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Abstract. Given any finite quiver, we consider a complete flag of vector spaces over each vertex.

Consider the unipotent invariant subalgebra of the coordinate ring of the filtered quiver representation
subspace. We prove that the dimension of the algebraic variety of the unipotent invariant subalgebra

is finite. We also construct an ADHM analog for the Borel subalgebra setting, showing its birationality

to the isospectral Hilbert scheme. Quiver-graded Steinberg varieties, quantum Hamiltonian reduction,
and deformation quantization constructions for the nonreductive setting are discussed, ending with

open problems.

1. Introduction

Parabolic group actions arise naturally in mathematics. For instance, let B be a Borel subgroup
of G = GLn(C) and let b = Lie(B) ⊆ g = Lie(G) be the Lie algebra of B, where g is the set of all
n × n matrices over the complex numbers. One could ask to describe the structure of the B-orbits on
b, or equivalently, one may be interested in studying the B-adjoint action on a complete filtration of an
n-dimensional complex vector space V .

One motivation for our investigation is the connection between B-equivariant geometry on b and
G-orbits on the Grothendieck-Springer resolution g̃ ↠ g. T. Nevins in [Nev11] (Section 3) shows the
isomorphism between b/B ∼= p/P and g̃/G in terms of Hamiltonian reduction of a parabolic group P
acting on p × V , where p = Lie(P ), and of G × P acting on G × p × V . Furthermore, our filtered
quiver representations arise as fibers of universal quiver Grassmannians onto quiver Grassmannians or
more generally, universal quiver flag varieties onto quiver flags, where the fibers of these projections
are homogeneous vector bundles. In fact, M. Reineke in [Rei13] proved that all projective varieties are
quiver Grassmannians. This result directly ties into the role that subspaces of quiver representations
produce interesting geometric spaces beyond the classical algebraic geometry setting.

Due to the rich geometry interplaying among Hilbert schemes of compactified Jacobians (cf. [ORS18]),
the representation theory of Cherednik algebras (cf. [EGL15], [GG06], [Gor10], [GS05], [GS06]), Hochschild
(co)homology of Soergel bimodules (cf. [Kho07]), the categorification of quiver Hecke (Khovanov-Lauda-
Rouquier) algebras (cf. [KL09], [KL11], [KL08], [Rou12], [VV11]), to name a few, the study of the
geometry of the B-orbits on b are of significant interest in and of itself. We also refer the reader
to [CB01], [CG10], [Gin09], and Section 5 for some background on quivers and the geometry of the
(Grothendieck-)Springer resolution.

We begin the study of the geometry of parabolic subgroups on their subalgebras by generalizing
Theorem 1.1 in [Im14b]. Before we restate this theorem, we need to give two definitions. Given a quiver
Q, a quiver path p is a concatenation of arrows in Q. If p is a cycle, then pm is the path composed with
itself m times, and we say p is reduced if [p] ̸= 0 in CQ/⟨q2 : q ∈ CQ, l(q) ≥ 1⟩. Finally, we define a
pathway from vertex i to vertex j as a reduced path from i to j. Theorem 1.1 in [Im14b] states that a
quiver has at most two distinct pathways between any two vertices if and only if the unipotent invariant
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subalgebra is generated by the corresponding Cartan subalgebra in the filtered quiver representation. In
this paper, we extend this result to all finite quivers and we refer to Definition 2.7 for the definition of
local k-generalized Kronecker quiver.

Theorem 1.1. Let Q be a finite quiver with at least one loop or a local k-generalized path Kronecker

quiver, with k ≥ 2, at one of the vertices, and let β = (n, n, . . . , n) ∈ ZQ0

≥0 be a dimension vector. For

W ∈ Rep(Q, β), let F •W be a complete filtration of vector spaces at each vertex and let U = U⊕Q0 be
the product of maximal unipotent subgroups. Then

(1) the vector subspace F •Rep(Q, β) contains a point p such that StabU(p) = {In},
(2) dimC F •Rep(Q, β)//U = dimC F •Rep(Q, β)− dimC U.

Theorem 1.2. Let Q be a finite quiver and let β = (n, n, . . . , n) ∈ ZQ0

≥0. For W ∈ Rep(Q, β), let F •W be

a complete filtration of vector spaces at each vertex and let U = U⊕Q0 . Then dimC Spec(C[F •Rep(Q, β)]U)
is finite.

If Q has no arrows, then there is nothing to show for Theorem 1.2. Thus, assuming Q has one
or more arrows, Theorem 1.2 follows from Theorem 1.1 and Theorem 1.1 in [Im14b] as these two
results exhaustively cover cases for all quivers with at least one arrow. Theorem 1.2 also shows that

Proj(⊕i≥0C[µ−1
Pβ

(0)]Pβ ,χ
i

) is a finite dimensional, projective scheme, where µPβ
: T ∗(F •Rep(Q, β)) →

Lie(Pβ)
∗ is the moment map for the filtered representation space.

Secondly, we restrict to a framed 1-Jordan quiver and prove the existence between the B-Hamiltonian
reduction of b × V and the isospectral Hilbert scheme (see Theorem 5.6). We also discuss filtered
representations in the setting of quiver-graded Steinberg varieties (Section 5.3), quantum Hamiltonian
reduction (Section 6), and quantization deformation (Section 7), providing motivation and open problems
in each section. We review symplectic reflection algebras and their spherical subalgebras in Section 8.
We recall the construction of spherical subalgebras of Cherednik algebras,which are related to quantized
Hamiltonian reduction in the classical setting. Using this, we give a conjecture which relates rational
Cherednik algebras of type A to the quantized Hamiltonian reduction for the Borel setting. We end with
future directions in Section 9.

2. Background

Although thorough discussions on the algebraic and geometric aspects of quiver representations are
given in [Bri08], [CB92], [Gin09], [Im14a], and [Kin94], we will give a few foundational definitions in this
section for completeness of this paper.

A quiver Q = (Q0, Q1) is a directed graph with a set Q0 = {1, 2, . . . , p} of vertices and a set Q1 =

{a1, a2, . . . , aq} of arrows, which come equipped with two functions: for each arrow
i• a−→

j
• from vertex i

to vertex j, t : Q1 → Q0 maps t(a) = ta = i and h : Q1 → Q0 maps h(a) = ha = j. We will call t(a)
the tail of arrow a and h(a) the head of arrow a. We say a quiver Q = (Q0, Q1) is nontrivial if |Q0| ≥ 1,
finite if |Q0| < ∞ and |Q1| < ∞, and connected if the underlying graph is connected. Although infinite
quivers play important roles (cf. [BLP11], [Zel05], [Oh19]), we will assume our quiver is nontrivial, finite,
and connected.

We say a vertex in Q0 is a sink (+-admissible) if it is not the head of some arrow of the quiver and
the vertex is a source (−-admissible) if it is not the tail of some arrow of the quiver. A nontrivial path in
Q is a sequence p = ak · · · a2a1 (k ≥ 1) of arrows which satisfies t(ai+1) = h(ai) for all 1 ≤ i ≤ k− 1; the
path p begins at the tail of a1 and ends at the head of ak and we will write h(p) = h(ak) and t(p) = t(a1).
The length l(p) of a path p is the number of arrows in the path. If p = ak · · · a2a1 is a nontrivial path,
then l(p) = k, or else, l(p) = 0.

We associate a path ei to each vertex i called the trivial (empty) path whose head and tail are at
i. The length of an empty path is 0. If the tail of a nontrivial path equals the head of the path, then
the path is said to be a cycle, and we say a quiver is acyclic if it has no cycles. If the nontrivial path is
actually a single arrow whose tail equals its head, then the arrow is said to be a loop.

A dimension vector β for Q is an element of ZQ0

≥0. A representation W of a quiver Q assigns a vector

space W (i) = Wi to each vertex i ∈ Q0 and a linear map W (a) : W (ta) → W (ha) to each arrow a ∈ Q1.
A representation W = (W (i)i∈Q0

,W (a)a∈Q1
) of Q is finite dimensional if each vector space W (i) is
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finite dimensional over C. A subrepresentation of a representation W of Q is a subspace V ⊆ W which
is invariant under all operators, i.e., W (a)(V (ta)) ⊆ V (ha), where a ∈ Q1.

Now, let W be a representation of Q of dimension vector β ∈ ZQ0

≥0. Upon fixing a basis for each finite-

dimensional vector space W (i), each W (i) is identified with Cβi and each linear map
W (ta)
•

W (a)
//
W (ha)
•

may be identified with a βha × βta matrix. We will thus define the quiver representation space as

Rep(Q, β) :=
⊕
a∈Q1

HomC(Cβta ,Cβha).

Points in Rep(Q, β) parameterize finite-dimensional representations of Q of dimension vector β, and

classically, there is a natural Gβ =
∏
i∈Q0

GLβi
(C)-action on Rep(Q, β) as a change-of-basis; that is, given

(gβi
)i∈Q0

∈ Gβ and W ∈ Rep(Q, β), we have

(gβi)i∈Q0 .(W (a))a∈Q1 = (gβha
W (a)g−1

βta
)a∈Q1 .

Whenever the composition pq of paths is defined, we set W (pq) := W (p)W (q), i.e., the representation
of a composition of paths is the product of representations of the paths.

We will now discuss the B-adjoint action on b further. Let F • : {0} ⊆ C1 ⊆ C2 ⊆ . . . ⊆ Cn be the
complete standard filtration of vector spaces in Cn. Then b can be identified with the subspace of linear

maps Cn f→ Cn such that f |Ck : Ck → Ck for all k. Since one must preserve the filtration of vector
spaces while changing the basis, we have the B-action on the domain and the codomain. So points
of b/B correspond to equivalence classes of linear maps preserving the complete standard filtration of
vector spaces, where two maps f and g are equivalent if there exists a change-of-basis that will take f
to g.

We begin by giving the construction of filtered quiver representations in the general setting. Let

Q = (Q0, Q1) be a quiver and let β = (β1, . . . , βQ0
) ∈ ZQ0

≥0 be a dimension vector. Let F • : 0 ⊆ Cγ1 ⊆
Cγ2 ⊆ . . . ⊆ Cβ be a filtration of vector spaces such that we have the filtration F •

i : 0 ⊆ Cγi
1 ⊆ Cγi

2 ⊆
. . . ⊆ Cβi of vector spaces at vertex i. Let Rep(Q, β) be the quiver representation in the classical sense
(without the filtration of vector spaces imposed). Then F •Rep(Q, β) is a subspace of Rep(Q, β) whose
linear maps preserve the filtration of vector spaces at every level. Let Pi ⊆ GLβi

(C) be the maximal
parabolic group preserving the filtration of vector spaces at vertex i. Then the product Pβ :=

∏
i∈Q0

Pi

of parabolic groups acts on F •Rep(Q, β) as a change-of-basis.
Now, given a parabolic Lie algebra p = Lie(P ), a parabolic matrix described above corresponding

to a filtration of vector spaces with respect to the standard basis is block upper triangular. A general
parabolic matrix has indeterminates along its block diagonal and upper triangular portion of the matrix
and zero below the diagonal blocks. We refer to [Cra11] for a discussion on quiver Grassmannians and
quiver flag varieties, which are related to filtered quiver representations but they are not the same. In
the next two sections, we describe quiver flag varieties and filtered quiver representations.

