UNIPOTENT INVARIANTS OF FILTERED REPRESENTATIONS OF QUIVERS
AND THE ISOSPECTRAL HILBERT SCHEME

MEE SEONG IM AND LISA M. JONES

ABSTRACT. Given any finite quiver, we consider a complete flag of vector spaces over each vertex.
Consider the unipotent invariant subalgebra of the coordinate ring of the filtered quiver representation
subspace. We prove that the dimension of the algebraic variety of the unipotent invariant subalgebra
is finite. We also construct an ADHM analog for the Borel subalgebra setting, showing its birationality
to the isospectral Hilbert scheme. Quiver-graded Steinberg varieties, quantum Hamiltonian reduction,
and deformation quantization constructions for the nonreductive setting are discussed, ending with
open problems.

1. INTRODUCTION

Parabolic group actions arise naturally in mathematics. For instance, let B be a Borel subgroup
of G = GL,(C) and let b = Lie(B) C g = Lie(G) be the Lie algebra of B, where g is the set of all
n X n matrices over the complex numbers. One could ask to describe the structure of the B-orbits on
b, or equivalently, one may be interested in studying the B-adjoint action on a complete filtration of an
n-dimensional complex vector space V.

One motivation for our investigation is the connection between B-equivariant geometry on b and
G-orbits on the Grothendieck-Springer resolution g —» g. T. Nevins in [Nevll] (Section 3) shows the
isomorphism between b/B = p/P and g/G in terms of Hamiltonian reduction of a parabolic group P
acting on p x V, where p = Lie(P), and of G x P acting on G x p x V. Furthermore, our filtered
quiver representations arise as fibers of universal quiver Grassmannians onto quiver Grassmannians or
more generally, universal quiver flag varieties onto quiver flags, where the fibers of these projections
are homogeneous vector bundles. In fact, M. Reineke in [Reil3] proved that all projective varieties are
quiver Grassmannians. This result directly ties into the role that subspaces of quiver representations
produce interesting geometric spaces beyond the classical algebraic geometry setting.

Due to the rich geometry interplaying among Hilbert schemes of compactified Jacobians (cf. [ORS18]),
the representation theory of Cherednik algebras (cf. [EGL15], [GGO6], [Gor10], [GS05], [GS06]), Hochschild
(co)homology of Soergel bimodules (cf. [KhoQ7]), the categorification of quiver Hecke (Khovanov-Lauda-
Rouquier) algebras (cf. [KL09], [KL11], [KLOS], [Roul2], [VV11]), to name a few, the study of the
geometry of the B-orbits on b are of significant interest in and of itself. We also refer the reader
to [CBOI], [CGI0], [Gin09], and Section [5| for some background on quivers and the geometry of the
(Grothendieck-)Springer resolution.

We begin the study of the geometry of parabolic subgroups on their subalgebras by generalizing
Theorem 1.1 in [Im14b]. Before we restate this theorem, we need to give two definitions. Given a quiver
Q, a quiver path p is a concatenation of arrows in Q. If p is a cycle, then p™ is the path composed with
itself m times, and we say p is reduced if [p] # 0 in CQ/{¢? : ¢ € CQ,l(g) > 1). Finally, we define a
pathway from vertex i to vertex j as a reduced path from ¢ to j. Theorem 1.1 in [Im14b] states that a
quiver has at most two distinct pathways between any two vertices if and only if the unipotent invariant
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subalgebra is generated by the corresponding Cartan subalgebra in the filtered quiver representation. In
this paper, we extend this result to all finite quivers and we refer to Definition for the definition of
local k-generalized Kronecker quiver.

Theorem 1.1. Let Q be a finite quiver with at least one loop or a local k-generalized path Kronecker

quiver, with k > 2, at one of the vertices, and let = (n,n,...,n) € Zgg be a dimension vector. For

W € Rep(Q, ), let F*W be a complete filtration of vector spaces at each vertex and let U = UP?0 be
the product of maximal unipotent subgroups. Then

(1) the vector subspace F®Rep(Q, ) contains a point p such that Staby(p) = {1,},
(2) dimg F*Rep(Q, ) /U = dimg F*Rep(Q, 5) — dimc U.

Theorem 1.2. Let Q be a finite quiver and let § = (n,n,...,n) € Zgg. For W € Rep(Q, ), let F*W be

a complete filtration of vector spaces at each vertex and let U = U®Q0. Then dimg¢ Spec(C[F* Rep(Q, B)]Y)
is finite.

If @ has no arrows, then there is nothing to show for Theorem [I.2] Thus, assuming @ has one
or more arrows, Theorem follows from Theorem and Theorem 1.1 in [Im14b] as these two
results exhaustively cover cases for all quivers with at least one arrow. Theorem also shows that
Proj(EBiZO(C[uH,T;(O)]P&Xl) is a finite dimensional, projective scheme, where up, : T*(F*Rep(Q, 3)) —
Lie(Pg)* is the moment map for the filtered representation space.

Secondly, we restrict to a framed 1-Jordan quiver and prove the existence between the B-Hamiltonian
reduction of b x V and the isospectral Hilbert scheme (see Theorem [5.6). We also discuss filtered
representations in the setting of quiver-graded Steinberg varieties (Section [5.3)), quantum Hamiltonian
reduction (Section@, and quantization deformation (Section@, providing motivation and open problems
in each section. We review symplectic reflection algebras and their spherical subalgebras in Section
We recall the construction of spherical subalgebras of Cherednik algebras,which are related to quantized
Hamiltonian reduction in the classical setting. Using this, we give a conjecture which relates rational
Cherednik algebras of type A to the quantized Hamiltonian reduction for the Borel setting. We end with
future directions in Section [Q

2. BACKGROUND

Although thorough discussions on the algebraic and geometric aspects of quiver representations are
given in [Bri08], [CB92], [Gin09], mI14a], and [Kin94], we will give a few foundational definitions in this
section for completeness of this paper.

A quiver Q = (Qo, Q1) is a directed graph with a set Qo = {1,2,...,p} of vertices and a set Q1 =

{a1, a9, ...,aq} of arrows, which come equipped with two functions: for each arrow o548 from vertex i
to vertex j, t : Q1 — Qo maps t(a) = ta =i and h : Q1 — Qo maps h(a) = ha = j. We will call t(a)
the tail of arrow a and h(a) the head of arrow a. We say a quiver Q = (Qo, Q1) is nontrivial if |Qo] > 1,
finite if |Qp| < 0o and |@Q1] < oo, and connected if the underlying graph is connected. Although infinite
quivers play important roles (cf. [BLP11], [Zel05], [Oh19]), we will assume our quiver is nontrivial, finite,
and connected.

We say a vertex in Qq is a sink (+-admissible) if it is not the head of some arrow of the quiver and
the vertex is a source (—admissible) if it is not the tail of some arrow of the quiver. A nontrivial path in
Q is a sequence p = ag - - - agay (k > 1) of arrows which satisfies t(a;+1) = h(a;) for all 1 < i < k—1; the
path p begins at the tail of a; and ends at the head of a, and we will write h(p) = h(ax) and t(p) = t(aq1).
The length I(p) of a path p is the number of arrows in the path. If p = ay - - - aza; is a nontrivial path,
then I(p) = k, or else, I(p) = 0.

We associate a path e; to each vertex i called the trivial (empty) path whose head and tail are at
i. The length of an empty path is 0. If the tail of a nontrivial path equals the head of the path, then
the path is said to be a cycle, and we say a quiver is acyclic if it has no cycles. If the nontrivial path is
actually a single arrow whose tail equals its head, then the arrow is said to be a loop.

A dimension vector § for @ is an element of Zgg. A representation W of a quiver () assigns a vector
space W (i) = W; to each vertex i € Qo and a linear map W (a) : W (ta) — W (ha) to each arrow a € Q.
A representation W = (W(i);cq,, W(a)eeq,) of @ is finite dimensional if each vector space W (i) is



UNIPOTENT INVARIANTS AND THE ISOSPECTRAL HILBERT SCHEME 3

finite dimensional over C. A subrepresentation of a representation W of @ is a subspace V' C W which
is invariant under all operators, i.e., W(a)(V (ta)) C V(ha), where a € Q1.
Now, let W be a representation of @) of dimension vector 8 € Zgg. Upon fixing a basis for each finite-
. . . Ne . . v . W(ta) W(a) W(ha)
dimensional vector space W (i), each W (4) is identified with C% and each linear map o — e
may be identified with a 8j, X B¢, matrix. We will thus define the quiver representation space as

Rep(Q, B) := @ Homg (CPre, CPra).

ac@Q1

Points in Rep(Q, 5) parameterize finite-dimensional representations of @ of dimension vector 3, and

classically, there is a natural Gg = H GLg, (C)-action on Rep(Q, 5) as a change-of-basis; that is, given
1€Q0

(98,)icq, € Gg and W € Rep(Q, 3), we have

(98.)icqo-(W(a))acq, = (98, W(a)g5,} Jacq, -

Whenever the composition pg of paths is defined, we set W(pq) := W(p)W(q), i.e., the representation
of a composition of paths is the product of representations of the paths.

