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Abstract. An effective method of computing division polynomials in terms of

Mumford coordinates is presented. As an example, division polynomials for 3-
and 4-torsion divisors on a genus two curve are obtained explicitly in terms of

Mumford coordinates, and x-, y-coordinates of the support of torsion divisors.

As a result, n-torsion divisors on a given curve can be computed directly from
the division polynomials. Alternatively, these divisors are obtained by solving

the Jacobi inversion problem at points of the Jacobian variety of order n.

1. Introduction

The research projects like Crypto-Math CREST [18], and the stream of publica-
tions in IACR Cryptology ePrint Archive show that the isogeny-based cryptography
is considered as a part of the next-generation cryptography. And genus two curves
have essential benefits in public-key cryptography, as proven, for example, in [6, 7]

Below, we focus on division polynomials, which arose in the elliptic case to define
n-torsion points on the curve. Generalizations to higher genera are suggested in
[14, 17, 20].

In [14], polynomials which define the reduced representation of divisors nD,
D = (x, y)−∞, are constructed, and called division polynomials. (By nD the sum
D + D + · · · + D with n terms is denoted, and we adopt this notation.) On the
contrary, computations show that n-torsion divisors on a hyperelliptic curve are
non-special, except the case of 2-torsion divisors, and no divisors contain repeated
points. Thus, divisors of the form k · (x, y) are not n-torsion for any n.

In [17], we find a division polynomial in the form φn(u) = σ(nu)/σ(u)n
2

, u ∈
Jac(C)\(σ)0, where (σ)0 = {u ∈ Jac(C) | σ(u) = 0} denotes the theta divisor.
Polynomials φn are expressible in terms of fixed set of ℘-functions. A curve C of
genus two is considered. The expression for φ2 is adopted from [2, p. 100]. For
n > 3 a recurrence relation is suggested, as well as a method of constructing φn.
According to [17, Theorem 7], n-torion points on Jac(C)[n]\((σ)0 ∩ Jac(C)[n]) are
the common zeros of the equations of Jac(C), φn, ∂u1

φn, ∂2u1
φn, where ∂u ≡ ∂/∂u.

In [20], Kanayama’s division polynomials are generalized to the case of a general
hyperelliptic Jacobian, though all examples do not exceed genus two, and only the
case of n = 2 in genus two is considered in detail. A more general case is proven for
special divisors composed from one point only, similar to the determinant formulas
adopted from [19].

The method suggested in [17] and developed in [20] requires essential efforts,
and the knowledge of identities for ℘-functions associated with the curve in ques-

tion. Moreover, obtaining multiplication formulas of the form σ(nu)/σ(u)n
2

is a
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complicate problem itself. Below, a simpler method of obtaining division polyno-
mials is suggested. Under division polynomials we will understand the polynomials
which define n-torsion divisors on a curve C. The method leads to purely algebraic
computations, though it is based on the structure of the field of abelian ℘-functions
associated with C. As a result, x-, y-coordinates of the support of n-torsion divisors
are obtained.

There is no problem to find n-torsion points on Jac(C) — these are points of
order n. The problem arises when x-, y-coordinates of the Abel pre-images of
such points are required. There exists a direct way to compute the non-special
Abel pre-image from a given point of Jac(C), based on a solution of the Jacobi
inversion problem. Such a solution is known in terms of ℘-functions, see [1, § 216]
for hyperelliptic curves, and [4] for non-hyperelliptic curves. This way became
feasible due to the progress in computing uniformization of plane algebraic curves,
see [5]. In the computations presented below, we use this way for verification.

The proposed method of obtaining division polynomials is based on the addition
and duplication laws, written in terms of the Mumford coordinates of n-torsion
divisors. As will be shown, defining n-torsion divisors on a genus g curve requires
not more than g polynomials. The number of polynomials decreases in the case of
even n, say n = 2k, when kD is a special divisor. Note, that kD produced from an
n-torsion divisor D is 2-torsion, if n = 2k.

For the sake of compact expressions, we work with a genus two curve C. Addition
on the Jacobian variety Jac(C) of such a curve is widely known, see [13, 16]. This
approach arises from Cantor’s algorithm, and uses Mumford’s representation of
divisors on a hyperelliptic curve f(x, y) = 0 by interpolation polynomials in x-
coordinate.

Below, the addition law is adopted from [8]. It is based on the theory of polyno-
mial functions on C, which form a ring P(C) = C[x, y]/f(x, y;λ). The structure of
the ring is closely connected to the field of ℘-functions associated with C. Polyno-
mial functions are composed of monomials in x, y arranged by the Sato weight. The
theory of polynomial functions on C contains an elegant technique which replaces
the mentioned interpolation polynomials, and makes the addition law explicit, and
easy to derive.

The paper is organized as follows. In Section 2 basic notions are recalled and
notations are introduced. In Section 3 the ring P(C) of polynomial functions on
a hyperelliptic curve C is described in detail; these functions are used to define
divisors, and implement addition and inversion on the curve. In Section 4 the
addition and duplication laws are derived by means of polynomial functions from
P(C). The cases of special divisors are also addressed. Section 5 is devoted to n-
torsion divisors, and derivation of division polynomials in the Mumford coordinates,
and x-, y-coordinates.

The method is illustrated by obtaining the division polynomials for 3- and 4-
torsion divisors. Computations of these division polynomials on a given curve, as
well as the corresponding torsion divisors, are implemented in Wolfram Mathemat-
ica 12, see https://community.wolfram.com/groups/-/m/t/3338527.

The proposed method can be easily extended to a hyperelliptic curve of any
genus, as well as to non-hyperelliptic curves.
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2. Preliminaries

2.1. Hyperelliptic curve of genus two. Let a genus two curve C be defined by
the equation

0 = f(x, y;λ) = −y2 + P(x)(1)

= −y2 + x5 + λ2x
4 + λ4x

3 + λ6x
2 + λ8x+ λ10,

which we call the canonical form, unlike [15], but according to the theory of multi-
variable σ-functions [10].

The canonical form of a plane algebraic curve C, also known as (n, s)-curve,
gcd(n, s) = 1, see [11], is the Weierstass canonical form described in [1, §§60–63].
Every (n, s)-curve is equipped with a unique modular-invariant, entire σ-function,
which has a representation as an analytic series in u ∈ Jac(C) and parameters λ
of C, see [10, Ch. 9]. The differential field of abelian functions generated from σ-
function, which we call ℘-functions, gives rise to an algebraic model of Jac(C), see
[10, Ch. 3], and the addition law on C, see [8].

