗

1−−→ Jac(X )
g∗−→ E2 → 0.

If deg(ψ1) = 2 or odd, ψ2 : X → E2 is unique up to elliptic curve isomorphism,
as shown in [33]. The Hurwitz space Hσ of such covers embeds as a 2-dimensional
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subvariety Ln ⊂ M2, with equations in terms of J2, J4, J6, J10 given in [31] (for
n = 2), [33] (for n = 3), and [23] (for n = 5). We say X has an (n, n)-decomposable
Jacobian if Jac(X ) admits such a structure, with E1 and E2 as its components.

For every D = J10 > 0, the Humbert hypersurface HD ⊂ M2 parameterizes
curves X whose Jacobians admit an optimal action by the order OD, a condition
tied to embeddings of quadratic fields (see [18]). Points on Hn2 correspond to
curves with (n, n)-split Jacobians, reflecting isogenies to products of elliptic curves.
A point in Hm2 ∩ Hn2 (m ̸= n) indicates either a simple abelian surface with
quaternionic multiplication by an indefinite quaternion algebra over Q, or a product
E2 where E is an elliptic curve, a phenomenon prominent on Shimura curves.

Proposition 1. Jac(X ) is a geometrically simple abelian variety if and only if it
is not (n, n)-decomposable for some n > 1. Equivalently, if Jac(X ) is split over k,
then there exists an integer n ≥ 2 such that Jac(X ) is (n, n)-split.

Proof. Suppose Jac(X ) is geometrically simple, i.e., simple over k̄. By the Poincaré-
Weil theorem, Jac(X ) is isogenous to An1

1 ×· · ·×Anr
r , and simplicity over k̄ implies

r = 1, n1 = 1, with A1 = Jac(X ). If Jac(X ) were (n, n)-decomposable, there would
exist a maximal degree n covering ψ : X → E1, inducing an isogeny Jac(X ) →
E1 × E2 of degree n2, where E1, E2 are elliptic curves. Over k̄, this isogeny splits
Jac(X ) into a product of 1-dimensional varieties, contradicting simplicity unless
n = 1, which is trivial (as degψ = 1 implies X ∼= E1, contradicting g = 2). Thus,
Jac(X ) is not (n, n)-decomposable for any n > 1.

Conversely, if Jac(X ) is not (n, n)-decomposable for any n > 1, suppose it is not
geometrically simple. Then over k̄, Jac(X ) ∼ E1 × E2, with dimEi = 1. By the
theory of maximal coverings ([16]), there exists a degree n > 1 map ψ : X → E1

(e.g., projection via a correspondence), making Jac(X ) isogenous to E1×E2, hence
(n, n)-split, a contradiction. Thus, Jac(X ) must be simple over k̄.

For the equivalent statement, if Jac(X ) is split over k (isogenous to E1 × E2

over k), there exists a maximal covering ψ : X → E1 of degree n ≥ 2, as genus 2
curves admit non-trivial maps to elliptic curves, inducing the (n, n)-split structure
(see [32], §3). □

This characterization connects the geometric simplicity of Jac(X ) to its inde-
composability, a key property for later isogeny studies.

6.2. Loci of (ℓ, ℓ)-Split Jacobians. The locus Lℓ ⊂ M2 of genus 2 curves over Q
whose Jacobians are (ℓ, ℓ)-split—isogenous to a product E1×E2 via an (ℓ, ℓ)-isogeny
with kernel an isotropic subgroup of order ℓ2—is an irreducible 2-dimensional sub-
variety. We have computed Lℓ for ℓ = 2, 3, 5, 7, 11, providing explicit equations
in terms of Igusa invariants J2, J4, J6, J10 (see [31], [33], [23] for ℓ = 2, 3, 5). For
ℓ = 2, L2 aligns with Richelot’s 15 isogenies (Section 7); for odd ℓ, Lℓ is a Hurwitz
space of degree-ℓ coverings, irreducible due to automorphism group transitivity,
with dimension 2 from M2’s 3 minus the isotropy codimension.

In cryptography, identifying Lℓ is critical. Over finite fields (e.g., Fp2), a split

Jac(X ) ∈ Lℓ reduces the superspecial isogeny problem’s complexity from Õ(p) to

elliptic curve subproblems (Õ(
√
p)), as exploited by Costello et al. [6]. Their

algorithm detects (ℓ, ℓ)-splittings using Kumar’s parametrisations [20]—matching
our Lℓ—speeding up attacks by factors of 16–159 for p from 50 to 1000 bits. This
weakens protocols like the Castryck-Decru-Smith hash [4], where split Jacobians
enable faster collision finding, suggesting key selection avoid Lℓ to bolster security.
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While Lℓ doesn’t directly compute (ℓ, ℓ)-isogenies (Section 8), it validates re-
sults: if X ∈ Lℓ, Jac(Y) should be split, benchmarking algorithms like Lubicz-
Robert (Section 8.2). This dual role enhances both geometric classification and
cryptanalysis.