2.1. Quiver flag varieties. In this section, we will discuss the notion of quiver flag varieties, which also
appear in the literature as quiver flag manifolds. First fixing a dimension vector β = (β1, . . . , βQ0

), let

γ(1), . . . , γ(l) ∈ ZQ0

≥0 be dimension vectors with coordinates γ(k) = (γ
(k)
1 , . . . , γ

(k)
Q0

) satisfying
∑l

k=1 γ
(k)
i ≤

βi for each i ∈ Q0. Let γ(l+1) ∈ ZQ0

≥0 such that
∑l+1

k=1 γ
(k)
i = βi for each i ∈ Q0. Define Flγ•(β) :=∏

i∈Q0
Flγ•

i
(βi) to be the product of flag varieties, where each Flγ•

i
(βi) is the usual flag variety parametriz-

ing flags of subspaces

0 ⊆ U
(1)
i ⊆ U

(2)
i ⊆ . . . ⊆ U

(l)
i ⊆ W (i) with dimU

(k)
i =

k∑
u=1

γ
(u)
i . (1)

We define the universal quiver flag to be:

FlQγ•(β) := {(U (1), . . . , U (l),W ) ∈ Flγ•(β)×Rep(Q, β) : 0 ⊆ U (1) ⊆ U (2) ⊆ . . . ⊆ U (l) ⊆ W is

a chain of subrepresentations of W and W (a)U
(k)
i ⊆ U

(k)
j ∀ a : i → j and ∀ 1 ≤ k ≤ l}.

(2)
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Consider the two Gβ-equivariant projections FlQγ•(β)
p1−→ Flγ•(β) and FlQγ•(β)

p2−→ Rep(Q, β). First,

let us view U
(k)
i as subspaces in W (i) for each i ∈ Q0. The fiber of p1 over the tuple (U (1), . . . , U (l)) is

again a homogeneous vector bundle isomorphic to⊕
a∈Q1

(
l⊕

k=1

Hom
(
U

(k)
ta /U

(k−1)
ta , U

(k)
ha

)
⊕Hom

(
W (ta)/U

(l)
ta ,W (ha)

))
(3)

where U
(k)
ta /U

(k−1)
ta := {v ∈ U

(k)
ta : v ⊥ u ∀u ∈ U

(k−1)
ta }, W (ta)/U

(l)
ta := {v ∈ W (ta) : v ⊥ u ∀u ∈ U

(l)
ta },

and U
(0)
ta := 0. So p1 is flat. On the other hand, p−1

2 (W ) parameterizes all flags 0 ⊆ U (1) ⊆ U (2) ⊆ . . . ⊆
U (l) ⊆ W of subspaces with prescribed dimension vectors γ(k) with each U (k) being a subrepresentation
of U (k+1) and U (l) being a subrepresentation of W . So p2 is projective. The fiber p−1

2 (W ) = Flγ•(W )
of p2 over W is called the quiver flag variety.

Example 2.1. Consider the A1-Dynkin quiver (this is the quiver whose underlying graph is an A1-
Dynkin graph). Let β = n, l = n− 1, and γ(i) = i for 1 ≤ i ≤ l. Then the quiver flag variety Flγ•(Cn)
is isomorphic to the complete flag variety of Cn.

Example 2.2. For Q any quiver and l = 1, we obtain a quiver Grassmannian.

Example 2.3. Consider the A1-quiver and let β = n. Then Rep(Q, β) ∼= Cn, an n-dimensional vector

space. Now let the dimension vector γ be m ≤ n. We obtain FlQγ•(β) = GrQm(n) ∼= Grm(n)× Cn. This
means the quiver Grassmannian Grm(Cn) = Grm(n) coincides with the classical Grassmannian.

Now we will investigate the fibers of p1 in Section 2.2.

2.2. Filtered quiver representations. Filtered quiver representations are precisely the fibers of p1
over a flag of vector spaces in Section 2.1. A more straight-forward construction is as follows: let Q be any

quiver. Fix a set of dimension vectors γ(1), . . . , γ(l), β ∈ ZQ0

≥0 such that
∑l

k=1 γ
(k)
i ≤ βi for each i ∈ Q0.

Let F • : 0 ⊆ U (1) ⊆ U (2) ⊆ . . . ⊆ U (l) ⊆ W be a flag of subspaces such that dimU
(k)
i =

∑k
u=1 γ

(u)
i for

each i ∈ Q0.

Definition 2.4. The filtered quiver representation is a vector space (an affine variety) defined as

F •Rep(Q, β) := {W ∈ Rep(Q, β) : W (U
(k)
ta ) ⊆ U

(k)
ha ∀ 1 ≤ k ≤ l, ∀ a ∈ Q1}.

If Pi ⊆ GLβi
(C) is a parabolic subgroup acting as a change-of-basis while preserving the filtration of

vector spaces at vertex i ∈ Q0, then Pβ :=
∏

i∈Q0
Pi naturally acts on F •Rep(Q, β).

A filtered quiver representation is a representation space where the filtration is a structure on a
representation, not on the quiver itself. We write U := Uβ , the unipotent radical of Pβ .

We define the map from the set in (2) to the projection onto its second component as quiver
Grothendieck-Springer resolution. Generalized Grothendieck-Springer resolution is known in the litera-

ture as follows: G̃H := G×H,AdH = IndGH(H), where H is a closed subgroup of a linear algebraic group

G over a field k and H acts on G×H via h.(g, x) = (gh−1, adh(x)). This implies that G̃H has a G-action

by g′.([g, h]) = [g′g, h]. There is an embedding pr×a : G̃H ↪→ G/H×G, where [g, h] 7→ ([g], ghg−1). The
image of pr×a consists of Im(pr×a) = {([g], x) : ∀g ∈ G of [g], x ∈ Hg := gHg−1}. The two projections

G̃H

pr

}}

a

��

G/H G

show that for all [g] ∈ G/H, the isomorphism pr−1([g])
∼=−→ Hg is given through the map a (cf. [KV16],

Section 1.4). On the other hand, generalized Springer resolution is known as T ∗(G/P )
fp→ Op, where Op

is the Richardson orbit associated to p = Lie(P ) and P is a parabolic subgroup of a semisimple complex
algebraic group G; Richardson orbit for P is an open, dense orbit in the nilradical of p (cf. [Lus84]).
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Thus, in this paper, we will often use the terminology quiver (Grothendieck)-Springer resolutions. We
also refer the reader to Section 5.3 for a further discussion of this topic.

If one assumes Q to be the 1-Jordan quiver, β = n, and assume a complete filtration of vector spaces
on the representation space of Q, then we obtain F •Rep(Q,n) ∼= b under the Un or B action, where B
is the Borel subgroup of GLn(C), and we have the identification:

F •Rep(Q,n)//χB ∼= g̃//χG, where g̃ = {(x, b) ∈ g×G/B : x ∈ b}.
In this paper, we fix the components of the quiver dimension vector to be a nonnegative integer n:

β = (n, n, . . . , n) and we will also fix the standard basis e1, . . . , en for the filtered representation space
all throughout the paper. We will assume F • to mean the complete standard filtration of vector spaces
at each vertex. So without loss of generality, we will make the identifications:

F •Rep(Q, β) ∼= b⊕Q1 , Uβ
∼= U⊕Q0 , Pβ

∼= B⊕Q0 , (4)

where b is the set of upper triangular matrices in gln and b = Lie(B). Note when rewriting the direct
sum of vector bundles in (3) as a product of matrices (one matrix for each arrow a ∈ Q1), each matrix
has the form of an upper triangular matrix.

Next, we give definitions which are critical in the proof of our main result.

Definition 2.5. The main diagonal of an n × n matrix is called level 0. Level k-diagonal or k-
superdiagonal of an n × n matrix are those entries that are k entries to the right of the main diagonal
entries, and level (−k)-diagonal or k-subdiagonal of an n×n matrix are those entries that are k entries
to the left of the main diagonal entries.

Note that level 1-diagonal or 1-superdiagonal are the matrix entries immediately above the diagonal
entries, while level (−1)-diagonal or 1-subdiagonal consists of matrix entries immediately below the main
diagonal entries.

The distance between two vertices in a graph is the number of edges in a shortest path connecting
them. The notion of the distance is also known as graph geodesic or geodesic distance. If there is no
path connecting two vertices (for example, the vertices belong to two different connected components),
then we define the distance between them as infinite. In the case of a directed graph, the distance d(i, j)
between vertices i and j is the length of a shortest path from i to j consisting of arrows or arcs. We
note that d(i, j) need not equal d(j, i) and it is possible for only one of the two to be defined.

Definition 2.6. We say a unipotent matrix representation at vertex j is locally near vertex i if d(i, j) ≤ 1
or d(j, i) ≤ 1.

Definition 2.7. A k-generalized Kronecker quiver consists of two vertices i and j and k arrows:
a1, . . . , am : i → j and am+1, . . . , ak : j → i. A k-generalized path Kronecker quiver consists of
two vertices i and j and nontrivial paths

a
(1)
1 · · · a(1)p1

, a
(2)
1 · · · a(2)p2

, . . . , a
(m)
1 · · · a(m)

pm
: i → j and

b
(1)
1 · · · b(1)q1 , b

(2)
1 · · · b(2)q2 , . . . , b

(n)
1 · · · b(n)qn : j → i

such that m+ n = k and the paths a
(ι)
1 · · · a(ι)pι and b

(γ)
1 · · · b(γ)qγ do not contain a cycle.

A local k-generalized Kronecker quiver at vertex i is a subquiver consisting of two vertices, one vertex
j ̸= i and vertex i, and k arrows a1, . . . , am : i → j and am+1, . . . , ak : j → i. A local k-generalized path
Kronecker quiver is a subquiver consisting of two vertices i and j and nontrivial paths

a
(1)
1 · · · a(1)p1

, a
(2)
1 · · · a(2)p2

, . . . , a
(m)
1 · · · a(m)

pm
: i → j and

b
(1)
1 · · · b(1)q1 , b

(2)
1 · · · b(2)q2 , . . . , b

(n)
1 · · · b(n)qn : j → i

such that m+ n = k and the paths a
(ι)
1 · · · a(ι)pι and b

(γ)
1 · · · b(γ)qγ do not contain a cycle.

In literature, a star-shaped quiver (of any orientation) has k-legs, each of length sk, with no loops on
the central vertex, where the underlying graph of a leg of a quiver is an Ask -Dynkin diagram.