We will now discuss the B-adjoint action on b further. Let F*® : {0} C C! C C? C ... C C" be the
complete standard filtration of vector spaces in C™. Then b can be identified with the subspace of linear

maps C" J, € such that fler : C¥ — CF for all k. Since one must preserve the filtration of vector
spaces while changing the basis, we have the B-action on the domain and the codomain. So points
of b/B correspond to equivalence classes of linear maps preserving the complete standard filtration of
vector spaces, where two maps f and g are equivalent if there exists a change-of-basis that will take f
to g.

We begin by giving the construction of filtered quiver representations in the general setting. Let
Q = (Qo, Q1) be a quiver and let § = (01,...,8¢,) € Zgg be a dimension vector. Let F* : 0 C C" C

Cr C ... C CP be a filtration of vector spaces such that we have the filtration F}* : 0 C CiCQCrC
... C CP of vector spaces at vertex i. Let Rep(Q, 3) be the quiver representation in the classical sense
(without the filtration of vector spaces imposed). Then F'*Rep(Q, 3) is a subspace of Rep(Q, 3) whose
linear maps preserve the filtration of vector spaces at every level. Let P; C GLg,(C) be the maximal
parabolic group preserving the filtration of vector spaces at vertex ¢. Then the product Pg := Hier P;
of parabolic groups acts on F'®* Rep(Q, ) as a change-of-basis.

Now, given a parabolic Lie algebra p = Lie(P), a parabolic matrix described above corresponding
to a filtration of vector spaces with respect to the standard basis is block upper triangular. A general
parabolic matrix has indeterminates along its block diagonal and upper triangular portion of the matrix
and zero below the diagonal blocks. We refer to [Crall] for a discussion on quiver Grassmannians and
quiver flag varieties, which are related to filtered quiver representations but they are not the same. In
the next two sections, we describe quiver flag varieties and filtered quiver representations.

2.1. Quiver flag varieties. In this section, we will discuss the notion of quiver flag varieties, which also
appear in the literature as quiver flag manifolds. First fixing a dimension vector 8 = (f51,...,8q,), let
AW A0 e Zgg be dimension vectors with coordinates (*) = ('ﬁk), e ,q/gco)) satisfying 22:1 fy-(k)

B; for each i € Q. Let vU+1) ¢ Zgg such that Zij:ll 'yi(k) = (; for each i € Qo. Define Fi . (8) =
[Licq, Fly: (B:) to be the product of flag varieties, where each Flys (53;) is the usual flag variety parametriz-
ing flags of subspaces

k
ocuM cu® c...cul” Ccw(i) with dimU™ =3 A" (1)
u=1

We define the universal quiver flag to be:
FIZ(B) = {(UW,...,UD W) € Fl,e(8) x Rep(Q,B) : 0C UMD cUB C...cUD CWis
a chain of subrepresentations of W and W(a)U(k) C U;k) Va:i—jandV1<Ek<I}.

7 =
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Consider the two Gg-equivariant projections Flg. (B) 2 Fl, () and Flf;?. (8) 22 Rep(Q, B). First,
let us view U™ as subspaces in W (i) for each i € Qo. The fiber of p; over the tuple (UM, ... UW) is

%

again a homogeneous vector bundle isomorphic to

l
D ( Hom (Ut(f) Ju=y, U,E’;?) ® Hom (W(ta) Ju, W(ha))> (3)
k=1

acQ1

where Uff)/Uff_l) ={ve Ut(f) v LuVue Ut(f_l)}, W(ta)/Ut(fl) ={veW(ta):vLuVuec Ut((ll)},
and Ut(g) := 0. So p; is flat. On the other hand, pgl(W) parameterizes all flags 0 C UM Cc U® C ... C
U® C W of subspaces with prescribed dimension vectors y*) with each U®*) being a subrepresentation
of U+ and U® being a subrepresentation of W. So ps is projective. The fiber pgl(W) = Fl, (W)

of po over W is called the quiver flag variety.

Example 2.1. Consider the Ay-Dynkin quiver (this is the quiver whose underlying graph is an A;-
Dynkin graph). Let 3 =n,l=n—1, and ¥y =i for 1 <i <. Then the quiver flag variety Fl,«(C")
is isomorphic to the complete flag variety of C™.

Example 2.2. For Q any quiver and [ = 1, we obtain a quiver Grassmannian.

Example 2.3. Consider the A;-quiver and let 3 = n. Then Rep(Q, 3) = C™, an n-dimensional vector
space. Now let the dimension vector v be m < n. We obtain Flf;?. (B) = Gr@(n) = Gry(n) x C™. This
means the quiver Grassmannian Gry,(C") = Gr.,,(n) coincides with the classical Grassmannian.

Now we will investigate the fibers of p; in Section [2.2

2.2. Filtered quiver representations. Filtered quiver representations are precisely the fibers of p;
over a flag of vector spaces in Section[2.1} A more straight-forward construction is as follows: let @ be any

quiver. Fix a set of dimension vectors v(1), ... v g Zgg such that 22:1 'yl-(k) < B; for each i € Q.
Let F*:0Cc UM cUu@ c...cUDCWhbea flag of subspaces such that dim Ui(k) = Zﬁzl 'yi(u) for
each i € Q.

Definition 2.4. The filtered quiver representation is a vector space (an affine variety) defined as
F*Rep(Q, B) == {W € Rep(Q.8) : W(UL,)) C U V1<k<l Vae Qi)

If P, C GLg,(C) is a parabolic subgroup acting as a change-of-basis while preserving the filtration of
vector spaces at vertex i € g, then Pg := Hier P; naturally acts on F*Rep(Q, B).

A filtered quiver representation is a representation space where the filtration is a structure on a
representation, not on the quiver itself. We write U := Ug, the unipotent radical of Pg.

We define the map from the set in to the projection onto its second component as quiver
Grothendieck-Springer resolution. Generalized Grothendieck-Springer resolution is known in the litera-
ture as follows: G g =GXxgaaH = Indg(H ), where H is a closed subgroup of a linear algebraic group
G over a field k and H acts on G x H via h.(g, ) = (gh~*, adp,(x)). This implies that G; has a G-action
by ¢'.([g,h]) = [¢’g, h]. There is an embedding pr xa : Gy — G/H x G, where [g, h] — ([g],ghg™!). The
image of pr xa consists of Im(pr xa) = {([g],z) : Vg € G of [g],x € H, := gHg~'}. The two projections

G
G/H \G

show that for all [g] € G/H, the isomorphism pr—!([g]) = H, is given through the map a (cf. [KV16],

Section 1.4). On the other hand, generalized Springer resolution is known as T*(G/P) Ty O,, where O,
is the Richardson orbit associated to p = Lie(P) and P is a parabolic subgroup of a semisimple complex
algebraic group G; Richardson orbit for P is an open, dense orbit in the nilradical of p (cf. [Lus84]).
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Thus, in this paper, we will often use the terminology quiver (Grothendieck)-Springer resolutions. We
also refer the reader to Section for a further discussion of this topic.

If one assumes @ to be the 1-Jordan quiver, 8 = n, and assume a complete filtration of vector spaces
on the representation space of @, then we obtain F*Rep(Q,n) = b under the U, or B action, where B
is the Borel subgroup of GL,(C), and we have the identification:

F*Rep(Q,n)//xB = g//xG, where g = {(z,b) € gx G/B :z € b}.

In this paper, we fix the components of the quiver dimension vector to be a nonnegative integer n:
B8 =(n,n,...,n) and we will also fix the standard basis ey, ...,e, for the filtered representation space
all throughout the paper. We will assume F'® to mean the complete standard filtration of vector spaces
at each vertex. So without loss of generality, we will make the identifications:

F*Rep(Q,B) = b%9, Uy = U®, Py B, (4)

where b is the set of upper triangular matrices in gl,, and b = Lie(B). Note when rewriting the direct
sum of vector bundles in as a product of matrices (one matrix for each arrow a € Q1), each matrix
has the form of an upper triangular matrix.

Next, we give definitions which are critical in the proof of our main result.

Definition 2.5. The main diagonal of an n X n matriz is called level 0. Level k-diagonal or k-
superdiagonal of an n X n matriz are those entries that are k entries to the right of the main diagonal
entries, and level (—k)-diagonal or k-subdiagonal of an n x n matriz are those entries that are k entries
to the left of the main diagonal entries.

Note that level 1-diagonal or 1-superdiagonal are the matrix entries immediately above the diagonal
entries, while level (—1)-diagonal or 1-subdiagonal consists of matrix entries immediately below the main
diagonal entries.

The distance between two vertices in a graph is the number of edges in a shortest path connecting
them. The notion of the distance is also known as graph geodesic or geodesic distance. If there is no
path connecting two vertices (for example, the vertices belong to two different connected components),
then we define the distance between them as infinite. In the case of a directed graph, the distance d(%, j)
between vertices ¢ and j is the length of a shortest path from 4 to j consisting of arrows or arcs. We
note that d(, ) need not equal d(j,4) and it is possible for only one of the two to be defined.

Definition 2.6. We say a unipotent matriz representation at vertex j is locally near vertex i if d(i,j) <1
or d(j,i) <1.