7. Richelot Isogenies of Abelian Surfaces

Richelot isogenies provide a classical framework for studying (2,2)-isogenies be-
tween principally polarized abelian surfaces, particularly Jacobians of genus 2 curves.
For an abelian surface A, such as the Jacobian A = Jac(X ) of a genus 2 curve X
over a field k, the group of 2-torsion points A[2] consists of elements x ∈ A(k̄)
satisfying 2x = 0, forming a group isomorphic to (Z/2Z)2g = (Z/2Z)4 over k̄ when
char k ̸= 2. Translation by a 2-torsion point is an isomorphism of A, mapping
A[2] to itself, preserving its structure under the Weil pairing, which defines an
alternating bilinear form on A[2]. A subspace K ⊂ A[2] is isotropic if the Weil
pairing vanishes on K×K, and a maximal isotropic subspace, or Göpel group, has
dimension 2 (containing 4 points, as 22 = 4). It is well-known that the quotient

Â = A/K by such a Göpel group is again a principally polarized abelian surface,

as detailed in [27, Sec. 23]. The natural projection ψ : A → Â is an isogeny with
kernel K, called a (2,2)-isogeny because degψ = |K| = 4 = 22, reflecting a kernel
of rank 2 over Z/2Z.

Analytically, over C, if A = C2/Λ with Λ = Z2 ⊕ τZ2 and τ ∈ H2 (the Siegel
upper half-space), a Göpel group K ⊂ A[2] corresponds to a 2-dimensional subspace

of 1
2Λ/Λ. The quotient Â = A/K can be represented as C2/Λ̂, where Λ̂ = Z2⊕2τZ2,

adjusting the lattice to double the period in one direction. The isogeny is then

(19)
ψ : A = C2/⟨Z2 ⊕ τZ2⟩ → Â = C2/⟨Z2 ⊕ 2τZ2⟩

(z, τ) 7→ (z, 2τ),

mapping points modulo the coarser lattice, with kernel K generated by representa-
tives of A[2] spanning a rank-2 subgroup.

Consider two maximal isotropic subgroups K,K′ ⊂ A[2] such that K+K′ = A[2]

and K ∩ K′ = {p0}, where p0 is the identity. Set Â = A/K, and let K̂ be the

image of K′ in Â under the quotient map ψ : A → Â. Since |K| = 4 and |K′| = 4,
with intersection of size 1, we have |K + K′| = |K| · |K′|/|K ∩ K′| = 4 · 4/1 = 16 =

|A[2]|, confirming K + K′ = A[2]. The quotient Â/K̂ is isomorphic to A, and the

composition ψ̂ ◦ ψ : A → Â → A, where ψ̂ : Â → Â/K̂, is multiplication by 2

on A, i.e., (z, τ) 7→ (2z, τ). To verify, note that ker(ψ) = K, and ker(ψ̂) = K̂, so

ker(ψ̂ ◦ ψ) includes all points mapping to K̂ under ψ, which is K + K′ = A[2], as

ψ−1(K̂) = K′. Thus, deg(ψ̂ ◦ ψ) = |A[2]| = 16, and since [2] has degree 22g = 16
for g = 2, the isogenies compose to [2].

For A = Jac(X ), where X is a smooth genus 2 curve, we explore whether

Â = Jac(X̂ ) for another genus 2 curve X̂ , and how their moduli relate. Riche-
lot addressed this geometrically in [30], with modern treatments in [3]. Over C,
A[2] has 22g = 16 points, and there are 15 Göpel groups (computed as the number
of 2-dimensional isotropic subspaces in (Z/2Z)4 under the symplectic form induced
by the Weil pairing). Each corresponds to a (2,2)-isogeny, and Richelot’s construc-

tion identifies X̂ explicitly. Given X with equation Y 2 = f6(X,Z), a sextic in
homogeneous coordinates, any factorization f6 = A · B · C into three quadratic
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polynomials A,B,C defines a curve X̂ via

(20) ∆ABC · Y 2 = [A,B][A,C][B,C],

where [A,B] = A′B − AB′ with A′ = dA
dx (assuming a dehomogenized coordinate

x = X/Z), and ∆ABC is the determinant of the coefficients of A,B,C in the basis

{x2, xz, z2}. It was shown in [3] that Jac(X ) and Jac(X̂ ) are (2,2)-isogenous, and
there are exactly 15 such factorizations (corresponding to partitions of 6 roots into
3 pairs), yielding all distinct (2,2)-isogenous principally polarized abelian surfaces
to Jac(X ).