Definition 2.8. A 1-step star-shaped quiver (of any orientation) has k-legs, each of length 1, with
no loops on the central vertex. A local 1-step star-shaped quiver (of any orientation) at vertex i is a



6 MEE SEONG IM AND LISA M. JONES

subquiver consisting of k-legs emanating to or from i, each of length 1, with no loops on the central
vertex.

Example 2.9. A 1-step star-shaped quiver (of any orientation) with 8 legs is:

•

��

•

��

• •

��

•

''

•

• •oo

OO

77

// •.

Finally, we state Corollary 19.6 from [Gro97], which will be applied in the proof of Theorem 1.1:

Corollary 2.10 (Grosshans). Let G act linearly on a vector space V and let v ∈ V such that StabG(v) =
{e}. Then

dimV//G = dimV − dimG.

3. Results

Without loss of generality, we will assume Q is connected and has at least one arrow.

Proposition 3.1. Let Q be the A1-Dynkin quiver and let β = (n, n). Let F •W be a complete filtration
of vector spaces at the two vertices. Let U = U⊕2. Then F •Rep(Q, β)//U ∼= Cn.

Also see Theorem 5.1.2 in [Im14a] for a generalization of Proposition 3.1 to ADE-Dynkin quivers.

Proof. Let a be the arrow in Q connecting the two vertices 1 and 2. If 1 = ta and 2 = ha, we will call
such orientation the preferred orientation. Define

ϵ(a) =

{
1 if a is in the preferred orientation,

0 otherwise.
(5)

We identify F •Rep(Q, β) with b. Then for (u1, u2) ∈ U and x ∈ b, suppose (u1, u2).x = u1+ϵ(a)xu
−1
2−ϵ(a).

At the level of functions, we have (u1, u2).f(x) = f(u−1
1+ϵ(a)x u2−ϵ(a)). We will prove that C[b]U ∼= C[t],

where t is the Cartan subalgebra of b. The inclusion C[t] ⊆ C[b]U is clear so we will prove the other
inclusion.

Fix a total ordering ≤ on pairs (i, j), where 1 ≤ i ≤ j ≤ n, by defining

(i, j) ≤ (i′, j′) if either i < i′ or i = i′ and j > j′

and let us write x = (xij) ∈ b. Let f ∈ C[b]U. Then for each (i, j), the function f can be rewritten as:

f =
∑
k≥0

xk
ijfij,k, where fij,k ∈ C[{xst : (s, t) ̸= (i, j)}]. (6)

Fix the least pair (i, j) under the inclusion ≤ with i < j for which there exists k ̸= 0 with fij,k ̸= 0.
Continue to denote it by (i, j). If no such (i, j) exists, then f ∈ C[xii : 1 ≤ i ≤ n] and we are done.
Let û2 be an n× n matrix with 1 along the diagonal, the variable u in the (i, j)-entry, and 0 elsewhere.
Consider (In, û2). Then

uij .xst =


xst + xjtu if s = i and ϵ(a) = 1,

xst − xsiu if t = j and ϵ(a) = 0,

xst otherwise.

(7)

Now we rewrite f as

f =
∑
k≥0

xk
ijFk, where Fk ∈ C[{xst : (s, t) ≥ (i, j)}] =: R0.

If ϵ(a) = 1, then

0 = uij .f − f =
∑
k≥1

∑
1≤l≤k

xk−l
ij xl

jju
l

(
k

l

)
Fk.
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Since {xk−l
ij ul : 1 ≤ l ≤ k, k ≥ 0} is linearly independent over R0, Fk = 0 for k ≥ 1, contradicting the

choices of (i, j). Similar argument follows if ϵ(a) = 0. It follows that f ∈ C[xii] as claimed. □

Proposition 3.2. Let Q be a k-generalized Kronecker quiver, where Q has more than 1 arrow. Then
there is a point in the filtered representation space of Q such that its stabilizer subgroup is trivial.

Proof. Since Q is a k-generalized Kronecker quiver, Q has finite number of arrows. Label one of the
vertices as i and the other as µ. Let us denote a1, . . . , ap as the arrows whose head is at vertex i and let

us denote b1, . . . , bq as the arrows whose tail is at vertex i. Let us write u = (u(i), u(µ)) to be an element

in the unipotent group U2 := U × U , where u(i) denotes the unipotent matrix representation at vertex
i with entries:

(u(i))ιγ =


u
(i)
ιγ if ι < γ,

1 if ι = γ,

0 otherwise.

For W ∈ F •Rep(Q, β), we have the following group actions:

(1) u.W (aj) = u(i)W (aj)(u
(µ))−1,

(2) u.W (bj) = u(µ)W (bj)(u
(i))−1.

Since F •Rep(Q, β) is a filtered representation space,

W (aj)ιγ =

{
x
(j)
ιγ if ι ≤ γ,

0 otherwise.
W (bj)ιγ =

{
y
(j)
ιγ if ι ≤ γ,

0 otherwise.

Next, consider the map

U2 × F •Rep(Q, β)|baj
→ F •Rep(Q, β)|baj

, where F •Rep(Q, β)|baj
:= F •Rep(({i, µ}, {aj}), (n, n)) ∼= b,

sending:

(u,W ) 7→ u.W (aj) = u(i)W (aj)(u
(µ))−1

=



x
(j)
11 ···

∑
1≤ι≤γ1<···<γm=γ

1≤m≤γ

(−1)deg(v)u
(i)
1ι x

(j)
ιγ1

u(µ)
γ1γ2

· · ·u(µ)
γm−1,γ ···

∑
1≤ι≤γ1<···<γm=n

1≤m≤n

(−1)deg(v)u
(i)
1ι x

(j)
ιγ1

u(µ)
γ1γ2

· · ·u(µ)
γm−1n

... ···
... ···

...
0 ··· x(j)

γγ ···
∑

γ≤ι≤γ1<···<γm=n

1≤m≤γ

(−1)deg(v)u(i)
γι x

(j)
ιγ1

u(µ)
γ1γ2

· · ·u(µ)
γm−1,n

... ···
... ···

...
0 ··· 0 ··· x(j)

nn


,

where v = u
(µ)
γ1γ2 · · ·u

(µ)
γm−1γm , the product of u

(µ)
αβ obtained from the group representation at vertex µ.

In the case when m = 1, then we have u
(i)
γι x

(j)
ιγ1u

(µ)
γ1γ2 · · ·u

(µ)
γm−1,γm := u

(i)
γι x

(j)
ιγ1 . Thus the degree of v in

u
(i)
γι x

(j)
ιγ1u

(µ)
γ1γ2 · · ·u

(µ)
γm−1,γm is zero when m = 1.

Secondly, consider the map U2 × F •Rep(Q, β)|bbj
→ F •Rep(Q, β)|bbj

, where F •Rep(Q, β)|bbj
:=

F •Rep(({µ, i}, {bj}), (n, n)) ∼= b, sending

(u,W ) 7→ u.W (bj) = u(µ)W (bj)(u
(i))−1

=



y
(j)
11 ···

∑
1≤ι≤γ1<···<γm=γ

1≤m≤γ

(−1)deg(w)u
(µ)
1ι y(j)ιγ1

u(i)
γ1γ2

· · ·u(i)
γm−1,γ ···

∑
1≤ι≤γ1<···<γm=n

1≤m≤n

(−1)deg(w)u
(µ)
1ι y(j)ιγ1

u(i)
γ1γ2

· · ·u(i)
γm−1n

... ···
... ···

...
0 ··· y(j)

γγ ···
∑

γ≤ι≤γ1<···<γm=n

1≤m≤γ

(−1)deg(w)u(µ)
γι y

(j)
ιγ1

u(i)
γ1γ2

· · ·u(i)
γm−1,n

... ···
... ···

...
0 ··· 0 ··· y(j)

nn


,
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where w = u
(i)
γ1γ2 · · ·u

(i)
γm−1γm , the product of u

(i)
αβ appearing in the group representation at vertex i.

Similar as before, the degree of w in u
(µ)
γι x

(j)
ιγ1u

(i)
γ1γ2 · · ·u

(i)
γm−1,γm is zero if m = 1.

Now we will restrict to the representation W in F •Rep(Q, β) satisfying the following conditions: for

each arrow d ∈ Q1, x
(j′)
ιι x

(j)
ι+1,ι+1 − x

(j)
ιι x

(j′)
ι+1,ι+1 ̸= 0, y

(j′)
ιι y

(j)
ι+1,ι+1 − y

(j)
ιι y

(j′)
ι+1,ι+1 ̸= 0, and x

(j′)
ιι y

(j)
ιι −

y
(j)
νν x

(j′)
νν ̸= 0 for all j ̸= j′ and 1 ≤ ι < ν ≤ n.

First, suppose Q has two arrows aj and a′j where j ̸= j′. They have matrix representations W (aj)

and W (aj′), where j ̸= j′. So for l ∈ {j, j′}, u(i)W (al)(u
(µ))−1 is

x
(l)
11 ···

∑
1≤ι≤γ1<···<γm=γ

1≤m≤γ

(−1)deg(v)u
(i)
1ι x

(l)
ιγ1

u(µ)
γ1γ2

· · ·u(µ)
γm−1,γ ···

∑
1≤ι≤γ1<···<γm=n

1≤m≤n

(−1)deg(v)u
(i)
1ι x

(l)
ιγ1

u(µ)
γ1γ2

· · ·u(µ)
γm−1n

... ···
... ···

...
0 ··· x(l)

γγ ···
∑

γ≤ι≤γ1<···<γm=n

1≤m≤γ

(−1)deg(v)u(i)
γι x

(l)
ιγ1

u(µ)
γ1γ2

· · ·u(µ)
γm−1,n

... ···
... ···

...
0 ··· 0 ··· x(l)

nn


.

The level 1-diagonal entries of u(i)W (al)(u
(µ))−1 = W (al), where l = j, j′, are:

x
(j)
ι,ι+1 + u

(i)
ι,ι+1x

(j)
ι+1,ι+1 − x(j)

ιι u
(µ)
ι,ι+1 = x

(j)
ι,ι+1,

x
(j′)
ι,ι+1 + u

(i)
ι,ι+1x

(j′)
ι+1,ι+1 − x(j′)

ιι u
(µ)
ι,ι+1 = x

(j′)
ι,ι+1.

(8)

These simplify as

u
(i)
ι,ι+1x

(j)
ι+1,ι+1 − x(j)

ιι u
(µ)
ι,ι+1 = 0,

u
(i)
ι,ι+1x

(j′)
ι+1,ι+1 − x(j′)

ιι u
(µ)
ι,ι+1 = 0,

which reduce to solving a system of linear equations:(
x
(j)
ι+1,ι+1 −x

(j)
ιι

x
(j′)
ι+1,ι+1 −x

(j′)
ιι

)(
u
(i)
ι,ι+1

u
(µ)
ι,ι+1

)
=

(
0
0

)
.

