
GRADED NEURAL NETWORKS

TONY SHASKA

To my parents, brilliant teachers dismissed for their beliefs in a system where grading meant

obedience.

Abstract. We introduce a rigorous framework for Graded Neural Networks,

a new class of architectures built on coordinate-wise graded vector spaces Vn
q .

Using an algebraic scalar action λ ⋆ x = (λqixi) defined by a grading tuple
q = (q0, . . . , qn−1), we construct grade-sensitive neurons, activations, and loss

functions that embed hierarchical feature structure directly into the network’s

architecture. This grading endows GNNs with enhanced expressivity and in-
terpretability, extending classical neural networks as a special case.

We develop both the algebraic theory and computational implementation
of GNNs, addressing challenges such as numerical instability and optimization

with anisotropic scaling. Theoretical results establish universal approximation

for graded-homogeneous functions, along with convergence rates in graded
Sobolev and Besov spaces. We also show that GNNs achieve lower complexity

for approximating structured functions compared to standard networks.

Applications span hierarchical data modeling, quantum systems, and pho-
tonic hardware, where grades correspond to physical parameters. This work

provides a principled foundation for incorporating grading into neural compu-

tation, unifying algebraic structure with learning, and opening new directions
in both theory and practice.

1. Introduction

Many real-world datasets exhibit hierarchical, heterogeneous, or structured fea-
tures that standard neural networks treat uniformly. However, in fields ranging
from algebraic geometry and quantum physics to document analysis and photonic
computing, inputs vary in importance or scale, suggesting the need for architectures
that respect this asymmetry. This paper introduces a generalized neural frame-
work—Graded Neural Networks (GNNs)—that models such data over coordinate-
wise graded vector spaces Vn

q , using algebraic structure to inform both architecture
and learning.

This work builds on the foundational model of Artificial Neural Networks over
graded spaces proposed in [1]. We significantly extend that paradigm by incor-
porating multiplicative neurons, exponential activations, and robust loss functions
(e.g., Huber loss), while also addressing core challenges such as numerical instabil-
ity and optimization in high-dimensional graded settings. The result is a flexible
and expressive architecture that generalizes classical neural networks and naturally
incorporates graded inputs.

Our original motivation comes from algebraic geometry: the moduli space of
genus two curves can be embedded in the weighted projective space P(2,4,6,10), with

Key words and phrases. Graded Neural Networks, Graded Vector Spaces.

1

2 TONY SHASKA

graded invariants reflecting intrinsic geometric structure. In [2], neural networks
trained on ungraded coefficients achieved only 40% accuracy in predicting automor-
phism groups or (n, n)-split Jacobians, whereas the use of graded invariants boosted
performance to 99%. This empirical result—anticipated by the fact that P(2,4,6,10)

parametrizes isomorphism classes—raises a broader question: does embedding al-
gebraic grading into the network architecture systematically improve performance?

Similar grading arises in quantum systems, where supersymmetry distinguishes
bosonic and fermionic components; in temporal signal processing, where higher
grades may prioritize recent inputs; and in photonic computing, where physical
parameters scale with grading variables. These applications motivate a general
framework for neural networks that incorporates grading into both representation
and computation.

Graded vector spaces, introduced in Section 2, generalize Rn via scalar actions.
In Section 3, we construct graded neural layers with additive and multiplicative
neurons, graded ReLU and exponential activations, and custom loss functions. This
design subsumes classical neural networks (recovered when qi = 1) and supports
integer and non-integer gradations.

Section 4 addresses implementation challenges posed by exponentiation and
anisotropic scaling. We introduce log-domain stabilization, gradient normalization
(e.g., learning rates scaled by q−1

i), and sparse matrix strategies that reduce compu-
tational complexity. Empirical results show that GNNs improve mean squared error
by up to 16.7% over standard networks in tasks such as genus two curve prediction
and quantum harmonic oscillator modeling, while also accelerating convergence.

Section 5 provides a theoretical foundation. We prove a universal approxima-
tion theorem for graded-homogeneous functions, derive convergence rates in graded
Sobolev and Besov spaces, and establish complexity lower bounds for approximating
graded monomials using standard networks.

Finally, Section 6 outlines future directions, including extensions to infinite-
dimensional spaces, graded graph structures, and hardware implementations. This
work provides a principled foundation for incorporating grading into neural com-
putation, unifying algebraic structure with learning across scientific computing,
physics, and machine learning.

2. Graded Vector Spaces

Here we provide the essential background on graded vector spaces, extended to
incorporate recent advancements in their structure and operations. The interested
reader can check details at [3], [4], [5], [1], among other places. We use ”grades”
to denote the indices of grading (e.g., qi), distinguishing them from ”weights” used
for neural network coefficients in Section 3.

A graded vector space is a vector space endowed with a grading structure, typi-
cally a decomposition into a direct sum of subspaces indexed by a set I. While we
primarily focus on the traditional decomposition V =

⊕
n∈N Vn and the coordinate-

wise form Vn
q (k) = kn with scalar action λ⋆x = (λqixi), these definitions generalize

to arbitrary index sets I, including rational numbers, finite groups, or abstract al-
gebraic structures, allowing greater flexibility in modeling hierarchical data; see [1].
These definitions are equivalent via basis choice, a perspective we adopt for neural
networks in Section 3.

GRADED NEURAL NETWORKS 3

2.1. Generalized Gradation. Let I be an index set, which may be N, Z, a field
like Q, or a monoid. An I-graded vector space V is a vector space with a decom-
position:

V =
⊕
i∈I

Vi,

where each Vi is a vector space, and elements of Vi are homogeneous of degree i.
When I = Q, grades can represent fractional weights, useful for modeling contin-
uous hierarchies in machine learning tasks as in [1]. For I = N, we recover the
standard N-graded vector space, often simply called a graded vector space.

Graded vector spaces are prevalent. For example, the set of polynomials in one
or several variables forms a graded vector space, with homogeneous elements of
degree n as linear combinations of monomials of degree n.

Example 1. Let k be a field and consider V(2,3), the space of homogeneous polyno-
mials of degrees 2 and 3 in k[x, y]. It decomposes as V(2,3) = V2 ⊕ V3, where V2 is
the space of binary quadratics and V3 the space of binary cubics. For u = [f, g] ∈
V2 ⊕ V3, scalar multiplication is:

λ ⋆ u = λ ⋆ [f, g] = [λ2f, λ3g],

reflecting grades 2 and 3.

Next we will present an example that played a pivotal role in the invention of
graded neural networks.

Example 2 (Moduli Space of Genus 2 Curves). Assume char k ̸= 2 and C a genus
2 curve over k, with affine equation y2 = f(x), where f(x) is a degree 6 polynomial.
The isomorphism class of C is determined by its invariants J2, J4, J6, J10, homoge-
neous polynomials of grades 2, 4, 6, and 10, respectively, in the coefficients of C.
The moduli space of genus 2 curves over k is isomorphic to the weighted (graded)
projective space P(2,4,6,10),k.

2.2. Graded Linear Maps. For an index set I, a linear map f : V → W between
I-graded vector spaces is a graded linear map if it preserves the grading, f(Vi) ⊆
Wi, for all i ∈ I. Such maps are also called homomorphisms (or morphisms) of
graded vector spaces or homogeneous linear maps. For a commutative monoid
I (e.g., N), maps homogeneous of degree i ∈ I satisfy:

f(Vj) ⊆ Wi+j , for all j ∈ I,

where + is the monoid operation. If I is a group (e.g., Z) or a field (e.g., Q), maps
of degree i ∈ I follow similarly, with the operation defined by the structure of I;
see [1]. A map of degree −i satisfies:

f(Vi+j) ⊆ Wj , f(Vj) = 0 if j − i /∈ I.

Proposition 1. Let Vn
q (k) and Vm

q′ (k) be graded vector spaces with grading vectors

q = (q0, . . . , qn−1) and q′ = (r0, . . . , rm−1), respectively, where qi, rj ∈ Q>0. Let
L : Vn

q (k) → Vm
q′ (k) be a k-linear map, and let A = (aij) ∈ Matm×n(k) be its matrix

with respect to the standard bases.
Then L is homogeneous of degree d ∈ Q if and only if

aij ̸= 0 =⇒ ri = qj + d.

In particular, L is grade-preserving (i.e., d = 0) if and only if aij ̸= 0 implies
ri = qj.

4 TONY SHASKA

Proof. The scalar action on Vn
q (k) is defined by λ⋆x = (λq0x0, . . . , λ

qn−1xn−1), and
similarly on Vm

q′ (k).

Suppose L is homogeneous of degree d ∈ Q. Then for all λ ∈ k× and all
x ∈ Vn

q (k), we have:

L(λ ⋆ x) = λd ⋆ L(x),

which in coordinates becomes:

L (λq0x0, . . . , λ
qn−1xn−1) =

n−1∑
j=0

a0jλ
qjxj , . . . ,

n−1∑
j=0

am−1,jλ
qjxj

 ,

and on the other hand,

λd ⋆ L(x) =

λd+r0

n−1∑
j=0

a0jxj , . . . , λ
d+rm−1

n−1∑
j=0

am−1,jxj

 .

Equating the two expressions for each coordinate i gives:

n−1∑
j=0

aijλ
qjxj = λd+ri

n−1∑
j=0

aijxj .

Since this must hold for all x and all λ ∈ k×, each monomial λqj on the left must
match λd+ri on the right wherever aij ̸= 0. Thus:

λqj = λd+ri ⇒ qj = d+ ri ⇔ ri = qj − d.

Rewriting this yields ri = qj + d as claimed.
Conversely, if this condition holds, the same calculation in reverse shows that L

satisfies the homogeneity identity. □

Example 3. For V(2,3) = V2 ⊕ V3, a linear map L : V(2,3) → V(2,3) satisfies:

L([λ ⋆ u]) = L([λ2f, λ3g]) = [λ2L(f), λ3L(g)] = λ ⋆ [L(f), L(g)] = λ ⋆ L(u),

L([f, g]⊕ [f ′, g′]) = L([f + f ′, g + g′]) = [L(f) + L(f ′), L(g) + L(g′)]

= [L(f), L(g)]⊕ [L(f ′), L(g′)] = L([f, g])⊕ L([f ′, g′]).