The geometric insight stems from the isomorphism S6
∼= Sp(4,F2), where S6

permutes the 6 Weierstrass points of X (or theta divisors containing a fixed 2-torsion
point), and Sp(4,F2) acts on A[2]. Each Göpel group corresponds to a choice of
pairing these points, inducing the 15 Richelot isogenies. For X in Rosenhain form

(21) X : y2 = xz(x− z)(x− λ1z)(x− λ2z)(x− λ3z),

with roots at 0, 1, λ1, λ2, λ3,∞, a factorization groups these into pairs, and (20)

produces X̂ .

7.1. A Theta Functions Approach. To compute these isogenies explicitly, we
adopt a theta function approach, following [29]. For A = Jac(X ), consider Göpel
groups K = {p0, p15, p23, p46} and K′ = {p0, p12, p34, p56}, where A[2] = {pi}15i=0

labels the 2-torsion points, with p0 the identity. These satisfy K + K′ = A[2] and

K ∩ K′ = {p0}, as |K + K′| = 4 · 4/1 = 16. Set Â = A/K, and let K̂ be the image

of K′ in Â. We aim to relate the Rosenhain roots of X :

(22) X : y2 = xz(x− z)(x− λ1z)(x− λ2z)(x− λ3z),

where λ4 = 0, λ5 = 1, λ6 = ∞, to those of X̂ :

(23) X̂ : y2 = x(x− 1)(x− Λ1)(x− Λ2)(x− Λ3).

Theta functions provide coordinates on Jac(X ) and Jac(X̂ ). For a period matrix
τ ∈ H2, the level 2 theta functions θ [ ab ] (z, τ/2), with a, b ∈ (Z/2Z)2, embed
Kum(A) into P3, and their values at z = 0 (theta constants) determine the moduli.

Denote θi = θ
[ ai
bi

]
(0, τ/2) for X and Θi for X̂ , with characteristics forming Göpel

groups. For K = {p0, p15, p23, p46}, corresponding to

( 0 0
0 0 ) , (

1 0
0 0 ) , (

1 1
0 0 ) , (

0 1
0 0 ) ,

we label θ1, θ2, θ3, θ4. The isogeny ψ : Jac(X ) → Jac(X̂ ) modifies the lattice, and

the dual theta constants Θi for X̂ relate to θi via the isogeny’s action. Results in
[29] and [5] give

(24) Λ1 =
Θ2

1Θ
2
3

Θ2
2Θ

2
4

, Λ2 =
Θ2

3Θ
2
8

Θ2
4Θ

2
10

, Λ3 =
Θ2

1Θ
2
8

Θ2
2Θ

2
10

,

though we refine this with a Göpel quartet {Θ1,Θ2,Θ3,Θ4} for consistency.
The Richelot isogeny corresponds to factoring f6 = xz(x − z)(x − λ1z)(x −

λ2z)(x− λ3z) into

A = (x− λ1z)(x− z), B = (x− λ2z)(x− λ3z), C = x(x−∞z),
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adjusting for homogeneity (e.g., C = xz at infinity). Applying (20), we compute X̂
and its Igusa invariants, which are rational functions of {θ1, θ2, θ3, θ4}. A quadratic

twist X̂ (µ) with

µ =
(θ1θ2 − θ3θ4)

2(θ21 + θ22 − θ23 − θ24)(θ
2
1 − θ22 + θ23 − θ24)

4θ1θ2θ3θ4(θ21 + θ22 + θ23 + θ24)(θ
2
1 − θ22 − θ23 + θ24)

adjusts the roots to

(25)

Λ1 =
(θ21 + θ22 + θ23 + θ24)(θ

2
1 − θ22 − θ23 + θ24)

(θ21 + θ22 − θ23 − θ24)(θ
2
1 − θ22 + θ23 − θ24)

,

Λ2 =
(θ21 − θ22 − θ23 + θ24)(θ

2
1θ

2
2 + θ23θ

2
4 + 2θ1θ2θ3θ4)

(θ21 − θ22 + θ23 − θ24)(θ
2
1θ

2
2 − θ23θ

2
4)

,

Λ3 =
(θ21 + θ22 + θ23 + θ24)(θ

2
1θ

2
2 + θ23θ

2
4 + 2θ1θ2θ3θ4)

(θ21 + θ22 − θ23 − θ24)(θ
2
1θ

2
2 − θ23θ

2
4)

,

matching the Richelot construction’s invariants, verifying isomorphism.

For K′ = {p0, p12, p34, p56}, the dual isogeny ψ̂ : Â → A = Â/K̂ uses Â = [B,C],

B̂ = [A,C], Ĉ = [A,B], reconstructing X . New moduli

λ′1 =
λ1 + λ2λ3

l
, λ′2 =

λ2 + λ1λ3
l

, λ′3 =
λ3 + λ1λ2

l
,

with l2 = λ1λ2λ3, and similarly for Λ′
i, relate symmetrically, as shown in [5].