Definition 2.7. A k-generalized Kronecker quiver consists of two wvertices i and j and k arrows:

Qly.yp @ 0 — § and Qpmy1,...,05 ¢ j — 1. A k-generalized path Kronecker quiver consists of
two vertices i and j and nontrivial paths
agl)---aéll), agm---ag),...,agm)---aéz) 11— 7 and

1
b

a0 b?’~~~b§§),-~-,b§")---b<z>:j_”-

q

such that m +n =k and the paths agb) e a,(,i) and bgf” e bgz) do not contain a cycle.
A local k-generalized Kronecker quiver at vertez i is a subquiver consisting of two vertices, one vertex
j # 1 and vertex i, and k arrows a1, ...,y 17— j and a1, ... ,a0 © j — 5. A local k-generalized path
Kronecker quiver is a subquiver consisting of two vertices i and j and nontrivial paths
1 1 2 2
oD, o g,

R S A Y 3 TN I R Y

q 2

.,agm)-~-a1():z) 21— j and

such that m +n =k and the paths agb) e aéi) and bgn’) e béz) do not contain a cycle.

In literature, a star-shaped quiver (of any orientation) has k-legs, each of length sy, with no loops on
the central vertex, where the underlying graph of a leg of a quiver is an A, -Dynkin diagram.

Definition 2.8. A 1-step star-shaped quiver (of any orientation) has k-legs, each of length 1, with
no loops on the central vertex. A local 1-step star-shaped quiver (of any orientation) at vertex i is a
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subquiver consisting of k-legs emanating to or from i, each of length 1, with no loops on the central
vertex.

Example 2.9. A 1-step star-shaped quiver (of any orientation) with 8 legs is:

N/

Finally, we state Corollary 19.6 from [Gro97], which will be applied in the proof of Theorem [1.1

Corollary 2.10 (Grosshans). Let G act linearly on a vector space V and let v € V such that Stabg(v) =
{e}. Then
dim V)G =dimV — dimG.

3. RESULTS
Without loss of generality, we will assume @ is connected and has at least one arrow.

Proposition 3.1. Let Q be the Ai-Dynkin quiver and let 8 = (n,n). Let F*W be a complete filtration
of vector spaces at the two vertices. Let U= U%2. Then F*Rep(Q, 3)/U = C".

Also see Theorem 5.1.2 in [Im14a] for a generalization of Proposition to ADE-Dynkin quivers.

Proof. Let a be the arrow in @) connecting the two vertices 1 and 2. If 1 = ta and 2 = ha, we will call
such orientation the preferred orientation. Define

1 if a is in the preferred orientation,
€(a) = ) (5)
0 otherwise.

We identify F'® Rep(Q, ) with b. Then for (u1,u2) € Uand z € b, suppose (u1,u2).2 = U1 ye(a)T uQ__le(a).

At the level of functions, we have (uy,us).f(z) = f(ul_ie(a)z Us_(q))- We will prove that C[b]” = C[t],
where t is the Cartan subalgebra of b. The inclusion C[t] C C[b]Y is clear so we will prove the other

inclusion.
Fix a total ordering < on pairs (4, j), where 1 < i < j < n, by defining

(1,7) < (¢, 4') if either 1 < ¢/ or i =4’ and j > j

and let us write x = (x;;) € b. Let f € C[b]Y. Then for each (i, j), the function f can be rewritten as:

f=_alfijk, where fi;1 € Cl{zs : (s,t) # (i,4)}]. (6)
k>0
Fix the least pair (4,7) under the inclusion < with ¢ < j for which there exists k # 0 with f;;r # 0.
Continue to denote it by (i,7). If no such (i, 7) exists, then f € Clzy; : 1 < i < n] and we are done.
Let w3 be an n x n matrix with 1 along the diagonal, the variable u in the (¢, j)-entry, and 0 elsewhere.
Consider (I,,43). Then

st +xjpu if s =1 and €(a) =1,
Uij.Tot = § Tt — Tgiu if ¢ = 7 and e(a) =0, (7)
Tt otherwise.

Now we rewrite f as
f= Zx%Fk, where Fj, € C[{zs: : (s,t) > (4,5)}] =: Ro.
k>0
If €(a) = 1, then

_ k
Y 3P ST (P

k>11<I<k
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Since {a:fj_lul :1 <1< kk >0} is linearly independent over Ry, Fj, = 0 for k > 1, contradicting the
choices of (i, 7). Similar argument follows if e(a) = 0. It follows that f € C[xz;;] as claimed. O

Proposition 3.2. Let QQ be a k-generalized Kronecker quiver, where @ has more than 1 arrow. Then
there is a point in the filtered representation space of QQ such that its stabilizer subgroup is trivial.

Proof. Since @ is a k-generalized Kronecker quiver, @) has finite number of arrows. Label one of the
vertices as ¢ and the other as u. Let us denote a1, ..., a, as the arrows whose head is at vertex ¢ and let
us denote by, ..., b, as the arrows whose tail is at vertex 7. Let us write u = (u(i), u(”)) to be an element
in the unipotent group U? := U x U, where u(?) denotes the unipotent matrix representation at vertex
1 with entries:
uEZV) if 0 <7,
@)y =41 ifi=1,
0 otherwise.
For W € F*Rep(Q, ), we have the following group actions:
(1) @IV (a) = W (a;) (),
(2) wWW (B;) = WV (b,) (ul®) 1.
Since F** Rep(Q, B) is a filtered representation space,
o) ife <y, vy ifu<n,
Wiag)n = {0 otherwise. C {O otherwise.

Next, consider the map
U2 X F.Rep(Qaﬂ)‘ba,j - F‘RBp(Q,ﬂ)h,aj, where F.Rep(Qaﬂ”baj = F'Rep(({z,u}, {aj})a (nvn)) = ba

sending;:

(u, W) = uW(a;) = u(i)W(aj)(u(“))*1

. d (i) (5 d () .(j 4
D S T N DR O L e TR
1<i<vy1 < <ym=v 1<y < <ym=n
1<m<y 1<m<n
_ L 3 NN
o o B I L I N
Y<e<y1 < <ym=n
1<m<y
o ; . o0
where v = ug’fl,z ~~~u(7’fn)7wm, the product of u(a”ﬁ) obtained from the group representation at vertex pu.
In the case when m = 1, then we have ug?ng,)l ug‘fzm -~-u(y’:271mn = uﬁﬁ)x%)l Thus the degree of v in

uglb)xg)l ug‘fz,z e ugﬁ‘j,h% is zero when m = 1.
Secondly, consider the map U? x F‘Rep(Q,ﬁ)h,bj — F’Rep(Q,ﬂ)|bbj, where F'Rep(Q,5)|bbj =
F.Rep(({/jﬂ Z}v {bj})7 (77‘7 ’I'L)) = b, sending

(u, W) = w.W (by) = u W (b;) (u) !

0 - 0 y$)

) § _1)deg(w), (1), (5),, (&) ..., (0 _1)des(w),, (1), (5),, () ...
Y1 ( 1) Uy, Yy, Uiy U1y ( 1) Uty Yury Uy vy
1<i<vy1 < - <ym=7 1<i<y1 < <ym=n
1<m<~y 1<m<n
=1 . : ) 1), (1), () () ...
0 - vy (=1) ( )u’ﬂ)y“{lu’(ﬂ)’h
YLy < <ym=n
1<m<y
()

(@)
u’)’m—l”

(4)
uVm—lan
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where w = usfl)w - ~u$,171%n, the product of ugg appearing in the group representation at vertex i.

Similar as before, the degree of w in ufﬁ)xffy)l uf(fl)»m e ufyi,lyflﬁm is zero if m = 1.

Now we will restrict to the representation W in F'® Rep(Q, ) satisfying the following conditions: for
each arrow d € @, fo )xfi_)lﬁ_l — xff)xg_%,LH # 0, yL(Z )yfi_)lﬁ_l — yff)yfiibﬂ % 0, and xff )yff) —
yl(,J,,)xf,],,) #0forall j#j and 1 <t <v <n.

First, suppose () has two arrows a; and a; where j # j’. They have matrix representations W (a;)

and W (a;/), where j # 5. So for I € {j,5'}, u®DW (a;)(u) =1 is

) § —1)des(v),, () (D) o (1) L (1) E _1)des(v),, (D ,.(1) o () ., (1)
Ty ( 1) Uy Loy Uy g Uy 1y ( 1) Upy Ty Uy iy Uy, _1n
1<e<y1 <--<ym=7 1<e<y1 < <ym=n
1<m<y 1<m<n
0) E _1)deg(v),(4) (1) o, (1) o (1)
0 - T35 ( 1) u’YLIL’Ylu'Yl'YQ u’)’m,—lvn
Y<e<y1 < <ym=n
1<m<y
- ; - s

The level 1-diagonal entries of uW (a;)(u*)~! = W (a;), where | = j, j/, are:

) @Dy )

@ () _
xL,L-‘rl + uL,L-‘rle-‘rl,L—i-l w P+l T xL,L+17 (8)
(4" @ " G, W _ G
Tyt + Uy 18,341,041 — Lo )uL,LJrl =T, 41
These simplify as
(%) () ), )
uL,L+1‘TL+1,L+1 - IEL)U’L,L+1 - 0’

@ .G 3, ()
Uy 41T, 41 041 — xEL )uL,L+1 - 0’

which reduce to solving a system of linear equations:

(e ) ()0
in:)l,LJrl —LCE{ ) ub,lerl 0
@ _ ()

Since the coefficient matrix is invertible, u, /., = v,'’,; = 0. Since ¢ is arbitary, we conclude that

ufzz +1 = ufli)ﬂ =0 for all 1 < ¢ < n. Now assume complete induction on k-superdiagonal entries; that

is, uEfL)_M = “Efﬁ-v =0foralll <:<n-—kand 1<~y <k The following sets of equations are on the

(k + 1)-superdiagonal:

_qydeg(v), (D) () (u) .., (1) NC))
Z (=1) Ut Ty Uyyyg 7 Uy bkl = Pkt
<<y < <ym=utk+l
1<m<
deg(v), (1) (i) () (1) G 9)
Z (_1) ubleL,’Ylu’Yl')Q . .u’)’m,flyb“rk-‘rl = xL,L—‘rk—‘,—l'

eSS <o <ym=ethe
1<m<.