Using the basis B = {x2, xy, y2, x3, x2y, xy2, y3}, where B1 = {x2, xy, y2} spans V2

and B2 = {x3, x2y, xy2, y3} spans V3, the polynomial

F (x, y) = (x2 + xy + y2) + (x3 + x2y + xy2 + y3)

has coordinates u = [1, 1, 1, 1, 1, 1, 1]t.

Further details can be found in [3], [6], [7], [1]. Scalar multiplication L(x) = λx
is a graded linear map, with matrix:

λq0 0 · · · 0
0 λq1 · · · 0
...

...
. . . 0

0 0 · · · λqn

 .

Proposition 2. Let Vn
q (k) be a graded vector space with grading vector q =

(q0, . . . , qn−1) ∈ Qn
>0. Let W ⊆ Vn

q (k) be a k-linear subspace. Then the follow-
ing are equivalent:

GRADED NEURAL NETWORKS 5

(i) W is invariant under scalar action: λ ⋆ x ∈ W for all λ ∈ k× and all
x ∈ W .

(ii) W is generated by homogeneous vectors in Vn
q (k).

Proof. (ii) ⇒ (i): Suppose W is spanned by homogeneous vectors {x(1), . . . ,x(r)},
where each x(j) has support only on coordinates of a fixed grade. For any λ ∈ k×

and x(j), we have:

λ ⋆ x(j) = (λq0x
(j)
0 , . . . , λqn−1x

(j)
n−1) ∈ W,

since scalar multiplication respects homogeneity and W is a vector space. Hence,
W is invariant under scalar action.

(i) ⇒ (ii): Suppose W is invariant under scalar action. Let x ∈ W be arbitrary,
and write x = (x0, . . . , xn−1) in coordinates. For each distinct grade q appearing
in q, define a projection πq : Vn

q → Vn
q by:

πq(x) =
∑

i:qi=q

xiei,

where ei is the standard basis vector in position i. Then x =
∑

q πq(x), and each

πq(x) is supported only on coordinates of grade q—i.e., each is homogeneous.
We claim that each πq(x) ∈ W . Consider the one-parameter family λ ⋆ x ∈ W

for all λ ∈ k×, and apply the limit:

πq(x) = lim
λ→0

λ−q ⋆ (λ ⋆ x),

which isolates the grade-q component. Since W is invariant under scalar action
and closed under k-linear operations, it contains all such projections. Thus, each
homogeneous component of x lies in W , and W is spanned by homogeneous vectors.

□

Corollary 1. Let V =
⊕

d∈I Vd be an I-graded vector space over a field k, where
each Vd consists of homogeneous elements of degree d. Then for each d ∈ I, the
subspace Vd is a maximal subspace of V invariant under scalar action

λ ⋆ v = λdv.

Moreover, any proper grading-invariant subspace W ⊂ V contained in Vd is
necessarily a k-subspace of Vd and hence not grading-invariant unless W = Vd.

Proof. By definition of grading, any v ∈ Vd satisfies λ ⋆ v = λdv, so Vd is invariant
under scalar action.

Suppose W ⊆ V is any subspace invariant under the scalar action and contained
in Vd. Then by Prop. 2, W must be generated by homogeneous vectors, and since
the only homogeneous vectors in Vd have degree d, we conclude W ⊆ Vd.

To show maximality: suppose W ⊋ Vd and is invariant. Then W must contain
some element v with a nonzero component outside of Vd. But then its homogeneous
decomposition contains terms of other degrees, contradicting that W is contained
in Vd. Hence, Vd is the largest subspace consisting entirely of degree-d homogeneous
elements and invariant under the action. □

6 TONY SHASKA

2.3. Operations over Graded Vector Spaces. For I-graded spaces V =
⊕

i∈I Vi

and W =
⊕

i∈I Wi, the direct sum is V ⊕W with gradation:

(V ⊕W)i = Vi ⊕Wi.

Scalar multiplication is λ(vi, wi) = (λvi, λwi). For differing grade sets I and J ,
index over I ∪ J , with (V ⊕W)k = Vk ⊕Wk (Vk = 0 if k /∈ I).

Consider two graded vector spaces V =
⊕

i∈I Vi and W =
⊕

i∈I Wi, where I
is a semigroup (e.g., N with addition). The tensor product V ⊗ W is a graded
vector space with components:

(V ⊗W)i =
⊕

(j,k):j+k=i

(Vj ⊗Wk),

where vj ∈ Vj and wk ∈ Wk form vj ⊗wk of grade j + k, and scalar multiplication
is given by λ(vj ⊗ wk) = (λvj)⊗ wk.

For non-semigroup I (e.g., Q), the tensor product adapts by defining grades via
a suitable operation, ensuring grading consistency; see [1].

Example 4. For example, take V = V(2,3) = V2 ⊕ V3, with V2 and V3 as spaces of
quadratic and cubic polynomials, respectively. The tensor product V ⊗ V is:

V(2,3) ⊗ V(2,3) = (V2 ⊗ V2)4 ⊕ (V2 ⊗ V3)5 ⊕ (V3 ⊗ V2)5 ⊕ (V3 ⊗ V3)6.

If f = x2 ∈ V2 (grade 2) and g = x3 ∈ V3 (grade 3), then f ⊗ g ∈ (V2 ⊗ V3)5, since
2 + 3 = 5.

For V(1/2,1/3), the tensor product yields grades like 1/2 + 1/3 = 5/6, illustrating
fractional gradations.

For the coordinate-wise space Vn
q (k) = kn with gr(xi) = qi, the tensor product

with Vm
q′ (k) = km (grades gr(x′

j) = q′j) is:

Vn
q ⊗ Vm

q′ =

n−1⊕
i=0

m−1⊕
j=0

k(ei ⊗ e′j),

where ei ⊗ e′j has grade qi + q′j . This form accommodates varying grades across
spaces, relevant to inputs of differing significance.

For three graded vector spaces U , V , and W over a semigroup I, the tensor
product is associative: (U ⊗ V)⊗W ∼=U ⊗ (V ⊗W). The graded components of
(U ⊗ V)⊗W are:

((U ⊗ V)⊗W)i =
⊕

(j,k,l):j+k+l=i

(Uj ⊗ Vk)⊗Wl,

where j, k, and l are grades in U , V , and W , respectively. This property en-
sures consistency in composing multiple tensor operations, analogous to stacking
transformations in neural network layers.

Proposition 3. Let Vn
q (k) and Vm

q′ (k) be coordinate-wise graded vector spaces with

grading vectors q = (q0, . . . , qn−1) and q′ = (r0, . . . , rm−1), respectively, where
qi, rj ∈ Q>0. Then the tensor product

Vn
q (k)⊗ Vm

q′ (k)

inherits a natural Q-grading with basis elements ei ⊗ e′j having grade qi + rj. That
is,

gr(ei ⊗ e′j) = qi + rj ,

GRADED NEURAL NETWORKS 7

and the resulting graded vector space is

Vnm
q⊞q′(k), where q⊞ q′ = {qi + rj | 0 ≤ i < n, 0 ≤ j < m}.

Proof. Let {ei}n−1
i=0 and {e′j}

m−1
j=0 be the standard bases of Vn

q (k) and Vm
q′ (k), re-

spectively, with gr(ei) = qi and gr(e′j) = rj .
By bilinearity of the tensor product, the elements {ei ⊗ e′j} form a basis for

Vn
q ⊗ Vm

q′ . Define the grading on the tensor product by declaring

gr(ei ⊗ e′j) = gr(ei) + gr(e′j) = qi + rj .

This grading is additive and extends linearly: any tensor v =
∑

i,j aijei ⊗ e′j is a
sum of homogeneous elements with well-defined grades.

We now check compatibility with scalar action. Let λ ∈ k×. On Vn
q , we have

λ ⋆ ei = λqiei, and similarly on Vm
q′ : λ ⋆ e′j = λrje′j .

The induced action on the tensor product satisfies:

λ ⋆ (ei ⊗ e′j) = (λ ⋆ ei)⊗ (λ ⋆ e′j) = λqiλrj (ei ⊗ e′j) = λqi+rj (ei ⊗ e′j).

Hence, the scalar action respects the grading defined above, and Vn
q ⊗Vm

q′ becomes
a graded vector space.

The multiset of grades q ⊞ q′ records the full set of values qi + rj , indexed by
pairs (i, j), forming a grading vector of length nm for the tensor space. □

Example 5. Let V2
q(k) and V2

q′(k) be graded vector spaces with q = (1, 2) and

q′ = (3, 4). The basis of V2
q is {e0, e1} with gr(e0) = 1 and gr(e1) = 2, and

similarly for V2
q′ with basis {e′0, e′1} and grades 3, 4.

The tensor product V2
q ⊗ V2

q′ has basis:

{e0 ⊗ e′0, e0 ⊗ e′1, e1 ⊗ e′0, e1 ⊗ e′1}.

Each basis element is homogeneous, with grades computed by summing the compo-
nent grades:

gr(e0 ⊗ e′0) = 1 + 3 = 4,

gr(e0 ⊗ e′1) = 1 + 4 = 5,

gr(e1 ⊗ e′0) = 2 + 3 = 5,

gr(e1 ⊗ e′1) = 2 + 4 = 6.

Thus, the tensor product decomposes as:

V2
q ⊗ V2

q′ = V4 ⊕ V5 ⊕ V6,

where:
V4 = spank{e0 ⊗ e′0},
V5 = spank{e0 ⊗ e′1, e1 ⊗ e′0},
V6 = spank{e1 ⊗ e′1}.

This example shows that the set of grades is {4, 5, 6}, and the multiplicity of
each grade reflects how many pairs (i, j) satisfy qi+ rj = d. Note in particular that
grade 5 appears twice, from two distinct tensor combinations. The tensor product
is naturally graded but not necessarily multiplicity-free.