We work over the field C of complex numbers, (x, y) ∈ C2; and assume that the
curve C defined by (1) is not degenerate, that is λ ∈ C5 \Dscr, where Dscr consists
of such λ that the genus of C reduces to 1 or 0. In more detail strata of the space
of parameters λ are described in [3].

The theory of σ- and ℘-functions associated with (n, s)-curves respects the Sato
weight, which shows the order of zero at infinity1. Due to the leading terms −y2 +
x5 with co-prime exponents, the curve (1) admits the following expansion about
infinity in a local parameter ξ:

x = ξ−2, y = ξ−5
(
1 + 1

2λ2ξ
2 + 1

2 (λ4 − 1
4λ

2
2)ξ4 + 1

2 (λ6 − 1
2λ2λ4 + 1

8λ
3
2)ξ6

+ 1
2 (λ8 − 1

2λ2λ6 −
1
2λ

2
4 + 3

8λ
2
2λ4 − 5

64λ
4
2)ξ8

+ 1
2 (λ10 − 1

2λ2λ8 −
1
2λ4λ6 + 3

8λ
2
2λ6 + 3

8λ2λ
2
4

− 5
16λ

3
2λ4 + 7

128λ
5
2)ξ10 +O(ξ12)

)
.

(2)

The negative exponents of leading terms show the Sato weights: wgtx = 2, wgt y= 5.
The weight introduces an order in the list of monomials in x and y:

(3)
weights: 0 2 4 5 6 7 8 9
M = { 1, x, x2, y, x3, yx, x4 yx2, . . . }

The absent weights {1, 3} form the Weierstras gap sequence of C.
Let holomorphic (or first kind) differentials du = (du1,du3)t be given in the

standard not normalized form:

du1 =
xdx

−2y
, du3 =

dx

−2y
.(4)

Note, that wgt duw = −w, and the weights coincide with the negative Weierstrasss
gap sequence. The Abel map is defined with respect to these differentials, with the
basepoint located at infinity, namely

A(P ) =

∫ P

∞
du, P = (x, y) ∈ C;

1The infinity point on an (n, s)-curve is a Weierstrass point, and a branch point where all n
sheets wind.
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A(D) =

n∑
k=1

A(Pk), D =

n∑
k=1

Pk ∈ Cn.

Let a1, b1, a2, b2 form a canonical homology basis. Not normalized first kind
period matrices are defined by

ω = (ωi,j) =

(∫
aj

dui

)
, ω′ = (ω′i,j) =

(∫
bj

dui

)
,(5)

and generate the period lattice {ω, ω′}, which introduces a polarization on the
Jacobian variety Jac(C) = C2 /{ω, ω′}. Similarly to (5), second kind period matrices
are defined:

η = (ηij) =

(∫
aj

dri

)
, η′ = (η′ij) =

(∫
bj

dri

)
,(6)

from second kind differentials dr = (dr1,dr3)t associated with the first kind differ-
entials du, see [1, Art. 138]. Namely,

dr1 =
x2dx

−2y
, dr3 =

(
3x3 + 2λ2x

2 + λ4x
) xdx

−2y
.

Let D2 = (x1, y1) + (x2, y2) be a non-special divisor on C. The Abel image
A(D2) ≡ u = (u1, u3)t is computed by

u =

∫ (x1,y1)

∞
du+

∫ (x2,y2)

∞
du.(7)

The not normalized coordinates u = (u1, u3)t serve as an argument of σ-, and
℘-functions. Normalization, which is employed by θ-function, is reached as follows

(8) v = ω−1u, τ = ω−1ω′,

where v is a vector of normalized coordinates of Jac(C), and τ belongs to the Siegel
space of order 2.

2.2. Entire functions. Let the Riemann θ-function on C2 ⊃ Jac(C) be defined by

θ(v; τ) =
∑
n∈Z2

exp
(
ıπntτn+ 2ıπntv

)
.(9)

Let a θ-function with characteristic [ε] = (ε′, ε)t be defined by

(10) θ[ε](v; τ) = exp
(
ıπ(ε′tτε′ + 2ıπ(v + ε)t(ε′)

)
θ(v + ε+ τε′; τ),

where [ε] is a 2× g matrix composed of two 2-component vectors ε′ and ε with real
entries within the interval [0, 1).

According to [9, Eq.(2.3)], σ-function is related to θ-function as follows

(11) σ(u) = C exp
(
− 1

2u
tκu

)
θ[K](ω−1u;ω−1ω′),

where [K] denotes the characteristic of the vector K of Riemann constants, a sym-
metric matrix κ = ηω−1 is obtained from the second kind period matrix η defined
by (6), and the constant C does not depend of u.

The origin u = 0 of Jac(C) is the Abel image of infinity on C, which also serves as
the neutral point. Every point u in the fundamental domain of Jac(C) is represented
by its characteristic [ε], namely

(12) u[ε] = ωε+ ω′ε′.
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2.3. Uniformization of the curve. Every class of equivalent divisors on C has a
representative P1 + P2 − 2∞, and P1, P2 are not in involution, that is P2 6= −P1.
Such a representative is called a reduced divisor. Since the poles are located at
infinity, which serves as the basepoint, it is convenient to define every reduced
divisor by its positive part, as follows

• non-special D2 = (x1, y1) + (x2, y2) of degree 2,
• special D1 = (x1, y1) +∞ of degree 1
• neutral O = 2∞ of degree 0, u(2∞) = 0.

Let C2 be a collection of all degree 2 non-special divisors. As mentioned in Intro-
duction, we denote by (σ)0 = {u ∈ Jac(C) | σ(u) = 0} the theta divisor. Then
A(C2) = Jac(C)\(σ)0.

Uniformization of C is given in terms of ℘-functions, known as multiply periodic
after [2], and Kleinian after [9]. Actually,

℘i,j(u) = −∂
2 log σ(u)

∂ui∂uj
, ℘i,j,k(u) = − ∂

3 log σ(u)

∂ui∂uj∂uk
, etc.

Meromorphic functions ℘i,j , ℘i,j,k, and all higher derivatives are {ω, ω′}-periodic.

Proposition 1 (The Jacobi inversion problem). [1, § 216] Given u ∈ Jac(C)\(σ)0,
the Abel pre-image of u is a non-special divisor D2 = (x1, y1) + (x2, y2) with coor-
dinates uniquely defined by the system

(13) R4(x;u) = 0, R5(x, y;u) = 0,

where u = A(D2),

R4(x;u) ≡ x2 − x℘1,1(u)− ℘1,3(u),

R5(x, y;u) ≡ y + 1
2x℘1,1,1(u) + 1

2℘1,1,3(u).
(14)

In other words, D2 is a common divisor of zeros of the two polynomial functions
R4, R5 on the curve C.