If m > 3, then the difference of the indices ' and ~" for the variables ugi,)v,, and ug‘fzy,, are strictly less
than k£ 4 1. Since all such monomials vanish by complete induction, we are left with those terms where
m in the  partition is strictly less than 3:

_1\deg(v) (4),.(4) _1\deg(v) (1), .(3) , () _
Z ( 1) uLL,xL,,L+kJ+1 + Z ( 1) ULL’ xb’yl u71,L+k+1 - J;L,L+k+1’
1<V <yr=v+k+1 1< <y1<y2=t+k+1 (10)
_ 1)\deg(v) (1) _.(3") _1\deg(v) (@),.G"), (0 _.Gh
Z ( 1) uLL/JjL’,LJrkJrl + Z ( 1) uLL/'/EL/’Yl u'n,L+k:+1 - Jjb,b+k}+1 .
1<V <y =1+k+1 <1<y <va=t+k+1

From the first sum in the first equation, two cases when uf? does not equal zero are when ¢ = / and

(1)

kb1 does not

when «/ =+ + k + 1. From the second sum in the first equation, the only case when u
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equal zero is when ~; = ¢ since ¢ + k + 1 — v would be strictly greater than k. Putting this together, we
have

3-.(7) (4) (7) i (w) i
U, L,Jl, + uL L+k}+1mb+k+1 v+k+1 UEL)xEL)uLNL+k+1 L,L+
or
(4) (7) (W) _
“L,L+k+1$Li—k+1,L+k+1 x(])“L/H-k-s-l =0. (11)
Similarly we obtain
(1) (3" (w)
u,, L+k+1xLirk+1 k41 xEL P le+k+1 0 (12)

when simplifying the second equation in . For a fixed ¢ and forming a system of linear equations
using the two equations in and , we obtain:

€) ©) i
(xl;bl)chI,LJrkJrl ﬂc(Lf )) ( ;Z)Jrk+1> _ <0)
‘TL{HH-I +k+1 xb{ ub +k+1 0
Since the 2 x 2 matrix on the left is invertible, we see that uf L) kel = E’j)Jrk 11
(4)

we conclude that Uy i1 = uE L)JrkH =0foralll <:<n-—k.

= 0. Since ¢ is arbitrary,

Since @ is a k-generalized Kronecker quiver, similar arguments hold for W (b;) and W (b;/). Now
suppose ) has two arrows, one of which is a whose ha = i and one of which is b whose tb = i. We
will combine the representation of these two arrows to show that the stabilizer subgroup is trivial. For
simplicity, let us suppress the subscript and write a and b to denote the two arrows and let us write the
entries of W (a) and W(b) as

W if <y, w i<y,
W(a)wy = n L_’Y. and  W(b), = o B ’Y
0 otherwise, 0 otherwise.

For 1 < ¢ < n, consider the (¢,¢+ 1)-entries of the equations:
W (a) (W)™ =W(a) and MWW (b)(uD)" = W(b). (13)
They are
Ty41 + UE?Z+1.TL+1’L+1 — xuugil_l =z,,+1 and

Yoo+l T UEZL1yL+1,L+1 - yLLuE;LL)J,_l = Yi,u+1,
which simplify as

u® ()
L 41T 41,0+1 — 'TLLuL 1 T =0

) (i _
uL,LJrlyLJrl,LJrl “Yuly 1 = 0

(xH—l,L-i-l Ty ) uE,ZL)—i-l — (O)
—Yu Y1041 uEfLL)—i-l 0
Since the matrix on the left is invertible by assumption, we have that uf? 1= uf’z)ﬂ = 0. Now, assume

or

complete induction on k-superdiagonal, which means uf 2 4y = uE“L)_M =0forall<:<n-kand
1 <~ <k. On the (k + 1)-superdiagonal, we have
Z (—1)de8@)y g, ol i’ﬁ k1 = TotkA s (14)
LSL,S’YITé:l;T,LL:L+k+1
J ,
Z (1) & (") Ei/)yL ’Yl“gn)w o ugy?kl,a+k+1 = Yotk (15)
LSL'SWlfé-’;%T:L-I—k-#l

where W' = u({flm .- ~u£f;)_w 4ry1 0 Equation , the product of uffﬁ) obtained from the group rep-

resentation at vertex uw, and w” = u,(yil),m ce u’(}/ir)rb—l’L+k+1 in Equation , the product of u((;[)a obtained

from the group representation at vertex 1.
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First, consider Equation . For m > 3, the difference of the indices 7’ and " for the variables
ufy‘f,)y,, must be strictly less than k + 1. Since all such monomials vanish by complete induction, we are
left with those terms where m in the v partition is less than 3:

Z (—1)deg(v)ugf?xu,b+k+1 + Z (_1)deg(v)ufz2mbl’husyllt?L—&-k—O—l = Ziuthtr,  (16)
<V <yi=v+k+1 1< <y <ve=t+k+1
From the first sum in Equation , two cases when ufz,) does not equal zero are when ¢ =/ and when
=1+ k+ 1. From the second sum, the only case when ufﬁ?L+k+1 # 0 is when 7; = ¢ since then
t+ k+1—; > k. Putting this together, we have

m + UE,ZL)+k+1$L+k+1,L+k+1 - ugf)xbbugfﬁ-k+l = Tortkatl s
or ‘
uff2+k+1%+k+1,b+k+1 - xLLuf,f?{»k+1 =0. (17)
Using a similar argument on Equation , we obtain

Ufi)-kk+1yé+k+1¢+k+1 - yﬂuf?b)—i-k-&-l =0. (18)
Put Equations and together to obtain:

(@)
(xLJrkJrl,LJrkJrl —Zy > Uptbt1 | _ <0>
—Yu Yu+k+1,0+k+1 UEML)-Q—k:-&-l 0
Since the determinant of the matrix on the left is nonzero by assumption, we conclude that uflL) k4l =

(w) _
U’L,L+k+1 -

has at least two arrows) whose stabilizer subgroup is trivial. O

0 for all 1 < ¢ < n — k. Thus there is a point in a k-generalized Kronecker quiver (where @

Proposition 3.3. Let Q be a k-generalized path Kronecker quiver, where (Q has more than 1 arrow.
Then there is a point in the filtered representation space of Q such that its stabilizer subgroup is trivial.

To prove Proposition we make the following substitutions in the proof of Proposition first,

suppose the head of the paths agb) . aét) is 7 and the tail is u and suppose the head of the paths bgb) . bt(lf)

is p and the tail is i. Replace each arrow a, in the proof of Proposition with the path agL) A

.. aL
and replace each arrow b, in the proof with the path b@ e bi(lz)' Since the proof of Proposition is
similar to the proof of Proposition [3:2] we will omit the proof of Proposition [3.3]

Lemma 3.4. Let Q be a star-shaped quiver, where Q has at least two arrows. Then
dim F'* Rep(Q, ) /U = dim F* Rep(Q, §) — dim U.

It is trivial to show the nonexistence of a point in a filtered representation space of a star-shaped
quiver (|@Q1] > 1) such that it has a trivial stabilizer subgroup; this is easily shown by proving that
every point has a stabilizer subgroup of dimension greater than 0. However for Lemma [3.4] we will use
a fact from Im’s dissertation (cf. Theorem 5.3.1 in [Im14al]): only the diagonal entries of the filtered
representation space of a star-shaped quiver produce unipotent invariants.

Proof. A star-shaped quiver is a quiver with at most two distinct pathways between any two ver-
tices. By Theorem 1.1 in [ImI4b], C[F*Rep(Q, 3)]Y = C[t®?1]. This means dim C[F*Rep(Q, 3)]" =
dim C[t®?] = n|Q1|, and on the other hand, dim F*Rep(Q, 8) — dim U = n|Q;|. O

We now give the proof of Theorem

Proof. Assume that ) has at least one arrow and by assumption, @ is not the As-Jordan quiver. We
will first prove that there is a point v in F'®*Rep(Q, 8) such that the stabilizer group of v is trivial. Let
i € Qo be a vertex of Q. Since @ is finite, the vertex i is connected to a finite number of the following
types of arrows:

(1) arrows a1, ...,ap such that only ha; =i for all 1 < j < p,

(2) arrows by, ..., by such that only tb; =i for all 1 < j < ¢, and

(3) arrows ci, ..., ¢, such that hej =tc; =i forall 1 < j <.
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Let p1,...,pp be the tail of ai,...,ap, respectively. If p; = py for some a; # ay, then we replace
K1, ..., fp With the set p1q, ..., [, . .., 11y, where the hat over p;, denotes that it has been omitted. Since
p is finite, repeat this procedure finitely-many times so that p.,..., 1,y are pairwise distinct vertices.