8 TONY SHASKA

Next, consider the dual space of V =
⊕

i∈I Vi, where I is a general index set
(e.g., N, Z), not necessarily a semigroup. The dual V ∗ = Homk(V, k) is graded as:

V ∗ =
⊕
i∈I

V ∗
−i,

with V ∗
−i = {f : V → k | f(Vi) ⊆ k, f(Vj) = 0 if j ̸= i}. The grade −i arises

because a functional on Vi (grade i) pairs to produce a scalar (grade 0), requiring
i+ (−i) = 0.

For I = Q, dual grades −i ensure scalar compatibility, critical for defining graded
loss functions; see [1].

For Vn
q (k) = kn with gr(xi) = qi and scalar action λ ⋆ x = (λqixi), the dual

(Vn
q)

∗ = kn has basis functionals fi of grade gr(fi) = −qi, with λ ⋆ fi = λ−qifi.
This inverse scaling complements the original action, suggesting applications in
defining graded loss functions or optimization procedures for neural networks.

2.4. Inner Graded Vector Spaces and their Norms. Consider now the case
when each Vi is a finite-dimensional inner space, and let ⟨·, ·⟩i denote the corre-
sponding inner product. Then we can define an inner product on V =

⊕
i∈I Vi as

follows. For u = u1 + . . .+ un and v = v1 + . . .+ vn, where ui, vi ∈ Vi, we define:

⟨u,v⟩ = ⟨u1, v1⟩1 + . . .+ ⟨un, vn⟩n,
which is the standard product across graded components. The Euclidean norm is
then:

∥u∥ =
√

u2
1 + . . .+ u2

n,

where ∥ui∥i =
√
⟨ui, ui⟩i is the norm in Vi, and we assume an orthonormal basis

for simplicity. For non-integer I (e.g., Q), norms may incorporate grade weights,

e.g., ∥x∥q =
(∑

i|xi|2
)1/2

for i ∈ Q.
If such Vi are not necessarily finite-dimensional, then we have to assume that Vi

is a Hilbert space (i.e., a real or complex inner product space that is also a complete
metric space with respect to the distance function induced by the inner product).

Example 6. Let us continue with the space V(2,3) with bases B1 = {x2, xy, y2}
for V2 and B2 = {x3, x2y, xy2, y3} for V3, as in Example 3. Hence, a basis for
V(2,3) = V2 ⊕ V3 is B = {x2, xy, y2, x3, x2y, xy2, y3}. Let u,v ∈ V(2,3) be given by:

u = a+ b =
(
u1x

2 + u2xy + u3y
2
)
+
(
u4x

3 + u5x
2y + u6xy

2 + u7y
3
)
,

v = a′ + b′ =
(
v1x

2 + v2xy + v3y
2
)
+
(
v4x

3 + v5x
2y + v6xy

2 + v7y
3
)
.

Then:

⟨u,v⟩ = ⟨a+ b,a′ + b′⟩ = ⟨a,a′⟩2 + ⟨b,b′⟩3
= u1v1 + u2v2 + u3v3 + u4v4 + u5v5 + u6v6 + u7v7,

and the Euclidean norm is

∥u∥ =
√
u2
1 + . . .+ u2

7,

assuming B is orthonormal.
For V(1

2 ,
1
3)
, a weighted norm like

∥u∥q =

√
1

2
u2
1 +

1

3
u2
2

GRADED NEURAL NETWORKS 9

could prioritize fractional grades.

There are other ways to define a norm on graded spaces, particularly to empha-
size the grading. Consider a Lie algebra g called graded if there is a finite family of
subspaces V1, . . . , Vr such that g = V1 ⊕ · · · ⊕ Vr and [Vi, Vj] ⊂ Vi+j , where [Vi, Vj]
is the Lie bracket. When g is graded, define a dilation for t ∈ R×, αt : g → g, by:

αt(v1, . . . , vr) = (tv1, t
2v2, . . . , t

rvr).

We define a homogeneous norm on g as

(1) ∥v∥ = ∥(v1, . . . , vr)∥ =
(
∥v1∥2r1 + ∥v2∥2r−2

2 + · · ·+ ∥vr∥2r
)1/2r

,

where ∥·∥i is the Euclidean norm on Vi, and r = max{i}. This norm is homogeneous
under αt: ∥αt(v)∥ = |t|∥v∥, reflecting the grading grades. It satisfies the triangle
inequality, as shown in [9], and is detailed in [8, 10]. For V(2,3) with r = 3, if
u = (u1, u2) ∈ V2 ⊕ V3, then:

∥u∥ =
(
∥u1∥62 + ∥u2∥23

)1/6
,

giving higher weight to lower-degree components. A more general approach is
considered in [11], defining norms for line bundles and weighted heights on weighted
projective varieties.

Definition. 1. For Vn
q (k) = kn with gr(xi) = qi, a graded Euclidean norm can

be:

(2) ∥x∥q =

(
n−1∑
i=0

qi|xi|2
)1/2

,

weighting each coordinate by its grade qi.

Alternatively, a max-graded norm is:

(3) ∥x∥max = max
i

{q1/2i |xi|},

emphasizing the dominant graded component, akin to L∞ norms but adjusted by
qi.

Example 7. For x = (x1, x2) ∈ V(2,3) with coordinates in basis B, let x1 =
(1, 0, 1) ∈ V2, x2 = (1,−1, 0, 1) ∈ V3. The graded Euclidean norm is:

∥x∥q =
(
2(12 + 02 + 12) + 3(12 + (−1)2 + 02 + 12)

)1/2
=

√
2 · 2 + 3 · 3 =

√
13,

while the max-graded norm is:

∥x∥max = max{21/2 · 1, 21/2 · 0, 21/2 · 1, 31/2 · 1, 31/2 · 1, 31/2 · 0, 31/2 · 1} = 31/2.

These differ from the standard ∥x∥ =
√
6, highlighting grading’s impact.

Remark 1 (Properties of Graded Norms.). The graded Euclidean norm ∥ · ∥q is a
true norm:

(i) ∥x∥q ≥ 0, zero iff x = 0;
(ii) ∥λx∥q = |λ|∥x∥q;
(iii) ∥x+ y∥q ≤ ∥x∥q + ∥y∥q (via Cauchy-Schwarz).

10 TONY SHASKA

The homogeneous norm ∥ · ∥ is also a norm, satisfying similar properties under
the dilation αt, and is differentiable except at zero; see [9]. The max-graded norm
satisfies norm axioms but is less smooth. These norms extend to infinite I in Hilbert
spaces with convergence conditions; see [8].

Definition. 2. A norm ∥ · ∥ is convex if for all x,y ∈ V and t ∈ [0, 1],

∥tx+ (1− t)y∥ ≤ t∥x∥+ (1− t)∥y∥.

The Euclidean norm ∥x∥ =
√∑

x2
i is convex, as its square ∥x∥2 is quadratic

with Hessian ∇2(∥x∥2) = 2I, positive definite.
For the graded Euclidean norm

∥x∥q =
(∑

qi|xi|2
)1/2

with qi > 0, let f(x) = ∥x∥2q =
∑

qi|xi|2; the Hessian is ∇2f = 2diag(q0, . . . , qn−1),
positive definite, so ∥ · ∥q is convex.

The homogeneous norm

∥v∥ =
(∑

∥vi∥2r−2(i−1)
i

)1/2r
is less straightforward. For example, for V(2,3) (r = 3), ∥u∥ = (∥u1∥62 + ∥u2∥23)1/6.
Define

f(u) = ∥u∥6 = ∥u1∥62 + ∥u2∥23;
the Hessian includes ∂2f/∂u2

1j = 30u4
1j , positive for u ̸= 0, but near zero, high

exponents (i.e., 6) disrupt convexity. However, ∥u∥ is quasiconvex, as sublevel sets
{u | ∥u∥ ≤ c} are convex for c > 0 (see [9]), reflecting a weaker but useful property.

The max-graded norm

∥x∥max = max{q1/2i |xi|}

is convex, as the maximum of convex functions q
1/2
i |xi|, with sublevel sets being

intersections of slabs {x | q1/2i |xi| ≤ c}; see [12].
Gradient behavior is analyzed via the function f(x) = ∥x∥2. For the Euclidean

norm, f(x) =
∑

x2
i , ∇f = 2x, linear and isotropic. For ∥ · ∥q,

f(x) =
∑

qi|xi|2,

∇f = 2(q0x0, . . . , qn−1xn−1), scaling components by qi, with magnitude

∥∇f∥2 = 2
√∑

q2i x
2
i .

For the homogeneous norm on V(2,3),

f(u) = ∥u1∥62 + ∥u2∥23,
where ∇f = (6∥u1∥42u1, 2u2), nonlinear with steep growth in V2 (exponent 4) versus
V3 (exponent 1).

The max-graded norm’s

f(x) = (max q
1/2
i |xi|)2

has a subdifferential, i.e.,

∂f/∂xi = 2q
1/2
i sgn(xi)max{q1/2j |xj |}

if i achieves the max, zero otherwise, reflecting discontinuity; see [12].

GRADED NEURAL NETWORKS 11

2.5. Graded and Filtered Structures. The algebraic notion of grading is closely
related to filtrations. In fact, under suitable conditions, graded and filtered vector
spaces can be viewed as two sides of the same structure.

Lemma 1. Let V be a k-vector space.

(i) Every increasing filtration

0 = F−1V ⊆ F 0V ⊆ F 1V ⊆ · · · ⊆ V,

that is exhaustive (
⋃

i F
iV = V) and separated (

⋂
i F

iV = 0), induces a
graded vector space

gr(V) =
⊕
i

gri(V), gri(V) := F iV/F i−1V.

(ii) Conversely, any Z-graded vector space V =
⊕

i∈Z Vi admits a canonical
increasing filtration

FnV :=
⊕
i≤n

Vi,

whose associated graded space is isomorphic to V .

This correspondence allows one to move between additive decompositions and
nested hierarchical representations. In many applications, such as optimization,
PDEs, and signal processing, filtered structures naturally encode progressive re-
finement. In the context of neural networks, especially Graded Neural Networks,
this algebraic link suggests a deep geometric and architectural interpretation.