Since the coefficient matrix is invertible, u
(i)
ι,ι+1 = u

(µ)
ι,ι+1 = 0. Since ι is arbitary, we conclude that

u
(i)
ι,ι+1 = u

(µ)
ι,ι+1 = 0 for all 1 ≤ ι < n. Now assume complete induction on k-superdiagonal entries; that

is, u
(i)
ι,ι+γ = u

(µ)
ι,ι+γ = 0 for all 1 ≤ ι ≤ n − k and 1 ≤ γ ≤ k. The following sets of equations are on the

(k + 1)-superdiagonal: ∑
ι≤ι′≤γ1<···<γm=ι+k+1

1≤m≤ι

(−1)deg(v)u
(i)
ιι′x

(j)
ι′γ1

u(µ)
γ1γ2

· · ·u(µ)
γm−1,ι+k+1 = x

(j)
ι,ι+k+1,

∑
ι≤ι′≤γ1<···<γm=ι+k+1

1≤m≤ι

(−1)deg(v)u
(i)
ιι′x

(j′)
ι′γ1

u(µ)
γ1γ2

· · ·u(µ)
γm−1,ι+k+1 = x

(j′)
ι,ι+k+1.

(9)

If m ≥ 3, then the difference of the indices γ′ and γ′′ for the variables u
(i)
γ′γ′′ and u

(µ)
γ′γ′′ are strictly less

than k + 1. Since all such monomials vanish by complete induction, we are left with those terms where
m in the γ partition is strictly less than 3:∑

ι≤ι′≤γ1=ι+k+1

(−1)deg(v)u
(i)
ιι′x

(j)
ι′,ι+k+1 +

∑
ι≤ι′≤γ1<γ2=ι+k+1

(−1)deg(v)u
(i)
ιι′x

(j)
ι′γ1

u
(µ)
γ1,ι+k+1 = x

(j)
ι,ι+k+1,∑

ι≤ι′≤γ1=ι+k+1

(−1)deg(v)u
(i)
ιι′x

(j′)
ι′,ι+k+1 +

∑
ι≤ι′≤γ1<γ2=ι+k+1

(−1)deg(v)u
(i)
ιι′x

(j′)
ι′γ1

u
(µ)
γ1,ι+k+1 = x

(j′)
ι,ι+k+1.

(10)

From the first sum in the first equation, two cases when u
(i)
ιι′ does not equal zero are when ι = ι′ and

when ι′ = ι+ k + 1. From the second sum in the first equation, the only case when u
(µ)
γ1,ι+k+1 does not
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equal zero is when γ1 = ι since ι+ k+1− γ1 would be strictly greater than k. Putting this together, we
have

XXXXXXu(i)
ιι x

(j)
ι,ι+k+1 + u

(i)
ι,ι+k+1x

(j)
ι+k+1,ι+k+1 − u(i)

ιι x
(j)
ιι u

(µ)
ι,ι+k+1 =

HHHH
x
(j)
ι,ι+k+1 ,

or

u
(i)
ι,ι+k+1x

(j)
ι+k+1,ι+k+1 − x(j)

ιι u
(µ)
ι,ι+k+1 = 0. (11)

Similarly we obtain

u
(i)
ι,ι+k+1x

(j′)
ι+k+1,ι+k+1 − x(j′)

ιι u
(µ)
ι,ι+k+1 = 0 (12)

when simplifying the second equation in (10). For a fixed ι and forming a system of linear equations
using the two equations in (11) and (12), we obtain:(

x
(j)
ι+k+1,ι+k+1 −x

(j)
ιι

x
(j′)
ι+k+1,ι+k+1 −x

(j′)
ιι

)(
u
(i)
ι,ι+k+1

u
(µ)
ι,ι+k+1

)
=

(
0
0

)
Since the 2× 2 matrix on the left is invertible, we see that u

(i)
ι,ι+k+1 = u

(µ)
ι,ι+k+1 = 0. Since ι is arbitrary,

we conclude that u
(i)
ι,ι+k+1 = u

(µ)
ι,ι+k+1 = 0 for all 1 ≤ ι < n− k.

Since Q is a k-generalized Kronecker quiver, similar arguments hold for W (bj) and W (bj′). Now
suppose Q has two arrows, one of which is a whose ha = i and one of which is b whose tb = i. We
will combine the representation of these two arrows to show that the stabilizer subgroup is trivial. For
simplicity, let us suppress the subscript and write a and b to denote the two arrows and let us write the
entries of W (a) and W (b) as:

W (a)ιγ =

{
xιγ if ι ≤ γ,

0 otherwise,
and W (b)ιγ =

{
yιγ if ι ≤ γ,

0 otherwise.

For 1 ≤ ι < n, consider the (ι, ι+ 1)-entries of the equations:

u(i)W (a)(u(µ))−1 = W (a) and u(µ)W (b)(u(i))−1 = W (b). (13)

They are

xι,ι+1 + u
(i)
ι,ι+1xι+1,ι+1 − xιιu

(µ)
ι,ι+1 = xι,ι+1 and

yι,ι+1 + u
(µ)
ι,ι+1yι+1,ι+1 − yιιu

(i)
ι,ι+1 = yι,ι+1,

which simplify as

u
(i)
ι,ι+1xι+1,ι+1 − xιιu

(µ)
ι,ι+1 = 0

u
(µ)
ι,ι+1yι+1,ι+1 − yιιu

(i)
ι,ι+1 = 0

or (
xι+1,ι+1 −xιι

−yιι yι+1,ι+1

)(
u
(i)
ι,ι+1

u
(µ)
ι,ι+1

)
=

(
0
0

)
.

Since the matrix on the left is invertible by assumption, we have that u
(i)
ι,ι+1 = u

(µ)
ι,ι+1 = 0. Now, assume

complete induction on k-superdiagonal, which means u
(i)
ι,ι+γ = u

(µ)
ι,ι+γ = 0 for all 1 ≤ ι ≤ n − k and

1 ≤ γ ≤ k. On the (k + 1)-superdiagonal, we have∑
ι≤ι′≤γ1<···<γm=ι+k+1

1≤m≤ι

(−1)deg(ω
′)u

(i)
ιι′xι′γ1u

(µ)
γ1γ2

· · ·u(µ)
γm−1,ι+k+1 = xι,ι+k+1, (14)

∑
ι≤ι′≤γ1<···<γm=ι+k+1

1≤m≤ι

(−1)deg(ω
′′)u

(µ)
ιι′ yι′γ1

u(i)
γ1γ2

· · ·u(i)
γm−1,ι+k+1 = yι,ι+k+1, (15)

where ω′ = u
(µ)
γ1γ2 · · ·u

(µ)
γm−1,ι+k+1 in Equation (14), the product of u

(µ)
αβ obtained from the group rep-

resentation at vertex µ, and ω′′ = u
(i)
γ1γ2 · · ·u

(i)
γm−1,ι+k+1 in Equation (15), the product of u

(i)
αβ obtained

from the group representation at vertex i.
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First, consider Equation (14). For m ≥ 3, the difference of the indices γ′ and γ′′ for the variables

u
(µ)
γ′γ′′ must be strictly less than k + 1. Since all such monomials vanish by complete induction, we are

left with those terms where m in the γ partition is less than 3:∑
ι≤ι′≤γ1=ι+k+1

(−1)deg(v)u
(i)
ιι′xι′,ι+k+1 +

∑
ι≤ι′≤γ1<γ2=ι+k+1

(−1)deg(v)u
(i)
ιι′xι′γ1u

(µ)
γ1,ι+k+1 = xι,ι+k+1, (16)

From the first sum in Equation (16), two cases when u
(i)
ιι′ does not equal zero are when ι = ι′ and when

ι′ = ι + k + 1. From the second sum, the only case when u
(µ)
γ1,ι+k+1 ̸= 0 is when γ1 = ι since then

ι+ k + 1− γ1 > k. Putting this together, we have
XXXXXXu(i)
ιι xι,ι+k+1 + u

(i)
ι,ι+k+1xι+k+1,ι+k+1 − u(i)

ιι xιιu
(µ)
ι,ι+k+1 = XXXXxι,ι+k+1 ,

or
u
(i)
ι,ι+k+1xι+k+1,ι+k+1 − xιιu

(µ)
ι,ι+k+1 = 0. (17)

Using a similar argument on Equation (15), we obtain

u
(µ)
ι,ι+k+1yι+k+1,ι+k+1 − yιιu

(i)
ι,ι+k+1 = 0. (18)

Put Equations (17) and (18) together to obtain:(
xι+k+1,ι+k+1 −xιι

−yιι yι+k+1,ι+k+1

)(
u
(i)
ι,ι+k+1

u
(µ)
ι,ι+k+1

)
=

(
0
0

)
.

Since the determinant of the matrix on the left is nonzero by assumption, we conclude that u
(i)
ι,ι+k+1 =

u
(µ)
ι,ι+k+1 = 0 for all 1 ≤ ι < n − k. Thus there is a point in a k-generalized Kronecker quiver (where Q

has at least two arrows) whose stabilizer subgroup is trivial. □

Proposition 3.3. Let Q be a k-generalized path Kronecker quiver, where Q has more than 1 arrow.
Then there is a point in the filtered representation space of Q such that its stabilizer subgroup is trivial.

To prove Proposition 3.3, we make the following substitutions in the proof of Proposition 3.2: first,

suppose the head of the paths a
(ι)
1 · · · a(ι)pι is i and the tail is µ and suppose the head of the paths b

(ι)
1 · · · b(ι)qι

is µ and the tail is i. Replace each arrow aι in the proof of Proposition 3.2 with the path a
(ι)
1 · · · a(ι)pι

and replace each arrow bγ in the proof with the path b
(γ)
1 · · · b(γ)qγ . Since the proof of Proposition 3.3 is

similar to the proof of Proposition 3.2, we will omit the proof of Proposition 3.3.

Lemma 3.4. Let Q be a star-shaped quiver, where Q has at least two arrows. Then

dimF •Rep(Q, β)//U = dimF •Rep(Q, β)− dimU.

It is trivial to show the nonexistence of a point in a filtered representation space of a star-shaped
quiver (|Q1| > 1) such that it has a trivial stabilizer subgroup; this is easily shown by proving that
every point has a stabilizer subgroup of dimension greater than 0. However for Lemma 3.4, we will use
a fact from Im’s dissertation (cf. Theorem 5.3.1 in [Im14a]): only the diagonal entries of the filtered
representation space of a star-shaped quiver produce unipotent invariants.