Proposition 2. R4, R5 defined by (14) on the common divisor of zeros are con-
nected by the relation

(15) R5(xi, yi;u) = −∂u1
R4(xi;u), i = 1, 2.

Proof. If D2 = (x1, y1) + (x2, y2) is a common divisor of zeros of R4, R5, then
R4(xi;u) = 0, i = 1, 2. Differentiating with respect to u1, and taking into account
that the Jacobian matrix of A−1 : C2 → Jac(C)\(σ)0 has the entries

∂x1
∂u1

=
−2y1
x1 − x2

,
∂x2
∂u1

=
2y2

x1 − x2
,

∂x1
∂u3

=
2x2y1
x1 − x2

,
∂x2
∂u3

=
−2x1y2
x1 − x2

,(16)

we immediately obtain (15). �

Remark 1. In general, R4, R5 from Proposition 1 have the form

R4(x) = x2 + α2x+ α4, R5(x, y) = y + β3x+ β5.(17)

Let D2 = (x1, y1) + (x2, y2) be the common divisor of zeros of R4 and R5, then

α2 = −(x1 + x2) = −℘1,1(u), α4 = x1x2 = −℘1,3(u),(18a)

β3 = − y1 − y2
x1 − x2

= 1
2℘1,1,1(u), β5 =

x2y1 − x1y2
x1 − x2

= 1
2℘1,1,3(u).(18b)
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Actually, α2, α4, −β3, −β5 are known as the Mumford coordinates, and the pair
of polynomials in x: R4(x), y−R5(x, y), are the first two from the triple of Mum-
ford’s representation of D2. In what follows, we call α2, α4, β3, β5 the Mumford
coordinates, for simplicify. Instead of Mumford’s representation, we use polynomial
functions R4, R5, which are sufficient to define any divisor from C2 uniquely.

From [9, Theorem 3.2] we have the fundamental cubic relations on C. After
eliminating ℘3,3(u) an algebraic model of Jac(C)\(σ)0 is obtained.

Proposition 3. Given u ∈ Jac(C)\(σ)0, the following identities define Jac(C)\(σ)0:

1
2℘1,1,1(u)℘1,1,3(u) + 1

4℘1,1(u)℘2
1,1,1(u) = 2℘2

1,1(u)℘1,3(u)

+ ℘2
1,3(u) + 2λ2℘1,1(u)℘1,3(u) + λ4℘1,3(u) + λ8

+ ℘1,1(u)
(
℘1,1(u)3 + ℘1,1(u)℘1,3(u) + λ2℘1,1(u)2 + λ4℘1,1(u) + λ6

)
,

1
4℘1,1,3(u)2 + 1

4℘1,3(u)℘2
1,1,1(u) = ℘1,1(u)℘1,3(u)2 + λ2℘1,3(u)2 + λ10

+ ℘1,3(u)
(
℘1,1(u)3 + ℘1,1(u)℘1,3(u) + λ2℘1,1(u)2 + λ4℘1,1(u) + λ6

)
.

(19)

This model is used in [20, Theorem 2.8]. The four functions ℘1,1, ℘1,3, ℘1,1,1,
℘1,1,3, which arise from (14), serve as coordinates on Jac(C)\(σ)0. The differential
field of meromorphic functions on Jac(C)\(σ)0 is C[℘1,1, ℘1,3, ℘1,1,1, ℘1,1,3], that
is, consists of polynomial expressions in these four functions, see [12]. For example,

℘1,3,3(u) = ℘1,3(u)℘1,1,1(u)− ℘1,1(u)℘1,1,3(u),(20a)

℘1,1,1,1(u) = 6℘1,1(u)2 + 4℘1,3(u) + 4λ2℘1,1(u) + 2λ4,(20b)

℘1,1,1,3(u) = 6℘1,3(u)℘1,1(u)− 2℘3,3(u) + 4λ2℘1,3(u),(20c)

℘3,3(u) = 1
4℘1,1,1(u)2 − ℘1,1(u)3 − ℘1,3(u)℘1,1(u)(20d)

− λ2℘1,1(u)2 − λ4℘1,1(u)− λ6.

According to Proposition 1, the map

u 7→
(
℘1,1(u), ℘1,3(u), ℘1,1,1(u), ℘1,1,3(u)

)
=
(
−α2, −α4, 2β3, 2β5

)
takes u ∈ Jac(C)\(σ)0 to C2. In terms of the Mumford coordinates, (19) acquire
the form

J8(α2, α4, β3, β5;λ) ≡ 2β3β5 − α2
2α4 − α2

4 + λ4α4 − λ8
− α2

(
β2
3 + α3

2 − 4α2α4 + λ2(2α4 − α2
2) + λ4α2 − λ6

)
= 0,

J10(α2, α4, β3, β5;λ) ≡ β2
5 − 2α2α

2
4 + λ2α

2
4 − λ10

− α4

(
β2
3 + α3

2 − 4α2α4 + λ2(2α4 − α2
2) + λ4α2 − λ6

)
= 0.

(21)

3. Polynomial functions on a curve

Since the base point is fixed at infinity, divisors are described by means of poly-
nomial functions on C, which form a ring P(C) = C[x, y]/f(x, y;λ). Recall, that
each divisor is represented by its positive part.

Let Rw be a polynomial function of weight w from P(C). The divisor of zeros
(Rw)0 is of degree w, and defined by the system

(22) Rw(x, y) = 0, f(x, y;λ) = 0.
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Polynomial functions are constructed from monomials xiyj , arranged ascendingly
by the Sato weight into an ordered list M, see for example (3) in the case of a genus
two curve.

Proposition 4. A polynomial function Rw of weight w is constructed from mono-
mials {mw̃ ∈M | w̃ 6 w}, namely

Rw(x, y) =
∑
w̃6w

cw̃mw̃.

Proposition 5. A polynomial function Rw of weight w > 2g on a genus g curve C
is uniquely defined by a positive divisor Dw−g of degree w − g such that Dw−g ⊂
(Rw)0, and Dw−g contains no groups of points in involution (repeated points are
allowed). The function Rw is constructed as a linear combination of the first w−
g + 1 monomials from the ordered list M.