Now let vq,...,v4 be the head of the arrows by, ..., by, respectively. Similar as before, replace the
set v1,...,v, of vertices with v1,..., vy such that the latter forms pairwise distinct vertices of ). Now,
combine fiq, ..., flp, V1, ..., Vg and replace this set with p1, ..., ppr,v1,. .., Vg so that no vertex is listed
more than once.

Fix a basis in F*Rep(Q, 3) such that we have the identification: F*Rep(Q, ) = b®P1. Let us write
the Qo-tuple in U as:

w= (M, u® ) ) ) ) (@0)) e U Qo (19)

where 49 is the n x n unipotent matrix at vertex i whose entries are:
uffy) if ¢« < 7,
(u(i))L.y =<1 if L =,

0 otherwise.

For W € F*Rep(Q, 5), we have the following group actions: since arrows a;, b;, and ¢; are connected
to vertex i, we have

(1) wW(az) = uDW(az) ()=t

(2) wW(by) = ulDW (b;)(ul) 1,

(3) uW(e) = ul W (e;)(ul) =1,
Here, we used the notation that p; is the tail of the arrow a; and v; is the head of the arrow b; (thus,
;s and v;’s are not necessarily pairwise distinct). Since F*Rep(Q, ) is a filtered representation space,

2z if + <,

)
z, if 0 <~
Wi(a;)y, =4 "7 -
(a5):r {0 otherwise,
(3
Yo i<,
W(b;j),, =
o {0 otherwise,

0 otherwise.

Consider Ux F* Rep(Q, B)lv,, — F*Rep(Q, B)le,,, where F*Rep(Q, B)e,, := F*Rep(({i, 15}, {a;}), (n,n)) =
b, sending

(u, W) = w.W (a;) = uDW (a;)(ulr))~?

) E _1ydes(v), () .(5) o () .o, (15) _1)deg(v),, () (5) o (1) .o (1)
zyy ( 1) Uy, ‘TL’Ylu’lem u’)’nf—lv'y ( 1) Uy, Ty, u’YlZY’z u'wa—ln
1<y < <ym=v 1<i<y1 < <ym=n
1<m<y 1<m<n
= j E _1)deg(v),,(2) 0. (5) o, (1) . ..o, (15)
0 - I(w]w) ( 1) u’yL xuylu'ni/z u'}’nf—l,n
Y<e<yp < <ym=n
1<m<y
0 .. 0 o)

nn

(15)
L eB N
In the case when m = 1, then we have ug?x%)l uffflyl . ~-u(7’:,leﬁm = ugfb)ajffy)l, thus the degree of v in

() ,.(7) , (1) (1)

UN{ Loy, Uy g~ Uy -1y 1S Z€TO When m = 1.

(k) (kj)

where v = uy,%, -+ -uy,”” 4, the product of u obtained from the group representation at vertex p;.




12 MEE SEONG IM AND LISA M. JONES

Secondly, consider the map U x F'Rep(Q,ﬂ)\bbj — F‘Rep(Q,ﬂ)\bbj, where F‘Rep(Q,ﬂ)|bbj =
F*Rep(({v;,i},{b;}), (n,n)) = b, sending ' '

(u, W) = w.W (b;) = u*DW (b;) (u)~1

() E _1ydeg(w), wi), (5),, (@) ..., @) _1)deg(w), i), (5),, () ..., @)
Y1y (=1) Uy, Yoy Uy gy Uy o (1) U, Yoy Unyy Uy 1
1<ie<vy1 < - <ym="v 1<y < <ym=n
1<m<y 1<m<n
= () E _q)deg(w),, (v5),,(5) ,, (&) ., (%)
0 v ( 1) u'yLJ Yoy Uy vy, Uyp_1,n
Sty < <ym=n
1<m<xy
0 .- 0 ysljyi

where w = Ugil)w . ~-u(72714,m, the product of u((l% appearing in the group representation at vertex .
Similar as before, the degree of w in u(ﬁ")x%{ ugfl)w e ug,?lfm,m is zero if m = 1.

Finally, the map Ux F*Rep(Q. 8)ls,, — F*Rep(Q. B)le,, . where F*Rep(@Q, B)fo, = F*Rep(({i}, {e;}).n) =
b, sends

(u, W) = wW(¢;) = uW () (u?) ™!

() E _1)deg(w),, (D (), (&) ..., %) _1)deg(w),, (D) (), (&) ..., %)
2} o ( 1) Uyy 2oy Uy g U1y ( 1) U, 205, Uy U112
1<i<v1 < <vym=7v 1<i<y1 < <ym=n
1<m<~y 1<m<n
= j _1)deg(w), (i) ,(3),, (&) .. ., (i)
0 . 24 § (=1) Uy 2y Uy 7" Uy im0
Y<e<yp < <ym=n
1<m<y

=)

0 . 0
where w = ugil)n,z .- ~u£f2kwm, the product of u((;g appearing in the group representation at vertex ¢ under

the condition that the second index g of u((l% must be greater than ~;.
Now suppose vertex i has a loop or is one of the vertices of a local k-generalized Kronecker quiver.

Let W be a representation in F'* Rep(Q, §) satisfying the following conditions: for each arrow d; € Q1,

W (d;) has pairwise distinct, nonzero eigenvalues, and xEZ,)in)LLH - scff)xfﬁ’bﬂ # 0, yffl)yfi)l’bﬂ -

yfpyfih_kl # 0, and xf{/)yff) - yﬁjl/)xlgjyl) #0forall j#j and 1 <1 <v < n.
Consider one of the loops at vertex %, say c;. We will analyze both sides of the equation:

WO (e) ()t = Wiey), (20)

First consider level 0 diagonal entries of the left hand side in . Since these entries are invariant
under conjugation by a unipotent subgroup, we are done since the diagonal entries of W(c;) are also
sz ). Thus, consider 1-superdiagonal entries, i.e., (¢,¢ + 1)-entries, which are of the form:

2D a2 - D). (21)

Since we want to find the stabilizer subgroup of W, we set the expression in equal to zL(JL)H Since
(4)

2 # Zb(i)lyl+1’ we see that u, ,,; = 0 for each 1 < ¢ < n — 1. Next, assume complete induction on

k-superdiagonal: this means uffzﬂ =0foralll <:<n—kand1 <~y <k. Onthe (k+1)-superdiagonal,
we have
deg(w), (1) (J i i j
> DG Wl e = 2 (22)

<<y < <ym=tk+1
1<m<e
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If m > 3, then the difference between the indices 4" and " for u(vi’)v” must be strictly less than k + 1; all
such terms vanish by complete induction. Thus we are left with those terms when m < 2, i.e.,

2 : ~ 1\deg(w), (3) _(7) _1ydeg(w),, () () , (3) _
( 1) Uy ZL',L+I€+1 + ( 1) Uyyr ZL/’Yl u71,b+k+1 - ZL,L+k+1'
<V <y1=1+k+1 1<t <y1<y2=t+k+1

From the first sum, two cases when uf? # 0 are when ¢ =/ and when ' = ¢ + k + 1. From the second
sum, the only case when usl) vikg1 7 0is when y3 = ¢ for then 1 +k+1 —~1 > k. Putting this together,

we have
SNE)) (%) (4) (8) ,(4),,(®) _ U
Uy, Lyt + uL,L+k+1ZL+k+1,L+k+1 — U,z uL,L—‘rk’-‘rl - ZL,L+ 1

or
Q)

() G —
uL,L+k+1(ZL+k+1,L+k+1 —2,;))=0.

Since zL(f ) are pairwise distinct, uEZL) 4141 = 0 and since ¢ is arbitary, we are done.
Now, using the fact that u(?) is the identity matrix representation at vertex i, we will prove that
uw¥) =1, forall 1 <j <¢” and ul#) =1, forall 1 < j < p”.
So consider
wIW () (D) = W(B,). (23)
We have shown that u(* =1,,, so Equation simplifies to
ulDW (by) = W (b;).

Since the eigenvalues of W (b;) are nonzero, W (b;) is invertible. Thus, we have u(*s) = I,, for all
1<j<q".
Similarly, consider
uOW (a5) ()" = W(ay). (24)

We know that u(? is the identity matrix and W (a;) is invertible. Thus, Equation simplifies as
uwi) =1, for all 1 < j < p”. Thus, we conclude that all the unipotent matrix representations locally
near vertex ¢ are identity matrices. We repeat similar analysis to the other |Qq| — 1 vertices by extending
outward from vertex ¢ and using induction at those vertices j such that d(i,j) = k or d(j,i) = k for each
k> 1.