Proof. A star-shaped quiver is a quiver with at most two distinct pathways between any two ver-
tices. By Theorem 1.1 in [Im14b], C[F •Rep(Q, β)]U ∼= C[t⊕Q1 ]. This means dimC[F •Rep(Q, β)]U =
dimC[t⊕Q1 ] = n|Q1|, and on the other hand, dimF •Rep(Q, β)− dimU = n|Q1|. □

We now give the proof of Theorem 1.1

Proof. Assume that Q has at least one arrow and by assumption, Q is not the A2-Jordan quiver. We
will first prove that there is a point v in F •Rep(Q, β) such that the stabilizer group of v is trivial. Let
i ∈ Q0 be a vertex of Q. Since Q is finite, the vertex i is connected to a finite number of the following
types of arrows:

(1) arrows a1, . . . , ap such that only haj = i for all 1 ≤ j ≤ p,
(2) arrows b1, . . . , bq such that only tbj = i for all 1 ≤ j ≤ q, and
(3) arrows c1, . . . , cr such that hcj = tcj = i for all 1 ≤ j ≤ r.
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Let µ1, . . . , µp be the tail of a1, . . . , ap, respectively. If µj = µk for some aj ̸= ak, then we replace
µ1, . . . , µp with the set µ1, . . . , µ̂k, . . . , µp, where the hat over µk denotes that it has been omitted. Since
p is finite, repeat this procedure finitely-many times so that µ1, . . . , µp′ are pairwise distinct vertices.

Now let ν1, . . . , νq be the head of the arrows b1, . . . , bq, respectively. Similar as before, replace the
set ν1, . . . , νq of vertices with ν1, . . . , νq′ such that the latter forms pairwise distinct vertices of Q. Now,
combine µ1, . . . , µp′ , ν1, . . . , νq′ and replace this set with µ1, . . . , µp′′ , ν1, . . . , νq′′ so that no vertex is listed
more than once.

Fix a basis in F •Rep(Q, β) such that we have the identification: F •Rep(Q, β) ∼= b⊕Q1 . Let us write
the Q0-tuple in U as:

u = (u(1), . . . , u(i), . . . , u(µ1), . . . , u(µp′′ ), . . . , u(ν1), . . . , u(νq′′ ), . . . , u(Q0)) ∈ U ∼= U⊕Q0 , (19)

where u(i) is the n× n unipotent matrix at vertex i whose entries are:

(u(i))ιγ =


u
(i)
ιγ if ι < γ,

1 if ι = γ,

0 otherwise.

For W ∈ F •Rep(Q, β), we have the following group actions: since arrows aj , bj , and cj are connected
to vertex i, we have

(1) u.W (aj) = u(i)W (aj)(u
(µj))−1,

(2) u.W (bj) = u(νj)W (bj)(u
(i))−1,

(3) u.W (cj) = u(i)W (cj)(u
(i))−1.

Here, we used the notation that µj is the tail of the arrow aj and νj is the head of the arrow bj (thus,
µj ’s and νj ’s are not necessarily pairwise distinct). Since F •Rep(Q, β) is a filtered representation space,

W (aj)ιγ =

{
x
(j)
ιγ if ι ≤ γ,

0 otherwise,

W (bj)ιγ =

{
y
(j)
ιγ if ι ≤ γ,

0 otherwise,

W (cj)ιγ =

{
z
(j)
ιγ if ι ≤ γ,

0 otherwise.

Consider U×F •Rep(Q, β)|baj
→ F •Rep(Q, β)|baj

, where F •Rep(Q, β)|baj
:= F •Rep(({i, µj}, {aj}), (n, n)) ∼=

b, sending

(u,W ) 7→ u.W (aj) = u(i)W (aj)(u
(µj))−1

=



x
(j)
11 ···

∑
1≤ι≤γ1<···<γm=γ

1≤m≤γ

(−1)deg(v)u
(i)
1ι x

(j)
ιγ1

u(µj)
γ1γ2

· · ·u(µj)
γm−1,γ ···

∑
1≤ι≤γ1<···<γm=n

1≤m≤n

(−1)deg(v)u
(i)
1ι x

(j)
ιγ1

u(µj)
γ1γ2

· · ·u(µj)
γm−1n

... ···
... ···

...
0 ··· x(j)

γγ ···
∑

γ≤ι≤γ1<···<γm=n

1≤m≤γ

(−1)deg(v)u(i)
γι x

(j)
ιγ1

u(µj)
γ1γ2

· · ·u(µj)
γm−1,n

... ···
... ···

...
0 ··· 0 ··· x(j)

nn


,

where v = u
(µj)
γ1γ2 · · ·u

(µj)
γm−1γm , the product of u

(µj)
αβ obtained from the group representation at vertex µj .

In the case when m = 1, then we have u
(i)
γι x

(j)
ιγ1u

(µj)
γ1γ2 · · ·u

(µj)
γm−1,γm := u

(i)
γι x

(j)
ιγ1 ; thus the degree of v in

u
(i)
γι x

(j)
ιγ1u

(µj)
γ1γ2 · · ·u

(µj)
γm−1,γm is zero when m = 1.
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Secondly, consider the map U × F •Rep(Q, β)|bbj
→ F •Rep(Q, β)|bbj

, where F •Rep(Q, β)|bbj
:=

F •Rep(({νj , i}, {bj}), (n, n)) ∼= b, sending

(u,W ) 7→ u.W (bj) = u(νj)W (bj)(u
(i))−1

=



y
(j)
11 ···

∑
1≤ι≤γ1<···<γm=γ

1≤m≤γ

(−1)deg(w)u
(νj)
1ι y(j)ιγ1

u(i)
γ1γ2

· · ·u(i)
γm−1,γ ···

∑
1≤ι≤γ1<···<γm=n

1≤m≤n

(−1)deg(w)u
(νj)
1ι y(j)ιγ1

u(i)
γ1γ2

· · ·u(i)
γm−1n

... ···
... ···

...
0 ··· y(j)

γγ ···
∑

γ≤ι≤γ1<···<γm=n

1≤m≤γ

(−1)deg(w)u(νj)
γι y(j)ιγ1

u(i)
γ1γ2

· · ·u(i)
γm−1,n

... ···
... ···

...
0 ··· 0 ··· y(j)

nn


,

where w = u
(i)
γ1γ2 · · ·u

(i)
γm−1γm , the product of u

(i)
αβ appearing in the group representation at vertex i.

Similar as before, the degree of w in u
(νj)
γι x

(j)
ιγ1u

(i)
γ1γ2 · · ·u

(i)
γm−1,γm is zero if m = 1.

Finally, the map U×F •Rep(Q, β)|bcj
→ F •Rep(Q, β)|bcj

, where F •Rep(Q, β)|bcj
:= F •Rep(({i}, {cj}), n) ∼=

b, sends

(u,W ) 7→ u.W (cj) = u(i)W (cj)(u
(i))−1

=



z
(j)
11 ···

∑
1≤ι≤γ1<···<γm=γ

1≤m≤γ

(−1)deg(ω)u
(i)
1ι z

(j)
ιγ1

u(i)
γ1γ2

· · ·u(i)
γm−1,γ ···

∑
1≤ι≤γ1<···<γm=n

1≤m≤n

(−1)deg(ω)u
(i)
1ι z

(j)
ιγ1

u(i)
γ1γ2

· · ·u(i)
γm−1n

... ···
... ···

...
0 ··· z(j)

γγ ···
∑

γ≤ι≤γ1<···<γm=n

1≤m≤γ

(−1)deg(ω)u(i)
γι z

(j)
ιγ1

u(i)
γ1γ2

· · ·u(i)
γm−1,n

... ···
... ···

...
0 ··· 0 ··· z(j)

nn


,

where ω = u
(i)
γ1γ2 · · ·u

(i)
γm−1γm , the product of u

(i)
αβ appearing in the group representation at vertex i under

the condition that the second index β of u
(i)
αβ must be greater than γ1.

Now suppose vertex i has a loop or is one of the vertices of a local k-generalized Kronecker quiver.
Let W be a representation in F •Rep(Q, β) satisfying the following conditions: for each arrow dj ∈ Q1,

W (dj) has pairwise distinct, nonzero eigenvalues, and x
(j′)
ιι x

(j)
ι+1,ι+1 − x

(j)
ιι x

(j′)
ι+1,ι+1 ̸= 0, y

(j′)
ιι y

(j)
ι+1,ι+1 −

y
(j)
ιι y

(j′)
ι+1,ι+1 ̸= 0, and x

(j′)
ιι y

(j)
ιι − y

(j)
νν x

(j′)
νν ̸= 0 for all j ̸= j′ and 1 ≤ ι < ν ≤ n.

Consider one of the loops at vertex i, say cj . We will analyze both sides of the equation:

u(i)W (cj)(u
(i))−1 = W (cj). (20)

First consider level 0 diagonal entries of the left hand side in (20). Since these entries are invariant
under conjugation by a unipotent subgroup, we are done since the diagonal entries of W (cj) are also

z
(j)
ιι . Thus, consider 1-superdiagonal entries, i.e., (ι, ι+ 1)-entries, which are of the form:

z
(j)
ι,ι+1 + u

(i)
ι,ι+1(z

(j)
ι+1,ι+1 − z(j)ιι ). (21)

Since we want to find the stabilizer subgroup of W , we set the expression in (21) equal to z
(j)
ι,ι+1. Since

z
(j)
ιι ̸= z

(j)
ι+1,ι+1, we see that u

(i)
ι,ι+1 = 0 for each 1 ≤ ι ≤ n − 1. Next, assume complete induction on

k-superdiagonal: this means u
(i)
ι,ι+γ = 0 for all 1 ≤ ι ≤ n−k and 1 ≤ γ ≤ k. On the (k+1)-superdiagonal,

we have ∑
ι≤ι′≤γ1<···<γm=ι+k+1

1≤m≤ι

(−1)deg(ω)u
(i)
ιι′ z

(j)
ι′γ1

u(i)
γ1γ2

· · ·u(i)
γm−1,ι+k+1 = z

(j)
ι,ι+k+1. (22)
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If m ≥ 3, then the difference between the indices γ′ and γ′′ for u
(i)
γ′γ′′ must be strictly less than k+1; all

such terms vanish by complete induction. Thus we are left with those terms when m ≤ 2, i.e.,∑
ι≤ι′≤γ1=ι+k+1

(−1)deg(ω)u
(i)
ιι′ z

(j)
ι′,ι+k+1 +

∑
ι≤ι′≤γ1<γ2=ι+k+1

(−1)deg(ω)u
(i)
ιι′ z

(j)
ι′γ1

u
(i)
γ1,ι+k+1 = z

(j)
ι,ι+k+1.

From the first sum, two cases when u
(i)
ιι′ ̸= 0 are when ι = ι′ and when ι′ = ι+ k + 1. From the second

sum, the only case when u
(i)
γ1,ι+k+1 ̸= 0 is when γ1 = ι for then ι+ k+1− γ1 > k. Putting this together,

we have
XXXXXXu(i)
ιι z

(j)
ι,ι+k+1 + u

(i)
ι,ι+k+1z

(j)
ι+k+1,ι+k+1 − u(i)

ιι z
(j)
ιι u

(i)
ι,ι+k+1 =

HH
HH

z
(j)
ι,ι+k+1 ,

or

u
(i)
ι,ι+k+1(z

(j)
ι+k+1,ι+k+1 − z(j)ιι ) = 0.