Proof. If w > 2g, there exist w− g + 1 such monomials, since g weights between 0
and 2g− 1 belong to the Weierstrass gap sequence. A monic polynomial composed
as a linear combination of monomials of weights up to w has w − g degrees of
freedom. Thus, a positive divisor Dw−g =

∑w−g
k=1 (xk, yk) with no groups of points

in involution defines Rw uniquely. Indeed, Rw is constructed from Dw−g with all
distinct points as follows

(23a) Rw(x, y) =

∣∣∣∣∣∣∣∣
mw(x, y) mw−1(x, y) . . . m0(x, y)
mw(x1, y1) mw−1(x1, y1) . . . m0(x1, y1)

...
. . .

...
mw(xw−g, yw−g) mw−1(xw−g, yw−g) . . . m0(xw−g, yw−g)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
mw−1(x1, y1) . . . m0(x1, y1)

...
. . .

...
mw−1(xw−g, yw−g) . . . m0(xw−g, yw−g)

∣∣∣∣∣∣∣
.

If some points coincide, say Pi = P1, i = 2, . . .n, then row i+ 1 in the numerator
and row i in the denominator of (23a) are replaced with

(23b)
( di−1

dxi−1
mw̃(x, y(x))

∣∣∣ x=x1

y(x1)=y1

)
.

Therefore, the determinant formula (23) produces a monic function, which rep-
resents Rw with Dw−g ⊂ (Rw)0 uniquely. �

Corollary 1. On a genus g hyperelliptic curve, Rw of weights w 6 2g are polyno-
mials in x only, and have even weights w = 2k, k 6 g. Moreover, R2k is uniquely
defined by a set of distinct {xi | i = 1, . . . k}, namely

R2k(x) =

k∏
i=1

(x− xi),

and (Rw)0 consists of pairs of points connected by involution:

(R2k)0 =
∑k

i=1

((
xi, y(xi)) + (xi,−y(xi))

)
.

Proof. The Weierstrass gap sequence on a hyperelliptic curve of genus g has the
form W = {2i − 1 | i = 1, . . . g}, and monomials of weights w 6 2g have the form
xk, 0 6 k 6 g. Thus, there exist no polynomial functions of odd weights w = 2i−1,
i = 1, . . . , g, and all functions of weights w 6 2g are polynomials in x only. �
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Corollary 2. Let Rw be a polynomial function of weight w > 2g on a hyperelliptic
curve of genus g, and Dw−g ⊂ (Rw)0 with degDw−g = w− g. Then

• Rw is indecomposable, if Dw−g contains no pairs of points connected by
involution,
• Rw has a factor (x − xi), if Dw−g contains a pair of points connected by

involution: (xi, yi), (xi,−yi).

Proof. Suppose, Dw−g contains a pair of points connected by involution, say P1 =
(x1, y1), P2 = (x1,−y1). We use the formula (23) to construct Rw. In the numer-
ator we do the following operations with rows 2 and 3:

(mw̃(x1, y1)) 7→ (mw̃(x1, y1) + mw̃(x1,−y1)),

(mw̃(x1,−y1)) 7→ (mw̃(x1,−y1)−mw̃(x1, y1))

Then the first three rows acquire the form∣∣∣∣∣∣∣∣∣
1 x . . . xg y xg+1 yx . . . xk+g+1 yxk . . .

2 2x1 . . . 2xg1 0 2xg+1
1 0 . . . 2xk+g+1

1 0 . . .
0 0 . . . 0 −2y1 0 −2y1x1 . . . 0 −2y1x

k
1 . . .

...
...

...
...

...
...

...
...

...
...

...

∣∣∣∣∣∣∣∣∣ ∼

−4y1

∣∣∣∣∣∣∣∣∣
1 x . . . xg y xg+1 yx . . . xk+g+1 yxk . . .

1 x1 . . . xg1 0 xg+1
1 0 . . . xk+g+1

1 0 . . .
0 0 . . . 0 1 0 x1 . . . 0 xk1 . . .
...

...
...

...
...

...
...

...
...

...
...

∣∣∣∣∣∣∣∣∣ .
Subtracting row 2, and row 3 multiplied by y from row 1, we extract the common
multiple (x− x1), which represents the pair of points in involution. �

Inversion and addition of divisors are conveniently implemented by means of
polynomial functions from P(C), see [8].

Theorem 1. The inversion of a non-special divisor Dg of degree g on a curve of
genus g is defined by the polynomial function R2g of weight 2g with Dg ⊂ (R2g)0.

Proof. Let a degree g divisor D∗g be the complement of Dg in (R2g)0, that is
(R2g)0 = Dg + D∗g . Since (R2g)0 ∼ 2g∞ = O, D∗g serves as the inverse of Dg,
that is D∗g = −Dg. �

Theorem 2. The inversion of a special divisor Dk of degree k < g on a hyperelliptic
curve of genus g is defined by the polynomial function R2k of weight 2k with Dk ⊂
(R2k)0.

Proof. Let Dk =
∑k

k=1(xk, yk). From this divisor a polynomial function is con-
structed as a linear combination of the first k monomials from the ordered list M.
Such monomials are 1, x, . . . , xk−1, if the curve is hyperelliptic. Thus, we obtain a
funciton R2k of weight 2k, which is a polynomial in x only; and the complement of
Dk is −Dk, as follows from Corollary 1. �

Theorem 3. The addition of two degree g non-special divisors Dg, D̃g on a curve

of genus g is defined by the polynomial function R3g of weight 3g with Dg + D̃g ⊂
(R3g)0.
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Proof. The required function R3g is constructed from Dg and D̃g, according to

Proposition 5. Then the complement divisor D∗g such that Dg + D̃g +D∗g = (R3g)0

is the inverse of Dg + D̃g, and so −D∗g is the reduced divisor equivalent to the sum

Dg + D̃g. �

Theorem 4. The addition of two divisors Dm, Dn of degrees m and n on a hy-
perelliptic curve of genus g is defined by the polynomial function Rm+n+g of weight
m+ n+ g with Dm +Dn ⊂ (R3g)0, if m+ n > g and Dm +Dn contains no points
in involution.

A proof is similar to the proof of Theorem 3.

Theorem 5. A non-special divisor Dg of degree g on a hyperelliptic curve of genus
g is uniquely defined by a pair of functions R2g, R2g+1.

Proof. The function R2g is defined by x-coordinates of the support of Dg. The
same divisor Dg can be used to construct R2g+1, according to Proposition 5, with
an addition condition: the coefficient of monomial m2g vanishes. Such a pair of
functions define a solution of the Jacobi inversion problem, see Proposition 1. �

Remark 2. If the two functions R2g, R2g+1 define Dg, then (R2g)0 =Dg + D∗g ,
where D∗g = −Dg, and (R2g+1)0 = Dg + Dg+1. We also have −Dg + (−Dg+1) =

(R−2g+1)0, where R−2g+1 denotes the function R2g+1(x,−y).