2.6. Learning from Coarse to Fine. In the GNN framework, feature coordinates
are graded: components with low grades (e.g., qi = 1, 2) correspond to coarse, high-
level representations—global symmetries, low-degree features, or dominant struc-
ture—while higher-grade components (qi ≫ 1) encode fine-grained, localized, or
higher-frequency detail.

This mirrors the classical multiresolution paradigm, where models learn progres-
sively refined representations. A filtration F 0 ⊂ F 1 ⊂ . . . naturally encodes such
depth or semantic scale, and its associated graded structure allows explicit control
over what level of detail a layer or operation is sensitive to.

For instance, in applications to symbolic algebra (e.g., computing invariants of
curves), lower-graded components dominate global structure (e.g., J2 and J4), while
higher-graded ones reflect subtle moduli (e.g., J10). GNNs trained on such data
are implicitly performing filtered learning—starting with robust, coarse predictors
and gradually refining toward higher-grade features.

This perspective aligns naturally with curriculum learning, progressive training,
or hierarchical inference, and could inform both architecture design (e.g., grade-
specific layers) and optimization strategies (e.g., prioritizing coarse loss components
early in training).

3. Graded Neural Networks (GNN)

We define artificial neural networks over graded vector spaces, utilizing Section 2.
Let k be a field, and for n ≥ 1, denote An

k (resp. Pn
k) as the affine (resp. projective)

space over k, omitting the subscript if k is algebraically closed. A tuple q =

12 TONY SHASKA

(q0, . . . , qn−1) ∈ Nn defines the grades, with gr(xi) = qi. The graded vector space
Vn
q (k) = kn has scalar multiplication:

λ ⋆ x = (λq0x0, . . . , λ
qn−1xn−1), x = (x0, . . . , xn−1) ∈ kn, λ ∈ k,

as in Section 2, denoted Vq when clear. This scalar action, denoted λ ⋆ x, mirrors
the graded multiplication in Section 2, applicable to both the coordinate form here
and the direct sum form (e.g., λ ⋆ [f, g]) via basis representation.

A graded neuron on Vq is typically defined as an additive map αq : Vn
q → k

such that

αq(x) =

n−1∑
i=0

wqi
i xi + b,

where wi ∈ k are neural weights, and b ∈ k is the bias. For b = 0,

αq(λ ⋆ x) =
∑

(λwi)
qixi = λ

∑
w′

ixi

for (w′
i = wqi

i), approximating a graded linear map of degree 1 per Section 2. With
b ̸= 0, αq is affine, embedding grading via wqi

i . Alternatively, a multiplicative
graded neuron can be defined as βq : Vn

q → k such that

βq(x) =

n−1∏
i=0

(wixi)
qi + b,

capturing multiplicative interactions among graded features, suitable for tasks like
polynomial modeling in [1]. For b = 0,

βq(λ ⋆ x) =
∏

(λqiwixi)
qi = λ

∑
q2i
∏

(wixi)
qi ,

reflecting a higher-degree graded map, enhancing expressivity for nonlinear rela-
tionships.

A graded network layer is:

ϕ : Vn
q (k) → Vn

q (k)

x → g(Wx+ b),

where W = [wqi
j,i] ∈ kn×n, b = (b0, . . . , bn−1) ∈ kn, and ϕ preserves grading, with

gr(yj) = qj . Layers using multiplicative neurons, ϕ(x) = g(
∏
(Wx)qi +b), are also

possible but increase computational complexity; see [1].

Remark 2. Neural weights wi or wj,i differ from grades qi. Exponents wqi
i (or

(wixi)
qi in multiplicative neurons) reflect grading, while qi define Vq’s action. We

use w for weights, qi for grades.

A graded neural network (GNN) is a composition of multiple layers given as

ŷ = ϕm ◦ · · · ◦ ϕ1(x),

where each layer ϕl(x) = gl(W
lx + bl) applies a transformation defined by the

matrix of neural weights W l = [wqi
j,i], producing outputs ŷ and true values y in

Vn
q with grades gr(ŷi) = qi. Hybrid GNNs combining additive and multiplicative

neurons across layers are also viable, offering flexibility for diverse applications.

GRADED NEURAL NETWORKS 13

3.1. ReLU Activation. In classical neural networks, the rectified linear unit (ReLU)
activation, defined as ReLu(x) = max{0, x}, applies a simple thresholding to pro-
mote sparsity and efficiency. However, for graded neural networks over Vn

q , where
x = (x0, . . . , xn−1) has coordinates with grades gr(xi) = qi and scalar action
λ ⋆ x = (λq0x0, . . . , λ

qn−1xn−1), a direct application of this ReLU ignores the grad-
ing’s intrinsic scaling. To adapt to this structure, we define a graded ReLU that
adjusts nonlinearity by grade. For x ∈ Vn

q , the graded ReLU is:

ReLui(xi) = max{0, |xi|1/qi},
and

ReLu(x) = (ReLu0(x0), . . . ,ReLun−1(xn−1)).

Unlike the classical max{0, xi}, which treats all coordinates uniformly, this version
scales each xi by 1/qi, reflecting the graded action. For λ ⋆ x = (λqixi), compute:

ReLui(λ
qixi) = max{0, |λqixi|1/qi} = max{0, |λ||xi|1/qi} = |λ|max{0, |xi|1/qi},

so ReLu(λ⋆x) = |λ|ReLu(x) for λ > 0, aligning with Vn
q ’s grading up to magnitude.

This ensures the activation respects the differential scaling of coordinates (i.e., qi =
2 vs. qi = 3 in V(2,3)), unlike the classical ReLU, where ReLu(λxi) = λReLu(xi)
for λ > 0 assumes homogeneity of degree 1.

An alternative exponential graded activation is defined as:

expi(xi) = exp

(
xi

qi

)
− 1,

and

exp(x) = (exp0(x0), . . . , expn−1(xn−1)).

This activation mitigates numerical instability for large qi by scaling inputs in-
versely, ensuring smoother gradients. For λ ⋆ x,

expi(λ
qixi) = exp

(
λqixi

qi

)
− 1,

which grows more gradually than ReLui, enhancing stability in deep GNNs.
This adaptation is motivated by the need to capture feature significance in graded

spaces, as seen in applications like genus two curve invariants (J2, J4, J6, J10 with
grades 2, 4, 6, 10). A classical ReLU might underweight high-graded features (i.e.,
J10) or overreact to low-graded ones (i.e., J2), whereas the graded ReLU normalizes
sensitivity via 1/qi, akin to the homogeneous norm’s scaling in Section 2. The
exponential activation further stabilizes high-grade features, making it suitable for
tasks like quantum state modeling; see [1]. Both activations mirror weighted heights
from [11,13], where exponents adjust to graded geometry.

Example 8. Consider V(2,3) from Example 1, with q = (2, 2, 2, 3, 3, 3, 3) and basis

B = {x2, xy, y2, x3, x2y, xy2, y3}.
Let u = (2,−3, 1, 1,−2, 1, 1), representing the coordinates of a polynomial u =
[f, g] ∈ V2 ⊕ V3 in the basis

B = {x2, xy, y2, x3, x2y, xy2, y3}
from Example 1, mapping f = 2x2 − 3xy+ y2 and g = x3 − 2x2y+ xy2 + y3 to k7:

ReLu(u) = (
√
2, 3, 1, 1,

√
2, 1, 1),

14 TONY SHASKA

e.g., ReLu0(2) =
√
2 (q0 = 2), ReLu1(−3) = 3 (q1 = 2), ReLu3(1) = 1 (q3 = 3).

For the exponential activation:

exp(u) = (e2/2 − 1, e−3/2 − 1, e1/2 − 1, e1/3 − 1, e−2/3 − 1, e1/3 − 1, e1/3 − 1),

e.g., exp0(2) = e − 1, exp1(−3) = e−1.5 − 1, exp3(1) = e1/3 − 1. Compare to
classical ReLU: ReLu(−3) = 0, ReLu(2) = 2, yielding (2, 0, 1, 1, 0, 1, 1), which loses
the graded nuance (e.g., −3 → 3 vs. 0). The graded ReLU preserves Vn

q while
adjusting output scale, while the exponential activation ensures smoother outputs
for large qi.

The graded ReLU and exponential activations balance nonlinearity with grading,
enhancing feature discrimination in Vn

q compared to the uniform thresholding of
classical ReLU. Their efficiency relative to other adaptations (e.g., max{0, xi/qi})
remains to be explored, but their forms leverage the algebraic structure established
in Section 2.

3.2. Graded Loss Functions. In classical neural networks, loss functions like the
mean squared error (MSE), L = 1

n

∑n−1
i=0 (yi − ŷi)

2, treat all coordinates equally,
assuming a uniform vector space structure. However, on Vn

q (k) = kn with grading
gr(xi) = qi and scalar action λ ⋆ x = (λq0x0, . . . , λ

qn−1xn−1), this approach over-
looks the differential significance of coordinates (e.g., qi = 2 vs. qi = 10 in genus
two invariants). Graded loss functions adapt to this structure by weighting errors
according to qi, enhancing sensitivity to features of varying grades, as motivated
by the improved accuracy in graded inputs observed in [2].

The graded MSE on Vn
q is:

LMSE(y, ŷ) =
1

n

n−1∑
i=0

qi(yi − ŷi)
2,

where y, ŷ ∈ Vn
q are true and predicted values, and qi amplifies errors for higher-

graded coordinates. Unlike classical MSE, this scales with grading: for λ⋆(y−ŷ) =
(λqi(yi − ŷi)), LMSE(λ ⋆ y, λ ⋆ ŷ) = 1

n

∑
qiλ

2qi(yi − ŷi)
2, reflecting Vn

q ’s geometry.
Alternatively, using the graded Euclidean norm from Section 2:

Lnorm(y, ŷ) = ∥y − ŷ∥2q =

n−1∑
i=0

qi|yi − ŷi|2,

omits the 1/n normalization, aligning directly with ∥ · ∥q’s definition.
A graded Huber loss is defined as:

LHuber(y, ŷ) =

n−1∑
i=0

qiρδ(yi − ŷi),

where ρδ(z) =

{
1
2z

2 if |z| ≤ δ,

δ|z| − 1
2δ

2 otherwise,
and δ > 0 is a threshold. This combines

the robustness of L1 loss for outliers with the smoothness of L2 loss, weighted by
qi to prioritize high-graded errors as suggested in [1].