Since z
(j)
ιι are pairwise distinct, u

(i)
ι,ι+k+1 = 0 and since ι is arbitary, we are done.

Now, using the fact that u(i) is the identity matrix representation at vertex i, we will prove that
u(νj) = In for all 1 ≤ j ≤ q′′ and u(µj) = In for all 1 ≤ j ≤ p′′.

So consider

u(νj)W (bj)(u
(i))−1 = W (bj). (23)

We have shown that u(i) = In, so Equation (23) simplifies to

u(νj)W (bj) = W (bj).

Since the eigenvalues of W (bj) are nonzero, W (bj) is invertible. Thus, we have u(νj) = In for all
1 ≤ j ≤ q′′.

Similarly, consider

u(i)W (aj)(u
(µj))−1 = W (aj). (24)

We know that u(i) is the identity matrix and W (aj) is invertible. Thus, Equation (24) simplifies as

u(µj) = In for all 1 ≤ j ≤ p′′. Thus, we conclude that all the unipotent matrix representations locally
near vertex i are identity matrices. We repeat similar analysis to the other |Q0|−1 vertices by extending
outward from vertex i and using induction at those vertices j such that d(i, j) = k or d(j, i) = k for each
k > 1.

Now, if there are no loops at vertex i, i.e., r = 0 at all the vertices of Q, then by assumption, some of
the arrows connected to i form a local k-generalized path Kronecker quiver, where k > 1. Without loss
of generality, name the other vertex connected to these local k-generalized path Kronecker quiver as µ.
By Proposition 3.3 and holding all the other unipotent group representations at vertices ν ̸= i, µ fixed
(since path representations connecting vertices i and µ only affect the group representations at vertices
i and µ), we see that there is a point in the filtered representation space of Q such that its stabilizer
representations at vertices i and µ are trivial. We then repeat a similar argument as above by extending
outward from vertex i and µ systematically by increasing quiver geodesic distance.

We thus conclude that there is a point in the filtered representation subspace such that its unipotent
stabilizer is the trivial subgroup of U.

Finally, (2) follows from (1) and Corollary 2.10. □

Remark 3.5. Suppose Q is connected with at least two arrows. In the case if Q does not have a loop
or a local k-generalized path Kronecker subquiver, then Q must have a local 1-step star-shaped quiver at
some vertex. In fact, we can deduce more than this: we have a quiver with at most one pathway from
one vertex to another for if Q has two or more pathways from one vertex to another, then Q has a local
k-generalized path Kronecker quiver (k ≥ 2) or Q has a loop, which is a contradiction. By Theorem 1.1
in [Im14b], we have an isomorphism C[F •Rep(Q, β)]Uβ ∼= C[t⊕Q1 ] of algebras.

4. Special Case: 2× 2 k-Jordan filtered representations

Although it is possible to write down an explicit description of the B-orbits of k-Jordan filtered
representations, we will give a description of the algebra of the U -orbits of the k-Jordan when β = 2.
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Example 4.1. Let Q be the k-Jordan quiver and let β = 2. Then the algebra C[F •Rep(Q, β)//U ] of
unipotent invariant polynomials is isomorphic to

C[{c(γ)ιι , c
(ν)
12 (c

(µ)
11 − c

(µ)
22 )− c

(µ)
12 (c

(ν)
11 − c

(ν)
22 ) : 1 ≤ ι ≤ 2, 1 ≤ γ ≤ k, 1 ≤ µ < ν ≤ k}].

Let h2 ⊆ b2, the set of 2× 2 upper triangular matrices over the complex numbers. Under the B-action,

the polynomial f(W (c1), . . . ,W (ck)) = c
(ν)
12 (c

(µ)
11 − c

(µ)
22 ) − c

(µ)
12 (c

(ν)
11 − c

(ν)
22 ) is a b11b

−1
22 -semi-invariant.

Thus, the affine quotient of the Jordan quiver is F •Rep(Q, 2)//B = bk2//B
∼= Spec(C[h⊕k

2 ]) ∼= C2k while
the GIT quotient F •Rep(Q, 2)//χι

B is a projective scheme over C2k, where χι : B → C∗ is a group

homomorphism sending (bµν) 7→ bιιb
−1
ι+1,ι+1.

5. The geometry of quiver Grothendieck-Springer resolutions

5.1. The Hamiltonian reduction of almost-commuting varieties for the Borel. Consider the
moment map µB : T ∗(b×Cn) ∼= b× b∗ ×Cn × (Cn)∗ → b∗ ∼= g/n, where (r, s, i, j) 7→ [r, s] + ij and n is
the set of strictly upper triangular matrices and (Cn)∗ is the dual of Cn. Let

s′ιι =

tr
 ∏

1≤k≤n,k ̸=ι

lk(r)

−1

tr

 ∏
1≤k≤n,k ̸=ι

lk(r) s

 ,

where lk(r) = r − rkk In (cf. Proposition 1.2 in [Im18]).
We describe the regular semisimple locus of generalized almost-commuting variety:

Proposition 5.1 ([Im18], Proposition 1.4). The Hamiltonian reduction µ−1
B (0)rss//B is reduced and

isomorphic to C2n \ ∆n, where ∆n = {(x1, . . . , xn, 0, . . . , 0) : xι = xγ for some ι ̸= γ}. So A0 =

C[µ−1
B (0)rss//B] ∼= C[r11, . . . , rnn, s′11, . . . , s′nn][(rνν − rγγ)

−1], and the Poisson bracket on the commuta-
tive algebra A0 is induced from the standard symplectic structure on C2n.

Remark 5.2. The algebraic closure of the semisimple locus µ−1
B (0)rss//B is a symplectic manifold.

5.2. Isospectral Hilbert scheme. Recall that the Hilbert scheme Hilbn(C2) of n points on a complex
plane is given as the set of ideals I ⊆ C[x, y] such that the (complex) dimension of C[x, y]/I is n. There
is another well-known ADHM description of Hilbn(C2) (cf. [GG06], [Nak99]). Let Z = {(r, s, i) ∈
gln × gl∗n × Cn : [r, s] = 0 and rαsβi spans Cn}. The Lie group G = GLn(C) acts on Z by A.(r, s, i) =
(ArA−1, AsA−1, Ai).

Theorem 5.3 ([Nak99], Theorem 2.1). We have an isomorphism Hilbn(C2) ∼= Z/G, which is smooth
and projective of dimension 2n.

The scheme Xn in the reduced fiber product

Xn

ρ

��

// (C2)n

��

Hilbn(C2)
π // Sn(C2)

is known as the isospectral Hilbert scheme, where ρ is flat of degree n!.

Theorem 5.4 ([Hai01]). The scheme Xn is flat over Hilbn(C2).

The Hilbert scheme has generically n distinct points on C2, where these points are unordered in
Hilbn(C2)/Sn and ordered in Xn. This leads us to relate µ−1

B (0)rss//B or µ−1
B (0)rss//detB with Xn.

Let
Y rss = {(r, s, i) ∈ b× b∗ × Cn : [r, s] = 0, rαsβi spans Cn, and r is regular}. (25)

Let B act on Y rss via b.(r, s, i) = (brb−1, bsb−1, bi).

Proposition 5.5. We have an isomorphism Y rss/B ∼= µ−1
B (0)rss//B of schemes.

Proof. Since r ∈ b has pairwise distinct eigenvalues, r is diagonalizable under the action by B. For
a diagonal matrix r, [r, s] = 0 implies s is also a diagonal matrix. Thus, we have a map Y rss/B →
µ−1
B (0)rss//B given by (r, s, i) 7→ (r, s, i, 0) and µ−1

B (0)rss//B → Y rss/B given by (r, s, i, j) 7→ (r, s, i). □
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Let
Y = {(r, s, i) ∈ b× b∗ × Cn : [r, s] = 0 and rαsβi spans Cn} (26)

and let
Zrss = {(r, s, i) ∈ gln × gl∗n × Cn : [r, s] = 0, rαsβi spans Cn, and r is regular}. (27)

Theorem 5.6. There is a birational map Y/B Xn.

Proof. The morphism Y rss/B → Xn factors through Z/G×SnC2 (C2)n by sending (r, s, i)B 7→ (r, s, i)G×
(r11, s11, . . . , rnn, snn). This map is well-defined since r ∈ b ⊆ gln, s ∈ b∗, which could be viewed as a
lower triangular matrix, and the B-orbits are closed. Now, since r is regular, r is diagonalizable. The
Lie bracket condition [r, s] = 0 implies s is diagonal if r is also diagonal. So the morphism Zrss/G×S2C2

(C2)n → Y/B via (r, s, i)G × (r11, s11, . . . , rnn, snn) 7→ (r, s, i)B is the projection onto the first triple,
and we are done. □

Corollary 5.7. The birationality of Y/B and the isospectral Hilbert scheme implies the existence of an
isomorphism between the vector spaces H0(Y/B,Kd

Y/B) and H0(Xn,K
d
Xn

), where KY/B = Ω2n
Y/B, the

canonical bundle of 2n forms.

Conjecture 5.8. There is an embedding of the scheme µ−1
B (0)//detB into Xn.

It would be interesting to extend Proposition 5.1 to the entire Hamiltonian reduction and give a full
description of µ−1

B (0)/B ≃ T ∗(b × Cn/B) in terms of well-known schemes. For the moment, we leave
this as an open problem.

5.3. Quiver-graded Steinberg varieties. We recall the Grothendieck-Springer resolution: g̃ := G×B

b
p→ g, where (g, x)B 7→ gxg−1 and consider the fiber product

g̃×g g̃

π1

��

π2 // g̃

p

��
g̃

p
// g.

The fiber product g̃×g g̃ is known as the Steinberg variety, also given as the triple

{(x,B,B′) ∈ g×G/B ×G/B : x ∈ Lie(B) ∩ Lie(B′)}
(cf. [CG10], [DR04], and [Lus97]). Steinberg varieties are important as they provide an alternative
approach to the Springer correspondence, play a central role in the proof of Deligne-Langlands conjecture
for Hecke algebras (proved by Kazhdan-Lusztig), and appear in a proof of the conjectured formula
dimZG(u) = r + 2dim(G/B)u by Grothendieck, where u ∈ U ⊆ G, a connected reductive algebraic
group over an algebraically closed field, r = rk(G), and (G/B)u = {B ⊆ G : u ∈ B} (cf. [DR09]). This
construction easily extends to the fiber product

g̃×g · · · ×g g̃︸ ︷︷ ︸
k

/G ∼= bk/B. (28)

Equation (28) implies the isomorphism between G-orbits on g̃×g · · · ×g g̃ and B-orbits on bk. Thus the
G-equivariant K-theory on quiver-graded Steinberg varieties is equivalent to B-equivariant K-theory on
the product of Borel subalgebras.