Proposition 2. The moduli of X in (21) and X̂ in (23) satisfy

(26)

Λ′
1 = 2

2λ′1 − λ′2 − λ′3
λ′2 − λ′3

, λ′1 = 2
2Λ′

1 − Λ′
2 − Λ′

3

Λ′
2 − Λ′

3

,

Λ′
2 − Λ′

1 = −4(λ′1 − λ′2)(λ
′
1 − λ′3)

(λ′1 + 2)(λ′2 − λ′3)
, λ′2 − λ′1 = −4(Λ′

1 − Λ′
2)(Λ

′
1 − Λ′

3)

(Λ′
1 + 2)(Λ′

2 − Λ′
3)

,

Λ′
3 − Λ′

1 = −4(λ′1 − λ′2)(λ
′
1 − λ′3)

(λ′1 − 2)(λ′2 − λ′3)
, λ′3 − λ′1 = −4(Λ′

1 − Λ′
2)(Λ

′
1 − Λ′

3)

(Λ′
1 − 2)(Λ′

2 − Λ′
3)

.

Hence, there is a Richelot isogeny realizing the (2, 2)-isogeny

(27) ψ : A = Jac(X ) → Â = Jac(X̂ ) = A/K,
for the maximal isotropic subgroup K.

8. Computing (ℓ, ℓ)-Isogenies

The Richelot isogenies treated earlier represent the simplest instance of a broader
class of isogenies between abelian surfaces, specifically (2,2)-isogenies with kernels
of order 4. Here, we generalize to (ℓ, ℓ)-isogenies, where the kernel has order ℓ2,
focusing on computational methods for Jacobians of genus 2 curves, leveraging their
Kummer surfaces. Consider an isogeny

(28) ϕ : Jac(X ) → Jac(Y),

where X and Y are genus 2 curves over a field k with char k ̸= 2, and Jac(X ) and
Jac(Y) are their Jacobians, each a 2-dimensional principally polarized abelian sur-
face. Let ΘX and ΘY denote the theta divisors on Jac(X ) and Jac(Y), respectively,
where ΘX is the image of X under an embedding such as ϕP0 : X → Jac(X ), P 7→
[(P ) − (P0)], for a base point P0 ∈ X (k). The isogeny ϕ satisfies ϕ(ΘX ) ∈ |ℓΘY |,
the linear system of divisors linearly equivalent to ℓ times ΘY . On the Kummer
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surface Kum(Jac(Y)) = Jac(Y)/⟨±1⟩, embedded in P3 via level 2 theta functions,
ϕ(ΘX ) descends to a curve of degree 2ℓ, genus 0, and arithmetic genus 1

2 (ℓ
2 − 1),

computable without explicitly determining ϕ, as shown in [13].
For X given by

(29) y2 = f(x) = a6x
6 + · · ·+ a1x+ a0,

a monic sextic with ∆f = J10 ̸= 0, the divisor at infinity is

(30) D∞ := (1 :
√
f(1) : 0) + (1 : −

√
f(1) : 0),

assuming a normalization where infinity points are (1 : y : 0). The Weierstrass
points are the roots of f(x) = 0, denoted wi = (xi, zi) for i = 1, . . . , 6, with
f(xi/zi) = 0, forming the Weierstrass divisor

(31) WX :=

6∑
i=1

(xi, 0, zi).

A canonical divisor on X is

(32) KX =WX − 2D∞,

as degWX = 6, degD∞ = 2, and 2g − 2 = 2. A divisor D ∈ Jac(X ) as D =
P + Q − D∞, with P = (xP , yP ) and Q = (xQ, yQ), corresponds to an ideal
(a(x), y − b(x)), where a(x) = (x − xP )(x − xQ) is a monic polynomial of degree
d ≤ 2 (quadratic if P ̸= Q, linear if P = Q), and b(x) is a cubic interpolating
yP , yQ.

To compute ϕ, embed X via the ℓ-tuple map

(33) ρ2ℓ : P2 → P2ℓ, (x, y, z) 7→ (z2ℓ, xz2ℓ−1, . . . , x2ℓ−1z, x2ℓ),

with image R2ℓ, a rational normal curve of degree 2ℓ. Any 2ℓ + 1 points on R2ℓ

are linearly independent, as the space of degree 2ℓ homogeneous polynomials has
dimension 2ℓ+1. For ℓ ≥ 3, the 6 points ρ2ℓ(wi) are independent (6 < 7 for ℓ = 3),
and