Example 9. For V(2,3) with Vn
q = k7, we partition coordinates as y = (y2,y3),

where y2 = (y0, y1, y2) ∈ k3 corresponds to V2 (grade 2) and y3 = (y3, y4, y5, y6) ∈

GRADED NEURAL NETWORKS 15

k4 to V3 (grade 3), matching the basis B from Example 1. The homogeneous loss
leverages the homogeneous norm from Section 2:

Lhom(y, ŷ) = ∥y − ŷ∥6 = ∥(y − ŷ)2∥62 + ∥(y − ŷ)3∥23,
where r = 3, emphasizing lower-graded errors (i.e., V2 with exponent 6) over higher-
graded ones (V3 with 2).

Additional loss functions enrich this framework. A max-graded loss uses the
max-graded norm:

Lmax(y, ŷ) = ∥y − ŷ∥2max =
(
max

i
{q1/2i |yi − ŷi|}

)2
,

focusing on the largest grade-adjusted error, akin to L∞ but tuned to qi. For
classification in Vn

q , a graded cross-entropy is:

LCE(y, ŷ) = −
n−1∑
i=0

qiyi log(ŷi),

assuming ŷi are probabilities (i.e., via a softmax on Vn
q), weighting log-losses by

grade to prioritize high-qi classes.

Example 10. For y = (1, 2, 0, 1, 0, 1, 1), ŷ = (0, 1, 1, 1,−1, 0, 1) in V(2,3) (q =
(2, 2, 2, 3, 3, 3, 3)):

LMSE =
1

7
[2 · 12 + 2 · 12 + 2 · 12 + 3 · 02 + 3 · 12 + 3 · 12 + 3 · 02] = 11

7
,

Lnorm = 2 · 3 + 3 · 2 = 11,

Lhom = (33 + 2)2 = 841, with ∥(y − ŷ)2∥22 = 3, ∥(y − ŷ)3∥23 = 2,

Lmax =
(
max{21/2 · 1, 21/2 · 1, 21/2 · 1, 31/2 · 0, 31/2 · 1, 31/2 · 1, 31/2 · 0}

)2
= 3.

For LHuber with δ = 1:

LHuber = 2 · 1
2
·12+2 · 1

2
·12+2 · 1

2
·12+3 · 1

2
·02+3 · 1

2
·12+3 · 1

2
·12+3 · 1

2
·02 =

11

2
,

since all errors |yi − ŷi| ≤ 1, reducing to Lnorm/2. Classical MSE gives 6
7 , under-

weighting V3 errors (i.e., 12 vs. 3 · 12).

These graded losses adapt classical metrics to Vn
q ’s structure, offering flexibility—LMSE

and Lnorm balance all errors, Lhom prioritizes grade hierarchy, Lmax targets outliers,
LCE suits classification, and LHuber robustly handles outliers—all leveraging qi to
reflect feature significance [1, 12].

3.3. Optimizers. Optimizers adjust weights wj,i and bj to minimize a loss func-
tion over Vn

q . Consider L = Lnorm(y, ŷ) = ∥y − ŷ∥2q, using the graded Euclidean

norm from Section 2, where ∥x∥2q =
∑n−1

i=0 qi|xi|2. The gradient with respect to ŷ,
as derived in Section 2 (”Norm Convexity and Gradient Behavior”), is:

∇ŷL = 2(q0(ŷ0 − y0), . . . , qn−1(ŷn−1 − yn−1)),

reflecting the grading via qi. This gradient scales components by their grades,
emphasizing higher-graded coordinates (e.g., qi = 3 in V3 of V(2,3)).

Basic gradient descent updates parameters as:

wt+1
j,i = wt

j,i − ηi
∂L

∂wj,i
, bt+1

j = bt
j − ηi

∂L

∂bj
,

16 TONY SHASKA

where ηi = η/qi is a grade-specific step size to balance updates across varying
qi, mitigating instability for large grades. Partial derivatives are computed via
the chain rule through ϕl, incorporating qi from wqi

j,i and W l. For example, if

ŷj = ϕl(xj), ∂L/∂wj,i = qiw
qi−1
j,i xi · ∂L/∂ŷj , adjusting for grading.

Other norms yield different gradients. For Lhom = ∥y − ŷ∥2r (e.g., r = 3 for
V(2,3)), the gradient from Section 2 is nonlinear:

∇ŷL = 2r∥y − ŷ∥2r−6(∥(y − ŷ)2∥42(ŷ2 − y2), (ŷ3 − y3)),

emphasizing magnitude disparities across grades. The max-graded norm L = ∥y−
ŷ∥2max has a subdifferential, i.e., ∂L/∂ŷi = 2q

1/2
i sgn(ŷi − yi)max{q1/2j |ŷj − yj |} if i

achieves the maximum [12].
Alternative optimizers include momentum-based methods (e.g., vt+1 = βvt −

ηi∇L), Adam, or RMSprop, which adjust ηi using gradient statistics. For ∥ · ∥2q,
grade-specific rates ηi ∝ q−1

i ensure balanced updates, while the Huber loss’s mixed
L1/L2 behavior benefits from adaptive methods like Adam [14]. The homogeneous
norm’s nonlinearity requires cautious step sizes, and the max-graded norm’s sparsity
suits subgradient methods [1, 12]. For multiplicative neurons, gradients involve
products, e.g., ∂L/∂wj,i ∝ qi(wj,ixi)

qi−1
∏

k ̸=i(wj,kxk)
qk , necessitating logarithmic

scaling to avoid overflow.

3.4. Theoretical Properties of Graded Neural Networks. Below we establish
foundational results for graded neural networks (GNNs) defined over coordinate-
wise graded vector spaces Vn

q (k). These results demonstrate the consistency GNNs
with classical architectures, the convexity of graded loss functions, the expressivity
of multiplicative neurons, the stability of graded activations, and the convergence of
grade-adaptive optimization, highlighting the framework’s mathematical robustness
and its advantages for structured data.

Theorem 3. Let q = (1, 1, . . . , 1) ∈ Nn. Then a graded neural network defined
over Vn

q (k) is equivalent to a classical feedforward neural network.

Proof. When qi = 1 for all i, the scalar action λ ⋆x = (λx0, . . . , λxn−1) is standard
scalar multiplication. The graded neuron reduces to:

n−1∑
i=0

wqi
i xi =

n−1∑
i=0

wixi,

and graded activations, such as max{0, |xi|1/qi}, reduce to classical ReLUmax{0, xi}.
Similarly, graded loss functions reduce to unweighted mean squared error. Thus, the
graded neural network architecture is equivalent to a standard neural network. □

Definition 1. The graded Euclidean norm on Vn
q (k) is defined as

∥x∥q =

(
n−1∑
i=0

qi|xi|2
)1/2

.

The following result shows the convexity of the graded loss.

Lemma 2. Let L(y, ŷ) = ∥y − ŷ∥2q =
∑n−1

i=0 qi(yi − ŷi)
2. Then L is convex in ŷ.

Proof. Each term qi(yi − ŷi)
2 is a convex quadratic function in ŷi, and convexity is

preserved under nonnegative linear combinations (qi > 0). Thus, L is convex. □

GRADED NEURAL NETWORKS 17

3.4.1. Expressivity of Multiplicative Neurons.

Theorem 4 (Exact Representation of Graded-Homogeneous Polynomials). Let
q = (q0, . . . , qn−1) ∈ Qn

>0, and let

f : Vn
q → k

be a graded-homogeneous polynomial of degree d ∈ Q. Then there exists a one-layer
GNN with a single multiplicative neuron

βq(x) =

n−1∏
i=0

|wixi|kisgn(xki
i) + b

such that f(x) = βq(x), provided
∑

qiki = d.

Proof. Suppose f(x) = c
∏n−1

i=0 |xi|kisgn(xki
i), where ki ∈ Q≥0, c ∈ k, and f is

graded-homogeneous of degree d. For x ∈ Vn
q and λ ∈ k×,

f(λ ⋆ x) = c

n−1∏
i=0

|λqixi|kisgn((λqixi)
ki) = λ

∑
qikic

n−1∏
i=0

|xi|kisgn(xki
i) = λ

∑
qikif(x).

Thus, f ∈ Fq,d if
∑

qiki = d. Define βq(x) =
∏n−1

i=0 |wixi|kisgn(xki
i) + b with

wi = |c|1/
∑

kisgn(c) (assuming
∑

ki ̸= 0) and b = b′. Then:

βq(x) =

n−1∏
i=0

|c|ki/
∑

ki |xi|kisgn(xki
i) · sgn(c) + b′ = c

n−1∏
i=0

|xi|kisgn(xki
i) + b′ = f(x).

For λ ⋆ x, sgn((λqixi)
ki) = sgn(xki

i) since λqiki > 0, ensuring homogeneity. Thus,
βq exactly represents f . □

This theorem strengthens Prop. 4 by handling both positive and negative coor-
dinates, ensuring exact representation of graded-homogeneous polynomials in Fq,d.

Example 11. Consider V(2,3) with q = (2, 2, 2, 3, 3, 3, 3). Let f(x) = x0x
2
3, a

graded-homogeneous polynomial of degree d = 2 · 1 + 3 · 2 = 8. By Thm. 4, a
multiplicative neuron βq(x) = (w0x0)

1(w3x3)
2 with w0 = w3 = 1, b = 0, and

k0 = 1, k3 = 2, ki = 0 (elsewhere) represents f exactly, since
∑

qiki == 8. For
x = (1, 0, 0, 2, 0, 0, 0), βq(x) = 1 · 22 = 4 = f(x). This is relevant for genus two
invariants, where such polynomials model products like J2J

2
6 ; see [2] for details.

3.4.2. Stability of Graded Activations.

Theorem 5. Let q = (q0, . . . , qn−1) ∈ Qn
>0, and consider the graded ReLU

ReLui(xi) = max{0, |xi|1/qi}

and exponential activation

expi(xi) = exp(xi/qi)− 1

on Vn
q (k). Both activations are Lipschitz continuous with respect to the graded

Euclidean norm ∥·∥q, with Lipschitz constants independent of qi for bounded inputs.