4. Addition and duplication

Below, the addition and duplication laws are derived according to [8].

4.1. Addition law. Addition of two degree 2 non-special divisors is defined by a
polynomial function of weight 6, which has the form

R6(x, y) = x3 + γ1y + γ2x
2 + γ4x+ γ6.

Let R6 be defined by D4 ⊂ (R6)0 such that D4 = D2P +D2Q = (P1 +P2) + (Q1 +
Q2) without repeated2 points, see Proposition 5. According to Proposition 1 and

Remark 1, let D2A be defined by R[A]
4 and R[A]

5 with Mumford coordinates α
[A]
2 ,

α
[A]
4 , β

[A]
3 , β

[A]
5 , where A stands for P , or Q.

With A = P , Q we have the equality

(24) R6(x, y) = γ1R[A]
5 (x, y) + (x− α[A]

2 + γ2)R[A]
4 (x) ≡ S

[A]
4 x+ S

[A]
6 ,

which introduces S
[A]
4 , S

[A]
6 as polynomials in α

[A]
2 , α

[A]
4 , β

[A]
3 , β

[A]
5 , and coefficients

γk of R6. Since R6 vanishes on D2P and D2Q, we obtain four equations, which are
linear in γk, and admit the matrix form

S
[P ]
6

S
[P ]
4

S
[Q]
6

S
[Q]
4

 ≡


1 0 −α[P ]
4 −β[P ]

5

0 1 −α[P ]
2 −β[P ]

3

1 0 −α[Q]
4 −β[Q]

5

0 1 −α[Q]
2 −β[Q]

3



γ6
γ4
γ2
γ1

+


α
[P ]
2 α

[P ]
4

(α
[P ]
2 )2 − α[P ]

4

α
[Q]
2 α

[Q]
4

(α
[Q]
2 )2 − α[Q]

4

 = 0.(25)

2There is no n-torsion divisors which contain repeated points. See the definition of an n-torsion
divisor in the next section.



10 J BERNATSKA

Solving (25), we find(
γ2
γ1

)
=

(
α
[P ]
4 − α[Q]

4 β
[P ]
5 − β[Q]

5

α
[P ]
2 − α[Q]

2 β
[P ]
3 − β[Q]

3

)−1(
α
[P ]
2 α

[P ]
4 − α[Q]

2 α
[Q]
4

(α
[P ]
2 )2 − (α

[Q]
2 )2 − α[P ]

4 + α
[Q]
4

)
,(26a)

(
γ6
γ4

)
=

(
α
[P ]
4 β

[P ]
5

α
[P ]
2 β

[P ]
3

)(
γ2
γ1

)
−

(
α
[P ]
2 α

[P ]
4

(α
[P ]
2 )2 − α[P ]

4

)
.(26b)

Formulas (26) define R6 in terms of α
[A]
2 , α

[A]
4 , β

[A]
3 , β

[A]
5 with A = P , Q.

Let D∗2 be a divisor of degree 2 such that (R6)0 = D2P +D2Q +D∗2 . According
to Remark 1, we define D∗2 by the two polynomial functions

R∗4(x) = x2 + α∗2x+ α∗4, R∗5(x, y) = y + β∗3x+ β∗5 .

Recalling that (R6)0 is defined by a system of the form (22), we have

(27) −γ21f(x, yR6
;λ) = R[P ]

4 (x)R[Q]
4 (x)R∗4(x),

where yR6
is obtained from R6(x, yR6

) = 0, namely

yR6
= −γ−11

(
x3 + γ2x

2 + γ4x+ γ6
)
.

Coordinates α∗2, α∗4 are computed from coefficients of x5 and x4 in (27). Then R∗5
is derived from (24), since R6 vanishes on D∗2 as well, namely

(28) R∗5(x, y) = γ−11

(
R6(x, y)− (x+ γ2 − α∗2)R∗4(x)

)
.

This produces coordinates β∗3 , β∗5 .

Finally, let D̃2 ≡ −D∗2 , and so D̃2 ∼ D2P + D2Q, that is D̃2 is the reduced

divisor equivalent to D2P +D2Q. Then D̃2 is defined by the Mumford coordinates

α
[P+Q]
2 = α∗2 = −α[P ]

2 − α[Q]
2 + 2γ2 − γ21 ,

α
[P+Q]
4 = α∗4 = −α[P ]

4 − α[Q]
4 +

(
α
[P ]
2

)2
+ α

[P ]
2 α

[Q]
2 +

(
α
[Q]
2

)2
−
(
α
[P ]
2 + α

[Q]
2

)(
2γ2 − γ21

)
+ 2γ4 + γ22 − λ2γ21 ,

(29a)

β
[P+Q]
3 = −β∗3 = −γ−11

(
(α

[P+Q]
2 )2 − α[P+Q]

4 − γ2α[P+Q]
2 + γ4

)
,

β
[P+Q]
5 = −β∗5 = −γ−11

(
α
[P+Q]
2 α

[P+Q]
4 − γ2α[P+Q]

4 + γ6
)
.

(29b)

4.2. Addition law on special divisors. The case of adding a special divisor

D1Q = Q1 = (x
[Q]
1 , y

[Q]
1 ) to a non-special divisors D2P = P1 + P2 can be obtained

from the above formulas (29) by taking the limit as Q2 → ∞, that is by applying

the parametrization (2) to (x
[Q]
2 , y

[Q]
2 ) and taking the limit as ξ → 0. As a result,

the following formulas are obtained (x
[Q]
1 ≡ xQ, y

[Q]
1 ≡ yQ):

α
[P+Q]
2 = −α[P ]

2 + xQ + λ2 − γ21 ,

α
[P+Q]
4 = −α[P ]

4 + (α
[P ]
2 )2 + (xQ − α[P ]

2 )
(
xQ + λ2 − γ21

)
+ λ4 − 2γ1γ3,

β
[P+Q]
3 = γ1α

[P+Q]
2 − γ3,

β
[P+Q]
5 = γ1α

[P+Q]
4 − γ5,

(30)

where

γ1 = − yQ + xQβ
[P ]
3 + β

[P ]
5

x2Q + xQα
[P ]
2 + α

[P ]
4

,
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γ3 =
−yQα[P ]

2 + x2Qβ
[P ]
3 + α

[P ]
4 β

[P ]
3 − α[P ]

2 β
[P ]
5

x2Q + xQα
[P ]
2 + α

[P ]
4

,

γ5 =
−yQα[P ]

4 + x2Qβ
[P ]
5 − xQ(α

[P ]
4 β

[P ]
3 − α[P ]

2 β
[P ]
5 )

x2Q + xQα
[P ]
2 + α

[P ]
4

.