(34) W := ⟨ρ2ℓ(WX )⟩ ⊂ P2ℓ

is 5-dimensional. The secant line LP,Q is

(35) LP,Q =

{
⟨ρ2ℓ(P ), ρ2ℓ(Q)⟩ if P /∈ {Q, τ(Q)},
Tρ2ℓ(P )(R2ℓ) otherwise,

where τ is the hyperelliptic involution. Dolgachev and Lehavi ([13]) proved:

Theorem 6 (Dolgachev-Lehavi). Let X be a genus 2 curve, S ⊂ Jac(X )[ℓ] an
isotropic subgroup of order ℓ2, and ρ2ℓ : X → R2ℓ ⊂ P2ℓ the ℓ-tuple embedding.
There exists a hyperplane H ⊂ P2ℓ such that:

(i) H contains W = ⟨ρ2ℓ(WX )⟩,
(ii) The intersections H ∩Le for each non-zero e ∈ S lie in a subspace N ⊂ H of

codimension 3.

The image of ρ2ℓ(WX ) under the projection P2ℓ → P3 with center N lies on a conic
C, and the double cover of C ramified over this divisor is a stable genus 2 curve Y
with Jac(Y) ∼= Jac(X )/S.
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Proof. The linear system |ℓΘX | on Jac(X ) has dimension ℓ2 − 1 (projective dimen-
sion of divisors modulo scalars), and for an isotropic S of order ℓ2, Jac(Y) =
Jac(X )/S is principally polarized with theta divisor ΘY . Since degΘX = 2,
ϕ(ΘX ) ∈ |ℓΘY | has degree 2ℓ, projecting to a genus 0 curve in Kum(Jac(Y)) with
arithmetic genus 1

2 (2ℓ−1)(2ℓ−2) = ℓ2−1 by the adjunction formula. Embed X via
ρ2ℓ, where W has dimension 5 (6 points minus 1). The secant variety over S (order
ℓ2) requires a hyperplane H (dimension 2ℓ−1) containingW . The ℓ2−1 secants Le
intersect H in points spanning a subspace N of dimension ℓ2 − 2, codimension 3 in
H (since ℓ2 − 2 = 2ℓ− 1− 3 for ℓ ≥ 2). Projection from N to P3 maps the 6 points
to a conic C (5 points determine a conic in P3), and the double cover ramified at 6
points has genus 1 + 1

2 (6 − 2) = 2 by Riemann-Hurwitz, with Jac(Y) ∼= Jac(X )/S
([13], Theorem 1). □

Smith ([36]) developed an algorithm using this theorem, effective for ℓ = 3
(|S| = 9), refined in [7], [9], [10], and [11]. For ℓ = 3, W ⊂ P6, H is 5-dimensional,
N is 2-dimensional, and the projection yields a conic in P3. Improvements over [11]
include optimized secant computations and invariant recovery.

8.1. Computing (n, n)-Isogenies via Kummer Surface. For an (n, n)-isogeny
ϕ : Jac(X ) → Jac(Y) with kernel S ⊂ Jac(X )[n] of order n2, the Kummer surface
Kum(Jac(X )) provides a computational lens. Embedded in P3, ϕ(ΘX ) ∈ |nΘY |
projects to a degree 2n curve. The embedding

ρ2n : P2 → P2n, (x, y, z) 7→ (z2n, xz2n−1, . . . , x2n),

yields R2n, and W = ⟨ρ2n(WX )⟩ is 5-dimensional.

Theorem 7. For an isotropic S ⊂ Jac(X )[n] of order n2, there exists a hyperplane
H ⊂ P2n containing W such that H∩Le for non-zero e ∈ S span a subspace N ⊂ H
of codimension 3. The projection from N maps ρ2n(WX ) to a conic C ⊂ P3, and
the double cover of C ramified at these 6 points is Y with Jac(Y) ∼= Jac(X )/S.

Proof. The proof mirrors the Dolgachev-Lehavi case. |ℓΘX | has dimension n2 − 1,
and ϕ(ΘX ) projects to degree 2n in Kum(Jac(Y)). H (dimension 2n− 1) contains
W (dimension 5), and the n2 − 1 secants span N (dimension n2 − 2), codimension
3 in H. Projection to P3 yields a conic, and the double cover’s genus is 2, with
Jacobian Jac(X )/S. □

For n = 2, this aligns with Richelot isogenies (P4, N a point). For larger n, the
algorithm scales, solving linear systems for H and N .