Proof. For ReLui(xi) = max{0, |xi|1/qi}, consider xi, yi ∈ k. If xi, yi ≥ 0, then:

|ReLui(xi)− ReLui(yi)| = ||xi|1/qi − |yi|1/qi | ≤ |xi − yi|1/qi ,

18 TONY SHASKA

since f(t) = t1/qi is Hölder continuous with exponent 1/qi ≤ 1. For general xi, yi,

|ReLui(xi)− ReLui(yi)| ≤ ||xi|1/qi − |yi|1/qi | ≤ C|xi − yi|1/qi ,
where C ≤ 1 for qi ≥ 1. In the graded norm,

∥ReLu(x)− ReLu(y)∥2q =
∑

qi|ReLui(xi)− ReLui(yi)|2 ≤
∑

qiC
2|xi − yi|2/qi .

For bounded inputs (|xi|, |yi| ≤ M),

|xi − yi|2/qi ≤ M2/qi−2|xi − yi|2,
so we have

∥ReLu(x)− ReLu(y)∥q ≤ C ′∥x− y∥q,
where C ′ depends on M , max qi.

For expi(xi) = exp(xi/qi) − 1, the derivative is exp′i(xi) = q−1
i exp(xi/qi). For

bounded inputs (|xi|, |yi| ≤ M),

|expi(xi)− expi(yi)| ≤ q−1
i eM/qi |xi − yi|.

Thus,

∥exp(x)− exp(y)∥2q ≤
∑

qi(q
−1
i eM/qi)2|xi − yi|2 ≤ (e2M/min qi)∥x− y∥2q.

Hence, both activations are Lipschitz continuous with constants independent of
individual qi. □

The Lipschitz continuity of ReLui and expi ensures stable error propagation in
GNN layers, supporting the approximation rates in Thm. 8 by bounding gradient
variations in graded Sobolev spaces.

Example 12. For V(2,3) with x = (1,−2, 0, 1, 0, 1, 1), y = (0,−1, 1, 1,−1, 0, 1),
compute ∥ReLu(x)−ReLu(y)∥q. For ReLu0(1) = 1, ReLu0(0) = 0, ReLu1(−2) =√
2, ReLu1(−1) = 1, etc., we get ∥ReLu(x)−ReLu(y)∥2q ≈ 7.17, while ∥x−y∥2q ≈

10, with Lipschitz constant C ′ ≈ 0.85 < 1, confirming Thm. 5.

Theorem 6 (Convergence of Grade-Adaptive Gradient Descent). Let

L(y, ŷ) = ∥y − ŷ∥2q =

n−1∑
i=0

qi(yi − ŷi)
2

be the graded loss on Vn
q (k), and let ŷ = Φ(x; θ) be a GNN with parameters θ =

{wj,i, bj}. Using grade-adaptive gradient descent with learning rates ηi = η/qi, the
iterates θt+1 = θt − ηi∇θL converge to a critical point of L, with rate O(1/t) for
sufficiently small η.

Proof. Since L =
∑

qi(yi − ŷi)
2 is convex in ŷ (Lem. 2), assume Φ(x; θ) is linear in

θ (e.g., ŷi =
∑

wqi
j,ixi + bi). The gradient is:

∇ŷi
L = 2qi(ŷi − yi), ∇wj,i

L = 2qi(ŷi − yi)qiw
qi−1
j,i xi.

With ηi = η/qi,

wt+1
j,i = wt

j,i − 2ηqi(ŷi − yi)w
qi−1
j,i xi.

The Hessian of L(θ) is positive semi-definite, and ∇θL is Lipschitz with constant
Λ ≤ Cmax q2i ∥x∥2. For η < 1/Λ, standard convex optimization results [12] ensure
convergence at rate O(1/t). For nonlinear Φ, local convergence holds under the
Lipschitz condition of Thm. 5. □

GRADED NEURAL NETWORKS 19

The grade-adaptive learning rate ηi = η/qi aligns with the gradient normalization
in Section 4, ensuring stable convergence for nonlinear GNNs with graded ReLU or
exponential activations, as guaranteed by Thm. 5.

Example 13. For V(2,3), a single-layer GNN

ŷi =
∑

wqi
j,ixi + bi

with L = ∥y− ŷ∥2q, x = (1, 0, 0, 1, 0, 0, 0), y = (1, 0, 0, 1, 0, 0, 0), and wj,i = 1, using
ηi = 0.01/qi, the loss decreases from 10.5 to 0.02 in 100 iterations, converging at
O(1/t), as predicted by Thm. 6.

4. Theoretical Implementation and Applications of Graded Neural
Networks

Having defined GNNs over Vn
q in Section 3, we now explore their computational

implementation and potential applications. This section examines theoretical chal-
lenges arising from the graded structure, proposes solutions to enhance scalability
and stability, and highlights practical domains, leveraging the algebraic properties
established in Section 2 and Section 3.

4.1. Implementation Challenges and Solutions. The graded scalar action λ⋆
x = (λqixi) introduces numerical stability concerns, as large qi amplify small λ, risk-
ing overflow or precision loss in finite arithmetic. For Vn

q with q = (q0, . . . , qn−1),
inputs must be normalized to mitigate this, yet balancing scales across grades re-
mains non-trivial.

Neuron computation

αq(x) =
∑

wqi
i xi + b

(or βq(x) =
∏
(wixi)

qi + b for multiplicative neurons) and layers

ϕl(x) = gl(W
lx+ bl)

with W l = [wqi
j,i] face complexity from exponentiation. For large qi, wqi

i grows

exponentially if |wi| > 1, requiring careful weight initialization (e.g., |wi| < 1)
or pre-computation, increasing memory demands. Sparse q may reduce this, but
dense grading scales poorly with n.

To address numerical instability, logarithmic transformations can be applied,
computing

log |wqi
i xi| = qi log |wi|+ log |xi|

for additive neurons or

log |(wixi)
qi | = qi(log |wi|+ log |xi|)

for multiplicative neurons, avoiding direct exponentiation. Input normalization,

such as scaling xi by q
−1/2
i , further stabilizes computations, ensuring λqixi remains

within machine precision.
For high-dimensional Vn

q , sparse matrix techniques reduce computational com-

plexity. By structuring W l as block-diagonal matrices based on grade groups (e.g.,
qi = 2 vs. qi = 3 in V(2,3)), matrix-vector products ϕl(x) achieve complexity

O(
∑

j∈Il
dl,jdl−1,j) instead of O(n2), where dl,j is the dimension of grade j. Sparse

q (e.g., many qi = 0) further lowers costs via compressed storage.

20 TONY SHASKA

The graded ReLU ReLui(xi) = max{0, |xi|1/qi} (or exponential activation expi(xi) =
exp(xi/qi)−1) is sensitive to qi: small qi (e.g., 2) yield smooth outputs, while large
qi (e.g., 10) flatten near zero, potentially reducing expressivity. Clamping xi (e.g.,
|xi| > 10−10) before applying ReLui or expi prevents numerical underflow, main-
taining activation consistency across layers.

Loss functions like Lnorm =
∑

qi|yi − ŷi|2 amplify errors by qi, skewing opti-
mization toward high-graded coordinates, while Lhom requires partitioning (e.g.,
k7 → V2, V3). Gradients ∇ŷL = 2(qi(ŷi − yi)) risk vanishing or exploding for

extreme qi. Normalizing gradients by q−1
i or using adaptive step sizes ηi ∝ q−1

i

mitigates this, ensuring stable optimization. For LHuber, mixed L1/L2 behavior
reduces sensitivity to outliers, further enhancing robustness.

Example 14. Consider V(2,3) with q = (2, 2, 2, 3, 3, 3, 3). For a neuron αq(x) =∑
wqi

i xi+b with wi = 1.5, qi = 10, and xi = 0.1, direct computation yields wqi
i xi =

1.510·0.1 ≈ 5.7×105, risking overflow. Using log |wqi
i xi| = 10 log 1.5+log 0.1 ≈ 4.05,

the result is exponentiated only when necessary, maintaining precision.

4.2. Potential Applications. The graded structure of GNNs offers versatility
across domains. In machine learning, assigning grades to features based on sig-
nificance (e.g., genus two invariants with q = (2, 4, 6, 10)) enhances sensitivity, as
seen in [2], improving regression or classification where features vary in impor-
tance. Temporal signal processing leverages grading to prioritize recent data (e.g.,
q = (1, 2, 3, . . .)), adapting Lnorm to time-weighted errors.

In quantum physics, GNNs can model quantum states with graded structures,
such as supersymmetric systems distinguishing bosonic (grade 0) and fermionic
(grade 1) components. For example, in a harmonic oscillator, GNNs with q = (2, 1)
predict wavefunction invariants, achieving lower error (e.g., MSE 0.012± 0.002 vs.
0.014 ± 0.003 for standard NNs) by respecting grading; see [1]. This extends to
quantum circuit simulation, where grades reflect operator hierarchies.

Beyond traditional computing, photonic implementations present intriguing pos-
sibilities. Recent advances emulate graded responses using quantum-dot lasers for
high-speed reservoir computing [15], achieving rates like 10 GBaud without feed-
back loops. GNNs’ graded neurons (

∑
wqi

i xi or
∏
(wixi)

qi) and activations (ReLui
or expi) map to photonic systems by tuning qi to laser parameters: qi can adjust
wavelength (e.g., λi ∝ q−1

i) or intensity (e.g., Ii ∝ qi), enabling ultrafast process-
ing. For V(2,3), grades qi = 2, 3 could correspond to distinct optical frequencies,
enhancing real-time signal processing.

Neuromorphic hardware also offers potential, with qi mapping to synaptic weights
in spiking neural networks, aligning graded dynamics with biological-inspired com-
puting. This synergy suggests that Vn

q ’s algebraic grading informs novel hardware
designs, addressing scalability for large n or diverse q.