Quiver-graded Steinberg varieties may be powerful tools to prove analogous formula or a similar
Deligne-Langlands conjecture for other Hecke algebras.

6. Quantum Hamiltonian reduction for filtered quiver representations

In this section, we give a short introduction to quantum Hamiltonian reduction for nonreductive

groups. Let Q† = (Q†
0, Q

†
1) be a framed quiver, where Q†

0 = Q0

∐
{◦} and Q†

1 = Q1

∐
{◦ a→

γ
•}; the

framed quiver has an extra vertex, called a framed vertex, and one extra arrow than the quiver Q, which

points from the framed vertex to some vertex γ in Q. Let β† ∈ ZQ†
0

≥0 be the dimension vector for the

framed quiver. Consider the cotangent bundle T ∗(F •Rep(Q†, β†)) of the filtered representation space,
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which is a Poisson manifold with a Poisson action by the Lie group Pβ :=
∏

i∈Q0
Pi. The action is given

by the map T ∗(F •Rep(Q†, β†)) →
∏

i∈Q0
p∗i , where pi = Lie(Pi) is the Lie algebra of Pi and p∗i is the

dual of pi. We then have a homomorphism of Lie algebras ϕ0 :
∏

i∈Q0
pi → VectΠ(T

∗(F •Rep(Q†, β†))),

where VectΠ(T
∗(F •Rep(Q†, β†))) is the Lie algebra of vector fields on the cotangent bundle and Π ∈

Γ(T ∗F •Rep(Q†, β†),∧2T (T ∗(F •Rep(Q†, β†)))) is a Poisson bivector whose Lie bracket with itself is zero:
[Π,Π] = 0.

A Pβ -equivariant regular map µ0 : T ∗(F •Rep(Q†, β†)) →
∏

i p
∗
i is a moment map for the Pβ -action on

the cotangent bundle if the dual µ∗
0 :
∏

i pi → C[T ∗(F •Rep(Q†, β†))] of the moment map satisfies the fol-
lowing: given a homomorphism of Lie algebras v : C[T ∗(F •Rep(Q†, β†))] → VectΠ(T

∗(F •Rep(Q†, β†)))
preserving the Poisson structure, v(µ∗

0(a)) = ϕ0(a). The map µ0 is Poisson since the dual µ∗
0 of the

moment map is a homomorphism of Lie algebras.
Let Lie(Pβ ) be the Lie algebra of Pβ and let A be an associative algebra equipped with a Lie(Pβ )-

action (so there is a Lie algebra map ϕ : Lie(Pβ ) → Der(A)). We have a quantum moment map for
the pair (A, ϕ), which is an associative algebra homomorphism µ : U(

∏
i∈Q0

pi) → A such that for any

a ∈
∏

i∈Q0
pi and b ∈ A, we have [µ(a), b] = ϕ(a)b.

Suppose now A is a filtered associative algebra such that gr(A) is a Poisson algebra A0 equipped with
a Lie(Pβ )-action ϕ0 and a classical moment map µ0, and suppose that gr(ϕ) = ϕ0. A quantization of

µ0 is a quantum moment map µ : U(Lie(Pβ )) → A such that gr(µ) = µ0. Define the space ALie(Pβ )

of Lie(Pβ )-invariants as ALie(Pβ ) := {b ∈ A : [µ(a), b] = 0 for all a ∈ Lie(Pβ )}, a subalgebra of A.
Let J be a left ideal of A generated by µ(a), where a ∈ Lie(Pβ ). We define a two-sided ideal as

JLie(Pβ ) := J ∩ALie(Pβ ) ⊆ ALie(Pβ ). The associative algebra

A//Lie(Pβ ) := ALie(Pβ )/JLie(Pβ ),

the quantum Hamiltonian reduction of A with respect to the quantum moment map µ.

6.1. Special case. For the rest of this section, assume Q is the k-Jordan quiver, Q† is the framed k-
Jordan quiver, and β† = (n, 1). We impose the complete standard filtration of vector spaces at the vertex
of Q. Consider the diagonal B-adjoint action on bk. Extend this action to the filtered representation of
the framed quiver and consider the B-action on bk×Cn. This action is induced to the cotangent bundle
T ∗(bk × Cn).

Lemma 6.1. Since T ∗(bk × Cn) is connected and symplectic, ker(C[T ∗(bk × Cn)]
v→ VectΠ(T

∗(bk ×
Cn))) = C.

Proof. Let v : f 7→ {f,−}, which assigns to f the Hamiltonian vector field with Hamiltonian f . Since
[Π,Π] = 0, the Poisson bracket satisfies the Jacobi identity: {{f, g}, h}+{{g, h}, f}+{{h, f}, g} = 0 for
polynomials f, g, h on T ∗(bk × Cn). Thus, the vector space of differentiable functions on the cotangent
bundle T ∗(bk × Cn) has the structure of a Lie algebra. Since v is a Lie algebra homomorphism, ker v
consists of constant functions. □

Lemma 6.2. The first cohomology H1(T ∗(bk × Cn),C) = 0. It follows that v : C[T ∗(bk × Cn)] →
VectΠ(T

∗(bk × Cn)) is surjective.

Proof. The vector space T ∗(bk×Cn) is isomorphic to C(k(n+1)+2)n so it is clear that the first cohomology
vanishes. Consider the complex:

0 −→ C d−1

−→ C[T ∗(bk × Cn)]
d0

−→ VectΠ(T
∗(bk × Cn))

d1

−→ . . . . (29)

Since H1(T ∗(bk ×Cn),C) = ker d1/ Im d0 = 0, for any X ∈ VectΠ(T
∗(bk ×Cn)) whose d1(X) = 0, there

is a polynomial f on T ∗(bk × Cn) such that d0(f) = X. Thus, v is surjective. □

We end this section with a remark that the study of cohomological invariants arising from the (quan-
tum) Hamiltonian reduction in the nonreductive setting may emit interesting geometric invariants.
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7. Towards deformation quantization

Kontsevich in [Kon03] affirmed that Poisson manifolds admits a quantization. We give a short ap-
plication of our filtered quiver representations to deformation quantization in the nonreductive setting
to make it a tool to study interesting varieties arising from our construction. In particular, such tool
may be a necessity when studying flat families to investigate the preimage of zero of a moment map for
nonreductive groups.

Suppose A is a deformation quantization of a Poisson algebra A0 equipped with a Lie(Pβ )-action ϕ0

and a classical moment map µ0, and assume that ϕ = ϕ0 mod ℏ. A quantization of µ0 is a quantum
moment map µ : U(Lie(Pβ )) → A[ℏ−1] satisfying µ(a) = ℏ−1µ0(a) +O(ℏ) for a ∈ Lie(Pβ ).

Let A be a deformation quantization of the algebra A0 = C[T ∗(F •Rep(Q†, β†))] and let µ0 : Lie(Pβ ) →
A0 be a classical moment map as before. Let µ be a quantum moment map quantizing µ0. Let
O ⊆ Lie(Pβ )

∗ be a Pβ-invariant closed orbit, and Red(T ∗(F •Rep(Q†, β†)),Pβ ,O) be the correspond-
ing classical reduction. Let Lie(Pβ )ℏ be the Lie algebra over C[[ℏ]] with Lie bracket [a,b]ℏ = ℏ[a,b],
where a,b ∈ Lie(Pβ ). Note that Lie(Pβ )ℏ ∼= Lie(Pβ )[[ℏ]] as a vector space. Let U(Lie(Pβ )ℏ) be the
enveloping algebra of Lie(Pβ )ℏ; it is a deformation quantization of the symmetric algebra S(Lie(Pβ )),
which is a completion of the Rees algebra of U(Lie(Pβ )). We can now construct a quantum moment
map µℏ : U(Lie(Pβ )ℏ) → A given by µℏ(a) = ℏµ(a) for a ∈ Lie(Pβ ).

Let J0 ⊆ S(Lie(Pβ )) be an ideal of functions vanishing on the closed orbit O and let J ⊆ U(Lie(Pβ )ℏ)
be an ideal deforming J0. In the case when O is a semisimple orbit or in the case of reductive setting,
the ideal J exists. We define the quantum reduction as

Red(A,Lie(Pβ ), J) := ALie(Pβ )/(Aµℏ(J))
Lie(Pβ ),

which is a quotient by an ℏ-adically closed ideal. The algebra Red(A,Lie(Pβ ), J) is a deformation of the
function algebra on Red(T ∗(F •Rep(Q†, β†)),Pβ ,O), but this deformation does not need to be flat. If it
is indeed flat, then we are able to conclude that reduction commutes with quantization; we leave it as
an open problem to find the condition on which reduction and quantization commute for nonreductive
group equivariant theory on filtered quiver subrepresentations.

8. Rational Cherednik algebras and noncommutative deformations of the Hilbert
scheme

Gan-Ginzburg quantizes the Hamiltonian reduction of their moment map in their reductive algebra
setting in [GG06] to obtain the rational Cherednik algebra. In this section, we investigate the quantiza-
tion of the Hamiltonian reduction in the filtered quiver representation setting.

8.1. Symplectic reflection algebras. We begin with an introduction to symplectic reflection algebras.
Let V be an n-dimensional complex vector space. A pseudo reflection is an invertible linear transfor-

mation g ∈ GL(V ) of finite order such that the subspace of V invariant under g has dimension n − 1.
Pseudo reflections are also known as complex reflections, an invertible linear transformation of V of
finite order that fixes a complex hyperplane pointwise. Thus, a complex reflection group is a finite group
generated by pseudo (complex) reflections.

Theorem 8.1 ([Che55], [Ser68], [ST54]). The following are equivalent:

(1) V/G is smooth,
(2) C[V ]G is a polynomial algebra on dimV generators, i.e., Spec(C[V ]G) ∼= AdimV ,
(3) G = (G,V ) is a complex reflection group.

Now let l/p ∈ Z. We define G(l, p, n) to be the group of n × n monomial matrices whose nonzero
entries are l-th root of unity and so that the product of the nonzero entries is an l/p-th root of unity.

Example 8.2. Consider G(l, 1, n) ∼= (Z/lZ) ≀Sn = (Z/lZ)n⋊Sn. Then G(1, 1, n) ∼= Sn and G(2, 1, n) ∼=
Bn, the Weyl group of type B. So for Sn acting on C[x1, . . . , xn] by permuting the indices of the gen-

erators, we have C[x1, . . . , xn]
G(1,1,n) ∼= C[Σ1, . . . ,Σn], where Σi =

∑
1≤j1<...<ji≤n

xj1 · · ·xji (symmetric

polynomials), and more generally, C[x1, . . . , xn]
G(l,1,n) ∼= C[f1, . . . , fn], where fi = Σi(x

l
1, . . . , x

l
n), sym-

metric polynomials evaluated at xl
1, . . . , x

l
n.
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Since the orbit space V/G does not need to be smooth in general, we give the construction of a
symplectic reflection group. Let (V, ω) be a symplectic vector space, where ω : V × V → C is a
nondegenerate bilinear symplectic form. Define the symplectic linear group Sp(V ) as the set of all
g ∈ GL(V ) such that ω(gu, gv) = ω(u, v) for all u, v ∈ V , i.e., ω is invariant under G. We say s ∈ G is a
symplectic reflection if rk(s− Id) = 2.