8.2. The Lubicz-Robert Formula for Computing (ℓ, ℓ)-Isogenies on Kum-
mer Surfaces. The Lubicz-Robert formula provides an efficient method to com-
pute (ℓ, ℓ)-isogenies directly on Kum(Jac(X )), leveraging theta coordinates to by-
pass high-dimensional embeddings like ρ2ℓ. This approach is particularly effective
for odd ℓ and builds on the foundational work of Lubicz and Robert in [22], offering a
higher-dimensional analog to Vélu’s formulas for elliptic curves. For a genus 2 curve
X over a field k with char k ̸= 2, the Jacobian Jac(X ) is a principally polarized
abelian surface, and its Kummer surface Kum(Jac(X )) = Jac(X )/⟨±1⟩ embeds into
P3 via level 2 theta functions. An (ℓ, ℓ)-isogeny ϕ : Jac(X ) → Jac(Y) = Jac(X )/S,
where S ⊂ Jac(X )[ℓ] is an isotropic subgroup of order ℓ2, requires determining both
the codomain Jac(Y) and the map ϕ. The Lubicz-Robert formula achieves this by
expressing theta coordinates in terms of sums over S.
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Over C, represent Jac(X ) = C2/Λ with Λ = Z2 ⊕ τZ2, where τ ∈ H2 is the
period matrix. The ℓ-torsion subgroup Jac(X )[ℓ] = {P ∈ Jac(X ) | [ℓ]P = 0} has
order ℓ2g = ℓ4 for g = 2, and an isotropic S ⊂ Jac(X )[ℓ] under the Weil pairing has
order ℓ2. The level 2 theta functions with characteristics [a, b], a, b ∈ (Z/2Z)2, are
defined as

(36) θ [ ab ] (z, τ) =
∑
m∈Z2

exp
(
πi(m+ a)tτ(m+ a) + 2πi(m+ a)t(z + b)

)
,

and the embedding φ2 : Jac(X ) → P3, z 7→ (θi(z))
3
i=0 (e.g., characteristics [0, 0], [1/2, 0], [0, 1/2], [1/2, 1/2]),

factors through Kum(Jac(X )) since θi(−z) = θi(z). These coordinates, evaluated
at z = 0, are the theta null points defining Kum(Jac(X ))’s quartic equation in P3.

The Lubicz-Robert formula addresses two tasks: computing the theta null points
of Jac(Y) and evaluating ϕ at points in Jac(X ). For an isotropic S, represent
ℓ = a21 + a22 + a23 + a24 (by Lagrange’s four-square theorem, with r ≤ 4), and choose
generators s1, s2 ∈ S such that S = ⟨a1s1, a2s1, a3s2, a4s2⟩ in a suitable basis. The
formula comprises:

• Theta null points of Jac(Y):

θ̂i =
∑
s∈S

r∏
u=1

θ
[ au
bu

]
(s, τ)αui,

where θ
[ au
bu

]
(s, τ) are level 2 theta functions at s ∈ S, and αui adjusts

indices to align with the basis (e.g., a permutation or selection).
• Point evaluation: For P ∈ Jac(X ),

ϕ(P )i =
∑
s∈S

r∏
u=1

θ
[ au
bu

]
(P + s, τ)αui.

Theorem 8 (Lubicz-Robert). For an isotropic subgroup S ⊂ Jac(X )[ℓ] of order

ℓ2, the theta coordinates θ̂i and ϕ(P )i computed via the above formulas define the
codomain Jac(Y) = Jac(X )/S and the isogeny ϕ : Jac(X ) → Jac(Y), respectively,
with complexity O(ℓ2) field operations for a general ℓ = a21 + · · ·+ a2r.

Proof. Represent Jac(X ) = C2/Λ, and Jac(Y) = C2/Λ̂, where Λ̂ = Z2 ⊕ ℓτZ2 +
S. The theta functions on Jac(Y) are derived from Jac(X ) by summing over S,

adjusting the lattice periodicity. For the null points, θ̂i aggregates contributions
from S, with the product

∏r
u=1 θju(s) reflecting the kernel’s structure via ℓ =

∑
a2u.

With |S| = ℓ2 and r ≤ 4, the sum has ℓ2 terms, each a product of O(1) evaluations,
totaling O(ℓ2) operations. For ϕ(P ), the sum ensures ϕ(P + s′) = ϕ(P ) for s′ ∈ S,
as θju(P + s+ s′) = θju(P + s), defining the quotient map. Isotropy preserves the

principal polarization, as the Weil pairing vanishes on S, and the resulting θ̂i define
Jac(Y)’s theta structure ([22], Theorem 4.1). □

On Kum(Jac(X )), θ̂i determine Kum(Jac(Y))’s quartic equation, and ϕ(P )i
maps Kummer points, preserving the (16,6)-configuration (16 nodes from Jac(X )[2],
each on 6 tropes). For X : y2 = f(x), choose S ⊂ Jac(X )[ℓ] (e.g., for ℓ = 3, S
of order 9 from combinations of 3-torsion points like (xi, 0)). Compute θi(s) us-

ing the curve’s equation, then θ̂i over S. The map ϕ respects Kum(Jac(X )) →
Kum(Jac(Y)), maintaining geometric properties ([26], Chapter III).
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Proposition 3. The Lubicz-Robert formula on Kum(Jac(X )) determines Y’s equa-

tion via theta nulls θ̂i, and ϕ’s action on Kum(Jac(X )) preserves the (16,6)-configuration
of tropes and nodes.