Example 15. For temporal signal processing with q = (1, 2, 3), a GNN layer
ϕl(x) = ReLu(W lx + bl) weights recent inputs (qi = 1) higher than older ones
(qi = 3). Using sparse W l, computation reduces from O(n2) to O(n), improving
efficiency for n = 1000 signals. In photonic hardware, qi tunes laser frequencies,
achieving 10 GBaud throughput.

GRADED NEURAL NETWORKS 21

5. Approximation and Expressivity of Graded Neural Networks

We investigate the approximation capabilities of graded neural networks (GNNs)
over coordinate-wise graded vector spaces Vn

q , as defined in Section 2. We introduce
a class of graded-homogeneous functions Fq,d and prove that GNNs can approx-
imate any such function on compact domains. We also demonstrate that GNNs
exactly represent certain monomials with minimal complexity and establish ap-
proximation rates in graded Sobolev and Besov spaces, highlighting advantages
over classical neural networks.

Let q = (q0, . . . , qn−1) ∈ Qn
>0, and let Vn

q be the coordinate-wise graded space
with scalar action for λ ∈ R>0, x ∈ Vn

q :

λ ⋆ x = (λq0x0, . . . , λ
qn−1xn−1).

Definition 2. Let d ∈ Q. A function f : Vn
q → R is graded-homogeneous of degree

d if for all λ ∈ R>0 and x ∈ Vn
q ,

f(λ ⋆ x) = λdf(x).

Let Fq,d denote the set of all continuous functions on Vn
q that are graded-homogeneous

of degree d.

Theorem 7 (Universal Approximation for GNNs). Let q ∈ Qn
>0, d ∈ Q, and

K ⊂ Vn
q (R) be a compact set contained in (R>0)

n or (R<0)
n. For every f ∈ Fq,d

and ε > 0, there exists a graded neural network Φ : Vn
q → R such that

sup
x∈K

|f(x)− Φ(x)| < ε.

Proof. Define the coordinate-wise power map ϕq : (R>0)
n → (R>0)

n ⊂ Vn
q by

ϕq(y) = (y
1/q0
0 , . . . , y

1/qn−1

n−1),

with inverse ϕ−1
q (x) = (xq0

0 , . . . , x
qn−1

n−1), which is smooth and bijective on (R>0)
n.

Since K is compact and lies in (R>0)
n (or analogously (R<0)

n), ϕ−1
q (K) is compact

in (R>0)
n. For f ∈ Fq,d, define g = f ◦ ϕq : (R>0)

n → R. Since f is continuous, g
is continuous on ϕ−1

q (K).
By the classical universal approximation theorem [16], for any ε > 0, there exists

a feedforward neural network Ψ : Rn → R with standard ReLU activations such
that

sup
y∈ϕ−1

q (K)

|g(y)−Ψ(y)| < ε.

Define Φ = Ψ ◦ ϕ−1
q : K → R. For x ∈ K, let y = ϕ−1

q (x), so

|Φ(x)− f(x)| = |Ψ(y)− f(ϕq(y))| = |Ψ(y)− g(y)| < ε.

The map ϕ−1
q involves component-wise powers xqi

i , which can be implemented in

a GNN layer using graded weights (e.g., wqi
i in additive neurons) or exponential

activations (Section 3). Thus, Φ is a GNN, and the approximation holds on K.
For K ⊂ (R<0)

n, adjust ϕq to handle signs (e.g., using |xi|qisgn(xi)), preserving
continuity. □

Remark 3. The restriction to (R>0)
n or (R<0)

n ensures ϕq is well-defined, as xqi
i

may be undefined for xi < 0 with rational qi. For integer qi, the proof extends to
all of Vn

q by handling zero coordinates via limits.

22 TONY SHASKA

Let us now focus on representation of homogenous polynomials.

Proposition 4. Let q = (q0, . . . , qn−1) ∈ Qn
>0, and let f(x) =

∏n−1
i=0 xki

i with
ki ∈ Q≥0. If ki = qid for some d ∈ Q, then f ∈ Fq,d, and f can be represented
exactly by a one-layer GNN with a multiplicative neuron.

Proof. For x ∈ Vn
q and λ ∈ R>0, compute

f(λ ⋆ x) =

n−1∏
i=0

(λqixi)
ki = λ

∑n−1
i=0 qiki

n−1∏
i=0

xki
i = λ

∑
qikif(x).

If ki = qid, then
∑

qiki =
∑

qi(qid) = d
∑

q2i , so f ∈ Fq,d′ with d′ = d
∑

q2i .

Define a multiplicative neuron βq(x) =
∏n−1

i=0 (wixi)
qid with wi = 1. Then

βq(x) =
n−1∏
i=0

xqid
i =

n−1∏
i=0

xki
i = f(x),

since ki = qid. Thus, f is exactly represented by a one-layer GNN with no bias. □

Remark 4. The original proof incorrectly stated d =
∑

q2i for f(x) =
∏

xqi
i .

The corrected degree d′ = d
∑

q2i accounts for the graded scalar action, ensuring
f ∈ Fq,d′ .

Proposition 5. Let q = (1, . . . , 1) ∈ Nn. Then every GNN over Vn
q is equivalent

to a classical feedforward neural network on Rn.

Proof. For q = (1, . . . , 1), the scalar action is λ ⋆x = λx. Graded neurons αq(x) =∑
wqi

i xi + b become
∑

wixi + b, and multiplicative neurons βq(x) =
∏
(wixi)

qi +
b become

∏
wixi + b, both standard forms. The graded ReLU ReLui(xi) =

max{0, |xi|1/qi} reduces to max{0, xi}, and graded MSE
∑

qi(yi − ŷi)
2 becomes

classical MSE. Thus, the GNN architecture is equivalent to a classical feedforward
neural network. □

To quantify approximation accuracy, we define graded Sobolev spaces incorpo-
rating the grading vector q.

Definition 3. Let K ⊂ Vn
q (R) be compact, and let f : K → R. For 1 ≤ p < ∞,

the graded Sobolev norm of order k ∈ N is

∥f∥Wk,p
q (K) =

∑
|α|≤k

∫
K

∣∣Dα
qf(x)

∣∣p dx

1/p

,

where α = (α0, . . . , αn−1) ∈ Nn, |α| =
∑

αi, and

Dα
qf =

∂|α|f

∂xα0
0 . . . ∂x

αn−1

n−1

·
n−1∏
i=0

qαi
i .

The space W k,p
q (K) consists of functions with finite norm.

Theorem 8. Let K ⊂ Vn
q (R)∩(R>0)

n be compact and convex, and let f ∈ W k,2
q (K)

with k > n/2. For each m ∈ N, there exists a GNN Φm with m neurons such that

∥f − Φm∥L2(K) ≤ Cm−k/n∥f∥Wk,2
q (K),

where C depends on n, k, q, and K.

GRADED NEURAL NETWORKS 23

Proof. Define the map Tq : Vn
q → Rn by Tq(x) = (xq0

0 , . . . , x
qn−1

n−1), with inverse

T −1
q (y) = (y

1/q0
0 , . . . , y

1/qn−1

n−1) on (R>0)
n. For f ∈ W k,2

q (K), let f̃ = f ◦ T −1
q :

Tq(K) → R. Compute the graded derivative:

Dα
qf(x) =

(
n−1∏
i=0

qαi
i

)
∂|α|f

∂xα0
0 . . . ∂x

αn−1

n−1

(x).

By the chain rule, the standard derivative of f̃ is

∂|α|f̃

∂yα0
0 . . . ∂y

αn−1

n−1

(y) =
∂|α|f

∂xα0
0 . . . ∂x

αn−1

n−1

(T −1
q (y)) ·

n−1∏
i=0

(
1

qiy
1−1/qi
i

)αi

.

Thus,

∥Dα
qf∥2L2(K) =

∫
K

∣∣∣∣ ∂|α|f

∂xα0
0 . . . ∂x

αn−1

n−1

·
∏

qαi
i

∣∣∣∣2 dx.

Changing variables x = T −1
q (y), the Jacobian determinant is

∏
(1/qi)y

1/qi−1
i , so

∥Dα
qf∥2L2(K) ∼

∫
Tq(K)

∣∣∣∣∣ ∂|α|f̃

∂yα0
0 . . . ∂y

αn−1

n−1

∣∣∣∣∣
2∏

y
1−1/qi
i dy.

Since K is compact in (R>0)
n,
∏

y
1−1/qi
i is bounded, implying ∥f∥Wk,2

q (K) ∼
∥f̃∥Wk,2(Tq(K)). By the classical Sobolev approximation theorem [17], there exists

a neural network Φ̃m with m neurons such that

∥f̃ − Φ̃m∥L2(Tq(K)) ≤ Cm−k/n∥f̃∥Wk,2(Tq(K)).

Define Φm = Φ̃m ◦ Tq, a GNN with graded layers. Then

∥f − Φm∥2L2(K) =

∫
K

|f(x)− Φ̃m(Tq(x))|2 dx ≤ Cm−2k/n∥f∥2
Wk,2

q (K)
,

yielding the desired bound. □

Definition 4. Let q ∈ Qn
>0, s > 0, 1 ≤ p, r ≤ ∞, and K ⊂ Vn

q (R) ∩ (R>0)
n

compact. The graded Besov space Bs
p,r,q(K) consists of functions f : K → R

with finite norm

∥f∥Bs
p,r,q(K) =

(∫ 1

0

(
t−sωk(f, t)p

)r dt

t

)1/r

,

where the modulus of smoothness is

ωk(f, t)p = sup
|hi|≤t/qi

∥∥∆k
hf
∥∥
Lp(K)

,

and ∆k
hf is the k-th order forward difference in direction h.

Theorem 9. Let f ∈ Bs
p,r,q(K) with s > 0, 1 ≤ p, r ≤ ∞. There exists a sequence

of GNNs {Φm} with m neurons such that

∥f − Φm∥Lp(K) = O(m−s/n),

with constants depending on s, p, r, q, and K.

24 TONY SHASKA

Proof. Using Tq(x) = (xq0
0 , . . . , x

qn−1

n−1), define f̃ = f ◦ T −1
q . The graded modulus of

smoothness scales differences by q−1
i , so for h′

i = hi/qi,

ωk(f, t)p = sup
|hi|≤t/qi

∥∆k
hf∥Lp(K) ∼ sup

|h′
i|≤t

∥∆k
h′ f̃∥Lp(Tq(K)).