Now, if there are no loops at vertex i, i.e., r = 0 at all the vertices of @, then by assumption, some of
the arrows connected to i form a local k-generalized path Kronecker quiver, where & > 1. Without loss
of generality, name the other vertex connected to these local k-generalized path Kronecker quiver as p.
By Proposition [3.3] and holding all the other unipotent group representations at vertices v # i, u fixed
(since path representations connecting vertices ¢ and p only affect the group representations at vertices
1 and p), we see that there is a point in the filtered representation space of @) such that its stabilizer
representations at vertices ¢ and p are trivial. We then repeat a similar argument as above by extending
outward from vertex i and p systematically by increasing quiver geodesic distance.

We thus conclude that there is a point in the filtered representation subspace such that its unipotent
stabilizer is the trivial subgroup of U.

Finally, follows from and Corollary O

Remark 3.5. Suppose Q is connected with at least two arrows. In the case if Q does not have a loop
or a local k-generalized path Kronecker subquiver, then Q@ must have a local 1-step star-shaped quiver at
some vertex. In fact, we can deduce more than this: we have a quiver with at most one pathway from
one vertex to another for if Q has two or more pathways from one vertex to another, then Q has a local
k-generalized path Kronecker quiver (k > 2) or Q has a loop, which is a contradiction. By Theorem 1.1
in [Im14b], we have an isomorphism C[F* Rep(Q, B)]Ys = C[t®%1] of algebras.

4. SPECIAL CASE: 2 X 2 k-JORDAN FILTERED REPRESENTATIONS

Although it is possible to write down an explicit description of the B-orbits of k-Jordan filtered
representations, we will give a description of the algebra of the U-orbits of the k-Jordan when 5 = 2.
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Example 4.1. Let Q be the k-Jordan quiver and let 8 = 2. Then the algebra C[F*Rep(Q, 8)/U] of
unipotent invariant polynomials is isomorphic to

CHe?, (el — ) = (e — ) 1 <e <21 <y <h 1< pu<v<hY
Let ho C by, the set of 2 X 2 upper triangular matrices over the complex numbers. Under the B-action,
the polynomial f(W(c1),...,W(ck)) = cgg) (c:(l’{) cég)) c:(m)(cgli) — cg;)) is a b11b§2 -semi-invariant.
Thus, the affine quotient of the Jordan quiver is F*Rep(Q,2))/B = b5 /B = Spec(C[h3*]) = C>* while

the GIT quotient F*Rep(Q,2)/y, B is a projective scheme over C%, where x, : B — C* is a group
homomorphism sending (b,.) — b, b:+1 1

5. THE GEOMETRY OF QUIVER GROTHENDIECK-SPRINGER RESOLUTIONS

5.1. The Hamiltonian reduction of almost-commuting varieties for the Borel. Consider the
moment map pp : T*(b x C?) 2 b x b* x C" x (C")* — b* = g/n, where (r,5,4,7) — [r,s] +4j and n is
the set of strictly upper triangular matrices and (C™)* is the dual of C™. Let

-1

s, = |tr H 1 (r) tr H Ie(r)s |,
1<k<n,k#. 1<k<n,k#.
where li(r) = r — g I, (cf. Proposition 1.2 in [Im18]).
We describe the regular semisimple locus of generalized almost-commuting variety:

Proposition 5.1 ([Imi8], Proposition 1.4). The Hamiltonian reduction pg'(0)"** B is reduced and
isomorphic to C*" \ A, where A, = {(@1,...,2,,0,...,0) : x, = x for some 1+ # v}. So Ay =
Clug' (0)7% ) B] 2 C[r11, - Tnns S115 - - - 5 Sanl [(Tow — 744) 7Y, and the Poisson bracket on the commuta-
tive algebra Ag is induced from the standard symplectic structure on C2".

Remark 5.2. The algebraic closure of the semisimple locus ugl(O)rss//B s a symplectic manifold.

5.2. Isospectral Hilbert scheme. Recall that the Hilbert scheme Hilb"™ (C?) of n points on a complex
plane is given as the set of ideals I C C[z,y] such that the (complex) dimension of Clx,y]/I is n. There
is another well-known ADHM description of Hilb™(C?) (cf. [GGO6], [Nak99]). Let Z = {(r,s,i) €
gl,, x gl}, x C" : [r,s] = 0 and r®s”i spans C"}. The Lie group G = GL,(C) acts on Z by A.(r,s,i) =
(ArA=1 AsA™L) Ai).

Theorem 5.3 ([Nak99], Theorem 2.1). We have an isomorphism Hilb™(C?) = Z/G, which is smooth
and projective of dimension 2n.

The scheme X,, in the reduced fiber product

Xn - ((CQ)TL

Hilb™(C?) ——— S™(C?)
is known as the isospectral Hilbert scheme, where p is flat of degree n!.

Theorem 5.4 ([Hai01]). The scheme X,, is flat over Hilb™(C?).

The Hilbert scheme has generically n distinct points on C2?, where these points are unordered in
Hilb"(C?)/S,, and ordered in X,,. This leads us to relate ;"' (0)"** /B or " (0)"*% Jaet B with X,.
Let
Y755 = {(r,s,i) € b x b* x C" : [r,s] = 0,r*s"i spans C", and r is regular}. (25)
Let B act on Y"** via b.(r,s,4) = (brb=1,bsb™1, bi).

Proposition 5.5. We have an isomorphism Y"** /B = ' (0)"** | B of schemes.

Proof. Since r € b has pairwise distinct eigenvalues, r is diagonalizable under the action by B. For
a diagonal matrix 7, [r,s] = 0 implies s is also a diagonal matrix. Thus, we have a map Y"*°/B —
15 (0)7*% ) B given by (r,s,i) = (r,s,4,0) and 3" (0)">* /B — Y"**/ B given by (r, 5,4, j) + (r,s,i). O
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Let
Y = {(r,5,4) € b x b* x C" : [r, 5] = 0 and r*s”i spans C"} (26)
and let
7% = {(r,s,i) € gl,, x gl x C": [r,s] = 0,rs"i spans C", and r is regular}. (27)
Theorem 5.6. There is a birational map Y/B-->X,,.

Proof. The morphism Y% /B — X,, factors through Z/G x gnc2 (C?)™ by sending (r, s,4) B + (r,s,1)G X
(11,8115 - - - s "rns Snn ). This map is well-defined since r € b C gl,,, s € b*, which could be viewed as a
lower triangular matrix, and the B-orbits are closed. Now, since r is regular, r is diagonalizable. The
Lie bracket condition [r, s] = 0 implies s is diagonal if r is also diagonal. So the morphism Z"*% /G X g2¢2
(CH"™ — Y/B via (r,8,1)G X (711,811, - -, Tnn, Snn) = (1, 8,4)B is the projection onto the first triple,
and we are done. |

Corollary 5.7. The birationality of Y/B and the isospectral Hilbert scheme implies the existence of an
isomorphism between the vector spaces HO(Y/B,Kgd,/B) and HO(XmK‘}(n), where Ky g = Q%};B, the
canonical bundle of 2n forms.

Conjecture 5.8. There is an embedding of the scheme ugl(O)//detB mnto X,.

It would be interesting to extend Proposition to the entire Hamiltonian reduction and give a full
description of ugl(O) /B ~ T*(b x C"/B) in terms of well-known schemes. For the moment, we leave
this as an open problem.

5.3. Quiver-graded Steinberg varieties. We recall the Grothendieck-Springer resolution: g := G X g
b 2 g, where (g,2)B — gzg~! and consider the fiber product

(i

The fiber product g X4 g is known as the Steinberg variety, also given as the triple
{(z,B,B") € g x G/B x G/B : z € Lie(B) N Lie(B")}

(cf. [CGI10], [DRO4], and [Lus97]). Steinberg varieties are important as they provide an alternative
approach to the Springer correspondence, play a central role in the proof of Deligne-Langlands conjecture
for Hecke algebras (proved by Kazhdan-Lusztig), and appear in a proof of the conjectured formula
dim Zg(u) = r + 2dim(G/B), by Grothendieck, where v € U C G, a connected reductive algebraic
group over an algebraically closed field, r = rk(G), and (G/B), = {B C G : v € B} (cf. [DR09]). This
construction easily extends to the fiber product

Gxgxg3/G204/B. (28)
k

Equation implies the isomorphism between G-orbits on g x4 - -+ X4 g and B-orbits on b*. Thus the
G-equivariant K-theory on quiver-graded Steinberg varieties is equivalent to B-equivariant K-theory on
the product of Borel subalgebras.

Quiver-graded Steinberg varieties may be powerful tools to prove analogous formula or a similar
Deligne-Langlands conjecture for other Hecke algebras.

6. QUANTUM HAMILTONIAN REDUCTION FOR FILTERED QUIVER REPRESENTATIONS

In this section, we give a short introduction to quantum Hamiltonian reduction for nonreductive

groups. Let Qf = (QB,QI) be a framed quiver, where Q}; = Qo ][{o} and QI = Q1]]{o i>Z}; the
framed quiver has an extra vertex, called a framed vertex, and one extra arrow than the quiver @, which

;
points from the framed vertex to some vertex v in Q. Let B € Zgg be the dimension vector for the
framed quiver. Consider the cotangent bundle T*(F*®Rep(QT, 51)) of the filtered representation space,
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which is a Poisson manifold with a Poisson action by the Lie group Pg := Hier P;. The action is given
by the map T*(F*Rep(QT, 51)) — Hz‘eQO p¥, where p; = Lie(F;) is the Lie algebra of P; and p} is the
dual of p;. We then have a homomorphism of Lie algebras ¢o : [[,co, Pi = Vect (T (F* Rep(QT, 81))),
where Vecty(T*(F*Rep(QT, 37))) is the Lie algebra of vector fields on the cotangent bundle and II €
D(T*F*Rep(QF, 81, NX2T(T*(F* Rep(QT, 51)))) is a Poisson bivector whose Lie bracket with itself is zero:
[IT,II] = 0.