After taking the limit of (30) as P2 →∞ in a similar way, we obtain formulas for
the Mumford coordinates of the sum of two special divisors: D1P = P1 = (xP , yP )
and D1Q = Q1 = (xQ, yQ), which, evidently, coincide with (18):

α
[P+Q]
2 = −xP − xQ, α

[P+Q]
4 = xPxQ,

β
[P+Q]
3 = − yP − yQ

xP − xQ
, β

[P+Q]
5 =

xQyP − xP yQ
xP − xQ

.

4.3. Duplication law. We are also interested in duplication: D4 = 2D2, when
D2P = D2Q = D2. Let D2 = (x1, y1) + (x2, y2), and α2, α4, β3, β5 be defined by
(18). In this case, the system of equations for γk has the form

S6 = 0, S4 = 0, dx1,x2S6 = 0, dx1,x2S4 = 0,(31)

where dx1,x2
=

d

dx1
+

d

dx2
. We denote

α′2 = dx1,x2
α2 = −2, α′4 = dx1,x2

α4 = x1 + x2,

β′3 = dx1,x2
β3 = − y

′
1 − y′2
x1 − x2

, β′5 = dx1,x2
β5 =

y′1x2 − y′2x1
x1 − x2

+
y1 − y2
x1 − x2

,
(32)

where y′i, i = 1, 2, are computed by

y′i = lim
(x,y)→(xi,yi)

−∂xf(x, y;λ)

∂yf(x, y;λ)
=
P ′(xi)

2yi
.

By taking into account that α′4 = −α2, and β′5 =
y′
1x2−y′

2x1

x1−x2
− β3, the system of

equations (31) is reduced to the following matrix form
1 0 −α4 −β5
0 1 −α2 −β3
0 1 0 −β′5 − β3
0 0 2 −β′3



γ6
γ4
γ2
γ1

+


α2α4

α2
2 − α4

−3α4

−3α2

 = 0.(33)

A solution of (33) is given by(
γ2
γ1

)
=

1

2β′5 − α2β′3

(
3α2β

′
5 −

(
α2
2 + 2α4

)
β′3

α2
2 − 4α4

)
,(34a) (

γ6
γ4

)
=

(
α4 β5
α2 β3

)(
γ2
γ1

)
−
(

α2α4

α2
2 − α4

)
,(34b)

or in terms of coordinates
γ6
γ4
γ2
γ1

 =


− 1

2x1x2(x1 + x2)
3x1x2

− 3
2 (x1 + x2)

0

+
(x1 − x2)2

(y′1 + y′2)(x1 − x2)− 2(y1 − y2)
×(35)
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×


− 1

2x1x2(y′1 − y′2) + x2y1 − x1y2
−(x2y

′
1 − x1y′2)

1
2 (y′1 − y′2)
−(x1 − x2)

 .

Finally, the reduced divisor D̃2 ∼ 2D2Q is defined by

α
[2Q]
2 = −2α

[Q]
2 + 2γ2 − γ21 ,

α
[2Q]
4 = −2α

[Q]
4 + 3

(
α
[Q]
2

)2 − 2α
[Q]
2

(
2γ2 − γ21

)
+ 2γ4 + γ22 − λ2γ21 ,

(36a)

β
[2Q]
3 = −γ−11

(
(α

[2Q]
2 )2 − α[2Q]

4 − γ2α[2Q]
2 + γ4

)
,

β
[2Q]
5 = −γ−11

(
α
[2Q]
2 α

[2Q]
4 − γ2α[2Q]

4 + γ6
)
,

(36b)

where α
[Q]
2 ≡ α2, α

[Q]
4 ≡ α4, β

[Q]
3 ≡ β3, β

[Q]
5 ≡ β5.

4.4. The case of D4 ∼ D1. The case of D2P +D2Q∼D1, when the result of
addition is a special divisor D1 = (xP+Q, yP+Q), deserves special consideration. In
this case, addition is implemented through a polynomial function of weight 5 of the
form

R̃5(x, y) = y + γ1x
2 + γ3x+ γ5,

whose divisor of zeros is composed of D2P , D2Q, and D∗1 such that D∗1 = −D1.
With A = P , Q we have the equality

R̃5(x, y) = R[A]
5 (x, y) + γ1R[A]

4 (x) ≡ S
[A]
3 x+ S

[A]
5 ,

where

S
[A]
3 = γ3 − α[A]

2 γ1 − β[A]
3 , S

[A]
5 = γ5 − α[A]

4 γ1 − β[A]
5 .

The overdetermined system

(37) S
[P ]
3 = 0, S

[P ]
5 = 0, S

[Q]
3 = 0, S

[Q]
5 = 0

is consistent, and produces the condition

(38) γ1 = −β
[P ]
3 − β[Q]

3

α
[P ]
2 − α[Q]

2

= −β
[P ]
5 − β[Q]

5

α
[P ]
4 − α[Q]

4

,

which singles out pairs of divisors D2P , D2Q whose sum is equivalent to a special
divisor D1. This condition causes vanishing the denominator in (26). From the
system (37) we also find

γ3 = −α
[Q]
2 β

[P ]
3 − α[P ]

2 β
[Q]
3

α
[P ]
2 − α[Q]

2

, γ5 = β
[P ]
5 − α[P ]

4

β
[P ]
3 − β[Q]

3

α
[P ]
2 − α[Q]

2

.(39)

Finally, with the help of the equality yR̃5
=−

(
γ1x

2 + γ3x+ γ5
)

used in

f(x, yR̃5
;λ) = R[P ]

4 (x)R[Q]
4 (x)

(
x− xP+Q

)
,

we obtain

xP+Q = α
[P ]
2 + α

[Q]
2 + γ21 − λ2,

yP+Q = γ1x
2
P+Q + γ3xP+Q + γ5.

(40)
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In the case of duplication 2D2Q ∼ D1, which leads to a special divisor D1 =
(x2Q, y2Q), we replace the system (37) with

(41) S
[Q]
3 = 0, S

[Q]
5 = 0, dx1,x2S

[Q]
3 = 0, dx1,x2S

[Q]
5 = 0,

and obtain the condition

(42) 2β′5
[Q] = α2

[Q]β′3
[Q], or

1

2
(y′1 + y′2) =

y1 − y2
x1 − x2

,

which singles out such D2Q that 2D2Q ∼ D1. Then we find expressions for γk:

γ1 = 1
2β
′
3
[Q], γ3 = 1

2

(
2β

[Q]
3 + α

[Q]
2 β′3

[Q]
)
, γ5 = 1

2

(
2β

[Q]
5 + α

[Q]
4 β′3

[Q]
)
.(43)

Finally, we find coordinates of the resulting divisor D1:

x2Q = 2α
[Q]
2 + γ21 − λ2,

y2Q = γ1x
2
2Q + γ3x2Q + γ5.