Definition 8.3. The triple (G,V, ω) is a symplectic reflection group if

(1) (V, ω) is a symplectic vector space,
(2) G ≤ Sp(V ) consists of symplectic transformations of V , and
(3) G is generated by the symplectic reflections on V .

From this point forward, we will let (G,V, ω) be a symplectic reflection group. Let G act on C[V ] via
gf(v) := f(g−1v) for all f ∈ C[V ], v ∈ V , and g ∈ G. The skew group ring C[V ]⋊G is a noncommutative
algebra, which is isomorphic to C[V ]⊗CCG as a vector space, that satisfies g · f = gf · g for all f ∈ C[V ]
and g ∈ G. The center Z(C[V ]⋊G) of the skew group ring is isomorphic to the ring C[V ]G of G-invariant
functions on V .

Definition 8.4. Let S be the set of symplectic reflections of a symplectic reflection group (G,V, ω). Let
TV ∗ be the tensor algebra C ⊕ V ∗ ⊕ (V ∗ ⊗ V ∗) ⊕ . . ., and let the symplectic form ωV ∗ = ω under the
identification of V and V ∗. Let ωs = ω on Im(s − Id) and 0 on ker(s − Id). A symplectic reflection
algebra is

Ht,c := Ht,c(G) = TV ∗ ⋊G
/
⟨[u, v]− tωV ∗(u, v)1G + 2

∑
s∈S

c(s)ωs(u, v) · s : u, v ∈ V ∗⟩, (30)

where t ∈ C and c : S → C is a G-conjugacy invariant function, where c(s) = c(gsg−1) for all s ∈ S
and g ∈ G.

It is a classical result thatHt,c are Poincaré-Birkhoff-Witt (PBW) deformations of the skew group ring
C[V ]⋊G = Sym(V ∗)⋊G ([EG02], Theorem 1.3). That is, letting generators of G have degree 0 and the
generators of V ∗ have degree 1, we have a natural filtration F • of Ht,c such that the associated graded
grF•(Ht,c) is isomorphic to C[V ]⋊G as algebras. So symplectic reflection algebras are deformations of
a skew group ring, and since Hλt,λc

∼= Ht,c where λ ∈ C is a nonzero scalar, we focus on the cases when
t = 0 or 1. It is straightforward to check that H0,0

∼= C[V ]⋊G.
Now let e = |G|−1

∑
g∈G g, the trivial idempotent in the group ring CG. Then

C[V ]G
≃−→ e(C[V ]⋊G)e, where f 7→ efe.

The spherical subalgebra of Ht,c is defined to be

Ut,c := eHt,ce.

By PBW, the graded spherical subalgebra grF• Ut,c is isomorphic to the ring C[V ]G of invariants as
algebras. The center of the spherical subalgebra is C for t ̸= 0, while Ut,c is commutative for t = 0. In
fact, Satake isomorphism gives the result that Z(Ht,c) ∼= Z(Ut,c). It follows that Z(Ht,c) = C for t ̸= 0
while Z(H0,c) = U0,c.

The variety Xc(G) := SpecU0,c = Spec(Z(H0,c)) is known as a generalized Calogero-Moser space,
which is smooth if and only if the dimension of any simple H0,c-module equals |G|.

Definition 8.5. Let (V/G)sm be the smooth locus of V/G. A symplectic resolution of V/G is a resolution
of singularities π : X → V/G such that a symplectic form ωX satisfying

π∗(ω(V/G)sm) = ωX |π−1((V/G)sm)

exists on X.

A symplectic resolution induces a symplectic isomorphism π|π−1((V/G)sm) : π
−1((V/G)sm)

≃→ (V/G)sm.
An interesting result relating orbit spaces and symplectic reflection algebras is the following:

Theorem 8.6 ([GK04], [Nam08]). The orbit space V/G admits a symplectic resolution if and only if
Xc(G) is smooth for a generic c.
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Symplectic resolutions do not need to be unique, but one of many interesting properties about these
resolutions is that they are semismall. Note that the Springer resolution is a symplectic resolution and
it is semismall:

dim Ñ ×N Ñ ≤ dim Ñ .

8.2. Rational Cherednik algebras. Let V = h ⊕ h∗ with basis y1, . . . , yn for h and x1, . . . , xn for
h∗. Then V has a symplectic form ω : V × V → C. A standard symplectic form ωV is defined to be
ωV (y⊕x, y′⊕x′) = x′(y)−x(y′), where y, y′ ∈ h and x, x′ ∈ h∗. Let Γ be the image of a complex reflection
group G in GL(h)×GL(h∗), i.e., for g ∈ G, g(yi, xj) = (gyi, gxj), which preserves the symplectic form.
Then s ∈ Γ is a symplectic reflection if and only if s is a complex reflection in G. If s is a complex
reflection, then rk(s− Id) = 1 but if s is a symplectic reflection, then rk(s− Id) = 2.

Rational Cherednik algebras are symplectic reflection algebras associated to the triple (h⊕ h∗, ω,W ),
where W is a complex reflection group (also the Weyl group of GL(h)). So W acts diagonally on h⊕ h∗.
Let S be the set of all symplectic reflections in W and let Hs be the reflecting hyperplane of s, αs ∈ h∗

such that the kernel of αs is Hs, and α∨
s ∈ h such that (α∨

s , αs) = 1 − det(s). Let c : S → C be the
conjugacy invariant function as before. We simplify Equation (30) for rational Cherednik algebras as
follows:

Ht,c = TV ∗ ⋊W/⟨[xi, xj ] = 0, [yi, yj ] = 0, [y, x] = t(y, x)− 2
∑
s∈S

c(s)

1− det(s)
(y, αs)(α

∨
s , x)s⟩,

where t ∈ C, x, xi, xj ∈ h∗ and y, yi, yj ∈ h.
In type A, the presentation of rational Cherednik algebras is given as follows: let h = Cn. Then

W = Sn, the symmetric group on n letters. Then S becomes the set of transpositions sij = (i j). Then

σ · xi = xσ(i)σ,

αsij = xi − xj ,

[xi, xj ] = 0,

[yi, xj ] = csij for all 1 ≤ i < j ≤ n

σ · yi = yσ(i)σ for all σ ∈ Sn,

α∨
sij = yi − yj for 1 ≤ i < j ≤ n,

[yi, yj ] = 0 for all i < j,

[yi, xi] = t− c
∑
j ̸=i

sij for all 1 ≤ i ≤ n,

where t, c ∈ C. We have an embedding of the spherical subalgebra eHt,ce ⊆ Ht,c in the rational
Cherednik algebra, which in turn contains the following two subalgebras:

(Sym h)Sn = C[y1, . . . , yn]Sn ↪→ eHt,ce, C[h]Sn = C[x1, . . . , xn]
Sn ↪→ eHt,ce via a 7→ a · e = e · a,

where the algebras (Sym h)Sn and C[h]Sn generate eHt,ce as an algebra. Furthermore, we have

gr eHt,ce = C[h× h∗]Sn

by PBW.
Let D(b × P, c) be the algebra of c-twisted differential operators on b × P and let bc := Im(b ∩

sl(V ) → D(b× P, c)). We end this section with a conjecture analogous to the classical Harish-Chandra
homomorphisms.

Conjecture 8.7. There exists a subalgebra H ′
1,c ⊆ H1,c such that(

D(b× P, c)/D(b× P, c) · bc
)ad bc ≃−→ eH ′

1,ce

and

gr
(
D(b× P, c)/D(b× P, c) · bc

)ad bc ≃−→ C[V ]H ,

where H = B ∩ SL(V ).

We leave it as a part of our near future work to investigate the quantization of the Hamiltonian
reduction in the filtered quiver representation setting.
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9. Future directions

The coordinate ring C[Rep(Q, β)] has two gradings. One way is called Q1-grading, where the ring is

graded by ZQ1 since the quiver variety Rep(Q, β) =
⊕
a∈Q1

Mβ(ha)×β(ta)(C) is a product of matrices. The

second way is called Q0-grading, where the ring is graded by ZQ0 . To explain this further, there exists

a natural action of GLβ(C) := Gβ =
∏
i∈Q0

GLβi
(C) on Rep(Q, β) which induces an action on the ring

C[Rep(Q, β)]. So
∏
i∈Q0

C∗ acts on C[Rep(Q, β)] via the characters of the group, where C∗ = C \ {0}.

Thus, we can decompose the ring as a direct sum of weight spaces for the action of
∏
i∈Q0

C∗. Let

C[Rep(Q, β)]GLβ(C),• :=
⊕
χ

C[Rep(Q, β)]GLβ(C),χ, where χ is a character of GLβ(C). Then polynomials

f ∈ C[Rep(Q, β)]GLβ(C),• are homogeneous with respect to the Q0-grading.
A polynomial f ∈ C[Rep(Q, β)] is an invariant polynomial if g.f = f for all g ∈ GLβ(C), and

the polynomial f is χ-semi-invariant if g.f = χ(g)f for all g ∈ GLβ(C), where χ : GLβ(C) −→ C∗

is a group homomorphism. Semi-invariants under the GLβ(C)-action are invariants for SLβ(C) :=∏
i∈Q0

SLβi(C)-action and SLβ(C)-invariant polynomials that are homogeneous with respect to the Q0-

grading are also semi-invariant (for some χ) for the GLβ(C)-action. Therefore, C[Rep(Q, β)]GLβ(C),• ∼=
C[Rep(Q, β)]SLβ(C). In the literature, one writes SI(Rep(Q, β)) to mean C[Rep(Q, β)]SLβ(C). Earlier
works in the study of invariants of quiver representations include [Kac80], [Sch91] and [Sch92], with
techniques given in [DW00], [DZ01], and [SvdB01].

Other future directions include taking the study of filtered representations to construct GIT quotients
to study wall-crossing under the variation of various characters. Just as the geometry of p/P or p/U is
interesting, one could generalize this space to F •Rep(Q, β)/Pβ , F

•Rep(Q, β)/U, or their corresponding
(quantum) Hamiltonian reduction setting, generalizing the Springer resolution T ∗(G/B) ↠ N . The
study of the Schubert varieties, vector bundles, or derived categories of coherent sheaves on these varieties

Ñ �
�

//

����

g̃

����
N �
�

// g

is rich with many connections to quiver Hecke (KLR) algebras, Hochschild homology of Soergel bimod-
ules, Khovanov-Rozansky homology of a torus knot, and modular representation theory.
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