A Pg-equivariant regular map po : 7% (F* Rep(QT, 87)) — 1, p is a moment map for the Pg-action on
the cotangent bundle if the dual g : [T, pi — C[T*(F*Rep(QT, 87))] of the moment map satisfies the fol-
lowing: given a homomorphism of Lie algebras v : C[T*(F*Rep(QT, 81))] — Vectr(T*(F* Rep(QT, 81)))
preserving the Poisson structure, v(ug(a)) = ¢o(a). The map po is Poisson since the dual uf of the
moment map is a homomorphism of Lie algebras.

Let Lie(Pg) be the Lie algebra of Pg and let A be an associative algebra equipped with a Lie(Pg)-
action (so there is a Lie algebra map ¢ : Lie(Pg) — Der(A4)). We have a quantum moment map for
the pair (A, ¢), which is an associative algebra homomorphism g : U(]_[Z‘EQ0 pi) — A such that for any
ac HieQO p; and b € A, we have [u(a),b] = ¢(a)b.

Suppose now A is a filtered associative algebra such that gr(A) is a Poisson algebra A equipped with
a Lie(IPg)-action ¢y and a classical moment map po, and suppose that gr(¢) = ¢o. A quantization of
po is a quantum moment map u : U(Lie(Pg)) — A such that gr(u) = po. Define the space AMe(Fs)
of Lie(Pg)-invariants as A¥e(s) .= {b € A : [u(a),b] = 0 for all a € Lie(Ps)}, a subalgebra of A.
Let J be a left ideal of A gencrated by p(a), where a € Lie(Pg). We define a two-sided ideal as
JUe®s) .= Jn ALePs) ¢ ALePs)  The associative algebra

A// Lie(Pﬁ) = ALie(P/ﬁ)/JLie(IP’ﬁ)7

the quantum Hamiltonian reduction of A with respect to the quantum moment map .

6.1. Special case. For the rest of this section, assume @ is the k-Jordan quiver, Q' is the framed k-
Jordan quiver, and 37 = (n,1). We impose the complete standard filtration of vector spaces at the vertex
of Q. Consider the diagonal B-adjoint action on b*. Extend this action to the filtered representation of
the framed quiver and consider the B-action on b* x C™. This action is induced to the cotangent bundle
T*(b* x C™).

Lemma 6.1. Since T*(b* x C") is connected and symplectic, ker(C[T*(b* x C")] > Vecty (T*(b* x
Ccm))) =C.

Proof. Let v : f — {f,—}, which assigns to f the Hamiltonian vector field with Hamiltonian f. Since
[IT, 1] = 0, the Poisson bracket satisfies the Jacobi identity: {{f, g}, h}+{{g,h}, f} +{{h, f},g} =0 for
polynomials f, g, h on T*(b¥ x C™). Thus, the vector space of differentiable functions on the cotangent
bundle 7*(b* x C") has the structure of a Lie algebra. Since v is a Lie algebra homomorphism, ker v
consists of constant functions. |

Lemma 6.2. The first cohomology H'(T*(b* x C"),C) = 0. It follows that v : C[T*(b¥ x C")] —
Vectyy (T*(b% x C")) is surjective.

Proof. The vector space T*(b* x C™) is isomorphic to C*(+D+2)7 4 it is clear that the first cohomology
vanishes. Consider the complex:

0 — C 5 T (0% x €] L5 Vectn (T (6% x €))L ... (29)

Since H(T*(b* x C"),C) = kerd'/Imd° = 0, for any X € Vecty(T*(b* x C")) whose d*(X) = 0, there
is a polynomial f on T*(b* x C") such that d°(f) = X. Thus, v is surjective. |

We end this section with a remark that the study of cohomological invariants arising from the (quan-
tum) Hamiltonian reduction in the nonreductive setting may emit interesting geometric invariants.
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7. TOWARDS DEFORMATION QUANTIZATION

Kontsevich in [Kon03] affirmed that Poisson manifolds admits a quantization. We give a short ap-
plication of our filtered quiver representations to deformation quantization in the nonreductive setting
to make it a tool to study interesting varieties arising from our construction. In particular, such tool
may be a necessity when studying flat families to investigate the preimage of zero of a moment map for
nonreductive groups.

Suppose A is a deformation quantization of a Poisson algebra Ay equipped with a Lie(Pg)-action ¢
and a classical moment map g, and assume that ¢ = ¢g mod i. A quantization of g is a quantum
moment map p : U(Lie(Pg)) — A[h™!] satisfying u(a) = h=tuo(a) + O(h) for a € Lie(Pg).

Let A be a deformation quantization of the algebra Ay = C[T*(F* Rep(Qt, 8))] and let g : Lie(Ps) —
Ap be a classical moment map as before. Let pu be a quantum moment map quantizing ug. Let
O C Lie(Ps)* be a Pg-invariant closed orbit, and Red(T*(F*Rep(QT, 37)),Ps,O) be the correspond-
ing classical reduction. Let Lie(Pg)s be the Lie algebra over C[[A]] with Lie bracket [a,b]; = &i[a, b],
where a,b € Lie(P3). Note that Lie(Pg)s = Lie(Pg)[[A]] as a vector space. Let U(Lie(Pg)s) be the
enveloping algebra of Lie(Pg)s; it is a deformation quantization of the symmetric algebra S(Lie(Pg)),
which is a completion of the Rees algebra of U(Lie(P3)). We can now construct a quantum moment
map pyp, : U(Lie(Pg),) — A given by up(a) = hu(a) for a € Lie(Pg).

Let Jy C S(Lie(Pg)) be an ideal of functions vanishing on the closed orbit O and let J C U(Lie(Pg)r)
be an ideal deforming Jy. In the case when O is a semisimple orbit or in the case of reductive setting,
the ideal J exists. We define the quantum reduction as

Red(A, Lie(Pg), J) := ALie®s) /(A (J))HeB),

which is a quotient by an fi-adically closed ideal. The algebra Red(A, Lie(Pg), J) is a deformation of the
function algebra on Red(T*(F*Rep(QT, 81)),Ps, O), but this deformation does not need to be flat. If it
is indeed flat, then we are able to conclude that reduction commutes with quantization; we leave it as
an open problem to find the condition on which reduction and quantization commute for nonreductive
group equivariant theory on filtered quiver subrepresentations.

8. RATIONAL CHEREDNIK ALGEBRAS AND NONCOMMUTATIVE DEFORMATIONS OF THE HILBERT
SCHEME

Gan-Ginzburg quantizes the Hamiltonian reduction of their moment map in their reductive algebra
setting in [GGO6] to obtain the rational Cherednik algebra. In this section, we investigate the quantiza-
tion of the Hamiltonian reduction in the filtered quiver representation setting.

8.1. Symplectic reflection algebras. We begin with an introduction to symplectic reflection algebras.

Let V be an n-dimensional complex vector space. A pseudo reflection is an invertible linear transfor-
mation g € GL(V) of finite order such that the subspace of V invariant under g has dimension n — 1.
Pseudo reflections are also known as complex reflections, an invertible linear transformation of V' of
finite order that fixes a complex hyperplane pointwise. Thus, a complex reflection group is a finite group
generated by pseudo (complex) reflections.

Theorem 8.1 ([Cheb5|, [Ser68], [STH4]). The following are equivalent:
(1) V/G is smooth,
(2) C[V]9 is a polynomial algebra on dimV generators, i.e., Spec(C[V]¥) =2 AdimV
(3) G =(G,V) is a complex reflection group.
Now let I/p € Z. We define G(I,p,n) to be the group of n X n monomial matrices whose nonzero
entries are [-th root of unity and so that the product of the nonzero entries is an [/p-th root of unity.

Example 8.2. Consider G(I,1,n) = (Z/IZ)1S, = (Z/IZ)* % S,,. Then G(1,1,n) 2 S,, and G(2,1,n) =
B,,, the Weyl group of type B. So for S, acting on Clz1,...,x,] by permuting the indices of the gen-

erators, we have Clzy, ..., x,|01) = C[Ty,...,8,], where &; = Z xj, - xj, (symmetric
1<ji1<...<ji<n
polynomials), and more generally, Clzy,. .., x,]¢GN™ 2 Cfy,.. ., fo], where f; = Si(2, ..., 2L), sym-

l

metric polynomials evaluated at o, ... !
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Since the orbit space V/G does not need to be smooth in general, we give the construction of a
symplectic reflection group. Let (V,w) be a symplectic vector space, where w : V xV — C is a
nondegenerate bilinear symplectic form. Define the symplectic linear group Sp(V) as the set of all
g € GL(V) such that w(gu, gv) = w(u,v) for all u,v € V| i.e., w is invariant under G. We say s € G is a
symplectic reflection if rk(s —Id) = 2.