(44)

5. Torsion divisors

Let D ∈ C2 be a reduced divisor, special or non-special. We say that D is an
n-torsion divisor, if nD ∼ O, where O = 2∞ denotes the neutral divisor, and
D generates a cyclic group of order n: Cn = 〈O,D〉. This definition implies the
following criterion.

Theorem 6. A divisor D ∈ C2 is n-torsion when the following holds

(i) (k + 1)D ∼ −kD, if n = 2k + 1; or
(ii) kD ∼ −kD, if n = 2k.

Remark 3. n-Torsion divisors are the Abel pre-images of points of order n on
Jac(C), that is, of u[ε] ∈ Jac(C) computed by (12) from characteristics [ε] of order
n. of such u[ε]. An example of computations of 2-, 3- and 4-torsion divisors on
a genus four curve is implemented in Wolfram Mathematica 12, and can be found
at https://community.wolfram.com/groups/-/m/t/3314103. This example, as
well as computations on a genus two curve, shows that n-torsion divisors are non-
special, except the case of n = 2.

Condition (i) in Theorem 6 implies

α
[(k+1)D]
2 = α

[kD]
2 , α

[(k+1)D]
4 = α

[kD]
4 .(45)

Relations for β-coordinates in this case are trivial.
Condition (ii) implies that kD is 2-torsion, that is

β
[kD]
3 = −β[kD]

3 = 0, β
[kD]
5 = −β[kD]

5 = 0,(46)

if kD is non-special. If kD is special, then kD ∼ (xkD, ykD), and instead of (46)
we have

ykD = −ykD = 0.(46’)

Relations for α-coordinates in case (ii) are trivial. Equations (45) and (46) written

in terms of α
[D]
2 , α

[D]
4 , β

[D]
3 , β

[D]
5 can be considered as division polynomials in

Mumford coordinates.
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5.1. 2-Torsion divisors. 2-Torsion divisors are defined by the condition yi = 0,
which implies that xi are x-coordinates of branch points. That is, 2-torsion divisors
are Abel pre-images of half-periods on Jac(C). Among fifteen 2-torsion divisors, ten
are composed of two finite branch points, and correspond to even characteristics.
The remaining five 2-torsion divisors are composed of infinity and one finite branch
point, and correspond to odd characteristics.

5.2. 3-Torsion divisors. Let D2Q = (x1, y1)+(x2, y2) be a 3-torsion divisor, which
means that 2D2Q ∼ −D2Q. Note, that all 3-torsion divisors are non-special. From
(45) we find the criterion

α
[2Q]
2 = α

[Q]
2 , α

[2Q]
4 = α

[Q]
4 .(47)

Applying the duplication law (36), we obtain the equations which define 3-torsion

divisors in terms of Mumford coordinates (α
[Q]
2 ≡ α2, α

[Q]
4 ≡ α4):

3α2 = 2γ2 − γ21 ,
3α4 = 3α2

2 − 2α2

(
2γ2 − γ21

)
+ 2γ4 + γ22 − λ2γ21 ,

(48)

where parameters γk are defined by (35).
Therefore, all pairs of points (x1, y1), (x2, y2) which form 3-torsion divisors can

be obtained from (48), subject to f(x1, y1;λ) = 0, f(x2, y2;λ) = 0. Substituting
(35) and (18), we rewrite these equations in terms of coordinates:

(y′1 − y′2)
(

(y′1 + y′2)(x1 − x2)− 2(y1 − y2)
)
− (x1 − x2)4 = 0,

−
(
x2(y′1)2 − x1(y′2)2

)
(x1 − x2) + 2

(
x1y
′
1 − x2y′2

)
(y1 − y2)

− 3(y1 − y2)2 − (2x1 + 2x2 + λ3)(x1 − x2)4 = 0,

or

Y(x1, y1;x2, y2) ≡ y1y2
(
P ′(x1)P(x2) + P ′(x2)P(x1)

)
(49a)

+ 1
4 (x1 − x2)

(
P ′(x1)2P(x2)− P ′(x2)2P(x1)

)
− P(x1)P(x2)

(
P ′(x1) + P ′(x2) + (x1 − x2)4

)
= 0,

y1y2
(
6P(x1)P(x2)− x1P ′(x1)P(x2)− x2P ′(x2)P(x1)

)
(49b)

− 1
4 (x1 − x2)

(
x2P ′(x1)2P(x2)− x1P ′(x2)2P(x1)

)
+ P(x1)P(x2)

(
x1P ′(x1)− 3P(x1) + x2P ′(x2)− 3P(x2)

− (2x1 + 2x2 + λ2)(x1 − x2)4
)

= 0.

Finally, we eliminate y1y2 from these two equations, and cancel the common factor
(x1 − x2)4, namely

(50) X (x1, x2) ≡ −1

4

(
P(x2)2P ′(x1)T (x1)2 + P(x1)2P ′(x2)T (x2)2

)
+

1

2

P(x2)3T (x1)2 − P(x1)3T (x2)2

(x1 − x2)
− 1

4

(
P(x1)− P(x2)

x1 − x2

)5

+
3

4

P(x2)2T (x1) + P(x1)2T (x2)

(x1 − x2)

(
P(x1)− P(x2)

x1 − x2

)2

− P(x1)P(x2)
P(x2)P ′(x1)− P(x1)P ′(x2)

x1 − x2

(
T (x1) + T (x2)

x1 − x2

)
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+ P(x1)P(x2)
(
−6P(x1)P(x2) + x1P(x2)P ′(x1) + x2P(x1)P ′(x2)

+
(
P(x2)P ′(x1) + P(x1)P ′(x2)

)
(2x1 + 2x2 + λ2)

)
= 0,

where

T (xi) =
P(x1)− P(x3)− P ′(xi)(x1 − x3)

(x1 − x3)2

=
1

x1 − x2

(
x41 + x31x2 + x21x

2
2 + x1x

3
3 + x42 − 5x4i

+ λ2
(
x31 + x21x2 + x1x

2
2 + x32 − 4x3i

)
+ λ4

(
x21 + x1x2 + x23 − 3x2i

)
+ λ6(x1 + x2 − 2xi)

)
,

which is a polynomial, as follows from the series expansion of P about xi. By direct
computations, one can verify that the following functions are polynomials

T (x1) + T (x2)

x1 − x2
,
P(x2)2T (x1) + P(x1)2T (x2)

x1 − x2
,
P(x2)3T (x1)2 − P(x1)3T (x2)2

x1 − x2
.