Proof. The θ̂i define Kum(Jac(Y))’s quartic in P3, from which Y’s Rosenhain form
is derived via Igusa invariants ([22], §5). The (16,6)-configuration maps under ϕ
to Jac(Y)[2], preserving isotropy and structure, as the formula respects the Weil
pairing’s symmetry ([26], Chapter III). □

This method also intersects with the geometric classification of genus 2 curves.
The loci Lℓ, described in Subsection 6.2 as irreducible 2-dimensional subvarieties of
M2 where Jac(X ) is (ℓ, ℓ)-split, can be computationally probed using the Lubicz-

Robert formula. By computing θ̂i for a given X and an isotropic S, one can de-
termine if [X ] ∈ Lℓ, aligning with detection algorithms by Costello et al. [6]. Our
explicit computations for ℓ = 2, 3, 5, 7, 11 provide test cases, validating the for-
mula’s efficiency and offering a bridge between geometric loci and cryptographic
applications.

While Lℓ does not directly aid in computing ϕ, it provides a geometric testbed.
Given X ∈ Lℓ, the formula yields Jac(Y) = E1 × E2, verifiable via invariants, but
the computation proceeds independently of this property, relying solely on S.

This method contrasts with Dolgachev-Lehavi’s P2ℓ approach, operating in P3

with O(ℓ2) complexity, enhancing efficiency for odd ℓ. While Lℓ (Subsection 6.2)
doesn’t drive computation—ϕ is computed agnostically from S—it verifies splitting
post-hoc, aligning with detection by Costello et al. [6]. Their use of Lℓ to accelerate
attacks (e.g., 25x for 100-bit p) underscores its cryptographic role, not in computing
ϕ, but in assessing security by identifying weak split Jacobians.

9. Cryptanalytic Implications of (ℓ, ℓ)-Split Jacobians

The computational methods developed in Sections 7 and 8 for (ℓ, ℓ)-isogenies,
alongside the geometric classification of Lℓ in Section 6, bear significant implications
for the security of isogeny-based cryptographic protocols in genus 2. This section
examines a recent cryptanalytic advancement leveraging split Jacobians, assesses
its impact on existing systems, and delineates the advancements required to fully
compromise genus 2 isogeny-based cryptography.

9.1. The Costello et al. Attack. A notable attack on the dimension 2 superspe-
cial isogeny problem, due to Costello et al. [6], optimizes the earlier Costello-Smith
algorithm [8] for finding an isogeny ϕ : Jac(X ) → Jac(Y) between superspecial
genus 2 Jacobians over Fp2 . The original method employs random walks in the
Richelot isogeny graph Γ2(2; p), where vertices are superspecial principally polar-
ized abelian surfaces in S2(p), to reach products E1×E2 ∈ E2(p), followed by elliptic

isogeny computations in Õ(
√
p) via Delfs-Galbraith [12]. With #S2(p) = O(p3) and

#E2(p) = O(p2), this requires Õ(p) bit operations.
The enhanced attack detects (ℓ, ℓ)-splittings for ℓ ≤ 11, using Lℓ equations to

inspect approximately ℓ3 neighbors per step (e.g., 40 for ℓ = 3) via invariants,
rather than computing full isogenies. This reduces the cost per step from 1176
Fp-multiplications (Richelot) to as low as 35 (Table 5 in [6]), yielding speedups of

16–159× for p from 50 to 1000 bits. The asymptotic complexity remains Õ(p/ℓ3),
but the practical efficiency significantly improves cryptanalysis.
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9.2. Impact on Genus 2 Cryptography. This acceleration impacts protocols
reliant on the superspecial isogeny problem, such as the Castryck-Decru-Smith
(CDS) hash function [4], which maps inputs via Richelot isogenies in Γ2(2; p). For
a split Jac(X ) ∈ Lℓ, the attack hastens reaching E2(p), enabling faster collision
finding—e.g., distinct paths to the same product—as noted by Florit and Smith [14].

For a 100-bit prime, a 25× speedup reduces security from Õ(2100) to below 296,
threatening underparameterized systems. However, for cryptographic sizes (e.g.,

512 bits), a 100× factor (to Õ(2509)) remains secure against classical attacks, though
it narrows the safety margin.

In a hypothetical genus 2 SIDH scheme, where the secret is an (ℓk, ℓk)-isogeny,
the attack finds some path to E2(p), not necessarily the secret ϕ. Its efficacy hinges
on the codomain Jac(Y) lying in Lℓ, but it doesn’t recover the kernel S, limiting
its threat to key exchange compared to hash functions. Thus, while impactful, it
does not constitute a full break.