Definition 8.3. The triple (G,V,w) is a symplectic reflection group if
(1) (V,w) is a symplectic vector space,
(2) G < Sp(V) consists of symplectic transformations of V, and
(3) G is generated by the symplectic reflections on V.

From this point forward, we will let (G, V,w) be a symplectic reflection group. Let G act on C[V] via
If(v):= f(g~tv) forall f € C[V],v € V,and g € G. The skew group ring C[V]x G is a noncommutative
algebra, which is isomorphic to C[V] ®c CG as a vector space, that satisfies g- f = 9f - g for all f € C[V]
and g € G. The center Z(C[V]x G) of the skew group ring is isomorphic to the ring C[V]¢ of G-invariant
functions on V.

Definition 8.4. Let S be the set of symplectic reflections of a symplectic reflection group (G,V,w). Let
TV* be the tensor algebra CH V* @ (V* @ V*) @ ..., and let the symplectic form wy~ = w under the
identification of V and V*. Let ws = w on Im(s — Id) and 0 on ker(s — Id). A symplectic reflection
algebra s

Hic:=H;(G)=TV* x G/(u,v] — twy+ (u,v)1le + QZc(s)ws(u, v)-s:u,v €V, (30)
ses

where t € C and ¢ : S — C is a G-conjugacy invariant function, where c(s) = c(gsg™!) for all s € S
and g € G.

It is a classical result that H, . are Poincaré-Birkhoff-Witt (PBW) deformations of the skew group ring
C[V]x G = Sym(V*) x G (JEG02], Theorem 1.3). That is, letting generators of G have degree 0 and the
generators of V* have degree 1, we have a natural filtration F'® of H; . such that the associated graded
grpe (Hy o) is isomorphic to C[V] x G as algebras. So symplectic reflection algebras are deformations of
a skew group ring, and since Hy¢ ze = Hy where A € C is a nonzero scalar, we focus on the cases when
t =0 or 1. It is straightforward to check that Hpo = C[V] x G.

Now let e = |G|71 > gec 9» the trivial idempotent in the group ring CG. Then

C[V]¢ = e(C[V] x GQ)e, where f — efe.
The spherical subalgebra of H; . is defined to be
Upc == eH; ce.

By PBW, the graded spherical subalgebra grpe Usc is isomorphic to the ring C[V]¢ of invariants as
algebras. The center of the spherical subalgebra is C for ¢ # 0, while U, ¢ is commutative for ¢ = 0. In
fact, Satake isomorphism gives the result that Z(Hyc) = Z(Usc). It follows that Z(Hy ) = C for t # 0
while Z(H07c) = U07c.

The variety Xc(G) := SpecUp,c = Spec(Z(Ho,c)) is known as a generalized Calogero-Moser space,
which is smooth if and only if the dimension of any simple Hy c-module equals |G|.

Definition 8.5. Let (V/G)sm be the smooth locus of V/G. A symplectic resolution of V/G is a resolution
of singularities m : X — V/G such that a symplectic form wx satisfying

T (WV/G)am) = WX r=1(V/G)am)
exists on X.

A symplectic resolution induces a symplectic isomorphism 7| -1 ((v/G).) : T ((V/G)sm) S (V/G)sm.
An interesting result relating orbit spaces and symplectic reflection algebras is the following:

Theorem 8.6 ([GK04|, [Nam08|). The orbit space V/G admits a symplectic resolution if and only if
X(G) is smooth for a generic c.
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Symplectic resolutions do not need to be unique, but one of many interesting properties about these
resolutions is that they are semismall. Note that the Springer resolution is a symplectic resolution and
it is semismall:

dimN xy N < dimN.

8.2. Rational Cherednik algebras. Let V = h & h* with basis yi1,...,y, for h and zq,...,z, for
h*. Then V has a symplectic form w : V x V — C. A standard symplectic form wy is defined to be
wy (y®z,y' ®x’) = 2/ (y)—x(y’), where y,y’ € hand z, 2’ € h*. Let ' be the image of a complex reflection
group G in GL(h) x GL(h*), i.e., for g € G, g(yi, z;) = (9¥s, gz;), which preserves the symplectic form.
Then s € T' is a symplectic reflection if and only if s is a complex reflection in G. If s is a complex
reflection, then rk(s — Id) = 1 but if s is a symplectic reflection, then rk(s — Id) = 2.

Rational Cherednik algebras are symplectic reflection algebras associated to the triple (h @ h*, w, W),
where W is a complex reflection group (also the Weyl group of GL(h)). So W acts diagonally on h @ bh*.
Let S be the set of all symplectic reflections in W and let Hy be the reflecting hyperplane of s, as € h*
such that the kernel of oy is Hy, and oY € b such that (aY,as) = 1 — det(s). Let ¢ : S — C be the
conjugacy invariant function as before. We simplify Equation for rational Cherednik algebras as
follows:

Hyc =TV x W/{[xi,z;] =0, [y;,y;] =0, [y, ] = t(y,x) — 22 l—cc(iz)t(s)(y’ as)(a), x)s),
es

where t € C, x,x;,z; € b* and y,y;,y; € b.
In type A, the presentation of rational Cherednik algebras is given as follows: let h = C™. Then
W =5, the symmetric group on n letters. Then S becomes the set of transpositions s;; = (¢ j). Then

0 Yi = Yo(io for all o € Sy,
0 Tj= Ts(i)0,

o = — af, =yi—y;for 1 <i<j<n,
S ’ 7 . .

[, 2] =0 [yi,y;] =0 for all i < 7,

Pyl T

[yi,xj] =csforall1<i<j<n [ys, ] :t—chij for all 1 <i <mn,

JFi
where t,c € C. We have an embedding of the spherical subalgebra eH;ce C H;. in the rational
Cherednik algebra, which in turn contains the following two subalgebras:

(Symh)*" = Cly1, ..., yn] " < eH;ce, C[h]°» =Clzy,...,2,])°" < eHice via a+>a-e=e-a,
where the algebras (Sym h)» and C[h]*» generate eH, ce as an algebra. Furthermore, we have
greH; ce = Clh x h*)5n

by PBW.

Let D(b x P,c) be the algebra of c-twisted differential operators on b x P and let b, := Im(b N
s[(V) — D(b x P,¢)). We end this section with a conjecture analogous to the classical Harish-Chandra
homomorphisms.

Conjecture 8.7. There exists a subalgebra Hj . C Hy such that

adb.
(D(b < P,¢)/D(b x P,c) - bc) =5 eHY e

and
adb.
gr (D(b x P,c)/D(b x P, c) - bc) = v,
where H = BN SL(V).

We leave it as a part of our near future work to investigate the quantization of the Hamiltonian
reduction in the filtered quiver representation setting.
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9. FUTURE DIRECTIONS

The coordinate ring C[Rep(Q, 5)] has two gradings. One way is called Q1-grading, where the ring is

graded by Z®! since the quiver variety Rep(Q, ) = @ Mg (hayxs(ta)(C) is a product of matrices. The
a€Q1

second way is called Qg-grading, where the ring is graded by Z®?°. To explain this further, there exists

a natural action of GLg(C) := Gg = H GLg,(C) on Rep(Q, ) which induces an action on the ring

i€Qo
C[Rep(Q, B)]. So H C* acts on C[Rep(Q, B)] via the characters of the group, where C* = C\ {0}.
1€Qo
Thus, we can decompose the ring as a direct sum of weight spaces for the action of H C*. Let

1€Q0
C[Rep(Q, B)]GLs(©)e .= @(C[Rep(Q, B)]¢Ls(©X  where y is a character of GL(C). Then polynomials

X
f € C[Rep(Q, B)]FL2(©)* are homogeneous with respect to the Qo-grading.

A polynomial f € C[Rep(Q,f)] is an invariant polynomial if g.f = f for all ¢ € GLg(C), and
the polynomial f is x-semi-invariant if g.f = x(g)f for all ¢ € GLg(C), where x : GLg(C) — C*
is a group homomorphism. Semi-invariants under the GLg(C)-action are invariants for SLg(C) :=
H SLg, (C)-action and SLg(C)-invariant polynomials that are homogeneous with respect to the Qo-
1€Qo
grading are also semi-invariant (for some x) for the GLg(C)-action. Therefore, C[Rep(Q, 8)]
C[Rep(Q, B)]3%#(©). In the literature, one writes ST(Rep(Q,3)) to mean C[Rep(Q, 3)]°*#(©). Earlier
works in the study of invariants of quiver representations include [Kac80], [Sch91] and [Sch92], with
techniques given in [DWO00], [DZ01], and [SvdB01].

Other future directions include taking the study of filtered representations to construct GIT quotients
to study wall-crossing under the variation of various characters. Just as the geometry of p/P or p/U is
interesting, one could generalize this space to F'*Rep(Q, 8)/Ps, F*Rep(Q, 8)/U, or their corresponding
(quantum) Hamiltonian reduction setting, generalizing the Springer resolution 7*(G/B) — N. The
study of the Schubert varieties, vector bundles, or derived categories of coherent sheaves on these varieties

Ne— 3

GLg(C),0 ~

Ne——g

is rich with many connections to quiver Hecke (KLR) algebras, Hochschild homology of Soergel bimod-
ules, Khovanov-Rozansky homology of a torus knot, and modular representation theory.
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