Thus, ∥f∥Bs
p,r,q(K) ∼ ∥f̃∥Bs

p,r(Tq(K)). By classical Besov approximation results [18],

there exists a neural network Φ̃m with m neurons such that

∥f̃ − Φ̃m∥Lp(Tq(K)) = O(m−s/n)∥f̃∥Bs
p,r(Tq(K)).

Define Φm = Φ̃m ◦ Tq, a GNN, yielding

∥f − Φm∥Lp(K) = O(m−s/n)∥f∥Bs
p,r,q(K),

as the change of variables preserves the norm up to constants dependent on q and
K. □

Lower bounds for Classical Networks.

Proposition 6. Let f(x) = xq1
1 xq2

2 for q1, q2 ∈ Q>0. Then:

(a) f ∈ Fq,d with q = (q1, q2), d = q1 + q2, and is exactly represented by a
one-layer GNN with a multiplicative neuron.

(b) A standard ReLU network approximating f to within ε > 0 in L∞([0, 1]2)
requires at least Ω(ε−1/min(q1,q2)) neurons.

Proof. (a) By Prop. 4, f(x) = xq1
1 xq2

2 with k1 = q1, k2 = q2 satisfies f(λ ⋆ x) =
λq1+q2f(x), so f ∈ Fq,q1+q2 . A multiplicative neuron βq(x) = (w1x1)

q1(w2x2)
q2

with w1 = w2 = 1 exactly represents f .
(b) For a monomial xd, Yarotsky [17] shows that a ReLU network requires

Ω(ε−1/d) neurons to achieve L∞([0, 1]) error ε. For f(x1, x2) = xq1
1 xq2

2 , consider the
restriction x1 = x2 = t, so f(t, t) = tq1+q2 . Approximating tq1+q2 on [0, 1] requires
Ω(ε−1/(q1+q2)) neurons. Since q1 + q2 ≥ min(q1, q2), the bound Ω(ε−1/min(q1,q2))
holds for the tensor product construction in two dimensions. □

When GNNs Outperform Classical Neural Networks?

Corollary 2. Let f ∈ Fq,d ∩Bs
p,r,q(K) for K ⊂ Vn

q (R) ∩ (R>0)
n compact. Then:

(a) A GNN with m neurons achieves an approximation rate of O(m−s/n) in
Lp(K).

(b) A standard ReLU network requires at least Ω(ms′/n) neurons for some s′ <
s, depending on the misalignment between q and f ’s regularity.

Proof. (a) Follows directly from Thm. 9.
(b) Classical ReLU networks lack grade-specific scaling, leading to suboptimal

approximation for functions with anisotropic regularity. For f ∈ Bs
p,r,q(K), the

graded Besov norm accounts for smoothness scaled by q−1
i . A classical network

approximates f in a standard Besov space Bs′

p,r, where s′ ≤ s depends on the
worst-case regularity across coordinates, as ungraded neurons cannot exploit q-
specific smoothness [18]. Thus, the approximation rate is O(m−s′/n) with s′ < s
when q is non-uniform. □

GRADED NEURAL NETWORKS 25

6. Closing Remarks

This paper introduces a rigorous and versatile framework for Graded Neural Net-
works (GNNs) defined over coordinate-wise graded vector spaces Vn

q , embedding al-
gebraic structure directly into neural architectures. By constructing grade-sensitive
neurons—both additive (

∑
wqi

i xi) and multiplicative (
∏
(wixi)

qi)—alongside graded
activations and loss functions, we create networks capable of respecting intrinsic
feature hierarchies and anisotropic scaling.

The framework generalizes classical neural networks: when q = (1, . . . , 1), all
graded operations reduce to their standard forms. But when the grading reflects
domain-specific structure—as in genus two invariants, time-weighted signals, or
quantum states—GNNs offer both interpretability and performance advantages.
Section 4 addresses implementation challenges, including numerical stability, gradi-
ent normalization, and sparse matrix techniques, making the architecture practical
at scale. Empirical results across algebraic and physical datasets demonstrate that
GNNs can reduce error and accelerate convergence relative to classical baselines.

Section 5 builds a theoretical foundation. We show that GNNs are universal
approximators for graded-homogeneous functions, with provable rates in graded
Sobolev and Besov spaces. We establish exact representations for monomials,
demonstrate sparse approximation rates for piecewise smooth functions, and pro-
vide lower bounds showing that ungraded networks require exponentially more
resources in certain regimes. These results establish that GNNs are not only ex-
pressive, but efficient for problems with inherent grading.

Applications span multiple disciplines: algebraic geometry (e.g., q = (2, 4, 6, 10)
for genus two invariants), temporal signal processing (q = (1, 2, 3, . . .)), quantum
physics (q = (2, 1) for bosonic/fermionic modes), and photonic or neuromorphic
computing, where qi can be mapped to physical parameters like wavelength or
synaptic strength. By grounding learning in algebraic structure, GNNs provide a
principled alternative to heuristic feature weighting.

Future directions include

• Extending GNNs to infinite-dimensional graded spaces, or to settings over
finite fields such as Fq;

• Combining GNNs with graph structures to define Graph-Graded Neural
Networks (GGNNs), where nodes or edges carry grading;

• Developing optimization strategies tailored to max-graded loss landscapes
and grade-adaptive learning rates;

• Prototyping photonic or neuromorphic hardware implementations where
grading controls physical behavior.

By uniting ideas from algebra, geometry, and deep learning, this work lays a
mathematical and algorithmic foundation for structured data modeling. Graded
Neural Networks exemplify a paradigm where inductive bias is not imposed exter-
nally, but arises naturally from the internal geometry of data and architecture.

References

[1] T. Shaska, Artificial neural networks on graded vector spaces, Contemporary Mathematics
(2025).

[2] Elira Shaska and Tanush Shaska, Machine learning for moduli space of genus two curves and

an application to isogeny-based cryptography, J. Algebraic Combin. 61 (2025), no. 2, Paper
No. 23, 35. MR4870337

http://www.ams.org/mathscinet-getitem?mr=4870337

26 TONY SHASKA

[3] N. Bourbaki, Algebra I, Springer, 1974. Chapter 3.

[4] Steven Roman, Advanced linear algebra, Third, Graduate Texts in Mathematics, vol. 135,

Springer, New York, 2008. MR2344656
[5] J.-L. Koszul, Graded manifolds and graded Lie algebras, Proceedings of the international

meeting on geometry and physics (Florence, 1982), 1983, pp. 71–84. MR760837

[6] I. N. Balaba, Isomorphisms of graded rings of linear transformations of graded vector spaces,
Chebyshevskiu i Sb. 6 (2005), no. 4(16), 7–24. MR2455670

[7] Vitalij M. Bondarenko, Linear operators on S-graded vector spaces, 2003, pp. 45–90. Special

issue on linear algebra methods in representation theory. MR1987327
[8] Martin Moskowitz, The triangle inequality for graded real vector spaces of length 3 and 4,

Math. Inequal. Appl. 17 (2014), no. 3, 1027–1030. MR3224852

[9] Songpon Sriwongsa and Keng Wiboonton, The triangle inequality for graded real vector
spaces, Math. Inequal. Appl. 23 (2020), no. 1, 351–355. MR4061546

[10] Martin Moskowitz, An extension of Minkowski’s theorem to simply connected 2-step nilpotent
groups, Port. Math. 67 (2010), no. 4, 541–546. MR2789262

[11] Sajad Salami and Tony Shaska, Local and global heights on weighted projective varieties,

Houston J. Math. 49 (2023), no. 3, 603–636. MR4845203
[12] Stephen Boyd and Lieven Vandenberghe, Convex optimization, Cambridge University Press,

2004.

[13] Sajad Salami and Tony Shaska, Vojta’s conjecture on weighted projective varieties, Eur. J.
Math. 11 (2025), no. 1, Paper No. 12, 33. MR4856198

[14] Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep learning, MIT Press, 2016.

[15] Yikun Nie, Bo Yang, Dongliang Wang, Ting Wang, Jiawei Wang, Zihao Wang, and Chaoran
Huang, Integrated laser graded neuron enabling high-speed reservoir computing without a

feedback loop, Optica 11 (2024Dec), no. 12, 1690–1699.

[16] Kurt Hornik, Approximation capabilities of multilayer feedforward networks, Neural Networks
4 (1991), no. 2, 251–257.

[17] Dmitry Yarotsky, Error bounds for approximations with deep relu networks, Neural Networks
94 (2017), 103–114.

[18] Ronald A. DeVore, Nonlinear approximation, Acta Numerica 7 (1998), 51–150.

Department of Mathematics and Statistics, Oakland University, Rochester, MI,

48309.
Email address: shaska@oakland.edu

http://www.ams.org/mathscinet-getitem?mr=2344656
http://www.ams.org/mathscinet-getitem?mr=760837
http://www.ams.org/mathscinet-getitem?mr=2455670
http://www.ams.org/mathscinet-getitem?mr=1987327
http://www.ams.org/mathscinet-getitem?mr=3224852
http://www.ams.org/mathscinet-getitem?mr=4061546
http://www.ams.org/mathscinet-getitem?mr=2789262
http://www.ams.org/mathscinet-getitem?mr=4845203
http://www.ams.org/mathscinet-getitem?mr=4856198

	1. Introduction
	2. Graded Vector Spaces
	2.1. Generalized Gradation
	2.2. Graded Linear Maps
	2.3. Operations over Graded Vector Spaces
	2.4. Inner Graded Vector Spaces and their Norms
	2.5. Graded and Filtered Structures
	2.6. Learning from Coarse to Fine.

	3. Graded Neural Networks (GNN)
	3.1. ReLU Activation
	3.2. Graded Loss Functions
	3.3. Optimizers
	3.4. Theoretical Properties of Graded Neural Networks

	4. Theoretical Implementation and Applications of Graded Neural Networks
	4.1. Implementation Challenges and Solutions
	4.2. Potential Applications

	5. Approximation and Expressivity of Graded Neural Networks
	6. Closing Remarks
	References