9.3. Requirements for a Full Break. To fully break genus 2 isogeny-based
cryptography—reducing it to polynomial time or rendering it insecure practically—
several advancements beyond this optimization are needed:

• Kernel Recovery : A method to extract the secret kernel S ⊂ Jac(X )[ℓk]
from public data (e.g., ϕ-images of torsion points), akin to the SIDH at-
tacks. The ℓ4-sized torsion group and polarization complexity pose signifi-
cant hurdles.

• Subexponential Algorithm: A subexponential (e.g., Lp[1/2]) or polynomial-
time solution to the general isogeny problem, possibly via optimal expansion
of Γ2(ℓ; p) (currently non-Ramanujan [14]) or endomorphism ring compu-
tation, remains elusive.

• Quantum Advantage: A quantum algorithm (e.g., claw-finding variant)

achieving poly(log p) time, beyond the current Õ(
√
p/ℓ3/2) from Grover’s

search, is unachieved for genus 2.
• Protocol Flaws: Exploits like degree conversion (e.g., from (2nℓ, 2nℓ) to
(ℓk, ℓk), conjectured in [6]) or torsion leakage could break specific designs,
but no such method exists.

The Costello et al. attack optimizes an exponential-time problem, not breaking it
fundamentally. A true break requires a paradigm shift—algebraic, geometric, or
quantum—currently speculative.

9.4. Connection to This Work. Our computation of Lℓ for ℓ = 2, 3, 5, 7, 11
(Subsection 6.2) and (ℓ, ℓ)-isogeny algorithms (Section 8) intersect with this crypt-
analysis. While Lℓ doesn’t accelerate isogeny computation (e.g., Lubicz-Robert’s
O(ℓ2)), it validates splitting post-computation and underpins the attack’s detection,
enhancing its scope. Extending Lℓ to larger ℓ or integrating with quantum meth-
ods could further refine security analysis, balancing constructive and cryptanalytic
roles.

10. Conclusion and Future Work

This paper has explored the intricate interplay between abelian varieties, theta
functions, and Kummer surfaces, with a particular focus on abelian surfaces arising
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as Jacobians of genus 2 curves. By weaving together foundational algebraic ge-
ometry and advanced computational techniques, we have aimed to provide a com-
prehensive framework for understanding and computing (ℓ, ℓ)-isogenies, extending
classical results like Richelot isogenies to arbitrary odd ℓ. Our journey began with
the general theory of abelian varieties, establishing their endomorphism rings and
isogeny properties, before narrowing to genus 2 Jacobians and their rich geometric
structures. The subsequent development of computational methods, culminating
in the application of the Lubicz-Robert formula on Kummer surfaces, represents a
significant step forward in both theoretical insight and practical utility.

The theoretical backbone of our work—articulated in Sections 2 through 5—lays
out the essential tools: the classification of endomorphism algebras via Albert’s the-
orem, the quasi-periodic properties of theta functions, and the geometric realization
of Kummer surfaces as quartic hypersurfaces in P3. These foundations underpin
the Torelli correspondence between genus 2 curves and their Jacobians, detailed in
Section 6, where we characterized (n, n)-split Jacobians and their moduli via Hum-
bert hypersurfaces. This connection is not merely academic; it bridges the analytic
power of theta functions with the algebraic structure of curves, enabling precise
computations of isogenies.

Sections 7 and 8 shift focus to computational challenges, beginning with Rich-
elot’s explicit constructions and generalizing to (ℓ, ℓ)-isogeny algorithms. The
Lubicz-Robert formula, with its O(ℓ2) complexity, stands out for its efficiency,
offering a practical alternative to traditional approaches by computing directly on
Kummer surfaces. Our work has significant implications for isogeny-based cryptog-
raphy, suggesting enhanced security over elliptic curve protocols like SIDH through
larger torsion groups and complex endomorphism structures.

Looking forward, our loci Lℓ for ℓ = 2, 3, 5, 7, 11 reveal a cryptographic vulnera-
bility: split Jacobians enable attacks like Costello et al.’s [6], reducing complexity
(e.g., 100x for 1000-bit p). Avoiding Lℓ or exploiting its rarity (5/p proportion)
could strengthen protocols, while optimizing detection for larger ℓ or even ℓ (via
new parametrisations) may refine cryptanalysis. Implementing these in SageMath
could benchmark genus 2 SIDH variants, alongside exploring higher genera and
supersingular surfaces for novel security paradigms.

In conclusion, this paper bridges classical geometry with modern computation,
advancing our understanding of (ℓ, ℓ)-isogenies on abelian surfaces. By integrating
theta functions, Kummer surfaces, and efficient algorithms, we contribute to both
the mathematical foundations and their cryptographic potential, laying groundwork
for future research at this vibrant intersection.
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