The polynomial X in (50) has weight 40, and vanishes on 40 pairs {x1, x2}. In
the system (49) we replace (49b) with (50),

Theorem 7. The polynomials X and Y defined by (50) and (49a) on a curve C
defined by (1) single out the collection of 3-torsion divisors, which are Abel pre-
images of u[ε] ∈ Jac(C) with characteristics [ε] of order 3.

5.3. 4-Torsion divisors. There exist 240 characteristics of order 4 excluding half-
integer characteristics. Let E denote the set of these 240 characteristics. Each
characteristic of E produces a 4-torsion divisor D2Q = (x1, y1) + (x2, y2), which is
non-special. We split E into two parts:

• Enon-spec = {[ε] ∈ E | A−1(u[2ε]) =D2, degD2 = 2} of cardinality 160, the

divisorD2 ∼ 2D2Q is characterized by its Mumford coordinates α
[2Q]
2 , α

[2Q]
4 ,

β
[2Q]
3 , β

[2Q]
5 ;

• Espec = {[ε] ∈ E | A−1(u[2ε]) =D1, degD1 = 1} of cardinality 80, the divi-
sor D1 ∼ 2D2Q is characterized by x-, y-coordinates: D1 = (x2Q, y2Q).

Divisors D2Q produced from characteristics of Enon-spec satisfy the conditions

β
[2Q]
3 = 0, β

[2Q]
5 = 0,(51)

obtained from (46). In the Mumford coordinates of D2Q the equalities (51) acquire

the form (α
[Q]
2 ≡ α2, α

[Q]
4 ≡ α4)

− 2α4 − α2
2 +

(
2α2 − γ2 + γ21

)(
γ2 − γ21

)
+ γ21

(
γ2 − λ2

)
+ γ4 = 0,(

−2α4 + (3α2 − γ2)(α2 − γ2) + γ21(2α2 − λ2) + 2γ4
)(

2α2 − γ2 + γ21
)

= γ6,
(52)

where γk are defined by (34).
Divisors D2Q produced from characteristics of Espec satisfy the condition y2Q = 0,

which follows from (46’), and in terms of the Mumford coordinates of D2Q acquires
the form (

γ1(2α2 + γ21 − λ2) + γ3
)(

2α2 + γ21 − λ2
)

+ γ5 = 0,(52’)

where γk are defined by (43).
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In https://community.wolfram.com/groups/-/m/t/3338527 the reader may
find an example of computing 3- and 4-torsion divisors on a genus two curve, along
with derivation of the corresponding division polynomials in Mumford coordinates,
and in x-, y-coordinates.

Appendix A. Transformation to canonical curve

There are several types of equations which define a genus two curve.

(I) Let a genus two curve has the form

0 = f(x, y) = −y2 + yQ(x) + P(x)

= −y2 + y
(
ν1x

2 + ν3x+ ν5
)

(53)

+ x5 + ν2x
4 + ν4x

3 + ν6x
2 + ν8x+ ν10.

By the map y 7→ y + 1
2Q(x) the curve (53) transforms into the form (1),

namely

0 = f(x, y) = −y2 + ∆(x)

= −y2 + x5 + λ2x
4 + λ4x

3 + λ6x
2 + λ8x+ λ10,

where ∆(x) = P(x) + 1
4Q(x)2, and

λ2 = ν2 + 1
4ν

2
1 , λ8 = ν8 + 1

2ν3ν5,

λ4 = ν4 + 1
2ν1ν3, λ10 = ν10 + 1

4ν
2
5 ,(54)

λ6 = ν6 + 1
2ν1ν5 + 1

4ν
2
3 .

(II) Let a genus two curve has the form

0 = f(x, y;λ) = −y2 + P̄(x)(55)

= −y2 + a0x
6 + a1x

5 + a2x
4 + a3x

3 + a4x
2 + a5x+ a6.

Let {ei}5i=0 be roots of P̄, ordered ascendingly in the real part, and then in
the imaginary part. Transformation to a curve in the form (1) is realized
by moving the smallest root e0 to infinity, namely

x 7→ e0 +
P̄ ′(e0)

x− 1
10 P̄ ′′(e0)

, y 7→ yP̄ ′(e0)(
x− 1

10 P̄ ′′(e0)
)3 .(56)

If a canonical basis is chosen as explained in [5, §3.4], such a transfor-
mation of the curve does not change the correspondence between charac-
teristics and divisors.

(III) Let a genus two curve has the form

0 = f(x, y) = −y2 + yQ̄(x) + P̄(x)

= −y2 + y
(
b̄0x

3 + b̄1x
2 + b̄2x+ b̄3

)
(57)

+ ā0x
6 + ā1x

5 + ā2x
4 + ā3x

3 + ā4x
2 + ā5x+ ā6.

By the map y 7→ y + 1
2Q̄(x) the curve (57) transforms into (55)

0 = f(x, y;λ) = −y2 + ∆̄(x)

= −y2 + a0x
6 + a1x

5 + a2x
4 + a3x

3 + a4x
2 + a5x+ a6,

and then by (56) to the form (1).
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Appendix B. Addition law on a curve with extra terms

Addition law on a curve of the form (53):

α
[P+Q]
2 = −α[P ]

2 − α[Q]
2 + 2γ2 − γ21 + ν1γ1,

α
[P+Q]
4 = −α[P ]

4 − α[Q]
4 +

(
α
[P ]
2

)2
+ α

[P ]
2 α

[Q]
2 +

(
α
[Q]
2

)2
−
(
α
[P ]
2 + α

[Q]
2

)(
2γ2 − γ21 + ν1γ1

)
+ 2γ4 + γ22 +

(
ν1γ2 − ν2γ1 + ν3

)
γ1.

(29a’)

Duplication law:

α
[2Q]
2 = −2α

[Q]
2 + 2γ2 − γ21 + ν1γ1,

α
[2Q]
4 = −2α

[Q]
4 + 3(α

[Q]
2 )2 − 2α

[Q]
2

(
2γ2 − γ21 + ν1γ1

)
+ 2γ4 + γ22 +

(
ν1γ2 − ν2γ1 + ν3

)
γ1,

(36a’)
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